

CONCEPT DRIFT LEARNING AND

 ITS APPLICATION TO ADAPTIVE INFORMATION FILTERING

A Dissertation

by

DWI HENDRATMO WIDYANTORO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2003

Major Subject: Computer Science

CONCEPT DRIFT LEARNING AND

 ITS APPLICATION TO ADAPTIVE INFORMATION FILTERING

A Dissertation

by

DWI HENDRATMO WIDYANTORO

Submitted to Texas A&M University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

 Approved as to style and content by:

December 2003

Major Subject: Computer Science

John Yen
(Co-Chair of Committee)

Thomas R. Ioerger
(Co-Chair of Committee)

Richard Furuta
(Member)

Reza Langari
(Member)

Valerie E. Taylor
(Head of Department)

 iii

ABSTRACT

Concept Drift Learning and Its Application to Adaptive Information Filtering.

(December 2003)

Dwi HendratmoWidyantoro, B.S., Institut Teknologi Bandung;

M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. John Yen
 Dr. Thomas R. Ioerger

Tracking the evolution of user interests is a problem instance of concept drift

learning. Keeping track of multiple interest categories is a natural phenomenon as

well as an interesting tracking problem because interests can emerge and diminish at

different time frames. The first part of this dissertation presents a Multiple Three-

Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept

drift especially built for tracking the dynamics of multiple target concepts in the

information filtering domain. The learning process of the algorithm combines the

long-term and short-term interest (concept) models in an attempt to benefit from the

strength of both models. The MTDR algorithm improves over existing concept drift

learning algorithms in the domain.

Being able to track multiple target concepts with a few examples poses an

even more important and challenging problem because casual users tend to be

reluctant to provide the examples needed, and learning from a few labeled data is

 iv

generally difficult. The second part presents a computational Framework for

Extending Incomplete Labeled Data Stream (FEILDS). The system modularly

extends the capability of an existing concept drift learner in dealing with incomplete

labeled data stream. It expands the learner’s original input stream with relevant

unlabeled data; the process generates a new stream with improved learnability.

FEILDS employs a concept formation system for organizing its input stream into a

concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to

identify the instance’s concept and unlabeled data relevant to a concept. It also adopts

the persistence assumption in temporal reasoning for inferring the relevance of

concepts. Empirical evaluation indicates that FEILDS is able to improve the

performance of existing learners particularly when learning from a stream with a few

labeled data.

Lastly, a new concept formation algorithm, one of the key components in the

FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical

structures regardless of the class distribution and the shape of the input stream.

Experimental evaluation shows that the algorithm is relatively robust to input

ordering, consistently producing a hierarchy structure of high quality.

 v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Dr. John Yen, my advisory

committee chair, for all of his time and guidance in the ways of the research world.

Yen has been very supportive of my research in every way. When he moved from

Texas A&M University to Pennsylvania State University in 2001, he managed to

leave me with a full one year, unrestricted research assistantship from which I was

able to accelerate my research work to the fullest extent. His commitment to

supervise my work from a long distance remained strong, despite his hectic schedule.

Special thanks go to Dr. Thomas Ioerger, my advisory committee co-chair, for his

constructive suggestions regarding my research. A great amount of time has been

spent by him to help me revise the writing of my dissertation. I would also like to

particularly thank my committee members, Dr. Richard Furuta and Dr. Reza Langari,

for seeing me through this long journey. Kreshna Gopal, a close friend of mine, has

presented me with a very thorough proofreading of the many chapters in the nearly-

final draft. Kathy Flores also proofread the earlier version of Chapter V. I am very

grateful for their generous help. There are several institutions that have contributed

financially to my research. I would like to thank the U.S. Army Research Laboratory

Contract DAAD17-00-P-0649 and Dell Foundation. I would also like to thank the

Department of Computer Science at Texas A&M University for providing the

financial support during my final year.

 vi

TABLE OF CONTENTS

Page

ABSTRACT.. iii

ACKNOWLEDGEMENTS.. v

TABLE OF CONTENTS.. vi

LIST OF FIGURES .. x

LIST OF TABLES.. xii

CHAPTER

 I INTRODUCTION ... 1

 1.1 Concept Learning versus Concept Drift Learning 3

 1.2 Existing General Approaches to Concept Drift Learning.............. 4

 1.3 Learning with Incomplete Labeled Data.. 7

 1.4 New Approaches to Concept Drift Learning 8

 1.4.1 Tracking the Changes of Multiple Target Concepts 8

 1.4.2 Concept Drift Learning in the Absence of Complete

 Labeled Data .. 9

 1.5 Summary of Contributions... 11

 1.6 Roadmap .. 13

 II LITERATURE REVIEW .. 14

 2.1 Practical Concept Drift Learning Systems..................................... 14

 2.1.1 STAGGER ... 15

 2.1.2 FLORA Family Algorithms .. 17

 2.1.3 METAL Family Algorithms.. 20

 2.1.4 SPLICE-based Family Algorithms ... 22

 vii

CHAPTER Page

 2.2 Approaches to Adaptive Information Filtering.............................. 24

 2.2.1 Rocchio Algorithms .. 25

 2.2.2 Window-based Approaches .. 26

 2.2.3 Intelligent Agents for Information Filtering 28

 2.3 Theoretical Results on Concept Drift Learning 32

 III ALGORITHMS FOR LEARNING CHANGING USER
 INTERESTS .. 36

 3.1 Text Document Processing .. 37

 3.2 Rocchio Algorithm... 39

 3.3 MTDR Algorithm .. 40

 3.3.1 Interest Category Representation.. 42

 3.3.2 Learning Multiple Interest Categories 44

 3.4 Window-based Concept Drift Learning Algorithms...................... 46

 3.4.1 Adaptive Window Adjustment Heuristic.............................. 48

 3.4.2 Base Learners.. 50

 3.5 Experiment Setup... 51

 3.5.1 Document Collection .. 51

 3.5.2 Experiment Procedure... 52

 3.5.3 Tracking Tasks.. 54

 3.5.4 Parameter Settings .. 58

 3.6 Experiment Results .. 59

 3.6.1 The Behavior of MTDR Algorithms..................................... 59

 3.6.2 The Behavior of Window-based Algorithms........................ 62

 3.6.3 Performance Comparison.. 64

 3.7 Summary.. 71

 IV A COMPUTATIONAL FRAMEWORK FOR EXTENDING IN-
 COMPLETE LABELED DATA STREAM IN CONCEPT DRIFT... 74

 viii

CHAPTER Page

 4.1 Theoretical and Practical Observations ... 75

 4.2 Overview of Approaches ... 76

 4.3 FEILDS Architecture ... 79

 4.3.1 Concept Formation System... 81

 4.3.2 Concept Hierarchy .. 81

 4.3.3 Concept Drift Tracker ... 84

 4.3.4 Instance Generalization Scheme... 91

 4.4 Advantages and Shortcomings... 93

 4.5 Summary.. 95

 V CONCEPT FORMATION SYSTEM.. 97

 5.1 Design Motivations.. 98

 5.2 Design Approaches .. 99

 5.3 Concept Hierarchy Construction.. 102

 5.3.1 Formal Foundations .. 102

 5.3.2 A Preliminary Analysis of Problem Complexity.................. 107

 5.3.3 The Algorithm Development .. 109

 5.3.4 Time Complexity Analysis of HOMOGEN.............................. 123

 5.4 Evaluating the Concept Formation Algorithm............................... 127

 5.4.1 Quantifying the Hierarchy Quality 127

 5.4.2 Experiments in Non Text Domains....................................... 133

 5.4.3 Experiments in Text Domains .. 142

 5.5 Discussion of Related Work .. 151

 5.6 Summary.. 155

 VI EVALUATION OF FEILDS... 156

 6.1 Data and Experiment Procedure .. 156

 6.2 Tracking Tasks... 160

 6.3 Primary Experiment Results .. 163

 ix

CHAPTER Page

 6.4 Performance over Time.. 166

 6.5 Overcoming the Persistence Assumption Problem........................ 169

 6.6 The Sensitivity of Threshold in Instance Generalization Method . 172

 6.7 Summary.. 177

VII CONCLUSIONS.. 179

 7.1 Major Contributions... 179

 7.2 Extensions to Current Works ... 181

REFERENCES ... 184

VITA... 194

 x

LIST OF FIGURES

FIGURE Page

1.1 A typical approach to concept drift learning 5

1.2 A new approach for incorporating unlabeled data in
 concept drift learning... 10

3.1 MTDR algorithm... 45

3.2 Window-based concept drift learning algorithm............................. 47

3.3 Window adjustment heuristic algorithm ... 49

3.4 The characteristics of long-term, short-term and TDR models....... 60

3.5 The effect of window size in the window-based learning
 algorithms with a fixed window size on the average accuracies..... 62

3.6 The adaptation of window size over time in window-based
 learning algorithms.. 63

3.7 Performance over time on tracking task 3....................................... 65

3.8 Performance over time on tracking task 4....................................... 67

3.9 Performance over time on tracking task 5....................................... 68

3.10 Performance over time with reduced number of examples on
 tracking task 1 and on MTDR algorithm... 69

4.1 The illustration of approach for reducing the drift rate in a
 sparsely labeled data stream .. 78

4.2 FEILDS architecture.. 79

4.3 The summary of FEILDS’s approach ... 80

4.4 An illustration of concept hierarchy.. 85

 xi

FIGURE Page

5.1 A set of new points that create regions of high and low density..... 106

5.2 High-level description of HOMOGEN’s concept formation
 algorithm ... 110

5.3 Node and hierarchy insertion operators... 111

5.4 A walk through example ... 114

5.5 Hierarchy restructuring algorithm ... 116

5.6 An example of structural change from observing a new instance... 117

5.7 Demotion, merging and splitting restructuring operators 118

5.8 Misplaced node detection and recovery algorithm.......................... 120

5.9 Homogeneity maintenance algorithm ... 123

5.10 Target hierarchy structures of four data sets 134

6.1 The procedure of experiment for FEILDS evaluation..................... 158

6.2 The MTDR algorithm performance over time on tracking
 task 1-E.. 167

6.3 The MTDR algorithm performance over time on tracking
 task 2-E.. 167

6.4 The MTDR algorithm performance over time on tracking
 task 3-E.. 168

6.5 The Window-KNN algorithm performance over time on
 tracking task 4-E ... 170

6.6 The effect of varying threshold values on the coverage of S′.......... 174

6.7 The effect of varying threshold values on the noise of S′................ 175

6.8 The effect of varying threshold values on the average
 accuracies of the MTDR algorithm... 176

 xii

LIST OF TABLES

TABLE Page

2.1 Key features of practical concept drift learning systems 15

2.2 A list of traditional information filtering systems 31

3.1 Tracking task 1. ... 54

3.2 Tracking task 2 .. 54

3.3 Tracking task 3 .. 54

3.4 Tracking task 4 .. 55

3.5 Tracking task 5 .. 55

3.6 Summary of target concept evolution over twenty-tracking
 cycle periods.. 56

3.7 Data streams with reduced number of examples............................. 57

3.8 Performance comparison on tracking tasks 1, 2 and 3 64

3.9 Performance comparison on tracking tasks 4 and 5 66

3.10 Summary of experiments with reduced number of examples on
 all tracking tasks and all algorithms .. 70

5.1 Summary of non text data sets .. 132

5.2 The effect of restructuring techniques on achieving the
 homogeneity and monotonicity properties...................................... 136

5.3 The effect of various restructuring processes on the hierarchy
 quality .. 137

5.4 The quality of hierarchy structures.. 140

 xiii

TABLE Page

5.5 The quality of distinct clusters .. 141

5.6 Parameter values for the agglomerative clustering variants............ 144

5.7 The sensitivity of MTF-FS parameter values on HOMOGEN
 over various sample sizes.. 147

5.8 Peak accuracies achieved by HOMOGEN and HAC methods 149

5.9 The confusion matrices of clusters generated by HOMOGEN and
 Group-average HAC methods... 150

5.10 The precision and recall of HOMOGEN and Group-average
 (GA)-HAC .. 151

6.1 Tracking task 1-E(xtended). .. 161

6.2 Tracking task 2-E .. 161

6.3 Tracking task 3-E .. 161

6.4 Tracking task 4-E .. 162

6.5 Tracking task 5-E .. 162

6.6 System performances on tracking task 1-E 163

6.7 System performances on tracking task 2-E 164

6.8 System performances on tracking task 3-E 165

6.9 System performances on tracking task 4-E 169

6.10 System performances on tracking task 5-E 170

6.11 Automatic threshold value selection. .. 173

 1

CHAPTER I

INTRODUCTION

Being able to infer the most up-to-date user interests is of great importance because it

can help select new relevant information and also can be used to filter out incoming

irrelevant information. Despite the vast availability of information on the Internet and

the ease in information seeking provided by current search engines, most newly

available information that is potentially useful remains unexploited without active

participation of users for searching it. Users, on the one hand, often do not know what

kind of new interesting information that will become available and when. The

information providers, on the other hand, do not have any knowledge about the

information need of users. Information agents can fill in the gap between users and

information providers so that relevant information can be delivered to users in a

timely fashion. It is not questionable that the ability of such agents to automatically

track the change of user interests over time plays a vital role.

Keeping track of multiple target concepts is a natural phenomenon. As an

example, users can have several topics of interest in which articles (broadcasting

news) they prefer to read (listen). The number and the variety of interest categories

The journal model is Journal of Artificial Intelligence Research.

 2

can change dynamically over time. That is, each of the topics of interest can have

different durations and time frames. This demonstrates the significance and raises

issues that must be dealt with by tracking multiple target concepts. Nonetheless,

tracking a single target concept at a time is an inherent assumption behind the

technique developed in many existing algorithms (Klinkenberg & Joachims, 2000;

Klinkenberg, 1999; Klinkenberg & Renz, 1998; Widmer 1997; Widmer & Kubat,

1996).

Tracking the evolution of user interests over time from a sequence of

relevance feedback documents is a problem instance of concept drift learning. The

majority of existing concept drift learning algorithms typically requires a large

number of labeled data in order to achieve performances at satisfactory levels; and

these algorithms generally assume the availability of such labeled data. Although

unlabeled data are widely available in information filtering domain, acquiring labeled

data is indeed still very prohibitive. For example, casual users tend to be unwilling to

provide the relevance feedback needed to label the data (Jansen, Spink, & Saracevic,

2000). Thus, learning concept drift from a sequence of few labeled data poses an

important problem. Addressing this problem could contribute significantly not only to

the information filtering domain, but also to the more general field of concept drift

learning.

This dissertation develops an algorithm for learning concept drift in

information filtering domains capable of handling multiple target concepts. It also

develops a computational framework that extends existing concept drift learning

 3

algorithms in the absence of complete labeled data. The next two sections briefly

describes the distinction between (conventional /stable) concept learning and concept

drift learning, and then describes a common approach as well as problems faced by

existing concept drift learning algorithms. Section 1.3 presents a general approach for

learning with a few labeled data in conventional concept learning. New approaches

for learning concept drift that overcome the limitation of existing algorithms will be

outlined in Section 1.4, followed by a summary of key contributions of the work in

Section 1.5.

1.1 Concept Learning versus Concept Drift Learning

Concept learning is a process of inferring a Boolean-valued function from a set of

input and output examples (Mitchell, 1997), i.e., f: X → {1,0} where X is the space of

input examples. In the information filtering domain, the input is a document d and the

output is the document relevance (e.g., either relevant or irrelevant). Conventional

concept learning assumes that the target function is static, i.e., the relevance values of

all documents with the same topic category are the same. Hence, the input and output

examples in conventional concept learning can be given to the learner in any order.

The target function values are often referred to as the data (concept) labels.

Concept drift learning is a concept learning in which the target function

changes over time (Bartlett, David, & Kulkarni, 1996; Helmbold & Long, 1994;

Schlimmer & Granger, 1986). For example, the relevance of documents of the same

topic category could change from time to time. Hence, the target functions in concept

 4

drift learning, in contrast to conventional concept learning, is dependent on the

ordering of the input and output examples. Given a stream of pairs of input and output

examples, the task of concept drift learning is to output a sequence of target functions

where each target function inferred at time t can only utilize the data given before t.

The problem of concept drift learning essentially consists of two sub-problems:

learning stable concepts such as in conventional concept learning and adapting to

changing labels of concepts.

The drift rate in concept drift learning is an essential parameter, denoting the

probability that two successive target concepts ci and ci+1 disagree on a randomly

drawn example (Helmbold & Long, 1994), e.g., Pr(ci ≠ ci+1). Intuitively, slower drift

rates correspond to learning from data streams whose target concepts change less

frequently with respect to the number of seen examples, and vice versa. Slower drift

rates can also be associated with concept drift learning on easier learning problems

because more labeled data are available to learn the same target function before it

changes. Therefore, when the number of data for learning the same target function is

reduced, the drift rate increases and the learning problem becomes more difficult,

which is one of the main issues addressed by this dissertation.

1.2 Existing General Approaches to Concept Drift Learning

Despite the differences of existing concept drift learning algorithms, most of them

stem from the same approach in that the algorithm’s ability to adapt to concept drift is

achieved by learning from a single window of most recent examples (Widmer &

 5

Kubat, 1996; Widmer, 1997; Klinkenberg & Renz, 1998; Klinkenberg & Joachims,

2000). Figure 1.1 illustrates this approach. Obviously, the approach automatically

excludes older examples that are no longer relevant.

However, the single-window approach above suffers from the difficulty in

determining the appropriate window size. The bottom line is that the drift rate is

unknown a priori because it is impossible to predict when a concept change will

actually happen, although its occurrence can be detected. Larger window sizes would

enable learning with better performances on data stream with slower drift rates, and

during which the target function is stable. However, it would take longer to get rid of

non-relevant examples from the window when a concept change occurs, resulting in

slower adaptation to the new target function. Fast changing target functions (i.e.,

more rapid drift rates) also could easily confuse the learner such as when target

functions change two or more times within a window time frame. In contrast, smaller

more recent examples older examples
examples

most recent examples

Figure 1.1: A typical approach to concept drift learning.

 6

window sizes allow quick adaptation to concept drift on either slower or faster drift

rates. The disadvantage of having smaller window sizes is that it would never be able

to learn stable concepts at the levels of accuracy desired even on the slow drift rate

because of the smaller number of examples that are available for learning.

An adaptive window adjustment heuristic has been developed to address the

window size determination problem (Widmer & Kubat, 1996; Klinkenberg & Renz,

1998), but most techniques employing the heuristic will work properly only on a

learning setting with a slow drift rate. More specifically, an adaptive window

adjustment heuristic determines the appropriate window sizes based on a trend in the

system predictive performances, which are continuously monitored from the

performance in predicting the last m seen labeled data. The window size is increased

when the predictive performance is stable or improves, and is quickly decreased when

a sudden performance drop is observed, indicating a concept drift. However, the

system’s predictive performance on which the heuristics depend cannot be reliably

acquired on faster drift rates.

An algorithm for concept drift learning that learns from only a single window

also could suffer from inability to track multiple target concepts simultaneously.

Because the target concepts to be tracked could change at different time frames, not

all of them can be optimally learned with a single-window approach even though all

the target concepts change at slow drift rates. It is obvious that the expected

performance will decrease as the number of target concepts to be tracked

 7

simultaneously increases, not to mention if the target concepts also change at

different rates.

To sum up, existing algorithms for learning concept drift are still inherently

limited by to track a single target concept. Little effort, if any, has been devoted to

deal with learning concept drift on a faster drift rate. The latter learning setting, as

mentioned earlier, corresponds to learning concept drift with reduced number of

labeled data.

1.3 Learning with Incomplete Labeled Data

Dealing with incomplete data is not a new problem. The Expectation Maximization

(EM) algorithm (Dempster, Laird, & Rubin, 1977) is perhaps the first method to

address this problem. The more recent algorithms include co-training (Blum &

Mitchell, 1998; Nigam & Ghani, 2000), graph min-cut (Blum & Chawla, 2001),

various techniques for query expansion in information retrieval (Mitra, Singhal, &

Buckley, 1998; Buckley, Salton, Allan, & Singhal, 1995; Crouch, Crouch, Chen &

Holtz, 2002; Xu & Croft, 1996; Iwayama, 2000), text classification (Nigam,

McCallum, Thrun, & Mitchell, 2000), and various techniques developed for topic

tracking in the Topic Detection and Tracking (TDT) evaluation (Allan, Papka, &

Lavrenko, 1998; Yang, Pierce, & Carbonell, 1998; Yang et al., 1999)

Basically, all these approaches are similar to one another in that artificially

labeled data are incorporated to increase the number of labeled data used for learning.

The additional data are selected automatically from unlabeled data, guided by some

 8

kinds of similarity measures with the labeled data or objective functions. Provided

that the unlabeled data that are truly relevant to the labeled data exist and can be

correctly identified, this general approach should work very well without question.

Despite the potential of identifying irrelevant unlabeled data that could have a

detrimental effect, the existing methods are generally effective in their respective

application domains.

However, the existing approaches for learning from labeled and unlabeled

data assume the stability of concept being learned. These approaches are therefore not

suitable for inducing concepts that change over time such as in concept drift learning.

1.4 New Approaches to Concept Drift Learning

The limitations of current approaches to concept (drift) learning, as described above,

suggest two directions in which they can be improved. The first direction is to

develop a method for tracking multiple target concepts simultaneously. The second

direction is to devise a general method that addresses the problem of concept drift

learning in the absence of completely labeled data.

1.4.1 Tracking the Changes of Multiple Target Concepts

The proposed method for tracking multiple target concepts is focused primarily on its

application in information filtering domain. Conceptually, it extends a single-window

approach by maintaining multiple window sets. Each window set is used for tracking

a single target concept, and is dynamically created or deleted as necessary.

 9

Furthermore, each set consists of two windows of large and small sizes. The

former is intended to capture a stable concept such as general preference in a long-

term interest, which allows capturing an accurate representation of the target concept.

The latter window will be used for tracking the most recent tendency related to the

target concept. The window with smaller size would facilitate a flexible adaptation to

concept drift. The proposed method achieves a balance between the ability to learn

stable concept and for quickly adapting to concept drift by learning each target

concept with large and small window sizes simultaneously.

1.4.2 Concept Drift Learning in the Absence of Complete Labeled Data

Inspired by the success of techniques that combine labeled and unlabeled data in

conventional concept learning, a similar technique is developed to learn concepts

from a stream of labeled and unlabeled data. Assume that most data in the stream are

unlabeled, and the labeled data are uniformly distributed in the stream. The sub-

sequence of labeled data extracted from the stream is what is actually seen by the

concept drift learning algorithm. It represents a stream of labeled data whose target

functions change quickly one after another, i.e., fast drift rate. This dissertation

proposes a general method for processing the sequence of labeled data, assumed to

have a faster drift rate, into a longer sequence of labeled and artificially labeled data

with a slower drift rate, which is easier to learn. The artificially labeled data are used

to fill the gap in the labeled data, and are retrieved from relevant unlabeled data. A

 10

concept drift learner can then be applied to learn the new stream. Figure 1.2 illustrates

the idea in a simplified form.

Unlike in stable concept learning, the subtlety in identifying relevant

unlabeled data is more challenging in concept drift learning because the values of

labels (target functions) in the labeled data can change over time. For example, a

positively labeled instance A that appears earlier in the data stream will inherently

change its label to negative when a new negative instance B with the same concept

class as that of A is later presented. In this example, instances A and B are no longer

Proposed
New

Algorithm

Labeled Data
Artificially labeled data generated from unlabeled data
Unlabeled Data

labeled data
stream with
faster drift rate

unlabeled data stream

Existing
Concept

Drift
Learner a new data stream with

slower drift rate

a stream of labeled and unlabeled data

Figure 1.2: A new approach for incorporating unlabeled data in concept drift
learning.

 11

relevant and thus should be excluded from expanding the instances with relevant

unlabeled data. Hence, incorporating unlabeled data in concept drift goes well beyond

expanding labeled data with relevant unlabeled data because it also has to infer the

changing labels of labeled data.

Furthermore, tracking the change of labels in a sequence involving a small set

of labeled data is difficult, if not impossible, because the instance categories are

typically unknown and cannot be induced reliably from the set. This dissertation

addresses this problem by using labeled and unlabeled data observed from the input

stream to predict the instance categories. In particular, a new concept formation

system is employed to organize the data stream into a concept hierarchy in

unsupervised mode. The concept hierarchy generated is basically a tree structure in

which leaf nodes represent instances and internal nodes denote concepts that

generalize their descendants. The concept category of an instance is then identified

from one of its ancestors that best generalizes the instance.

1.5 Summary of Contributions

This dissertation investigates several aspects that have not been adequately addressed

in concept drift learning, and develops a set of algorithms that directly or indirectly

address them. In summary, this dissertation presents three contributions.

 The first contribution is a novel algorithm for tracking the evolution of

user interests. It provides a high-level approach for managing multiple windows in

concept drift learning and a new strategy for striking a balance between long and

 12

short window sizes. Its specific realization in information filtering domain is then

presented. In this domain, the algorithm is able to learn flexibly the dynamics of user

interests, including anticipation for long-term and short-term interests of the users

(Widyantoro, Ioerger, & Yen, 2001).

The second contribution is a new computational framework for extending

concept drift learning algorithms to deal with learning from a stream of sparsely

labeled data. This dissertation describes a method for inferring the most up-to-date

data labels and expanding the labeled data with relevant unlabeled data (Widyantoro,

Ioerger, & Yen, 2003). In particular, it demonstrates how to incorporate a concept

formation system, as well as the persistence assumption in temporal reasoning to do

the task. The main role of the concept formation system is to build a concept

hierarchy that will be used for identifying instance categories and retrieving relevant

unlabeled data. The persistence assumption is adopted to infer the labels of instance

categories. The method is general and can be viewed as the pre-processing step whose

output can be used by virtually any existing concept drift learner.

The third contribution is a new concept formation algorithm. A new

approach for concept formation is developed to provide a practical realization of the

framework that pre-processes labeled data stream. The key idea in the algorithm is the

exploitation of homogeneity and monotonicity properties of concept densities for

guiding the incremental construction of a concept hierarchy from a data stream

(Widyantoro, Ioerger, & Yen, 2002). The algorithm is relatively insensitive to some

 13

degree to input ordering, and is capable of generating a quality hierarchy comparable

to the quality of that of produced by typical non-incremental methods.

1.6 Roadmap

The rest of this dissertation is organized as follows. Chapter II presents a broad

literature review regarding concept drift learning algorithms and systems, from

practical machine learning approaches to theoretical results, to its application in

intelligent agents and information filtering. Chapter III describes a novel concept drift

learning algorithm for learning changing user interests, which is the first main

contribution of this dissertation. It also describes other learning algorithms, and

empirically evaluates their relative strengths and weaknesses. Chapter IV presents a

computational framework so-called FEILDS that can extend the capability of an

existing concept drift learning algorithm. One of the important components of

FEILDS is a concept formation system. A new algorithm that realizes this concept

formation system is described and fully evaluated in Chapter V. Finally, Chapter VI

discusses the evaluation of FEILDS, followed by conclusions in Chapter VII.

 14

CHAPTER II

LITERATURE REVIEW

This chapter reviews literatures related to concept drift learning and user interests

modeling for adaptive information filtering. Section 2.1 surveys the underlying

techniques of various practical systems for learning concept drift developed in the

Machine Learning community. These systems include STAGGER (Schlimmer &

Granger, 1986), FLORA (Widmer & Kubat, 1996), METAL (Widmer, 1997) and SPLICE

(Harries, Sammut, & Horn, 1998), which have been designed and applied in non-

information filtering domains. Section 2.2 describes methods and systems that have

been developed for learning user interests in information filtering domains. The issues

addressed by some of the works described in this section, particularly those that

consider evolving user interests, represent a problem instance of concept drift

learning in the domain. The last section provides overviews of existing theoretical

results in concept drift learning.

2.1 Practical Concept Drift Learning Systems

Concept drift learning systems can differ from one another in (1) the representations

of concept descriptions that affect the underlying concept learning algorithm, and in

(2) the strategy in adapting to concept drift. Generally speaking, systems adapt to

concept drift by deriving concept descriptions using a window of recent examples.

 15

Alternatively, a form of meta-learning can be applied to explicitly detect a current

context and then learn the concept descriptions from examples belonging to the

current context. Table 2.1 summarizes the key features of four systems described in

this section.

System Name Concept
Representation

Adaptation to Concept Drift

STAGGER (Schlimmer &
Granger, 1986)

Weighted Boolean
Functions

Thresholding the statistical counts

FLORA (Widmer &
Kubat, 1996)

DNF without
negation

Adaptive windowing

METAL (Widmer, 1997) Probabilistic Meta-learning and fixed-size
windowing

SPLICE (Harries,
Sammut, & Horn, 1998)

Decision tree Meta-learning from batch process
and/or windowing (optional)

Table 2.1: Key features of practical concept drift learning systems.

2.1.1 STAGGER

STAGGER is the first incremental learning system that addresses the concept drift

problem (Schlimmer & Granger, 1986). Concept description in the system is a set of

numerically weighted symbolic characterizations. Every characterization element is

represented by Boolean functions of attribute-values, and is dually weighted using

Bayesian weighting measures so-called logical sufficiency (LS), or positive likelihood

ratio, and logical necessity (LN), or negative likelihood ratio. It determines the class

 16

membership of a new instance from the LS weights of all matched characterizations

and from the LN weights of all unmatched characterizations. The system also

accumulates all the counts needed to calculate the Bayesian weighting measures as it

moves forward over the data stream, allowing the Bayesian measure weights to be

incrementally updated.

STAGGER seeks a succinct concept description that is generated from simple

toward complicated descriptions. The concept description is refined only when the

system fails to predict the class membership of a new instance. In such a case, the

system applies a set of heuristics guided by the Bayesian evaluation measures to

prune an established characterization that proves ineffective (i.e., its evaluation

measure falls below a threshold) and/or to add a new generated characterization

element whose weight surpasses the threshold. This process allows the system to

respond quite effectively to concept drift.

Retaining the accumulation of all counts for the Bayesian measure update

poses the strength as well as the weakness of the system. The history of counts has

the effect of requiring about the same number of training instances to abandon a

concept definition as that of instances to build it. This behavior, which is also

empirically found in psychology of learning, allows STAGGER to model the resilience

of concept learning appropriately. However, over-trained concept description also

causes the system to slowly adapt to a new target concept when a concept drift does

occur. Although not explicitly mentioned, STAGGER can be viewed as a concept drift

learner with a single, very large window size and thus constitutes its weakness (The

 17

window size in STAGGER actually increases linearly with the number of instance seen

from the data stream, which can be considered as a window with infinite size).

2.1.2 FLORA Family Algorithms

Widmer and Kubat (1996) developed the FLORA family of learning algorithms. The

system induces current target concept from a single window of recent examples by

incrementally learning a new instance and forgetting the least recent one within its

window. A concept description is represented by three description sets; one

description covers both positive and negative examples within the window while the

other two consistently cover only positive instances and only negative instances,

respectively. Each description set is essentially a disjunctive normal form (DNF)

formula without negation. The prediction of a new instance is based on its match with

the description set covering only the positive instances.

FLORA-2 is the first realization of the FLORA algorithm that dynamically

adjusts the window size during the learning process. The window size is quickly

reduced when a concept drift is suspected, allowing the system to rapidly forget

irrelevant older instances and focus only on examples relevant to a new concept. It

then gradually increases the window size until a stable concept is reached in which

case the window size is kept fixed. The adjustment of window size is based on two

indicators: system’s performance and the complexity of concept description. The first

indicator is continuously monitored from the past prediction on a fixed number of

recent instances. In the second indicator, the number of description items needed to

 18

cover instances determines concept description complexity. A low system

performance or a high number of description items is an indicator for the concept drift

occurrence. This ability allows FLORA-2 to flexibly respond to concept drift and can

avoid the problem of slow adaptation in an over-trained concept.

Another version, FLORA-3, is also able to store a new stable concept

established from examples in the window and re-use them later when context change

occurs and one of the stored concepts fits the current situation. When a concept drift

is detected, the system will find the best candidate among the stored concepts based

on their performance on classifying instances in the current window. The best

candidate is then re-generalized using examples in the current window. If the updated

best candidate is better than the current concept description, with respect to the

concept complexity, then the generalized best candidate will replace the current

concept description. The empirical experiments that had been conducted reveal that

retrieval and modification of stored concepts increase the system’s performance if old

concepts do re-appear but it also could be erroneous by replacing current concept

with a wrong stored concept.

The last version, FLORA-4, was developed to counter the brittleness of FLORA-

2 and FLORA-3 in dealing with noise. As its predecessors strictly maintain the

consistency of their concept descriptions with respect to the instances covered, the

presence of noise in the instances causes unstable behavior that unnecessarily change

the concept descriptions. FLORA-4 addresses this problem by applying a statistical

confidence measure in maintaining the set of reliable generalizations.

 19

Despite the flexibility in reacting to concept drift and in handling noise, the

FLORA family of algorithms in general is designed under two assumptions. First, the

rate of change in the target concept is rather low, which gives a chance for the system

to see a sufficient number of instances for establishing a stable concept during the

phases between periods of change. Clearly, the system will not work properly, at least

not producing satisfactory performances, if the rate of change is high.

The second assumption is that only the latest examples, which are kept in the

window, are relevant to current target concept. Although this assumption is

reasonable as well as intuitive, particularly in dealing with concept drift, it is

inherently limited to tracking only a single target concept at a time. In multiple-

concept tracking, however, not all data representing the instances of current target

concepts are recent because the relevance of some concepts introduced earlier may

not have been denied, i.e., still being a part of target concepts. In contrast, some

concepts introduced at later time may be no longer relevant. Therefore, the instance

recency assumption does not hold in the case of multiple-concept tracking. Although

FLORA-3 is able to store and retrieve old concepts, its sole purpose is to speed up the

learning of recurrent concept while the underlying problem remains. Increasing the

window size to the extent that will include the older target concepts does not help

overcoming the problem because irrelevant instances may still lie between the most

and the least recent examples in the window.

 20

2.1.3 METAL Family Algorithms

In more recent work, Widmer (1997) exploits contextual clues, i.e., context-defining

attributes, for tracking context changes. Borrowing his example, a person driving

through a country border is likely to notice a systematic change in the distribution of

vehicle license plates. In this example, license plate is the contextual attribute that

indicates a change of the environment, suggesting one to adapt to the new rule. The

contextual attributes, which are essentially not different from other attributes, are

automatically detected by the learning system provided that such attributes exist.

More specifically, an attribute is considered to be contextual if the distribution of its

feature (i.e., attribute value) that co-occurs with a predictive feature is significantly

different (measured by �� 2, i.e., the chi-square statistic) from the unconditioned

distribution of the predictive feature. A predictive feature is an attribute value whose

distribution in a class within a fixed window of recent instances is significant (also

measured by ��2).

Widmer proposed a two-level learning model consisting of a meta-learner and

a base level learner that can detect contextual clues and react accordingly to a context

change. Given a new instance, the meta-learner attempts to identify the contextual

clues using the whole history of instances. The base level learner performs the

classification task of the new instance; the contextual attributes identified by the

meta-learner are used to focus the learning process on information in the window that

is relevant to current context.

 21

Two specific systems from this general model have been implemented in

METAL-B and METAL-IB. The former version uses a naïve Bayesian classifier as the

underlying learner. The base level learner in METAL-B performs the classification

task based on learning from instances in the window whose contextual attribute

values are the same (appears to belong to the same context) as that of the new

instance to be classified. If no contextual attribute is found by the meta-learner, then

all instances in the window are used for classification. The latter version, METAL-IB,

employs instance-based classifiers as their underlying learning algorithms. The

contextual information in METAL-IB is used for feature and exemplar weighting.

The METAL systems can be viewed as concept drift algorithms employing two

windows. One window, which is used for the meta-learner, has a large size,

increasing linearly with the number of instances. Another is the fixed size window

that supplies the instances to the base-level learner for classification. Although the

detection of concept drift is handled by the meta-learner, determining the right

window size for the base-level learner is still a tricky issue. As discussed in (Widmer,

1997), the effectiveness of the meta-learner diminishes with the smaller window size

and if the window is too narrow, the base-level learner lacks of needed data to learn

the context. Too large a window, on the other hand, could introduce many conflicting

instances that would prevent the system from finding predictive features and then

could disallow the meta-learner from identifying contextual attributes. Moreover,

since the actual concept is derived from the fixed size window of recent examples, the

 22

METAL systems in general inherit the limitation of the single windowing approach,

i.e., tracking only a single target concept.

2.1.4 SPLICE-based Family Algorithms

Harries et al. proposed a different approach for concept drift learning (Harries,

Sammut, & Horn, 1998; Harries & Horn, 1998). Unlike typical concept drift learner

in that the learning process is on-line and incremental, they take an off-line, batch

learning approach in a supervised mode. During the batch-learning phase, the system

attempts to identify a set of stable concepts through contextual clustering based on

the regularities that emerge from a given training data sequence. It then uses the

identified stable concepts as the basis for on-line prediction.

A family of SPLICE algorithms has been developed to perform contextual

clustering from a training data sequence. Each instance is time-stamped based on its

position in the sequence. The time stamps given to the training data form a

continuous attribute that can indicate a change of context in the data series. A

decision tree is then induced from the training data set using a batch learner (e.g.,

Quinlan’s C4.5). Any test on attribute time in the induced decision tree is used to

partition the data set into intervals and their partial concepts. A contextual cluster is

identified from a set of intervals that have similar contexts, i.e., if the partial concept

of one interval also covers the instances in another interval. The SPLICE-1 algorithm

obtains the final stable concepts by applying C4.5 again on the resulting initial

contextual clusters (Harries & Horn, 1998). The SPLICE-2 algorithm improves the

 23

quality of partitions by iteratively refining the boundaries of contextual clusters

(Harries, Sammut, & Horn, 1998) until a maximum number of iterations has been

reached or no change happens in the last two iterations.

The system performs on-line prediction using a suitable stable concept that

has been identified during the off-line learning phase. Two alternative methods have

been suggested for selecting the most appropriate stable concept. The first method is

to use a simple voting mechanism that selects a stable concept with highest

classification accuracy on a window of recent instances. The second method is to

apply a meta-classifier on a new instance for deciding which stable concept is

appropriate for predicting the instance. After stable concepts have been identified

during the off-line learning, all training data are copied and re-labeled by their

corresponding stable concepts. The meta-classifier can then be constructed using

C4.5 on the newly labeled training set.

The system’s performance thus depends on the quality of stable concepts and

the ability to correctly select a stable concept for classification. It adapts to concept

drift by switching from one stable concept to another, similar to the FLORA-3

algorithm that retrieves a stored concept, during the prediction processes. The use of a

window for selecting a stable concept, as described above, limits the system’s ability

to tracking only a single target concept while employing a meta-classifier for the

selection process enables the system, at least theoretically, to learn multiple target

concepts simultaneously. However, because the stable concepts are identified only

 24

during the off-line learning, during the prediction phase the system is unable to

predict if an instance belong to a new stable concept.

The method proposed in this research is similar to those of FLORA-3 and

SPLICE in that stable concepts are stored and re-used whenever needed. These stable

concepts are continuously maintained in the concepts hierarchy. It is also similar to

METAL and SPLICE in that context is exploited in meta-level learning to detect the

presence of concept drift. However, the existing methods assume the existence of a

large number of labeled examples in order to work properly despite the similarities. In

contrast, the proposed method is specifically designed to work when the number of

labeled examples is much less.

2.2 Approaches to Adaptive Information Filtering

Information filtering is a task that classifies texts from a stream of text documents

into either a relevant or an irrelevant category with regard to a user’s interests (Hull,

1998). This section describes major methods for modeling user profiles, which

provide the basis for the information filtering task. Changing interests of the user over

time in such an environment is inevitable so that a system that performs the task must

be able to continuously adapt to the new user interests, i.e., by learning from the user

relevance feedback, in order to maintain the system’s high performance. Thus,

tracking a user’s interests represents concept drift learning in information

filtering/retrieval domain. Similar to the concept drift learning, most works in

 25

adaptive information filtering suffer from requiring a large number of labeled

examples.

2.2.1 Rocchio Algorithms

Rocchio’s relevance feedback is an algorithm for learning user interests that has been

well studied in information retrieval (Rocchio, 1971; Salton & McGill, 1983).

Systems employing the Rocchio algorithm typically assume the stability of user

interests and apply the algorithm as a batch process. The algorithm nevertheless can

be straightforwardly modified to learn a sequence of feedback documents

incrementally, and hence is able to adapt to changing user interests. The adaptability

to react to the changing interests can be controlled from the weights assigned to a

positive and a negative feedback document. However, the linearity in updating the

user interest representation makes it difficult to quickly remove a long-standing

interest, similar to the problem faced by the STAGGER algorithm. The single

descriptor representation of the Rocchio algorithm also inherently reduces the

algorithm’s ability to learn multiple interest categories.

Allan (1996) explores the effectiveness of the Rocchio algorithm for

information filtering by employing incremental feedback technique. Allan's

experiments demonstrate that comparable results with the full judgments could be

obtained using only a few incremental judgments (e.g., 10% of full judgments,

corresponds roughly from 7 to 30 documents per query). He also empirically showed

that the drift of user queries, i.e., queries whose notions of relevance change, could be

 26

handled gracefully only when the greater proportion of feedback documents comes

from the more relevant context. In spite of its importance in adapting to a new

interest, determining the appropriate number of recent relevance judgments within a

window remains an unsolved issue from this work.

An adaptive text-filtering task that performs on-line learning from an

incoming stream of documents has been the research focus of the TREC-7 filtering

track (Hull, 1998). Rocchio's relevance feedback algorithm is adopted in most

systems participating in this track, and the best performance is achieved by systems

that perform adaptive thresholding, little learning and minimal query expansion.

2.2.2 Window-based Approaches

Klinkenberg and Renz (1998) address the problem of tracking user interests using a

window of recent document feedback. Unlike in typical on-line learning setting, the

method assumes that the input of data stream arrives in batches, each batch containing

an equal size of document set (e.g., 130 documents in this case). The window size,

which is measured by the number of batches, is adaptively adjusted by monitoring the

system’s predictive performance. Specifically, the deviation of the system’s

predictive accuracy, precision or recall from learning documents in the window is an

indicator of change in interests. Based on the extent to which the current system’s

predictive performance deviates from its average performance (over the last m

batches), the window size is adjusted accordingly similar to the window adjustment

of the FLORA-2 algorithm. The system adapts to the new interests by relearning

 27

batches in the window. Klinkenberg and Renz experiment with various classifiers

(e.g., Rocchio, Naïve Bayes, KNN, C4.5, etc.) and show that systems with adaptive

window sizes consistently outperform those that employ fixed window sizes and

those that learn only from documents in the last batch.

More recently, Klinkenberg and Joachims (2000) propose another window

adjustment algorithm, also in a setting where the input stream is in a form of batch

sequence. The window size is dynamically determined so that it maximizes the

system’s predictive performance on the last batch. More specifically, it trains the

Support Vector Machine (SVM) classifier using various window sizes on previously

seen batches, except the last batch, and selects the window size that minimizes the

estimated generalization error on examples in the last batch seen. A further attempt

has also been made to extend the work by employing Transductive SVM (TSVM)

instead of the standard SVM classifier for solving a similar problem to that addressed

in this dissertation (Klinkenberg, 2001). TSVM is an extension of SVM that takes

into account unlabeled data on the test set (the next batch data) during the learning

process so that the misclassification of data in that particular test set is minimized.

However, this approach has never been evaluated using fewer labeled examples,

making the effectiveness of this method unclear. Besides, there is still a controversy

regarding the TSVM classifier itself. Specifically, using the test set for learning is

invalid as a means of inductive inference in the first place. An analysis based on the

standard Maximum Likelihood Estimate (MLE) / Fisher information also indicates

 28

that TSVM in its current form is likely not to be helpful in general because it may

mislead the classifier into maximizing wrong margins (Zhang & Oles, 2000).

2.2.3 Intelligent Agents for Information Filtering

Modeling user interests has also been an active research area in the Intelligent Agents

community dealing with information filtering related problems. Although many agent

systems with embedded user-profile learning modules have been developed, only a

few of them address the problem of changing interests. Among of these agents are

PVA (Chen, Chen, & Sun, 2002), ALIPES (Widyantoro, Ioerger, & Yen, 1999), FAB

(Balabanovi�, 1997 & 1998), SIFTER (Lam, