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ABSTRACT 

 

Concept Drift Learning and Its Application to Adaptive Information Filtering. 

(December 2003) 

Dwi HendratmoWidyantoro, B.S., Institut Teknologi Bandung; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. John Yen 
                                                                        Dr. Thomas R. Ioerger  

 

Tracking the evolution of user interests is a problem instance of concept drift 

learning. Keeping track of multiple interest categories is a natural phenomenon as 

well as an interesting tracking problem because interests can emerge and diminish at 

different time frames. The first part of this dissertation presents a Multiple Three-

Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept 

drift especially built for tracking the dynamics of multiple target concepts in the 

information filtering domain. The learning process of the algorithm combines the 

long-term and short-term interest (concept) models in an attempt to benefit from the 

strength of both models. The MTDR algorithm improves over existing concept drift 

learning algorithms in the domain. 

Being able to track multiple target concepts with a few examples poses an 

even more important and challenging problem because casual users tend to be 

reluctant to provide the examples needed, and learning from a few labeled data is 
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generally difficult. The second part presents a computational Framework for 

Extending Incomplete Labeled Data Stream (FEILDS). The system modularly 

extends the capability of an existing concept drift learner in dealing with incomplete 

labeled data stream. It expands the learner’s original input stream with relevant 

unlabeled data; the process generates a new stream with improved learnability. 

FEILDS employs a concept formation system for organizing its input stream into a 

concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to 

identify the instance’s concept and unlabeled data relevant to a concept. It also adopts 

the persistence assumption in temporal reasoning for inferring the relevance of 

concepts.  Empirical evaluation indicates that FEILDS is able to improve the 

performance of existing learners particularly when learning from a stream with a few 

labeled data.  

Lastly, a new concept formation algorithm, one of the key components in the 

FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical 

structures regardless of the class distribution and the shape of the input stream. 

Experimental evaluation shows that the algorithm is relatively robust to input 

ordering, consistently producing a hierarchy structure of high quality.  
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CHAPTER I 

INTRODUCTION 

 

Being able to infer the most up-to-date user interests is of great importance because it 

can help select new relevant information and also can be used to filter out incoming 

irrelevant information. Despite the vast availability of information on the Internet and 

the ease in information seeking provided by current search engines, most newly 

available information that is potentially useful remains unexploited without active 

participation of users for searching it. Users, on the one hand, often do not know what 

kind of new interesting information that will become available and when. The 

information providers, on the other hand, do not have any knowledge about the 

information need of users. Information agents can fill in the gap between users and 

information providers so that relevant information can be delivered to users in a 

timely fashion. It is not questionable that the ability of such agents to automatically 

track the change of user interests over time plays a vital role.  

Keeping track of multiple target concepts is a natural phenomenon. As an 

example, users can have several topics of interest in which articles (broadcasting 

news) they prefer to read (listen). The number and the variety of interest categories 
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can change dynamically over time. That is, each of the topics of interest can have 

different durations and time frames. This demonstrates the significance and raises 

issues that must be dealt with by tracking multiple target concepts. Nonetheless, 

tracking a single target concept at a time is an inherent assumption behind the 

technique developed in many existing algorithms (Klinkenberg & Joachims, 2000; 

Klinkenberg, 1999; Klinkenberg & Renz, 1998; Widmer 1997; Widmer & Kubat, 

1996). 

Tracking the evolution of user interests over time from a sequence of 

relevance feedback documents is a problem instance of concept drift learning. The 

majority of existing concept drift learning algorithms typically requires a large 

number of labeled data in order to achieve performances at satisfactory levels; and 

these algorithms generally assume the availability of such labeled data. Although 

unlabeled data are widely available in information filtering domain, acquiring labeled 

data is indeed still very prohibitive. For example, casual users tend to be unwilling to 

provide the relevance feedback needed to label the data (Jansen, Spink, & Saracevic, 

2000). Thus, learning concept drift from a sequence of few labeled data poses an 

important problem. Addressing this problem could contribute significantly not only to 

the information filtering domain, but also to the more general field of concept drift 

learning.    

This dissertation develops an algorithm for learning concept drift in 

information filtering domains capable of handling multiple target concepts. It also 

develops a computational framework that extends existing concept drift learning 
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algorithms in the absence of complete labeled data. The next two sections briefly 

describes the distinction between (conventional /stable) concept learning and concept 

drift learning, and then describes a common approach as well as problems faced by 

existing concept drift learning algorithms. Section 1.3 presents a general approach for 

learning with a few labeled data in conventional concept learning. New approaches 

for learning concept drift that overcome the limitation of existing algorithms will be 

outlined in Section 1.4, followed by a summary of key contributions of the work in 

Section 1.5. 

1.1 Concept Learning versus Concept Drift Learning 

Concept learning is a process of inferring a Boolean-valued function from a set of 

input and output examples (Mitchell, 1997), i.e., f: X → {1,0} where X is the space of 

input examples. In the information filtering domain, the input is a document d and the 

output is the document relevance (e.g., either relevant or irrelevant). Conventional 

concept learning assumes that the target function is static, i.e., the relevance values of 

all documents with the same topic category are the same. Hence, the input and output 

examples in conventional concept learning can be given to the learner in any order. 

The target function values are often referred to as the data (concept) labels. 

Concept drift learning is a concept learning in which the target function 

changes over time (Bartlett, David, & Kulkarni, 1996; Helmbold & Long, 1994; 

Schlimmer & Granger, 1986). For example, the relevance of documents of the same 

topic category could change from time to time. Hence, the target functions in concept 
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drift learning, in contrast to conventional concept learning, is dependent on the 

ordering of the input and output examples. Given a stream of pairs of input and output 

examples, the task of concept drift learning is to output a sequence of target functions 

where each target function inferred at time t can only utilize the data given before t. 

The problem of concept drift learning essentially consists of two sub-problems: 

learning stable concepts such as in conventional concept learning and adapting to 

changing labels of concepts. 

The drift rate in concept drift learning is an essential parameter, denoting the 

probability that two successive target concepts ci and ci+1 disagree on a randomly 

drawn example (Helmbold & Long, 1994), e.g., Pr(ci ≠ ci+1). Intuitively, slower drift 

rates correspond to learning from data streams whose target concepts change less 

frequently with respect to the number of seen examples, and vice versa. Slower drift 

rates can also be associated with concept drift learning on easier learning problems 

because more labeled data are available to learn the same target function before it 

changes. Therefore, when the number of data for learning the same target function is 

reduced, the drift rate increases and the learning problem becomes more difficult, 

which is one of the main issues addressed by this dissertation. 

1.2 Existing General Approaches to Concept Drift Learning 

Despite the differences of existing concept drift learning algorithms, most of them 

stem from the same approach in that the algorithm’s ability to adapt to concept drift is 

achieved by learning from a single window of most recent examples (Widmer & 
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Kubat, 1996; Widmer, 1997; Klinkenberg & Renz, 1998; Klinkenberg & Joachims, 

2000). Figure 1.1 illustrates this approach. Obviously, the approach automatically 

excludes older examples that are no longer relevant.  

 
 

 

However, the single-window approach above suffers from the difficulty in 

determining the appropriate window size. The bottom line is that the drift rate is 

unknown a priori because it is impossible to predict when a concept change will 

actually happen, although its occurrence can be detected.  Larger window sizes would 

enable learning with better performances on data stream with slower drift rates, and 

during which the target function is stable. However, it would take longer to get rid of 

non-relevant examples from the window when a concept change occurs, resulting in 

slower adaptation to the new target function. Fast changing target functions (i.e., 

more rapid drift rates) also could easily confuse the learner such as when target 

functions change two or more times within a window time frame. In contrast, smaller 

more recent examples older examples 
examples 

most recent examples 

Figure 1.1: A typical approach to concept drift learning. 
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window sizes allow quick adaptation to concept drift on either slower or faster drift 

rates. The disadvantage of having smaller window sizes is that it would never be able 

to learn stable concepts at the levels of accuracy desired even on the slow drift rate 

because of the smaller number of examples that are available for learning.  

An adaptive window adjustment heuristic has been developed to address the 

window size determination problem (Widmer & Kubat, 1996; Klinkenberg & Renz, 

1998), but most techniques employing the heuristic will work properly only on a 

learning setting with a slow drift rate. More specifically, an adaptive window 

adjustment heuristic determines the appropriate window sizes based on a trend in the 

system predictive performances, which are continuously monitored from the 

performance in predicting the last m seen labeled data.  The window size is increased 

when the predictive performance is stable or improves, and is quickly decreased when 

a sudden performance drop is observed, indicating a concept drift.  However, the 

system’s predictive performance on which the heuristics depend cannot be reliably 

acquired on faster drift rates. 

An algorithm for concept drift learning that learns from only a single window 

also could suffer from inability to track multiple target concepts simultaneously. 

Because the target concepts to be tracked could change at different time frames, not 

all of them can be optimally learned with a single-window approach even though all 

the target concepts change at slow drift rates. It is obvious that the expected 

performance will decrease as the number of target concepts to be tracked 
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simultaneously increases, not to mention if the target concepts also change at 

different rates. 

To sum up, existing algorithms for learning concept drift are still inherently 

limited by to track a single target concept. Little effort, if any, has been devoted to 

deal with learning concept drift on a faster drift rate. The latter learning setting, as 

mentioned earlier, corresponds to learning concept drift with reduced number of 

labeled data. 

1.3 Learning with Incomplete Labeled Data 

Dealing with incomplete data is not a new problem. The Expectation Maximization 

(EM) algorithm (Dempster, Laird, & Rubin, 1977) is perhaps the first method to 

address this problem.  The more recent algorithms include co-training (Blum & 

Mitchell, 1998; Nigam & Ghani, 2000), graph min-cut (Blum & Chawla, 2001), 

various techniques for query expansion in information retrieval (Mitra, Singhal, & 

Buckley, 1998; Buckley, Salton, Allan, & Singhal, 1995; Crouch, Crouch, Chen & 

Holtz, 2002; Xu & Croft, 1996; Iwayama, 2000), text classification (Nigam, 

McCallum, Thrun, & Mitchell, 2000), and various techniques developed for topic 

tracking in the Topic Detection and Tracking (TDT) evaluation (Allan, Papka, & 

Lavrenko, 1998; Yang, Pierce, & Carbonell, 1998; Yang et al., 1999)  

Basically, all these approaches are similar to one another in that artificially 

labeled data are incorporated to increase the number of labeled data used for learning. 

The additional data are selected automatically from unlabeled data, guided by some 
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kinds of similarity measures with the labeled data or objective functions. Provided 

that the unlabeled data that are truly relevant to the labeled data exist and can be 

correctly identified, this general approach should work very well without question. 

Despite the potential of identifying irrelevant unlabeled data that could have a 

detrimental effect, the existing methods are generally effective in their respective 

application domains. 

However, the existing approaches for learning from labeled and unlabeled 

data assume the stability of concept being learned. These approaches are therefore not 

suitable for inducing concepts that change over time such as in concept drift learning. 

1.4 New Approaches to Concept Drift Learning 

The limitations of current approaches to concept (drift) learning, as described above, 

suggest two directions in which they can be improved. The first direction is to 

develop a method for tracking multiple target concepts simultaneously. The second 

direction is to devise a general method that addresses the problem of concept drift 

learning in the absence of completely labeled data.  

1.4.1 Tracking the Changes of Multiple Target Concepts 

The proposed method for tracking multiple target concepts is focused primarily on its 

application in information filtering domain. Conceptually, it extends a single-window 

approach by maintaining multiple window sets. Each window set is used for tracking 

a single target concept, and is dynamically created or deleted as necessary.  
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Furthermore, each set consists of two windows of large and small sizes. The 

former is intended to capture a stable concept such as general preference in a long-

term interest, which allows capturing an accurate representation of the target concept. 

The latter window will be used for tracking the most recent tendency related to the 

target concept. The window with smaller size would facilitate a flexible adaptation to 

concept drift. The proposed method achieves a balance between the ability to learn 

stable concept and for quickly adapting to concept drift by learning each target 

concept with large and small window sizes simultaneously.  

1.4.2 Concept Drift Learning in the Absence of Complete Labeled Data 

Inspired by the success of techniques that combine labeled and unlabeled data in 

conventional concept learning, a similar technique is developed to learn concepts 

from a stream of labeled and unlabeled data. Assume that most data in the stream are 

unlabeled, and the labeled data are uniformly distributed in the stream.  The sub-

sequence of labeled data extracted from the stream is what is actually seen by the 

concept drift learning algorithm. It represents a stream of labeled data whose target 

functions change quickly one after another, i.e., fast drift rate. This dissertation 

proposes a general method for processing the sequence of labeled data, assumed to 

have a faster drift rate, into a longer sequence of labeled and artificially labeled data 

with a slower drift rate, which is easier to learn. The artificially labeled data are used 

to fill the gap in the labeled data, and are retrieved from relevant unlabeled data. A 
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concept drift learner can then be applied to learn the new stream. Figure 1.2 illustrates 

the idea in a simplified form. 

Unlike in stable concept learning, the subtlety in identifying relevant 

unlabeled data is more challenging in concept drift learning because the values of 

labels (target functions) in the labeled data can change over time. For example, a 

positively labeled instance A that appears earlier in the data stream will inherently 

change its label to negative when a new negative instance B with the same concept 

class as that of A is later presented. In this example, instances A and B are no longer 

Proposed 
New 

Algorithm 

Labeled Data 
Artificially labeled data generated from unlabeled data 
Unlabeled Data 

labeled data 
stream with 
faster drift rate 
 

unlabeled data stream 
 
 

Existing 
Concept 

Drift 
Learner a new data stream with 

slower drift rate 
 

a stream of labeled  and unlabeled data 
 
 

Figure 1.2: A new approach for incorporating unlabeled data in concept drift 
learning. 
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relevant and thus should be excluded from expanding the instances with relevant 

unlabeled data. Hence, incorporating unlabeled data in concept drift goes well beyond 

expanding labeled data with relevant unlabeled data because it also has to infer the 

changing labels of labeled data. 

Furthermore, tracking the change of labels in a sequence involving a small set 

of labeled data is difficult, if not impossible, because the instance categories are 

typically unknown and cannot be induced reliably from the set. This dissertation 

addresses this problem by using labeled and unlabeled data observed from the input 

stream to predict the instance categories. In particular, a new concept formation 

system is employed to organize the data stream into a concept hierarchy in 

unsupervised mode. The concept hierarchy generated is basically a tree structure in 

which leaf nodes represent instances and internal nodes denote concepts that 

generalize their descendants. The concept category of an instance is then identified 

from one of its ancestors that best generalizes the instance.  

1.5 Summary of Contributions 

This dissertation investigates several aspects that have not been adequately addressed 

in concept drift learning, and develops a set of algorithms that directly or indirectly 

address them. In summary, this dissertation presents three contributions. 

 The first contribution is a novel algorithm for tracking the evolution of 

user interests. It provides a high-level approach for managing multiple windows in 

concept drift learning and a new strategy for striking a balance between long and 
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short window sizes. Its specific realization in information filtering domain is then 

presented. In this domain, the algorithm is able to learn flexibly the dynamics of user 

interests, including anticipation for long-term and short-term interests of the users 

(Widyantoro, Ioerger, & Yen, 2001). 

The second contribution is a new computational framework for extending 

concept drift learning algorithms to deal with learning from a stream of sparsely 

labeled data. This dissertation describes a method for inferring the most up-to-date 

data labels and expanding the labeled data with relevant unlabeled data (Widyantoro, 

Ioerger, & Yen, 2003). In particular, it demonstrates how to incorporate a concept 

formation system, as well as the persistence assumption in temporal reasoning to do 

the task. The main role of the concept formation system is to build a concept 

hierarchy that will be used for identifying instance categories and retrieving relevant 

unlabeled data. The persistence assumption is adopted to infer the labels of instance 

categories. The method is general and can be viewed as the pre-processing step whose 

output can be used by virtually any existing concept drift learner. 

The third contribution is a new concept formation algorithm. A new 

approach for concept formation is developed to provide a practical realization of the 

framework that pre-processes labeled data stream. The key idea in the algorithm is the 

exploitation of homogeneity and monotonicity properties of concept densities for 

guiding the incremental construction of a concept hierarchy from a data stream 

(Widyantoro, Ioerger, & Yen, 2002). The algorithm is relatively insensitive to some 
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degree to input ordering, and is capable of generating a quality hierarchy comparable 

to the quality of that of produced by typical non-incremental methods.  

1.6  Roadmap 

The rest of this dissertation is organized as follows.  Chapter II presents a broad 

literature review regarding concept drift learning algorithms and systems, from 

practical machine learning approaches to theoretical results, to its application in 

intelligent agents and information filtering. Chapter III describes a novel concept drift 

learning algorithm for learning changing user interests, which is the first main 

contribution of this dissertation. It also describes other learning algorithms, and 

empirically evaluates their relative strengths and weaknesses. Chapter IV presents a 

computational framework so-called FEILDS that can extend the capability of an 

existing concept drift learning algorithm. One of the important components of 

FEILDS is a concept formation system. A new algorithm that realizes this concept 

formation system is described and fully evaluated in Chapter V. Finally, Chapter VI 

discusses the evaluation of FEILDS, followed by conclusions in Chapter VII.
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter reviews literatures related to concept drift learning and user interests 

modeling for adaptive information filtering. Section 2.1 surveys the underlying 

techniques of various practical systems for learning concept drift developed in the 

Machine Learning community. These systems include STAGGER (Schlimmer & 

Granger, 1986), FLORA (Widmer & Kubat, 1996), METAL (Widmer, 1997) and SPLICE 

(Harries, Sammut, & Horn, 1998), which have been designed and applied in non-

information filtering domains. Section 2.2 describes methods and systems that have 

been developed for learning user interests in information filtering domains. The issues 

addressed by some of the works described in this section, particularly those that 

consider evolving user interests, represent a problem instance of concept drift 

learning in the domain. The last section provides overviews of existing theoretical 

results in concept drift learning. 

2.1 Practical Concept Drift Learning Systems 

Concept drift learning systems can differ from one another in (1) the representations 

of concept descriptions that affect the underlying concept learning algorithm, and in 

(2) the strategy in adapting to concept drift. Generally speaking, systems adapt to 

concept drift by deriving concept descriptions using a window of recent examples. 
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Alternatively, a form of meta-learning can be applied to explicitly detect a current 

context and then learn the concept descriptions from examples belonging to the 

current context. Table 2.1 summarizes the key features of four systems described in 

this section.  

 

System Name Concept 
Representation 

Adaptation to Concept Drift 

STAGGER (Schlimmer & 
Granger, 1986) 

Weighted Boolean 
Functions 

Thresholding the statistical counts 

FLORA (Widmer & 
Kubat, 1996) 

DNF without 
negation 

Adaptive windowing 

METAL (Widmer, 1997) Probabilistic  Meta-learning and fixed-size 
windowing 

SPLICE (Harries, 
Sammut, & Horn, 1998) 

Decision tree Meta-learning from batch process 
and/or windowing (optional) 

 

Table 2.1: Key features of practical concept drift learning systems. 

 
 

2.1.1  STAGGER 

STAGGER is the first incremental learning system that addresses the concept drift 

problem (Schlimmer & Granger, 1986). Concept description in the system is a set of 

numerically weighted symbolic characterizations. Every characterization element is 

represented by Boolean functions of attribute-values, and is dually weighted using 

Bayesian weighting measures so-called logical sufficiency (LS), or positive likelihood 

ratio, and logical necessity (LN), or negative likelihood ratio. It determines the class 
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membership of a new instance from the LS weights of all matched characterizations 

and from the LN weights of all unmatched characterizations. The system also 

accumulates all the counts needed to calculate the Bayesian weighting measures as it 

moves forward over the data stream, allowing the Bayesian measure weights to be 

incrementally updated.  

STAGGER seeks a succinct concept description that is generated from simple 

toward complicated descriptions. The concept description is refined only when the 

system fails to predict the class membership of a new instance. In such a case, the 

system applies a set of heuristics guided by the Bayesian evaluation measures to 

prune an established characterization that proves ineffective (i.e., its evaluation 

measure falls below a threshold) and/or to add a new generated characterization 

element whose weight surpasses the threshold. This process allows the system to 

respond quite effectively to concept drift.  

Retaining the accumulation of all counts for the Bayesian measure update 

poses the strength as well as the weakness of the system. The history of counts has 

the effect of requiring about the same number of training instances to abandon a 

concept definition as that of instances to build it. This behavior, which is also 

empirically found in psychology of learning, allows STAGGER to model the resilience 

of concept learning appropriately. However, over-trained concept description also 

causes the system to slowly adapt to a new target concept when a concept drift does 

occur. Although not explicitly mentioned, STAGGER can be viewed as a concept drift 

learner with a single, very large window size and thus constitutes its weakness (The 
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window size in STAGGER actually increases linearly with the number of instance seen 

from the data stream, which can be considered as a window with infinite size). 

2.1.2  FLORA Family Algorithms 

Widmer and Kubat (1996) developed the FLORA family of learning algorithms. The 

system induces current target concept from a single window of recent examples by 

incrementally learning a new instance and forgetting the least recent one within its 

window.  A concept description is represented by three description sets; one 

description covers both positive and negative examples within the window while the 

other two consistently cover only positive instances and only negative instances, 

respectively. Each description set is essentially a disjunctive normal form (DNF) 

formula without negation. The prediction of a new instance is based on its match with 

the description set covering only the positive instances.  

FLORA-2 is the first realization of the FLORA algorithm that dynamically 

adjusts the window size during the learning process. The window size is quickly 

reduced when a concept drift is suspected, allowing the system to rapidly forget 

irrelevant older instances and focus only on examples relevant to a new concept. It 

then gradually increases the window size until a stable concept is reached in which 

case the window size is kept fixed. The adjustment of window size is based on two 

indicators: system’s performance and the complexity of concept description. The first 

indicator is continuously monitored from the past prediction on a fixed number of 

recent instances. In the second indicator, the number of description items needed to 
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cover instances determines concept description complexity.  A low system 

performance or a high number of description items is an indicator for the concept drift 

occurrence. This ability allows FLORA-2 to flexibly respond to concept drift and can 

avoid the problem of slow adaptation in an over-trained concept.  

Another version, FLORA-3, is also able to store a new stable concept 

established from examples in the window and re-use them later when context change 

occurs and one of the stored concepts fits the current situation.  When a concept drift 

is detected, the system will find the best candidate among the stored concepts based 

on their performance on classifying instances in the current window. The best 

candidate is then re-generalized using examples in the current window. If the updated 

best candidate is better than the current concept description, with respect to the 

concept complexity, then the generalized best candidate will replace the current 

concept description. The empirical experiments that had been conducted reveal that 

retrieval and modification of stored concepts increase the system’s performance if old 

concepts do re-appear but it also could be erroneous by replacing current concept 

with a wrong stored concept. 

The last version, FLORA-4, was developed to counter the brittleness of FLORA-

2 and FLORA-3 in dealing with noise.  As its predecessors strictly maintain the 

consistency of their concept descriptions with respect to the instances covered, the 

presence of noise in the instances causes unstable behavior that unnecessarily change 

the concept descriptions.  FLORA-4 addresses this problem by applying a statistical 

confidence measure in maintaining the set of reliable generalizations. 
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Despite the flexibility in reacting to concept drift and in handling noise, the 

FLORA family of algorithms in general is designed under two assumptions. First, the 

rate of change in the target concept is rather low, which gives a chance for the system 

to see a sufficient number of instances for establishing a stable concept during the 

phases between periods of change. Clearly, the system will not work properly, at least 

not producing satisfactory performances, if the rate of change is high.  

The second assumption is that only the latest examples, which are kept in the 

window, are relevant to current target concept. Although this assumption is 

reasonable as well as intuitive, particularly in dealing with concept drift, it is 

inherently limited to tracking only a single target concept at a time. In multiple-

concept tracking, however, not all data representing the instances of current target 

concepts are recent because the relevance of some concepts introduced earlier may 

not have been denied, i.e., still being a part of target concepts. In contrast, some 

concepts introduced at later time may be no longer relevant. Therefore, the instance 

recency assumption does not hold in the case of multiple-concept tracking.  Although 

FLORA-3 is able to store and retrieve old concepts, its sole purpose is to speed up the 

learning of recurrent concept while the underlying problem remains. Increasing the 

window size to the extent that will include the older target concepts does not help 

overcoming the problem because irrelevant instances may still lie between the most 

and the least recent examples in the window.  
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2.1.3 METAL Family Algorithms 

In more recent work, Widmer (1997) exploits contextual clues, i.e., context-defining 

attributes, for tracking context changes. Borrowing his example, a person driving 

through a country border is likely to notice a systematic change in the distribution of 

vehicle license plates. In this example, license plate is the contextual attribute that 

indicates a change of the environment, suggesting one to adapt to the new rule. The 

contextual attributes, which are essentially not different from other attributes, are 

automatically detected by the learning system provided that such attributes exist. 

More specifically, an attribute is considered to be contextual if the distribution of its 

feature (i.e., attribute value) that co-occurs with a predictive feature is significantly 

different (measured by �� 2, i.e., the chi-square statistic) from the unconditioned 

distribution of the predictive feature. A predictive feature is an attribute value whose 

distribution in a class within a fixed window of recent instances is significant (also 

measured by ��2). 

Widmer proposed a two-level learning model consisting of a meta-learner and 

a base level learner that can detect contextual clues and react accordingly to a context 

change. Given a new instance, the meta-learner attempts to identify the contextual 

clues using the whole history of instances. The base level learner performs the 

classification task of the new instance; the contextual attributes identified by the 

meta-learner are used to focus the learning process on information in the window that 

is relevant to current context.  
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Two specific systems from this general model have been implemented in 

METAL-B and METAL-IB. The former version uses a naïve Bayesian classifier as the 

underlying learner. The base level learner in METAL-B performs the classification 

task based on learning from instances in the window whose contextual attribute 

values are the same (appears to belong to the same context) as that of the new 

instance to be classified. If no contextual attribute is found by the meta-learner, then 

all instances in the window are used for classification. The latter version, METAL-IB, 

employs instance-based classifiers as their underlying learning algorithms. The 

contextual information in METAL-IB is used for feature and exemplar weighting. 

The METAL systems can be viewed as concept drift algorithms employing two 

windows. One window, which is used for the meta-learner, has a large size, 

increasing linearly with the number of instances. Another is the fixed size window 

that supplies the instances to the base-level learner for classification. Although the 

detection of concept drift is handled by the meta-learner, determining the right 

window size for the base-level learner is still a tricky issue. As discussed in (Widmer, 

1997), the effectiveness of the meta-learner diminishes with the smaller window size 

and if the window is too narrow, the base-level learner lacks of needed data to learn 

the context. Too large a window, on the other hand, could introduce many conflicting 

instances that would prevent the system from finding predictive features and then 

could disallow the meta-learner from identifying contextual attributes. Moreover, 

since the actual concept is derived from the fixed size window of recent examples, the 
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METAL systems in general inherit the limitation of the single windowing approach, 

i.e., tracking only a single target concept. 

2.1.4 SPLICE-based Family Algorithms 

Harries et al. proposed a different approach for concept drift learning (Harries, 

Sammut, & Horn, 1998; Harries & Horn, 1998). Unlike typical concept drift learner 

in that the learning process is on-line and incremental, they take an off-line, batch 

learning approach in a supervised mode. During the batch-learning phase, the system 

attempts to identify a set of stable concepts through contextual clustering based on 

the regularities that emerge from a given training data sequence. It then uses the 

identified stable concepts as the basis for on-line prediction.  

A family of SPLICE algorithms has been developed to perform contextual 

clustering from a training data sequence. Each instance is time-stamped based on its 

position in the sequence. The time stamps given to the training data form a 

continuous attribute that can indicate a change of context in the data series. A 

decision tree is then induced from the training data set using a batch learner (e.g., 

Quinlan’s C4.5). Any test on attribute time in the induced decision tree is used to 

partition the data set into intervals and their partial concepts. A contextual cluster is 

identified from a set of intervals that have similar contexts, i.e., if the partial concept 

of one interval also covers the instances in another interval.  The SPLICE-1 algorithm 

obtains the final stable concepts by applying C4.5 again on the resulting initial 

contextual clusters (Harries & Horn, 1998).  The SPLICE-2 algorithm improves the 
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quality of partitions by iteratively refining the boundaries of contextual clusters 

(Harries, Sammut, & Horn, 1998) until a maximum number of iterations has been 

reached or no change happens in the last two iterations.  

The system performs on-line prediction using a suitable stable concept that 

has been identified during the off-line learning phase. Two alternative methods have 

been suggested for selecting the most appropriate stable concept. The first method is 

to use a simple voting mechanism that selects a stable concept with highest 

classification accuracy on a window of recent instances. The second method is to 

apply a meta-classifier on a new instance for deciding which stable concept is 

appropriate for predicting the instance. After stable concepts have been identified 

during the off-line learning, all training data are copied and re-labeled by their 

corresponding stable concepts. The meta-classifier can then be constructed using 

C4.5 on the newly labeled training set. 

The system’s performance thus depends on the quality of stable concepts and 

the ability to correctly select a stable concept for classification. It adapts to concept 

drift by switching from one stable concept to another, similar to the FLORA-3 

algorithm that retrieves a stored concept, during the prediction processes. The use of a 

window for selecting a stable concept, as described above, limits the system’s ability 

to tracking only a single target concept while employing a meta-classifier for the 

selection process enables the system, at least theoretically, to learn multiple target 

concepts simultaneously. However, because the stable concepts are identified only 
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during the off-line learning, during the prediction phase the system is unable to 

predict if an instance belong to a new stable concept. 

The method proposed in this research is similar to those of FLORA-3 and 

SPLICE in that stable concepts are stored and re-used whenever needed. These stable 

concepts are continuously maintained in the concepts hierarchy. It is also similar to 

METAL and SPLICE in that context is exploited in meta-level learning to detect the 

presence of concept drift. However, the existing methods assume the existence of a 

large number of labeled examples in order to work properly despite the similarities. In 

contrast, the proposed method is specifically designed to work when the number of 

labeled examples is much less.      

2.2 Approaches to Adaptive Information Filtering 

Information filtering is a task that classifies texts from a stream of text documents 

into either a relevant or an irrelevant category with regard to a user’s interests (Hull, 

1998).  This section describes major methods for modeling user profiles, which 

provide the basis for the information filtering task. Changing interests of the user over 

time in such an environment is inevitable so that a system that performs the task must 

be able to continuously adapt to the new user interests, i.e., by learning from the user 

relevance feedback, in order to maintain the system’s high performance. Thus, 

tracking a user’s interests represents concept drift learning in information 

filtering/retrieval domain. Similar to the concept drift learning, most works in 
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adaptive information filtering suffer from requiring a large number of labeled 

examples. 

2.2.1 Rocchio Algorithms 

Rocchio’s relevance feedback is an algorithm for learning user interests that has been 

well studied in information retrieval (Rocchio, 1971; Salton & McGill, 1983). 

Systems employing the Rocchio algorithm typically assume the stability of user 

interests and apply the algorithm as a batch process. The algorithm nevertheless can 

be straightforwardly modified to learn a sequence of feedback documents 

incrementally, and hence is able to adapt to changing user interests. The adaptability 

to react to the changing interests can be controlled from the weights assigned to a 

positive and a negative feedback document. However, the linearity in updating the 

user interest representation makes it difficult to quickly remove a long-standing 

interest, similar to the problem faced by the STAGGER algorithm. The single 

descriptor representation of the Rocchio algorithm also inherently reduces the 

algorithm’s ability to learn multiple interest categories. 

Allan (1996) explores the effectiveness of the Rocchio algorithm for 

information filtering by employing incremental feedback technique. Allan's 

experiments demonstrate that comparable results with the full judgments could be 

obtained using only a few incremental judgments (e.g., 10% of full judgments, 

corresponds roughly from 7 to 30 documents per query). He also empirically showed 

that the drift of user queries, i.e., queries whose notions of relevance change, could be 
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handled gracefully only when the greater proportion of feedback documents comes 

from the more relevant context. In spite of its importance in adapting to a new 

interest, determining the appropriate number of recent relevance judgments within a 

window remains an unsolved issue from this work. 

An adaptive text-filtering task that performs on-line learning from an 

incoming stream of documents has been the research focus of the TREC-7 filtering 

track (Hull, 1998). Rocchio's relevance feedback algorithm is adopted in most 

systems participating in this track, and the best performance is achieved by systems 

that perform adaptive thresholding, little learning and minimal query expansion.  

2.2.2 Window-based Approaches 

Klinkenberg and Renz (1998) address the problem of tracking user interests using a 

window of recent document feedback. Unlike in typical on-line learning setting, the 

method assumes that the input of data stream arrives in batches, each batch containing 

an equal size of document set (e.g., 130 documents in this case). The window size, 

which is measured by the number of batches, is adaptively adjusted by monitoring the 

system’s predictive performance. Specifically, the deviation of the system’s 

predictive accuracy, precision or recall from learning documents in the window is an 

indicator of change in interests. Based on the extent to which the current system’s 

predictive performance deviates from its average performance (over the last m 

batches), the window size is adjusted accordingly similar to the window adjustment 

of the FLORA-2 algorithm. The system adapts to the new interests by relearning 
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batches in the window. Klinkenberg and Renz experiment with various classifiers 

(e.g., Rocchio, Naïve Bayes, KNN, C4.5, etc.) and show that systems with adaptive 

window sizes consistently outperform those that employ fixed window sizes and 

those that learn only from documents in the last batch.  

More recently, Klinkenberg and Joachims (2000) propose another window 

adjustment algorithm, also in a setting where the input stream is in a form of batch 

sequence. The window size is dynamically determined so that it maximizes the 

system’s predictive performance on the last batch.  More specifically, it trains the 

Support Vector Machine (SVM) classifier using various window sizes on previously 

seen batches, except the last batch, and selects the window size that minimizes the 

estimated generalization error on examples in the last batch seen. A further attempt 

has also been made to extend the work by employing Transductive SVM (TSVM) 

instead of the standard SVM classifier for solving a similar problem to that addressed 

in this dissertation (Klinkenberg, 2001). TSVM is an extension of SVM that takes 

into account unlabeled data on the test set (the next batch data) during the learning 

process so that the misclassification of data in that particular test set is minimized. 

However, this approach has never been evaluated using fewer labeled examples, 

making the effectiveness of this method unclear.  Besides, there is still a controversy 

regarding the TSVM classifier itself. Specifically, using the test set for learning is 

invalid as a means of inductive inference in the first place.  An analysis based on the 

standard Maximum Likelihood Estimate (MLE) / Fisher information also indicates 
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that TSVM in its current form is likely not to be helpful in general because it may 

mislead the classifier into maximizing wrong margins (Zhang & Oles, 2000). 

2.2.3 Intelligent Agents for Information Filtering 

Modeling user interests has also been an active research area in the Intelligent Agents 

community dealing with information filtering related problems. Although many agent 

systems with embedded user-profile learning modules have been developed, only a 

few of them address the problem of changing interests. Among of these agents are 

PVA (Chen, Chen, & Sun, 2002), ALIPES (Widyantoro, Ioerger, & Yen, 1999), FAB 

(Balabanovi�, 1997 & 1998), SIFTER (Lam, Mukhopadhay, Mostafa, & Palakal, 

1996), AMALTHEA (Moukas & Zacharia, 1997), NEWT (Sheth, 1993). An interest 

category in the profile of these agents is represented by a descriptor (feature vectors), 

which is a list of feature and its weight pairs. 

NEWT and AMALTHEA are multi-agent systems for personalized information 

filtering. Both systems employ evolutionary algorithms where populations are 

composed of individual agents each of which acts as a filter for an interest category. 

When the user interests change, the filter agents assigned to the old interests are 

eventually left out from the population by evolution and natural selection while new 

individual agents are created to filter the new interests. The fitness of each agent, 

which affects the agent survivability, is determined from the user’s relevance 

feedback. AMALTHEA is essentially an extension of NEWT. While NEWT employed 

only a single type of agent (e.g., those for information filtering), AMALTHEA also 
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introduces information discovery agents whose relationship with the filtering agents 

is based on a simple economic model.  Due to the nature of the algorithm, a great 

amount of effort from the user is required to rate information received. 

SIFTER (Smart Information Filtering Technology for Electronic Resources) 

is a document filtering system developed by Lam et al. (1996). The system has been 

applied to filtering LISTSERV mails as well as research reports in computer science 

domain. Its algorithm for updating the user profile, which is designed to be able to 

detect and adapt to the shift in user interests, consists of two-level (meta-level like) 

learning approaches. The lower level employs a standard reinforcement-learning 

algorithm to learn the user interests. The upper level uses a Bayesian method to detect 

changes in the user model. The learning process in the lower level is reinitialized 

when the upper level detects the shift in the user interests. 

 FAB is a Web page recommendation service that combines the technique 

based on the Web page contents and the recommendations of other users, often called 

as collaborative filtering (Balabanovi�, 1997 & 1998). It uses the user feedback to 

update its user profile, which constitutes short-term learning. A user’s interest that 

changes over time is modeled using a simple decay mechanism. For example, all 

weights in the profiles are multiplied by 0.97 at regular intervals. 

ALIPES is a newsagent that regularly retrieves information from on-line 

newspapers and magazines on the Internet and presents a personalized news page to 

its users (Widyantoro, Yin, Seif El-Nasr, Yang, Zacchi, & Yen, 1999). A user’s 
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interest category in this system is decomposed into long-term and short-term interest 

models, and the user profile maintains the representation of multiple interest 

categories. The system learns the user profile from explicit user feedback and adapts 

to changing user interests by exploiting negative examples and decaying the user 

profile’s weights. The MTDR learning algorithm described in Chapter III in this 

dissertation is a significant improvement and refinement over the original learning 

algorithm of ALIPES. 

Personal View Agent (PVA) is a software agent for tracking, learning and 

automatically organizing documents from the Internet (Chen, Chen, & Sun, 2002).  A 

proxy (one of the system’s components) logs every browsing request made by a user 

and the system uses this information to build the user’s profile, assuming that a 

document visited longer that a threshold (e.g., 2 minutes) can serve as a positive 

feedback document. This allows a user profile to be learned automatically without 

requiring an explicit user feedback. A user profile in the system is represented by a 

category hierarchy called a personal view. The personal view is dynamically 

constructed based on the implicit feedback document received from the proxy whose 

classification in the personal view is guided by a pre-defined master category 

hierarchy called world view. PVA adapts to changing user interests by decaying the 

feedback document, which will eventually remove any interest category that has not 

been recently visited from the personal view. This method is essentially the same as 

learning from a window of recent interest categories seen. 
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There are also many other systems that have been developed for information 

filtering task where their learning algorithms cannot be used (or have not been 

designed) to handle the changes in user interests. Table 2.2 summarizes most of these 

systems and their major learning techniques or features.  These systems either simply 

adopt the standard convergence-type machine-learning algorithm or employ a single-

descriptor model for the representation of user profile.  The typical machine learning 

System Main Methods 

SYSKILL & WEBERT 
(Pazzani & Billsus, 1997) 

Naïve Bayes Classifier 

NEWSDUDE (Billsus & 
Pazzani, 1999) 

Hybrid Naïve Bayes and Nearest Neighbor 

WEBMATE (Chen & Sycara, 
1998) 

Multiple TFIDF-based descriptor representations 

NEWSWEEDER (Lang, 1995) Minimum Description Length algorithm 

WAIR (Seo & Zhang, 2000) Implicit Feedback and Reinforcement Learning  

PIN (Tan & Teo, 1998) Fuzzy Adaptive Resonance Associative Map 

INFOSCOPE (Fischer & 
Stevens, 1991) 

Heuristic rules for automatic profile generation 
and direct profile update by user  

SIFT (Yan & Garcia-Molina, 
1999) 

User-supplied keywords and relevance feedback 

 
Table 2.2: A list of traditional information filtering systems. 
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algorithms applied on some of these systems cannot be applied in an on-line fashion, 

which limits their utility. 

Employing a single-descriptor representation, which is a single list of features 

and their weights, lacks the capability to adapt flexibly to a user’s changes in 

interests. Given a sequence of negative feedback to a previously learned interest 

category, and/or a sequence of positive feedback representing a new interest to be 

learned, an algorithm built on this single-descriptor representation adapts to this new 

interest at a fixed, pre-determined pace. Systems that employ a single-descriptor 

representation as above make an implicit assumption that user interests change at a 

constant rate.  

2.3 Theoretical Results on Concept Drift Learning 

Concept drift learning has also been studied in the field of computational learning 

theory. Results from this field mainly establish theoretical bounds based on some 

assumptions regarding the number of examples to be tracked within a window and the 

kind of drift that can occur.  

The first theoretical studies on tracking a concept as it evolves over time have 

been conducted by Kuh, Petsche, and Rivest (1991). They provide bounds on the 

number of examples needed for adapting to concept changes and the maximum rate 

of concept changes that can be tracked by a batch tracker (a tracking algorithm that 

maintains a sliding window of recent examples and learns from all examples in the 

window). The bounds are dependent only the complexity of target concepts, 
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theoretically measured by the VC-dimension of the concepts. The adaptation to a new 

concept is faster if the new concept is similar to the previous concept. 

Helmbold and Long (1994) analyze a concept drift problem on domains 

whose target concepts change continuously but at a slow drift rate. They evaluate 

tracking algorithms that minimize the number of disagreements with the most recent 

examples based on the rate of target concept movement that can be tolerated between 

examples. More specifically, a general-purpose algorithm can tolerate concept drift 

rates up to )
1

ln/(2
1 ε
ε dc  where ε  is the desired error rate, and d is the Vapnik-

Chervonenkis dimension of the concept class (Blummer et al., 1989). A more 

computationally efficient variant of this algorithm can tolerate target concept 

movements of at most )
1

ln/( 22
2 ε
ε dc . They also provide results for the classes of 

half-spaces and axis-aligned hyper-rectangles showing that no algorithm can tolerate 

a concept drift greater than nc /2
3ε .  

The main result above is essentially a special case of a later work due to Barve 

and Long (1997), which constrains the allowable drift rate by ensuring that 

consecutive probability distributions have small total variation distance. The result 

was subsequently improved by Long (1998) to d/3ε for agnostic learning and 

to d/2ε for the realizable case.  

Blum and Chalasani (1992) address the problem of learning switching 

concepts. Rather than slowly drifting through the concept spaces, their work allows to 
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switch between concepts in the class, representing a target concept that changes 

rapidly and abruptly. They restrict their framework on the number of concepts visited, 

or on the frequency of switching. The main results are mainly the computational 

complexity of predicting switching concepts on various switching concept models. 

Bartlett, David and Kulkarni (1996) investigate the estimation of a target 

function sequence from a sequence of labeled, random examples. They provide the 

bounds on the sample complexity and the allowable drift rate of the target function 

estimation problem on three models. The first model allows infrequent but arbitrary 

changes of target concept, similar to Blum and Chalasani’s work switching concepts. 

The second model allows target concept changes that correspond to slow walks on a 

graph whose nodes are functions. The last model limits the changes to small concept 

sizes, measured by the disagreement between consecutive target functions. They also 

studied the sample complexity and drift rate bounds for prediction of changing 

concepts. 

WINNOW is an on-line algorithm for learning k-literal disjunctions that 

associates each disjunction with a weight and performs multiplicative update to its 

weights. Auer and Warmuth (1998) extend the WINNOW algorithm into SWIN 

(shifting WINNOW) to deal with target concepts that change over time. SWIN makes a 

stochastic prediction that returns one with a probability equal to the current weights. 

The weights of disjunction are updated only when SWIN makes a prediction mistake, 

and lower bound weights are added to guarantee a quick adaptation to the changes of 
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disjunction. They also provide worst-case bounds on the expected number of mistakes 

on any sequence of examples and any kind of target drift. 

Herbster and Warmuth (1998) consider the problem of on-line prediction from 

a pool of experts in which the best expert might change as the patterns in the on-line 

sequence change. They extend the weighted majority algorithm (Littlestone & 

Warmuth, 1994) that maintains a single weight for each expert. The master algorithm 

combines the predictions of each expert according to their current weights. The 

experts’ weights are then exponentially updated with respect to the past loss incurred 

by each expert. In order to be able to effectively track the sequence of best experts, 

they also redistribute a portion of an expert weight to the weights of other experts. 

Their theoretical results are mainly proofs for the guaranteed loss bounds of the 

master algorithm, relative to the loss of the best expert, for a variety of weight 

redistribution methods.  

More recently, Bousquet and Warmuth (2002) propose a method for tracking 

a sequence of best experts in domains where the experts in the best partitions are from 

a small pool of m out a much larger set of n experts. Building on the methods 

developed by Herbster and Warmuth, they solve the problem by adding a mixing 

update that takes into account past posteriors to update the current weight of each 

expert. Loss bounds analysis on various coefficient-mixing schemes are also 

provided.  
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CHAPTER III 

ALGORITHMS     

FOR LEARNING CHANGING USER INTERESTS 

 

This chapter presents a novel concept drift learning algorithm specifically developed 

for information filtering domains. The primary focus is to describe and evaluate a 

Multiple Three-Descriptor Representation (MTDR)-based approach for learning 

changes in user interests. Significantly refined from a master thesis work 

(Widyantoro, 1999), this chapter extends a previous work (Widyantoro, Ioerger, & 

Yen, 2001) by (1) evaluating the MTDR algorithm effectiveness on other aspects 

using a larger test collection, and (2) providing its performance comparison with 

other major algorithms. It demonstrates the advantage of MTDR algorithm for 

tracking multiple target concepts simultaneously, particularly when the tracking task 

involves long-live and short-live target concepts. This chapter also points out the 

limitation of MTDR and other existing concept drift learning algorithms for learning 

from a stream containing a few labeled examples. 

The rest of this chapter is organized as follows. Section 3.1 describes basic 

representations and related techniques typically employed in information filtering 

domain. The next three following sections describe the Rocchio algorithm, the 

MTDR algorithm and two other generic concept drift learning algorithms based on 

the window of recent examples. The experiment procedures are presented in Section 
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3.5, and the experiment results on various concept drift learning tasks are then 

discussed in Section 3.6. This chapter concludes by summarizing the key 

contributions of this chapter in the last section. 

3.1 Text Document Processing 

The vector space model (Witten, Moffat, & Bell, 1994) is a commonly used 

representation for describing text documents. In this model, the content of a text 

document is represented by a feature vector in n-dimensional space where n is the 

number of unique terms contained in a document collection. Let D be a text 

document, then { }),(,),,(),,( 2211 nn wtwtwt �  is the feature vector of D where t is a 

term (word) and w is the weight of term t.  

Weighting Document Terms. The text document representation as above 

requires a method to determine the weight of each term. A term’s weight represents 

the degree of importance of the term in a document. A term that is more important is 

usually assigned a higher value than a less important one.  Term Frequency-Inverse 

Document Frequency (TF-IDF) is one of the major weighing schemes that has been 

well studied in the information retrieval literature. This weighing method assumes 

that terms that occur in fewer documents are better discriminators. If two terms occur 

with the same frequency in a document, the term occurring less frequently in other 

documents will be assigned a higher value. More specifically, the importance of a 

term is proportional to the occurrence frequency of the term in each document, and 

inversely proportional to the total number of documents to which the term occurs in a 



 38 

given document collection (Salton & McGill, 1983). The importance of word i, 

denoted by wi, in a document D is calculated as follows: 

��
�

�
��
�
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i
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N
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w log  

where TFi is the frequency of occurrence of term ti in D, DFi is the corresponding 

document frequency, and N is the number of documents in the collection. 

�=
j jTFD  is the length of document, and is used to normalize term frequency in 

order to avoid favoring long documents over short documents.  

Measuring Document Similarity. Given two document feature vectors, a 

similarity measure is needed to assess the degree to which a document matches a 

reference feature vector. This metric is usually used to evaluate documents in order to 

rank them and then filter those that are not relevant to the user interest. In the vector 

space model, the cosine coefficient is the most widely used similarity measure (Salton 

& McGill, 1983). The cosine coefficient calculates the difference in direction 

between two feature vectors, measuring the angle between these feature vectors, 

irrespective of their length. Given documents Di and Dj, the similarity between the 

feature vectors of the two documents according to cosine formula is given by the 

following equation: 
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Text document representation is generally employed to represent a user’s 

interest because the latter is often inferred from the former. Hence, the cosine 

similarity measure above is also an appropriate method for measuring the degree of 

interests. A set of documents is considered relevant to a user’s interests if the cosine 

similarity of the two in vector space representation is high (e.g., closer to one).   

3.2 Rocchio Algorithm  

Rocchio relevance feedback is a query expansion mechanism for improving the 

quality of retrieval results based on relevance feedback in a static collection. It works 

by iteratively reformulating a new query from (1) the query of the preceding retrieval 

request, and (2) a set of relevant and irrelevant documents. Specifically, a query at a 

particular iteration t, denoted by Qt, is of the form of vector 

{ }),(,),,(),,( 2211 nnt wtwtwtQ �= , containing a set of weighted words similar to 

documents retrieved so far. The relevance feedback process then generates the new 

query for the next retrieval iteration { }),(,),,(),,( 22111 nnt wtwtwtQ ′′′=+ �  with altered 

weights iw′ .  

The original Rocchio algorithm for query expansion during the relevance 

feedback process is as follows (Rocchio, 1971; Salton & Buckley, 1990): 

1

1 1
(1 )t t i j

pos negpos neg

Q Q D D
n n

β β−= + − −� �  

where β  is positive constant between 0.0 and 1.0, npos is the number of relevant 

documents, and nneg is the number of non-relevant documents. The parameter β 

(3.3) 
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determines the amount of influence of relevant documents relative to irrelevant 

documents in query modification. The document retrieval process uses the cosine 

similarity measure to rank the retrieval results according to the similarity between the 

new query and documents in the collection.  

Although originally designed to work in a batch process, the Rocchio 

algorithm can be easily adapted for learning changing user interests in incremental 

setting. The algorithm in this setting learns one document, either relevant (positive) 

document Dpos or non-relevant (negative) document Dneg at a time, practically setting  

1pos negn n= =  in the Rocchio algorithm. Naturally, the Rocchio representation is 

suitable for tracking a single target concept. As will be described shortly, this 

algorithm is also adopted for modeling the long-term interest of the MTDR algorithm. 

3.3 MTDR Algorithm  

MTDR algorithm is a concept drift learning algorithm that is crafted for tracking 

multiple target concepts in information filtering domain (Widyantoro, Ioerger, & 

Yen, 2001). The ability for tracking multiple target concepts is based on the 

observation that one can have several interest categories at the same time. The 

development of the algorithm is motivated by the need for capturing the long-term 

and short-term components of an interest category. The algorithm also inherently 

adopts the persistence assumption, which allows it to adapt to the change of short-

term interests without disrupting the presence of long-term interests, and vice versa.   
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Long-term interests (e.g., interests in a research area) represent a user's 

general preferences (Billsus & Pazzani, 1999; Widyantoro, Ioerger, & Yen, 1999). 

These interests are formed gradually over the long run, and are fairly stable after they 

converge. In a concept drift algorithm that learns from a window of recent examples, 

the long-term interest model corresponds to the stable concept and can be acquired by 

applying large window sizes. Consequently, long-term interests tend to be inert, and 

the effort it takes to change the long-term interests could be proportional to the effort 

it takes to build them. On the other hand, short-term interests are very unstable by 

nature. For example, interests in current hot topics can change on a day-to-day basis. 

Such interests are inevitable and a common phenomenon in real life. Applying small 

window sizes can capture the short-term interests that correspond to unstable 

concepts in concept drift learning, enabling one to keep up with changes in the world 

quickly.  

The MTDR algorithm attempts to learn the long-term and short-term interest 

models of an interest category and then to tradeoff the shortcomings and benefits 

between these two models. Conceptually, each interest category can be derived from 

a large and a small window of recent examples that are maintained simultaneously. 

Hence, it would require multiple window sets for tracking multiple interest 

categories. Instead of maintaining explicit windows, the MTDR algorithm creates 

explicit representations for each interest category model and applies an incremental 

update method that mimics the behaviors of having a large and small window in a 

window-based approach.  
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3.3.1 Interest Category Representation 

The rationale is to represent long-term and short-term interest models of an interest 

category in separate descriptors and then to combine both models to get a more 

expressive representation; that is, a three-descriptor representation. The three-

descriptor model is then extended to learn multiple user interest categories.  

Modeling Long-term Interests. The motivation behind the modeling of long-

term interests is to capture a user's general interests (i.e., stable concepts). The long-

term interest model is built up gradually and the performance of the model is 

expected to improve consistently in-line with the increasing number of feedback 

examples learned. Consequently, the long-term interest model lacks the ability to 

respond promptly to recent feedback particularly when the model has learned from a 

large number of examples in the past.  

The Rocchio algorithm satisfies the requirements to model long-term user 

interests over the long run since the effect of the Rocchio weight update rule is to 

cause a gradual change in interests. A long-term interest is modeled by a long-term 

descriptor LTD, which is updated using the following learning rule adopted from the 

Rocchio algorithm:  

negpostt DDLTDLTD )1(1 ββ −−+= −  

where  10 ≤≤ β .  The degree of interest in D with respect to LTD, denoted by 

)(DI LTD , is simply the similarity value between D and LTD, i.e., 

),sim()( LTDDDI LTD = . 

(3.4) 
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Modeling Short-term Interests. The objective of short-term interest 

modeling is to adapt quickly to recent feedback. This ability is crucial particularly 

when the recent feedback reflects transient interests of the user. During the transition 

of change in an interest category (i.e., concept drift), the short-term interest models 

are also expected to help quickly eliminate the influence of the hard-to-forget long-

term interests.  

The short-term interest component is modeled by a pair of descriptors 

),( NegDPosDSTD =  where PosD is a positive descriptor for representing the 

category of recent interest, and NegD is a negative descriptor for representing 

specific subject not of interest. Given a positive feedback document D, the update of 

the positive descriptor is carried out as follows: 

DPosDPosD tt αα +−= −1)1(  

where α = (0,1) is the learning rate. It can be easily shown that for a sequence of 

positive documents Di, the positive descriptor can be formulated by 

�
=

−−=
t

i
i

it
t DPosD

1

)1( αα  

A similar computation is defined for learning from a negative feedback document by 

exchanging PosD and NegD.  

The cumulative discounted weight update rules applied for the short-term 

descriptors allow new interests to take over the representation space of the old 

interests as quickly as needed by setting the appropriate value of the learning rate. 

(3.5) 

(3.6) 
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The degree of interest in a document D according to the short-term interest model, 

denoted by )(DI STD , is given by the difference between the similarities of D to the 

positive and negative descriptors. 

),sim(),sim()( DNegDDPosDDI STD −=  

Positive value of )(DI STD  indicates that D is interesting, and vice versa.  

An Interest Category Model. An interest category is represented by three 

descriptors combining the descriptors from the long-term and short-term interest 

models. Thus, an interest category is a three-descriptor model ),( STDLTDTDR = . 

Given a document D, the interest in D according to TDR, denoted by )(DITDR , is a 

mixture of the interests according to the long-term and short-term models, defined by 

( ) ( ) (1 ) ( )TDR LTD STDI D I D I Dη η= + −  

where  η is a constant parameter between 0.0 and 1.0 that determines the  impact of 

the long-term and short-term interest models in the three-descriptor model.  

