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ABSTRACT 

 

 

Introduction: The purpose of this study was to determine whether performing a 

circumferential supracrestal fiberotomy (CSF) decreases the amount of surrounding 

dentoalveolar bone, and to evaluate the reorganization and healing of supracrestal 

gingival fibers following CSF.   

Methods: Using a split-mouth design, CSF was performed on 2 maxillary teeth of 

7 beagle dogs. The control side received no CSF.  After either 2 or 4 weeks of healing, 

μCT was used to evaluate the quality and maturity of the dentoalveolar bone using bone 

density, bone volume, and trabecular thickness and number.  Histologic analyses were 

performed to evaluate bone remodeling and healing of gingival fibers.   

Results:  μCT showed a significantly decreased (9%) bone volume fraction in the 

coronal bone sections of the experimental teeth.  There was no significant difference in 

bone quantity apical to the crestal bone.  TRAP staining showed an increase in TRAP 

activity along the surfaces of the crest of the alveolar bone, as well as in the lamina dura 

at two weeks.  After four weeks, the TRAP activity had decreased to control levels.  

H&E and picro-sirius red stains demonstrated that the supracrestal gingival fibers were 

reattached but disorganized 2 weeks and 4 weeks after CSF.  There was no difference in 

the fiber organization after 2 or 4 weeks.   

 Conclusions: The bone demineralization and remodeling associated with CSF is 

limited to the area immediately adjacent to the CSF.  The demineralization event is 
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transient, lasting less than 4 weeks.  The supracrestal gingival fibers reattach, but are still 

disorganized at 2 weeks and 4 weeks following CSF. 
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NOMENCLATURE 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The length of orthodontic treatment is a problem for both orthodontists and 

patients alike.  The duration of comprehensive orthodontic treatment ranges from 21-27 

months for non-extraction treatment, and 26-35 months if extractions are needed.1 The 

length of treatment is often dependent on the rate of tooth movement. The typical rate of 

tooth movement is 1 mm per month.2,3 If the teeth need to move long distances, this 

increases the length of treatment and consequently, the risks of gingival inflammation, 

root resorption, and white spot lesions on the enamel of teeth.4-6  The duration of 

treatment is also heavily dependent on compliance by patients, as well as the number of 

broken brackets and missed appointments.  Compliance decreases as treatment 

progresses, which further justifies finding ways to accelerate the rate of tooth movement 

and reduce the length of treatment.7  Accelerating treatment would make it possible to 

decrease risk, meet the patients need for faster treatment, and still allow practitioners to 

provide uncompromised treatment results.  

The following literature review will first discuss the biology of tooth movement, 

and then review the different procedures used to accelerate the rate of tooth movement 

and decrease treatment time. The biologic basis of accelerated tooth movement will then 

be examined and the review will conclude with literature pertaining to circumferential 

supracrestal fiberotomies (CSF), focusing on how this procedure could potentially be 

used to increase the rate of tooth movement in orthodontics.   
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Biology of Tooth Movement 

With conventional treatment, orthodontists are limited by the biological processes 

that are responsible for tooth movement.  In order to find ways of accelerating tooth 

movement, it is important to understand the basic biology of how teeth move.  There are 

several proposed mechanisms, including the piezoelectric, pressure tension, and 

mechanotransduction hypotheses, that attempt to explain the bony changes that must 

occur in order for a tooth to move.  While it is possible that the actual mechanism may 

be a combination of several hypotheses, mechanotransduction provides the most likely 

explanation for tooth movement. 

Piezoelectric Hypothesis 

The piezoelectric hypothesis was first made popular in the 1960s.  As crystalline 

structures such as hydroxyapatite are deformed, the stress is converted to electric stimuli 

and there is a flow of electrons from one area of a crystal to another.  This creates a 

change in electric polarity.  Basset and Becker reported that bone under compression 

will develop negative potentials. 8  These electrical potentials can affect osteogenic 

tissues and stimulate bone formation.   After the force is applied, the signal quickly dies 

away and an opposite signal is created when the force is removed, resulting in a reverse 

flow of electrons. These signals are likely important in the daily maintenance of bone 

during normal function.  It has been demonstrated that when an electrical current is 

applied, teeth move faster than with conventional orthodontics alone.9  However, with 

the sustained forces used in orthodontics, the signal would be short-lived, because the 
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signal would rapidly die after the initial application of force. As such, it is unlikely that 

this hypothesis alone is responsible for the mechanism of orthodontic tooth movement.  

Pressure-tension 

The pressure tension hypothesis is the classic theory of tooth movement.10-12  This 

hypothesis proposes that when forces are placed on the tooth, part on the periodontal 

ligament will be compressed and part of the ligament will be stretched, under tension.  

This causes changes in the local chemical environment which stimulates cellular 

activity.  Bone deposition occurs on the tension side and resorption occurs on the 

pressure side.  With light pressure on the PDL, blood vessels are compressed and a 

decreased blood flow results.  Cytokines and prostaglandins are released, as well as other 

messengers that help regulate osteoblast and osteoclast activity.  Osteoclasts are 

activated to resorb bone with frontal resorption.  With heavy forces and increased 

pressure on the PDL, a cell-free area of necrosis and “hyalinization” occurs.  Osteoclasts 

must be activated from a distant area and resorb bone towards the tooth, resulting in 

undermining resorption.  Undermining resorption occurs slower than frontal resorption. 

King et al, who evaluated histologic sections of alveolar bones in rats, reported increased 

bone deposition on the “tension side” and increased bone resorption on the “pressure 

side.”13   

Mechanotransduction 

The mechanotransduction hypothesis proposes that the mechanical forces are 

converted to an electrical signal by osteocytes in the bone.14 Osteocytes are connected to 

other osteocytes and bone surface lining osteoblasts via long slender processes 
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connected by gap junctions, forming a cellular network.  The bone that surround the 

cells and their processes is not mineralized and is more easily penetrated by fluid, 

creating the lacunocanalicular porosity.   When strain levels change on the bone, there 

are corresponding changes in fluid flow in the PDL and in the canaliculi. This creates a 

fluid shear stress that is sensed by the osteocytes, which act as mechanosensory cells, 

resulting in an increase in growth factors, matrix synthesis and gene activation.  These 

charges and cellular signals regulate osteoblasts and osteoclast recruitment. These 

signals can be relayed through the osseous connected canalicular network which is 

connected by gap junctions. 15 

 

Rate of Tooth Movement 

The average rate of tooth movement is approximately 1 mm per month.3,16  

However, rates vary greatly between and within individuals. There are qualities of the 

bone that can influence tooth movement including bone density and the rate of bone 

turnover. 

