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ABSTRACT

Efficiently processing large graphs is challenging, since parallel graph algorithms suffer from

poor scalability and performance due to many factors, including heavy communication and load-

imbalance. Furthermore, it is difficult to express graph algorithms, as users need to understand

and effectively utilize the underlying execution of the algorithm on the distributed system. The

performance of graph algorithms depends not only on the characteristics of the system (such as

latency, available RAM, etc.), but also on the characteristics of the input graph (small-world scale-

free, mesh, long-diameter, etc.), and characteristics of the algorithm (sparse computation vs. dense

communication). The best execution strategy, therefore, often heavily depends on the combination

of input graph, system and algorithm.

Fine-grained expression exposes maximum parallelism in the algorithm and allows the user to

concentrate on a single vertex, making it easier to express parallel graph algorithms. However,

this often loses information about the machine, making it difficult to extract performance and

scalability from fine-grained algorithms.

To address these issues, we present a model for expressing parallel graph algorithms using a

fine-grained expression. Our model decouples the algorithm-writer from the underlying details

of the system, graph, and execution and tuning of the algorithm. We also present various graph

paradigms that optimize the execution of graph algorithms for various types of input graphs and

systems. We show our model is general enough to allow graph algorithms to use the various graph

paradigms for the best/fastest execution, and demonstrate good performance and scalability for

various different graphs, algorithms, and systems to 100,000+ cores.
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1. INTRODUCTION

Processing large graphs is essential in a variety of domains, from social network and web-scale

graphs to scientific meshes and nuclear reactor-design [5]. Processing these graphs in a reason-

able time usually requires parallelism. Using a distributed data-structure allows massive graphs

to be processed quickly and concurrently. However, parallelizing graph algorithms efficiently is a

challenging problem that has received significant attention for several decades [6]. Despite many

attempts over the past decade [7, 8, 9] to allow programmers to easily express their graph compu-

tations in parallel, graph algorithms remain notoriously hard to scalably parallelize. Existing graph

libraries are restrictive in allowing users to express algorithms and may require them to manage

details of data-distribution and communication. Developers also often correlate an increase in

the level of abstraction with a corresponding decrease in performance. Vice-versa, most highly-

optimized implementations tend to introduce system/parallelism details in the algorithm, thereby

decreasing the level of abstraction. Furthermore, the performance of many parallel graph algo-

rithms tend to heavily depend not only on the system characteristics, but also on the characteristics

of the input graph. For example, a breadth-first search on a binary-tree has significantly different

performance characteristics from the same algorithm on a social-network.

In particular, graph algorithms suffer from poor scalability and performance at scale due to poor

work balance (both, among processors and across supersteps of execution of the algorithm), heavy

communication, and irregular access. These bottlenecks manifest due to the combination of the

graph, algorithm and the system. For example, given an input graph, the PageRank algorithm ex-

hibits heavier communication than a breadth-first traversal. Conversely, though, PageRank, where

all supersteps process every vertex, displays a more balanced computational pattern across the

supersteps of the algorithm than breadth-first traversal, where some supersteps may process the

majority of the graph, while other levels only process small percentage of vertices.

Similarly, changing input graphs from uniform or semi-uniform mesh networks used in scien-

tific computations and simulations, to small-world scale-free graphs representing social and web
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networks, has a dramatic impact on the execution of the algorithm. For the same algorithm, a scale-

free network will produce dense communication to almost every processor due to the presence of

hub-vertices that have very high out-degrees. The small-world property will result in the majority

of vertices being processed in a few supersteps. The challenge in such graphs is to improve the

effective bandwidth of the system, as well as improve the load-balance in order efficiently process

the hub vertices and their connections. A mesh network, on the other hand, may typically have

a large diameter and low variance in the vertex degree. This combination results in a very large

number of supersteps, each with only a small fraction of the total work. The challenge here is to

improve latency and reduce the cost of global synchronizations, in order to address the large num-

ber of supersteps. Existing frameworks such as Google’s Pregel [9] or the Parallel Boost Graph

Library (PBGL) [7] can only effectively solve certain limited subsets of these combinations, and

suffer from poor performance in other cases. Other libraries, such as Galois [10], Ligra [11] and

MTGL [8] are limited to shared-memory, and are therefore limited in the scale of the problem they

can solve. There doesn’t exist a framework that can address all these challenges at large-scale.

Another instance where these bottlenecks become prohibitive is out-of-core graph processing.

Reading from and writing to disks are high-latency operations. Due to the irregular nature of graph

access-patterns, conventional techniques of paging and prefetching do little to alleviate the latency.

The best available out-of-core graph processing systems still require O(N2) random reads and

writes [12], and consequently are unable to perform well at scale.

1.1 Contributions

This research designs a generic parallel graph library (STAPL GL) that allows users to concen-

trate on graph algorithm development by abstracting them from the input data and the details of

the underlying distributed environment, while providing portable, scalable performance. STAPL GL

allows for the separation of the algorithm from the container, as well as decouples the algorithm

from the input graph and machine through the use of traversal strategies. It provides a generic, cus-

tomizable graph container, a collection of common parallel graph algorithms, as well as multiple

graph traversal strategies (including level-synchronous, asynchronous and hierarchical). Further,
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STAPL GL automates load balancing and locality-related optimizations.

Specific contributions of this research include:

• Programmability and Abstraction. Provide a high-level graph abstraction to allow pro-

grammers to completely decouple the design of the graph algorithm from the details of par-

allelism, input graph, implementation of the graph container and the machine. Users express

their computation in its most natural form, while the underlying data-structure implementa-

tion and traversal strategy can be chosen to offer maximum performance based on the input

graph and platform.

• Multiple Graph Traversal Strategies. Provide multiple traversal strategies for expressing

graph algorithms to allow the algorithms to achieve the best performance for different classes

of input graphs and machines. In particular, this research will focus on the following traversal

strategies:

– KLA (k-level Asynchronous). This novel traversal strategy unifies asynchronous and

level-synchronous traversal strategies, while allowing parametric control of asynchrony.

We also provide a model to estimate the appropriate level of asynchrony for a given in-

put graph, a strategy to adaptively determine k, and show how to transform common

asynchronous and level-synchronous graph algorithms to KLA.

– Hierarchical Traversal Strategy. This traversal strategy allows users to express com-

putations hierarchically. It also allows expression of certain algorithms (e.g. graph-

partitioning and Boruvka’s minimum spanning-tree) in their most natural form, as well

as allows for reduction of communication in certain cases by taking advantage of the

machine hierarchy.

– Out-of-Core Strategy. This strategy uses sub-graph paging together with the asynchronous-

push model to eliminate non-sequential reads and minimize writes, making it suitable

for out-of-core processing. A theoretical model shows the I/O to be linear in the num-
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ber of reads and writes, improving on the existing O(n2) strategies. This translates to

a 10× improvement in real-world performance.

• Scalable Performance. Provide improved scalability in performance and data size over

tens of thousands of cores compared with existing graph libraries on standard benchmarks.

Moreover, provide light-weight support for load balancing through asynchronous data mi-

gration, and demonstrate improved performance and scalability in a real-world production

application by mitigating load-imbalance through automatic redistribution of vertices.

An implementation of the STAPL Parallel Graph Library infrastructure[1] provides a parallel

graph container (PGRAPH), associated graph PVIEWS, common graph algorithms, as well as the

k-level-async, hierarchical, and out-of-core processing strategies. Results show improved per-

formance over existing graph libraries and frameworks, and scalability to 100,000+ cores. Ex-

periments with k-level-async show substantial performance improvements over existing level-

synchronous and asynchronous traversal strategies, while the hierarchical and out-of-core strate-

gies show an order-of-magnitude improvement in performance over flat graph processing and other

out-of-core graph processing strategies respectively.

1.2 Overview of Our Approach

We provide a graph-processing engine (the graph_paradigm) to control the execution of algo-

rithms, that can effectively utilize available resources for fast, scalable processing of graphs. To

do this, we allow users to express their algorithms in a vertex-centric fine-grained manner that

abstracts them from details of parallelism and exposes the maximum amount of parallelism avail-

able in the algorithm. The graph algorithms themselves do not change and are decoupled from

execution policies (distributed/shared, disk/in-memory, etc.), allowing the execution strategies to

change, without changing the algorithm.

We further provide multiple strategies of algorithm execution for tolerating high-latencies and

low bandwidths in multiple situations. The k-Level asynchronous paradigm allows latency-hiding

in high-latency systems by trading- off costly global barriers for point-to-point local synchroniza-
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tions and redundant work. The hierarchical paradigm increases effective bandwidth by minimizing

the amount of communication, and the out-of-core processing paradigm uses sub-graph paging

with the asynchronous push-model to eliminate non-sequential reads and minimize writes.

Much of our research was previously published. The overall framework design and imple-

mentation was published at the International Workshop on Languages and Compilers in Parallel

Computing (LCPC) 2012 [1]. The k-level-asynchronous paradigm for unifying existing BSP and

asynchronous paradigms was published at the International Conference on Parallel Architectures

and Compilation Techniques (PACT) 2014 [2], and won the Best Paper Award. The work on

out-of-core graph processing was published at the IEEE International Parallel & Distributed Pro-

cessing Symposium (IPDPS) 2015 [4]. Finally, the work on hierarchical communication reduction

in graph algorithms was published at the International Conference on Parallel Architectures and

Compilation Techniques (PACT) 2015 [3], and was nominated for the Best Paper Award.

1.3 Outline

This dissertation is organized as follows. Section 2 begins with an overview of the STAPL

GL model, followed by a brief discussion of existing graph processing models and systems, and

tradeoffs involved with each. The section then describes the asynchronous push model and how

various graph algorithms may be expressed in this model.

Section 3 describes the two existing approaches to processing graphs – Bulk Synchronous

Parallel (BSP) and Asynchronous – and discusses the tradeoffs involved in using them. It then

introduces a novel paradigm for graph processing – the k-Level Asynchronous paradigm (KLA),

that unifies the two existing approaches, along with requirements, guarantees and a proof of cor-

rectness. It further describes two approaches for finding the optimal level of asynchrony for a given

combination of input graph, algorithm, and system.

Section 4 presents an approach to reducing the amount of communication done in a graph

processing system, and shows how it can improve the performance of algorithms on small-world

scale-free networks. It then analyses bounds on the amount of communication reduction and the

space overhead required. Finally, it concludes with a discussion of related work.
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Section 5 introduces the problem of out-of-core graph processing, including the challenges in-

volved in processing large graphs from disk. It then presents a novel approach for scalably and

efficiently processing out-of-core graphs on a distributed machine, along with several optimiza-

tions to reduce the disk I/O. The approach elliminates non-sequential disk reads and minimizes

random disk writes. The section next analyss the I/O costs associated with processing graphs in

this paradigm, and concludes with a brief discussion of the related work.

Section 6 provides an overview of real-world applications from different domains built using

STAPL GL. Details of an implementation of STAPL GL in STAPL, along with the various graph

processing paradigms are provided in Section 7, and results of experimental evaluation of this

implementation is provided in Section 8. Section 8 also provides an overview of the experimental

setup and input graphs used, along with comparisons with existing graph processing systems. It

then provides detailed evaluation of each of the different graph processing paradigms at large scale

for various input graphs and algorithms on different systems.
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2. THE STAPL GL MODEL

One of the challenges to processing graphs is the difficulty in expressing parallel graph algo-

rithms naturally and effectively. To overcome this, STAPL GLuses different models to decouple the

algorithm’s expression from its execution, abstracting away the parallelism and communication

details. Graph algorithms in STAPL-GL are expressed using either a fine-grained vertex-centric

manner, or a coarse-grained hierarchical manner.

The fine-grained “vertex-centric” approach, popularized by the Pregel graph processing frame-

work [9], is suitable for expressing a large class of graph algorithms such as breadth-first search

(and other traversals), PageRank, connected components, k-core decomposition, centrality metrics,

and coloring. Several existing graph processing frameworks use a vertex-centric model to express

algorithms. Algorithm writers specify operations to be performed on vertices and their neighbors,

which are iteratively applied to the vertices of the graph by the execution engine to execute the

algorithm.

However, there is a class of naturally hierarchical graph algorithms such as Boruvka’s mini-

mum spanning trees, graph partitioning, and agglomerative clustering, for which the vertex-centric

approach is not effective. Due to their inherent hierarchical nature and the need to operate on coarse

chunks of the graph instead of individual vertices, the fine-grained approach makes it hard for al-

gorithm developers to express such algorithms. On the other hand, coarse graph algorithms are

harder to express on a parallel system and limit the amount of parallelism exposed – a fine-grained

algorithm exposes the maximum amount of parallelism as each unit of work can be independently

processed in parallel. To address this, STAPL GL also provides a hierarchical model that eliminates

the need for the algorithm writer to think about the details of creating the hierarchy itself, providing

instead well-specified operators that define the hierarchy, executing the algorithm as the hierarchy

is built.

This chapter starts with a discussion of relevant related work in this area, along with existing ap-

proaches of expressing graph algorithms and their tradeoffs. Section 2.2 describes the fine-grained
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graph paradigm in STAPL GL, along with example algorithms. Finally, Section 2.3 describes the

hierarchical (coarse-grained) paradigm in STAPL GL, and how algorithms are expressed in it.

2.1 Related Work

2.1.1 Existing Models

Pull vs. Push Model. Graph algorithms typically exchange data between the vertices of the

graph. This may be done by “pushing” the current state of a vertex to a subset of its neighbors, or

“pulling” (or reading from) the current state of its neighboring vertices. Systems such as Pregel [9]

and SGL rely on the push model, while GraphLab [13] and GraphChi [12] rely on the pull model

of communication. While both methods produce the same end result, the push model can be

implemented asynchronously, by allowing overlapped communication and computation – a vertex

can send its state to its neighbors and then perform local computation. On the other hand, the

pull model needs to be synchronous. Furthermore, since in most graph algorithms vertices do

not communicate with all their neighbors (and only a small subset of total vertices are actively

communicating at all in each iteration), it may not be possible for a vertex to know which subset of

its neighbors (if any) to pull data from, and therefore, systems implementing the pull model must

read the states of all neighboring vertices at every step. The push model only needs to communicate

data that is required, allowing the algorithm to perform much lower communication than in the pull

model. Push models are also more naturally suited for distributed-memory computation than pull

models. Due to these reasons, we chose to use a push model for our system. We show comparisons

in scalability and speed between implementations of the two models in our experiments section.

Vertex vs. Edge Centric Models. Another way to classify fine-grained graph models is whether

they emphasize computations upon vertices or edges. Vertex-centric models incorporate the “think

like a vertex” [9] philosophy, where the algorithm is expressed in terms of operations on vertices

and their associated states (including any associated outgoing-edge states), and the edges are used

to establish communication between vertices. Operations read and update vertex states, perform

computations on these vertices, and send the result of the computations to neighboring vertices.
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On the other hand, edge-centric algorithms are expressed in terms of operations on edges, with

associated source- and target-vertex states. Edge-centric operators read states from both, source

and target vertices of an edge, and perform computations to update their states. For certain al-

gorithm, an edge-centric approach may provide a more natural expression than a vertex-centric

model. However, since multiple edges may be incident upon the same vertex, a coherence mech-

anism is required to keep the vertex’s state consistent while potentially multiple parallel updates

read from and write to the same vertex. This, in practice limits the scalability of edge-centric

models, making them harder to implement efficiently on distributed systems.

Coarse-Grained Models. There has also been work in expressing parallel graph algorithms in

a coarse-grained manner. Such models are subgraph-centric, where the graph is partitioned into

subgraphs and some computation is performed on them, followed by an exchange of boundary data

between the subgraphs. Certain algorithms such as Boruvka’s MST, graph partitioning and clus-

tering are naturally hierarchical, and are therefore also better expressed in such models. However,

non-hierarchical algorithms such as traversals, PageRank, and several others, are better expressed

in fine-grained models which do not require a separate specification of the boudary condition.

2.1.2 Other Graph-Processing Systems

The Parallel Boost Graph Library (PBGL) [7] is a stand-alone distributed-memory graph library,

with similar goals as STAPL GL. An important difference from STAPL GL is that since PBGL does

not provide a shared-object view, it exposes users to explicit knowledge of parallelism and data

distribution details through the use of process groups. This makes it more difficult to program. As

an example, PBGL’s interface requires the user to know explicitly the location of a vertex before

any operations may be performed on it, and therefore, there is no locality-agnostic way to access

remote vertices. Another difference is that PBGL’s algorithms are inherently level-synchronous.

The Multi-Threaded Graph Library (MTGL) [8] is a shared-memory graph library designed

to effectively utilize the unique architectural features of Cray XMP massively multithreaded ma-

chines. It can be ported to other platforms using the QThreads library. However, the model exposes

programmers to the QThreads API, as well as the details of multi-threaded programming.
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Google’s Pregel [9] is a library for processing graphs in parallel that emphasizes vertex-centric

computation and algorithm design, making it easy to express and versatile. Pregel uses the Bulk

Synchronous Processing (BSP) computational model [14] for executing algorithms.

GraphLab/PowerGraph [13] is a distributed-memory graph framework that allows users to

choose between synchronous and asynchronous execution at runtime, but it does not support para-

metric control of asynchrony. It uses a pull-model (gather/scatter approach) to express compu-

tations. However, this model impacts scalability on large parallel systems, and may incur extra

communication. It also requires users to understand low-level details of parallelism such as mem-

ory consistency and concurrency, as they have to choose a consistency model for their application

and understand its implications.

There are also edge-centric graph processing systems such as Ligra [11], which express al-

gorithms on edges, rather than the more commonly used vertex-centric model. However, due

to the need for maintaining coherence among vertices, edge-centric libraries are limited to shared-

memory systems in practice, and there doesn’t exist a practical distributed-memory implementation

of this paradigm.

GoFFish is a subgraph-centric graph processing framework for large-scale graph analytics.

This framework aims to address scalability bottlenecks in fine-grained models by exposing par-

tition information of the input graph to the algorithm writer. While this allows for performance

and locality-based optimizations such as reduced communication and reduced number of super-

steps, it makes the algorithm harder to express, since the user has to understand and account for

data-distribution and graph partitioning. STAPL GL’s fine-grained model overcomes challenges of

scalability by optimizing communication separately from the user’s expression of the algorithm.

This allows STAPL GL algorithms to be expressible and scalable.

2.2 The Fine-Grained Graph Processing Paradigm

Fine-grained vertex-centric algorithms in STAPL GL use an asynchronous push-update model,

which exposes a large amount of parallelism, while allowing the most flexibility in choosing ex-

ecution and communication strategies based on input and system. In this section, we show how
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an example algorithm, breadth-first traversal (BFS) (Figure 2.1) can be expressed in STAPL GL’s

fine-grained graph paradigm. Other algorithms such as connected components, k-core, PageRank,

community detection, graph coloring, betweenness centrality, pseudo-diameter, etc. can also be

expressed in a similar manner.

Breadth-first traversal (BFS) is an important graph algorithm due to its extensive usage in

traversing graphs, and due to its indirect usage as a part of numerous other graph algorithms, such

as betweenness centrality. A BFS of a graph marks each of its vertices with their distance from a

given source vertex.

To express an algorithm, the user provides two operators – a vertex-operator (Figure 2.1(a))

which performs the computation of the algorithm locally on a single vertex, and a neighbor-

operator (Figure 2.1(b)) that updates the neighbor-vertices of the source vertex with the results

of the computation based on incoming values from active vertices or edges. The user can option-

ally also provide an edge-operator to perform local computation on adjacent edges of a vertex

based on values passed-in from the source vertex. The edge-operator is mostly needed when the

algorithm sends different data on every edge. This provides a complete specification of the algo-

rithm, decoupled from details of execution and communication. Thus, algorithm writers can focus

on the expression of the algorithm.

For BFS, the vertex-operator checks if a vertex is active (grey) and propagates its distance

to its neighbors through the neighbor-operator. The neighbor-operator updates the distance of

the neighbor if needed, and marks it as active (grey). Active neighbors are processed by vertex-

operators in the next iteration.

The overall BFS algorithm results from invoking the execute method (Figure 2.1(c)) and pro-

viding it an execution policy and the operators presented earlier to obtain the BFS. The execute

method (Figure 2.2) applies the provided operators on active vertices of the input graph and handles

communication, termination-detection of the algorithm, current active vertices, and the execution

strategy (BSP, asynchronous, KLA, out-of-core, or communication-reduction), as specified by the

execution policy. The algorithm terminates when all vertex-operators return false. The execution
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bool bfs_vertex_op ( ve r tex v )
i f ( v . co l o r == GREY) / / Ac t i ve i f GREY

v . co lo r = BLACK;
VisitAllNeighbors ( bfs_ne ighbor_op ( _1 , v . d i s t +1) , v ) ;
r e t u r n t rue ; / / ve r tex was Ac t i ve

e lse r e t u r n f a l s e ; / / ve r tex was I n a c t i v e

(a) vertex-operator
bool bfs_ne ighbor_op ( ve r tex u , i n t new_distance )

i f ( u . d i s t > new_distance )
u . d i s t = new_distance ; / / update d is tance
u . co l o r = GREY; / / mark to be processed
r e t u r n t rue ; / / ve r tex was updated

else r e t u r n f a l s e ;

(b) neighbor-operator
vo id BFS( ExecutionPolicy po l i cy , Graph graph , ve r tex source )

source . co l o r = GREY;
execute ( policy , bfs_vertex_op ( ) , bfs_neighbor_op ( ) , graph ) ;

(c) Algorithm-driver

Figure 2.1: The fine-grained BFS algorithm.

policy, in addition to specifying the exection strategy, also encapsulates additional information re-

quired for the specified strategy. This can include specifying the level of asynchrony (k) for the

KLA strategy, or the machine-hierarchy (h) for the communication-reduction strategy, etc. The

selection of the execution policy can be done via user-provided hints, by sampling the graph, or

adaptively.

This paradigm allows the expression of several general graph algorithms easily, while allowing

several execution strategies and optimizations for fast and scalable execution. New execution

strategies can be added by registering them as an execution policy in STAPL GL. The STAPL GL

implementation includes over 30 fundamental graph algorithms expressed using this paradigm.

2.2.1 PageRank and Other Algorithms

The PageRank algorithm [15, 16] is a representative random-walk algorithm used to rank web-

pages on the internet in order of relative importance. The PageRank computation proceeds in

iterations, where each vertex calculates its rank in iteration i based on the ranks of its neighbors

in iteration i − 1, and then sends its new rank to its neighbors for the next iteration. Termination

happens upon convergence of ranks or upon reaching a predetermined threshold for iterations. The
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vo id graph_paradigm ( Graph graph , VertexOp wf , NeighborOp uf )
bool a c t i v e = t rue ;

wh i le ( a c t i v e ) {
pre_compute ( graph ) ;

/ / apply ver tex−opera tor to each ver tex , reduce to
/ / f i n d # a c t i v e v e r t i c e s . wf r e tu rns t rue ( a c t i v e ) ,
/ / or f a l s e ( otherwise ) , spawns neighbor−opera tors .
a c t i v e =

reduce (map( vertex_wf ( wf , visitor ( uf ) ) , graph ) , logical_or() ) ;
global_fence() ;

post_compute ( graph ) ;
}

Figure 2.2: Pseudocode for the graph paradigm (level-sync execution).

bool pagerank_vertex_op ( Vertex v )
i f ( v . i t e r a t i o n < 20)

v . rank = 0 .15 / num_vert ices + 0.85∗v . sum_ranks ;
v . i t e r a t i o n ++;
v . sum_ranks = 0;
i n t n = v . neighbors ( ) . s i ze ( ) ;
VisitAllNeighbors ( v , pr_neighbor_op ( _1 , v . rank / n ) ) ;
r e t u r n t rue ; / / ve r tex was Ac t i ve

e lse r e t u r n f a l s e ; / / ve r tex was I n a c t i v e

(a) vertex-operator
bool pr_neighbor_op ( Vertex u , double rank )

u . sum_ranks += rank ;
r e t u r n t rue ;

(b) neighbor-operator

Figure 2.3: The PageRank algorithm.

STAPL GL implementation of PageRank’s vertex and neighbor operators is shown in Figure 2.3.

Other algorithms, such as k-core decomposition (Figure 2.4) and connected components can

be expressed in a similar two operator fashion. More details can be found in [2].

2.3 The Hierarchical Graph Processing Paradigm

There is a class of graph algorithms that are naturally hierarchical, such as Boruvka’s minimum

spanning trees, graph partitioning, and agglomerative clustering. Due to their inherent hierarchical

nature and the need to operate on coarse chunks of the graph instead of individual vertices, the

fine-grained model is unsuitable for expressing such algorithms.
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bool kcore_vertex_op ( Vertex v )
i f ( v . degree_count < K && ! v . de le ted ) / / Propagate i f degree <K

v . de le ted = t rue ;
VisitAllNeighbors ( v , kcore_neighbor_op ( _1 ) ) ;
r e t u r n t rue ; / / ve r tex was Ac t i ve

e lse r e t u r n f a l s e ; / / ve r tex was I n a c t i v e

(a) vertex-operator
bool kcore_neighbor_op ( Vertex u )

i f ( ! u . de le ted )
u . degree_count−−; / / update ver tex degree
r e t u r n t rue ; / / ve r tex was updated

else r e t u r n f a l s e ;

(b) neighbor-operator

Figure 2.4: The k-core algorithm

On the other hand, coarse graph algorithms are harder to express on a parallel system and limit

the amount of parallelism exposed – a fine-grained algorithm exposes the maximum amount of

parallelism as each unit of work can be independently processed in parallel. To alleviate this, we

propose a novel paradigm for expressing hierarchical graph algorithms, which allows users to write

fine-grained operators to express the coarsening phase of the algorithm, while construction of the

hierarchy is handled by the execution engine.

The paradigm decouples the algorithm expression from the execution, eliminating the need for

the algorithm writer to think about the details of creating the hierarchy itself. The hierarchical

paradigm execution engine applies the user-provided operators on the input graph to create vertex-

matchings which are then subsequently coarsened to form another level in the hierarchy. This

process is iteratively repeated until some precondition is achieved, or only unconnected super-

vertices remain in the top-level of the hierarchy.

The process of creating the hierarchy executes the algorithm. For example, selecting the

neighbor-vertex with the lowest id in each fine-grained operator will result in executing the connected-

components algorithm. Similarly, selecting the highest-weighted neighbor that is not a self-edge

for every vertex, and executing it hierarchically will result in the selected edges forming a mini-

mum spanning tree.

STAPL GL providese a general paradigm to naturally express hierarchical graph algorithms. To
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the best of our knowledge, none of the existing parallel graph-processing frameworks provide a

similar facility. Furthermore, the paradigm is general enough to be implemented in other frame-

works, and exposes the maximum parallelism available to the problem.

2.3.1 Graph Hierarchies

This section presents the concept of hierarchies in graphs. In the next sections, we will use this

concept to demonstrate how our hierarchical paradigm allows the creation of hierarchies, and how

it ties to the expression and execution of hierarchical graph algorithms.

We first start with the concept of a supergraph. Given a graph G = (V,E), where V and E

represent the set of G’s vertices and edges, a supergraph S consists of vertices V and edges E , such

that each vertex in the supergraph represents an exclusive partition of vertices in graphG (given by

the non-injective and surjective function F), and each edge in the supergraph represents the group

of inter-partition edges of G induced by partition function F .

In other words,

SuperGraph: S = (V , E)

υ = F(V ),∀υ ∈ V [F : V → V is non-injective and surjective]

e ∈ E = (υ1, υ2,w), υ1, υ2 ∈ V ,w ∈ W(E) [w is the weight]

A graph-hierarchy is a sequence of graphs where each graph is a super-graph of the preceding

graph:

H(G0) = {G0, G1, G2, ..., Gh}

where Gi = SuperGraph(Gi−1), 0 < i ≤ h

A graph-hierarchy allows natural expression of hierarchical algorithms, and the size reduc-

tion obtained by creating super-graphs representative of the original graph may allow for faster

processing, and may reduce communication overhead.
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h ie ra rchy = create_hierarchy ( match ( ) , ver tex_reducer ( ) , edge_reducer ( ) ,
done ( ) , pre_compute ( ) , post_compute ( ) ) ;

Figure 2.5: Specification of a hierarchical algorithm.

In SGL, we provide support for creating super-graphs based on an input graph and some user-

provided grouping or partial grouping, and allow the automatic calculation of super-vertex/edge

properties from a reduction of the input graph’s vertex/edge properties. A hierarchy is obtained by

repeating this process till a specified user-condition is met.

2.3.2 Hierarchical Operators

The paradigm consists of four operators (Figure 2.5) – a match operator to decide which neigh-

bor a given vertex should match to, two reducer operators for merging vertex- and edge-properties

to compute the super-vertex and super-edge properties, and a done-operator that indicates the com-

pletion of hierarchy creation. In addition, pre- and post-compute operators can be provided to aid

in computing the matching (for example, computing nearest neighbor metrics for agglomerative

clustering) or creating side-effects (for example, adding edges to an output graph for MST). The

process of creation of the hierarchy executes the algorithm. We introduce and define the user-

operators (through which the user expresses their algorithms), outline the process of creating the

hierarchy, and analyze the costs of hierarchy creation.

The Match Operator: The match operator takes as input a vertex and an integer indicating the

current level of hierarchy, and marks the vertex with the vertex it should be grouped with in the

next level of the hierarchy. These matchings or groupings can be absolute or relative. Absolute

groupings have all vertices in the grouping matched with a single “leader” vertex, whereas relative

groupings may have chains of match vertices, and the final grouping will be computed by the

create-hierarchy algorithm.

Property-Reducer Operators: The vertex- and edge-reduce operators take as input two vertex or

edge properties and an integer indicating the current level of the hierarchy, and return a vertex (or

edge) property that is the reduction of the two input properties. This output will be used to set the
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property of the super-vertex/super-edge in the next level of the hierarchy.

The Done Operator: The done-operator takes as input the graph at level-i of the hierarchy, along

with an integer specifying the level of the hierarchy, and returns true if the next level of the hierar-

chy should be created, or false if the hierarchy is completed.

Pre- and Post-Compute Operators: Pre- and post-compute methods take as input the graph at

level-i along with the level i, and can optionally perform auxiliary computations.

The operators are applied on a given level of the hierarchy to compute the next level, starting

with the input graph as the base-level. This process is repeated until a single vertex remains, or the

user-specified done operator is satisfied. The resulting series of graphs form the hierarchy.

2.3.3 Creating The Hierarchy

To create a supergraph, we construct a new graph based on the specifications given by the user-

operators. The number of vertices in the Supergraph is given by the number of groupings generated

by the application of the Match-Operator to the input graph. The property of each vertex in the

supergraph is generated by applying the vertex-reduce operator to the properties of the vertices of

the input graph. The Superedges are generated whenever there is an edge between two partitions

of the input graph. Since the supergraph is non-multi-edged, only a single superedge is generated

for all inter-partition edges. However, each inter-partition edge from the input graph is stored in

the super-edge. Similar to the supervertex’s property, The superedge’s property is also generated

by a reduction of the properties of its corresponding input edges. Finally, the supergraph produced

is pushed onto a stack of graphs representing the hierarchy, and the process is repeated.

2.3.4 Analysis of Cost of Hierarchy Creation

This section analyzes the computational complexity of general paradigm to create the hierarchy

for a given algorithm. We assume a graph G = (V,E), with n vertices and m edges distributed

randomly and equally over O(p) processing elements. We also assume a partition function F(V )

that matches the vertices of the input graph, producing a set of matched vertices which induce the

set of supervertices V . This process is repeated until some user-defined termination condition is
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vo id hierarchical_paradigm ( Graph input_graph , MatchOp match ,
VertexReducer vr , EdgeReducer er ,
Done done ,
Operator pre−compute ,
Operator post−compute )

vector <Graph> h ie ra rchy ;
Graph g = input_graph ;
h ie ra rchy . push_back ( g ) ; / / base−l e v e l o f the h ie ra rchy .
i n t l e v e l = 0 ;
wh i le ( g . s ize ( ) > 1 && ! done ( g , l e v e l ) ) {

pre−compute ( g , l e v e l ) ;
for_each ( g . v e r t i c e s ( ) , match_operator ( l e v e l ) ) ;

/ / Creates a graph of super−v e r t i c e s and super−edges
/ / based on s p e c i f i e d matchings . The super−v e r t i c e s and
/ / super−edges conta in ids o f t h e i r ch i l d ren , and t h e i r
/ / p r o p e r t i e s are reduc t ions o f t h e i r ch i l d ren ’ s
/ / p r o p e r t i e s based on the prov ided reduce opera tors .
/ / <Describe t h i s step i n more d e t a i l > .
g = c re a te_ l e ve l ( g , ver tex−reducer ( l e v e l ) ,

edge−reducer ( l e v e l ) ) ;

h ie ra rchy . push_back ( g ) ;
++ l e v e l ;

}

Figure 2.6: Pseudocode for the hierarchical graph paradigm.

reached. Lastly, we assume, without loss of generality (since F is non-injective and surjective),

that the size of each succesive set of supervertices |Vi| decreases by a factor of 1 + ε, where

0 < ε ≤ 1. Due to this, the computation performed for the input graph (G0, the base level of the

hierarchy) dominates the creation of the hierarchy. Therefore, the hierarchy will containO(log(n))

levels and the total amount of computation performed to create the hierarchy is:

TAlgo−Compute = O(
n+m

p
) (2.1)

Similarly, the cost for communication can be given by:

TAlgo−Comm = O(
m

p
) +O(p · log(n)) (2.2)

For each level, the cost associated with F is the cost of invocation of the user-defined match-

operator M on each vertex. Further, the cost of creation of the next level of the graph includes

the computing of properties of each super-vertex and super-edge by application of the vertex-
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and edge-reducer operators (vr and er respectively) on the vertices and edges of the input graph.

We also account for the invocation of the Done-operator (D) at each level to compute if some

termination condition has been reached:

TAlgo = O(
n · (TM + Tvr) +m · Ter

p
+ TD) +O(p · log(n)) (2.3)

Similarly, the memory consumed by our hierarchical paradigm is bounded by: O(n+m
p

)

2.3.5 Algorithms Using the Hierarchical Paradigm

This section describes how a variety of hierarchical graph algorithms can be expressed in the

hierarchical paradigm using the operators described above. In all cases, choosing appropriate

operators will lead to execution of the algorithm as the hierarchy is created. The paradigm takes

care of executing the operators, and creating the hierarchical graph appropriately.

Connected components:

• Match-operator: Neighbor with lowest id.

• Vertex-reducer: min(x, y) // x,y are CC ids.

• Edge-reducer: null.

• Done: graph_level[top].num_edges() == 0 // no edges remain.

The connected components algorithm assigns a unique ID to all vertices that can be reached

by each other. This can be naturally be expressed hierarchically by collapsing pairs of connected

vertices with each other until no connected vertices remain.

In our paradigm, the hierarchical connected components algorithm computes the lowest-id

neighbor for every vertex in each level of the hierarchy. These matches are then reduced to compute

the groupings for the super-vertices of the next level of the hierarchy, and the process is repeated

until the top-most level of the hierarchy has no edges connecting any two super-vertices (all super-

vertices are in their own connected component).

Minimum spanning tree (Boruvka’s algorithm):
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• Match-operator: Neighbor with lowest edge-weight.

• Vertex-reducer: null.

• Edge-reducer: min(x, y) // x,y are edge-weights.

• Done: graph_level[top].num_vertices() == 1 // single vertex remains.

The hierarchical minimum spanning tree algorithm uses Boruvka’s approach to compute the

result. Boruvka’s algorithm is a naturally hierarchical algorithm. However, it is difficult to express

in existing graph processing frameworks hierarchically, so many implementations typically use

additional auxiliary data-structures such as union-find to keep track of “collapsed vertices”. This

is simplified using our paradigm.

In our approach, at each level of the hierarchy, each vertex chooses the lowest-weighted edge

that is not a self-edge. Self edges denote loops in the sub-graph represented by the super-vertex,

and are therefore not chosen. Each super-edge is assigned the minimum of the weights of its

constituent edges. This process is iteratively executed until a single vertex remains, assuming a

fully connected graph, or multiple unconnected vertices remain (representing a minimum spanning

forest) if the graph is unconnected.

Graph partitioning (coarsening phase):

• Match-operator: Neighbor with highest edge-weight.

• Vertex-reducer: plus(x, y) // sum vertex weights.

• Edge-reducer: plus(x, y) // x,y are edge-weights.

• Done: graph_level[top].num_vertices() == p // desired #vertices remain.

Hierarchical graph partitioning consists of three phases: (i) coarsening, (ii) partitioning, and

(iii) refining. The coarsening phase collapses vertices that are “matched”. Matchings are com-

puted based on highest edge-weight vertices pairing together. This can be represented using the

hierarchical paradigm. The super-graph’s vertex and edge-weights are computed by summing the
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vertex-weights and edge-weights of the graph in the level below. The process stops when the

top-level graph has the desired number of vertices (equal to desired number of partitions). Af-

ter creating the hierarchy, a traditional partitioning algorithm (such as METIS) can be run on the

top-level graph and the results propagated through the levels of the hierarchy in the refining phase.

Agglomerative clustering (also generalizable to other clustering):

• Pre-Compute: Compute nearest neighbor.

• Match-operator: Nearest neighbor.

• Vertex-reducer: centroid(x,y) // x,y are vertex coordinates.

• Edge-reducer: null.

• Done: graph_level[top].num_vertices() == 1 // single vertex remains.

Agglomerative clustering is an important algorithm used in data mining for cluster analysis.

In this algorithm, each vertex starts with its own cluster and pairs of clusters consisting of nearest

neighbors are merged to form super-vertices in the next level of the hierarchy. The super-vertex

property is computed based on the centroids of its child vertices. The process is repeated until a

single vertex remains. Different metrics and linkage criteria can be chosen to provide differently

shaped clusterings.
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3. THE KLA GRAPH PARADIGM – PROCESSING GRAPHS WITH BOUNDED

ASYNCHRONY∗

k-level-asynchronous (k-level-async) is a graph-processing paradigm that unifies Bulk Syn-

chronous Parallel (BSP) [14] and asynchronous paradigms, by allowing each BSP superstep to

execute up to k levels of the algorithm asynchronously. k-level-async allows users to express

fine-grained vertex-centric graph algorithms. The algorithms are decoupled from parallelism and

communication details, as well as from the processing of the graph, whether it is level-synchronous

or asynchronous, or stored on disk or in RAM.

3.1 Existing BSP and Asynchronous paradigms

Graph algorithms have traditionally followed a BSP approach, where computation proceeds

in supersteps, with communication happening between two supersteps. Each superstep’s commu-

nication is guaranteed to have completed before the start of the next superstep, guaranteeing the

availability of all information required for computation in the next superstep. This guarantee is

enforced using a global barrier, which can quickly become expensive on large systems. Further,

the BSP model is most efficient when the amount of work done in each superstep is high and uni-

formly distributed across processing elements, so that the overhead of the global barrier can be

amortized. However, most graph topologies have long-tails, and skewed distribution, and many

graph algorithms process relatively few vertices in most iterations (Figure: active-vertex distribu-

tion across iterations for various algorithms). This makes BSP inefficient for supersteps where (i)

relatively little work is being done by the superstep, or (ii) if the work is poorly distributed.

To alleviate this, an asynchronous computation model was proposed. In this model, the global

barriers are replaced by point-to-point local synchronizations across the edges of the graph. How-

ever, this implies no guarantees in the ordering or availability of messages required to perform

∗ The KLA model and some of the experimental results are reprinted from proceedings of the 23rd International
Conference on Parallel Architectures and Compilation Techniques (PACT), “KLA: A new algorithmic paradigm for
parallel graph computations,” 2014, pp. 27–38, Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, c©2014
IEEE with permission from authors and IEEE.
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computation on a given vertex. Therefore, if the number of messages required to perform the

computation on a vertex is not algorithmically known a priori, the computation must be performed

optimistically, which may lead to some computation having to be redone when new, more com-

plete information is available, effectively leading to wasted work. This model is inherently better

suited to algorithms and graph topologies which would have taken multiple supersteps to perform

in the BSP model, or where the computation per superstep would have been exceedingly small or

heavily imbalanced (e.g. all active vertices on one processor, or ifO(active−vertices) << O(p),

leading to no effective distribution strategy). This is often the case with highly regular graphs with

small average out-degrees and long diameters.

3.1.1 Tradeoffs: Asynchronous vs. BSP

As described, both the asynchronous and BSP models have tradeoffs, and neither performs well

in all scenarios. While the BSP model is well suited for computationally-intensive phases, it has

high global-synchronization costs in the face of stragglers and high-latency systems. On the other

hand, the asynchronous model works well for hiding latency, but suffers from a high probability of

performing redundant work.

3.2 The KLA Model

To balance aspects and tradeoffs of both models, we proposed the k-Level Asynchronous

(KLA) model, where computation proceeds in BSP-like supersteps (KLA-Supersteps), but each

KLA-Superstep may perform up to k-levels of asynchronous computation. When k = 1, the KLA

model degenerates into the BSP model, while when k is greater than the total number of levels (d)

required to complete the algorithm, KLA equates to the asynchronous model. For 1 < k < d, the

algorithm proceeds in d d
k
e phases. This unifies the previous models, as well as exposes intermedi-

ate levels of asynchrony. For a given execution profile, this allows the most effective use of both

previous models by fine-tuning the trade-off between the cost of synchronizations and the cost of

performing redundant work.

Figure 3.1 provides an intuition of how the level-synchronous, asynchronous, and k-level-
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async versions of the BFS algorithm shown in Figure 2.1 differ. From the user’s perspective, the

algorithm (expressed as vertex and neighbor operators) does not change. What does change is the

visitation logic (Figure 3.1). This determines conditions to allow the computation to proceed on

the neighbor vertex being visited. While the visit logic has been simplified in the figure to make it

readable, the BFS code closely corresponds to what a user would write.

Visit (NeighOp update , Vertex u ,
i n t k_cur r )

bool a c t i v e = update ( u )
i f ( a c t i v e )

bfs_vertex_op ( u ) ;

(a) Async Visit
spawn tasks

Visit (NeighOp update , Vertex u ,
i n t k_cur r )

bool a c t i v e = update ( u )
i f ( a c t i v e && k_cur r % k != 0)

bfs_vertex_op ( u ) ;

(b) KLA Visit
spawn tasks to depth k

Visit (NeighOp update , Vertex u ,
i n t k_cur r )

update ( u ) ;
.
.

(c) Level-Sync Visit
don’t spawn further tasks

Figure 3.1: Visitation logic for async, KLA and level-sync behavior of BFS.

3.3 Requirements, Guarantees and Proof of Correctness

In this section, we provide a proof of correctness of the k-level-asynchronous paradigm. For

an algorithm to execute using k-level-async, its neighbor-operator should be idempotent, i.e., it

cannot rely on the order in which the vertex is visited and must be resilient to multiple visits.

This is the same as for an asynchronous algorithm. This is required as k-level-async provides no

synchronization guarantees to the algorithms neighbor and vertex operators while in the middle of

a KLA-SS. However, k-level-async does guarantee that at the end of each KLA-SS, the state of the

execution of the algorithm will be equivalent to executing k BSP supersteps. This can be proved

using simple induction. For our proof, we use the breadth-first search algorithm as an example,

though the same technique works for other graph algorithms.

Lemma 3.3.1. At the end of the i-th KLA BFS KLA-SS, all vertices at distance ≤ i · k from the

source have been visited and labeled with the correct distances, and no vertices of distance > i · k

from the source have been visited.
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Proof. The proof is by induction on i, the KLA-SS number. When i = 0, only the source has

been visited and it is trivially true. Next, we assume that at the end of KLA-SS (i− 1), all vertices

at distance ≤ (i − 1) · k from source have been visited and correctly labeled with distances, and

vertices at a distance > (i− 1) · k are unvisited.

At the beginning of KLA-SS i, only vertices at distance (i− 1) · k + 1 from source are active.

The vertex-operator in Figure 2.1(a) is applied to all these active vertices and visits their neighbors

(Figure 2.1(b), line 3) if they are at a distance≤ i ·k from the source (Figure 3.1(b), line 3). During

the visit, the distance to source is updated only if it decreases; hence, once the correct minimum

distance is computed it will not be further updated. Moreover, since the vertex-operator visits all

neighbors of active vertices, all edges in the sub-graph induced by the vertices visited during the

ith KLA-SS, i.e., at distance (i − 1) · k < d ≤ i · k from source, will be processed, implying that

at some point during the KLA-SS, the correct distance will be computed for all vertices visited in

that KLA-SS.

Corrollary 3.3.2. KLA BFS will perform d d
k
e KLA-SSs, where d is the number of levels in the

graph.

Corrollary 3.3.3. If k = 1, then KLA BFS visits the vertices of the graph in a level-synchronous

manner.

3.4 Finding optimal-k

The performance of KLA algorithms is dependent on the choice of a good value for k. How-

ever, it is non-trivial to determine the optimal value of k given an arbitrary input graph, machine

and algorithm. Therefore, we present a technique to quickly determine an effective approximate

value for kopt. We also present an adaptive strategy that picks an appropriate k based on the current

local topology of the graph as the algorithm progresses. This strategy is applicable in the general

case. The interpolative method to approximate the value of kopt is useful when executing the algo-

rithm multiple times on the input. Our experimental results show these two techniques work well

in practice.
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3.4.1 Adaptive KLA

To help users obtain better performance from a single (or a few) run(s) of a KLA algorithm,

or when they do not have sufficient information about the input graph, we use a simple adaptive

strategy (Adaptive KLA) that dynamically varies k to process the graph. The strategy dynami-

cally chooses the best value for the next iteration based on information from current and previous

iterations.

The algorithm starts with k = 1 (or some user-defined start value). At the end of each KLA-

SS, the value of k is doubled for the next level under the following conditions: 1) high out-degree

vertices have not been discovered, 2) the penalty for asynchrony (e.g., wasted work for BFS or

buffering cost for PageRank) has not exceeded a threshold, and 3) the cost of processing each ver-

tex in the current KLA-SS is equal to or less than the cost of processing each vertex for the previous

KLA-SSs. If the thresholds for either out-degree, asynchrony penalty or per-vertex processing cost

have been exceeded, the k value is halved. In addition, any high out-degree vertices found in a

given KLA-SS are marked for processing in the next KLA-SS to reduce the penalty for processing

them prematurely. Finally, if the asynchrony penalty or processing cost exceed a maximum thresh-

old (we empirically found 20% to work well for the machines on which we tested), the value for k

is capped, so the algorithm does not suffer from greater asynchronous penalties attempting higher

values. The thresholds for asynchrony penalty and processing cost can be chosen depending on the

machine, such that for a machine where the cost of communication is much higher than the cost of

computation, the threshold can be increased, and vice-versa.

While this technique may not provide the best performance compared to knowing a priori

the value of kopt (see Sec. 3.4.2), it is inexpensive in practice. As can be observed from Fig-

ure 8.8, it still provides substantial performance benefits compared to the level-synchronous and

asynchronous paradigms by converging to an improved k value, which may then be used for sub-

sequent runs.
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3.4.2 A Model for Approximating kopt

In this section we describe a model for the KLA paradigm that enables us to obtain a good

approximation of the value (kopt) for k which results in the lowest execution time for the algorithm

based on the input graph and machine. This approach may be used when performing multiple

traversals on a graph to obtain better performance than Adaptive KLA. We use BFS on an undi-

rected, connected graph as an illustration of this model, and show, later in this section, how it

applies to other algorithms.

Theoretical Model. Assume a level-synchronous BFS requires d iterations over the graph, pro-

cessing active vertices in each iteration. As there is an enforced ordering guarantee, there is no

wasted work in this paradigm. Therefore, for a graph with n vertices on p processors, the work

done in parallel can be Vmax, the maximum number of vertices to be processed by a processor

(ideally, Vmax = n
p
). Assuming it takes time α to process each vertex of the graph on average and

Tsync is the time required by a global-synchronization of p processors in the system, the total time

is given by:

TBFS
Level−Sync = α · Vmax + d · Tsync (3.1)

On the other hand, an asynchronous BFS traversal needs only one global-synchronization for ter-

mination detection, but in the process may end up doing redundant work due to loss of ordering

guarantees for messages. Assuming a function Ψ(G) gives the amount of redundant work done

for graph G (a method for approximating this will be discussed in detail later), the total work per

processor now becomes Vmax + Ψp(G), where Ψp(G) is the estimated amount of wasted work on

a processor. Therefore, the total time for the asynchronous paradigm is given by:

TBFS
Async = α (Vmax + Ψp(G)) + Tsync (3.2)

Extending this to the KLA paradigm, the traversal performs d d
k
e KLA supersteps. Assuming the

wasted work for a given k is given by the penalty-function Ψ(G, k), where Ψ(G, 1) = 0 and
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Ψ(G, d) = Ψ(G), the time now becomes:

TBFS
KLA(k) = α (Vmax + Ψp(G, k)) + dd

k
e · Tsync (3.3)

The product αVmax represents the time taken by the algorithm to complete all useful work in

parallel, and can therefore be replaced by TWork:

TBFS
KLA(k) = TWork + α ·Ψp(G, k) + dd

k
e · Tsync (3.4)

When k = 1, KLA behaves the same as the level-synchronous paradigm, and for k = d, it behaves

like the asynchronous paradigm. In the following section, we provide some insight on what causes

wasted work.

Modeling the Wasted Work, Ψ(G, k). Wasted work is caused by latency, where a message

taking a shorter path arrives after a message through a longer path. This can be caused by two

major factors: machine dependent (i.e., network latency) and graph dependent (i.e., distribution

of the graph, processing order of adjacent edges of a vertex). As the exact determination of these

factors is non-deterministic, we provide a model to approximate the wasted work (Ψest(G, k)) for

a given graph in this section.

We classify the edges of an input graph into two categories: ET , which are the edges in the

output BFS tree connecting parents to their children in the BFS, and ENT = E − ET , which are

the other edges in the graph. There exist edges in ENT then, that may cause wasted work, because,

if these edges are traversed before the corresponding tree edges, the target vertex and its children

will need to redo the traversal with shorter paths.

We can further sub-divide ENT into ENT_C and ENT_I . ENT_C are those ENT edges that cross

a KLA superstep, i.e., their source vertex is in a different KLA superstep than their target vertex.

ENT_I are the subset of remaining ENT edges that have both their source and target inside the

same KLA superstep, and therefore are inside an asynchronous execution section. As edges in

ENT_C cross a KLA superstep, they cross a global synchronization point. Therefore, they cannot
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contribute to wasted work, as their traversals will reach the target vertex at the same time as the

correct traversal (from the actual BFS parent with the shortest distance-from-source), as guaranteed

by the global synchronization. Therefore, we can establish an estimate of the potential wasted work

as the cardinality of the set ENT_I :

Ψest(G, k) ∝∼ ENT_I(G, k) (3.5)

We know the number of tree edges (ET ) equals V − 1. Therefore, ENT = E − (V − 1). Using

this, we can approximate the expected number of non-tree edges inside a KLA-SS as:

EExpected
NT_I (G, k) =

E − (V − 1)

d
× (k − 1) (3.6)

From equations (3.5) and (3.6) we get:

Ψest(G, k) ≈ E − (V − 1)

d
× (k − 1) (3.7)

This supports our intuition. Small-diameter graphs with large out-degrees have E >> V and

d = O(1). Therefore, even a slight increase in k may lead to large amounts of wasted work,

which would negate the benefits gained from removing a global synchronization. This implies

that such graphs will fair better with smaller k values (k = 1). Long-diameter graphs with low

out-degrees have E ≈ V and d = O(V ). This implies that such graphs work best with k = d, as

the wasted work is negligible. Other graphs such as road networks, geometric meshes, etc. tend to

fall in-between, and therefore benefit the most with 1 < k < d.

Furthermore, small-diameter graphs have a more even distribution of work, as most processors

tend to be working in each superstep. Long-diameter graphs exhibit a work-load imbalance due to

their low work per superstep. This imbalance can be alleviated by increasing the asynchrony for

long-diameter graphs.

Other graph algorithms can be modeled in much the same way as BFS, apart from the penalty
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paid for asynchrony. Some algorithms (such as PageRank) may incur a penalty for buffering

messages that arrive out-of-order as the asynchrony is increased, while others, such as k-core, do

not incur any penalty.

Finding kopt: Estimating the Penalty-Function (Ψest) Determining Ψ exactly is expensive and

only gives an upper-bound to the penalty paid for asynchrony. However, it can be closely approx-

imated using a linear model (see Eq. 3.7). Assuming m gives an estimate of how fast the penalty

increases with k, and b is the offset of the line: Ψest.(G, k) = m × k + b (both m and b depend

on input-graph and machine). Two executions of the algorithm are needed to interpolate Ψ, which

will provide the approximate curve of the running-time of the algorithm for varying values of k.

The curve’s minima can then be used to predict kopt. This approach is mainly useful for application

performing multiple traversals, such as in Brandes’ betweenness centrality [17]. To find the equa-

tion for Ψest, we run the algorithm with k = 1, from which we can obtain the number of iterations

(d) and the amortized cost ( α) of processing a vertex. Running the algorithm a second time with

k = d, which was found from the first execution, we can compute the penalty for a completely

asynchronous execution of the algorithm (Ψest(G, d)), giving us the slope of the line for Ψest.

Ψest(G, d) can be calculated for graph algorithms thus: 1) track the global number of visits to

the input graph’s vertices, 2) subtract from it the number of vertex-visits required to execute the

algorithm in a BSP execution, 3) divide by the number of processors to get the average wasted

work per processor.

Using these constants in the appropriate equation (Eq. 3.4), we can obtain a curve approximat-

ing the performance of the algorithm for the given input graph, for different values of k. The kopt

is the value for which the curve reaches its minima. We ran KLA on multiple graphs and compared

the predicted vs. real kopt, and found the model to approximate the trend well enough to suggest a

reasonable kopt value. Figure 3.2 shows two such results comparing the predicted times given by

the KLA model on two different input graphs, to the actual execution times for varying k-values.

This model was used to predict kopt for experiments in Sections 8.5 and 8.7.
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Figure 3.2: KLA Model: predicted vs. actual execution times on HOPPER for a BFS.
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4. COMMUNICATION REDUCTION OPTIMIZATION – FOR SMALL-WORLD

SCALE-FREE GRAPHS∗

While KLA is effective in hiding the effects of a high-latency in a system, for many natu-

ral graphs, another bottleneck is effective bandwidth. Natural graphs tend to follow small-world

scale-free behavior, and exhibit power-law degree distribution with small diameters. In such cases,

the number of BSP iterations is often low due to the small diameter, and the work per iteration is

consequently very high, due to high-degree vertices. Further, due to high-degree vertices, increas-

ing asynchrony dramatically increases the wasted-work probability and cost. In such cases, using

k=0 (i.e., the BSP model) is most effective. These graph can not be partitioned effectively due to

their highly skewed degree distributions, and therefore any partitioning across a system results in a

high number of cross-partition edges, which can cause scalability bottlenecks. These are no longer

bound only by latency, so increasing asynchrony may not help. Improving performance and scal-

ability in such cases requires increasing the effective bandwidth. We therefore propose a system

which can improve effective bandwidth utilization by reducing the amount of bytes communicated.

In this section, we present an approach to transparently (without programmer intervention)

allow fine-grained graph algorithms to utilize algorithmic communication reduction optimizations.

In many graph algorithms, the same information is communicated by a vertex to its neighbors,

which we coin algorithmic redundancy. Our approach exploits algorithmic redundancy to reduce

communication between vertices located on different processing elements. We employ algorithm-

aware coarsening of messages sent during vertex visitation, reducing both the number of messages

and the absolute amount of communication in the system. To achieve this, the system structure

is represented by a hierarchical graph, facilitating communication optimizations that can take into

consideration the machine’s memory hierarchy. We also present an optimization for small-world

∗ The techniques and some of the experimental results presented in this chapter are reprinted from proceedings
of the 24th International Conference on Parallel Architectures and Compilation Techniques (PACT), “An algorithmic
approach to communication reduction in parallel graph algorithms,” 2015, pp. 201–212, Harshvardhan, A. Fidel, N.
M. Amato, and L. Rauchwerger, c©2015 IEEE with permission from authors and IEEE.
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scale-free graphs wherein hub vertices (i.e., vertices of very large degree) are represented in a

similar hierarchical manner, which is exploited to increase parallelism and reduce communication.

Based on these principles, we extend our framework to transparently allow fine-grained graph

algorithms to utilize our hierarchical approach without programmer intervention, while improving

scalability and performance. Experimental results using this approach on 131, 000+ cores show

improvements of up to a factor of 8 times over the non-hierarchical version for various graph

mining and graph analytics algorithms.

4.1 Out-degree and in-degree optimizations

A key pattern that arises in many parallel graph algorithms is the need for a vertex to propagate

the same information to all vertices in its neighborhood. For example, consider the traditional fine-

grained expression of the breadth-first search algorithm in Figure 2.1. First, the vertex-operator

(Figure 2.1(a)) checks to see if a vertex is active (grey), and if so, it propagates its distance from

the source to its neighbors using the neighbor-operator (Figure 2.1(b)). The neighbor-operator

then updates the distance of the neighbor if needed, and marks the neighbor as active (grey) in

the next iteration. A crucial observation is that the vertex-operator visits all of its neighbors with

semantically identical information, which may lead to redundant communication in distributed-

memory architectures. This communication pattern is present in a large class of important al-

gorithms such as breadth-first search, betweenness centrality, connected components, community

detection, PageRank, k-core decomposition, triangle counting, etc. These algorithms are used in

graph mining and big-data applications where performance is critical.

The cost of memory accesses on large-scale distributed-memory systems is highly non-uniform.

The communication patterns exhibited in graph algorithms executed on these systems are well-

known to limit scalability. For this situation, optimizations to alleviate communication pressure

can occur in several forms:

- Messages destined to the same processing element can be aggregated and combined into a

single message.
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- Creation of redundant messages that are a result of algorithmic redundancy (such as in

breadth-first search) can be eliminated completely, and a single copy can instead be sent

between processing elements.

- Bottlenecks caused by the presence of hub vertices can be mitigated by reducing incom-

ing communication to hubs locally, and a single contribution can then be forwarded off-

processor.

However, as algorithms are best expressed in a fine-grained manner that makes them oblivious

to the graph structure, and as graphs themselves are represented as flat data-structures, only the

first of these three optimizations is typically applied, as the knowledge of machine hierarchy is

unavailable.

Our approach is to allow algorithms to be expressed in the natural vertex-centric manner while

transparently applying communication optimizations without programmer intervention. The mech-

anism by which this is achieved is through the construction of a hierarchical representation of the

input graph that is aligned with the machine hierarchy to identify local and non-local elements. By

using this hierarchical representation and algorithm-level knowledge, we are then able to identify

and transparently apply these communication optimizations for fine-grained algorithms.

4.2 Hierarchical model

Our goal is to improve scalability and performance of graph algorithms by reducing the number

and total volume of messages sent during execution. We first discuss locality-based communication

optimizations for graphs in Section 4.2.1 and then follow with an additional optimization suited

specifically for reducing bottlenecks due to hubs in Section 4.2.3.

4.2.1 Locality-Based Communication Optimization

Communication in graph algorithms occurs between vertices through edges, which represent a

source-target pair (s, t). For edges with the source s and with targets t0, t1, . . . stored on the same

destination location, it is possible to aggregate messages for all such equivalent edges. Further,

if all messages represent the same information, a single message can be sent to the destination
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Figure 4.1: Creating a hierarchy: (a) A flat graph, with remote, inter-partition edges (red lines)
and (b) its hierarchical representation with metadata. Using the hierarchy: (c) Remote commu-
nication during algorithm execution (shown in green). Hierarchical graph replaces inter-partition
edges in original graph (red dashed-lines represent deleted edges) with a single super-edge between
each partition (solid black lines on top-level graph). Generalizable to multiple levels of machine
hierarchy.

location and then applied to t0, t1, . . .. This concept can be applied recursively by considering a

grouping of vertices and identifying same destination location pairs amongst these groupings. The

same communication reduction techniques apply to all levels of this recursive process.

To enable communication reduction, we need a model of the system that captures the locality

of the graph. To achieve this, we overlay the input graph on top of the machine hierarchy, thereby

creating a hierarchically coarsened graph. This is described in Section 4.2.2. Once the graph is

coarsened, we use a translation layer, called the hierarchical paradigm (Algorithm 2), to execute the

fine-grained algorithm on the coarsened hierarchy. This is described in Section 4.2.4. Combining

the fine-grained specification with the hierarchy results in a coarsening of the algorithm itself, and

allows for the use of algorithm-driven communication optimizations.

4.2.2 Creating in-degree hierarchy

The transformation of the flat input graph to a hierarchical graph based on the machine-locality

information is a mutating process that groups the graph’s vertices into partitions based on the

locality of each vertex provided by the machine hierarchy. This replaces multiple vertices in a

partition, along with intra-partition edges, with a single super-vertex representing the underlying

sub-graph. All edges between two partitions are replaced with a super-edge (composite edge)
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representing the coarsened communication between two sub-graphs. The super- vertices and super-

edges form a super-graph. This process is shown in Figure 4.1 and detailed in this section.

A hierarchical graph consists of two or more levels of graphs, where the graph at level i is a

super-graph of the graph at level i−1. The lowest level is the base-level. For building our hierarchy,

we first partition the input graph into sub-graphs, where each sub-graph has a similar number of

vertices, and assign each sub-graph to a processor. This partitioning can be computed with an

external partitioner to reduce the edge-cut of the graph, which may improve overall performance,

while the hierarchical approach will take care of the remaining cross-edges. This forms the base-

level of our hierarchical representation (G0). Next, we create a hierarchy of M levels on top,

matching the machine hierarchy. For graph Gi at every level (0 ≤ i ≤ M ), we create a super-

graph Gi+1, such that each vertex in Gi+1 represents a sub-graph partition of Gi. Super-edges are

added between two super-vertices of Gi+1 if there exist inter-partition edges of their corresponding

sub-graphs in Gi. The inter-partition edges of lower-level graph Gi are then removed and their

information is stored on the corresponding target’s super-edge. This is done to preserve the locality

of edges, as all edges that point to the same target are stored at that target vertex’s location.

Our hierarchical graph consists of the base-level graph, along with one or more levels of

super-graphs of the base-level graph, with super-vertices representing each vertex-partition and

super-edges representing inter-partition edges (communication). The hierarchical representations

obtained thus naturally expresses the machine topology. We note that creating the hierarchy is

a one-time event that happens immediately following graph construction. Once the hierarchy is

created, multiple algorithms can take advantage of it. We show the overhead in graph construction

time in Section 8.9.7, while a bound for space overhead is provided in Section 4.3.2.

4.2.3 Distributed Hubs Optimization

Hub vertices, or hubs, are vertices with a high in- or out- degree. Many small-world scale-free

graphs, such as web-graphs and social-networks, exhibit a power-law degree distribution, with

most vertices connected to a few other vertices, but very few (< 1%) vertices connected to an ex-

tremely large number of vertices. While our locality-based hierarchy reduces outgoing communi-
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Algorithm 1 Hierarchical Graph Creation
Input: Graph Gi, int N

1: if i = N then
2: return
3: end if
4: Graph Gi+1 = Partition(Gi, MachineHierarchy)
5: for all (u, v) ∈ Edges(Gi) do
6: if Superi+1(u) 6= Superi+1(v) then
7: Ei := Ei\(u, v)
8: Ei+1 := Ei+1

⋃
(Superi+1(u), Superi+1(v))

9: end if
10: end for
11: Hierarchy.add(Gi+1)
12: Construct(Gi+1, N )

Algorithm 2 Hierarchical Graph Paradigm
Input: Graph G0, Locality-Hierarchy H , Hubs Hhubs

1: while active vertices 6= ∅ do
2: for all active vertices vi ∈ G0 par do
3: Wi ← process(vi)
4: for all neighbors ui ∈ G0.adjacents(vi) do
5: if H .parent(ui) = H .parent(vi) then
6: visit-neighbor(ui, Wi)
7: end if
8: end for
9: for all neighbors pi ∈ H .adjacents(H .parent(vi)) do

10: async(visit-neighbor(pi, Wi))
11: // apply visit-neighbor recursively on children of pi who are neighbors of vi
12: end for
13: for all hubs hi ∈ Hhubs.adjacents(vi) do
14: visit-neighbor(hi, Wi)
15: end for
16: end for
17: end while
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cation caused by hub vertices, communication can be further reduced by specialized optimizations

for high in-degree vertices.

We introduce a new approach to reduce all messages to a hub from the same processor to a

single value which can then be applied to the hub. We assume that the applied operator is both

associative and commutative. When a vertex tries to update (send a message to) a hub vertex,

the operator is applied to a local representative for that hub. At the end of each superstep of the

algorithm, the results of the local updates are flushed and applied to the original hubs. This in

effect distributes the work for hubs across the system.

Construction of the distributed hubs occurs by first identifying the hub vertices using a simple

scan through the graph, and then creating a super-graph where each super-vertex contains metadata

about the hub vertices, and all edges to the hub are replaced by the super-edge. This metadata can

only be written to and not read from, which does not require the value to be kept coherent, and

works with our asynchronous update model (Section 2.2).

We handle the identification of hubs and creation of the hierarchy automatically using the

degree (number of edges) of each vertex. The user may choose to provide a cutoff for this size,

beyond which vertices will be treated as hubs, or they may choose to use the top k% vertices as

hubs. In either case, the framework identifies the hubs so algorithm-developers do not need to

account for this.

This approach is similar to recent work presented in [18], which replicates the hub vertices

on other processors (called hub-representatives), allowing local vertices to read from and write

to the hub vertices. However, their approach replicates data for each hub vertex, which needs to

be kept synchronized, leading to extra communication and affecting scalability. Their approach

also requires algorithms to be aware of the existence of these hub representatives and need to be

modified to specify the synchronizing and reduction behaviors of the representatives. In contrast,

our approach is framework-level, and keeps the algorithm itself agnostic to hubs. Further, our

approach does not replicate vertex data.
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4.2.4 Using the hierarchy

The hierarchical graph paradigm is presented in Algorithm 2. In order to execute algorithms,

the paradigm proceeds in supersteps similar to the bulk-synchronous parallel (BSP) model [14].

However, the supersteps are executed in a manner that is aware of the machine hierarchy. Within

each hierarchical superstep, the paradigm processes the active vertices in each level of the graph

hierarchy iteratively. For each active vertex in the base-level graph, the results from processing it

are sent to its neighbors in the same partition (lines 4-8). Any cross-partition edges for that level

of hierarchy are ignored, as they will be processed by the upper-level of the hierarchy. The results

from processing the active vertex are then forwarded to the super-vertex of the current partition

(lines 9-12), which then transmits them via super-edges to the target super-vertices. If the process

function in line 3 sends the same update to multiple neighbors (by calling VisitAllNeighbors, for

example, as in the case of BFS, PageRank, connected components, k-core, betweenness centrality,

etc.), the paradigm only creates a single copy of the update to send via the super-edges. We also

provide a specialization for high-degree vertices (described later in Section 4.2.3) that uses a sim-

ilar communication reduction mechanism (lines 13-15). Finally, the updates are then recursively

pushed to the respective target vertices in the lower-level graphs at the target partition, whose edges

were replaced by the super-edge.

The graph algorithms themselves do not change and are hierarchy-oblivious, allowing us to

reuse fine-grained vertex-centric algorithms on coarsened graphs. This decouples users from the

details of machine and locality exploitation.

4.3 Analysis

In this section, we describe how we exploit both the redundant nature of many parallel graph

algorithms and the power-law characteristics of many input graphs, resulting in a reduction of total

communication in the system.
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4.3.1 Communication Volume

The hierarchical approach can reduce communication in the system by reducing the number of

bytes required to update neighboring vertices. Without loss of generality, we assume a non-multi-

edged graph where two vertices are connected by at most one edge, and that the graph algorithm

visits each vertex (and consequently every edge, due to the non-multi-edged property). We also

assume a BSP/level-synchronous model [14, 9] where an active vertex performs some computation

and updates its neighboring vertices with the result of this computation. The BSP model gives the

most conservative estimate for this analysis. Any algorithm that communicates more, such as in an

asynchronous model with redundant work, will observe a greater communication reduction using

our approach. Let us assume the size (in bytes) of this result is r bytes, and that it is uniform for

all vertices. In the traditional BSP case, used in existing graph libraries such as Pregel [9], the

Parallel Boost Graph Library [7, 19] and the Graph500 benchmark reference implementation [20],

this will imply potentially O(|adj(v)|) bytes being communicated, where adj(v) gives adjacencies

of vertex v. In fact, the amount of communication is:

Comm(v) =
∑
i∈P

mi(v) · r bytes (4.1)

Where P is the number of processors, mi(v) gives the number of adjacents of vertex v that are

stored on processor i, and r is the size of the message being sent. Traditional BSP libraries employ

aggregation to reduce the number of messages. However, the total number of bytes stays the same.

In many cases, for a large class of graph algorithms, such as breadth-first search, PageRank,

k-core decomposition, connected components, strongly-connected components, topological sort,

betweenness centrality, triangle counting, etc., the vertex sends the same information to all its

neighbors. In such cases, the amount of data sent (in bytes) can be reduced using our approach.

The following reduction is applicable to such algorithms. For other cases, we may not observe any

reduction in the amount of data, but we will still reduce the number of messages sent. The amount

of data communicated in the first case is the lowest possible given the algorithm.
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Using a hierarchical approach, the vertex may only need to send the result of its computation

once for every super-edge instead of once for every edge. Therefore, the amount of communication

for a hierarchical graph can be given by:

CommH(v) =
∑
i∈P

 1 : mi(v) ≥ 1

0 : mi(v) = 0
· r bytes (4.2)

This effectively means that for any vertex the hierarchical approach performs the least amount

of communication possible (both in number of messages and total size of communication) for a

given partitioning strategy, as it sends only a single result to each processor that stores any of the

vertex’s neighbors. Any lower communication can not guarantee the correctness of a general graph

algorithm, without changing it.

The total bytes communicated across the system in the hierarchical approach for a graph G can

then be given by:

CommH(G) =
∑
v∈V

CommH(v)

=
∑
v∈V

∑
i∈P

 1 : mi(v) ≥ 1

0 : mi(v) = 0
· r bytes

(4.3)

This gives the upper bound of O(min(V · P,E)). However, we note that the worst-case upper

bound is equivalent to the case of a dense graph, where every vertex is connected to every other

vertex and the communication for the traditional level-synchronous approach would have otherwise

been O(V 2). For sparser graphs, Equation 4.3 gives a more accurate estimate. We show empirical

evaluation of this communication reduction in Section 8.9.2.

4.3.2 Space Overhead

Creating a hierarchical graph adds space overhead compared to the traditional flat graph ap-

proach. In this section, we provide a bound on this overhead. The hierarchical graph G1 uses

a single vertex corresponding to each partition of the base-graph G0, which requires O(p) space

41



overall, assuming p partitions in G0, one per processor. Further, the number of edges in G1 cor-

respond to the number of partitions in G0 that have edges between them, with one super-edge

per pair of neighboring partitions in G0. In the worst-case, there can be O(p2) super-edges in G1

corresponding to a complete graph in G0. Therefore the bound on the size of G1 is O(p2) for the

entire graph, or O(p) overhead per-processor for using the hierarchy. Note that the metadata on

super-edges does not contribute to overhead, as it replaces the deleted inter-partition edges from

G0, keeping the total size constant in this regard.

For the hub-hierarchy, every processor stores metadata for any hub vertices that have an edge

to a vertex on that processor. This implies O(|hubs|) storage per processor, only if there is an

edge to that hub from that processor. However, since the number of such hubs is generally small,

the space overhead is small in practice. Further, our algorithm for creating the hub-hierarchy is

parameterized based on a user-specified lower-limit on the size of hub vertices, so the number of

vertices treated as hubs can be varied to suit any space constraints on the system.

4.4 Implementation

While the hierarchical approach is generally applicable to any distributed memory graph li-

brary, for this work, we implemented our approach in the STAPL Parallel Graph Library (STAPL

GL) [1] to evaluate performance, due to STAPL GL’s ease of use and modification, and scalable

performance [1, 2] (Section 8.3). Section 7, gives an overview of STAPL GL and describes the

relevant features and extensions needed to support the hierarchical approach.

4.5 Related Work

To enable graph algorithms to scale, various different approaches have been adopted. Many

implementations [20, 9], including our baseline implementation, aggregate messages being sent to

a processor in order to reduce the number of messages sent. However, the total number of bytes

sent is not reduced, but merely concatenated to form larger messages. Pregel [9] also allows users

to specify a combiner that may be used to reduce multiple incoming messages to a given vertex

to a single value per processor. However, this is not applicable to all algorithms and nor is it
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guaranteed to be executed in Pregel. Moreover, combining can only address reduction of fan-in,

not high out-degree/fan-out vertices.

Another approach is to use ghost vertices to facilitate communication, which cache values

of neighboring vertices stored on other processors. However, such vertices need to be coherent

with their original vertices, and do not scale well in practice, due to storage and communication

overhead of maintaining the ghosts, as shown in [21]. This approach is used by the Parallel Boost

Graph Library [7], which we compare against in our experiments.

There have also been methods that propose a 2-dimensional partitioning of the graph and its

edges to achieve better scalability by reducing communication cost [22]. To use such an approach,

the algorithms need to be rewritten to account for a distributed edge-list and made aware of the un-

derlying data-distribution, making this method difficult to use in practice. This method also does

not reduce the message size, but does distribute the computation more evenly across partitions than

1-D partitioning. However, 2-D partitioning does not consider the locality of the target vertices of

the edges being partitioned, and thus may in fact lead to more hops for the message to reach its

destination, for example, one hop to get to the processor where the edge is stored, and a second

hop to get to where the target-vertex of that edge is stored (as edges are not co-located in 2-D par-

titioning), generating extra communication. Our approach produces co-located edges in addition

to lowering the computational imbalance, without user intervention.

Some approaches [21, 23, 24, 18, 25] have also proposed splitting hubs across multiple pro-

cessors. PowerGraph [21], a version of GraphLab [13] designed for processing scale-free graphs

uses the concept of vertex-cuts/vertex mirroring to split hub vertices across partitions. However, as

mentioned in [21], due to maintaining the vertex-splits, their ghost vertices need to be kept synchro-

nized across all machines it spans. This is addressed in PowerGraph by minimizing the number

of processors across which the hubs are split to lower the synchronization costs. However, this

limits the available parallelism for processing the hubs. Our approach is not limited by this, since

we do not have ghost vertices and do not need to maintain state information across partitions. We

compare our base-line with the latest available version of PowerGraph in Section 8.3. Pregel+ [25]
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also uses mirroring, which reduces communication by partitioning the edges of high-degree (hub)

vertices. However, this does not have much benefit in their published results, and performance

actually degrades when the number of hubs is large. Our hierarchical technique, on the other hand,

is applied to all vertices and consistently shows benefits, even when used for low-degree vertices.

On the other hand, [24, 18] create copies of the hubs on all processors, which may be wasteful

if the hubs do not have adjacent vertices on all processors, and increases storage and communica-

tion overhead. In these cases, the hubs need to be coherent across the processors, which leads to

extra communication, and a computational imbalance may still remain. This approach of splitting

hubs also does not address non-hub vertices due to the overheads involved in splitting vertices and

the storage requirements for replicating data. The algorithm-writers too need to be aware of the

presence of such hub-representatives, and the communication between them, requiring the user to

re-write their algorithm. We improve upon this work with our hubs approach which allows for

local reduction of updates for hub vertices on processors where they are needed, while alleviating

the need to keep them coherent. Further, it is transparent to the algorithm. This is in addition to

our locality based hierarchy, and is explained in Section 4.2.3.

The authors in [25] propose a request-response paradigm where a vertex can request data from

another random vertex and it will be available in the next superstep. For algorithms that need

this pattern, it can reduce the amount of back traffic by not sending duplicate values to the same

processor. However, this is only applicable for a restricted set of algorithms explored in their paper,

and can not be applied to widely used algorithms such as traversals, PageRank, etc. It also requires

the algorithm to be modified to incorporate this paradigm for the cases where it is applicable. Their

results show a modest improvement in performance for such cases.

Our hierarchical approach operates at a semantic level, allowing us to reduce the information

sent over the network for both outgoing and incoming edges, thereby improving scalability. This is

done for all vertices that have cross-processor edges, not only for hub vertices. Since information is

not replicated, and due to using an asynchronous push-model, we do not incur significant storage

or communication overheads endemic to previous approaches. Crucially, due to operating at a
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semantic level, the algorithm itself remains unaware of the hierarchy, allowing the reuse of existing

fine-grained graph algorithms as-is with the hierarchy.
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5. OUT-OF-CORE GRAPH PROCESSING∗

There exist extreme-scale data sets that do not fit into the main memory of parallel systems and

require out-of-core storage and processing. Out-of-core graph processing is disk-bound, where

minimizing non-sequential reads and reducing number of bytes written is critical for performance.

Such applications typically also observe both high-latency and low bandwidth characteristics while

processing graphs from secondary-memory. Existing systems are confined to a single shared-

memory node, due the model required for fast disk-based processing not being effective in a

distributed-memory setting. Such systems are also unable to minimize the number of reads re-

quired due to their model (GraphChi, for example, uses a pull model instead of a push model,

leading to O(p2) reads). To address these, we use the KLA model to eliminate non-sequential

disk reads and minimize writes. Further, due to the push nature of KLA, it can seamlessly extend

to distributed-memory systems. We also introduce optimizations to further reduce the number of

bytes written to disk.

Our approach for out-of-core processing is similar to paging, as we partition the input graph

into subgraphs (logical partitions), such that each subgraph may fit in main-memory. When needed,

the subgraphs are paged-in from disk to main-memory and processed. In this asynchronous push

model, vertices of a subgraph are only processed in-memory, and updates to neighboring vertices

are asynchronously pushed to the subgraphs as follows. If the subgraph containing a neighboring

vertex is also in memory, the vertex is updated. If the subgraph is stored on disk, the update is

written to disk and applied the next time the subgraph is loaded. The approach differs from paging,

as we reflect our pages at a logical (subgraph) level, versus a non-semantic (kilobyte, megabyte)

level. This allows us to take advantage of temporal locality in subgraphs.

We also implement multiple optimizations to reduce disk I/O. These optimizations include

∗ The techniques and some of the experimental results presented in this chapter are reprinted from proceedings of
the 29th International Parallel and Distributed Processing Symposium (IPDPS), “A hybrid approach to processing big
data graphs on memory-restricted systems,” 2015, pp. 799–808, Harshvardhan, B. West, A. Fidel, N. M. Amato, and
L. Rauchwerger, c©2015 IEEE with permission from authors and IEEE.

46



caching hub vertices (i.e., vertices with very large degrees) when they are written to disk, skipping

graph-structure writes for unmodified graphs, and over-partitioning subgraphs to utilize the RAM

to the fullest extent. The optimizations are system-level, and therefore do not involve modifying

the algorithms.

This technique and its implementation is described in more detail in Section 7. The next section

describes how algorithms are expressed in the asynchronous push model.

In this section, we describe our hybrid approach to processing in-memory and out-of-core

graphs. While our approach is applicable to frameworks using the asynchronous push model,

for this work we assume that algorithms are expressed using the KLA two-operator algorithmic

specification presented in Section 2. Using this specification, our approach can utilize the vertex-

and neighbor-operators to keep the algorithm unchanged from its in-memory variant, while our

paradigm handles the execution (in-memory or out-of-core) and storage (which parts of the graph

should be in-memory vs. on-disk).

5.1 Introduction

Over the past few years, many systems specialized for graph-processing have emerged to ad-

dress the issue of processing large graphs ([7, 1, 10, 13, 9]). These systems are either designed for

in-memory or disk-based graph-processing. In-memory systems, whether distributed or shared-

memory, store and process the entire graph in RAM. While this can provide good performance,

the size of the graph that can be processed is limited by the amount of RAM available in the sys-

tem. Disk-based systems, on the other hand, are not limited by RAM availability, but sacrifice

performance due to disk I/O. Recently, a hybrid system (GraphChi [12]) was proposed to allow a

single-node system to process large graphs using a parallel sliding-window approach. However,

this was limited to a single shared-memory node.

In this section, we propose a graph processing approach that can scale well from small memory-

restricted systems to large distributed-memory machines. This RAM-disk hybrid graph-processing

system provides a unified approach to utilize the available resources (RAM, disk, cores) efficiently

and seamlessly. Our system decouples algorithms from the details of the machine, allowing users
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to write fine-grained vertex-centric algorithms, that can run efficiently without modification on

different systems. We use an approach similar to memory paging, but applied to subgraphs, that

loads subgraphs of the graph in memory, processes them, and then stores them back to disk. A

crucial difference from paging is that while paging uses fixed-size pages, our approach uses parti-

tions based on graph structure. This preserves structural locality that can reduce disk I/O. We use

an asynchronous push model that allows paged-in vertices to be processed, while updates to their

neighbors are asynchronously pushed, or deferred, until the neighbors are loaded. We also propose

system-level optimizations that do not require changes to algorithms, but can reduce disk I/O. An

implementation of our approach in the STAPL Parallel Graph Library [1] allows us to process large

graphs on systems ranging from small-scale systems such as off-the-shelf PCs or Android tablets,

to large high-end clusters. Our results show that our subgraph-paging based approach and asyn-

chronous push model, together with optimizations, provides 3 − 12× faster graph processing on

a single node than the best alternative, GraphChi, and extends efficiently to multiple nodes which

GraphChi cannot.

Our contributions include:

• A hybrid subgraph-paging based approach to processing large graphs, allowing both in-

memory and out-of-core processing.

• An implementation that transparently allows fine-grained level-synchronous graph algo-

rithms to benefit from our hybrid approach without code modifications.

• An experimental evaluation showing good scalability and showing improved performance

over existing disk-based and in-memory graph processing frameworks on systems ranging

from small Android tablets to off-the-shelf PCs to large clusters with 16, 000+ cores.

5.2 Graph Storage

We start with an input graph partitioned into p subgraphs. Each subgraph is assigned to a

location (a single processing element), and a location can have multiple subgraphs assigned to
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Figure 5.1: Diagram of the storage paradigm with two subgraphs in memory and two subgraphs
on disk. An update on a loaded vertex is being applied in memory while an update to an un-loaded
vertex is being stored in the pending updates shard.

it. The location to which a subgraph is assigned is its home location, which is responsible for

managing the subgraph and executing requests on its vertices. Each subgraph can be present either

in memory (loaded) or on disk (un-loaded), and each location can independently decide when to

load and un-load which subgraphs based on memory availability.

File format for sub-graphs. Each subgraph is stored in a binary format across three shards (Fig-

ure 5.1). The first shard is the vertex list, which contains the vertices of the subgraph, along with

any vertex data (such as level for BFS, rank for PageRank, and ID for connected components). The

second shard is the edge list, which contains the list of edges for each vertex, in order, including

any data for the edges. These are stored separately to allow for optimizations when a vertex’s edges

need not be loaded, for indexing into the vertex list, and also to enable us to bypass rewriting the

edge list shard unless the graph structure changes (Section 5.4). The third shard, pending updates,

stores any incoming and pending updates to vertices belonging to that subgraph. When the sub-

graph is loaded, the updates shard is read and all outstanding updates are applied to corresponding

vertices.

5.3 Processing Out-of-Core Graphs

We use an approach similar to paging to process out-of-core graphs (Figure 5.3). The compu-

tation proceeds in bulk-synchronous supersteps, and for every superstep, each location loads one

or more of its active subgraphs (based on available RAM) in some schedule (for our experiments,
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we choose a round-robin policy), processes the vertices and stores the subgraphs back to disk, in-

cluding any modified state. A different subset of subgraphs is then loaded and processed, until all

active subgraphs have been processed for the given superstep. The process is then repeated for the

next superstep until there are no remaining active vertices (i.e., vertices that will actively compute

in the current superstep).

If the machine has sufficient RAM to store the graph and metadata in-memory, all subgraphs

can be kept in RAM, and no penalty is paid for disk access. If the RAM is not sufficient, the

paradigm will load and unload subgraphs to allow the seamless execution of the algorithm.

Inactive vertices or sub-graphs. Graph algorithms are often iterative, and for a large class of

graph algorithms, not every vertex is actively processed in each iteration. An example of this is

shown in Figure 5.2, which plots an execution profile in terms of the number of active vertices,

for the first ten iterations of various representative algorithms. As can be observed, the algorithms

shown, with the exception of PageRank, only process a very small fraction of their vertices in

any given iteration, and only a few iterations process any significant fraction of the vertices. This

provides an opportunity to skip reading and loading vertices that will not be processed.

In our approach, if a vertex’s value is updated, it is marked as active for the next superstep.

This implies that the vertex may potentially be processed in the next superstep using a vertex-

operator, which can access its adjacent edges. For such vertices, it is required to load their adjacent

edges. However, for inactive vertices in a given superstep, we can skip the loading of their adjacent

edges, as it is guaranteed that such vertices will not have the vertex-operator applied to them. The

inactive vertices and their values are still loaded in memory, however, to allow incoming updates

to be applied to them from their neighboring vertices.

As an extension, if all vertices of a given subgraph are inactive for a given superstep, we skip

the loading of the entire subgraph for that superstep. This is common for many graph traversals

(such as BFS), which start from a single vertex, and only a few vertices are active in most iterations.

This is also commonly observed in other graph algorithms (Figure 5.2). In such cases, a significant

amount of time can be saved by not reading and loading entire inactive subgraphs from disk.
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Figure 5.2: Variation in active vertices in the first ten iterations of various algorithms on the Twitter
graph, shown as (a) count on log-scale, and (b) percentage of total vertices.

Figure 5.4(a) shows the impact of skipping inactive subgraphs (Opt1), along with the opti-

mization of skipping inactive vertices (Opt1+2) vs. the baseline execution time for the Graph

500 benchmark input with 16 million vertices and 256 million edges on a PC with 4GB of RAM.

Skipping inactive subgraphs by itself may not provide a significant improvement as opportuni-

ties of skipping entire subgraphs for Graph 500 inputs are few. However, for graphs that can be

partitioned well, this can provide substantial benefits.

Updates. We use a policy which defers updates to subgraphs not present in memory to avoid

unnecessary paging. Updates produced during processing of in-memory subgraphs are asyn-

chronously forwarded to the home location of the target vertex. If the target vertex is present

in RAM, the update is applied to it. If the target vertex is stored on disk, the update is written to

a pending updates shard corresponding to the target vertex’s subgraph, and applied when that sub-

graph is next loaded. This process is illustrated in Figure 5.1. The deferred paging policy works,

as our asynchronous update model only guarantees that the effect of updates in superstep i will be

visible in superstep i + 1, and therefore, the effects of updates need not be immediately visible.

Another benefit of the push-model is that it does not have to load and read neighboring vertices’
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for_each ( superstep ∈ a lgo r i t hm )
for_each ( subgraph ∈ graph )

subgraph . load ( ) ; / / load subgraph to RAM
subgraph . apply_pending_updates ( ) ;

for_each ( v ∈ subgraph . v e r t i c e s ( ) )
updates = ver tex−opera tor ( v ) ;

Asynchronously forward updates to home l o c a t i o n s :
Apply updates to v e r t i c e s i n in−RAM subgraphs ;
Store updates to on−d isk subgraphs as pending ;

subgraph . s to re ( ) ; / / s to re to d isk

Figure 5.3: Pseudocode for the off-core graph paradigm.

states, and can simply send updates to neighbors asynchronously.

Dynamic graphs. Our paradigm supports dynamic graph operations such as adding and deleting

edges or adding and deleting vertices as the computation progresses. These operations are treated

in the same way as regular updates described above. Modifications to graph structures are applied

directly to subgraphs loaded in RAM, or are stored to an outstanding modifications shard if the

subgraph is stored on disk and applied immediately upon loading. If a subgraph is modified during

a superstep, a dirty-bit is set to indicate the modification, ensuring that the modified subgraph will

be written to disk with the updated changes.

5.4 Optimizations To Reduce Disk I/O

The majority of time for processing out-of-core graphs is spent in disk I/O. Therefore, we

propose and implement several optimizations to reduce the number of bytes that need to be read

from or written to disk. These optimizations are internal to the storage paradigm and therefore do

not require any changes to the user algorithm.

Graph structure writes. Many algorithms do not change the graph structure (i.e., they do not add

or delete vertices or edges) but only update the values stored on vertices and edges of the graph. For

such algorithms, we do not need to write back the structural information of the graph when storing

a subgraph. In our implementation, we achieve this by separating the structure (edges) and values

into separate shards (Section 5.2). The edge list shards are only updated if the graph structure was
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modified. The vertex list shards contain the vertex IDs and vertex values, and therefore are updated

if the values change.

Multiple sub-graphs (over partitioning). Multiple subgraphs can be loaded in RAM at the same

time. Hence, using smaller subgraphs allows finer-grained control, while still utilizing the avail-

able RAM to the fullest extent by loading multiple small subgraphs at once. This also increases

the probability of a subgraph being inactive and therefore skipped. However, there is a trade-off

between the size of a subgraph and the overhead of metadata for each subgraph.

In-memory cache for hub vertices. Many social-networks and web-graphs exhibit small-world

scale-free behavior with a power-law degree distribution. This implies the existence of hub vertices

which are connected to a large number of neighbors. For such vertices, especially if they have a

large in-degree, there may be multiple updates being applied to them from their neighbors in the

same superstep. In such cases, if the subgraph containing the vertex is stored on disk, the updates

will be written to the updates shard. These numerous writes can be avoided by using an in-memory

write-back cache for such hubs. In our implementation, the hub vertices are identified at the time

of graph creation (or modification) using a simple linear scan of the vertex degrees. An in-memory

cache corresponding to each subgraph maps the hub vertices within the subgraph and stores its

cached value.

When the subgraph is present in RAM, the cache is inactive and any updates are directly applied

to the hub vertex. However, if the subgraph exists on disk, the cache is active and applies all

incoming updates to the cached value. When the on-disk subgraph is next loaded, the cached value

is written back to the original hub. Since the number of such hubs is usually small, the cache

does not use a significant amount of resources. However, the time saved in writing, and then later

reading and applying the updates can be significant. The size of the cache may be user specified,

or determined from profiling the system.

Figure 5.4(b) shows the effect of cache size on algorithm performance for the connected com-

ponents (CC) and BFS algorithms on a Graph500 benchmark graph. We found a value of 15
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Figure 5.4: Effects of optimizations on performance: (a) Skipping inactive subgraphs (Opt1) and
inactive vertices (Opt2), (b) Effect of varying size of hubs-cache for BFS and connected compo-
nents (CC). Both plots run on Graph 500 input graph with 16 million vertices and 256 million
edges, on a PC with 4GB RAM.

hubs per 1 million vertices to provide performance benefits of 15 − 40% for a system with 4GB

RAM. Increasing the cache size beyond this results in larger overhead of maintaining the cache

and diminishing benefits due to the power-law degree of Graph500 inputs.

5.5 Analysis of I/O Costs

We use the I/O model described by Vitter [26, 27] to analyze the I/O costs of our approach.

This model expresses the cost of an algorithm using the number of block-transfers of size B bytes

from disk to main memory. An assumption in their model is that a disk can transfer a contiguous

block of B bytes of data about as fast as it can transfer a single bit. Our analysis makes a worst

case assumption that none of the optimizations in Section 5.4 are applied and that all vertices in

the graph are active.

We assume a graph of |V | vertices and |E| edges, of total size N bytes, is partitioned into m

subgraphs, and each subgraph of size N
m

bytes contains the subset of the graph’s vertices and edges

that make up the partition. Based on this, all subgraphs of a graph can be transferred using P = N
B

block transfers. We also assume pnode compute nodes in the system, each with local disk and with

main memory of M bytes, where N
m
≤ M , and that each compute node stores m

pnode
subgraphs on

local disk. Then, the total I/O cost (CB) of our approach per superstep of the algorithm is given by
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summing the cost of reading and writing for the superstep:

CB(G) = CRead
B (G) + CWrite

B (G) (5.1)

For each superstep, in the worst case, we process every subgraph. Therefore, the total number of

block transfers for reading per node is at most P
pnode

. Similarly, for each superstep, in the worst

case, we would update the neighbor for every edge in the graph, giving a total number of block

transfers for writes per node of |E|
B·pnode

. Therefore:

CB(G) ≤ P

pnode
+

|E|
B · pnode

(5.2)

Finally, if the algorithm performs S supersteps, the total I/O cost for processing the graph is given

by:

CAlgo
B (G) ≤ S · ( P

pnode
+

|E|
B · pnode

) (5.3)

For comparison, as shown in [12], using the same model, GraphChi has an upper-bound of

4|E|
B

+ Θ(P 2) for the I/O cost of a single superstep. This is significantly more than in Equation 5.2,

which is linear in the number of partitions. This is due to GraphChi’s parallel sliding-window

approach, where each superstep is executed in P execution intervals, and each execution interval

requires O(P ) non-sequential disk reads to load the edges from P − 1 sliding shards for each of

the P execution intervals in that superstep, giving a quadratic complexity. We also note that as our

approach supports distributed-memory machines, each with independent disks, we can reduce our

I/O costs by a factor of pnode, whereas GraphChi is limited to a single node.

5.6 Implementation

We implemented our approach in the STAPL framework, by extending the STAPL Parallel Graph

Library (STAPL GL), which previously supported in-memory graph computations only, to support

out-of-core processing. The API of the STAPL GL did not change, as our technique is transparent
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to the user. This also allowed us to use the existing STAPL GL algorithms without modification.

The details of this implementation is given in Section 7.2.

5.7 Related Work

In this section, we discuss some of the important existing graph processing systems, as well as

theoretical work on processing out-of-core graphs.

In-memory graph libraries allow fast processing of graphs in parallel. These can be classified

into two categories: distributed-memory and shared-memory. Shared-memory graph libraries such

as Galois [10] and Multi-Threaded Graph Library (MTGL) [8] operate on a single node and are

therefore restricted by the amount of RAM on the node, which severely limits the maximum size

of the graph that can be processed. In contrast, distributed-memory graph libraries such as the

Parallel Boost Graph Library (PBGL) [7], GraphLab [13] and Giraph can utilize multiple nodes

to process graphs. However, even here, the maximum size of the graph that can be processed

is limited by RAM. A detailed performance comparison of GraphLab, Giraph and other popular

graph processing systems was shown in [28]. An in-memory system called GraphX [29] has

been developed to allow multiple stages of graph-processing and pre- and post-processing to be

addressed by a single framework. In their paper, the authors show GraphX to be slower than

dedicated graph processing systems like GraphLab, but faster for the overall pipeline, which may

include non-graph processing tasks. In Section 8.3, we compare our approach with GraphLab,

PBGL, Galois and GraphChi.

Disk-based systems such as MapReduce and Hadoop can also be used to process graphs, how-

ever, the overhead of reading from and writing to disk prompted the development of more special-

ized graph libraries like Pregel and Giraph.

Recently, a system based on GraphLab called GraphChi [12] was developed to allow large

graphs to be processed by a single-node computer by storing the graph on disk, and using a Parallel

Sliding-Window approach to bring edges in memory to process them. The parallel sliding-window

model and pull model implemented in GraphChi is not efficient for graph traversals, as loading

the neighborhood of a single vertex requires scanning a complete memory shard. We provide a
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comparison of our theoretical model in Section 5.5, as well as compare our results with those of

GraphChi in Section 8.10. A similar library, X-Stream [30], uses an edge-centric computational

model, representing the data as a stream of edges. However, this too is limited to a single shared-

memory node, and has an extra shuffle phase that takes O( |E||B| log(P )) extra time per iteration.

Pearce et al. [24] presented an asynchronous system for graph traversals for non-dynamic

graphs on external and semi-external memory systems. However, it requires the vertex values

to be in-memory (RAM), while the graph structure can be stored on disk. Due to this limitation,

the realistic size of graphs is still limited, although to a much lesser extent than in the case of

in-memory graph libraries.

In [26], Vitter proposes a theoretical model for external-memory graph searching using the

technique of blocking. Their technique optimally uses disk blocks with replication of vertices on

multiple blocks to provide fast performance for graph searching. However, due to replication, their

algorithm is suited more for read-only graph algorithms, where the data for the vertex does not

change. For supporting read-write algorithms, they need to update the multiple vertex replicas by

bringing them in memory, the cost of which is analyzed in the paper. Their model uses a lower-

level blocking and paging strategy than our subgraph-based paging. Further, their model loads

the blocks on demand, while we use deferred asynchronous updates to allow better utilization of

subgraphs that are already in memory.

5.8 Conclusion

We have presented a RAM-disk hybrid approach to processing large graphs that can scale from

an Android tablet to off-the-shelf PCs to a large-scale distributed cluster with 16, 000+ cores. It

uses an asynchronous push model in conjunction with subgraph-based paging and deferred updates

to utilize available resources effectively, while decoupling algorithms from the underlying system.

Our implementation extends an in-memory system (STAPL GL) to allow it to process out-of-core

graphs, and shows improved performance over existing disk-based graph processing systems, as

well as no penalty for execution when the system has sufficient RAM to store the entire graph in

memory.
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6. APPLICATIONS OF GRAPH PROCESSING

The STAPL Parallel Graph Library has been used by several researchers to implement applica-

tions in their respective domains, including Motion Planning [31], Computational Biology, Com-

putational Geometry [32], Nuclear Physics Simulations [33, 34], and Geophysics [35]. STAPL

GL’s constructs and features enable application developers to write scalable and performant appli-

cations, while focusing on their problem space instead of nuances of graph processing.

In this section, we present several real-world scientific applications implemented using the

STAPL Parallel Graph Library across different domains to demonstrate its suitability and general

applicability for graph processing.

6.1 Motion Planning

Motion planning is the problem of finding a path for a movable object through an environment

from a start to a goal configuration. Sampling-based motion planning is a probabilistic method

consisting of two phases: generation and connection of samples representing valid (e.g., collision-

free) points in configuration space (C-space) of the object, and querying of the roadmap for valid

paths.

Jacobs et. al [31] introduced a scalable parallel application for sampling-based motion planning

that subdivides the C-space into regions and constructs independent roadmaps for each region.

The regions are then connected to form a single roadmap. This algorithm was implemented using

STAPL GL where both the regions and roadmap are PGRAPHS. In complex environments, regions

could have varying numbers of obstacles, creating regions with fewer nodes, and leading to an

imbalance in computation during the connection phase. Instrumenting this real-world production

application to invoke PGRAPH redistribution support on the region graph helps the application

scale, as well as run faster on unbalanced inputs (Fig. 6.1) with minimal input from the application,

as the application needs only provide the costs it associates with each vertex.
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Figure 6.1: Strong scaling for a parallel motion planning application on a poorly balanced envi-
ronment (a) with and without rebalancing techniques (b), at scale with rebalancing (c).

6.2 Nuclear Particle Transport

The Nuclear Particle Deterministic Transport application (PDT) accurately simulates physical

systems whose evolutions depend on the transport of subatomic particles. Such simulations are

extremely computationally demanding, and therefore need to rely on efficient parallel processing

to obtain solutions in practical times. Parallelizing these computations is an important problem,

which is targeted by the DOE’s Accelerated Strategic Computing Initiative (ASCI).

One approach, the discrete-ordinates method, addresses deterministic particle transport by

quantizing the simulated space into a spatial grid, and executing several sweeps through the grid,

one for each direction of particle travel. Each sweep is a directional traversal of the spatial grid,

with the actual computations being performed at the vertices of the grid. These computations

factor-in energy, material properties, etc. of the simulation. The scalability and performance of

this method depends on efficient parallelization of these transport sweeps. Using STAPL GL, this

application was able to scale up to 384,000 cores on Sequoia, a Blue-Gene/Q machine available at

the Lawrence Livermore National Laboratory, while demonstrating good parallel efficiency [34].

The core of the transport sweep is the parallel multi-traversal of a grid. Using the KLA

paradigm allows the multi-traversal to scale efficiently. Further improvements in scalability can

be obtained by performing a hierarchical sweep. The hierarchical sweep (pseudocode shown in

Figures 6.3, 6.4, and 6.5) reads the input graph from file and creates a hierarchy on it based on the
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#p Time Scalability Linear Scalability 1.7x scalability Hierarchical-TimeHierarchical-ScalabilityH3-Time H3-Scalability H3 overhead
1 77.03 1 1 1 96.1569 1 98.52 1
2 49.06 1.570140266 2 1.7 52.9678 1.815384064 53.7239 1.833820702 1.42747103
4 30.06 2.562268808 4 2.89 25.5041 3.770252626 26.0397 3.783453726 2.100054501
8 15.34 5.019641705 8 4.913 13.4927 7.126586969 13.8437 7.116594552 2.601406687

16 7.67 10.04432361 16 8.3521 5.99237 16.04655587 6.07943 16.20546663 1.452847538
32 4.91 15.69967449 32 14.19857 3.15205 30.50614679 3.26618 30.16367745 3.620818198
64 2.59 29.70314555 64 24.137569 1.64121 58.58902883 1.68112 58.60378795 2.431742434

128 1.51 50.88785973 128 41.0338673 0.905923 106.1424646 0.931108 105.8094228 2.780037597
256 1.08 71.60071391 256 69.75757441 0.5794695615 165.9395185 0.5955790332 165.4188521 2.780037597
512 0.63 122.7580678 512 118.5878765 0.3041868573 316.1112904 0.3126433663 315.119432 2.780037597

1.570140266
1.631872555
1.959061317
2.001004095
1.563039495
1.891959324
1.713214503
1.407029384
1.714481059

1.716866889

Figure 6.2: Strong scaling of parallel multi-sweep (hierarchical and non-hierarchical) on an IM1D-
Grid Arbitrary Mesh Input, with 560k vertices on a Cray XK6 machine.

machine hierarchy. The Sweep itself proceeds recursively in a top-down manner – each vertex in

the top-most graph of the hierarchy is visited from each sweep direction, and a recursive Sweep is

spawned on its child vertices in the lower-level graphs. The results from the sweep are propagated

onto the neighbors of the Supervertex.

Figure 6.2 shows the performance of running the parallel KLA Multi-Sweep (Hierarchical and

non-Hierarchical) kernel, on a IM1D-Grid Arbitrary Mesh Input on a Cray XK6 machine. The hi-

erarchical version of the sweep substantially improves upon the scalability of the non-hierarchical

sweep. However, adding additional layers of hierarchy doesn’t further improve the performance.

This is due to the amount of communication already being small enough at 3+ levels so as to not

result in a useful tradeoff for going through the hierarchy. The aggregation of communication is

O(n
p
) for the second level of hierarchy, but only O(p

j
) for the third level (where j is the number of

cores per node). Regardless of the graph, this is typically not sufficient (since p
j
� n

p
) to warrant

going through an extra level of the hierarchy.

60



// Initializes vertices' SWEEP-parents, SWEEP-distances, and active status.
// If the vertex is one of the sources, the distance for its traversal-ID is
// zero and it is set to active w.r.t. its own traversal-ID.
// Non-source vertices are set to inactive and their distance set to infinity.
vector<vertex_id> sweep_init_h_wf(vertex v, sources, directions, bool init_mode) {
  bool was_active = false;
  if (init_mode) {
    // For each direction, initialize the vertex's property.
    for (int i = 0; i < directions.size(); ++i) {
      auto direction = m_directions[i];
      v.property().num_incoming_edges[direction] = 0;

      for (edge e : v) {
        auto dot_product = dot_product(e.property().direction(), direction);
        if (e.target() != v.descriptor() && dot_product < 0)
            v.property().num_incoming_edges[direction]++;
      }

      if (v.property().num_incoming_edges[direction] == 0) {
        // Use the index of the direction as the SweepId.
        v.property().incoming_sweeps[i, direction] = 0;
        v.property().value[i, direction] = 0;
        was_active = true;
      }
    }
  } else {
    // Initialize the vertex's property for other sources.
    init_property_wf(m_sources, m_directions, v.property().property);
  }
  if (was_active)
    return {v.descriptor()};
}

// Indicates whether or not an edge should be visited for the given traversal.
bool filter_h_edge(traversal_id, direction, Edge e) {
  // Proceed only when the dot-product of edge direction vector and sweep
  // direction vector is greater than zero.
  if (e.cross_edge())
    return false;
  return (dot_product(e.property().get_direction(), direction) > 0);
}

// Compute new value for vertex based on incoming values, and spawn a recursive
// sweep down the hierarchy.
int update_h_property(traversal_id, direction, incoming_values,
                      vertex v, vector<GView> lower_graphs) {
  // Perform user-computation.
  auto result = user_computation(incoming_values);
  v.property().value[traversal_id, direction] = result;

  if (lower_graphs.size() > 0) {
    vector<GView> new_lower_graphs{lower_graphs[0..lower_graphs.size()-1]};
    // Perform a recursive sweep over child vertices in the lower-level graph.
    sweep_rec(v.children(lower_graph.back()), new_lower_graphs, direction, k);
  }
  return result;
}

Figure 6.3: Pseudocode for internal methods of the hierarchical parallel multi-sweep.
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//////////////////////////////////////////////////////////////////////
/// Sweep Visitor.
/// Updates the target vertex with SWEEP-parent and SWEEP-distance
/// information from a particular traversal-ID, if the target vertex has
/// not been visited before, or if the target's current distance is
/// greater than the incoming distance.
//////////////////////////////////////////////////////////////////////
bool sweep_neighbor_op(vertex target, traversal_id, direction, value) {
  // If incoming value for given traversal-id, in the given direction
  // warrants updating the vertex, then add this sweep to the vertex.
  if (update_condition(traversal_id, direction, value, target.property())) {
    target.property().incoming_sweeps[traversal_id, direction] = value;
    // A vertex shouldn't be processed until the values for all incoming edges
    // for a given sweep have arrived.
    if (target.property().num_incoming_edges[direction]
        == target.property().incoming_sweeps_size[traversal_id, direction])
      return true;
  }
  //else ignore.
  return false;
}

//////////////////////////////////////////////////////////////////////
/// Sweep Work-function.
/// A vertex is visited if it is active. Active vertices update their
/// neighbors with new SWEEP distance and parent information for the given
/// traversal-ID.
/// Returns true if vertex was active, false otherwise.
//////////////////////////////////////////////////////////////////////
bool sweep_vertex_op(vertex v, GraphVisitor graph_visitor,
                     vector<GView> lower_graphs) {
  size_t traversal_id;
  bool was_active = false;

  // For each incoming sweep, compute the new value and propagate.
  for (auto element : v.property().incoming_sweeps()) {
    was_active = true;
    traversal_id = element.first;
    for (auto directional_element : element.second) {
      auto direction = directional_element.first;
      // Compute and update the vertex's property for this sweep.
      // Also return the value to propagate for this sweep.
      auto new_sweep_value =
        update_h_property(traversal_id, direction, directional_element.second,
                          v.property(), lower_graphs);
      sweep_neighbor_op uf(traversal_id, direction, new_sweep_value);
      // Propagate new sweep value to valid neighbors.
      for (edge e : v)
        if (filter_h_edge(traversal_id, direction, e))
          graph_visitor.visit(e.target(), uf);
    }
  }
  // Reset incoming sweep buffer.
  v.property().incoming_sweeps().clear();

  return was_active;
}

Figure 6.4: Pseudocode for vertex- and neighbor- operators for the hierarchical parallel multi-
sweep.
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void sweep_rec(GView top_graph, vector<GView> lower_graphs, vector<int> directions,
               int k)
{ graph_paradigm(sweep_vertex_op(lower_graphs), sweep_neighbor_op(), top_graph, k); }

//////////////////////////////////////////////////////////////////////
/// A Parallel Multi-Source Sweep algorithm.
///
/// Performs hierarchical multi-source sweeps on the input graph_views, starting
/// from the given directionr. The sweep from each source happens simultaneously,
/// and is identified by a unqiue sweep-Id, which is the descriptor of the source
/// vertex of that sweep. The vertex-properties are initialized by the init_prop_wf.
/// The sweep visits each vertex, and computes its new property based on the
/// provided update_prop_wf. The sweep then visits the vertex's neighbors that pass
/// the user-provided edge-flitering based on the filter_edge_wf. If the target
/// neighbor vertex should be updated based on the provided update_cond, it
/// continues the sweep, otherwise the neighbor is not updated.
/// @param graphs The vector of @ref graph_views representing a graph hierarchy.
/// graphs[0] should represent the lowest level of the hierarchy, with
/// subsequent indices building upon the i-1th graph.
/// @param k The maximum amount of asynchrony allowed in each phase.
/// 0 <= k <= inf.
/// k == 0 implies level-synchronous SWEEP.
/// k >= D implies fully asynchronous SWEEP (D is diameter of graph).
//////////////////////////////////////////////////////////////////////
void sweep(vector<GView> graphs, vector<int> directions, int k) {
  for (int i = graphs.size()-1; i >= 0; --i) {
    // Initialize the vertices and sources. Sources are direction-dependent --
    // a vertex is a source for directions where it has no incoming edges.
    auto sources = map_reduce(sweep_init_h_wf({}, directions, true),
                              join_sources_wf(), graphs[i]);
    if (sources.empty())
      return 0;
    map_func(sweep_init_h_wf(sources, directions, false), graphs[i]);
  }

  // Call actual sweep.
  sweep_rec(graphs.back(), graphs[0..graphs.size()-1], directions, k);
}

/// Driver for Sweep.
void sweep_driver(string filename) {
  using graph_t = digraph<super_vertex_property<sweep_vertex_property>,
                          super_edge_property<sweep_edge_property>>;
  using graph_view_t = graph_view<graph_t>;
  // Read graph from file.
  graph_view_t input_graph = sweep_graph_reader<graph_t>(filename);
  // Create a hierarchy.
  vector<graph_view_t> hierarchy = create_machine_hierarchy(input_graph);
  // Enumerate (x,y,z) directions for 3-D Sweep:
  vector<dimensions_t> directions = {{1,1,1}, {1,1,-1}, {1,-1,1},
                                     {1,-1,-1}, {-1,1,1}, {-1,1,-1},
                                     {-1,-1,1}, {-1,-1,-1}};
  // KLA SWEEP:
  sweep(hierarchy, directions, user_computation(), k);
}

Figure 6.5: Pseudocode for the hierarchical parallel multi-sweep, along with the driver for the
sweep.
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6.3 Seismic Ray-Tracing

Ray Tracing is a method for computing the propagation of waves or particles through a system

comprised of various regions of varying characteristics, which may affect the wave’s or particle’s

velocity through that medium, its absorption or its reflection. In Ray Tracing, the wave is modeled

as a large number of rays, which are iteratively advanced through the system in discrete amounts.

The properties of the ray, such as speed and direction, are re-computed in each iteration based on

the given medium and the ray’s existing characteristics. This application applies Ray Tracing to

understand and model seismic wave propagation.

The application uses the wavefront construction method (WFC), which considers an entire

wavefront instead of individual rays, and can adaptively control the number of rays forming the

wavefront through interpolation. This improves the computational efficiency, as well as accuracy of

the simulation. The wavefront is represented with a PGRAPH, while the collection of rays is stored

in a map. The application iteratively steps over each ray in parallel to propagate the wavefront,

computing the properties of each of its ray-segments. Experimental results from running this

application on an IBM p575 cluster showed scalable parallel performance [35].

6.4 Conclusion

We presented real-world scientific applications from three different domains that use the STAPL

Parallel Graph Library as their core to express computations. STAPL GL allows these applications to

scale to a large number of cores with improved performance, while still maintaining expressibility.

64



7. IMPLEMENTATION∗

The STAPL Parallel Graph Library comprises of a customizable distributed graph container

(PGRAPH), and a collection of commonly used parallel graph algorithms. The library uses graph

paradigms that separate algorithm design from its execution. It supports three graph processing

algorithmic paradigms, k-level-asynchronous, hierarchical, and out-of-core, allowing algorithms

written for STAPL GL to execute efficiently and scalably on a variety of machines and input graphs.

In this section, we describe the implementation details of the PGRAPH container, as well as the

various paradigms required to execute algorithms efficiently.

7.1 The PGRAPH PCONTAINER

The PGRAPH is built using the STAPL PCONTAINER framework (PCF), which provides base

classes that handle issues dealing with data distribution and parallelism and allows the design of the

PGRAPH PCONTAINER to focus on graph-specific concerns. The PGRAPH PCONTAINER consists

of a set of base containers (BCONTAINERS) and the infrastructure to make them work together in

parallel. For the PGRAPH, a BCONTAINER is a base graph data structure that exports the PGRAPH’s

interface. The BCONTAINER has three layers: the representation of the graph, the graph storage,

and the underlying storage. The graph storage is tied to the representation, exporting an interface

that allows the representation to work with the underlying storage. It provides the policies for the

type of underlying storage used by the graph (e.g., vector, hash map, map) for vertices and edges.

It also specifies the type for a vertex and type for an edge, along with how properties are stored on

these. The underlying storage may be a sequential container unaware of parallelism that is used by

the graph to store vertices and edges, or possibly another PCONTAINER.

The PCF provides a shared-object view [36] that allows users to address any element globally.

PGRAPH users interact with the container by method invocation, which the framework forwards to

∗ The base framework presented in this chapter is reprinted from proceedings of the 25th International Workshop
on Languages and Compilers for Parallel Computing (LCPC), “The STAPL Parallel Graph Library,” 2012, pp. 46–60,
Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, c©2012 with permission from Springer.
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the location where the needed graph elements reside. Fig. 7.1 shows the internal base-class imple-

mentation for apply_async, which provides an example of address resolution for graph elements

using asynchronous communication. The apply_async method is provided by the PCF for applying

a higher-order function object on an element of the container. This may be used to implement

methods such as add_edge and set_vertex_property for the PGRAPH. Internally, this forwarding

is supported by a distributed directory service – which is contained within the PGRAPH – that

provides a two-level lookup of the requested vertex’s location. This is described below.

Shared-Object View Provided by Distributed Directory. The PGRAPH is a dynamic container,

where vertices may be added and removed, and so vertex IDs need not be contiguous or even

ordered. The PGRAPH uses a distributed directory to provide a shared-object view to users and ab-

stract them from dealing with the details of distribution. While a distributed directory can increase

access costs, other solutions such as centralized models (e.g., the master-slave model employed by

Pregel [9]) which store the entire directory information in a single location, or replicated directory

on all locations, may not scale to large systems.

In this two-level distributed directory scheme, every vertex has a home location associated with

it, which may not be the location of the vertex, but is rather the location that stores information

about the vertex’s locality. It is calculated using simple closed-form solution (a hash of the vertex’s

descriptor), so any requesting location knows quickly and precisely where to send the request.

In this mechanism, the PGRAPH first checks if the graph vertex is local, and if so, then ser-

vices the request immediately. If the vertex is not found locally, the local directory computes the

home location of that vertex and forwards the request there. The home location is responsible for

knowing the exact location of the vertex. In some cases, the home location may own the vertex

itself, at which point, the requested action is performed on the vertex. However, in the case that

it does not, the request is forwarded to the location that owns the vertex, where the request is ser-

viced. As shown by Tanase et. al. [36], address resolution using asynchronous forwarding provides

improved performance over a directory that determines the element’s location using synchronous

communication.
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vo id base : : apply_async ( v e r t e x _ d e s c r i p t o r s ,
Functor f )

i f base_container . conta ins ( s )
base_container . apply ( s , f )

e lse
home = home_location ( s ) / / hash−based lookup
i f my_locat ion == home

owner = d i r e c t o r y . lookup ( s )
async_rmi ( owner , apply_async ( s , f ) )

e lse
async_rmi (home, apply_async ( s , f ) )

Figure 7.1: Internal base-class implementa-
tion of apply_async method illustrating
address resolution.

/ / asynchronous mig ra t i on and r e d i s t r i b u t i o n :
g . migrate ( ver tex , l o c a t i o n )
g . r e d i s t r i b u t e ( cost_map , a c t i o n _ f u n c t i o n =no_op )

Source Destination

HomeInquirer

ack

intent

migrate

flush

update

queue

for e0 reqreqreqreqreqreq

req

req

req

1
2

3

4

5

Figure 7.2: Asynchronous migration proto-
col for PGRAPH.

Vertex Migration. The STAPL GL provides the novel ability to migrate vertices asynchronously

between locations during the execution of the program. An important property of the migration

protocol is that it ensures that STAPL GL algorithms can be oblivious to the data distribution and

also to any migration occurring during the execution of an algorithm.

The protocol for migration of graph elements implemented by the PGRAPH is inspired by

directory-based cache coherence techniques [37] and is described in Fig. 7.2. When processing an

element-migration request from a source location to a destination location, the source first informs

the home location of its intent to migrate (1). The home location, upon receiving this request,

marks the element as in the process of migration and creates a queue for all requests addressed to

that element. It then sends an acknowledgement (2) to the source location allowing the source to

then proceed to migrate the element data to the destination (3). When the destination receives the

element’s data, it stores it and informs the home location (4) to update its metadata to record that

the destination is now the owner of that element. Finally, the home location updates its metadata

and forwards all pending requests for that element to the destination location (5). If at any point

during migration a location requests access to the element that is currently being migrated, the

requests are forwarded to the home location for that element, where they are enqueued. The queue

is flushed at the end of migration and requests are forwarded to the new location of the element.
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Redistribution. As users of STAPL GL generally may be unaware of locality, STAPL GL provides

a convenient way to rebalance a PGRAPH.

Redistribution of a PGRAPH requires some process for determining the new distribution. This

can be user provided or it can be computed based on some cost function. For many graph-based

scientific applications, a cost function (cost map) can be determined representing the expected

computational costs associated with vertices and edges. In STAPL GL, such cost maps can be

user provided, or if no additional information is available, uniform costs can be assumed for all

elements. Given a cost map, a new partition that attempts to address the imbalance can be computed

by an STAPL GL graph partitioning algorithm. Given a desired partition, each location computes

the vertices that need to be migrated to itself from other locations and invokes a migrate call on

those vertices. Internally, the asynchronous directory forwards the migration request to the correct

location where the element is located and initiates the migration of that vertex. Fig. 7.2 illustrates

how redistribution is invoked, and the protocol used in STAPL GL. STAPL GL allows application

programmers to optionally provide callback functions that are invoked along with each migration

call on the corresponding element to allow any action that needs to be performed during the process

of migrating a single element, such as updating auxiliary data structures.

7.2 Graph Traversal Strategies

Traversal Strategies in STAPL GL are implemented using algorithmic patterns provided by

STAPL that execute higher-order functions (work-functions) on elements of a view. To express

a parallel graph algorithm, users choose a suitable traversal strategy and provide two operators that

describe the computation in a fine-grained manner. For example, users can implement a breadth-

first traversal (BFS) by providing generic BFS vertex and visitor operators (Figure 7.3(b, c)) to the

traversal strategy. Both operators are generic and oblivious to the strategy, allowing separation of

algorithm from performance by choosing the appropriate strategy based on the input and system.

Figure 7.3 shows the pseudo-code to demonstrate how the level-synchronous, asynchronous,

and KLA versions of BFS differ. From the user’s perspective, the BFS vertex and visit operators

for the algorithm do not change (Figure 7.3(b,c)), and neither does the driver of the algorithm (Fig-
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ure 7.3(a)). What does change, however, is the VISIT function (Figure 7.3(d-f)), which determines

the conditions to allow the computation to proceed on the target vertex being visited.

A KLA BFS results by providing the generic BFS operators (Figure 7.3(b,c)) to the traversal

strategy, using the KLA VISIT function (Figure 7.3(e)). Lines 3-7 in Figure 7.3(a) can be replaced

by a call to the KLA traversal strategy, which has the same effect. The vertex-operator returns

true if it is active for a vertex, and false otherwise. The algorithm terminates when all vertices

are inactive (all invocations of vertex-operators return false). The requirements for the KLA BFS

visitor operator are the same as for the asychronous BFS visitor operator – it cannot rely on the

order in which the vertex is visited and must be resilient to multiple visits.

Hierarchical Paradigm in SGL. The hierarchical graph paradigm allows the execution of vertex-

centric algorithms on hierarchical graphs, as it is a drop-in replacement for the standard graph

paradigm, as seen in Figure 2.1(c), such that existing vertex and neighbor operators need not be

modified to take advantage of the hierarchy, or even be aware of it. Different graph algorithms

can take advantage of the hierarchical paradigm simply by swapping the call to kla_paradigm with

hierarchical_paradigm and providing it the hierarchical graph. This swap is encapsulated in STAPL

GL’s execute method and the execution policy.

Support for Out-of-Core Processing. To support out-of-core (disk-based) graph processing, we

extend STAPL GL, which supports in-memory graph computations, to allow storing the graph struc-

ture to disk. The graph structure stored in the PGRAPH distributed container consists of one or more

base containers per location. The subgraphs are stored in the base container, which we allow to

be stored in-memory or on-disk. The base container also contains an in-memory hubs-cache, if

the optimization is enabled. To allow for loading and storing subgraphs to disk, we extended the

PGRAPH base containers to provide serializing and deserializing capabilities, and implemented

the ability to read and write shards. The asynchronous forwarding of updates is processed by the

two-level distributed directory that maps vertices to their home-locations.

The API of the STAPL GL does not change, as our technique is transparent to the user. This

also allowed us to use STAPL GL algorithms without modification.
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vo id BFS( Graph graph , ver tex source , i n t k )
source . co l o r = GREY;
GraphView a c t i v e _ v e r t i c e s ( graph , source )
wh i le ( a c t i v e _ v e r t i c e s . s ize ( ) != 0)

a c t i v e _ v e r t i c e s
= reduce (map( bfs_op , a c t i v e _ v e r t i c e s , k ) , l o g i c a l _ o r ( ) )

g loba l_ fence ( ) ;

(a)
bool bfs_op ( ve r tex v )

i f ( v . co l o r == GREY) / / Ac t i ve i f GREY
v . co lo r = BLACK
map_func ( Visit ( b f s _ v i s i t o r _ o p ( v . d i s t +1 ) ) , v . neighbors ( ) ) / / V i s i t neighbors
r e t u r n t rue / / ve r tex was Ac t i ve

e lse r e t u r n f a l s e / / ve r tex was InAc t i ve

(b)
bool b f s _ v i s i t o r _ o p ( ve r tex v , i n t new_distance )

i f ( v . d i s t > new_distance )
v . d i s t = new_distance / / update d is tance
v . co l o r = GREY / / mark to be processed
r e t u r n t rue / / ve r tex was updated

else r e t u r n f a l s e

(c)
/ / Level−Sync V i s i t −− don ’ t spawn f u r t h e r tasks
Visit ( v i s i t o r v is , ve r tex u , i n t k_cur ren t )

v i s ( u )

(d)
/ / KLA V i s i t −− r e c u r s i v e l y spawn tasks to depth k
Visit ( v i s i t o r v is , ve r tex u , i n t k_cur ren t )

i f ( v i s ( u ) ) / / i f u was updated
i f ( k_cur ren t % k != 0) / / i f f i n s i d e async sec t ion

bfs_op ( u ) / / r e c u r s i v e l y c a l l work−f u n c t i o n on u

(e)
/ / Async V i s i t −− r e c u r s i v e l y spawn tasks
Visit ( v i s i t o r v is , ve r tex u , i n t k_cur ren t )

i f ( v i s ( u ) ) / / i f u was updated
bfs_op ( u ) / / r e c u r s i v e l y c a l l work−f u n c t i o n on u

(f)

Figure 7.3: (a) The fine-grained BFS algorithm, with (b) BFS vertex operator and (c) BFS visitor
operator. Also shows how changing the visit-functions between level-sync (d), async (f) and k-
level-async (e) visit functions changes the behavior of the algorithm from async to KLA to level-
sync, using BFS as an example algorithm.
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8. RESULTS∗

This section presents experimental results studying the scalability and performance of STAPL

GL and its parallel graph algorithms, and compares them to existing graph libraries and imple-

mentations. We also study the performance of various input graphs on different platforms, and

demonstrate the need for a single unifying paradigm, which can deliver the best performance for

various combinations of platforms and input graphs.

8.1 Experimental Setup and Input Graphs

Experimental studies were performed on HOPPER – a Cray XE6 machine at the National En-

ergy Research Scientific Computing Center (NERSC) with 153,216 total cores, of which 98,304

cores were available to us. Results reported were averaged over multiple runs to obtain a suitable

confidence interval. The compiler used for the experiments was gcc (version 4.7.2) with the -O3

optimization flag. In all experiments, a location represents a single core, and the terms may be

used interchangeably.

KLA was evaluated on representative graphs from different domains, ranging in size from a

few million to tens of billions of vertices and edges (Table 8.1). These include the Graph 500

benchmark input [20], Google and Twitter web-graphs, various road-networks (TX, PA, US, EU

and Synthetic) [38, 39], and geometric graphs (Delaunay meshes, geometric meshes and torii) [38,

39]. Input graphs use the default distribution provided by the input files.

∗ Some results presented in this chapter are reprinted from: “KLA: A new algorithmic paradigm for parallel graph
computations,” Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger c©2014 IEEE; “An algorithmic approach
to communication reduction in parallel graph algorithms,” Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger
c©2015 IEEE; “A hybrid approach to processing big data graphs on memory-restricted systems,” Harshvardhan, B.

West, A. Fidel, N. M. Amato, and L. Rauchwerger c©2015 IEEE; “The STAPL Parallel Graph Library,” Harshvardhan,
A. Fidel, N. M. Amato, and L. Rauchwerger; with respective permissions.
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Name Description V, E Source
G500-N Graph500 Benchmark Input 2N , 16× 2N Graph 500
Google Google Web-Graph 916K, 5.1M SNAP
Twitter Twitter Web-Graph 62M, 1.2B SNAP

RoadNet-TX,PA Road-networks (TX, PA) (1.4M,3.8M), (1M,3M) SNAP
RoadNet-US,EU Road-networks (US, EU) (24M,58M), (50M,54M) Dimacs-9

RoadNet-Synthetic Synthetic Road-network 9.63B, 10.2B Generated
Delaunay Delaunay Triangulation Graph 16M, 50M Dimacs-10

RGG Geometric Graph 16M, 132M Dimacs-10
Torus Toroid Mesh 2.25M × p, 9M × p Generated

Table 8.1: Characteristics of input graphs.

8.2 Graph 500 Benchmark

To test the performance and scalability of STAPL GL and compare it with existing libraries, we

implemented the Graph 500 benchmark [20], which simulates typical graph-processing workloads

on internet-scale webgraphs, for STAPL GL. Ours was a naive implementation of BFS, using the

level-sync BFS, for a fair comparison with the benchmark reference implementation and other

libraries. The traversal strategy handles details of aggregation and communication, thus giving

higher performance even with simple algorithmic implementations. We compare our implemen-

tation with PBGL, MTGL and the Graph500 reference implementation in MPI, as well as with

various other distributed and shared-memory graph libraries.

Fig. 8.1(a) shows a weak-scaling plot comparing the scalability of the Graph500 benchmark

implementation, PBGL and STAPL GL. Both the benchmark and PBGL suffered from memory bot-

tlenecks and poor scalability. While the Graph500 reference implementation was able to construct

the graph, it crashed during the execution of the algorithm on 1,024 cores and PBGL was unable

to run the algorithm beyond 4,096 cores. The time to build the graph from the input specifica-

tion is shown in (Fig. 8.1(b)). The benchmark uses synchronous operations to globally shuffle

the input edges to maintain contiguous access through the edge-list, whereas STAPL GL is able to

asynchronously add edges. We also observed that STAPL GL scaled better than both the bench-

mark and PBGL. The benchmark generates a large number of small messages while executing the
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Figure 8.1: Comparison of MTEPS (a) and construction times (b) for PGRAPH, PBGL and Graph
500 ref. implementation. Note log-scale y-axis for (a)

algorithm, which overloads the MPI buffers of the machine. STAPL GL messages are aggregated

by combining messages being sent to the same location, as well as buffering them to send fewer

messages of larger size, which helps achieve better performance – as is more evident when going

off-node (24 cores). This performance trend is also observed when executing other algorithms,

such as PageRank (Google’s web-ranking algorithm), connected-components and k-core, on the

benchmark input graph.

8.3 Comparison with in-memory libraries

We study our in-memory performance and compare it with existing in-memory graph libraries

using the Graph500 benchmark. Our approach is the only one among the libraries that can perform

out-of-core computations, however, our comparisons with both shared-memory and distributed-

memory systems still show competitive in-memory performance with no penalty paid for disk-

access when sufficient RAM is available.

Figure 8.2 shows the execution times of various libraries normalized to the time taken by our

approach implemented in the STAPL GL. We note that the STAPL GL performs comparably to

shared-memory libraries, and scales better and is faster than other distributed-memory graph li-

braries such as the Parallel Boost Graph Library (PBGL) [7] and GraphLab/PowerGraph [13].

While our approach is 2× slower than the Graph500 benchmark implementation [20] up to 16
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cores, once off-core, our approach scales better. Our approach is initially slower as the bench-

mark implementation uses a raw array of integers to store the graph, and as such does not have the

overhead of a generic library.

As shown in Figure 8.2, and in Figure 8.3 on up to 16, 384 cores, our approach outperforms

other libraries in distributed memory. PBGL uses ghost-vertices, which limits its scalability as

the ghost cells need to be kept synchronized. GraphLab uses a pull-model, where each vertex

synchronously reads the values from its neighbors, which does not allow deferred updates as in

our asynchronous push model, affecting performance. In contrast, using an asynchronous push-

model can scale effectively to higher core-counts.

Finally, our approach is also seen to compare favorably with shared-memory libraries. Green-

Marl [40] is a domain specific language (DSL) for graph computations in which the DSL compiler

is able to avoid the overhead of a generic library and is around 1.5 − 2× faster than our approach

in shared memory. However, as the provided implementation is limited to shared-memory only, it

cannot run beyond 16 cores (1 node) on our Cray XE6m. Galois [10] is another shared-memory

graph library, that has performance comparable to our approach.
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Figure 8.2: Execution times of Graph500 on various graph libraries normalized to STAPL GL on
CRAY XE6m. Shared-memory graph libraries (Galois, GreenMarl) are shown to 16 cores.
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Figure 8.3: Weak scaling of STAPL GL on the Graph500 benchmark input on CRAY XE6 with
220 vertices per core. Y-axis shows throughput in Mega-Traversed Edges per Second (MTEPS) in
log-scale.
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Figure 8.4: Scalability (Throughput) of BFS on (a) Graph500 benchmark
(max. |V |=16B, |E|=256B) and (b) torus (max. |V |=9.2B, |E|=37B).

8.4 KLA Experiments

In this section, we demonstrate the need for a single unifying paradigm with the ability to para-

metrically control asynchrony. We evaluate the performance of KLA as compared with traditional

level synchronous and asynchronous paradigms for a variety of algorithms on various real-world

and synthetic graphs.
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8.4.1 Level-Synchronous vs. Asynchronous BFS

To demonstrate the performance differential between level-synchronous and asynchronous

paradigms, we compared our implementation of an async BFS to its level-sync variant on a torus

graph and the Graph 500 Benchmark graph (shown in Figure 8.15). These represent two extreme

cases for long and short diameter graphs. We use k = 1 to emulate level-synchronous behavior

and k = n to emulate asynchronous behavior for KLA BFS. In both cases, the algorithm remains

the same and only the value of k need vary to suit the input.

The Graph 500 input graph has a short diameter (<16) and vertices with very high out-degrees.

For this graph, async BFS performs poorly due to the large number of messages flooding the sys-

tem and the large amount of wasted work for revisited vertices. The level-sync BFS performs well

in this case due to the input graph’s low diameter, which implies fewer global synchronization. The

torus graph, on the other hand, represents a worst-case scenario for parallel BFS scalability – the

algorithm is essentially serialized due to the topology of the torus, which limits the available paral-

lelism. In this scenario, we observed that async BFS performed much better than level-sync BFS,

due to the absence of synchronization-points (Figure 8.15 (b)). These experiments demonstrate that

the topology of the graph can significantly affect the performance characteristics of algorithms, and

pairing the correct paradigm to the topology can result in a significant performance benefit.

8.5 Evaluation of KLA BFS

In this section we evaluate the performance benefit and scalability of KLA BFS on different

types of real-world and synthetic graphs. We observed that for certain graphs, a value of k > 1

provides the best performance.

Graph Structure and kopt. To investigate the correlation between the structure of a graph and the

choice of k for the KLA algorithm, we ran the KLA BFS on a graph while deforming its shape

to vary the diameter from very large (circular chain, d ≈ 128k) to very small (random graph,

d ≈ 8). We obtained graphs with different diameters by allowing any given vertex to randomly

select and connect only to its ±m-closest neighboring vertices, varying m from 2 (circular chain)
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Figure 8.5: Modeling KLA: Study of effects of graph diameter on the optimal k parameter.

to n (random network). This is similar to the approach described by Watts and Strogatz [41].

We ran KLA BFS on each deformation for varying values of k, and observed which k was best

suited for the given diameter. Figure 8.5 shows the value of k that gives the best performance for

input graphs of varying diameter. This indicates that while a value of k = 1 better suits small-

diameter graphs, there are also classes of graphs with intermediate diameters for which kopt is

between 1 and d. Road network graphs, analyzed in the next section, are one such class of graphs,

along with scientific meshes. It is for such graphs that KLA provides improved performance, while

maintaining the performance for other inputs and providing a single unifying algorithmic interface.

Road Network Graphs. KLA BFS can be used to accelerate finding routes on a road-map and

navigation, as it is well suited to road network graphs due to their relatively long diameters. We

obtained road networks for the state of Texas and Pennsylvania (Figure 8.6(a)), and the entire

U.S.A. (Figure 8.6(b)). For each of these graphs, the level-synchronous variant, with k = 1 proved

expensive due to high number of synchronizations. However, owing to the amount of re-done work

and the number of messages generated, the purely asynchronous version was also slow. In fact, the

best performance was obtained with 1 < k < d, where the computation was ≈27-33% faster than

the fastest traditional paradigm for all three inputs.

Additionally, we generated a synthetic road network by stitching together multiple copies of

the European road network, which provided us an input with 9.63 billion vertices and 10.2 billion

edges. This input was large enough to allow for a meaningful strong-scaling study to 105 cores.
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Figure 8.7: Performance of KLA vs. Level-Sync BFS on synthetic road network, 98,304 cores on
HOPPER.

Figure 8.7 compares the scalability of KLA BFS with level-synchronous BFS on this road network.

The level-synchronous BFS scales to 32,768 cores, but not beyond. The KLA BFS is able to scale

better until 98,304 cores (the maximum available cores). It yields faster running times due to better

balancing synchronization costs, which become increasingly expensive for large core counts, with

wasted work. This experiment demonstrates that traditional paradigms do not always scale to a

large number of cores, where KLA can improve scalability and performance significantly.

78



0

1

10

100

Adaptive k-level-asynchonous BFS on Cray XE6

Adaptive
k = k_opt

S
pe

ed
up

Figure 8.8: KLA BFS speedup with kopt and Adaptive KLA on various graphs on HOPPER.

8.6 Evaluation of Adaptive KLA BFS

For many applications, the optimal value of k may not be known for a particular input graph.

Our Adaptive KLA technique provides improved execution times adaptively based on the graph’s

topology when users do not have sufficient information about the input graph.

We ran the Adaptive KLA BFS on input graphs from various domains, including road networks

(Europe, USA), web graphs (Twitter) and geometric graphs (Delaunay, Random Geometric Graphs

(RGG), Torus). We compared the speedup obtained using KLA BFS with kopt to the Adaptive

KLA algorithm for each graph. We also ran the level synchronous and asynchronous BFS on these

graphs, and used the faster version’s running-time as a baseline for calculating the speedup of both

KLA BFS and Adaptive KLA BFS. Figure 8.8 shows the speedup obtained for various graphs over

the best traditional paradigm. We observe that KLA with optimal k (kopt) can provide improved

performance over traditional paradigms for some input graphs. Due to the small girth of these

graphs, not all processors are active in each iteration (this is especially true for higher processor

counts) and those processors end up waiting at the global synchronizations in the level-synchronous

approach. In contrast, the asynchronous approach may re-visit many vertices, increasing the run-

time. KLA allows the traversal to proceed enough so as to recruit more processors in the iteration
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and yet controls the depth of asynchrony to avoid too many redundant visits, allowing for better

scalability and performance. We also observe that Adaptive KLA can improve the performance,

although the overhead of adaptivity (as it needs a few iterations to converge) and monitoring the

iterations (for wasted work, etc.) keeps it from achieving the same level of performance as KLA

with kopt.

8.7 Evaluation of Other Types of Algorithms

In this section, we evaluate the performance of three important graph mining and graph ana-

lytics algorithms: k-core, PageRank and SSSP. We also compare the ∆-stepping SSSP algorithm

with its KLA variant. We run the three algorithms on a variety of input graphs from different do-

mains (road networks, scientific and geometric meshes, and web-graphs) and present their speedup

(relative to level-synchronous versions in case of k-core and PageRank, relative to non-KLA ∆-

stepping for SSSP) in Figure 8.9.

k-core. For k-core (Figure 8.9), we expect the fully asynchronous setting for k to perform fastest.

While this is the case for most inputs, graphs with high out-degrees can cause a large number

of messages to flood the network, leading to network congestion. In such cases, using the level-

sync setting (k = 0) provides the best performance, as is observed for the Google web-graph.

The benefit provided by KLA for k-core is the ease of algorithm tunability to obtain the best

performance for any given input at runtime.

PageRank. PageRank incurs a penalty of buffering for increased asynchrony. However, as the

cost of buffering was much lower than the cost for communication and global synchronization on

our system, PageRank also saw good performance gains from the KLA paradigm (Figure 8.9).

∆-stepping. We also compare an implementation of ∆-stepping SSSP in KLA with non-KLA

∆-stepping SSSP in Figure 8.9. The results presented show the speedup of the KLA version over

the non-KLA version for the best values of ∆ and k. We observe from these experiments that, as

expected, both variants of ∆-stepping exhibit similar performance for different input graphs, as the

KLA paradigm is a generalization of the ∆-stepping algorithm [2].
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Figure 8.9: Evaluation of k-core PageRank and SSSP on 16,384 cores on HOPPER.

8.8 KLA with Other Graph Frameworks

KLA with Green-Marl. KLA algorithms may also be called recursively in nested sections. We

describe such computations using a tuple of k values. Each value in the tuple represents the k for

each algorithm being executed in that level of nesting. The arity of the tuple denotes the number of

levels of nesting in the algorithm. If the algorithm in the nested section is sequential or non-KLA,

the k value for it is ignored (k = x). For example, using a shared-memory library for intra-

node computation and KLA for inter-node computation, the tuple would be 〈x, k1〉. Figure 8.10

demonstrates the benefit of using nested-parallel execution in the Hierarchical Traversal Strategy

paradigm. It takes advantage of an optimized shared-memory library (Green-Marl) for processing

partitions of the graph on a shared-memory node and uses KLA version of the algorithm on the

upper-level to extend it across distributed nodes in the machine.

In our experiments, we ran two different algorithms – PageRank and cut-conductance – on a

mesh graph using the Green-Marl [40] implementation within the node and KLA off-node, and

compared them with their single-level KLA implementations in STAPL GL.

KLA in Galois. In addition to the implementation provided for STAPL GL, we illustrate the porta-

bility of the KLA technique by applying it within the Galois [10] parallel framework. Galois’

execution model relies on shared-memory worklists that determine task scheduling of algorithms.

A suite of worklists are provided by the library, including a bulk-synchronous worklist that con-
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Figure 8.10: Nested KLA with Green-Marl for (a) PageRank and (b) conductance, up to 24,000
cores.

tains two queues and processes them one after another, and an asynchronous worklist that contains

several queues that may be processed in any order, but are prioritized by some metric (e.g. vertex-

level).

We modified Galois’ bulk synchronous worklist to process vertices in the same KLA-SS asyn-

chronously and to only synchronize after k levels of asynchrony, effectively creating a KLA work-

list for Galois. Figure 8.11 shows the results of executing KLA BFS in Galois for various input

graphs. As with KLA in STAPL GL, we see improvements for input graphs with long diameters,

whereas short diameter graphs perform best with level-synchronous execution. In certain cases,

the KLA worklist is able to achieve more than 90% speedup over the best of the level-synchronous

and asynchronous worklists.
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Figure 8.11: Speedup of KLA BFS in Galois on various graphs relative to the fastest version of
Galois (bulk synchronous or asynchronous) on HOPPER.
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8.9 Hierarchical Communication Reduction

Having extablished a base-line performance of our library’s non-hierarchical mode, in this sec-

tion, we evaluate the performance of our hierarchical approach as compared with the traditional

(flat) approach for a set of important graph mining and graph analytics algorithms. We also com-

pare our base-line performance with other graph libraries.

8.9.1 Improving Work Imbalance

As the number of processors increases, the graph partition can become imbalanced in the

amount of edges each processor has to process. This is further aggravated by scale-free graphs

where the hub-size also increases drastically with the size of the graph. This results in the pro-

cessor storing a high-degree vertex performing more work processing its outgoing edges, which

negatively affects scalability and performance. Our hierarchical approach alleviates this by reduc-

ing the number of inter-partition edges for each vertex to a single super-edge, and distributing the

work of applying updates more evenly as the updates are now applied on the target location instead

of the high-degree source.

We show the effect of our hierarchical approach on the work imbalance across processors for

different input sizes of the Graph500 input graph at varying processor-counts in Figure 8.12. The

flat partitioning has severe work imbalance which gets worse as the problem and machine size

is scaled. The locality-based hierarchical approach is able to reduce this imbalance significantly,

while also reducing the rate at which the imbalance grows (demonstrated by the diverging trend-

lines). The locality-based hierarchical approach in combination with the hubs-based hierarchy

further reduces the imbalance significantly and slows down the growth even more. This, as we will

observe in the next section, improves scalability and performance through a better load-balanced

execution, even while being decoupled from the algorithm.

8.9.2 Applications

In this section, we first demonstrate the effectiveness of our approach at scale (12, 000+ and

130, 000+ cores on Figures 8.13, 8.14) on two different large-scale machines, and then dive down
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Table 1

#p Flat Hierarchical
Hierarchical + 
Hubs

Flat Graph Hierarchical 
Graph

Hierarchical 
+ Hubs 
Graph

32 24.75% 12.21% 3.88%

128 33.79% 16.76% 6.00%

256 38.97% 23.20% 7.66%

512 47.42% 25.0% 10.0%

#p

Computational Imbalance, Cray XE6 (weak-scaling, scale=22-26)
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Figure 8.12: Comparison of work-imbalance (number of edges) for flat and hierarchical graphs for
Graph500 inputs (weak-scaling) on a CRAY XE6m, along with trendlines showing growth rates.
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Figure 8.13: Throughput of (a) BFS, (b) connected components and (c) PageRank on Watts-
Strogatz input on BGQ, 131,072 cores. At scale, the hierarchical approach has an improvement of
1.59x, 1.78x and 1.64x over the flat approach, respectively.

to lower core-counts to observe trends and explain our results. The performance benefit of our

approach depends on the computation/communication cost ratio. For instances where the commu-

nication becomes a bottleneck, our approach benefits greatly. This is dependent on three things:

the input graph, the algorithm and the system. A denser graph is harder to partition effectively, and

therefore will result in cross-edges with a higher probability, resulting in higher communication

costs. On the other hand, algorithms such as betweenness centrality perform heavier computation

than algorithms such as breadth-first search, and can therefore hide the communication overhead

better, while some systems, such as the IBM Blue Gene/Q, have slower processors and faster net-

works to achieve the same effect. Figure 8.13 shows the performance of various algorithms on a
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Graph Algorithms on Cray XE6 (scale=32, 12288 cores)
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Figure 8.14: Scalability (Throughput, log-scale) of various algorithms using hierarchical ap-
proach. Graph500 input graph with 4 billion vertices and 64 billion edges at 12,288 cores.

Watts-Strogatz small-world network on up to 131,072 cores. At scale, the hierarchical approach

is able to see improvements of 1.59× to 1.78× over the traditional flat algorithm. Our experi-

ments are designed to evaluate our approach on a wide range of important graph algorithms that

are representative in their class, as well as different systems.

Performance at Scale. We ran breadth-first search (BFS), connected components (CC), PageR-

ank (PR) and k-core decomposition (KC) algorithms at scale on 12,288 cores on a Cray XE6

machine to demonstrate the performance benefits of the hierarchical approach at scale. Our re-

sults (Figure 8.14) show a 2.35× performance improvement for breadth-first search, a 7.26× to

8.54× improvement for connected components, a 3.6× to 3.95× improvement for PageRank, and

a 4.43× to 5.84× improvement for k-core decomposition. We attribute these improvements to

lower communication and better load-balance provided by the hierarchical approach, which im-

proves scalability, as we will demonstrate in this section. Compared to the IBM Blue Gene/Q

system, the performance benefits on the Cray XE6 are more substantial using our approach. This

is due to the Blue Gene system having slower cores and a faster network, which lowers the compu-

tation/communication ratio compared to the Cray XE6. When the ratio is higher (due to a slower

interconnect, for example), our approach yields better benefits.
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Communication, BFS on Cray XE6m (weak-scaling, scale=22-26)
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Figure 8.15: Communication reduction using hierarchical approach and (b) Scalability (Through-
put) of BFS on Graph500 benchmark.

8.9.3 Fundamental Algorithms

Graph500 BFS. We evaluated the Graph500 benchmark application that simulates data-intensive

HPC workloads. The benchmark performs breadth-first traversals of the input graph from multiple

source vertices. The Graph 500 input graph simulates social networks and web-graphs and ex-

hibits small-world scale-free behaviour, i.e., it has a short diameter (< 16 hops) and vertices with

very high out-degrees. These high out-degree vertices (hubs) cause scalability bottlenecks due to

communication.

Figure 8.15(a) compares the number of bytes communicated in the base-line (flat) approach

with that in our hierarchical approach. As can be observed, the hierarchical approach is able to

significantly reduce the number of bytes sent over the network by 2.7× to 3.3×. This directly

translates to the performance of the algorithm (Figure 8.15(b)), where we observe a 1.8× to 2.1×

improvement over the base algorithm. For example, at 512 cores, BFS on the Graph 500 input

graph communicated (sent/received) 33.87 GB of data across the system in the base (flat) case.

This was reduced to 12.56 GB for our hierarchical approach and then further to 10.3 GB for the

hierarchical with hubs approach. With the network sending only a third of the data, performance

improved.

Connected Components. Connected components [42] (CC) has a heavier communication pattern

than breadth-first traversal, and therefore, we expect our hierarchical strategy to provide a higher
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Communication, CC on Cray XE6m (weak-scaling, scale=22-26)
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Figure 8.16: Communication reduction using hierarchical approach and (b) Scalability (Through-
put) of Connected Components on Graph500 input.

speedup versus the traditional paradigm. Figure 8.16 shows this to be the case. As we increase

in scale, the benefits of our approach become more evident. At 512 cores, the total bytes commu-

nicated was reduced from 111.9 GB in the base-case to 68.91 GB for our hierarchical approach,

to 44.1 GB for the hierarchical with hubs approach, a reduction of 1.6× to 2.6× respectively

(Figure 8.16(a)), providing a 2.54× to 3.38× speedup over the base-case (Figure 8.16(b)).

8.9.4 Graph Mining Algorithms

PageRank. PageRank [15, 16] is an important algorithm used to rank web-pages on the internet

in order of relative importance. As an example of an iterative random walk algorithm, each vertex

calculates its rank in iteration i based on the ranks of its neighbors in iteration i− 1 and then sends

out new ranks to its neighbors for the next iteration. The algorithm terminates when either a certain

number of iterations have been reached or the ranks have converged.

PageRank exhibits even heavier communication than connected components, due to all ver-

tices being active (and communicating over all edges) in every iteration of the PageRank algorithm,

making it a worst-case scenario for communication. Our evaluation of this algorithm in Figure 8.17

shows a communication reduction of 1.36× to 2.18× (from 711 GB for flat to 521 GB for hierar-

chical and 326 GB for hierarchical with hubs), corresponding to a 2.54× to 2.73× speedup over

the base-case at 512 cores, which shows the worst-case communication is substantially improved.

k-core Decomposition. A k-core of a graph G is a maximal connected sub-graph of G in which
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all vertices have degree at least k. The k-core algorithm is widely used to study clustering and

evolution of social networks [43]. It is also used to reduce input graphs to more manageable sizes

while maintaining their core-structure. The typical parallel algorithm iteratively deletes vertices

with degree less than k until only vertices with degree greater than or equal to k exist. k-core has

a different communication pattern than either of BFS, CC or PageRank. Here too, the hierarchical

approach is able to provide benefits over the base case (Figure 8.18). At 512 cores, our approach

is able to reduce the total bytes communicated across the system from 48.8 GB for the base-case

to 21.4 GB for the locality-based hierarchy to 11.2 GB for the hierarchy with hubs, a reduction of

2.3× to 4.3×, leading to a speedup of 1.2× to 1.9×.

Community Detection. Community Detection is an important application that is widely used to

detect groups or clusters in social networks. We use a modularity maximization algorithm to label

vertices to their assigned communities. The application iteratively assigns the most frequently

occuring label in the local neighborhood of each vertex, until the global quality of the labeling

can no longer be improved. Figure 8.19 shows the improvement in performance obtained by using

our hierarchical approach. We note that while the locality-based hierarchy provides a significant

improvement in performance, the addition of the hub-based hierarchy does not further improve

the performance appreciably. This is due to the fact that, as described in Section 4.2.3, the hub-

based hierarchy relies on reducing updates on hubs to a single value on each location. However,

for community detection the labels of the entire neighborhood is needed, leading to a minimal

reduction for the hub-hierarchy.

8.9.5 Application of Traversals

Betweenness Centrality. Betweenness Centrality is an important graph-mining algorithm that is

used to identify vertices with large influence in a network. For example, it is used to understand

the social influence of users on Facebook and Twitter. Our implementation uses Brandes’ algo-

rithm [17], which performs forward and backward traversals of the graph to compute the number

of shortest paths passing through each vertex. This application directly benefits from our hierar-

chical approach, as seen in Figure 8.19. Due to the large number of traversals involved, the actual
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Communication, PR on Cray XE6m (weak-scaling, scale=22-26)
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Figure 8.17: Communication reduction using hierarchical approach and (b) Scalability (Through-
put) of PageRank on the Graph500 input graph.
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Figure 8.18: Communication reduction using hierarchical approach and (b) Scalability (Through-
put) of k-core on Graph500 input.

saving in time is significant. For example, on 512 cores, the execution time of the application was

reduced from 1, 635.93 seconds to 1, 094.63 seconds, an improvement of 50%.

Pseudo-Diameter. Pseudo-Diameter is a graph metric used in network analysis to understand the

structure of networks. It iteratively traverses the graph from a source, and selects the farthest vertex

as the source for the next traversal, until the distance from a source to its farthest vertex can not

be increased. Being a direct application of multiple traversals, improvements (Figure 8.19) mirror

those in BFS.
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Various Algorithms on Cray XE6 (weak-scaling, scale=25-26)
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Figure 8.19: Throughput of Betweenness Centrality (BC), Pseudo-Diameter (PD), and Commu-
nity Detection (CD) on Graph500.

8.9.6 Other Graphs

We also evaluate our approach on the extreme cases of Erdos-Renyi graphs, toroidal meshes

and the real-world Twitter social-network graph. A 2D toroidal mesh is the worst-case scenario for

our hierarchical approach, as the maximum out-degree of any vertex in the mesh is 4, and when

partitioned correctly, the number of cut-edges is minimized. We evaluated our approach on this

graph to show that even though we do not expect to improve performance, we add no overhead for

such cases either. Figure 8.20 shows the performance of a BFS traversal of a toroidal mesh with

16 million vertices and 64 million edges, where the overhead of using hierarchies is less than 3%.

On the other hand, an Erdos-Renyi random graph [44] is the best-case for our approach. An

Erdos-Renyi network tries to connect each vertex of a graph with every other vertex with a prob-

ability p (p = 1 leads to a complete graph). We generate an Erdos-Renyi network of 1 million

vertices and 5.5 billion edges (a probability p = .5%) to show the benefit of our hierarchical ap-

proach when the connectivity of the input graph is high. This is shown in Figure 8.20, where the

hierarchical approach is 42.5× faster.

To evaluate how the performance improvement varies with graph connectivity, we measured

the performance improvement of our approach on a Watts-Strogatz random network for varying

rewire probabilities. The Watts-Strogatz model [41] produces random networks with the small-

world properties such as short average path lengths and a high degree of clustering. The model
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starts with a regular ring lattice with every vertex connected to its k nearest neighbors on either

side, forming a ring-like structure. Thereafter, for each vertex, each of its edges is ’rewired’ with

a probability β, such that the target of the edge is selected with uniform probability from the

remaining vertices, avoiding self-loops and duplicate edges. By varying β, one can generate graphs

that are ring-like and do not exhibit small-world properties (for small values of β), to small-world

networks with short path-lengths and high degree of clustering (as β approaches 1).

Figure 8.21 plots the speedup of our approach over the base-line as the rewire-probability is

varied from 0 to 1 for various processor counts. While our approach has a 25% overhead on the

BG/Q machine for rewire-factor ≤ 3%, it shows an improvement over the base-line for all other

rewire-factors (3% − 100%). The initial overhead is due to the graph being well-partitioned with

extremely few cut-edges. In this case, there is not much communication to reduce, and we just

measure the overhead of going through the hierarchy. It is higher for the BG/Q machine than

the Cray XE6 (3% for torus in Figure 8.20, and we measured 1.5% for Watts-Strogatz with 0%

rewiring) as the processors are much slower and the network is extremely fast, so the effect is more

pronounced. This can be eliminated by profiling the system using this example to compute the

number of cross-edges beyond which the hierarchical approach should be used. As the algorithms

remain the same, this can be done cheaply at runtime.

We can observe that the improvement over the base-line increases as the small-world behavior

increases. Small-world graphs are harder to partition well and produce a large number of cross-

partition edges, which result in heavy communication, thus limiting performance. Our approach

alleviates this, improving performance. This is evident even in machines where the computa-

tion/communication ratio is low (i.e. better network, slower processors), such as the BG/Q. For

machines with (comparatively) slower networks and faster processors, the improvement is even

better, as observed in experiments on the Cray XE6 (Figure 8.14 and others).

Finally, we also evaluate our approach on the Twitter social network from 2010. This network

has 65 million vertices and 1.2 billion edges, and has large hub vertices corresponding to popular

users who have many followers. The presence of large hubs leads to poor scalability, which can be
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Table 1

#p Level-sync
Hierarchic
al

Hierarchic
al + Hubs

Torus 20.1669 20.4466 21.0155 99% 97%
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Twitter 
Network

12.1946 2.805 435%

#p

BFS on Various Graphs on Cray XE6m (512 cores)

Ti
m

e 
(s

ec
on

ds
)

0

10

20

30

Torus Erdos-Renyi Twitter Network

2.8
0.6

20.4

12.2

26.4

20.2

Level-sync
Hierarchical

Figure 8.20: Running times of BFS on various input graphs using flat and hierarchical approaches.
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Figure 8.21: Improvement of the hierarchical approach on BFS for varying rewiring-probability
of a Watts-Strogatz graph.

effectively addressed by using the hierarchical approach. As a result of communication reduction

from 21 GB to 8.2 GB and a better load-balance, our approach provides a speedup of 4.36×

(Figure 8.20) over the flat approach.

8.9.7 Overhead of Hierarchy Creation

In order to run hierarchical algorithms, the input graph needs to be converted to its hierarchi-

cal representation on the machine. This is a one-time process following graph construction, after

which multiple algorithms can take advantage of the hierarchy. Figure 8.22 compares the time to

construct the flat graph to the time to construct the hierarchical graph. The time to generate the hi-

erarchical graph includes the time to create the flat graph. Hierarchical graph creation overhead is

proportional to the number of cross-processor edges in the graph. Therefore, for graphs with few
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Graph Creation on Cray XE6 (Various Graphs, 512 Cores)
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Figure 8.22: Comparison of total construction times of flat and hierarchical graphs for various
inputs.

cross-processor edges, such as a toroidal mesh, the hierarchy construction adds negligible over-

head, while for graphs with a large number of cross-processor edges, such as a dense Erdos-Renyi

graph, the hierarchy creation overhead is larger (Figure 8.22). Correspondigly, the benefit of the

hierarchy is also significantly larger for the Erdos-Renyi graph vs. the torus (Figure 8.20). As an

example, on 512 cores, the graph construction time for 67 million vertices and 2.1 billion edges

was 8.5 seconds, while creating the hierarchy added 5.2 seconds to that time. A comparison show-

ing the running time of a single run of various algorithms on hierarchical and flat graphs is shown

in Figure 8.23, along with the time required to create the hierarchies, to show the overhead. For

example, a PageRank algorithm using the traditional approach takes 68.7 seconds, while a PageR-

ank using the hierarchical approach uses 39.7 seconds. To amortize the cost of hierarchy creation,

BFS would need to be run 4 times, however, in many use-cases, such as betweenness centrality

and pseudo-diameter, BFS is usually executed multiple times from different sources, allowing the

hierarchy creation to be ammortized, even for a single execution of the algorithm (Figure 8.23).

Other algorithms, such as community detection, PageRank, and k-core decomposition also observe

significant overall benefits even in a single execution, including the cost of hierarchy creation, as

shown in Figure 8.23. We note that the hierarchy is algorithm-agnostic and only depends on graph

structure, and not the metadata (vertex/edge properties), and can therefore be used with different

algorithms once created.
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Creation Overhead for Various Algorithms, Graph500 
on Cray XE6m (512 cores)

Ti
m

e 
(s

ec
on

ds
)

0

20

40

60

80

BF
S

BF
S_

H PD

PD
_H BC

BC
_H C

C

C
C

_H C
D

C
D

_H PR

PR
_H kC

kC
_H

Flat Graph Construction
Hierarchy Construction
Algorithm

1094
.6

1635
.9
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chical graphs for Graph500 input.

8.10 Out-of-Core Performance

In this section, we evaluate the performance of our approach on various platforms, and compare

it with existing disk-based libraries. Our approach is evaluated on a set of important graph mining

and graph analytics algorithms, and a variety of inputs. The input graphs include the Graph 500

benchmark inputs [20], a benchmark for data-intensive and graph applications, as well as real-

world graphs available to us.

Our experiments were run on multiple platforms – a Cray XE6 machine with 153,216 cores

(Hopper), and a smaller Cray XE6m machine with 576 cores available to us. In addition, we

evaluated our technique on two 4-core PCs with 4GB RAM and 16GB RAM (respectively), both

with 7200 RPM hard disk drives, and a 4-node commodity cluster with two quad-core processors

per node. Finally, we ran on an EXYNOS 4 quad-core tablet running Android 4.0, containing an

ARM Cortex-A9 with 1GB of DDR2 main memory and a 16GB MMC card for storage. Graphs

were distributed as specified by their input files, using a block distribution of the vertices.

Single Node Performance. We compared STAPL GL’s single node out-of-core performance with

GraphChi, a graph-processing system designed to solve large graph problems on a single node ef-

ficiently. GraphChi is a sister project of GraphLab that focuses on allowing the processing of large
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graphs on a single-node computer using a parallel sliding-window technique. In [12], the authors

show how GraphChi has comparable performance, even on a single node, to existing frameworks,

such as Spark, Hadoop and GraphLab running on much larger machines.

GraphChi partitions the input graph into p partitions and processes the partitions in a sliding-

window. However, much like in GraphLab, GraphChi’s pull-model reads neighboring vertices’

values, which may require p − 1 reads for p partitions in the worst-case. Furthermore, as noted

in [12], the technique used in GraphChi is unable to take full advantage of available RAM, as their

model is not adaptive to the resources.

Figure 8.24(a) shows the out-of-core performance of various graph algorithms in the STAPL

GL and GraphChi on a 4-core PC with 4GB RAM. For GraphChi, we ran the experiments on

different configurations and explored the space of parameters to choose the fastest configuration

for comparison. As can be observed, STAPL GL’s push-model provides 2.5−6× faster performance

than GraphChi’s pull-model. Further, our approach allows better scalability with increasing RAM

sizes. Figure 8.24(b) shows the same graph on a 4-core PC with 16GB RAM. Increasing the

RAM and resources allows a 4× or better performance increase for the STAPL GL. However,

GraphChi is not able to optimally utilize all available RAM, and therefore, STAPL GL is able to

perform 4 − 12× better with increased resources. GraphChi’s k-core algorithm was designed to

work with matrix inputs, and did not accept edge-list or adjacency-list representations, so thus we

were unable to obtain comparative results for it. We evaluated our performance on two real-world

graphs. Figure 8.28 shows performance of the STAPL GL on Twitter and Friendster social-networks

on a PC with 4GB RAM.

We studied the behavior of our approach with respect to memory size in Figure 8.25 for

breadth-first search and PageRank on the Graph500 graph. As shown, total time to completion

decreases as we increase memory size. In fact, at the largest memory size, where the graph fits in

memory, our approach performs the same as the in-memory STAPL GL variant. When the available

memory is restricted, a majority of the subgraphs are present on disk. Therefore, a higher number

of updates to vertex values generated during computation have to be written to disk, increasing
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the load and store times. As the available memory increases, larger portions of the graph can fit

in memory, allowing more updates to happen in RAM. When the entire graph fits in memory, all

updates happen in RAM, resulting in negligible overhead due to loading and storing. We observe

this behavior for PageRank in Figure 8.25(b), where there is a substantial improvement in run-

time from 4 GB to 8 GB, which is significantly larger than the benefit in BFS (Figure 8.25(a)).

This is due to a larger volume of updates generated by PageRank, and thus written to disk for

the out-of-core case, compared to BFS’s fewer updates from only a subset of the graph’s vertices

per superstep, as shown in Figure 5.2. Due to this, the amount by which an increase in memory

improves performance is both input and algorithm dependent.

Android Tablet Performance. To further test our approach with limited RAM, we also tested on

an Android tablet with 1GB RAM, using two cores. We use this as an extreme example to test the

performance of our method, and not necessarily as a viable graph-processing system. Even so, we

were able to process the Graph500 input graph using our approach, as seen in Figure 8.26. The

time taken to execute the algorithms was much higher than on a PC, due to the different architecture

of the processor, lower clock-speed, lower RAM and far slower disk speed (the storage used was

a low power MMC card). The size of the input graph was also limited due to the capacity of the

memory-cards available. However, this experiment demonstrates that our approach can scale well

to systems with limited memory as compared to the size of the input graph. We were unable to get

GraphChi or other graph processing systems to run on our Android tablet.

Multi-Node and Cross-Platform Performance. As we use asynchronous forwarding and each

subgraph is managed individually only by its home location, the technique naturally extends to

multiple nodes. Figure 8.27 shows the execution of multiple algorithms on a distributed-memory

system with a graph that does not fit fully in RAM. As we increase the number of nodes available,

larger portions of the graph can fit in RAM and more processors are available, allowing faster

execution. When the graph fits completely in RAM (on 8 nodes), no penalty is paid for disk

access, and the fastest execution time can be observed.
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Figure 8.24: STAPL GL running time (various algorithms) vs. GraphChi on the Graph500 bench-
mark input with 16 million vertices, 256 million edges, running on PC with (a) 4GB RAM and (b)
16GB RAM.
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Figure 8.25: Breakdown of times for different phases (loading, storing and processing) for (a)
BFS and (b) PageRank with respect to memory size.

We also tested our approach across platforms to demonstrate its effective use of resources.

Figure 8.29 shows the Graph500 input graph scaling from an Android tablet to a Cray XE6m

machine with 128 cores. Figure 8.30 shows the Twitter input graph on a PC, a cluster of 4 compute

nodes, and a Cray XE6m machine on 512 cores. Our framework is able to accommodate processing

these large graphs, while adapting well to the resources available on each machine. In this sense,

the program is able to scale with the machine without user-code modification.
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Graph500 Web-Graph (Android, 1GB)
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Figure 8.26: STAPL GL running time (various algorithms) on the Graph500 benchmark input on
an Android tablet with 1GB RAM, 4 million vertices, 64 million edges.
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Figure 8.27: STAPL GL running time for BFS, PageRank (PR) and connected components (CC)
on the Twitter input on multiple nodes of Cray XE6.
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Algorithms Using Hybrid Approach (4GB RAM)
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Running Times Across Platforms: Twitter Graph
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9. SUMMARY

This work focuses on the STAPL GL, a parallel graph library that allows natural expression of

graph algorithms while providing scalable performance and portability. An implementation based

on our vertex-centric asynchronous push model displayed improved performance and scalability

vs. existing parallel graph processing libraries and hand-written implementations of benchmarks,

while being expressive to use.

Our model allows decoupling of the algorithm from its execution, allowing us to choose the

best suited execution paradigm for a given combination of input graph, algorithm and system. To

take advantage of this, we proposed three novel paradigms to address the challenges in the field

of large-scale graph processing. The first paradigm unified the two existing graph-processing ap-

proaches, namely BSP and asynchronous, while extending them to allow fine-grained control over

the amount of asynchrony in the system in order to balance the cost of global synchronizations

with redundant work. This helped hide the latency in large systems. The second paradigm uti-

lized algorithmmic redundancy and the knowledge of the machine model to reduce the amount

of communication for small-world graphs, thereby increasing the effective bandwidth of the sys-

tem. The third paradigm introduced subgraph-paging, which together with the asynchronous push

model allowed efficient out-of-core processing of large graphs by eliminating random disk-reads

and minimizing random disk-writes.

Experimental studies on large-scale systems and a variety of graphs show our baseline im-

plementation to perform better than existing graph processing systems, while using the novel

paradigms can improve performance by 8× to 10×.

The STAPL Parallel Graph Library has also been used to successfully implement real-world sci-

entific applications such as Seismic Ray-Tracing, Nuclear Particle Transport, and Motion-Planning

and Protein-Folding, all of which have demonstrated good scalability and performance.
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