3.3.2 Learning Multiple Interest Categories 

The three-descriptor model is designed to learn a single interest-category concept. 

This section describes an extension of this model for learning multiple interest 

categories using multiple three-descriptor representations. In principle, the algorithm 

maintains { }mTDRTDRTDRMTDR ,,, 21 �=  where each TDR is a distinct interest 

category concept. The interest in any document D given MTDR, denoted by 

(3.7) 

(3.8) 
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)(DI MTDR , is obtained from the maximum value of the interest in D for any TDR in 

MTDR. That is, )}({max)( DIDI iTDRiMTDR −= . 

Figure 3.1 describes the MTDR algorithm for learning and tracking the 

changes in multiple interest categories. A new interest category model will be created 

to store the category concept of a new document if the content of the document is 

MTDR Algorithm  ( fbD, : the relevance feedback document) 
 
Let TDR j be the jth interest category model of  MTDR, 

    M be the maximum number of TDRs maintained in MTDR, and 

    θ is the decision threshold constant (0,1). 

 
Let ),sim( iTDRDs = such that 

   sim( , ) max {sim( , ), sim( , ), sim( , )}i j j j jD TDR D LTD D PosD D NegD=  

    where jLTD , jPosD and jNegD are the three descriptors of MTDRTDR j ∈ . 
 
If  )( θ<s   

    If   )( MMTDR <  

         Create a new category TDR k using fbD, . 

    Else 
         Update the long-term and short-term interest models of TDRi using fbD, . 

Else 

    For θ≥∀ ),sim( mTDRDm   

        Update the long-term and short-term interest models of TDRm using fbD, . 
 

Figure 3.1: MTDR algorithm. 
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different enough from all existing models. A decision threshold θ is used to determine 

when the highest similarity to an existing interest category is low enough to justify 

creating a new interest category model. 

The similarity of a document to an interest category model is defined as the 

maximum similarity between the document and either the long-term descriptor, the 

positive descriptor, or the negative descriptor of the model. When the similarity of a 

document to existing models exceeds a decision threshold θ for several interest 

category models, all these models are updated in order to maintain the consistency 

among similar target concepts (Widyantoro, Ioerger, & Yen, 2001). The parameter M 

is applied to limit the number of interest category models that can be generated in a 

multiple three-descriptor model. 

3.4 Window-based Concept Drift Learning Algorithms 

A window-based algorithm as shown in Figure 1.1 adapts to concept drift by sliding a 

window over recent examples and relearning a target concept from examples within 

the window. Variants of this method mainly differ from one another on the base 

learner employed for inducing the target concept and the method for adjusting the 

window size. Figure 3.2 provides the algorithm adapted for text document domain. It 

consists of two main components typically exist in an on-line learner.  For each new 

relevance feedback document presented, the first component attempts to predict the 

document relevance by applying the Prediction() function and uses the relevance 

value that accompanies the document to check the accuracy of its prediction. It 
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returns one (zero) for a correct (an incorrect) prediction. The prediction results are 

maintained in a list P for monitoring the system performance whenever needed. 

The second component performs the actual learning. For simplicity, the new 

target concept is regenerated periodically after seeing k new documents by relearning 

n most recent feedback documents. n is the window size determined by the 

Window-based Algorithm ( ,D fb : the relevance feedback document) 
Input: 
     D = Document. 
     fb = {1,0}, 1 for relevant document and 0 for irrelevant document. 
 

Initialization:   
    S = ∅ , a list of relevance feedback documents in order of arrival time. 
    C = null, a target concept.  
    P = ∅ , a list of prediction results for performance monitoring. 
      

On observing a feedback document D with relevance value fb: 
    Concatenate D at the end of S. 
    If  )( nullC ≠ then 

         Let  p = 1 if Prediction(D) = fb, or p = 0 otherwise. 
         Concatenate p at the end of P. 
    End-If 
     
Target Concept Learning: 
      n = GetWindowSize(P). 
      DLIST = Get the most recent n documents from S. 
      C = LearnTargetConcept(DLIST). 

Figure 3.2: Window-based concept drift learning algorithm. 
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GetWindowSize() function. If the algorithm employs a fixed window size, the 

GetWindowSize() function returns a pre-defined constant value. The window size n 

can also be determined by an adaptive window adjustment heuristic. The 

LearnTargetConcept() function induces the target concepts derived from the n recent 

documents using a selected concept learner. 

3.4.1 Adaptive Window Adjustment Heuristic 

Typical adaptive window adjustment heuristics (Widmer & Kubat, 1996; Klinkenberg 

& Renz, 1998) adjust the window sizes based on the changes in the system’s 

predictive performance. The details of these heuristics are generally domain 

dependent. Figure 3.3 describes the heuristic implemented in the window-based 

concept drift algorithm used in this chapter, which has the same performance-based 

adaptation principle as those in the existing heuristics. The system’s predictive 

performance is calculated from the outcomes of a fixed number of past predictions. 

Let 1−tAccuracy  be the system’s predictive accuracy measured when a 

concept Ct-1 is learned at time ( 1−t ) using a window of size 1−tWindowSize . After 

predicting the class of k new examples using the learned concept Ct-1, let tAccuracy  

be the new system’s predictive accuracy that incorporates the prediction outcomes on 

the new examples. The heuristic will expand the window if it observes a performance 

increase (e.g., 1−> tt AccuracyAccurracy ) so that the new window size, e.g., 

tWindowSize , will include both older examples for generating Ct-1 and the new k 
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Figure 3.3: Window adjustment heuristic algorithm. 

Window-Adjustment-Heuristic Algorithm 
Input: 
     P = {1|0}*, a sequence of prediction results where 1 or 0 indicates a correct or  
                        an incorrect prediction. 
 

Initialization:   
    Accuracy0 = 0, previous predictive performance. 
    #PastPred = 10, the number of past predictions for performance assessment. 
    WindowSize = PastPred. 
      
Algorithm: 

If  ( >P #PastPred) then 

    Let # 1

#

P

i
i P PastPred

t

P

Accurracy
PastPred

= − +=
�

 

    If  )( 1−> tt AccuracyAccurracy  /* predictive performance is increasing */ 

        /* increase the window size to include unaccounted k new examples */ 
        WindowSizet = WindowSizet-1 + k 
    Else 
        If )( 1−< tt AccuracyAccurracy  /* predictive performance is decreasing */ 

            /* reduce the window size proportionally to the current performance */ 
            WindowSizet = Max {2, Accuracyt * WindowSizet-1} 
        Else 
            /* predictive performance is stable */ 
            If ( 0.5)CrntAcc ≥  /* stable at a higher accuracy */ 

                /* increase the window size by one */ 
                WindowSizet = WindowSizet-1 + 1 
            Else 
                /* reduce the window size when stable at a lower accuracy */ 
                WindowSizet = Max {2, Accuracyt * WindowSizet-1} 
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examples. The window size is proportionally reduced with respect to current 

performance if it either decreases from previous performance or is stable at a lower 

accuracy. If the predictive performance is stable at a higher accuracy, the window is 

slightly increased.  

3.4.2 Base Learners 

A base learner carries out the LearnTargetConcept() function in the window-based 

concept drift learning algorithm. For the evaluation of this algorithm, this dissertation 

considers two widely used learning methods as the base learner: Rocchio and k 

Nearest Neighbor (KNN).  For reference convenience, Window-Rocchio algorithm 

will be used to denote the window-based learning algorithm that employs the Rocchio 

learner, and a version that uses the KNN base learner will be called Window-KNN 

algorithm.  

In the Window-Rocchio algorithm, the positive and negative examples in 

DLIST, which contains the n most recent relevance feedback documents, are equally 

weighed and the learning process in the Rocchio algorithm is performed using 

Equation 3.3. Let DRocchio be the Rocchio descriptor, that is, the concept generated by 

the Rocchio algorithm.  The prediction is performed by thresholding the similarity 

between a document D and the Rocchio descriptor DRocchio. Hence, the Prediction() 

function in Figure 3.2 is defined as follows: 

1 if ( , )
( )

0 otherwise
Rocchio

Rocchio

sim D D
Prediction D

θ≥�
= 	



 (3.9) 
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where θ is the decision threshold for the Rocchio classifier. 

The Window-KNN method learns by simply storing all the given examples in 

DLIST.  Let DKNN be the k documents in DLIST that are most similar to a new document 

D.  The class prediction of D, with respect to the stored documents, is based on the 

class of examples in DKNN  that maximizes their sum of similarities to D as follows:  

{0,1}
( ) arg max Sim( , ) ( , ( ))

i KNN

KNN i i
v D D

Prediction D D D v fb Dδ
∈ ∈

= ⋅�  

where 1))(,( =iDfbvδ  if )( iDfbv =  and where 0))(,( =iDfbvδ  otherwise. 

3.5 Experiment Setup 

This section describes the setting of experiments for evaluating the four concept drift 

learning algorithms described earlier (e.g., MTDR, Rocchio, Window-Rocchio, and 

Window-KNN algorithms). Its primary purpose is to empirically validate the 

advantages and shortcomings of these algorithms on three aspects: (1) the ability for 

tracking multiple target concepts simultaneously, (2) the compliance with the 

persistence assumption about the change of target concepts, and (3) the effect of 

reducing the number of (labeled) examples. The following describes the data, 

experiment procedures and tracking problems needed to achieve this goal.  

3.5.1 Document Collection 

A subset of the Reuters-21578 1.0 test collection (Blake & Merz, 1998) was used in 

the experiments.  The original collection contains 135 topics and 21,578 stories 

(3.10) 
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obtained from the Reuters newswire in 1987. Of these stories, 12,902 had been 

assigned to one or more categories. The stories were divided into training and test 

documents according to ModApte split, which had 9,603 documents for the training 

set and 3,299 documents for the test set (Apté, Damerau, & Weiss, 1994).  

The documents used in the experiments are selected among those in the 

ModApte split that have been assigned a single topic category. As a result, the test set 

contained 2581 documents consisting of 59 topics. The test documents were used to 

measure the model's accuracy. The rest of the training set, which contained 6452 

documents, is used to generate a sequence of relevance feedback documents for 

modeling user interests incrementally. The documents are pre-processed by removing 

stop words, stemming the remaining words, identifying bigrams and extracting them 

as individual terms, and counting term frequencies. The document terms are then 

weighed according to the TF-IDF method (see Equation 3.1). These processes are 

common in the information retrieval literature (Witten, Moffat, & Bell, 1994).  

3.5.2 Experiment Procedure 

Following the standard in concept drift learning, the goal of experiments is to observe 

the system performance as target concepts (i.e., current user interests) change from 

time to time. Accordingly, the system is presented with a stream of feedback 

documents to learn sequentially, and its performances are measured on a fixed test set 

with respect to current target concepts at regular intervals after processing m 
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consecutive documents. A period of incremental learning on the m-document 

sequence and system performance measurement is then called a tracking cycle.  

The test data was used to measure the model performance on each tracking 

cycle. The accuracy of a model measured at the end of a tracking cycle was calculated 

as follows. First, all documents in the test data were ranked using the learned model. 

The prediction accuracy of the model was then measured by calculating the 

percentage of target test documents ranked within the top n documents (where n is set 

to maximum number of documents in desired categories). Specifically, let P be the 

number of documents in positive topics that appear in the top n documents ranked by 

a model. The accuracy of the model at a tracking cycle t is calculated using the 

following equation: 

%100×=
�i i

t TC
P

Accuracy  

where TCi are the numbers of documents in positive topic categories being considered 

in the current tracking cycle and �=
i iTCn   is the total number of target test 

documents in the test data. This accuracy measure is essentially equivalent to the 

standard performance measure of recall-precision break-even point, a value at which 

precision is equal to recall in text categorization tasks (Lewis & Ringuette, 1994). 

The average accuracy value is calculated by averaging the system accuracy from the 

first tracking task to the end. 

(3.11) 
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3.5.3 Tracking Tasks 

The data streams are generated according to a tracking task, a scenario that describes 

the evolution of topics of interest over time. The changes in topics of interest over 

time are simulated by alternating among interests in Trade, Coffee, Crude, Sugar and 

Acq topics. These five topics are called target topics (concepts) whose sizes in the test 

Tracking Cycle 
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100 

(Trade, +) (Trade, −) 
(Coffee, +) 

(Coffee, −) 
 (Crude, +) 

(Crude, −) 
(Sugar, +) 

(Sugar, −) 
(Acq, +) 

(m=1) (m=2) (m=2) (m=2) (m=2) 

Table 3.1: Tracking task 1. 

 

 
Tracking Cycle 

1 − 20 21 − 40 41 − 60 61 − 80 

(Trade, +) 
(Coffee, +) 

(Trade, −) 
(Coffee, +) 
(Crude, +) 

(Coffee, −) 
(Crude, +) 
(Sugar, +) 

(Crude, −) 
(Sugar, +) 
(Acq, +) 

(m=2) (m=3) (m=3) (m=3) 

Table 3.2: Tracking task 2. 

 

 
Tracking Cycle 

1 − 20 21 − 40 41 − 60 

(Trade, +) 
(Coffee, +) 
(Crude, +) 

(Trade, −) 
(Coffee, +) 
(Crude, +) 
(Sugar, +) 

(Coffee, −) 
(Crude, +) 
(Sugar, +) 
(Acq, +) 

(m=3) (m=4) (m=4) 

Table 3.3: Tracking task 3. 
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set are 75, 22, 121, 25 and 696, respectively. Tables 3.1 through 3.5 provide five 

tracking tasks used in the experiments. Each column in the tables describes the 

number and the topic of documents in the m-document sequence that is processed at 

each tracking cycle. In Table 3.1, for example, tracking cycles 21−−−−40 process two-

instance sequences; each contains one Trade document and one Coffee document 

ordered randomly in the sequence. Each tracking cycle uses a new set of documents 

from the training set that has not been seen. Information regarding the document topic 

category is not told to the system. 

For simplicity, target concepts are made stable for periods of twenty tracking 

cycles. Feedback document set that marks the beginning of change in target concepts 

are given at the first tracking cycles during the twenty-tracking cycle periods, that is, 

Tracking Cycle 
1 − 20 21 − 40 

(Trade, +) 
(Coffee, +) 

(Coffee, −) 
(Crude, +) 

(m=2) (m=2) 

Table 3.4: Tracking task 4. 

 

 
Tracking Cycle 

1 − 20 21 − 40 
(Trade, +) 
(Coffee, +) 
(Crude, +) 

(Coffee, −) 
(Crude, +) 
(Sugar, +) 

(m=3) (m=3) 

Table 3.5: Tracking task 5. 
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at tracking cycles 1, 21, 41 and so on. Topics with positive (+) labels indicate the 

desired target concepts at the respective tracking cycles. Documents with positive 

labels indicate relevant documents and are used to establish new (or emphasize the 

existing) target concepts.  The negative labels are used to demote previously 

established target concepts. For example, a positive Trade document in Table 3.1 is 

given during the first tracking cycle to establish the new interest in Trade topic. The 

document set provided during the 21st tracking cycle contains one positive Coffee 

document and one negative Trade document, which changes the target concept from 

Trade to Coffee. 

 

 Tracking Cycle 

 1 − 20 21 − 40 41 − 60 61 − 80 81 − 100 

Tracking Task 1 Trade Coffee Crude Sugar Acq 

Tracking Task 2 Trade 
Coffee 

Coffee 
Crude 

Crude 
Sugar 

Sugar 
Acq 

 

Tracking Task 3 
Trade 
Coffee 
Crude 

Coffee 
Crude 
Sugar 

Crude 
Sugar 
Acq 

  

Tracking Task 4 Trade 
Coffee 

Trade 
Crude 

   

Tracking Task 5 
Trade 
Coffee 
Crude 

Trade 
Crude 
Sugar 

   

Table 3.6: Summary of target concept evolution over twenty-tracking cycle periods. 
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Table 3.6 summarizes the evolution of target concepts implied by each 

tracking task over the twenty-tracking-cycle periods. The tracking tasks 1, 2 and 3 

represent learning problems in order of increasing levels of difficulty, in terms of the 

number of target concepts that must be learned in each tracking cycle.  These three 

tasks provide tracking problems satisfying the assumption in that only latest examples 

are relevant to current target concepts. The tracking tasks 4 and 5 involve long-live 

and short-live target concepts, which require the persistence assumption in order to 

properly track all the target concepts. Specifically, positive Trade documents are 

given during the first twenty tracking cycles but these tracking tasks never provide 

negative Trade documents afterwards implying that the Trade topic remains to be one 

of the target concepts for the rest of the tracking cycles. In these tracking tasks, Trade 

topic is the long-live target concept. 

To observe the effect of labeled data reduction, the actual example sets are 

provided only at certain tracking cycles, and the same number of performance 

measurements is performed as the number of tracking cycles defined in the original 

tracking tasks. Therefore, the system performance at tracking cycles during which the 

examples sets are not given are expected to be the same.  Table 3.7 provides the 

 
Amount of Labeled Data Tracking Cycles 

5 Percent 1, 21, 41, … 

10 Percent 1, 11, 21, 31, 41, … 

Table 3.7: Data streams with reduced number of examples. 
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details of tracking cycles at which the labeled example sets are made available for 

each data stream. For example, a data stream that contains only five percent as many 

examples as provided in the original tracking task can be obtained by providing the 

example sets on tracking cycles 1, 21, 41 and so on.  

3.5.4 Parameter Settings 

The algorithms described earlier introduce several parameters. The settings of 

parameter values employed in the MTDR algorithm are the same as those defined 

empirically in prior work (Widyantoro, Ioerger, & Yen, 2001). That is, the learning 

rate α = 0.3 in short-term descriptor models, β = 0.1 in long-term descriptor models, 

η = 0.5 in interest category (three-descriptor) models, and M = 8 as well as θ = 0.175 

in MTDR models. 

The Prediction() function in the Window-Rocchio algorithm, as described 

before, also relies on a pre-defined classification threshold. The experiments on 

tracking tasks 1-3 are conducted by varying the threshold values from 0.025 to 0.35 at 

0.025 intervals. The performance achieved by this algorithm is selected from a 

threshold setting that produces the best outcomes. These thresholds are 0.15, 0.075 

and 0.1 for tracking tasks 1, 2 and 3 respectively. The threshold for tracking task 4 is 

set to 0.075 simply because this task has the same number of target concepts as that 

of tracking task 2. Similarly, the threshold defined on tracking task 5 is 0.1. 

Lastly, the performance of the Window-KNN algorithm is also selected from 

the k value in the KNN classifier that produces the best result in the respective 
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tracking task. The k values have been varied from 1 to 21 at intervals of two. The 

experiment results for tracking tasks 1 through 5 presented in the next section are a 

result from setting the k values to 9,9,7, 9 and 7, respectively.  

3.6 Experiment Results 

This section summarizes the results of numerous experiments that have been 

conducted using the four algorithms described earlier. The first two sections briefly 

review empirical results that explain the behaviors of the MTDR algorithm’s 

components as well as the window-based learning algorithms. The capability of each 

algorithm on addressing the three aspects mentioned earlier will be discussed in the 

last three sections.  

3.6.1 The Behavior of MTDR Algorithms  

The interest category representation that underlies the MTDR algorithm is composed 

of long-term and short-term interest models.  Figure 3.4 depicts empirical results that 

demonstrate the characteristics, strengths and weaknesses of these models. The figure 

also shows how their characteristics agree with the motivations behind the 

development of these models. The results presented in this figure used tracking task 1 

as the learning problem, averaged over 10 runs. The more detail behaviors of these 

models on various parameter values were described in (Widyantoro, Ioerger, & Yen, 

2001). 
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As shown in Figure 3.4, the long-term interest model improves its prediction 

accuracy consistently as it learns more relevance feedback documents. This property 

also represents the behavior of Rocchio algorithm because the long-term interest 

model is learned using this algorithm. The weight update rule of this model allows 

preserving common features of documents. Its weakness is that a long-term interest 

model by itself suffers from learning a dynamically changing interests at a slow, fixed 

rate. Because it learns and unlearns documents gradually, this model cannot remove 
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Figure 3.4: The characteristics of long-term, short-term and TDR models. 
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its old interests quickly enough when it has to learn a new interest. Therefore, the 

performance of this model usually drops drastically at each learning phase transition. 

The short-term model at a higher learning rate tends to destabilize the model, 

causing the prediction accuracy of the short-term interest model to fluctuate 

erratically. However, the effect of changing interests on the prediction accuracy of the 

model is slight, if any.  Lowering the learning rate could improve the stability and the 

average performance of the model (the figure of this is not shown) but could also 

cause the model to be more sensitive to changing interests, similar to the problem 

faced by the long-term interest model. Thus, there is a tradeoff between achieving 

higher performance and a more stable model, versus obtaining a more adaptive model 

for learning changing interests as a function of the learning rate. This tradeoff 

represents the strength and, at the same time, the weakness of the short-term interest 

model. 

The three-descriptor model possesses a combination of the strengths and 

weaknesses of the long-term and short-term interest models. The expected strengths 

of this model are: achieving high prediction accuracy obtained from the long-term 

interest model, and being able to respond quickly on changing interests as in the 

short-term interest model. The weaknesses of both the long-term and short-term 

interest models hopefully can be reduced as much as possible.  
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3.6.2 The Behavior of Window-based Algorithms 

Determining the appropriate window size is the main difficulty in the concept 

drift learning algorithm that relies on a fixed window of recent examples.  Figure 3.5 

depicts the average accuracies obtained from this algorithm as a function of window 

sizes.  The figure confirms the expectation that both too small and too large of 

window sizes generate non-optimal performances. A smaller window size would 

retrieve examples with less or even no noise but the small number of examples 

retrieved is not enough to generalize the target concept. Conversely, a larger size of 

window draws more examples but the retrieved data would contain many more 
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Figure 3.5: The effect of window size in the window-based learning algorithms with 
a fixed window size on the average accuracies. 
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conflicting examples, hindering the learner to build an accurate target concept 

representation.   

The window adjustment heuristic overcomes the window size determination 

problem by adaptively changing the window size in an attempt to include more 

examples or avoid incorporating noise. Figure 3.6 depicts the evolution of window 

sizes over time as a result from applying the window adjustment heuristic described 

by Figure 3.3.  The window sizes expand as expected to include more relevant 

examples during stable periods, and shrink quickly during the transition of target 

concept changes (e.g., at tracking cycles 20, 40 and so on) that introduce potentially 

many conflicting examples. This indicates at least that the mechanism for adapting to 

concept drift works properly.  
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Figure 3.6: The adaptation of window size over time in window-based learning 
algorithms. 
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3.6.3 Performance Comparison 

Now, the MTDR algorithm’s components and the window adjustment heuristic of the 

window-based algorithms have been shown to behave as expected. This section will 

discuss the performance comparisons of these two classes of algorithms on three 

aspects: the ability for tracking multiple target concepts, the conformance to the 

persistence assumption, and the ability for handling few examples. 

Tracking multiple target concepts. Recall that the numbers of target 

concepts to be tracked in tracking tasks 1, 2 and 3 are one, two and three, 

respectively. Table 3.8 depicts the average accuracies of the four algorithms on the 

three tracking tasks.  In the task involving only a single target concept (e.g., tracking 

55

60

65

70

75

A
ve

ra
ge

 A
cc

ur
ac

y 
(%

)

MTDR 74.90 71.80 69.85

Rocchio 70.92 66.06 60.54

Window-Rocchio 73.71 66.40 58.48

Window-KNN 73.58 71.77 64.41

Tracking Task 1 
(Single Concept)

Tracking Task 2 
(Two Concepts)

Tracking Task 3 
(Three Concepts)

Table 3.8: Performance comparison on tracking tasks 1, 2 and 3. 
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task 1), all algorithms perform comparably well except the Rocchio algorithm. The 

average accuracies of Window-Rocchio algorithm are worse than the others in tasks 

involving larger number of target concepts. Lastly, the MTDR algorithm outperforms 

the Window-KNN algorithm when tracking three target concepts simultaneously 

although their performances are still comparable in tracking task 2.  

Figure 3.7 shows the performances over time of all algorithms on tracking 

task 3. The MTDR algorithm consistently performs relatively very well throughout 

the tracking cycles on this task. The observation that the performances of Rocchio 

and Window-Rocchio algorithms are relatively much worse are not surprising 

because the Rocchio algorithm is biased toward learning a single target concept and 
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Figure 3.7: Performance over time on tracking task 3. 
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thus lacks the representational power needed for learning multiple target concepts. At 

the opposite end, KNN algorithm is biased toward generating target concepts as many 

as example it acquires. This algorithm is naturally capable of learning multiple target 

concepts. Its classification accuracy in the Window-KNN algorithm, which is based 

on the k nearest examples, appears to be better than that of the Rocchio (Window-

Rocchio) algorithm when involving multiple target concepts but is still not as good as 

the classification accuracy achieved by the MTDR algorithm. This observation 

provides a piece of empirical evidence that the MTDR algorithm, which has been 

designed to recognize and to track multiple target concepts, is better than the window-

based algorithms applying the window adjustment heuristic. 
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MTDR 78.12 74.13

Rocchio 71.50 69.81

Window-Rocchio 64.47 57.25

Window-KNN 66.06 62.78

Tracking Task 4 Tracking Task 5

 
Table 3.9: Performance comparison on tracking tasks 4 and 5. 
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Conformance to the Persistence Assumptions. Technically, the recency 

example assumption that underlies the window-based learning algorithm will not 

properly work on tracking tasks 4 and 5 because these tasks require the conformance 

of the persistence assumption in order to track the long-live concept (e.g., Trade 

topic) defined in the tasks. Table 3.9 provides the average accuracies of all algorithms 

on these tracking tasks. While the performances of MTDR algorithm remain high, the 

performances of Window-Rocchio and Window-KNN are severely degraded. 

Figures 3.8 and 3.9 depict the performances over time of the four algorithms 

on tracking tasks 4 and 5, respectively. As described earlier, the Trade target concept, 

which requires the persistence assumption to track on this task, was given only during 
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Figure 3.8. Performance over time on tracking task 4. 
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the first twenty tracking cycles. The change of non-Trade target concept that occurs 

during the 21st tracking cycles triggers the window-based algorithms to shrink their 

windows. Figure 3.8 clearly shows that the window-based algorithms start regaining 

their performances as they see more examples representing the new target concepts 

during the first few tracking cycles after the target concept change but it happens only 

shortly. As the windows move forward, they also quickly remove all examples 

needed for learning the Trade target concept, causing sudden drops in performance 

for failures in learning the old (long-live) target concept. 
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Figure 3.9. Performance over time on tracking task 5. 
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The effects of labeled data reductions. Figure 3.10 illustrates a typical 

performance over time produced by learning with significantly reduced numbers of 

labeled examples. Starting from the first tracking cycles, the next example set in the 

5% data stream is given at tracking cycles 21, 41 and so on (see Table 3.7 for a full 

description on this). The jagged lines on the curves with reduced number of labeled 

examples are due to the use of the same test set so that the performance will not 

change until the next labeled data are made available.  In 5% and 10% cases, 

specifically, the performances are not expected to change until the next twenty and 

ten tracking cycles, respectively. 
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Figure 3.10: Performance over time with reduced number of examples on tracking 
task 1 and on MTDR algorithm.  
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 Average Accuracy (%) 
 MTDR 

 

Rocchio 

 

Window-
Rocchio 

Window-KNN 

Tracking Task 1 
100 Percent 74.90 70.92 73.71 73.58 

10 Percent 65.16 53.26 66.19 59.19 

5   Percent 63.29 46.35 60.26 57.09 

Tracking Task 2 

100 Percent 71.80 66.06 66.40 71.77 

10 Percent 62.77 53.27 54.52 49.69 

5   Percent 60.12 49.25 39.49 46.80 

Tracking Task 3 

100 Percent 69.85 60.54 58.48 64.41 

10 Percent 63.73 55.53 48.26 51.18 

5   Percent 59.53 53.00 42.93 46.66 

Tracking Task 4 

100 Percent 78.04 71.57 64.35 66.22 

10 Percent 68.94 59.05 57.20 59.92 

5   Percent 65.45 52.35 57.20 56.29 

Tracking Task 5 

100 Percent 74.13 69.81 57.25 62.78 

10 Percent 68.22 59.72 45.79 51.24 

5   Percent 64.69 56.90 41.50 39.55 

Table 3.10: Summary of experiments with reduced number of examples on all tracking 
tasks and all algorithms. 
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Table 3.10 summarizes the average accuracies of all algorithms on all tracking 

tasks. The “100 Percent” rows are rewritten from Tables 3.8 and 3.9 for convenience 

in interpreting the results. Clearly, all algorithms suffer from being unable to maintain 

the high average accuracies at the reduced size of data streams. Although the window 

adjustment heuristic works pretty well with a sufficiently large number of examples 

(e.g., 100 Percent), its performance predictor in the window-based algorithm seems to 

be no longer accurate for properly adjusting the window size, resulting in even worse 

performance degradation than those of the MTDR algorithm. 

3.7 Summary 

This chapter has described four concept drift learning algorithms for tracking the 

evolution of user interests in the information filtering domain. The first one is the 

Rocchio relevance feedback algorithm.  Originally developed as a batch process for 

improving the retrieval effectiveness in a static setting, this algorithm in this chapter 

is adapted through parameter tuning to work on a dynamic and incremental setting. 

This algorithm is selected mainly because it has been widely used and studied in the 

information retrieval community. 

The second algorithm so-called MTDR represents a novel algorithm for 

learning the dynamics of tracking multiple interest categories. The algorithm adopts 

the persistence assumption regarding the user interests; that is, the user interests 

remain relevant until explicitly declared otherwise, and vice versa. Its main feature is 

combining the notions of long-term and short-term interest models in order to obtain 



 72 

the strength of both models. The long-term and short-term interest models in the 

window-based concept drift learning algorithms correspond to models learned from 

large and small-size windows, respectively. These windows in the MTDR algorithm 

are implicitly modeled.  

The last two algorithms are Window-Rocchio and Window-KNN; both are 

window-based algorithms that employ the Rocchio and KNN algorithms, 

respectively, as the base learners. Since a base learner is essentially a batch process in 

the main algorithm, the Rocchio algorithm in Window-Rocchio is applied as 

originally intended as a batch learner. The two algorithms employ an adaptive 

window adjustment heuristics for adapting to concept drift. The heuristics are derived 

from a general method based on the change in predictive performance. These two 

algorithms represent existing, commonly used algorithms for learning concept drift in 

the machine learning community. 

This chapter provides empirical evidences that confirm the expected behaviors 

of the above four algorithms. The Rocchio algorithm adapted for learning concept 

drift (also the long-term interest model in the MTDR algorithm) is able to 

consistently improve its performance as it learns more examples, but is very 

susceptible to a change in target concept. The short-term interest model is relatively 

unstable but insensitive to concept drift. This chapter empirically shows the difficulty 

in determining the appropriate window size in a window-based learning algorithm; 

Small window results in an insufficient target concept generalization while large 

window precludes generating an accurate target concept. It also demonstrates that the 
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adaptive window adjustment heuristics employed in the Window-Rocchio and 

Window-KNN can alleviate the problem. In particular, the heuristics allow the 

window to expand during the period of stable concept learning and to quickly shrink 

when a concept drift does occur. 

 The superiority of the MTDR algorithm for tracking multiple target concepts 

has also been shown. Its main competitor is the Window-KNN whose performance is 

significantly worse than that of the MTDR algorithm only in tracking task 3 (tracking 

three target concepts). Furthermore, the performances of both window-based 

algorithms are significantly degraded when the persistence assumption is needed (i.e., 

when tracking long-live target concepts) in order to properly track the target concepts. 

The recency assumption that underlies the window-based algorithms represents the 

weakness addressed by the MTDR algorithm. Finally, this chapter empirically shows 

that all of these algorithms suffer from learning with significantly reduced number of 

examples.  
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CHAPTER IV 

A COMPUTATIONAL FRAMEWORK FOR EXTENDING 

INCOMPLETE LABELED DATA STREAM IN CONCEPT DRIFT 

 

Chapter III has shown that the performances of four concept drift learning algorithms 

consistently degrade when they learn from reduced numbers of labeled examples. 

This chapter presents FEILDS: a new computational Framework for Extending 

Incomplete Labeled Data Stream in concept drift learning, which extends the 

algorithms to deal with the issue. One of the system’s inputs is the original labeled 

data stream that would normally be the input to the concept drift learners. FEILDS 

produces a new data stream that is fed to the (concept drift) learners. Hence, the 

system extends existing concept drift learning algorithms by modifying their inputs 

without modifying the algorithms. 

The following section briefly reviews some practical and theoretical 

observations surrounding the problem that sheds light on a way to a solution. Section 

4.2 provides the overview of the proposed solution. Section 4.3 describes the details 

of the system’s components and methods. The advantages and shortcomings of the 

proposed method are then discussed in Section 4.4, followed by the chapter’s 

summary in the last section.   
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4.1 Theoretical and Practical Observations 

Poor performance as a result of learning from few examples is not only a problem in 

concept drift learning but also an issue in a less difficult, stable concept learning 

scenario.  The requirement on the quantity of labeled data for learning stable concepts 

and adapting to concept drift is unfortunately inevitable without additional 

knowledge. As widely shown in Computational Learning Theory literature (Blummer 

et al., 1989; Mitchell 1997), reducing the sample size in stable concept learning 

would undercut the ability to approximate target concepts, which in turn would 

increase the classification error.   

The problem is exacerbated in concept drift learning because the task also 

involves adaptation to possible concept drift, which is generally exploited from the 

given examples. More specifically, a few examples cannot provide reliable predictive 

performance needed by the heuristics of the window based algorithms for adapting to 

concept drift. A few negative examples in the MTDR and Rocchio algorithms are also 

insufficient for demoting old target concepts.  

The empirical observations shown in Chapter III and the above practical 

observations are also well justified by existing theoretical findings. The drift rate in 

concept drift learning, as briefly explained in Chapter I, is an essential parameter, 

which denotes the probability that two successive target concepts ci and ci+1 disagree 

on a randomly drawn example (Helmbold & Long, 1994), e.g., Pr (ci ≠ ci+1). Hence, a 

slower drift rate corresponds to learning from a data stream whose target concepts 
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change less frequently, that is, having a longer sequence of data with the same target 

concept, and vice versa. Helmbold and Long (1994) provide theoretical bounds on the 

allowable drift rates that guarantee tractability with an error of at most ε as follows: 

)/1ln(

2

ε
ε

d
c≤∆

 
where c > 0 is positive constant, and d is the  Vapnik-Chervonenkis dimension of a 

concept/hypothesis (Blummer et al., 1989). Because c and d values are fixed, the 

bounds imply that the tracking problem is more difficult (i.e., producing higher error 

rates) on learning with fewer labeled data per target concept (i.e., higher drift rates).  

Hence, reducing the rate of drift according to the above equation is apparently the 

only option for improving the performance of a concept drift learner. FEILDS takes 

this general approach. 

4.2 Overview of Approaches 

Inspired by the success of techniques that combine labeled and unlabeled data in 

stable concept learning (Dempster, Laird, & Rubin, 1977; Blum & Mitchell, 1998; 

Blum & Chawla, 2001), a similar technique is developed for learning concept drift. 

FEILDS uses a set of relevant unlabeled data to compensate for the lack of labeled 

data, but for learning dynamically changing concepts. From the perspective of 

Computational Learning Theory, this general approach is guaranteed to improve 

performance. Provided that the relevant unlabeled data exist and can be correctly 

identified, incorporating these unlabeled data is equivalent to reducing the rate of 

(4.1) 
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concept drift, which would increase the tracking accuracy. The setting of the input 

data is also well supported in the information filtering domain. Although labeled data 

in this domain are very expensive, the availability of unlabeled data is virtually 

unlimited and can be relatively easier to collect. 

Without losing generality, the rest of this chapter assumes that the label value 

of a labeled instance is either 1 or 0. In the information filtering domain, this value 

corresponds to either a positive or a negative feedback document, respectively. In 

addition, an instance can be associated with a concept category.  For example, 

document topic is the concept category of a text document. However, the information 

about the concept category of an instance is never told to the system. 

The input of the system, as typical in concept drift learning setting, is a stream 

of instances. Unlike ordinary concept drift learning in which the labels of all instances 

in the stream are provided, only a very few of the instances’ labels in the problem 

setting being addressed are made available to the learners. Furthermore, the majority 

of unlabeled data under a more realistic condition are irrelevant.  Let { }nxx ,,1 �=S  

be a set of instances taken from the stream (see Figure 4.1). The stream contains 

labeled data }|{ SL ∈= ii xx  and unlabeled data }|{ SU ∈= jj xx  such that 

ULS ∪=  and L U∩ = ∅ . Changing label values because of the change in target 

concepts is the main characteristic in the concept drift learning problem. When 

tracking the evolution of user interests, for example, a feedback document previously 

deemed relevant will become irrelevant when a later feedback document of the same 



 78 

topic (i.e., the same underlying concept category) is judged irrelevant. The crux of the 

FEILDS’s approach is to identify the set of labeled data LL ⊆R whose label values 

have not changed. For each Li Rx ∈ , let UU ⊆i be the corresponding subset of 

unlabeled data with the same underlying concept category as that of xi. It then uses 

the set }|{' Riii xx LUS ∈∪=  to generate a new stream and assigns the label of each 

unlabeled instance ijx U∈ with ix ’s label. 

Identifying the set LR requires knowledge about the concept category of each 

instance in L. As in the above example, the change of feedback document relevance 

can only be accurately detected by knowing the topics of feedback document. 

However, the concept category of a given instance is unknown, and cannot be 

induced reliably from only a small set of labeled data.  For example, identifying a set 

Figure 4.1: The illustration of approach for reducing the drift rate in a sparsely 
labeled data stream. 

Labeled Data 

Relevant unlabeled data 
Irrelevant unlabeled data 

genuine labeled data stream (L) 

data stream with reduced drift rate containing }|{' Riii xx LUS ∈∪=  

original data stream containing the set ULS ∪=  
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of terms that are representative to a topic category from a few document examples is 

difficult because a document typically contains many irrelevant terms. In order to 

provide a means for associating an instance with its concept category, FEILDS 

employs a concept hierarchy that is automatically constructed by clustering all 

incoming labeled and unlabeled data from the data stream. The next section describes 

the idea in greater details. 

4.3 FEILDS Architecture 

Figure 4.2 depicts the architecture of FEILDS that extends an existing concept drift 

learner to deal with incomplete labeled data stream (Widyantoro, Ioerger, & Yen, 

2003). It consists of three main entities: (1) a concept formation system, (2) a concept 

hierarchy, and (3) a concept drift tracker. As shown in the figure, the concept 
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Figure 4.2: FEILDS architecture. 
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hierarchy is at the heart of the FEILDS architecture. The concept formation system 

(CFS) incrementally constructs the concept hierarchy by organizing the input stream 

into a cluster hierarchy along with their corresponding concepts. The concept drift 

tracker (CDT) component is invoked only when needed by the concept drift learner. It 

takes as input a hierarchy of concepts and a sequence of labeled examples L, and 

infers the relevance of each concept category associated with a labeled example in L. 

This component outputs a new set { | }i i ix x′ = ∪ ∈ RS U L  that, as described above, 

contains the expanded relevant data LL ⊆R . Concept drift learning algorithms such 

Figure 4.3: The summary of FEILDS’s approach. 

 

Input: a stream of documents Stream-S. 
 
Initialization:  
      Stream-L = �∅�, the sequence of labeled instances. 
      H = ∅, the concept hierarchy. 
 
Incremental Learning: 
      For each instance x observed from the stream Stream-S 
           Apply the CFS system to incorporate x�into�H incrementally. 
           If the label q of instance x is available 
                  Concatenate �(x, q)� at the end of Stream-L. 
 
Target Concept Induction (only when needed): 
    Apply the CDT component to identify a new expanded set ′S  based on the 

current values of Stream-L and H, and then generate a new stream 
Stream-S′′′′ arranged by the arrival time of data in ′S . 

    Apply a selected (conventional) concept drift learner to relearn Stream-S′′′′. 
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as those described in Chapter III can then be used to relearn Stream-S′′′′, the new 

stream generated by rearranging all instances in ′S according to the instance arrival 

times. Figure 4.3 summarizes the interactions among these components. Stream-S and 

Stream-L in the figure are the streams generated from the S and L sets, respectively. 

4.3.1 Concept Formation System 

The role of the concept formation system (CFS) component is to build a concept 

hierarchy incrementally from the input stream in an unsupervised mode. The 

construction of the concept hierarchy is essentially the same as building a hierarchy 

of clusters.  During the course of learning, the concept hierarchy grows dynamically 

as the system receives more observations from the stream.  

Because the concept hierarchy plays a central role in FEILDS, its quality is of 

great importance for success. Additionally, the requirement that it should also be 

constructed incrementally presents another challenge that would not be encountered 

had it been built in batch mode, which is not practical in the problem setting. FEILDS 

employs a new concept formation system that has been developed in this dissertation 

to address this challenge. Chapter V is devoted to describe and evaluate the concept 

formation algorithm. 

4.3.2 Concept Hierarchy  

The concept hierarchy is basically a tree structure with the following characteristics: 

(1) all leaf nodes represent document instances and thus are the most specific concept 
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nodes with respect to their ancestors, and (2) all internal nodes represent concepts that 

generalize their descendant concept nodes. Hence, the concept generality is increasing 

on any path from a leaf node to the root.  

The concept hierarchy serves for the identification of (1) the concept category 

of an instance, (2) the set of instances belonging to a concept category and (3) the 

least common subsumer (lcs) concept.  These processes are needed by the concept 

drift tracker (CDT) component. Let X be the instance space (e.g., leaf nodes) and C be 

the concept space (e.g., all nodes in the hierarchy). The following defines three 

general functions needed by the CDT for utilizing the concept hierarchy: 

• δ : X → C is an instance generalization function and is used for recognizing 

the concept category of an instance. For an instance x that is a leaf node, let 

Ax = x ∪ {c1, …, cn} be the set of x and x’s ancestors where cn is x’s parent,  

ci-1 is ci‘s parent and c1 is the root node. Given x, the δ function returns a 

concept node c ∈ Ax that represents the concept category of x.  

• ε : C → X * is a concept instantiation function, which returns all leaf nodes 

that are descendants of a concept node c∈ C . Since the node c represents a 

concept category, the ε function identifies all instances covered by the concept 

category.  

• ϕ : C�*→ C is a function that returns the least common subsumer (lcs) node of 

a given set of nodes. A node cn subsumes a node cm, denoted subsume(cn,cm), 

if cm is a descendant of cn or cm = cn in the concept hierarchy. 
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The functions ε and ϕ above are straight forward given a concept hierarchy. 

The instance generalization function δ still requires a method that can accurately 

select the appropriate generalization of an instance from a sequence of concept nodes 

with increasing concept generality. This is a non trivial task even when provided with 

a perfect concept hierarchy. Because the concept hierarchy is automatically built in an 

unsupervised mode, no reliable information is available in order to determine a node 

that can best represent the concept category of an instance.  

Best concept category representation implies that a node selected is neither 

too general (close to the root) nor too specific (close to the instance). Over 

generalization could mistakenly include unintended nodes of other concept 

categories, thereby adding noise to the concept category members. By contrast, too 

specific a node would lead to the problem of overfitting the instance that contributes 

little to providing new information. More detailed impact resulting from these two 

problems and how to address them will be discussed in the next section.  

A node that distinctively partitions instances appears to be the one that 

appropriately generalizes an instance. The difficulty in identifying such a distinct 

node arises from the fact that the concept hierarchy alone does not have enough 

information for recognizing distinct node from a sequence of concept nodes with 

increasing generality (e.g., concept nodes in Ax). The issue is addressed by using a 

validation set in order to characterize a distinct node.  Section 4.3.4 elaborates this 

approach for implementing the instance generalization function above. 
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4.3.3 Concept Drift Tracker 

The main CDT task is to infer a subset of labeled instances that are still truly relevant 

and then expand the subset with relevant unlabeled data. Given Stream-L, a stream of 

labeled data, the following six steps provide the detail processes performed by the 

CDT for generating 'S , the set of expanded LR . 

Step 1: Instance Sequence Generalization 

Instance generalization is a process of identifying a concept category that can be 

associated with an instance, using the δ function described in Section 4.3.2. In this 

process, a sequence of labeled instances is transformed into a sequence of labeled 

concept nodes while preserving their ordering with respect to the ordering of the 

labeled instances. Let Q be the set of labels, and let Stream-L = �(x1,q1),…,(xn,qn)� for 

each xi∈X and qi∈Q be a sequence of n labeled instances where an instance on the 

left side arrives earlier. Given a sequence of n labeled instances Stream-L, the 

instance sequence generalization process will output a sequence of n concept nodes 

Stream-C = � ),(),...,,( 11 nn qcqc � such that )( ii xc δ= for each Cci ∈ . 

Step 2: Concept Node Sequence Partitioning 

In this step, the problem of tracking multiple target concept categories is converted 

into multiple sub-problems of tracking a single concept. More specifically, this step 

partitions the concept node sequence according to a shared concept category, and 

rearranges concept nodes in each partition into a concept node sequence partition by 

maintaining their relative ordering in the original concept node sequence. Concept 
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nodes in a set C = {c1,…,cn} share the same concept category if there exists a least 

common subsumer (lcs) concept node in C that subsumes all other concept nodes, i.e., 

ci = ϕ (C) and ci∈C. 

Example 1. This example refers to the concept hierarchy given by Figure 4.4. Let 

Q={1,0} be the set of labels. Let Stream-C = �(b,1),(h,0),(e,1),(g,0),(i,1),(d,0),(c,1), 

(d,1),(m,0),(f,0),(k,0),(b,0)� be the sequence of concept nodes generated by the 

instance generalization process during the first step. According to Figure 4.4 and 

Stream-C above, P1={b,e,f}, P2={i,c,m,k} and P3={h,g,d} are the concept node 

partitions since b, c and  d are the lcs concept nodes for all concept nodes in partitions 

P1, P2 and P3, respectively.  Three concept node sequence partitions are generated 

from the second step:  Stream-CP1= �(b,1),(e,1),(f,0),(b,0)�, Stream-

CP2=�(i,1),(c,1),(m,0),(k,0)� and Stream-CP3= �(h,0),(g,0),(d,0),(d,1)�. 
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Figure 4.4: An illustration of concept hierarchy. 
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Step 3: Concept Node Sequence Contraction 

The shared concept category in a concept node sequence partition (e.g., Stream-CP) is 

essentially the same so that two or more consecutive concept nodes in a Stream-CP 

with the same labels constitute a redundant fragment. Let a fragment be a sequence 

�(cm, qm), (cm+1, qm+1),…,(cm+n, qm+n)� satisfying qm=qm+1=…=qm+n and 

ck=ϕ({cm,cm+1,…,cm+n}) for some ck∈{cm,…,cm+n}. The current step eliminates this 

redundancy by iteratively searching for such a fragment and replacing it with it’s lcs 

concept node until no further fragment is found. The final result is a normalized 

concept node sequence partition, or Stream-nCP for short. This stream describes the 

evolution of labels of a concept category and possibly its subcategory.   

Example 2. Stream-CP1 in Example 1 contains two fragments �(b,1),(e,1)� and 

�(f,0),(b,0)�. The normalized Stream-CP1 is Stream-nCP1= �(b,1),(b,0)� since the 

fragments’ lcs is b. Similarly, Stream-nCP2 = �(c,1),(m,0),(k,0)� and Stream-nCP3 = 

�(d,0),(d,1)�. 

Step 4: Concept Node Label Identification 

This step infers the label value of each concept node in the normalized concept-node 

sequence partition (e.g., Stream-nCP). The basis for inferring the label value is that of 

the persistence assumption in temporal reasoning, which states that once a fact is 

declared to be true, it remains true thenceforth until the fact is negated (Gabbay, 

Hogger, & Robinson, 1995). Consequently, the label of a sequence of identical 

concept nodes �(c, qm), …, (c, qm+n)� from a Stream-nCP can be represented by the 
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label assigned to the last concept node, i.e., qm+n. A system in information filtering 

domain, as described earlier, typically uses two-value label: 1 and 0 for denoting 

relevant and irrelevant concept, respectively; and this system is interested only in 

relevant concepts. In such a system, a sequence of two identical concept nodes with 

conflicting labels whose label of the most recent concept node is 0 (i.e., �(c,1), (c,0)�) 

can be dropped.  

Example 3. Using Stream-nCP given by Example 2, the labels of b and d from Stream-

nCP1  and Stream-nCP3  , respectively, are both 0. No further simplification can be made 

on Stream-nCP2  . Hence, the simplified Stream-nCP , denoted Stream-snCP, are Stream-

snCP1 = �(b,0)�, Stream-snCP2=�(c,1),(m,0),(k,0)� and Stream-snCP3= �(d,1)�. 

Step 5: Concept Node Decomposition 

A set of concept nodes contains exceptions if the label of at least one descendant of 

the lcs concept node in the set disagrees with that of the lcs concept node. Concept 

exceptions can be directly identified from the simplified normalized concept node 

sequence partition that still contains two or more concept nodes, e.g., Stream-snCP in 

Example 3. This step decomposes the lcs concept node in such a sequence by 

enumerating its descendants that are indifferent to any of the conflicting nodes.  

Let ),(),()( , mnnmnm ccsubsumeccsubsumeccind ¬∧¬=  be an indifferent 

relation in which no concept node subsumes the other. Let E be the set of concept-

node exceptions, which are all descendants of an lcs concept node c whose labels are 

different from the label of c. Let ( , )Ecψ  be a function that returns the decomposition 
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of lcs concept node c with regard to E. The decomposition function is recursively 

defined as follows: 

{ }
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E  EE
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It returns the union of the exception set and the set of disjoint, most general of lcs 

node’s descendants that are indifferent to all concept nodes in the exception set. The 

ψ  function simply flattens the lcs concept node in order to separate its descendant 

concept nodes with contradictory labels from the ones that agree with its label. 

Example 4. The decomposition of concept node c in snCSP2 from Example 3 results 

in Stream-snCP2 =�(i,1),(n,1),(m,0),(k,0)�  since ψ (c,{m,k}) = {m,k} ∪ {i} ∪ ψ 

(j,{m,k})  = {i,n,m,k}. Note that {m,k} is the set of concept-node exceptions (see 

Figure 4.4). 

Note that the concept node decomposition above resolves any conflict in hierarchical 

concept nodes. In a special case where all concept nodes returned by the instance 

generalization function are disjoint (i.e., form flat partitions), such a conflict would 

never happen. Thus, the current step would be useful only if the method employed for 

realizing the instance generalization function might return concept nodes that form a 

hierarchy.   

Step 6: Concept Instantiation 

The last step extends concept nodes in all simplified, normalized concept node 

sequence partitions (e.g., Stream-snCP ), using the concept instantiation function ε , 
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into a set of artificially labeled instances ′S . All instances are labeled with the label 

values of their associated concept nodes, and are arranged into a sequence of pairs of 

instance and its label according to instance arrival times (the new stream Stream-S′′′′).   

Example 5. From Examples 3 and 4, the list of concepts and their labels are (b,0), 

(d,1), (i,1), (n,1), (m,0) and (k,0). Suppose ε(b)={x2, x4}, ε(d)={x1, x8}, ε(i)={x3,x7}, 

ε(n)={x5,x10}, ε(m)={x6, x11} and ε(k)={x9,x12}.   Then, it generates the new stream 

Stream-S′′′′ = {(x1,1), (x2,0), (x3,1), (x4,0), (x5,1), (x7,1), (x8,1), (x9,0), (x10,1), (x11,0), 

(x12,0)} containing the expanded set of relevant labeled data. 

The quality of Stream-S′′′′ generated by the CDT component depends heavily 

on the accuracy of instance generalization function δ employed. As defined in Section 

4.3.2, the function δ returns a concept node in the set Ax = {x ∪ x’s ancestors} that 

represents the concept category of x. The concept node returned by the function can 

be either too specific or too general. If the concept node selected is too specific, the 

CDT component may be unable to detect the occurrence of concept drift, introducing 

noise that contains conflicting examples in the set ′S . To illustrate this, suppose the 

concept hierarchy contains a concept node A, which has child nodes B and C, and A is 

the correct node for representing the concept category of all instances covered by 

nodes B and C. Suppose also that B or C is the node that will be selected by the 

instance generalization function instead of A. If B’s instance is used to establish the 

target concept A, which is demoted later using C’s instance, then the CDT algorithm 

will not be able to detect the fact that the target concept A is no longer relevant 
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because the concept categories of B and C’s instances are considered different by the 

instance generalization function. As a result, the expanded set 'S  generated by the 

CDT algorithm will contain A’s instances with conflicting label values, which are 

supposed to be the same. In addition, too specific a concept node also reduces the 

coverage of correct examples retrieved from the concept hierarchy, which potentially 

decreases the ability of a concept drift (or stable) learner to accurately learn target 

concepts from the retrieved examples. 

Furthermore, an instance generalization function that returns too general 

concept node can also cause the CDT component to generate false positive (or 

negative) examples. Similar to the above illustration, suppose that a concept node A 

has child nodes B and C, but now B and C are the correct nodes for representing the 

concept categories of all instances covered by nodes B and C, respectively. Suppose 

also that the instance generalization function returns node A for any input that is 

either B or C’s instance. False positive (or false negative) examples will be generated 

when either B or C (but not both) is declared as the target (or non-target) concept 

because the instance generalization function, which recognizes A instead of B or C, 

would consider B and C’s instances the same concept category. Unlike concept node 

that is too specific, the more general concept node could increase the coverage of 

correct examples.  

Given a perfect concept hierarchy and a perfect instance generalization 

function, any stable concept learner, rather than a concept drift learner, can be 

applied for learning all (artificially) labeled instances identified as ′S in the last step 
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without requiring instance ordering. However, the set ′S can contain noise as 

described above.  While a stable concept learner could not properly learn conflicting 

instances in 'S , a concept drift learner could mitigate this issue by learning the 

Stream-S′′′′, especially for recovering the failure in detecting a concept drift due to the 

problem associated with selecting too specific concept nodes.  Nonetheless, the latter 

learner still cannot resolve a noise that results from overly generalizing instances. 

This observation suggests avoiding selecting too general concept node if at all 

possible. 

4.3.4 Instance Generalization Scheme 

This section develops the technique for realizing the instance generalization function 

δ. FEILDS employs a validation set for providing the information needed to 

recognize distinct concept nodes based on their general characteristics in the concept 

hierarchy. As will be described in more details in Chapter V, one of the concept node 

properties in a concept hierarchy generated by the concept formation system 

employed (Widyantoro, Ioerger, & Yen, 2002) is the concept (or cluster) density, 

which is calculated from the average distance to the nearest neighbor among the child 

concept nodes. The concept density in the hierarchy tends to decrease at higher-level 

concept nodes. That is, the density of a concept node covering a smaller number of 

instances is higher that the density of the concept node’s ancestors. Distinct concept 

nodes are identified by thresholding the concept density information whose cutoff 

point is empirically determined from the validation set. This method is essentially 
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similar to the process in proximity dendogram cutting   that identifies clusters in the 

cluster hierarchy according to dissimilarity levels (Jain & Dubes, 1988). First, a 

concept hierarchy is incrementally built from a stream of data in the validation set. 

Because the instances’ concept categories are known in the validation set, distinct 

concept nodes can be accurately recognized from the concept hierarchy. The 

threshold is then calculated from the densities of these distinct nodes. 

More specifically, let H be the concept (cluster) hierarchy generated from the 

validation set containing a set of known concept categories T. Let Hnc ∈  be a 

concept node in the hierarchy that corresponds to a concept category c∈T. 

Furthermore, let ( )nε  be a set of leaf nodes (document instances) in the hierarchy 

that are the descendants of concept node n. Let ( )cε  be a set of document instances 

that are the members of concept category c. The cluster nc is identified from H by:  
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where m: X × T→ {1,0}  is a binary matching function such that  m(x, c) = 1 if  

)(cx ε∈ , or 0 otherwise. Hence, nc maximizes the difference between the numbers of 

instances that are members of c and non-c concept categories.  Now let µc be the 

average distance to the nearest neighbor among nc’s child nodes; µ represents the 

node density in the concept hierarchy. Thus, a higher µ value corresponds to a lower-

density node and vice versa. Let µc’s parent be the density of nc’s parent. Taking µc as 

the threshold poses the risk of overfitting to a more specific concept node while 

(4.1) 
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selecting µc’s parent is completely inappropriate because it also covers the instances of 

other concept categories (overgeneralization). Therefore, the threshold is selected at a 

value between µc and µc’s parent, averaged over all concept categories in T:  

( ){ }�
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where 10 ≤≤ k  is a non-negative constant. By default, 5.0=k , which maximizes the 

margins between overfitting and overgeneralization.  

A concept c is a distinct concept node if it satisfies the following conditions: 

1) p kµ θ<  for 'p c∀ ∈ s descendants (the densities of all c’s descendants are higher 

than the threshold), and 

�� 'c k c s parentµ θ µ≤ ≤   (c is the lowest-density node whose density is still higher or 

at least the same as the threshold).��

These conditions virtually cut the concept hierarchy into non-overlapping distinct 

concept nodes each of which represents the concept category of its descendant leaf 

nodes. Hence, the function δ(x) returns a distinct concept node c, as defined above, 

that is either x or one of x’s ancestors.  

4.4 Advantages and Shortcomings 

Theoretically speaking, there are at least three benefits of FEILDS that exploits 

unlabeled data as described above:  

(4.2) 
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1. In the absence of additional labeled data, FEILDS can automatically improve 

the performance of a concept drift learner over time as more relevant 

unlabeled data become available.  

2. Provided that a perfect concept hierarchy can be constructed and a correct 

generalization of each instance can be realized, the number of labeled data 

becomes less relevant for improving the system’s performance. Nonetheless, a 

minimal number of labeled data would still be needed in order to establish or 

to negate target concepts. This advantage makes it possible to apply FEILDS 

in a more realistic setting particularly in an information filtering domain in 

which a real user tends to give only a few relevance judgments.  

3. Although in this dissertation FEILDS is applied only in information filtering 

domain, the technique presented is relatively general, which allows it to be 

used in other application domains as well. In addition, the output produced by 

the concept drift tracker (CDT) component in the FEILDS‘s framework 

provides a more flexible architecture, enabling any concept drift learner 

suitable for a particular application is to be applied. 

FEILDS also has a drawback. As in typical on-line learning in which a 

learning method is expected to be incremental, the proposed method is only partially 

incremental. Although the construction of concept hierarchy is incremental, the 

process of target concept induction is carried out in a batch mode because the CDT 

component must reprocess the entire sequence of labeled data, and the concept drift 

learner has to relearn the new stream generated by the CDT component. This 
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certainly adds an extra computational cost to compensate for the lack of labeled data. 

Nonetheless, this extra cost is not discouraging because the number of labeled data is 

assumed to be small, and the batch process is performed only when needed and when 

the concept hierarchy has changed. 

4.5 Summary 

Learning concept drift from an incomplete labeled data stream poses a serious 

problem, both theoretically and practically, to existing concept drift learners. The 

main contribution of this chapter is the description of the FEILDS architecture that 

modularly extends the capabilities of existing concept drift learning algorithms in 

dealing with the issue. The system analyzes and expands the learners’ original input 

streams with unlabeled data into new data streams that would improve the learnability 

of the learners’ inputs. 

FEILDS architecture consists of three main entities: (1) a concept formation 

system, (2) a concept hierarchy, and (3) a concept drift tracker. The system assumes 

that the input is a stream of labeled and unlabeled data. The concept formation system 

(CFS) incrementally constructs a concept hierarchy from the input stream in an 

unsupervised mode. The detail of the CFS algorithm is described in Chapter V. 

Utilized mainly by the concept drift tracker (CDT) component, the concept hierarchy 

serves as the knowledge base for recognizing the concept category of an instance, and 

for identifying relevant unlabeled data associated with a labeled instance. The CDT 
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component analyzes the labeled data stream, resolves any conflicting examples and 

then expands relevant data identified. 

The CDT component performs its task in several steps. First, it transforms a 

stream of labeled instances into a stream of labeled concept nodes. Next, it partitions 

the concept node streams into several, smaller concept node streams with respect to 

the categories of concept nodes. This process essentially converts the problem of 

tracking multiple target concepts into several sub-problems of tracking a single target 

concept. Each partition is then normalized, allowing the system to identify the 

relevance of concept nodes within the partition. Any exception of relevance within 

the concept node’s subcategory in each partition is resolved using the concept 

decomposition technique. Finally, all instances belonging to the relevant concept 

nodes are retrieved from the concept hierarchy, and are arranged into a new stream in 

the order of instances’ arrival times. 

One of the critical processes is identifying a concept node in the hierarchy that 

best represents the concept category of an instance. FEILDS addresses this problem 

by thresholding the concept density (i.e., one of the concept properties in the concept 

hierarchy). The threshold value is determined empirically from a validation set. 

Finally, the advantage and shortcomings of FEILDS are described. It can take 

benefits from unlabeled data, is suitable for situation that can only provide a little 

data, and is potentially transferable to other domains. However, it also introduces 

extra computational costs.   
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CHAPTER V 

CONCEPT FORMATION SYSTEM  

 

Concept hierarchy is the central entity that plays a significant role in the FEILDS 

architecture described in Chapter IV. Constructing the concept hierarchy manually is 

not practical and not scalable particularly in information filtering setting because the 

information that needs to be incorporated incrementally proliferates from the input 

stream. Hence, a more desirable method is to generate the concept hierarchy 

automatically, which is a form of process known as concept formation (Gennari, 

Langley, & Fisher, 1989; Fisher, Pazzani, & Langley, 1991). The process basically 

resembles the task of generating a cluster hierarchy in numerical taxonomy (Jardine & 

Sibson, 1971).  

This chapter describes and evaluates a new concept formation algorithm so-

called HOMOGEN. It has been developed in this dissertation for constructing a quality 

concept hierarchy incrementally. The following two sections describe the motivations 

behind the development of the algorithm and then outline the general approaches 

taken. Section 5.3 describes the foundations, the detail of the concept formation 

algorithm, and its time complexity analysis. Section 5.4 presents the evaluation of the 

algorithm, followed by the discussion of related works in Section 5.5. This chapter 

concludes by summarizing its contribution in Section 5.6.  
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5.1 Design Motivations  

Constructing a quality concept hierarchy is the main issue in designing an incremental 

concept formation system, and particularly for supporting the success of the 

framework described in Chapter IV. A quality concept (cluster) hierarchy is the one 

that represents the intrinsic hierarchical structures of concepts (clusters) that exist in 

the input data. Thus, the hierarchy construction should be capable of capturing such 

intrinsic cluster (concept) structures. More importantly, the quality of the hierarchy 

contructed should be comparable to the quality of those generated by non-incremental 

methods. While no consensus yet exists on what constitutes intrinsic structures, it is 

likely that such structures cannot be assumed to have certain shapes or distributions. 

Although many incremental concept formation systems have been developed 

in the past, most of these systems have not been designed to work in the text 

(information filtering) domain. In addition, the construction of these systems is 

mostly biased toward the shape and the class distribution of clusters, which could 

prevent discovering intrinsic structures inherent in the data. Although systems such as 

DBSCAN (Ester et al., 1996), CURE (Guha, Rastogi, & Shim, 1998) and CHAMELEON 

(Karypis, Han, & Kumar, 1999) can handle clusters with complex shapes and/or 

different sizes, these systems employ non-incremental methods. In incremental 

systems, COBWEB and its family (Gennari, Langley, & Fisher, 1989; Biswas, 

Weinberg, & Fisher, 1998; Wagstaff & Cardie, 2000) prefer clusters with similar 

sizes. ARACHNE tends to build compact clusters (McKusick & Langley, 1991). 

Similar cluster shapes are also formed by the INC system (Hadzikadic & Yun, 1989) 
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whose underlying algorithm is based on the prototypical representations. HIERARCH’s 

constraints (Nevins, 1995), which place child nodes around their parent, also appear 

to exhibit a bias toward certain cluster shapes.  

The sensitivity to input orderings is a long-standing problem in incremental 

conceptual clustering (Fisher, Xu, & Zard, 1992), hindering a concept formation 

system from consistently building a quality concept hierarchy. Two major issues that 

can affect the sensitivity problem are nodes misplacement and early commitment on 

cluster membership. The former is mainly due to the changes of hierarchy structures 

while processing new observations so that nodes that are previously well placed 

become misplaced. The latter refers to the use of a fixed threshold value for deciding 

an observation's cluster membership, for example, those applied in INC  (Hadzikadic 

& Yun, 1989) and UNIMEM (Lebowitz, 1987), which despite its practicality has its 

limitation in that it cannot adapt a cluster membership test to local properties of the 

cluster. Hence, early commitment on a cluster membership decision could prevent 

capturing an intrinsic hierarchical structure in the data set. The design of a concept 

formation system should minimize the nodes misplacement problem and avoid 

providing early commitment on the cluster membership. 

5.2 Design Approaches  

Motivated by the above problems, the conceptual clustering approach of HOMOGEN 

works on a metric space model that views an object (e.g., observation, cluster or 

node) as a point in a high-dimensional space. The density of points is used to define 
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the characteristic of a good cluster and as guidance to hierarchically organize a set of 

clusters. Informally, the density describes the spatial distribution of points, measured 

in terms of the average distance from a point to its nearest neighbor (this will be 

formally defined in Section 5.3). A hierarchy is represented as a tree structure in 

which a node in the tree denotes a cluster in the hierarchy. The approach to concept 

formation aims to construct a tree structure with two properties: 

Property 1 (Homogeneity). A tree structure satisfies a homogeneity property if every 

node in the tree consists of child nodes with similar density locally, with respect to 

the distances to nearest sibling among the child nodes. 

Property 2 (Monotonicity). A tree structure satisfies a monotonicity property if the 

density of a node is always at least as high as the density of its parent. That is, the 

density of nodes monotonically increases along any path in the tree structure from the 

root to a leaf node. 

These two properties serve as guiding principles for minimizing the 

occurrence of misplaced nodes during the hierarchy construction. The homogeneity 

requirement is needed in order to form clusters with local density properties, that is, 

the densities of objects vary in intrinsic cluster structures. This property also does not 

bias toward the shape and the class distribution of clusters that makes it suitable for 

tracking evolving clusters in an on-line situation. In fact, the homogeneity property 

also relaxes the commitment in the cluster membership function by flexibly defining 

it based on the cluster density. Accordingly, a new object can be a member of a 
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cluster if the inclusion of the new object in the cluster will not violate the 

homogeneity property of the cluster. 

Additionally, the monotonicity property requirement is based on the 

observation that higher-level hierarchies in most hierarchical systems are generally 

used to represent entities with broader contexts. This characteristic can be captured 

with the notion of monotonicity, also in terms of cluster density. Thus, the 

monotonicity property helps properly organize the hierarchical structures of clusters. 

The structure needs to be changed whenever the property is violated, and construction 

of the new structure aims to satisfy this property. Taken together, both properties are 

expected to construct a natural hierarchical structure such that nearby (resp. distant) 

clusters share a lower (resp. an upper)-level ancestor. 

The clustering process of HOMOGEN can be viewed as the incremental version 

of hierarchical agglomerative clustering (HAC) methods (Everitt, Landau, & Leese, 

2001; Miyamoto, 1990; Jain & Dubes, 1988) with two respects. First, it works in a 

bottom-up fashion, which is the same as to the manner HAC algorithms form cluster 

hierarchies in batch modes. The second similarity is that HAC also produces cluster 

hierarchies that tend to be monotonic. HOMOGEN’s notion of monotonicity is basically 

a generalization of HAC’s notion since the former produces a more general tree 

structure. In particular, the monotonicity in HAC is always determined from the 

distance between two child nodes (clusters) because of the binary tree structure it 

generates. HOMOGEN’s monotonicity is based on the average distance to the nearest 

neighbor among the child nodes so that its notion of monotonicity will be the same as 
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that in HAC if a node has only two off springs. Unlike HAC that is biased toward 

generating tree structures with the fewest branching factors, HOMOGEN relaxes this 

restriction that allows it to construct a more comprehensible hierarchical structure. 

5.3 Concept Hierarchy Construction 

The first part of this section describes the hierarchy representation and provides the 

operational definitions of the homogeneity and monotonicity properties. This part 

lays the foundations for analyzing the problem complexity and for the development of 

HOMOGEN’s concept formation algorithm. The time complexity analysis of the 

algorithm will be given in the last part. 

5.3.1 Formal Foundations 

A hierarchy { }nNNNH ,,, 21 �=  is a tree consisting of n nodes. Each node in the 

tree maintains two types of information: concept and density. The concept 

summarizes the descriptions of all observations covered by a node. The density 

describes the spatial distribution of the child nodes. An internal node has at least two 

child nodes. A node in the tree represents a cluster whose members are the set of 

child nodes.  A leaf node is a singleton cluster covering a single observation whose 

concept description is the description of the observation itself. 

Concept Representation. Let an observation { }idiii oooo ,,, 21 �=  be a d-dimensional 

point where ijo  represents the value of the jth   dimension of the ith observation. A 

concept ),,,( 21 dcccC �=  also has the same dimension as that of the observation. 
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Let ( )Nε , the extension of N, denote the set of observations (leaf nodes) that are 

descendants of N. 

Definition 1 (Concept Description). The concept description C of a node N is the 

center of m observations (leaf nodes) that are descendants of N, that is, 

{ }dcccC ,,, 21 �= where �
=

=
m

i
ijj o

m
c

1

1  and ( )ijo Nε∈ . 

Definition 1 is basically the cluster center in a prototype-based clustering. The 

calculation of cluster centers for domains with continuous attribute values is 

straightforward. In domains with nominal attribute values, observations need to be 

represented as binary feature vectors in which the value of each dimension is either 

one or zero representing the presence or absence of an attribute value.  

Density Representation. The density of a node is defined as the average distance to 

the closest neighbor among the child nodes. A natural way of obtaining the distances 

to the nearest neighbors is from the path given by the minimum spanning tree (MST) 

of the child nodes. The density representation of a node N is a triple σµ,,NDPD =  

where { }ℜ∈= ii ddNDP |  is a population of nearest distance id , µ and σ  are the 

average and the standard deviation of NDP. Each id  in NDP is the length of an edge, 

measured by the distance from a child node to its nearest sibling, in the MST structure 

connecting the child nodes of N. Thus, the µ  and σ  values are locally defined over 

the distances among the child nodes. The distance between two nodes, with respect to 
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the concept descriptions of the two nodes, in general can be measured by using nL  

distance functions as defined below: 

( ) nd

k

n
jkikjin ccNNL

1

1

),(
�
�

�

�

�
�

�

�
−= �

=
 

where iC  and jC are the concept descriptions (i.e., clusters centers) of nodes iN  and 

jN , respectively. For example, the Manhattan (Euclidean) distance function is 

derived from n =1 (n = 2). The average value of NDP, µ , characterizes the density of 

a node (cluster) in which the density is higher with lower µ  value. The average 

distance of a leaf node is defined to be zero (i.e., the distance between the leaf node 

and itself). Hence, a leaf node represents a cluster with infinitely large density. 

Definition 2 (Monotonic Node). Let Nµ  and Pµ be the average nearest distances 

with respect to the density representations of nodes N and its parent P respectively. N 

is a monotonic node if only if PN µµ ≤ , that is, the density of  N is higher than or 

equal to the density of its parent.   

Definition 3 (Homogeneous Node). Let σµ,,NDPDN =  be a density 

representation of a node N. Given a lower limit LL kµ σ= −  and an upper limit 

LU kµ σ= +  where k is a positive constant, the node N is homogeneous, with respect 

to k, if and only if LiL UdL ≤≤  for NDPd i ∈∀ . The functions LL and LU  define the 

lower and upper bounds based on the mean and the variance of the population. 

(5.1) 



 105 

Thus, a node is homogeneous if its distribution of the distances to the closest 

neighbors among the child nodes is within a bounded range around the mean. The 

variance factor k in LL and LU  functions controls the tightness of the bounds. On 

smaller k values (i.e., tighter bounds), the notions of homogeneity are less tolerant to 

the variations of the child nodes, reducing the node sizes and increasing the depths of 

the tree generated. As k values are made closer to zero, the trees constructed would 

approximate the binary trees produced by HAC methods. Although very restrictive, 

binary tree representations are capable of reconstructing any distinct clusters inherent 

within the data. Higher k values (i.e., looser bounds) behave in the opposite 

directions. Sufficiently large k values would form single-level tree structures with 

very large branching factors, which are obviously very undesirable because these 

structures cannot separate distinct clusters. Hence, the bound functions should be 

sufficiently tight for preserving the representational power of binary trees and yet 

loose enough for capturing intrinsic cluster structures. The experiment results as 

reported in this chapter are obtained by setting k=1 (see Section 5.4.2 for more 

discussion on this). 

Definition 4 interprets the effects of observing a new point that is not within 

the bounds of a node. See Figure 5.1 for the illustration of this interpretation.  

Definition 4 (Low and High Density Regions Formation). Let N be a homogenous 

node with LL and LU  as the node's lower and upper limits, respectively. Given a new 

point A, let B be an N’s child node that is the nearest neighbor to A. Let d be the 
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distance from A to B. If  LLd < , the region covering A and B represents the nearby 

(or within) N that has higher density than N. In this case, A (and B) is said to form a 

high-density region on N.  If  LUd > , the region covering both the new point and its 

closest point represents a sparser region, in which case A (and B) is said to form a 

low-density region on N. 

It is easy to show from Definitions 2 and 3 that a leaf node (or a singleton 

cluster) is by itself monotonic and homogeneous. An internal node with two child 

nodes is also a homogeneous node because the distance between the two child nodes 

is always within the node bounds. Accordingly, a hierarchy generated from the first 

two observations always satisfies the monotonicity and the homogeneity properties. 

Finally, any node forms a low-density region on a leaf node by Definition 4, except 

the leaf node's ancestors, due to the fact that the average nearest distance of a leaf 

node is zero. 

High-density 
regions 

new points 

C 
Low-density region 

N’s child nodes 

Figure 5.1:  A set of new points that create regions of high and low density. 
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5.3.2 A Preliminary Analysis of Problem Complexity 

This section attempts to analyze the time complexity for producing a tree satisfying 

the monotonicity and homogeneity properties. First, it extends a batch clustering 

method for constructing a tree with the desired properties and then provides the time 

complexity for maintaining the tree properties in on-line situation. It also discusses an 

argument of why a tractable incremental algorithm that would perform similar task is 

an elusive problem. 

Many variants of HAC algorithm can produce binary tree structures that meet 

the monotonicity and homogeneity criteria, with respect to Definitions 2 and 3. The 

tree structures generated by these algorithms, except the Centroid-based HAC, always 

satisfy the monotonicity property (Jain & Dubes, 1988) because a new higher-level 

cluster is formed in the order of increasing distance between two clusters. According 

to Definition 3, the binary tree structures generated by the agglomerative methods 

also satisfy the homogeneity property (i.e., due to the fact that a node with two child 

nodes is always homogeneous). The time complexity of these algorithms is at least 

)( 2NO (Jain & Dubes, 1988). 

Single-linkage method is a variant of HAC algorithms in which the distance 

between two clusters is determined by the distance of two closest data points in the 

different clusters. This variant can be extended using Definition 3 to generate more 

general tree structures that still meet the two criteria. Let's call this algorithm the 

Extended Single Linkage HAC (or ESL-HAC for short). Briefly, the ESL-HAC 
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algorithm initially considers all points in the data set as singleton clusters similar to 

HAC algorithms. It selects a pair of clusters with the closest distance and then either 

(1) merges the two clusters if both are singleton clusters or if neither cluster can be 

inserted as the child node of the other, or (2) insert one of the clusters as a child node 

of another if doing so still maintains the homogeneity of the hosting cluster. The 

merging or insertion process is repeated for the next pair of clusters with the closest 

distance until there is only a single cluster. In the single-linkage method, the distance 

between nodes A and B is the same as the distance between A and a node C where C 

is the nearest B’s child node from A. If the distance between A and B is not smaller 

than the greatest distance among di where di is the distance between a child node of B 

and its nearest sibling, then inserting A as B’s child node will never decrease the 

average distance of di, and hence, will never violate the monotonicity properties of 

B’s child nodes. Since ESL-HAC algorithm processes pairs of clusters with 

increasing distances, the merging and the insertion operations described above also 

preserve the monotonicity property. 

The main skeleton of ESL-HAC algorithm is the same as that of HAC 

algorithm so that the time complexity for generating a general tree satisfying the 

monotonicity and homogeneity criteria is also )( 2NO . In strictly on-line setting, these 

two properties can be preserved by rebuilding the tree each time encountering a new 

observation. The time complexity for continuously maintaining the hierarchy with the 

desired properties is therefore at least )( 3NO , which is clearly not interesting. 
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However, it is also not obvious whether there exists an algorithm with a time 

complexity of less than )( 2NO  that can incrementally incorporate a new point into an 

existing tree while still preserving the tree properties. The difficulty for inventing 

such an algorithm is based on the observation that an operation for maintaining the 

homogeneity of a node could destabilize the monotonicity of surrounding nodes (e.g., 

the child nodes and the ancestors), and vice versa. An algorithm that repeatedly 

repairs any node violating either property until the properties are satisfied would 

solve the problem but its termination cannot be guaranteed; it confounds the time 

complexity analysis of the algorithm. 

Rather than pursuing both properties, the incremental algorithm of HOMOGEN 

takes a strategy that guarantees producing only a tree satisfying the homogeneity 

property. The algorithm relies only on heuristic rules for building a tree that tends to 

be monotonic. As will be discussed in Section 5.3.6, incorporating a new data point in 

HOMOGEN requires )(log NO time, making the time complexity of )log( NNO for 

incrementally processing all the data points. 

5.3.3 The Algorithm Development 

The approaches for generating a concept hierarchy incrementally can be divided into 

two stages, which are summarized by Figure 5.2. This two-stage algorithm is applied 

on observing the third and subsequent data points. The initial hierarchy is created by 

merging the first two points (the merging process will be described later). During the 

first stage, the algorithm locates a node in the hierarchy that can accept a new 
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observation in a bottom up fashion, and then inserts the new observation into the 

hosting node. The second stage performs hierarchy restructuring. 

First Stage: Locating the Initial Placement in Concept Hierarchy 

Locating the initial placement of a new observation is performed in the following 

sequence: 

1. Find the best match concept over leaf nodes based on the closest distance to 

the new observation. To avoid exhaustive search by scanning the entire leaf 

nodes, the system performs a beam search, which maintains k best search 

paths, through the hierarchy in order to approximate the best match leaf node.  

2. Starting from the parent of the closest leaf node, perform upward search to 

locate a cluster (or create a new cluster hierarchy) that can host the new 

observation. Heuristic rules are employed during this search. 

Algorithm  Incremental Concept Formation (new observation) 
 
Stage I: Find and place the initial location for the new observation. 
Stage II: Perform hierarchy restructuring on the affected nodes. 

Figure 5.2: High-level description of HOMOGEN’s concept formation algorithm. 
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Let’s first define two basic operators that are needed to place a new observation in the 

hierarchy: node insertion operator and hierarchy insertion operator. For both 

operators, let jN  be the new observation. 

Definition 5 (Node Insertion Operator) The node insertion operator, denoted by 

),(_ jNNNODEINSERT ,  inserts jN  as a new child of a  node N  (see  Figure 5.3a). 

Definition 6 (Hierarchy Insertion Operator) Let iN  be one of N's child nodes. The 

hierarchy insertion operator, denoted by ),(_ ji NNHIERARCHYINSERT , inserts a 

new node kN  in the hierarchy so that kN becomes a parent of iN  and jN , and is a 

child node of N (see Figure 5.3 b). 

The upward search employs two heuristic rules to determine which insertion 

operator to apply. By utilizing the monotonicity property of cluster hierarchy, the 

N + Nj � 

Nj 

N 

),(_ jNNNODEINSERT  

(a) node insertion 

+ Nj � 

Ni 

N 

),(_ ji NNHIERARCHYINSERT  

(b) hierarchy insertion 

Nk 

N 

Nj Ni 

Figure 5.3: Node and hierarchy insertion operators. 
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general idea of upward search is similar to the strategy of inserting a new element 

into a sorted list of bins. 

Heuristic 1 (Node Insertion). Let d be the distance from a new observation jN  to 

the nearest child node of N, i.e., min{ ( , )}n j id L N N=  where iN  is a child node of N 

(see Equation 5.1 for the definition of nL ). Let LL  and LU  be the lower and upper 

bounds of N, respectively, as in Definition 3. For N with two child nodes, these 

bounds are defined to be NLL dkL ⋅=  and NUL dkU ⋅=  where 10 << Lk  is a lower 

limit constant, 1>Uk  is an upper limit constant, and Nd  is the distance between the 

two N child nodes. Perform ),(_ jNNNODEINSERT  if and only if LL UdL ≤≤ . 

In a node with two child nodes, the zero variance in the node’s density 

representation would hardly allow the heuristic to insert a third child node. The 

heuristic addresses this problem by providing bounds derived only from the mean 

value. These special case bounds also play the role of determining the allowable 

variation in the distances to nearest neighbors. The bound constants are 3/2=Lk  and 

2/3=Uk , which are determined empirically (see Section 5.4.2). 

Heuristic 2 (Hierarchy Insertion). Let iN  be the child node of N closest to a new 

observation jN . Perform ),(_ ji NNHIERARCHYINSERT  if and only jN  if forms a 

high-density region on N, and jN  forms a low-density region on at least one of N's 

child nodes. 
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The node insertion operator, when applied on Heuristic Rule 1's conditions, 

attempts to preserve the cluster homogeneity. The applicability conditions of 

Heuristic Rule 2 are an indication that no cluster in the hierarchy can host the new 

observation without causing a significant density disturbance. Therefore, a new 

cluster hierarchy needs to be inserted in order to accommodate the new observation 

while minimizing the perturbation of the hierarchy monotonicity. 

On each level in the hierarchy, the algorithm during the upward search 

examines the applicability conditions of each heuristic rule, applies the corresponding 

insertion operator whenever the conditions are satisfied and then stops. If none of the 

rules can be applied, the search proceeds to the next higher-level cluster (i.e., the 

parent of current cluster). If the search process reaches the top-level cluster (i.e., the 

root node), a new cluster hierarchy will be inserted at the top level using the hierarchy 

insertion operator, which replaces the root node with the new cluster. 

A Walk Through Example 

To clarify the idea during the first stage of algorithm, this section provides a walk 

through example explaining a step-by-step process as observing new data points (see 

Figure 5.4 for the illustration). Let's begin by observing the first two points, A and B, 

in which case the two points will be merged to generate an initial hierarchy (see 

Figure 5.4a). The algorithm starts executing the first stage when observing the third 

and subsequent points. 
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Given a point C at the location as shown by Figure 5.4b, the closest point to C 

is B. Point C forms a low-density region on B, relative to the density of local cluster. 

Meanwhile, points B and C form a high-density region on cluster I. These two 

conditions satisfy the applicability of Heuristic Rule 2 that applies the hierarchy 
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Figure 5.4: A walk through example. 



 115 

insertion operator. As a result, it creates a new cluster II with B and C as its members 

and cluster I as the parent of cluster II. 

Let’s proceed by observing point D as illustrated in Figure 5.4c. The closest 

point to D is C in cluster II. Since D forms a low-density region on C, and points D 

(and C) form a low-density region on cluster II, the search then continues to the 

parent of cluster II (i.e., cluster I). The position of cluster II in cluster I is represented 

by the center of cluster II, which is in the middle of points B and C. Suppose the 

distance between D and the center of cluster II is still within the bounds of cluster I so 

that the applicability conditions of Heuristic Rule 1 are satisfied. As a result, point D 

is inserted as the member of cluster I using the node insertion operator. 

Next, point E is observed (see Figure 5.4d). Point C in cluster II is the closest 

point to E. Point E forms a low-density region on C so that the search continues to the 

parent of C. It is obvious that E and C also form a lower dense region on cluster II, 

which directs the search to the parent of cluster II (i.e., cluster I). Cluster II is the 

member of cluster I closest to point E. Since E and the center of cluster II still form a 

lower dense region on cluster I, none of the heuristic rules is applicable on cluster I. 

Now the upward search has reached the top-level hierarchy. The first stage of 

algorithm then inserts a new cluster III on the top-level hierarchy so that the old root 

(cluster I) becomes a child of the new root (cluster III). Figure 5.4e illustrates the 

final hierarchy after observing points F, G and H. 
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Second Stage: Hierarchy Restructuring 

Changes in the hierarchy structures always occur after incorporating new 

observations, which are generally unseen during their initial placement. The 

restructuring process is performed to adapt the hierarchy to new structures by (1) 

recovering any misplaced nodes and (2) repairing the homogeneity property that has 

been violated. To do this effectively, the algorithm pinpoints nodes in the tree that are 

affected by the change of a node's structure once a new observation is incorporated in 

the hierarchy. Then, local operators are applied systematically on these affected 

nodes. 

A node is affected if its concept description changes, which is an indication of 

structural change. The notion of concept descriptions in Definition 1 implies that the 

affected nodes are the hosting node and its ancestors, that is, all nodes that are in the 

path from the hosting node to the root inclusive. Obviously, hosting node is the most 

Algorithm  Hierarchy Restructuring 

1. Let crntNode be the hosting node. 
2. While (crntNode ≠ null ) 
3.  Let parentNode ← Parent(crntNode). 
4.  Detect and recover the siblings of crntNode that are misplaced. 
5.  Perform homogeneity maintenance process on crntNode. 
6.  Let crntNode ←  parentNode. 
 

Figure 5.5: Hierarchy restructuring algorithm. 
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affected node, followed by its parent and so on. Figure 5.5 summarizes the hierarchy-

restructuring algorithm that performs the restructuring process on the hosting node 

and its ancestors. The following two sections will discuss steps 4 and 5 described in 

the figure. 

Detection and Recovery of Misplaced Nodes 

A hierarchy that meets the homogeneity and monotonicity properties is not unique. 

The hierarchy restructuring in HOMOGEN is biased toward constructing a hierarchy 

structure that places a set of homogeneous points into a single cluster rather than in 

multiple, multi-level clusters. Figure 5.6 illustrates an example that demonstrates the 

tendency of the first stage of algorithm for separating homogeneous points into a 

multi-level cluster. Briefly, Figure 5.6a depicts the spatial distribution of four points 

whose desired target hierarchy structure of these points is given by Figure 5.6b. 

Learning A, B and D in any order would result in concept structure as depicted by the 

Figure 5.6: An example of structural change from observing a new instance. 
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left side of Figure 5.6c. Providing C as the last observation would trigger a structural 

change to the structures of the target hierarchy. Assume C is closer to D than to B so 

that C and D form a high-density region on cluster I. As shown by the right side of 

Figure 5.6c, the first stage of algorithm will produce a hierarchy structure that splits 

homogeneous points (e.g., B, C and D) in two hierarchy levels in that B is misplaced 

as the sibling of cluster II, which is supposed to be the child node of cluster II, even 

though the presence of B in cluster I on the final hierarchy may not necessarily violate 

the homogeneity and the monotonicity properties. 

Stranded at upper hierarchy levels as illustrated above is an inevitable 

consequence of the first stage of algorithm. As the density of some regions in a 

cluster increases from observing new points, it will insert new cluster hierarchies on 

deeper hierarchy levels in an attempt to preserve the homogeneity and the 

monotonicity properties. As a result, more nodes could be misplaced at higher-level 

clusters, or more specifically, misplaced as the siblings of other nodes. The following 
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Figure 5.7: Demotion, merging and splitting restructuring operators. 
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formally defines this problem and then provides a demotion operator that can 

eliminate it. 

Definition 7 (Misplaced Sibling) Let iN  and jN be siblings to one another. jN  is 

said to be misplaced as the sibling of iN , denoted by  Misplaced_Sibling( iN , jN ), if 

and only if jN does not form a low-density region on iN . 

Definition 8 (Demotion Operator) Let iN and jN  be siblings to one another. A 

demotion operator, denoted by ( , )i jDEMOTE N N , is a process of retracting jN  from 

its parent and inserting it as a child node of iN  (see Figure 5.7a). 

Obviously, if jN is misplaced as the sibling of iN , ( , )i jDEMOTE N N  will 

solve the problem by Definition 7. Since applying a single demotion operator could 

also lead to further problems to the iN ’s remaining siblings, the algorithm checks the 

rest of the siblings and reapplies the demotion operator, repeatedly, until no 

misplaced sibling is found.  

Figure 5.8 describes the detail process. The restriction on the next sibling 

chosen in Line 5 guarantees that once the selected node is found to be not a misplaced 

sibling, then neither do the remaining siblings. If the algorithm terminates by the 

second condition (i.e., Siblings = null), which means that iN  is the only child node of 

its parent, additional minor restructuring is performed (not shown in the algorithm) in 

order to satisfy the requirement that an internal node must have at least two child 

nodes. 
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Homogeneity Property Maintenance 

This section describes the process of repairing a cluster whose homogeneity property 

has been violated. In such a case, some areas in the cluster form high and/or low-

density regions. HOMOGEN eliminates a high-density region by merging two nearest 

nodes using a merging operator, which is defined below. 

Definition 9 (Merging Operator) Merging operator, denoted by ),( ji NNMERGE  

is ),(_ ji NNHIERARCHYINSERT  where jN is a sibling of iN  (see Figure 5.7b). 

Algorithm  Detection and Recovery of Misplaced Nodes ( iN ) 

1.  Let the input iN  be the recipient of demoted nodes. 

2.  Let Siblings ← the set of iN ’s siblings. 

3.  Let No_Misplaced_Sibling ← false.  
4.  Repeat 
5.   Let jN ∈ Siblings be the closest node to a child node of iN . 

6.   If  Misplaced_Sibling ( iN , jN )  (i.e., see Definition  7) 

7.   Then ( , )i jDEMOTE N N , 

8.     Remove jN  from Siblings. 

9.    Else Let No_Misplaced_Sibling ← true.  
10. Until (No_Misplaced_Sibling = true) or (Siblings = null). 

Figure 5.8: Misplaced node detection and recovery algorithm. 
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The merging operator replaces two nodes in a cluster with a single node that is 

the center of the two nodes. The merging operator, therefore, has a likely effect of 

lessening the density around the center if the two nodes to be merged are restricted to 

those with the smallest nearest distance. Moreover, if the smallest nearest distance is 

further restricted to be below the cluster's lower limit, the merging operator will 

remove a high-density region from the cluster. Repeating the merging process on 

these nodes will eventually eliminate all high-density regions. 

A low-density region can be removed by splitting the cluster into two or more 

smaller ones using sparser regions as the cutting points. The process is similar to 

Zahn's clustering algorithm that removes inconsistent edges on the MST structures to 

form connected components (1971). The following defines the splitting operation. 

Definition 10 (Splitting Operator) Let kN be a child node of N, and kS be a set of 

child nodes of kN  (see Figure 5.7c for the illustration). Let θ be a splitting function 

that divides kS into two disjoint subsets iS  and jS , that is, )(),( kji SSS θ=  

satisfying jik SSS ∪=  and i jS S∩ = ∅ .  Let ),(),( kji NSPLITNN θ=  where 

SPLIT is a splitting operator. The SPLIT operator retracts kN  from N and makes 

iN and jN , as N’s child nodes where iS  and jS  are the sets of child nodes of iN and 

jN , respectively. If iS  or jS  contains a single child node, then that node becomes 

iN or jN , that is, effectively promoting the child node one level higher in the tree. 



 122 

To maximally eliminate the low-density regions, the algorithm employs a 

splitting function θ that selects a cutting point on the middle of a path that connects 

an object with the farthest distance to its nearest neighbor. Using the MST graph of 

the cluster being split, the members and the MST structure of each split can be 

obtained by disconnecting the selected path. If the splitting operation is performed 

only when the farthest distance to the nearest neighbor exceeds the cluster's upper 

bound, then recursively applying this operator on each new split will eventually 

obtain a cluster that is free from low-density regions, in which case the splitting 

process stops. 

Figure 5.9 describes the homogeneity maintenance process of a cluster that 

combines the merging and splitting operators. The termination conditions of the inner 

loop (in Line 6) and the algorithm guarantee that the input cluster has neither low-

density region nor high-density region. Since a split node ( iN or jN , in Line 10) that 

is promoted from a child node of kN is already homogeneous and its homogeneity 

property is not affected by the SPLIT operator, the recursive calls to the homogeneity 

maintenance process (Lines 11 and 12) are not applied to this node. Let ku NS ∪ be 

the set of child nodes of N where uS is the set of kN ’s siblings. Working in a divide 

and conquer fashion, the algorithm receives an input cluster kN  and replaces kN  by 

a non empty set of homogeneous nodes vS . That is, the set of N’s child nodes is 

now vu SS ∪ . 
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5.3.4 Time Complexity Analysis of HOMOGEN 

Let B be the average branching factor of the tree1 and D be the dimension of the data 

points (observations). For data with nominal attribute values, D=AV where A is the 

                                                 
1 The analysis assumes that the notion of homogeneity in Definition 3 is defined over tighter 
bound functions. As discussed in Section 5.3.1, tighter bound functions will generate tree 
structures with better representational powers, that is, smaller branching factors. In all 
experiments σµ ±  is used as the bound functions, which indeed construct trees with well-
behaved branching factors ranging from 2.5 to 4.5. 

Figure 5.9: Homogeneity maintenance algorithm. 

 

Algorithm  Homogeneity Maintenance ( kN ) 

1.  Let an input kN  be the node that is being examined. 

2.  Repeat 
3.     Let iN and jN  be the pair of neighbors among kN ’s child nodes with the  

closest distance. 
4.  If iN and jN   form a high-density region with respect to kN , 

5.  Then ),( ji NNMERGE , 

6.  Until there is no high-density region found in kN during the last iteration. 

7. Let iM be the child of kN with the largest id  and jM be iM ’s nearest   neighbor 

where id is the distance from node i to its nearest neighbor. 

8.  If  iM   and jM  form a low-density region in kN , 

9.  Then Let kS  ← the set of kN ’s child nodes. 

10.     Let ),(),( kji NSPLITNN θ= . 

11.  If ki SN ∉  Then Call Homogeneity Maintenance ( iN ). 

12.  If j kN S∉ Then Call Homogeneity Maintenance ( jN ). 
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number of attributes and V is the average number of attribute's values. D can be 

associated with the cost of calculating the distance between two objects, or the cost of 

updating the concept description of a node. Moreover, let n denote the number of 

observations that have been previously incorporated in the hierarchy. Thus, nBlog  is 

the average depth of the hierarchy. The most expensive process is rebuilding the MST 

structure2 every time the concept descriptions are modified, which is currently 

dominated by recalculating the distances of all pairs of child nodes (i.e., B2D). 

Finding the initial location during the first stage of algorithm involves 

searching the closest leaf node using a beam search through the hierarchy, performing 

upward search and then inserting the observation into the hosting node. Assume P is 

the beam size. The cost for determining the closest distance to a child node on each 

level in the hierarchy and on each beam path is BD, and therefore the total cost for 

finding the closest leaf node is nBPBD log . The upward search requires only 

nBBD log  time whereas inserting a single observation into a hosting node involves 

updating the concept description and the MST structure of the hosting node and its 

ancestors. The last step requires nBDB log)1( 2+ time. Thus, the update time of the 

first stage of algorithm is nBDBPB log)1)1(( 2 +++ , or )log( 2 nDBO B . 

                                                 
2 Currently the implementation employs Prim’s algorithm (Corment, Leiserson, & Rivest, 
2001) to rebuild the MST structure, which has an every-case time complexity of )( 2BΘ . 

Fortunately, there exists an incremental MST algorithm (Fredericson, 1985) with )1( −Θ B  
update time that could be used to improve the efficiency of the MST update. 
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Now, the analysis proceeds to the time complexity of the hierarchy 

restructuring (see Figure 5.5 for the algorithm description). Let crntNode be the node 

being restructured. The cost of recovering the misplaced siblings consists of two 

major components. The first component is finding the closest node to a node’s child 

node (see line 5 in the algorithm described in Figure 5.8), which is amount to B2D 

time. The second one is updating the concept descriptions (i.e., D time) and 

rebuilding the MST structures (i.e., B2D time) of crntNode and its parent due to 

applying the demotion operator. On a worst-case scenario, the number of misplaced 

crntNode’s siblings is at most )1( −B  and thus requires =++− )22)(1( 22 DBDBB  

DBDDBDB 2233 23 −+−  time. Next, the MST structure update time is also the 

major cost during the homogeneity maintenance process (recall the description of the 

algorithm in Figure 5.9). Applying the merging and splitting operators requires 

updating two and three concept descriptions as well as their MST structures, 

respectively. On a worst case scenario, there will also be at most )2( −B  splitting 

operations on crntNode including its splits. Therefore, the cost of the homogeneity 

maintenance process originating from crntNode is at most =+− )33)(2( 2 DDBB  

DBDDBDB 6363 23 −+−  time. Thus, the time for misplaced nodes restructuring 

and the homogeneity maintenance process is DBDDBDB 8596 23 −+− . Since the 

hierarchy restructuring is performed on the hosting node's ancestors along the path to 

the root, the total cost requires nDBBB Blog)8596( 23 −+− time. This provides a 

time complexity of nDB Blog3  for the second stage algorithm. 
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Hence, )log( 3 nDBO B  is the legitimate time complexity for incorporating a 

single observation. This is one order higher than the time complexity of Fisher's 

COBWEB with respect to the branching factor B, which is )log( 2 nDBO B  (Fisher, 

1987). The actual time of HOMOGEN’s algorithm could be less because the number of 

child nodes that need to be restructured can be anywhere from none to )1( −B . 

Currently B2D time, the MST update time could be improved to BD by maintaining 

the calculated distances, recalculating only those that are affected, and applying the 

Fredericson’s MST incremental update algorithm. This possible improvement, 

however, comes with the price of maintaining more complicated data structures 

(Fredericson, 1985). 

Given a sequence of N observations, the total cost to incorporate all 

observations is NDNBNDB B
N

n B loglog 3
1

3 <� =
. This gives the complexity of 

)log( NNO , which is basically the same as COBWEB’s time complexity (Fisher, 

1987) and is comparable to the incremental version of WITT system (Hanson & 

Bauer, 1989). As another comparison, the time complexity of typical agglomerative 

methods is )( 2NO . The incremental algorithms are generally more efficient because 

these approaches can take advantage the tree structures generated during the 

clustering process. This privilege, however, is not possessed by the agglomerative 

methods. 
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5.4 Evaluating the Concept Formation Algorithm 

This section describes the experimentation of HOMOGEN. The objective is to evaluate 

the system's performance by examining the quality of concepts (or clusters) hierarchy 

it generates. To avoid confusion, the evaluation is divided into two parts. The first 

part investigates the behavior of various restructuring strategies employed by the 

concept formation algorithm using synthetic and natural data sets, which represent 

structured data sets, and then compares its performance with other incremental 

systems. The second part evaluates the system in clustering text documents (i.e., 

unstructured data set). In this part, the system’s performance is compared with those 

of HAC methods, the most common hierarchical clustering algorithms applied in this 

domain. The following defines several measures employed for quantifying the 

hierarchy quality. 

5.4.1 Quantifying the Hierarchy Quality 

The evaluation uses both internal and external criteria to quantify the hierarchy 

quality produced by HOMOGEN. A hierarchy quality that is based on the internal 

criterion measures the compliance of the hierarchy to the monotonicity and 

homogeneity properties. Due to its subjectivity, this measure is used only in 

evaluating the behavior of various components in HOMOGEN. Alternatively, an 

external criterion-based quality measure quantifies the hierarchy quality with respect 

to its match with an expected hierarchy structure (Jain & Dubes, 1988). The latter 

measure is more objective and can be used for comparison with the hierarchy 
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qualities produced by other systems. This measure is also employed to confirm the 

utility of the above two properties. 

Internal Criterion-based Measure 

In this measure the hierarchy quality is quantified by calculating the percentage of 

nodes in the hierarchy that satisfy the homogeneity property or the monotonicity 

property. Let Non_Leaf _Nodes be all internal nodes and the root. The percentage of 

nodes satisfying the homogeneity property by Definition 3 is given by Equation 5.2 

below, which is the fraction of non leaf nodes that are found to be homogeneous. 

%100
__#

__ ×=
NodesLeafNon

NodesLeafNonsHomogeneou
yHomogeneit  

Meanwhile, the percentage of nodes satisfying the monotonicity property by 

Definition 2 is the fraction of monotonic internal nodes. Equation 5.3 gives the 

formulae needed. 

%100
#

# ×=
NodesInternal

NodesInternalMonotonic
tyMonotonici  

Since leaf nodes always satisfy the two properties, these nodes in Equations 5.2 and 

5.3 are not counted. The root node is also not counted in Equation 5.3. 

External Criterion-based Measure 

Cluster validation methods that are based on external references measure the degrees 

of overlap between partitions generated by a clustering algorithm and predefined 

structures. The degrees of match between two partitions can be calculated using Rand 

( 5.2) 

(5.3) 
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index (Rand, 1971}, Jaccard coefficient (Theodoridis & Koutroumbas, 1999), 

Hubert’s γ-statistic (Hubert & Arabie, 1985) or Fowlkes and Mallows index (Fowlkes 

& Mallows, 1983); among others. However, measures that have been developed to 

utilize external references are all fundamentally limited to flat partitions. The 

hierarchy quality is usually computed from the partition obtained by cutting 

dendogram generated by an HAC algorithm (Theodoridis & Koutroumbas, 1999; 

Fowlkes & Mallows, 1983), which results in a different value of quality measure on 

different specified cutting level. 

This dissertation devises two methods for quantifying the quality of a cluster 

hierarchy that do not require cluster partitioning. Instead, the approaches are to search 

the best match cluster in the hierarchy that corresponds to a target (predefined) 

cluster. The first method is to measure the hierarchy quality that also considers the 

organizational structure of the discovered, distinct clusters. This method is applicable 

on data sets whose hierarchical structures are well known. The second one only 

measures the quality of distinct clusters found in the hierarchy. 

Measuring the Quality of Hierarchy Structures 

Given a hierarchy LH  produced by a system, the quality of LH  is quantified by 

measuring the degree of its match with a known target hierarchy TH . Generally 

speaking, the degree of match between TH  and LH  is calculated by the number of 

nodes in TH , except the root node, that match with their corresponding nodes in LH . 
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Furthermore, a node in LH  is said to be the corresponding node in TH  if both nodes 

match conceptually and structurally. 

Let TT HN ∈  and LL HN ∈  be nodes in the target hierarchy TH  and in the 

hierarchy produced by a system LH , respectively, where both hierarchies are derived 

from the same set of observations. Let ( )Nε  denote the set of observations 

(singleton nodes) that are descendants of node N. The generalized Jaccard coefficient 

(Miyamoto, 1990) is used to measure the degree of conceptual match between nodes 

TN  and LN , denoted by ),( LT NNCMatch . 

( ) ( )
( , )

( ) ( )
T L

T L
T L

N N
CMatch N N

N N

ε ε
ε ε

∩
=

∪
 

CMatch measures the overlap of two concepts from the cardinality ratio between 

shared and distinct observations covered by the concepts. For each target node TN  in 

TH , let *
LN  be the corresponding node in LH  such that3: 

{ }*

( ) ( )
arg max ( , )

L L L

L T L
N H N Root

N CMatch N N
∈ ∧ ≠

=  

Then, the degree of structural match between TN and LN , denoted by 

),( *
LT NNSMatch , is defined as the degree of conceptual match between the parents 

of TN and *
LN . 

                                                 
3 Ties are handled by selecting the first encountered node with maximum value. Note that 
multiple target nodes could correspond to a single node in LH . Since the objective is to 
measure the quality of target node reconstruction in LH  and not to partition LH , this is still 
acceptable. Besides, its occurrence is extremely rare only when the target nodes are poorly 
reconstructed in LH . 

(5.4) 

(5.5) 
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))(,((),( **
LTLT NParentNParentCMatchNNSMatch =  

Finally, by incorporating the conceptual match as well as the structural match above, 

the degree of match between TH and LH , denoted by ),( LT HHHMatch , is 

computed as follows: 

�
≠∧∈

⋅=
)()(

** ),(),(),(
RootNHN

LTLTLT

TTT

NNSMatchNNCMatchHHHMatch  

The root node in Equation 5.7 is not included because this node always contains the 

same set of observations as those covered by the root node of LH . The maximum 

score varies depending on the number of target nodes defined in the target hierarchy. 

Measuring the Quality of Distinct Clusters 

In this measure, the hierarchy generated by a clustering algorithm is examined 

whether a distinct target cluster can be rediscovered. The degree of match between 

the target cluster and its corresponding cluster in the hierarchy, measured using the 

CMatch above, is then weighted according to the target cluster size. The final value is 

obtained by averaging the weighted CMatch over all target clusters, similar to the 

micro-averaging measuring technique (Yang et al., 2000). More specifically, let 

DATA be the set of all observations, and TCTCi ∈  be the ith target cluster in a set of 

target clusters TC. Let ( )iTCε denote the set of observations belonging to the target 

cluster iTC  such that ( )iDATA TCiε= �  for TCTCi ∈∀  and 

( ) ( )i jTC TCε ε∩ = ∅ . Moreover, let LH  be a hierarchy produced by a system using 

all observations in DATA. For each TCTCi ∈ , let *
LN  be the corresponding node in 

(5.6) 

(5.7) 
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LH  and be determined similarly as in Equation 5.5. The quality of LH  is then 

calculated as an accuracy measure denoting the percentage of match between the 

target clusters and their corresponding clusters in LH , as defined by Equation 5.8 

below4. 

*( ) ( , )
( , ) 100%i

i i LTC TC
C L

TC CMatch TC N
Accuracy T H

DATA

ε
∈

×
= ×
�

 

 

 

 
 

                                                 
4 Both ),( LT HHHMatch  and ),( LC HTAccuracy are asymmetric measures. 

(5.8) 

 Synthetic Data Sets Natural Data Sets a 
 Grid Triangle Symbol Soybean 

Small 
Soybean 
Large 

Voting 

#Observations 288 108 27 47 307 435 
#Target Clusters b 38 12 12 5 19 2 
#Distinct Clusters 24 9 9 4 19 2 
#Target Hierarchy  
  Levels 

4 2 2 2 − − 

#Attributes c 2 2 3 35 35 15 
Dimension Size 2 2 39 76 132 48 
Attribute Value Types Cont Cont. Nom. Nom. Nom. Nom. 
Distance Functions L2 L2 L1 L1 L1 L1 
aFrom UCI repository of machine learning database (Blake & Merz, 1998)  
b#TargetClusters = #Distinct Clusters + #Internal Nodes, except the root node, that 
groups the distinct concepts and their larger groups. 
cThe number of attributes does not include the target (class) attribute. 

 

Table 5.1: Summary of non text data sets. 
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5.4.2 Experiments in Non Text Domains 

The experiment uses six data sets as summarized in Table 5.1. The data sets Grid, 

Triangle, Symbol, and Soybean Small have known, clear target hierarchy structures 

while the hierarchy structure of the Soybean Large is unknown. Since the Voting data 

set contains only two target classes, it has the simplest hierarchy structure. Figure 

5.10 shows the target hierarchy of the first four data sets; three are from synthetic 

domains. The first four data sets are used to evaluate the performance of HOMOGEN in 

discovering both the distinct clusters and their organizational structures inherent in 

the data sets. 

The experiments are run by providing a stream of observations to the 

incremental systems. The hierarchy quality produced by the system is measured once 

the last observation has been processed. To determine the appropriate tightness of the 

bound functions, HOMOGEN is run using the Triangle data set and the variance factor 

k is varied from 0.3 to 2 in all nodes with three or more child nodes. The lower bound 

constant kL is also varied from 0.1 to 0.9 and from 1.1 to 2 for the upper bound 

constant kU particularly for nodes with two child nodes in the Heuristic Rule 1. From 

these experiments, k=1, kL=2/3, and kU=3/2 are found to be among those that give 

good measures of hierarchy quality. These settings are then fixed for other data sets in 

the rest of experiments. 
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Figure 5.10: Target hierarchy structures of four data sets. 
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The experiments are performed in two ordering scenarios: random and bad 

orderings.  The observation in random ordering is selected randomly from one of the 

unseen observations regardless of the observations’ classes. In bad ordering, the 

stream is ordered by observations’ classes (Fisher, Xu, & Zard, 1992) where 

observation of a different class will not be given until all observations of the same 

class have been processed. In each case the experiment results are averaged over 25 

trials. 

Preliminary Experiments 

The first experiments investigate the ability of HOMOGEN to construct a hierarchy 

satisfying the homogeneity and monotonicity properties. Table 5.2 describes the 

effects of applying various restructuring techniques on approximating the two 

hierarchy properties. The percentages of the homogeneity clusters and the monotonic 

nodes are calculated using Equations 2 and 3, respectively, and are averaged over 25 

runs on random ordering. "+" and "−" denote significant improvement (and 

degradation, respectively) of performances, measured at most at 0.012 levels, relative 

to those achieved by running only the first stage algorithm.  

As shown in the second column of the table, the heuristics employed during 

the first stage generate hierarchies that tend to be more monotonic (i.e., the 

percentages of monotonic nodes are much larger than those of the homogeneous 

nodes). Applying nodes misplacement restructuring during the second stage improves 

the hierarchy monotonicity but also reduces the percentage of homogeneous nodes.  
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The homogeneity maintenance process, on the contrary, can repair all the 

homogeneity violations although it also decreases the number of monotonic nodes. 

Nonetheless, performing misplaced nodes recovery that is followed by the 

homogeneity maintenance process prevents degrading the monotonicity property 

from the latter process with respect to the percentages of monotonic nodes achieved 

by first stage process. Additionally, combining these two restructuring strategies in 

the proper order preserves the hierarchy homogeneity property. 

The next experiments observe the effects of restructuring processes on the 

hierarchy quality with respect to its match with a known target hierarchy structure. 

Table 5.3 summarizes this observation. The hierarchy quality is measured by using 

Equation 5.7, averaged over 25 trials. The maximum quality scores are based on 

Stage I: Initial Observation Placement √ √ √ √ 
Stage II: Misplaced Node Restructuring  √  √ 
Stage II: Homogeneity Maintenance   √ √ 

Homogeneous Nodes (%) 
Grid 61.52 51.40− 100.00+ 100.00+ 
Triangle 62.03 51.01− 100.00+ 100.00+ 
Symbol 88.71 83.47− 100.00+ 100.00+ 
Soybean Small 71.79 56.24− 100.00+ 100.00+ 

Monotonic Nodes (%) 
Grid 98.08 99.33+ 93.97− 98.16    
Triangle 98.12 99.74+ 94.11− 98.48 
Symbol 100.00 97.81− 97.53− 100.00 
Soybean Small 96.18 99.31+ 89.61− 95.81 

 Table 5.2: The effect of restructuring techniques on achieving the homogeneity 
and monotonicity properties.  
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#target clusters described in Table 5.1. The improvement "+" and degradation "−" of 

performances over those in the second column are statistically significant at 0.05 

levels. 

As shown on the second column of the table, the performances achieved 

without performing any further restructuring process are not optimal. Additionally, 

misplaced nodes restructuring could improve or degrade the hierarchy quality, which 

could be related to the fact that this restructuring process improves the monotonicity 

property and also degrades the homogeneity property (i.e., see Column 3 of Table 5.2. 

Moreover, applying only the homogeneity maintenance process is likely to improve 

Stage I: Initial Placement √ √ √ √ √  
Stage II Rest. Method:       
− Misplace Nodes  √  √ √  
− Homogeneity Maint.   √ √ √ Max 
Stage II Rest. Scopes:      Scores 
− Hosting Node (HN)  √ √ √ √  
− HN’s Ancestors  √ √ √   

Random Ordering 
Grid 35.38  35.17   35.58 38.00+ 30.81− 38 
Triangle 11.60 11.97+ 11.65 12.00+ 10.81− 12 
Symbol 9.31 6.37− 11.68+ 12.00+ 12.00+ 12 
Soybean Small 4.26 4.43 4.55+ 4.68+ 4.37 5 

Bad Ordering 
Grid 31.75 32.74 33.80+ 37.97+ 32.25 38 
Triangle 11.93 12.00 11.87 12.00 11.28− 12 
Symbol 9.79 6.34− 11.76+ 12.00+ 12.00+ 12 
Soybean Small 4.31 4.59+ 4.58 4.61+ 4.48 5 

 Table 5.3: The effect of various restructuring processes on the hierarchy quality.  
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the hierarchy quality. As combining both restructuring techniques increases the 

percentages of nodes satisfying the homogeneity and monotonicity properties (i.e., 

see the last column of Table 5.2), it is reasonable to expect that the full restructuring 

processes would significantly improve the hierarchy quality.  The fifth column of 

Table 5.3 confirms this expectation. The results described in this column are 

produced by the restructuring process that is applied on the hosting node and its 

ancestors, representing a tradeoff between the local and global approaches. Finally, 

the sixth column of Table 5.3 reports non-optimal performances obtained when the 

restructuring process is applied only on the hosting node, which is more similar to the 

local approaches. 

To sum up, it has been empirically shown that the homogeneity and 

monotonicity are indeed desirable properties. As indicated in the experiment results, 

improving the hierarchy in satisfying these properties leads to producing a better 

measure of hierarchy quality that is independent of the hierarchical clustering 

objectives. 

Performance Comparison with Other Incremental Systems 

In this section the performances of HOMOGEN are compared with those of COBWEB 

(Fisher, 1987) and two versions of ARACHNE systems. The first version of ARACHNE, 

denoted by ARACHNE-L(ocal), implements the original ARACHNE’s control strategy as 

described by McKusick and Langley (1991). This version applies restructuring 

operators on neighboring nodes that violate the nodes' constraints. The second 



 139 

version, ARACHNE-G(lobal), extends ARACHNE-L by pushing the power of tree 

constraints employed by the system further into its limit. In particular, it also globally 

searches and restructures nodes that do not adhere to the constraints, and iteratively 

performs this process until all nodes obey the imposed constraints or until a 

maximum number of global restructuring iterations has been reached. 

Table 5.4 provides the performance comparison of HOMOGEN with other 

incremental systems with respect to the systems' abilities to rediscover distinct 

clusters inherent in the data and to properly organize the discovered clusters into 

higher-level clusters. HOMOGEN on the four data sets consistently generates better 

hierarchy qualities than other systems. On bad ordering, the hierarchy qualities 

produced by the system are as good as those on random ordering. This evidently 

indicates that HOMOGEN is relatively insensitive to input ordering. COBWEB, in 

contrast, suffers from input ordering where its performances drop on bad orderings by 

approximately 29% and 24% for the Soybean Small and Symbol, respectively, 

averaged over the 25 trials. The observation of COBWEB's behavior that is sensitive to 

input ordering, as was shown in Table 5.4, is consistent with the results reported by 

Fisher, Xu and Zard, (1992). Furthermore, both versions of ARACHNE are relatively 

not affected by the input ordering although the performances of these systems drop by 

approximately 24% on the average on the Soybean Small data set. The systems are 

also unable to reproduce a more complex hierarchy structure such as in the Grid data 

set. 
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Next, the ability of systems in rediscovering distinct clusters regardless of the 

cluster hierarchy is observed.  The same experiments as described previously are 

performed but the hierarchy qualities are measured using Equation 5.8. Now, Soybean 

Large and Voting data sets are also included. Table 5.5 summarizes the experiment 

results, averaged over 25 runs. The table shows that HOMOGEN performs comparably 

well to or better than the other systems. Consistent with the experiment results on bad 

ordering scenario described earlier in Table 5.4, the performances of HOMOGEN are 

even better, the performances of COBWEB are degraded while the ARACHNE’s 

performances could be degraded or improved. Note that on bad ordering the 

underlying partition of the seen instances becomes suddenly unbalanced every time 

the data stream starts supplying a new class of instances. The performance of 

COBWEB, which is always worse on bad ordering, might have been due to the 

system's bias against unbalanced partitions (Fisher, 1996), leading to construct 

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G Max 
 Random Ordering Scores 
Grid 38.00 − 24.20 24.25 38 
Triangle 12.00 − 11.99 12.00 12 
Symbol 12.00* 9.62 9.75 11.31 12 
Soybean Small 4.67* 4.23 3.81 4.29 5 
 Bad Ordering  
Grid 37.97   − 26.65 26.65 38 
Triangle 12.00* − 11.81 11.85 12 
Symbol 12.00* 7.12 10.18 11.19 12 
Soybean Small 4.61 2.91 2.78 3.30 5 

 Table 5.4: The quality of hierarchy structures. The quality is measured according 
to Equation 5.7 averaged over 25 trials. 
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hierarchy structures with lower quality measures. The consistency of HOMOGEN in 

maintaining good performance on this ordering is an evidence that its clustering 

process, guided by the homogeneity property, is much less affected by the temporal 

change in cluster class distribution. 

One can notice from Tables 5.4 and 5.5 that the performances of ARACHNE-G 

are relatively comparable to those of HOMOGEN on data sets containing distinct and 

compact clusters (e.g., Soybean Small, Triangle and Symbol). A plausible explanation 

for this observation is the bias in ARACHNE’s restructuring constraints (McKusick & 

Langley, 1991) that prefer to form a cluster whose members are closer to the cluster 

center. The clustering of HOMOGEN, in contrast, is relatively not affected by the 

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G 
 Accuracy (%) on Random Ordering 

Grid 100.00 − 84.50 85.76 
Triangle  100.00 − 99.93 100.00 
Symbol 100.00  87.99 95.74 99.85 

Soybean Small 96.00 94.03 83.38 96.83 
Soybean Large 59.18 55.91 47.61 53.66 

Voting 79.07 75.22 74.10 76.42 
 Accuracy (%) on Bad Ordering 

Grid 99.99 − 94.43 95.09 
Triangle 100.00 − 98.55 98.89 
Symbol 100.00 71.18 96.96 100.00 

Soybean Small 97.28 72.32 67.96 85.92 
Soybean Large 61.61 50.31 49.74 53.26 

Voting 79.60 68.40 63.79 75.22 

Table 5.5:  The quality of distinct clusters. (measured using Equation 5.8) 
The differences of bold numbers are statistically significant 
from non-bold numbers on the same row at 0.001 levels. 
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cluster shapes. For example, the shapes of clusters A through H in Grid data set are 

obviously different from the rest of clusters, and HOMOGEN is able to properly 

identify these clusters. Furthermore, the cluster boundaries on Voting and Soybean 

Large are also not clear-cut, indicating the irregularity of cluster shapes and/or the 

overlap between clusters. Yet HOMOGEN performs better on these data sets. To some 

extent, this confirms the expectation that the homogeneity property can guide the 

incremental process of HOMOGEN to reconstruct clusters of fairly arbitrary shapes. 

5.4.3 Experiments in Text Domains 

A subset of the Reuters-21578 1.0 test collection (this collection is available at UCI 

KDD Archive (Blake & Merz, 1998) is used for experiments. The original collection 

contains 21,578 stories divided into 135 topics. Of these stories, 12,902 had been 

assigned to 118 categories; one category has approximately 4000 documents while 

most of the categories contain less than ten documents. Among these topics, only six 

topics are used from the training set part of the ModApte split (Apté, Damerau, & 

Weiss, 1994) with moderate topic sizes in order to avoid a bias toward large topic 

sizes. Furthermore, since each topic may have multiple topic categories that could 

confuse the assessment in measuring the cluster quality, the experiments use only the 

stories from the selected topics that were assigned a single topic category. The 

number of selected documents is 951 consisting of target topics Coffee (90), Crude 

(253), Gold (70), Interest (190), Sugar (97) and Trade (251). 
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Text document hierarchy is evaluated from the quality of target topic 

categories found in the hierarchy as measured according to Equation 5.8. The same 

parameter values for the cluster's bounds are employed as those applied in the 

previous experiments. The distance between two documents or clusters is measured 

by Euclidean distance function. Because a document topic is independent of the 

document length, the concept representation (recall Definition 1) of each node is 

normalized by Euclidean normalization. Specifically, given a concept description 

),,,( 21 dcccC �= , the normalized concept description of C is 

)',,','(' 21 dcccC �= where 
� =
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Seven variants of HAC (i.e., non-incremental algorithms for hierarchical 

clustering) are considered for performance comparison. Briefly, HAC initially 

considers all points in the data set as singleton clusters, and then repeatedly merges 

two clusters with the closest distance until there is only a single cluster. The seven 

variants differ from each other in their methods in calculating the distances of a 

cluster to a non-singleton cluster. Lance and Williams provide recurrent formula for 

calculating these distances (Lance & Williams, 1967): 

hjhiijhjjhiihk dddddd −+++= γβαα  

In the equation above, hkd  is the distance between two clusters h and k, and cluster k 

is the parent of cluster i and cluster j. More specifically, the clustering process starts 

by calculating all distances of document pairs using Equation 5.1. The recurrent 

(5.9) 
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formula above is then employed to calculate the distances between existing clusters 

and a new non-singleton cluster, after two clusters are merged, using the distances of 

cluster pairs that have already been computed earlier. By implementing a generic 

agglomerative clustering, variants are determined from the parameters in the recurrent 

formula above. Table 5.6 provides the common parameter values for each of the HAC 

variants (Everitt, Landau, & Leese, 2001; Miyamoto, 1990; Jain & Dubes, 1988). 

Document Pre-Processing, Feature Selection and Weighting 

Text documents represent a noisy domain in which many features (words) tend to be 

irrelevant. Feature subset selection and feature weighting are two important processes 

to deal with this problem and this section describes these two processes. Each 

document is pre-processed as follows: 
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 Table 5.6: Parameter values for the agglomerative clustering variants. Note that 
mn denotes the number of data points that belong to a cluster m. 
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• Ignoring case and removing punctuation. 

• Extracting unique words and bi-grams (i.e., two-word sequence that occurs at 

least twice in a document). “term” will be used to denote a word or a bi-gram. 

• Removing all stop words (e.g., “a”, “the”, “although”, etc.). 

• Counting the term frequency TF (i.e., the number of times the term occurs in 

the document) for each of the remaining unique terms. 

Each document is now represented by a feature vector containing a set of unique 

terms and their term frequencies. Note that the document pre-processing is ordering 

independent. 

The feature selection process is applied to remove irrelevant terms from a 

document feature vector. Unlike in a supervised learning method that can employ 

information-theoretic or other well-grounded approaches for selecting a set of 

discriminating features from training examples, the nature of the clustering task 

makes it difficult to apply such methods. Instead, two alternatives of heuristics are 

considered here: 

1. MDF-FS: minimum document frequency-based feature selection that selects 

terms occurring in at least n documents, and 

2. MTF-FS: minimum term frequency-based feature selection that selects a term 

t if there exists at least one document in which t occurs at least m times. 
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The first alternative, which uses document frequency for filtering non-relevant 

features, is common in information retrieval, text classification (Joachims, 1997), and 

text clustering (Dhillon & Modha, 2001). Terms with low document frequency are 

non-content bearing and thus cannot be used as the discriminatory features. The 

second alternative assumes that term frequency is an indicator for topical words. 

Terms thus must appear with high term frequency in at least one document in order to 

be considered as topical words. Although term frequency has been heavily used for 

feature weighting, it has been rarely exploited for feature selection process. 

The last process is to weigh each selected feature. Two feature weighting 

methods are considered: term frequency (TF) and term frequency inverse document 

frequency (TF-IDF). The former only uses term frequency as the weight of term while 

the latter also takes into account the document frequency. The TF-IDF has been well 

studied in Information Retrieval and has been shown to improve the retrieval 

effectiveness (recall Equation 3.1 in Chapter III). All feature weights are then 

normalized using Euclidean normalization. 

The incremental system performs feature selection and weighting on the fly as 

it receives a new document to learn. In this system, the statistical information needed 

for feature selection is derived only from documents that have been previously 

processed. This clearly poses a problem for the MDF-FS feature selection because at 

least the first (n−1) seen documents will never be included in the clustering process. 

Therefore, only the MTF-FS feature selection is used in the incremental system. 

Although it cannot completely avoid throwing a document out, the likelihood of the 
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MTF-FS feature selection for encountering such a problem is much smaller. The TF-

IDF weighting method, with similar reason, is also not applicable so that the system 

only uses the TF weighting method. During the course of incremental learning, a 

feature that is considered irrelevant in earlier seen documents could become suddenly 

relevant in more recent documents. To maintain the incremental nature of the system, 

documents that have already been learned are not reprocessed. In batch systems, the 

feature selection and weighting processes are performed over all documents well 

before the clustering process begins. 

 

 Accuracy(%) Total #Features 
Sample Sizes 75 200 400 600 75 200 400 600 

mtf = 1 77.14 77.30 69.50 66.62 2151 3769 5875 7270 
mtf = 2 80.82 80.70 72.61 71.42 929 1896 3211 4163 
mtf = 3 85.85 83.94 77.49 76.20 366 748 1234 1576 
mtf = 4 92.14 93.06 88.79 87.56 184 396 654 834 
mtf = 5 91.25 92.29 89.94 89.49 116 241 398 510 
mtf = 6 93.18 92.60 89.44 89.19 79 156 266 342 
mtf = 7 91.51 89.95 87.00 87.31 54 103 181 234 
mtf = 8 91.75 88.27 85.20 86.01 39 75 131 168 
mtf = 9 86.69 84.47 81.62 83.64 30 57 97 126 
mtf=10 88.98 83.65 80.55 82.04 25 45 74 98 

 Table 5.7: The sensitivity of MTF-FS parameter values on HOMOGEN over various 
sample sizes. The results are averaged over 25 trials. Bold numbers 
indicate the highest accuracies in their respective sample sizes over 
various mtf values. Note that the feature sizes are the final counts once 
the system processes the last documents. The actual feature sizes vary 
during the clustering process and can grow when the system encounters 
new distinct words by processing more documents. 
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Experiment Results 

First of all, the experiments are conducted to explore the sensitivity of MTF-FS 

feature selection parameter values on HOMOGEN using smaller sample sizes. The 

minimum term frequency (mtf) values in the experiments are varied from 1 to 10. 

Setting mtf = 1 is identical to running the system without performing feature selection 

process, and increasing the mtf value will reduce the total number of features selected 

during the clustering process. Table 5.7 describes the experiment results. In general, 

the system's accuracies improve with increased mtf values until optimal points are 

reached, and then the performances degrade slowly by further reducing the feature 

sizes. This entails that HOMOGEN’s performance is affected by the presence of noise. 

Reducing the amount of noise by removing non-relevant features improves the 

system performance. However, aggressively removing the features considered as 

noise will also eliminate salient features and degrade the system's performance. 

Clearly, feature selection helps improve the hierarchy qualities provided the right mtf 

values. 

The next experiments exploit the peak accuracies that can be achieved by 

HOMOGEN and the seven HAC variants on the full data set (951 documents consisting 

of six topics). The experiments are conducted by varying the pairs of feature 

weighting method (i.e., TF or TF-IDF) and feature selection method (i.e., MTF-FS or 

MDF-FS) that will be applied in each HAC variant. Because the value of feature 

selection parameter affects the hierarchy quality, each clustering algorithm is run 

several times on different values of feature selection parameter and the one that 
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maximizes the hierarchy quality is taken as the representative of the best result of a 

clustering algorithm. More specifically, the best result is taken by varying the mtf 

values from 1 to 15 for the MTF-FS feature selection, or by varying the minimum 

document frequency (mdf) values to 2, 4, 8, 12, 16, 32, 48, 64, 80 and 96 for the 

MDF-FS feature selection. 

Table 5.8 presents the best results for each variation of feature selection and 

weighting methods as well as their corresponding parameter settings. The best 

accuracy from HAC algorithms is achieved by the Group-average method (89.16%) 

and the peak performance attained by HOMOGEN is slightly higher (89.32%). A higher 

parameter value, shown next to the accuracy in the table, is an indication that the 

corresponding clustering algorithm is more sensitive to noise since it needs to be 

more aggressive in removing irrelevant features in order to maximize its performance. 

 Accuracy (%) (parameter value) 
Feature Selection MTF-FS MDF-FS 
Term Weighting TF TF-IDF TF TF-IDF 
HOMOGEN 89.32 (5) − − − 
Single-link       70.20 (9) 61.71 (12) 59.80 (48) 62.45 (64) 
Complete-link     72.81 (2) 68.04 (1) 72.81 (4) 68.01 (1) 
Group-average     89.16 (4) 86.86 (4) 81.12 (2) 80.24 (8) 
Weighted-average  88.62 (5) 83.94 (4) 76.05 (8) 80.42 (32) 
Centroid          83.43 (14) 79.05 (14) 58.31 (64) 50.18 (80) 
Median Method     74.37 (8) 67.80 (12) 62.09 (80) 61.34 (64) 
Ward's Method     84.36 (5) 83.37 (6) 77.19 (8) 80.11 (32) 

Table 5.8: Peak accuracies achieved by HOMOGEN and HAC methods. The 
accuracy of HOMOGEN is averaged over 25 runs. The italic numbers 
following the accuracies are the parameter values of their respective 
feature selection methods (i.e., mtf or mdf values) that produce the 
results. 
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In this respect and on the data set used in the experiments, Single-link, Centroid and 

Median methods appear to be very sensitive to irrelevant features.  Complete-link is 

the most insensitive method, while the others including HOMOGEN are somewhat in 

the middle. 

The detail results of HOMOGEN and Group-average algorithms are provided 

by Table 5.9. The fractional numbers in HOMOGEN are due to the averaging of the 

experiment results over 25 trials. Let precision be the percentage of correct 

HOMOGEN 
 Document Topics Total 
 Coffee Crude Gold Interest Sugar Trade Docs. 

Cluster-1   81.28     0.20     −     0.16      −    0.72   82.36 
Cluster-2    0.08  226.72    1.60     1.24    0.16     3.44  233.34 
Cluster-3  −    0.08  64.88      −     −    0.08   65.04 
Cluster-4    1.04     2.96    0.24   175.32    0.88     6.64  187.08 
Cluster-5    0.60     0.32    0.68       −  90.28     0.12   92.00 
Cluster-6    0.24     0.96    0.04     5.24    0.04  227.92  234.44 
#Excluded docs.     6.76    21.76    2.56     8.04   5.64    12.08   56.84 

 

Group-average Hierarchical Agglomerative Clustering 
 Document Topics Total 
 Coffee Crude Gold Interest Sugar Trade Docs. 

Cluster-1  83 − − − − 1 84 
Cluster-2  1 226 − − 1 1 229 
Cluster-3  − 1 66 − − − 67 
Cluster-4  3 12 − 186 − 11 212 
Cluster-5  − − − − 94 − 94 
Cluster-6  − 10 3 2 − 233 248 
#Excluded docs.   3 4 1 2 2 5 17 

Table 5.9: The confusion matrices of clusters generated by HOMOGEN and Group-
average HAC methods. 
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assignment of documents in all found clusters and recall be the percentage of correct 

assignment over all 951 documents, i.e., micro-average precision or recall (Yang et 

al., 2000). The precision and recall of HOMOGEN are 96.9% and 91.1%, respectively 

(see Table 5.10). The group-average algorithm, on the other hand, produces clusters 

with slightly lower precision (95.1%) but higher recall (93.4%). 

5.5 Discussion of Related Work 

Previous work has mitigated the effect of input ordering by applying restructuring 

operators such as cluster merging, splitting, and promotion (Fisher, 1987). The 

strategies for applying these operators can be broadly divided into local and global 

approaches with their advantages and shortcomings. The local approaches apply 

restructuring operators on the neighborhood of a hosting node (i.e., a node that serves 

as the parent of a new observation). Systems such as COBWEB (Fisher, 1987), 
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Table 5.10: The precision and recall of HOMOGEN and Group-average (GA)-HAC. 
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UNIMEM (Lebowitz, 1987) and INC (Hadzikadic & Yun, 1989} are examples of those 

employing these restructuring strategies. Fisher’s COBWEB selects and applies a 

restructuring operator that locally maximizes the measure of partition utility value. 

Lebowit’s UNIMEM employs a somewhat less informal method for deciding between 

restructuring operators, which is based on a confidence score and a set of user-

specified parameters. Likewise, the restructuring strategy in INC is largely heuristic, 

basing its decision for applying various restructuring operators on user-defined 

thresholds over relevance and strength measures. Although relatively efficient to 

recover nodes misplaced at neighboring nodes, the local approaches in general suffer 

from their inability to deal with major structural changes. 

The global approaches address the sensitivity issue by iteratively reinserting 

nodes into the entire hierarchy. As an extreme example, ITERATE redistributes 

observations on a single-level clustering, which is initially built non-incrementally, 

until there is no cluster formation change in two consecutive iterations (Biswas, 

Weinberg, & Fisher, 1998). ITERATE’s optimization technique is clearly very 

expensive. Alternatively, Fisher proposes a hierarchical redistribution method that 

intermittently performs nodes redistribution on an existing, incrementally built 

concept hierarchy (Fisher, 1996). The technique represents a hybrid approach that 

combines incremental and batch methods. It is less expensive but relearning all nodes 

iteratively makes the algorithm less incremental. 

The restructuring strategy in HOMOGEN represents a tradeoff between the local 

and the global approaches. The system pinpoints nodes whose structures are 
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potentially affected by the presence of new observations and then applies 

restructuring operators only to nodes that actually experience structural change. The 

structural change problems are detected through checking the nodes’ conformity with 

the homogeneity and monotonicity properties. Intuitively, this strategy improves the 

ability of the system to recover from major structural changes while preserving the 

incremental nature of the algorithm. 

HOMOGEN’s approach that uses a set of conceptual constraints (e.g., the 

homogeneity and monotonicity properties) as the guiding principles during the 

hierarchy restructuring can be related to the ARACHNE  (McKusick & Langley, 1991) 

and the HIERARCH (Nevins, 1995) systems. ARACHNE constructs well-formed concept 

hierarchies with regard to explicit constraints on the tree structure. A well-organized 

concept tree in the system is defined as the one that has horizontally and vertically 

well-placed concepts with respect to a similarity metric. The system applies 

restructuring operators recursively at neighboring concepts until the two constraints 

are satisfied locally. Alternatively, the HIERARCH system uses information theoretic 

considerations to constrain the placement of a node in a hierarchy (Nevins, 1995). 

The system redistributes any node that violates the constraints as if it is a new object 

to learn, repeatedly, until every single node in the tree satisfies the imposed 

constraints. Besides the similarity of ARACHNE’s restructuring process to the local 

approaches, its control structure is not guaranteed to halt theoretically (McKusick & 

Langley, 1991). Although in lesser extents, the HIERARCH’s restructuring strategy can 

be related to the global approaches. 
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Unlike the ARACHNE and the HIERARCH systems that rely exclusively on their 

constraints as the only guiding principles (i.e., both systems apply restructuring 

operators for the sake of satisfying the given constraints), HOMOGEN also explicitly 

detects and rectifies structural problems that cannot be recovered by satisfying the 

imposed constraints. The premise is that no single approach covers all cases, and a 

complementary approach that addresses a different restructuring objective can be 

implanted to handle the uncovered cases. Although differing greatly in detail, this 

idea is similar in spirit to COP-COBWEB (Wagstaff & Cardie, 2000) and COP-KMEANS 

(Wagstaff, Cardie, Rogers, & Schroedl, 2001), a version of COBWEB (KMEANS) that 

enforces instance-level hard constraints irrespective to the clustering decision of the 

main approaches. The instance-level constraints in these systems are heavily 

dependent on the input domains so that a different set of hard constraints needs to be 

defined on a different data set. In contrast, HOMOGEN is more general because it deals 

only with a structural property, allowing it to work across data sets without additional 

efforts. 

Finally, the homogeneity property in HOMOGEN is based on a notion of 

density. Several density-based algorithms with various notions of density have also 

been developed mostly for batch clustering methods. For example, a density is 

determined by the number of neighboring points at a specified radius (Ester et al., 

1996), a mathematical model (Hinneburg & Keim, 1998), or the number of points 

lying inside a cell grid (Agrawal et al., 1998). The foundation of HOMOGEN’s notion 

of density as described earlier is a graph theoretic approach (Jain & Dubes, 1998).  
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5.6 Summary  

The central role of concept hierarchy in the architecture of FEILDS described in 

Chapter IV makes its construction a critical process. One of the main contributions of 

this chapter is the description of new concept formation algorithm that exploits the 

homogeneity property coupled with the monotonicity property for incremental 

induction of hierarchical concepts and clusters from a data stream. Both properties are 

essential for discovering intrinsic hierarchical structures in which one cannot assume 

about the shape and the class distribution of clusters.  

The other main contribution is providing a comprehensive, in depth empirical 

evaluation on the performance of the algorithm. It has been experimentally shown 

that the homogeneity and monotonicity are indeed desirable properties in that 

improving the hierarchy in satisfying these properties leads to producing a better 

measure of hierarchy quality that is independent of the hierarchical clustering 

objectives. Experiments conducted on a variety of domains involving structured and 

unstructured data sets also indicate the effectiveness of HOMOGEN. The system is 

relatively insensitive to input ordering and can produce a quality hierarchy structure 

inherent within the input data. Its performance in the given unstructured data set is 

also comparable to the best performance achieved by HAC methods. 
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CHAPTER VI 

EVALUATION OF FEILDS  

 

FEILDS, as discussed in Chapter IV, is a computational framework for extending the 

capability of an existing concept drift learner to deal with variable drift rates. Its main 

role is to convert a stream of sparsely labeled data (with a rapid drift rate) into one 

with a slower drift rate that can be conveniently tracked by the learner. This chapter 

presents an empirical evaluation of FEILDS. The main evaluation objective is to 

observe the extent to which the performance of the existing concept drift learners can 

be improved by learning from the stream generated by FEILDS with respect to its 

performance as a result of learning from the original labeled data stream.  

The first section of this chapter describes the experiment data and procedure. 

Section 6.2 describes three tracking tasks to be used in the experiments. These 

tracking tasks are modified from those described in Chapter III in order to suit the 

need of FEILDS’s input.  The discussion of primary experiments is provided in 

Section 6.3, followed by the discussions of empirical system behaviors in Sections 

6.4, 6.5 and 6.6. Finally, Section 6.7 describes the summary of this chapter.  

6.1 Data and Experiment Procedure 

All experiments use the same data set as the one employed in the experiments 

presented in Chapter III. In the rest of this chapter, any experiment reference intended 
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for those described in Chapter III will be called previous experiment. The experiment 

described in this chapter is denoted by “current” experiment. The size of test set is 

2581, taken from the test set of the ModApte split in the Reuters-21578 1.0 collection 

(exactly the same test set as used in previous experiments). The training set in 

previous experiments is further split in current experiments into a validation set of 

size 100 and a training set of size 6352 documents. The validation set is used to 

empirically determine the concept density threshold for identifying distinct concepts 

(see Chapter IV Section 4.3.4). Unless mentioned otherwise, all experiments are 

produced by setting the threshold parameter k in Equation 4.2 to its default value (i.e., 

k=0.5 or θ0.5). Recall that this default setting maximizes the margins between 

overfitting and overgeneralization (see Section 4.3.4 in Chapter IV). The experiment 

uses the training set to generate data streams to be learned by the system. 

To observe the performance over time, the data stream is divided into k m-

instance sequences. The system performance is measured on the same test set after 

learning an m-instance sequence. As defined before, the sequence of learning m-

instance sequence that is followed for system performance measurement constitutes a 

tracking cycle. Unlike previous experiments in that the system learns only from 

labeled data, FEILDS in current experiments also allows learning from unlabeled 

data. Figure 6.1 summarizes the procedure employed in current experiments, which is 

slightly modified from the summary of FEILDS’s approach in Figure 4.3. It ties 

together various system components and accommodates both the incremental and 

batch processes needed in the framework.  
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Stream-S in Figure 6.1 denotes a stream of labeled and unlabeled data fed to 

the system. Stream-L represents a stream of labeled data extracted from Stream-S, 

preserving the relative ordering of labeled data in Stream-S. Initially empty, the 

length of Stream-L grows incrementally when the system sees a labeled instance from 

Stream-S (see Step 1 in Figure 6.1). Stream-S′′′′ is the new stream generated by the 

Input: a data stream Stream-S generated from the training set. 
 
Initialization: 
1. Let Stream-L = �∅�, the sequence of labeled instances.    
2.  H = ∅, the concept hierarchy. 
3. Determine the density threshold of distinct concepts from the validation set. 
 
Experiment Procedure: 
For each tracking cycle i = {1 … k} 
1. Process incrementally the ith m-instance sequence from Stream-S. 
    For each instance x from the m-instance sequence 
         Update H to incorporate x using incremental concept formation algorithm 

described in Chapter V. 
         If the label q of x is available  

then concatenate �(x, q)� to the tail of Stream-L. 

2. Execute the concept drift tracker (CDT) algorithm, described in Chapter IV, to 
generate the new stream Stream-S′′′′ from current values of Stream-L and H. 

3. Run a selected concept drift learner (e.g., one of the four algorithms described in 
Chapter III) to learn Stream-S′′′′ and measure the accuracy of the learned 
concepts on the test set. 

Figure 6.1: The procedure of experiment for FEILDS evaluation. 
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concept drift tracker (CDT) component, which contains genuine and artificially 

labeled data.  

During the initialization stage, the procedure empirically determines the 

concept density threshold from a validation set. This threshold, as described in 

Chapter IV Section 4.3.4, is used for instance generalization through the concept 

hierarchy, a process needed by the concept drift tracker algorithm. Initially empty, the 

concept hierarchy H is updated incrementally when observing each new instance 

from Stream-S regardless of whether the instance is labeled or not. Next, it invokes 

the CDT algorithm after observing m-instance sequence in order to generate Stream-

S′′′′ based on the current value of Stream-L and the concept hierarchy built up to that 

point. An existing concept drift learner is then applied in Step 3 to learn Stream-S′′′′.  

The system performance is measured in the same way as in previous experiments 

based on the performance of a selected concept drift learner on a separate test set. 

Four concept drift learners are considered for learning the stream Stream-S′′′′: 

(1) MTDR algorithm, (2) Rocchio algorithm, (3) Window- KNN, and (4) Window-

Rocchio.  These algorithms have been used for performance comparison against one 

another in previous experiments, and that is not the case in current experiments. The 

main idea of FEILDS is to extend an existing concept drift learner for dealing with a 

few labeled data stream. Therefore, the performance of an existing concept drift 

learner is expected to improve by learning Stream-S′′′′ over the performance of those 

that learn only Stream-L (i.e., the original labeled data stream) regardless of the 
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concept drift learner employed. The four concept drift learners with diverse methods 

above will be used to confirm this expectation. 

6.2 Tracking Tasks 

The experiments employ similar tracking tasks to the ones summarized in Table 3.6 

in terms of the sequence of target concept classes that need to be tracked over time. 

The evaluation is focused on the system performance when the shortest possible 

sequence of labeled data, as reflected by Stream-L, is presented. This sequence 

corresponds to the 5% of labeled instances used in previous experiments.   

If data streams used in previous experiments are employed in current 

experiments, and if only 5% labeled instances in the streams are made available, the 

rest 95% of the data in the streams can actually serve as unlabeled data that can be 

utilized by FEILDS. Although still a valid method, the streams contain only a small 

number of concepts and the portions of instances belong to current target concepts 

(i.e., relevant unlabeled data) are still relatively high.   To make the problem more 

challenging, current experiments extend the original data streams so that they contain 

mostly non-target instances while preserving the relative ordering of instances in the 

original streams.  

Tables 6.1−6.5 describe tracking tasks 1-E(xtended) − 5-E; these have been 

extended from tracking tasks 1−5 used in previous experiments (see Tables 3.1−3.5). 

While the number of instances at each tracking cycle in the original tracking tasks 

varies from 1 to 4, the extended tracking tasks contain the same 10-instance sequence 
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per tracking cycle. As a result, the lengths of the data streams in tracking tasks 1-E − 

5-E are 1000, 800, 600, 400 and 400, respectively. In contrast, the original stream 

lengths are 180 for tracking task 1, 220 for tracking tasks 2 & 3, and 40 for tracking 

tasks 4 & 5. The additional instances in the extended tracking tasks, which are 

Tracking Cycle 
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100 

(Trade, +)  
& 9 others 

(Trade, −) 
(Coffee, +) 
& 8 others 

(Coffee, −) 
 (Crude, +) 
& 8 others 

(Crude, −)  
(Sugar, +) 
& 8 others 

(Sugar, −) 
(Acq, +) 

& 8 others 

Table 6.1: Tracking task 1-E(xtended). 

 

 
Tracking Cycle 

1 − 20 21 − 40 41 − 60 61 − 80 

(Trade, +) 
(Coffee, +) 
& 8 others 

(Trade, −) 
(Coffee, +) 
(Crude, +) 
& 7 others 

(Coffee, −) 
(Crude, +) 
(Sugar, +) 
& 7 others 

(Crude, −) 
(Sugar, +) 
(Acq, +) 

& 7 others 

Table 6.2: Tracking task 2-E 

 

 
Tracking Cycle 

1 − 20 21 − 40 41 − 60 

(Trade, +) 
(Coffee, +) 
(Crude, +) 
& 7 others 

(Trade, −) 
(Coffee, +) 
(Crude, +) 
(Sugar, +) 
& 6 others 

(Coffee, −) 

(Crude, +) 
(Sugar, +) 
(Acq, +) 

& 6 others 

Table 6.3: Tracking task 3-E. 
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randomly selected from the training set, belong to non-target concepts so that the 

portions of non-target instances in tracking tasks 1-E − 5-E are 90%, 80%, 70%, 80% 

and 70%, respectively. It is worth mentioning that the definition of 5% labeled data in 

the original streams (e.g., tracking tasks 1−5) corresponds to roughly from 0.9% − 

1.1% in tracking tasks 1-E − 5-E. The portions of labeled instances in the extended 

tracking tasks with respect to instances in the original streams remain the same (5%). 

 

 
Tracking Cycle 

1 − 20 21 − 40 

(Trade, +) 
(Coffee, +) 
& 8 others 

(Coffee, −) 
(Crude, +) 
& 8 others 

(m=2) (m=2) 

Table 6.4: Tracking task 4-E. 

 
 

Tracking Cycle 
1 − 20 21 − 40 

(Trade, +) 
(Coffee, +) 
(Crude, +) 
& 8 others 

(Coffee, −) 
(Crude, +) 
(Sugar, +) 
& 8 others 

(m=3) (m=3) 

Table 6.5: Tracking task 5-E. 
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6.3 Primary Experiment Results 

This section describes the main experiment results that demonstrate the utility of 

FEILDS. Tables 6.6 – 6.8 summarize the outcomes of previous and current 

experiments on tracking tasks 1-E – 3-E, respectively. The system performances, as 

shown in the figures, are the average accuracies from the first tracking cycle to the 

end, averaged over ten trials (from running ten data streams).  

The “100%-L” performances are simply taken from Table 3.8. These results 

are generated in previous experiments by making the labels of all instances in the 

original streams available to the concept drift learner. In contrast, the “5%-L” average 
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100%-L 74.90 70.92 73.58 73.71

5%-L 63.29 46.35 57.09 60.26

FEILDS (5%) 70.06 65.71 64.61 60.12

FEILDS (10%) 70.81 67.36 65.90 62.46

MTDR Rocchio
Window-

KNN
Window-
Rocchio

 
Table 6.6: System performances on tracking task 1-E. 
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accuracies, which also serve as the baselines, describe the system performances when 

given only 5% of labeled data (e.g., Stream-L) with respect to the number of labeled 

data used to produce the “100%-L” performances. The “5%-L” performances are 

obtained from Table 3.10 in previous experiments. The FEILDS rows show the 

concept drift learner’s performances from learning Stream-S′′′′. As described above, 

Stream-S′′′′ is the stream generated by the CDT component in the FEILDS architecture, 

which is also given the same Stream-L as one of its inputs (its other input is the 

unlabeled data in Stream-S). The FEILDS rows provide the main results of current 

experiments.  
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100%-L 71.80 66.06 71.77 66.40

5%-L 60.12 49.25 46.80 39.49

FEILDS (5%) 68.17 57.37 57.36 52.61

FEILDS (10%) 68.46 57.96 58.32 52.99

MTDR Rocchio
Window-

KNN
Window-
Rocchio

 
Table 6.7: System performances on tracking task 2-E. 
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The difference between “5%-L” and “100%-L” performances represents a 

room for improvement, the extent to which the “5%-L” performances can be 

improved by FEILDS; although desirable, it is not realistic to expect that its 

performance would exceed that of the “100%-L” system. As shown in Tables 6.6 – 

6.8, FEILDS can effectively improve the average accuracies of existing concept drift 

learning algorithms except for the results of FEILDS (5%) employing Window-

Rocchio learner on tracking task 1-E.  It is worth noting that all the four learning 

algorithms receive the same Stream-S′′′′ at a given tracking cycle and a tracking task. 

Therefore, the failure of the Window-Rocchio learner for improving its performance 

as above is more likely due to the problem within the algorithm itself rather than the 

quality of the Stream-S′′′′; the other three algorithms do not encounter this problem. 
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100%-L 69.85 60.54 64.41 58.48

5%-L 59.53 53.00 46.66 42.93

FEILDS (5%) 66.38 57.32 58.55 53.32

FEILDS (10%) 66.63 57.70 59.11 53.48

MTDR Rocchio
Window-

KNN
Window-
Rocchio

 
Table 6.8: System performances on tracking task 3-E. 
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Tables 6.6 − 6.8 also show that the performances of FEILDS can be further 

improved when given streams with 10% labeled data (again, with respect to the “5%-

L” performances). The improvement over FEILDS (5%), however, is not significant. 

It is likely that most additional labeled data of the same concept category is classified 

on the same concept node in the concept hierarchy, yielding no additional 

information.  

6.4 Performance over Time 

Figures 6.2 − 6.4 depict the MTDR algorithm performances over time on tracking 

tasks 1-E − 3-E, respectively. Clearly, the FEILDS performances improve over the 

baseline (“5%-L”) performances. Using the same sequence of labeled data as that 

given to the “5%-L” systems, FEILDS gains its performances as more relevant 

instances became available, which is expected. Except in the last twenty tracking 

cycles whose current target topics involve Acq, most of the performance gains 

achieved over the baseline performances are significant, and in some cases are even 

better than the performances of the “100%-L” systems. In the experiment setting, it is 

found that Acq is the most difficult target concept to learn, causing a drastic 

performance drop when the systems start to track this target concept. Nonetheless, 

FEILDS is still able to improve its performances automatically, although rather 

slower, with the increasing availability of Acq documents.  This tendency is very 

encouraging.  
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Figure 6.2: The MTDR algorithm performance over time on tracking task 1-E. 
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Figure 6.3: The MTDR algorithm performance over time on tracking task 2-E 
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 As discussed in Section 4.3, the quality of the concept (cluster) hierarchy as 

well as the accuracy of the instance generalization method could affect the quality of 

the system’s output. Section 6.4 shows that although FEILDS is able to retrieve more 

relevant unlabeled data, which can improve its performance, some of the unlabeled 

data retrieved are irrelevant or incorrectly labeled, which degrades system’s 

performance. It is likely that this noise prevents FEILDS’s performance from being 

better than the performance of “100%-L” system on tracking tasks 1-E – 3-E. 
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Figure 6.4: The MTDR algorithm performance over time on tracking task 3-E. 
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6.5 Overcoming the Persistence Assumption Problem 

Tables 6.9 and 6.10 summarize the performance of the four algorithms on tracking 

tasks 4-E and 5-E, respectively.  Like in tracking tasks 1-E − 3-E, the performance of 

the MTDR and Rocchio algorithms significantly improves over the baseline (“5%-L”) 

performance but cannot surpass the performances of “100%-L” systems. Deviating 

from these typical results, interestingly, the performance of the Window-KNN and 

Window-Rocchio algorithms is at least comparable (in tracking task 4-E) to and is 

even better (in tracking task 5-E) than that of the “100%-L” system.   
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100%-L 78.04 71.57 66.22 64.35

5%-L 65.45 52.35 56.29 57.20

FEILDS (5%) 72.75 66.44 67.91 64.00

FEILDS (10%) 73.46 67.74 68.91 65.28

MTDR Rocchio
Window-

KNN
Window-
Rocchio

 
Table 6.9:  System performances on tracking task 4-E.  The differences of means 

between 100%-L and FEILDS (5% & 10%) in the Window-Rocchio, 
as well as between 100%-L and FEILDS 5% in the Window-KNN are 
not statistically significant (measured using the paired two-tailed t test). 
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100%-L 74.13 69.81 62.78 57.25

5%-L 64.69 56.90 39.55 41.50

FEILDS (5%) 72.92 66.53 67.61 63.00

FEILDS (10%) 73.33 66.77 67.95 63.26

MTDR Rocchio
Window-

KNN
Window-
Rocchio

 
Table 6.10: System performances on tracking task 5-E. 
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Figure 6.5: The Window-KNN algorithm performance over time on tracking task 4-E. 
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Figure 6.5 depicts the performance over time provided by the Window-KNN 

algorithm on tracking task 4-E. Recall that tracking tasks 4(-E) and 5(-E) require the 

persistence assumption in order to properly track the tasks because these tasks have to 

track the Trade, long-live, topic.  As has been discussed in Chapter III, the “100%-L” 

system based on the window-KNN algorithm is not able to retain relevant older 

examples (e.g., Trade documents given during the first twenty tracking cycles) when 

a concept change occurs at the 21st tracking cycle, stumbling the system performance 

during the rest of the tracking cycles.  FEILDS as shown in Figure 6.5 can avoid this 

problem. The accuracy of the Window-KNN algorithm improves over time after the 

concept change transition. 

The “100%-L” performances provided by the Window-KNN and Window-

Rocchio algorithms on tracking tasks 4-E and 5-E obviously suffer from being not in 

conformity with the persistence assumption needed to track these tasks.  However, the 

problem can be addressed by learning from the stream generated by FEILDS. In 

addition to dealing with fewer labeled data, FEILDS generates a new stream that 

complies with the persistence assumption. Specifically, the new stream explicitly 

retains the older relevant examples, allowing the Window-KNN and Window-

Rocchio algorithms to learn with better accuracies. This explains why the algorithm 

can achieve performances of at least comparable to the performances achieved by the 

“100%-L” systems.  
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6.6 The Sensitivity of Threshold in Instance Generalization Method 

This section explores the sensitivity of threshold for recognizing the concept category 

of an instance and its impact on the system’s performance. To do this, the 

experiments are re-run by varying the threshold values other than the default setting. 

The first part of this section examines the quality of the expanded data set ′S  

produced by the CDT component of the system. The second part shows the system’s 

average accuracies on the test set after learning the stream Stream-S′′′′. 

As described in Chapter IV Section 4.3.3, a threshold that selects too specific 

or too general a concept node could introduce noise, and affect the coverage of the 

target instances retrieved. The quality of the set ′S  is thus expressed in terms of noise 

and coverage. The former denotes the percentage of instances in ′S  that are 

incorrectly labeled, while the latter refers to the percentage of target instances in ′S  

over all target instances currently maintained in the concept hierarchy. These two 

measures are calculated cumulatively from the first tracking task to the end over ten 

trials.  Specifically, let ′i, jS be the set of expanded instances generated at the jth 

tracking cycle during the ith trial, and let ,i je  be the number of instances in ′i, jS  that is 

incorrectly labeled. The noise is calculated as follows: 

,
,

'
,

100%
| S |

i j
i j

i j

e
Noise = ×

�
 (6.1) 
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Furthermore, let ,i jc  be the number of target instances that are correctly labeled in 

′i, jS , and ,i jh  be the number of target instances currently maintained in the concept 

hierarchy. The coverage measure is defined by: 

,
,

,

100%
i j

i j

i j

c
Coverage

h
= ×
�

 

 

Table 6.11 reports the absolute threshold values obtained empirically from the 

validation sets. As described in Section 4.3.4, 0θ  refers to the threshold value 

calculated by setting k in Equation 4.2 to 0, while 0.5θ  is the default thresholding 

scheme (k=0.5).  For readability, a thresholding factor 
0

tf
θ
θ

=  will be used to 

describe a relative threshold with respect to 0θ . For example, the last column of Table 

6.11 provides the threshold factor of 0.5θ  on each tracking cycle. Thus, 1tf <  (resp. 

 
0θ  0.5θ (default) 0.5

0
tf θ

θ=  

Tracking task 1-E 1.106 1.144 1.03 

Tracking task 2-E 1.109 1.150 1.04 

Tracking task 3-E 1.103 1.141 1.03 

 

Table 6.11: Automatic threshold value selection. 

(6.2) 
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1tf > ) represents a threshold value that would lead the instance generalization 

function to select a more specific (resp. more general) concept node.  

Figures 6.6 depicts the coverage of the system’s outputs (e.g., the expanded 

set ′S ) over various threshold factors. The X threshold factors in the figure denote the 

values of threshold generated by the default setting, which, as described in Table 

6.11, fall between threshold factors 1 and 1.05.  On tracking tasks 1-E − 3-E, the 

coverage of the system’s output increases as expected with the increased threshold 

factors, and the coverage of smaller thresholds converges to about 5 − 10%. It is 

likely that the coverage of 5% − 10% is obtained mainly from the labeled target data 
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Figure 6.6: The effect of varying threshold values on the coverage of ′S . 
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given to the system. Figure 6.6 also presents an interesting observation in that while 

the coverage of the default setting is relatively high, the slope of the curve around the 

default setting is relatively low. 

The effect of threshold values on the noise of the system’s output is depicted 

by Figure 6.7.  Lower threshold factors ( 0.9tf < ) generate a relatively high noise but 

not as high noise as produced by higher threshold factors ( 1.1tf > ).  Except on 

tracking task 1-E, the threshold factors within the range of 0.95 – 1.05 generate 

valleys that contain good tradeoffs between small noise and high coverage. It is not 

surprising that the default threshold value 0.5θ  (the threshold factors X in Figure 6.7) 

0

10

20

30

40

50

60

70

80

90

100

0.60 0.70 0.80 0.90 0.95 1.00 X 1.05 1.10 1.20 1.30

more specific <-- threshold factor (tf) --> more general 

N
oi

se
 (%

)
Tracking task 1-E

Tracking task 2-E

Tracking task 3-E

 
Figure 6.7: The effect of varying threshold values on the noise of ′S . 
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is always in the range. Although high threshold yields high coverage, it also generates 

high percentage of noise whose negative effects might outweigh the benefit of having 

high coverage. Similarly, low threshold produces a relatively low noise but its low 

coverage might not help improve the system performance. 

Figure 6.8 summarizes the performances of the MTDR algorithm over various 

threshold values. The average accuracies in the figure denote the algorithm 

performance on the test set, averaged over ten trials, after learning from the stream 

Stream-S′′′′. As mentioned above, the threshold factor X also represents the results from 

using the default threshold parameter value (θ0.5).  As shown in the figure, smaller 
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Figure 6.8:  The effect of varying threshold values on the average accuracies of the 

MTDR algorithm. 
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threshold values (lower than θ0 or at tf=1) do not help improve the algorithm’s 

performances because no new information can be provided, converging to the 

baseline average accuracies. However, higher threshold factors ( 1.1tf > ) are also 

prone to producing a detrimental effect that degrades the algorithm’s average 

accuracies even much worse than the baselines. The default threshold setting 

improves the algorithm’s performance over θ0 ( 1tf = ) in 2 out of 3 cases. In addition, 

the default setting is still safe enough for not by accident selecting concept nodes that 

are too general. 

6.7 Summary 

This chapter empirically evaluates the utility of FEILDS.  The emphasis of the 

evaluation is on observing its effectiveness in improving the performance of an 

existing algorithm for learning concept drift from a stream with sparsely labeled data. 

The experiments employ five tracking tasks in previous experiments that are further 

expanded to include many more irrelevant unlabeled data. 

The main experiment results show that FEILDS is indeed able to extend the 

capability of concept drift learners, successfully improving most of their 

performances when learning with a very small amount of labeled data. This 

improvement is partly a result of the FEILDS’s ability to take advantage of relevant 

unlabeled data as these become available over time. The experiment results also show 

that the improvement achieved by adding more labeled data is not significant, 

indicating that the performance as achieved by an existing concept drift learning 
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algorithm from learning with a complete labeled data is unlikely to be recovered. It 

further confirms the claim made in Chapter IV in that the number of labeled data to 

FEILDS is no longer relevant as long as its minimum quantity is already satisfied.   

To sum up, current implementation of FEILDS is useful in the presence of 

minimal labeled data but could not effectively take advantage additional labeled data 

if provided. 
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CHAPTER VII 

CONCLUSIONS   

 

This dissertation has presented three major contributions: a concept drift learning 

algorithm for tracking multiple user interest categories, a general method for 

extending a concept drift learning algorithm to deal with a stream containing sparsely 

labeled data, and a concept formation algorithm for incremental construction of 

concept hierarchy. This chapter summarizes each contribution and discusses several 

extensions to the work. 

7.1 Major Contributions 

Algorithm for tracking multiple interest categories. The MTDR algorithm has 

been developed for learning the dynamics of tracking multiple interest categories 

under the assumption that a full set of examples is available for learning. The 

algorithm also satisfies the persistence assumption regarding the user interests, 

modifying the interest category representations only when explicitly told to do so 

from the relevance feedback examples. Conceptually, the algorithm extends the 

typical single window-based concept drift learning approaches by maintaining 

multiple window sets. Each set is used for deriving a distinct target concept, and is 

composed of large and small windows. The algorithm learns a target concept by 

combining the target concept representations from both large and small windows; this 

is a novel method. The MTDR algorithm is a realization of the above general method 
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with implicit windowing mechanism. It has been shown that the MTDR algorithm 

outperforms the Rocchio algorithm and the single window-based approaches 

particularly when tracking multiple target concepts simultaneously. The performances 

of all algorithms, however, are severely degraded when the number of labeled data is 

significantly reduced. 

General Method for Extending Concept Drift Learning Algorithm. The 

strong assumption about the availability of training data has inspired the development 

of FEILDS, a general method for extending the capability of existing concept drift 

learning algorithms to deal with few labeled data. From the Computational Learning 

Theory perspective, the crux of the method is to convert a learning problem with 

rapid drift rate that is difficult to track into one with a slower drift rate, which is easier 

to learn by existing learners. The FEILDS architecture consists of three main entities: 

(1) a concept formation system (CFS), (2) a concept hierarchy, and (3) a concept drift 

tracker (CDT). The CFS component incrementally constructs a concept hierarchy 

from the input stream of labeled and unlabeled data in an unsupervised mode. 

Utilized mainly by the CDT component, the concept hierarchy serves as the 

knowledge base for the entire system. The CDT component analyzes the labeled data 

stream, removes any conflicting examples and then expands the remaining labeled 

data with relevant unlabeled data. The experimental results show the effectiveness of 

FEILDS, which greatly improves the performance of existing learners in learning 

from incomplete labeled data stream.  
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Concept Formation Algorithm. Since the concept hierarchy is a critical 

entity in the FEILDS architecture, its construction process deserves a careful 

treatment. This dissertation has developed a new concept formation algorithm so-

called HOMOGEN. The new algorithm exploits the homogeneity and monotonicity 

properties for incremental induction of concept hierarchy from a data stream. Both 

properties are essential for discovering intrinsic hierarchical structures.  Experiments 

conducted on natural, artificial and text documents data sets indicate the effectiveness 

of HOMOGEN. The system is relatively insensitive to input ordering and is able to 

produce a quality hierarchy structure inherent within the input data. Its performance 

in text document collection is also comparable to the best performance achieved by 

typical hierarchical agglomerative clustering methods. It is no wonder that this new 

algorithm highly contributes to the success of FEILDS. 

7.2 Extensions to Current Works 

The utility of the main idea behind the MTDR algorithm (e.g., multiple window sets, 

and combining large & small windows) has been shown in the information filtering 

domain. Its effectiveness in other domains will be an interesting investigation. 

Depending on the kind of concept representation that is most suitable for the domain, 

applying the algorithm in other domains could require some modifications. The most 

notable one is the definition of similarity between two concepts. The use of cosine 

coefficient in the current MTDR algorithm is due to the popularity and the 

effectiveness of this method for measuring the similarity of concepts in vector space 
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model. Another possible modification is an alternative method for combining two 

concept representations (i.e., those derived from examples in large and small 

windows). Currently applying a linear combination of feature weights, the method 

would need to be appropriately adjusted if the concept is represented as, for example, 

Boolean-valued features.  

Several research issues regarding FEILDS’s development are also worthy of 

further study. The first possibility is exploring alternative methods for generalizing an 

instance through the concept hierarchy. Current generalization method as described in 

this dissertation requires a modest effort for preparing the validation set in order to 

empirically determine the threshold value of generalization node. At one end of the 

spectrum in terms of effort, making the process fully automatic such as applying a 

heuristic would be the most desirable method. The most difficult problem with this 

approach is finding the appropriate heuristic rules; for example, how to practically 

and effectively define the notion of distinct concept. At the other end of the spectrum, 

one can use a manually crafted domain theory to guide the selection of the most 

appropriate concept in the concept hierarchy. Although promising when it involves a 

small number of concepts, this approach is not scalable for a much larger number of 

concepts particularly in the text domain where the variety of concept is virtually 

unlimited.  

The second possibility is to improve the efficiency of HOMOGEN, the concept 

formation system currently employed by FEILDS. As described in Chapter V, the 

most time-consuming process with the current implementation is the reconstruction of 
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minimum spanning tree (MST) of objects that defines the concept density 

information. Applying incremental MST algorithm (Fredericson, 1985) would likely 

improve the efficiency of the concept hierarchy construction. 
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