Rate of bone turnover 

Verna et al demonstrated that there is a relationship between bone remodeling and 

the rate of tooth movement in a study of 52 Wistar rats.17 The rate of bone turnover was 

modified in the rats by pharmacologically induced hypothyroidism and hyperthyroidism, 

which was compared to a third control group. They confirmed that the levels of bone 

turnover in the 3 groups were significantly different.  A constant mesial force was placed 

on a molar to cause tipping.  They concluded that the amount of tooth movement was 
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significantly greater in the hyperthyroid group (high bone turnover) than the control rats, 

which were in turn greater than the hypothyroid group (low bone turnover).   

Bone Density 

Bone density has also been shown to significantly affect rates of tooth movement.  

In a study by Goldie et al, 35 rats were separated into two groups.18  The first group had 

a dietary induced calcium deficiency and lower bone density; the second was a control 

group.  They concluded that the rats with lower bone density had significantly faster 

tooth movement than the control rats.   

Similarly, Ashcraft et al demonstrated the effects of decreased bone density by 

pharmacologically inducing osteoporosis in 13 New Zealand rabbits with 

corticosteroids, and compared these to a control group.19  They mesialized the maxillary 

first molars for two weeks.  The rabbits with decreased bone density had three to four 

times greater tooth movement than the controls.  They also concluded that the decreased 

bone density resulted in faster tooth movement. 

The Regional Acceleratory Phenomenon 

In recent years there have been numerous methods proposed to accelerate the rate 

of tooth movement.  These methods typically involve inducing trauma, which causes 

inflammation in the alveolus.  This stimulates the regional acceleratory phenomenon 

(RAP), first described by Harold Frost in 1983. 20  The RAP is a complex and local 

reaction to noxious stimuli that results in the acceleration of the normal healing 

processes, accelerated bone turnover, regional decreases in bone density, increased 

perfusion, and increased cellular metabolism.  Taking advantage of the RAP by injuring 
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bone has become common in orthodontics and is often called surgically assisted 

orthodontics.   

Corticotomy 

The RAP is usually achieved surgically with corticotomies involving a full 

thickness mucoperiosteal flaps and creating perforations or incisions in the bone.  

Corticotomies date back to 1959, when Heinrich Kole proposed that it worked as a 

variation of distraction osteogenesis, where blocks of bone are moved independently 

without waiting for PDL-mediated bone remodeling to occur.  The technique was 

popularized by the Wilco brothers in 2001.  The CT scans of their patients demonstrated 

significantly decreased bone density after the corticotomies, leading them to conclude 

that the increased rate of tooth movement was due to the RAP rather than movement of 

bone segments.  The surgical technique that they used involved full thickness 

mucoperiosteal flaps with vertical corticotomies between the teeth connected 

subapically.  The corticotomies were then covered with a bone allograft and the tissues 

were reapproximated. They reported a dramatic decrease in treatment duration, with 

some patients completed in as short as six months. However, they did not have control 

groups to compare treatment times.  

Several studies have been performed that demonstrate increased rates of tooth 

movement following corticotomies.  In a canine study by Cho et al in 2007, full 

thickness mucoperiosteal flaps and corticotomies were performed in the buccal cortex.  

The study had a very small sample size, including only two beagle dogs.  The 

corticotomies were performed in one maxillary quadrant and one mandibular quadrant.  
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They found 4 times faster tooth movement in the maxilla and 2 times faster tooth 

movement in the mandible.21 In 2009, Sanjideh et al found twice as much movement 

when protracting mandibular third premolars in foxhounds following buccal flaps with 

corticotomy (p<0.05).22 In another canine split mouth study conducted by Iino et al in 

2007, corticotomies were performed on the mandible of 12 beagles, and the third 

premolar was protracted.23  They found 2 times faster tooth movement on the 

experimental side.   

In a randomized controlled trial in 2014 by Fischer et al, 6 patients with 

bilaterally impacted canines were included in the split-mouth study.  One of the canines 

had a full thickness mucoperiosteal flap, along with perforations along the mesial and 

distal lengths of the root, 2 mm apart and 1.5 mm deep. The other side had traditional 

canine exposures.  The age range was 11-12.9 years and the patients were consecutively 

treated.  A force of 60 g was placed on the tooth, which was monitored until it had 

reached the level of the occlusal plane.  They found reduced treatment times ranging 

from 28-33% on the experimental side, a difference that was significant at the 0.001% 

level. 24 

Flapless Corticotomy 

Although corticotomies have shown positive results, the mucoperiosteal flap 

causes alveolar bone loss and possible dehiscence.  As a result of these and other 

possible risks of corticotomies, there has been a move toward less invasive methods for 

accelerating tooth movements.  Other techniques for inducing the RAP, including micro-
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osteoperforations and flapless corticotomy, have been investigated with varying levels of 

success.   

Flapless corticotomies do not produce the same results as the classic 

corticotomies with a full thickness mucoperiosteal flaps.   A split-mouth study of five 

beagle dogs by Safavi et al used nickel titanium closed coil springs to protract the second 

premolars.25  Twenty-five small holes, 2 mm deep, were made without flaps in the 

cortical bone mesial and distal to the second premolars and in the first premolar 

extraction site.  The decortication procedure was repeated after the first and second 

month, and the premolars were protracted for a total of three months.  Although the rate 

of tooth movement was significantly greater during the first month of treatment on the 

piezocision side than the control side, it was less than on the control side during the third 

month of treatment.  The overall difference was not statistically significant (p=0.240).  

Micro-osteoperforations 

Recently, micro-osteoperforations or MOPs have been used to increase the rate 

of tooth movement.  This procedure perforates the buccal cortical plate with a miniscrew 

to cause the RAP with minimal risk or trauma.  In a study by Cramer, MOPs were placed 

around a maxillary 2nd premolar of beagle dogs.26  The premolar was distalized with a 

nickel titanium closed coil spring.  He found that the tooth movement was slightly 

greater on the MOP side, but the difference was not clinically or statistically significant.  

The diminished result with flapless procedures demonstrate that the full thickness 

mucoperiosteal flap plays a role in inducing the RAP, as does the amount of injury.  
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Van Gemert et al studied the amount of damage cause by micro-

osteoperforations (MOPs) on cortical and trabecular bone.    They found that the density 

of the experimental bone was significantly less than the control bone, and the decreased 

density extended as far as 4.2 mm from the margin of the MOP.  However statistically 

significant, the difference became much less at approximately 1. 5 mm from the MOP.  

TRAP staining showed increased osteoclastic activity 2 weeks after MOPs were placed, 

however by 4 weeks, the osteoclastic activity returned to control levels. Although a 

diffuse area of decreased density and increased osteoclastic activity could be seen, the 

effects were transient. 

In 2012, Swapp et al studied the effects of using a bone awl to create 70 

perforations in the cortex of 7 fox hounds.  Using a split-mouth design, no flap was 

raised and the perforations made were 5-6 mm deep on one side of the jaw.  They found 

no significant difference in the rate of tooth movement, concluding that the RAP was 

localized to the cortex and did not extend into the medullary bone. 

Full-thickness Mucoperiosteal Flap and the RAP 

A recent study by Owen et al in 2015 found that mucoperiosteal flaps alone, 

without any damage to the cortical bone, increases rates of tooth movement.27  In a split-

mouth design with seven beagle dogs, a full thickness mucoperiosteal flap was elevated 

on the buccal.  The control side had no surgery.  Mandibular second premolars were 

extracted, and a full-thickness mucoperiosteal flap was elevated, extending from the 

distal of the third premolar to the mesial of the first premolar.  The tissues were 

reapproximated with sutures.  The third premolar was protracted mesially with a NiTi 
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coil activated to 200 gm.  Tooth movements were measured for 9 weeks after surgery.  

They found a 25% increase in the tooth movements on the flap side when compared to 

the control side. The increased tooth movements were the result of decreased medullary 

bone density.  They also found a significantly decreased bone volume fraction mesial to 

the third premolar (p<0.05) in the experimental group.  No differences were evident in 

the histologic sections.  The increased rate of tooth movement was less than typically 

associated with corticotomy procedures,21 but the decreased density in medullary bone 

was greater than that found in flapless corticotomy studies.28 They did not find a 

significant difference in osteoclast or osteoblast activity, but it is possible that these 

effects would no longer be apparent 8 weeks after the surgery. 

In a study by Yaffe et al in 1994, a sample of 60 Wistar rats were divided into 

three groups: a control group that received no surgical insults, a group that received a 

full thickness mucoperiosteal (FTMP) flap on the buccal aspect of the mandible, and a 

group that received FTMP flaps on both the buccal and lingual aspects of the mandible.29  

The flap procedure was performed with a small periosteal elevator and the tissue was 

reapproximated without sutures.  High resolution x-ray microradiography was used to 

evaluate 1-1.5 mm sections of the mandible.  Bone resorption was seen as early as 10 

days after surgery.  Greater amounts of resorption were seen in the group that had both 

buccal and lingual flaps.  The maximum amount of resorption occurred 3 weeks after 

surgery. They also found resorption on both the periosteal aspect of the cortical bone, as 

well as on the PDL-aspect of the alveolar bone.  Resorption might be expected because 

the periosteum provides 70-80% of the arterial blood supply and 90-100% of the venous 
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return in long bones. These studies suggest that disruption of the blood supply to the 

bone causes a superficial necrosis and stimulates the RAP extending into the medullary 

bone. 

   It has also been well documented that damage to the supracrestal fibers results 

in crestal bone loss.  Binderman et al investigated the effect of mucoperiosteal surgery 

on the alveolar bone by comparing flaps raised from the marginal gingiva to an apical 

approach. 30 The sample consisted of two groups with 9 rats in each group.  In one 

group, a mucoperiosteal flap was raised from a coronal approach and the marginal 

tissues were separated from the bone.  In the second group the flap was raised from an 

apical approach, leaving the marginal tissues intact and attached to the crestal bone. The 

flaps were performed on both the buccal and lingual aspects of the mandible.  The rats 

were sacrificed 21 days after the surgery. An analysis of bone loss was performed based 

on microradiography.  Approximately 54% of the sections in the coronal approach group 

showed no bone loss, compared to 87% of those in the apical approach group.  The 

coronal approach also had significantly more sections with partial or total alveolar bone 

height loss than the apical approach group.  These results showed that disruption of the 

supracrestal fibers resulted in greater bone loss. There were group differences in the 

histological sections.  The apical approach showed slight bone resorption on the outer 

surface of the bone.  However, when the supracrestal fibers were removed in the coronal 

approach, extensive bone resorption was seen on the PDL aspect of the alveolus. There 

was also an increase in the number of osteoclasts, inflammatory cells, and necrotic bone 

with empty lacunae in the histologic sections of the coronal approach group.   A full 
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thickness mucoperiosteal flap was performed in this study, which, as Owen et al 

demonstrated, causes changes in the alveolar bone by disrupting the vasculature. 

However, they additionally demonstrated that increased bony changes occur when the 

marginal gingiva was included in the flap.  Although they qualified the bone resorption, 

especially in reference to the alveolar height, they did not objectively measure the extent 

of the bone resorption that occurred.  

Circumferential Supracrestal Fiberotomy 

  The circumferential supracrestal fiberotomy (CSF) procedure was first introduced by 

John Edwards in 1970,31  and the name was coined by Phillip Campbell in 1975 in an 

investigation of the effect of CSF on closure of midline diastemas.32 In this surgical 

procedure, a number 11 Bard-Parker blade is inserted into the gingival sulcus along the 

root surface to sever all attachment surrounding the tooth to a depth of approximately 3 

mm below the crest of the alveolar bone.  CSF has classically been used in orthodontics 

to decrease relapse after correction of severely rotated teeth. While the osseous tissues 

reorganize relatively quickly following orthodontic treatment, the supracrestal tissues 

take much longer to reorganize and place a tensile force on the teeth. Using India Ink 

tattoos on the gingiva, Edwards demonstrated in a classic study that the supracrestal 

fibers have an elastic pull on the teeth. 31  The tattoos showed distortion after 

orthodontically rotating the teeth, indicating that the gingival fibers stretch and follow 

the movement of tooth.  Following the CSF procedure, the gingival fibers were released 

from the tooth and the tattoo returned to its original shape within 20-40 hours, indicating 

that the tissues had relaxed. In his original publication on the topic, Edwards stated that 
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the surgical technique is simple and that there are few complications, making it easy to 

incorporate as a routine part of every orthodontist’s retention therapy. 

In a later study by Edwards, it was found that the relapse of teeth treated with CSF 

was significantly less than for control teeth.33  Approximately 2-3 years post retention, 

the CSF group had 13.8% relapse, compared to the control group with 42.5% relapse.  

However, the difference in relapse between the two groups decreased 13-15 years 

posttreatment.  They did not find any significant difference in the epithelial attachment 

between the two groups.   

Supracrestal Periodontal Fibers 

The transseptal fibers were described by Parker in 1972.34 There are three types of 

“ligament-like” fibers that extend from the cementum of one tooth to the adjacent tooth, 

tooth to bone, and from the tooth into the surrounding connective tissue.   These fibers 

are embedded in the cementum of the CEJ.  The fibers that extend from cementum to the 

surrounding subepithelial connective tissue appear to have no mechanism of 

reorganization.  Because of this they tend to relapse toward their original position when 

they are stretched with orthodontic treatment.   In his study, Parker extracted first 

premolars in 7 macaque rhesus monkeys and distalized the second premolar.34  He 

removed the supragingival tissues with a horizontal incision coronal to the mucogingival 

junction and a sulcular incision, leaving the periosteum intact.  He found significantly 

less relapse in the experimental side.  After 30 days, the tissues appeared adequately 

healed and completely reorganized. 
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It has been proposed that the elastic tissues surrounding the teeth take several 

months to reorganize and by severing the attachment to the tooth, the fibers can reattach 

to the tooth in a more relaxed position. In a study by Reitan, six teeth were rotated 50-70 

degrees in a canine model.35   The teeth were retained in a rotated position from 15-232 

days.  They evaluated the degree of fiber reorganization at different time points, and 

determined that fibers running perpendicular to the root were reorganized.  Although 

fibers in the middle and apical region of the root had reorganized completely after 147 

days, the marginal fibers were still only partially rearranged after 232 days.  The 

supracrestal fibers were still stretched and displaced after 232 days.  He proposed that 

although the PDL fibers can reorganize with remodeling in the bone, the supracrestal 

fibers that do not insert into bone have no mechanism of remodeling and, as a result, 

take much longer to reorganize.  

CSF and the RAP effect 

Since CSF is such a simple surgical procedure with very few complications, it 

would be an ideal method of inducing the RAP.  There have been several studies that 

investigated the effect of CSF on the rate of tooth movement.  Tuncay and Killany 

conducted a study in 1986 using a rat model, during which they evaluated the 

movements of the maxillary first molars after repeated CSF procedures.36  Closed coil 

springs were ligated from the first molar to the incisors.  On a randomly selected side, 

they performed CSF around the molar and along the crest of the edentulous ridge.  The 

CSF procedure was repeated every 3 days to prevent scar tissue attachment to the 

molars.  After 30 days, radiographic analyses showed 0.63 mm of tooth movement on 
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the fiberotomy side, compared to 0.51 mm on the control side.  This difference was 

statistically significant.  They attributed this difference to the decreased resistance of the 

soft tissue in the fiberotomy group; however, they did not perform any histological 

evaluations to determine the effects seen on the alveolar bone. 

In 1983, Glenn evaluated the effect of CSF on rates of tooth movement.37  In the 

split-mouth study, they banded the canines of five cats and performed CSF on one side 

of the maxilla.  They used 3/16”, 2 ounce elastics from the 3rd premolar to the canine to 

tip the canine distally.  Additionally, a wedge of gingiva was removed from the distal of 

the canine.  Each week measurements were taken, fiberotomies were repeated, and 

elastics were changed.  After six weeks, the fiberotomy side showed twice as much 

distal crown movement compared to the control side. The difference was statistically 

significant (p<0.001).  A histologic evaluation of the canine immediately after surgery 

showed that the transseptal fibers were not under tension.  One week after surgery, the 

gingival and transseptal fibers appear to be reattached to the tooth, however scar tissue 

was present.  They also observed that crestal bone height was decreased one week after 

surgery and noted that “surgically induced bone resorption” could have contributed to 

the difference in tooth movement.  Although the results were significant, the amount of 

tooth movement varied considerably within the group. 

Young et al in 2013 also demonstrated that CSF can result in an increased rate of 

tooth movement in rats.38 A group of 34 Wistar rats were divided into 3 groups: 

fiberotomy, apical mucoperiosteal flap, and no surgery.  In the two surgery groups, the 

left side did not have appliances placed.  It served as the control side.  In the fiberotomy 
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group, CSF was performed by surgically separating the supracrestal fibers around the 

maxillary first molars.  A periosteal elevator was used to ensure detachment of the 

fibers. In the second group, they performed a full thickness apical flap. A NiTi wire was 

bonded to the incisors to produce buccal movement of the first molars.  After 14 days, 

the appliance was removed.  The results showed that the teeth moved twice as much in 

the fiberotomy group than in the control group and flap surgery groups.  The fiberotomy 

group also showed significantly less relapse than the other two groups.  They proposed 

that the detachment of the marginal gingival fibers caused a strain relaxation that 

triggered a cascade leading to resorption of the alveolar bone.  Although resorption of 

alveolar bone was observed using microradiography, they did not quantify the amounts 

of resorption or increased osteoclastic activity that occurred. 

Another in vivo study by Kalra and coworkers was carried out on humans.39 They 

retracted maxillary and mandibular canines of 14 patients into 1st premolar extraction 

sites.  There were 9 maxillary and 4 mandibular arches evaluated in this split mouth 

study.  Fiberotomy was performed on one side with a scalpel.  Space was closed with 

composite T-loops activated to 200 grams.  After 90 days of space closure and two 

reactivations of the loops, the tooth movement was measured from casts.  They found 

that the fiberotomy side had 2.5 mm of canine movement in maxillary arch and 2.04 mm 

of distalization in the mandibular arch.  On the nonsurgical side, they found 2.14 mm of 

movement in the maxillary arch and 1.44 mm of movement in the mandibular arch. 

These differences were not statistically significant, but the sample was small.  No 

histology could be done in this study. 
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Biologic Basis for CSF and the RAP 

Several of the previous studies demonstrated increased rates of tooth movement 

were observed following CSF.  This provides indirect evidence that the CSF has an 

effect that extends into the alveolar bone. There are some possible mechanisms that 

could explain this phenomenon.  The first hypothesis was proposed by Glenn and 

Tuncay.36,37  They postulated that forces build up and accumulate in the soft tissues 

during tooth movement with stretching and compression of the gingival tissues.  These 

tissues could provide resistance to tooth movement. They believed that separating the 

gingival attachment would eliminate the soft tissue resistance and allow the tooth to 

move more freely.  

Young, Binderman, and Yaffe proposed that the marginal gingiva is the key to 

resorption on the PDL aspect of the bone.38  When the marginal gingiva is disrupted, 

there is an abrupt decrease in the physiologic strain on the gingival fibroblasts.  This 

causes a morphologic change in the fibroblasts, with the cytoskeleton of the cells 

remodeling and the cells becoming rounder and less elongated.40 This morphologic 

change activates a chain of signals that propagates osteoclast-mediated alveolar bone 

resorption, which may start with a cellular release of ATP.  When the fibroblasts are 

injured, there is a rapid release of ATP into the extracellular environment and activation 

of the ATP cell membrane receptor P2X4 occurs.41  The P2X receptors play a significant 

role in regulation of osteoblasts and osteoclasts.   

An in vitro study by Binderman et al evaluated ATP release, calcium influx, and 

changes in human fibroblast cell shape after decreasing the strain on the cells. 41  
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Compared to cells that were still under a physiological strain, they found significant 

decreases (p<0.01) in the lengths of the fibroblasts after the strain reduction.  Using a 

ATP Bioluminescent Assay, they found a 10-fold increase in the level of extracellular 

ATP in fibroblasts that had a strain reduction when compared to the control fibroblasts 

(P<0.001).  However, the ATP decreased to the control level after 60 minutes.  They 

believed this release of ATP from fibroblasts is regulated by changes in cellular calcium 

levels.  Adding Ionomycin, a substance that increases calcium influx, into the cells 

produced a similar significant release of extracellular ATP, supporting the idea that 

cellular influx of calcium stimulated ATP secretion from fibroblasts.  When the cells 

were in a strained state, the levels in intracellular calcium were low.  When the strain 

was reduced, there was dramatic influx of calcium into the fibroblasts (p<0.01).  Gene 

expression of P2X7 was significantly upregulated in the reduced strain group when 

compared to the controls.  They also found RANK-L to be highly expressed in the 

fibroblasts after strain reduction.  RANK-L is an important regulator of osteoclast 

differentiation and activity.   

Binderman et al postulated that the mechanism of bone resorption with injury to 

the marginal tissues may be similar to the result seen with orthodontic tooth 

movement.40  As teeth move, the PDL is compressed from and physiological strain on 

the PDL decreases, resulting in site-specific resorption on the alveolar bone.  

In 2010, Nishio and Nanci published a study that investigated the role of the 

proteins, odontogenic ameloblast-associated (ODAM) and amelotin (AMTN) in the 

formation and repair of the junctional epithelium.  Both proteins are members of the 
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secretory calcium-binding phosphoproteins (SCPP) family.  They are present in the 

junctional epithelium, and are only expressed during initial formation of the junctional 

epithelium, during tooth eruption, and during regeneration of the junctional epithelium 

when it is damaged.  In their study, they performed gingivectomies on rats and used 

immunochemistry assay to evaluate the expression of these proteins during healing.42  

Removal of the gingiva and the junctional epithelium was completed in 30 Wistar rats 

using curettes on the left side.  The contralateral side served as the control.  The rats 

were sacrificed at 3, 5, 7, and 14 days post-surgery.  At 3 days, they found that the oral 

epithelium had migrated toward the tooth and that, by day 5, a new junctional epithelium 

had started to form.  By day 14, the junctional epithelium had reformed but was longer 

than the control side.  They found that ODAM is present very early in wound healing, 3 

days after gingivectomy, and is concentrated in the junctional epithelium. The SCPP 

family is integral to skeletal mineralization and is related to stabilization of calcium and 

phosphate.43  It is possible that these proteins are involved with the bone resorption and 

decrease in bone density associated with separation of the marginal tissues. 

The previous studies provide some insight into how trauma to the PDL fibers 

might affect bone remodeling.  However, they do not provide any information about the 

extent of the remodeling that occurs, when it occurs or how it occurs.  Moreover, these 

studies were carried out on small animals, with small surgical fields that make the 

procedures more difficult.  Rat bone density is also very different from human bone, and 

the bony response seen is these procedures may be different that that found in humans.  

A canine model is more useful because it has similar characteristics to human bone and 
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dental structures.44   Therefore, the purpose of this study is to determine if a RAP effect 

is seen in the alveolar bone following CSF, and to evaluate the amount and extent of 

remodeling observed surrounding the tooth.  The study hypothesizes that there will be a 

decrease in bone density and an increase in osteoclastic activity in the bone surrounding 

a tooth following CSF due to the inflammatory effect. The purposes of this study are to 

investigate (1) the effect of circumferential supracrestal fiberotomy (CSF) on the 

surrounding bone, and (2) the healing of the supracrestal fibers following CSF.   Our 

study would hope to determine if the resorptive phase is extensive enough to have an 

impact on the rate of tooth movement in orthodontics. 
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CHAPTER II  

PURPOSE AND SIGNIFICANCE 

 

The length of orthodontic treatment varies from 21-27 months for non-extraction 

treatment, and 26-35 months when extractions are indicated.1 Longer treatment times are 

associated with increased risks including gingival inflammation, root resorption, and 

white spot lesions on the enamel.4-6 Accelerating orthodontic treatment would make it 

possible to minimize these risks, meet the patients need for faster treatment, and still 

allow orthodontists to provide uncompromised results.   

Several studies have found that the average rate of tooth movement with 

conventional orthodontic mechanics is 1 mm per month.2,3   Rates of tooth movement 

can be accelerated by inducing the RAP, which results in increased bone turnover, 

increased osteoclast activity, and increased rates of tooth movement. The most common 

technique used to induce the RAP is by performing a corticotomy with a full thickness 

mucoperiosteal flap.  This results in tooth movements that are two times faster when 

compared to control teeth.21,22  Several less invasive methods have been attempted 

including flapless corticotomy,25 and micro-osteoperforation with smaller effects than 

when a mucoperiosteal flap is performed.26,28  All of these techniques involve trauma to 

the alveolar bone.   

Other studies have found that laying a soft tissue flap can also cause bone 

resorption and the RAP effect.  Owen et al found that a FTMP flap alone results in faster 

tooth movements.27,29  Binderman et al used a rat model to compare flaps raised from a 
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coronal approach, where the marginal tissues were separated from the bone, to an apical 

approach where the marginal gingiva was left intact.30  When evaluating the differences 

in the alveolar bone, the apical approach sections showed slight bone resorption on the 

outer surface of the bone.  However, when the supracrestal fibers were removed in the 

coronal approach, extensive bone resorption was seen on the PDL aspect of the alveolus.  

Young, Binderman, and Yaffe proposed that the marginal gingiva is the key to 

resorption on the PDL aspect of the bone.38   

The circumferential supracrestal fiberotomy (CSF) procedure was introduced in 

1970.31  It is performed by inserting a Bard-Parker blade into the gingival sulcus of a 

tooth to sever the supracrestal attachment fibers.    CSF is a simple procedure and would 

be an ideal method of inducing the RAP.  Several studies have demonstrated faster tooth 

movement following CSF, however these studies were done on small animals with a 

smaller surgical field and bone density that is different from humans.36-38  Although 

histology was conducted in these studies, they did not quantify the extent of the bone 

resorption or the increased osteoclastic activity.  They also did not provide histology on 

the healing and reattachment of the supracrestal fibers. The purposes of this study are to 

investigate (1) the effect of circumferential supracrestal fiberotomy (CSF) on the 

surrounding bone, and (2) the healing of the supracrestal fibers following CSF.   Our 

study would hope to determine if the resorptive phase following CSF is extensive 

enough to have an impact on the rate of tooth movement in orthodontics. 
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CHAPTER III  

MATERIALS AND METHODS 

 

Sample 

Seven skeletally mature male beagle dogs were used in the experiment.  Each 

dog was approximately 2 years old and weighed 22-30 pounds.  The experimental 

protocol, housing and care was approved by the Institutional Animal Care and Use 

Committee at the Texas A&M University College of Dentistry (IACUC 2016-0214-

BCD).  The dogs were fed a soft food diet throughout the experiment and maintained 

good overall health.  All dogs were initially quarantined for 10 days prior to beginning 

the experiment.  

Experimental Protocol 

Prior to each procedure, the animals were fasted for 12 hours and sedated with a 

mixture of Ketamine (2.2 mg/kg) and Xylazine (0.22 mg/kg) administered 

intramuscularly.  Dental prophylaxis was performed using an ultrasonic scaler with a 

chlorhexidine gluconate (0.12%) solution.  Initial records included periapical 

radiographs taken of the maxillary posterior teeth using a size 4 phosphor plate.  Vital 

signs were monitored during the procedure, and sterile conditions were maintained. 

Following prophylaxis and radiographs, a circumferential supracrestal 

fiberotomy (CSF) was performed on a randomly chosen maxillary canine from one 

quadrant and the contralateral 2nd premolar.  The contralateral counterparts of these two 

teeth served as controls.   Four of the dogs had CSF performed at four weeks prior to 
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sacrifice (Day 1 of experiment).  The remaining three dogs had CSF completed at two 

weeks prior to sacrifice (Day 14 of experiment).  

The gingiva of each surgical site was anesthetized using gingival infiltration with 

2% Lidocaine 1:100,000 Epinephrine (Patterson Dental, St. Paul, MN). The CSF was 

performed with a Bard parker and a #15 blade.  A sulcular incision was used to sever the 

soft tissue attachment to the level of the crestal bone circumferentially around the tooth 

(Figure 1). The blade was inserted as far as the width of the blade would allow 

(approximately 1 mm below the crest of the alveolar bone).  A small periosteal elevator 

was used to confirm that the attachment had been severed from the tooth.   

All animals were sacrificed on day 28 of the experiment.  The animals received 

an intramuscular injection of Ketamine (8-24 mg/kg) and Xylazine (0.22 mg/kg).  

Surgical plane anesthesia was confirmed.  The animals were sacrificed by cannulating 

the common carotid arteries and administering 2 mL of Beuthanasia-D intracardially.  

The cannulas were flushed with 1.5 liters of saline solution and 1 liter of 4% 

paraformaldehyde (PFA).  The maxilla was harvested and stored in 4% PFA.  The 

maxilla was sectioned into blocks to include the bone distal to the canine, mesial to the 

second premolars, and distal to the second premolar (Figure 2a). The samples were 

diluted to 0.5% PFA prior to micro-CT.   

Data Collection and Analyses 

Micro-CT 

Micro-CT was performed to evaluate the density and maturity of bone 

immediately adjacent to the teeth.  Blocks that included the canines and bone distal to 
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the canines, as well as block that included the second premolars and bone mesial to the 

second premolars, were analyzed (Figure 2b).  The block specimens were placed in 20 

mm wide micro CT tubes, stabilized with foam, submerged in 0.5% PFA and sealed with 

Parafilm (Pechiney Plastic Packaging Company, Chicago, IL).  The samples were 

scanned with a ScanCo Medical Micro-CT 35 (ScanCo Medical, Bassesdorf, 

Switzerland) at a resolution of 30 m, 55 kVp voltage, 145 A current, and 600 ms 

integration time.   

For each block, the maturity and density of two areas of alveolar bone were 

evaluated, including a large wide-spread volume and a small coronal volume.  The 

borders for the large volume were limited sagitally to include the bone immediately 

adjacent to the tooth of interest and extended to the adjacent tooth, avoiding the lamina 

dura of the adjacent tooth.  Vertically the large volume included the middle 60% of the 

bone to the experimental tooth.  The middle 60% of the root length was determined by 

locating the slice where the apex began, as well as the slice where the alveolar bone crest 

began, and removing 20% of the slices at each end.  In the small coronal volume, the 

area of interest was limited to the bone immediately adjacent to the experimental tooth 

and extended 1 mm horizontally from the tooth’s root surface. The bone volume was 

limited vertically to include only the coronal 25% of the bone extending from the 

alveolar crest.  The threshold boundaries for the scans were set from 300 to 1000 

Houndsfield units for the samples.  
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Histology 

 The samples were evaluated using hematoxylin and eosin stains (H&E), and TRAP 

(Tartrate-resistant acid phosphatase) stains.  Additionally, picro-sirius red stain was used 

to visualize collagen fibers.  The samples were fixed in a 4% PFA solution, and 

decalcified in EDTA.  They were then dehydrated with a series of alcohols, cleared with 

xylene, and then infiltrated and embedded in paraffin.  Samples were oriented and 

sectioned in a sagittal plane with a thickness of 30 microns. These sections were 

mounted onto glass slides and stained.  The H&E and TRAP slides were viewed and 

photographed under a Zeiss Axioplan microscope ICarl Zeiss Microimaging, Germany).  

The picro-sirius red slides were viewed under an Olympus BX51 microscope with 

polarized light and photographed using an Olympus DP72 camera.   

Statistical Analysis 

IBM SPSS statistics for windows (Version 23. Armonk, NY: IBM CorpL) 

software was used to compare groups and describe the results.  Data from the uCT were 

analyzed using means and standard deviations after the data was determined to be 

normally distributed.  Paired t-tests were used to analyze group differences between 

experimental and control specimens, using 1-tailed tests and a significance level of 

p<0.05. 
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CHAPTER IV  

RESULTS 

 

Following surgery, healing of the gingival tissues progressed normally with no 

swelling and no signs of infection in any of the animals.   Gingival tissues healed within 

a few days of the procedure.  

Micro-CT 

The coronal 25% of inter-radicular bone adjacent to the experimental teeth had a 

significantly (p=0.044) lower bone volume fraction than the same bone adjacent to the 

control teeth (Figure 3A). Apparent density was also less on the experimental than 

control side, but the difference was not statistically significant.  There was no between-

side difference in material density (Figure 4A). There also were no between-side density 

or bone volume fraction differences in the middle 60% of the adjacent bone (Figures 

3B,4B).  When the samples were split into groups of 2 weeks and 4 weeks, no 

differences were found in density or bone volume fraction.  This is likely due to lack of 

power associated with the small sample sizes. 

When the 2 week and 4 week samples are combined, both the coronal 25% and 

middle 60% sections show significantly (p=0.028, p=0.008) greater numbers of 

trabeculae than the same bone adjacent to the control teeth (Figure 5A, B).  The coronal 

25% showed thinner trabeculae as well when the 2 week and 4 week samples are 

combined (p=.034).  There was no difference in trabecular separation between the two 

sides in either the coronal or middle sections (p=0.112, p=0.198). 
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When evaluating the 2 week samples alone, the same increase in number of 

trabeculae are seen in both the coronal and middle sections, but the difference is not 

significant (Figure 6A, B).  There were also no significant differences in trabecular 

thickness or trabecular separations.   

The experimental samples from 4 weeks post-CSF displayed significantly greater 

number of trabeculae in both the coronal and middle sections (p=0.009, p=0.045, Figure 

7A, B).  The coronal sections also show significantly (p=0.001) decreased trabecular 

thickness as well after 4 weeks (Figure 7A).  There was no difference in trabecular 

separation.   

Histology 

H&E Staining 

H&E sections showed that the gingiva around the experimental teeth was reattached to 

the root surface, but still disorganized 2 weeks and 4 weeks after CSF (Figure 8).  The 

control teeth demonstrated well organized fibers that extended from the cementum to the 

gingival crest (Figure 8), horizontally towards the adjacent tooth, and inferiorly toward 

the alveolar crest. These distinct fibers were not seen in the experimental sections.  

There was no difference in the organization of the supracrestal fibers between 2 weeks 

and 4 weeks after CSF (Figure 9). 

The experimental sections showed bone resorption along the lamina dura, with 

multinuclear osteoclasts lining the bone surface.  The bone surface of the experimental 

teeth was often irregular with Howship’s lacunae present.  This was in contrast to the 
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generally smooth surface of the control bone of the lamina dura and on the alveolar crest 

(Figure 8).   

Signs of inflammation were present in the sulcus and the gingival epithelium of 

both the experimental and control teeth.  Large rete pegs or ridges, widening of the 

epithelium, and a large polymorphonuclear leukocyte infiltrate, were evident on both 

sides.  The extent of inflammation was inconsistent throughout the specimens and there 

were no differences between sides.  

The post-mortem CSF specimens confirmed that the supracrestal fibers were 

severed slightly past the crest of the alveolar bone (Figure 10).   

TRAP Staining 

 Two weeks after CSF, the experimental bone stained with TRAP showed greater 

osteoclastic activity than the control bone (Figure 9).    The experimental bone showed 

significant TRAP activity on the crest of the alveolar bone, as well as in the lamina dura.  

These areas of TRAP activity were diffuse and spread along surfaces of the bone.  The 

control teeth showed normal TRAP activity lining blood vessels, and in some areas of 

the bone surface, but the TRAP activity was localized to small areas.  There was little or 

no TRAP activity around the experimental teeth 4 weeks after CSF (Figure 10). 

Picro-sirius Red Staining 

Two weeks after CSF, the supracrestal fibers had reattached to the root surface. 

However, the fibers had not reorganized (Figure 11). Four weeks after CSF, the fibers 

were still disorganized (Figure 12).  The collagen fibers following CSF were thinner on 
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the experimental than the control side after both two weeks and four weeks, and the 

thick cords of collagen were absent (Figure 11). 
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CHAPTER IV  

DISCUSSION 

 

CSF temporarily decreases the amount of bone surrounding the tooth upon which 

the procedure is performed.  Analysis of μCT data demonstrated that following CSF, 

bone resorbed and bone density decreased, primarily in the crestal regions.  Due to the 

limited treatment effect, when the samples were divided into two and four week groups, 

no statistically significant between group differences were found.  This was likely due to 

lack of power associated with small sample sizes.  However, when the 2 and 4 week 

samples in the present study were combined, the experimental group showed a 

significantly smaller bone volume fraction.  Decreased bone volume fraction was found 

only in the most crestal bone adjacent to the tooth localized to the site nearest the soft 

tissue injury, extending approximately 1 mm horizontally from the root surface and 1 

mm vertically from the alveolar crest.  Bone further than 1 mm from the root surface, or 

further apically from the crest did not exhibit decreased bone density. 

CSF appears to have a lesser effect on bone density than when the bone is 

directly injured.  Decreased bone density has been reported 2 weeks after the placement 

of MOPS, extending up to 4 mm away from the MOP sites, which is much further than 

the effects identified in the present study.   There was a 10-14% difference in bone 

density between the experimental and control groups immediately adjacent to the MOP 

site, 45 compared to a 9% difference in the present study.  The lesser effects on bone in 

the current study is due to the fact that the surgical injury was limited to the soft tissue 
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adjacent to the bone, and did not directly damage the bone as is done with MOPs.  Based 

on the relationship that has been established between the amount of trauma and extent of 

bone demineralization, the surgical insult to the bone produced by CSF must have been 

less than the insult produced by MOPs.46    

The effects of CSF are limited to the bone surfaces.  The TRAP and H&E stains 

in the present study showed increased cellular activity and bone resorption on the surface 

of the alveolar crest and in the lamina dura close to the crest of the bone, with minimal 

activity deeper in the trabecular bone.  This is because the bone itself was not injured 

directly.  Previous studies have shown greater alveolar bone loss on the PDL aspect of 

the buccal plate when a flap includes the supracrestal fibers than when there is no flap or 

when a flap does not include the supracrestal fibers.30  Young et al found that 27% of 

alveolar bone sections showed bone resorption following CSF, compared to 12% in 

apical flap groups.38  However, these studies were also done in rats, where the surgical 

procedure would have resulted in much greater surgical injury than in the current study.  

It has also been shown that a full thickness mucoperiosteal flap where the periosteum is 

raised causes a much greater injury to the soft tissue and disrupts the local blood supply 

to the bone, which results in resorption in the bone.27  Van Gemert et al found that when 

the bone is directly injured with MOPs, TRAP activity increases up to 2.5 mm away 

from the MOP sites, with diffuse TRAP activity occurring throughout the affected 

area.45  They also demonstrated that MOPs cause areas of bone necrosis and 

microfractures that extended from the MOP site.  The comparison of these two studies 

show us that a localized injury to the supracrestal fibers of the gingiva does not cause as 
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much remodeling of the bone as when the bone is damaged directly.  A rat study 

evaluating the effects of piezocision found extensive bone resorption extending up to 2.5 

mm from the surgical site, with TRAP activity on the lamina dura and in the medullary 

bone, again demonstrating that damage directly to the bone itself causes significantly 

more bone resorption. 47 In the current study where only the supracrestal soft tissues are 

damaged, the effects were limited to the surface of the bone adjacent to where the 

supracrestal fibers were detached.  

New woven bone begins to form shortly after CSF.  When the two and four 

weeks experimental samples were combined, they showed increased numbers of 

trabeculae and a decreased thickness of the trabeculae.   This is indicative of newly 

formed woven bone being laid down.  We can speculate that bone was laid down on the 

surface following bone resorption, although fluorescent labeling would be needed to 

demonstrate the location of bone formation.   The μCT data demonstrates that while the 

2 week samples do not show any differences, both the coronal and middle sections of the 

4 week samples showed significant increases in the number of trabeculae.  After the 

bone is resorbed on the surface of the lamina dura and the alveolar crest, bone forming 

cells start producing new, immature bone.  This process appears to start by 2 weeks, but 

becomes more evident after 4 weeks.   

Previous studies investigating alveolar bone healing in dogs show a similar time 

course.  Cardaropoli et al found that extraction sockets areas first filled with a coagulum, 

which is replaced by a provisional matrix of mesenchymal cells, leukocytes, and 

collagen fibers by day 7.  By day 14 woven bone starts to form throughout the extraction 
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socket. Van Gemert et al concluded that remineralization and newly formed woven bone 

start appearing as early as one week after MOP placement.45  Berglundh found that new 

woven bone starts to form in the first week after implant placement.48  After 2 weeks of 

healing, the new bone formation was more widespread and extended around most 

implant surfaces.  

The effects of CSF on bone resorption are transient. While increased TRAP 

activity was evident along the surface of the bone near the alveolar crest after two weeks 

of healing, it had decreased to control levels 4 weeks after CSF.  This indicates that the 

limited RAP caused by CSF is transient and that the bone demineralization event lasts 

less than 4 weeks.  This follows the standard model of bone healing.  A similar timeline 

of demineralization is seen following MOPs.45  Van Gemert et al reported increased 

TRAP activity in bone extending several millimeters away from the MOP after two 

weeks of healing, but not after four weeks.  In a rat study evaluating the effects of 

piezocision found increases in the number of osteoclasts as soon as 1 day after surgery, 

which continued for 7 days, and then they steadily declined to baseline levels.47  

CSF causes a loss of the large organized collagen fibers in the crestal soft tissues. 

In the current study, neither picro-sirius red staining or H&E showed large organized 

bundles of collagen on the experimental side. They were only seen on the control side.  

This indicates that the bundles had been damaged and remodeled away.  Smaller, 

disorganized collagen fibers were evident.  In the post-mortem CSF, the thicker 

organized bundles are still visible, and are clearly severed adjacent to the experimental 

tooth.  Over the first 2 weeks post-injury, it is likely that matrix metalloproteinases 
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produced by fibroblasts remodel the damaged thicker bundles.  Fibroblasts then start 

replacing them with smaller bundles as they reattach to the tooth surface.  There was no 

apparent difference in organization of the supracrestal fibers after 2 and 4 weeks of 

healing.  Rochester also found less organized supracrestal fibers following 8 weeks of 

healing after CSF, however the tissues did appear to have more mature collagen fibers 

than in the current study.49  

The supracrestal fibers quickly reattached to the root surfaces.  Several of the 

H&E and picro-sirius red sections demonstrated that the gingival fibers had reattached to 

the root surface 2 weeks after CSF.   Although some of the control samples were torn 

during histology preparation, far more of the experimental samples were torn at the 

gingival margin.  This may indicate that the attachment to the root surface was weaker in 

the experimental samples.  Edwards noted that the tissue repair and healing was 

clinically complete 5-7 days after CSF.31  However, the present study lends credence to 

the necessity for retention following CSF to provide time for complete fiber 

reattachment. Glenn et al found that the gingival fibers were fully reattached one week 

post-CSF on the mesial aspect and partially reattached on the distal aspect of teeth being 

tipped distally.37  However, the histology shows that the reattachment is weak and easily 

compromised for up to 4 weeks post injury.  No clinically significant changes in pocket 

depth have been reported 4 months after CSF.50 
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Clinical Significance 

 

CSF should not be performed with the intention of stimulating the RAP effect. 

Due to the very limited effects of CSF on the bone density, in terms of both area and 

duration, only a very minor RAP effect is to be expected.   With most of the bone 

resorption occurring at the most crestal aspect of the alveolar bone, one could speculate 

that the procedure may produce greater tooth movement due to tipping.  Glenn et al 

reported that the center of rotation moved apically following repeated CSF during tooth 

movement, indicating more tipping movements of the teeth.37  Rochester found that 

when CSF was performed only once, there was no significant difference in the rate or 

total amount of tooth movement between the experimental and control sides.49    There 

was an increased amount of tipping in the experimental side, but the difference was not 

statistically significant. Clinically, since the supracrestal fibers are attached but not 

totally reorganized, retention following the CSF procedure used to prevent relapse 

following correction of rotations is indicated. 
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CHAPTER VI  

CONCLUSIONS 

1. Circumferential supracrestal fiberotomy temporarily decreases the amount of 

bone surrounding the tooth upon which the procedure is performed. 

2. The slight demineralization of bone is limited to the superficial surfaces of the 

alveolar crest and the lamina dura.  

3. The demineralization of bone following CSF is transient. 

4. New woven bone begins to form shortly after CSF. 

5. CSF causes a loss of the large organized supracrestal collagen fiber bundles, and 

the tissues were attached but were not reorganized after 4 weeks of healing.  
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APPENDIX A  

FIGURES 
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Figure 8. H&E: Supracrestal fibers following 2 weeks of healing. (A) 2.5X 

magnification of supracrestal fibers (B) 10X magnification of CSF side (B) 

10X magnification of control side.  Note disorganization of the collagen 

fibers on the CSF side after 2 weeks of healing.  Control side without CSF 

shows distinct, organized collagen fibers.  b=bone, d=dentin, s=gingival 

sulcus  
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Figure 10. H&E: Post-mortem CSF. (A) 2.5X magnification (B) 5X magnification 
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Figure 11. TRAP: Osteoclastic activity 2 weeks after CSF.  (A) CSF, 2.5X magnification 

(B) CSF, 5X magnification (C) Control, 2.5X magnification (D) Control, 5X 

magnification.  Note significant osteoclastic activity in the experimental teeth (A, B) on the 

crest of the alveolar bone and lamina dura.  C=crest, d=dentin, p=periodontal ligament, 

s=sulcus, arrows indicate TRAP activity and osteoclasts. 
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Figure 12. TRAP: Osteoclastic activity 4 weeks after CSF.  (A) CSF, 2.5X magnification (B) 

CSF, 5X magnification (C) Control, 2.5X magnification (D) Control, 5X magnification. 

After 4 weeks of healing, TRAP activity has decreased to control levels.  C=alveolar crest, 

d=dentin, p=periodontal ligament, s=sulcus, arrows indicate TRAP activity and osteoclast.  

Dotted line indicates where attachment to tooth has torn during histological preparation.   
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Figure 13. Picro-sirius red: Supracrestal fibers 2 weeks after healing.  

(A) 2X magnification, (B) CSF, 10X magnification, (C) Control, 10X 

magnification.  Note disorganization of the collagen fibers on the CSF 

side after 2 weeks of healing.  The control side shows distinct, well-

organized collagen fibers. b=bone, s=sulcus. 
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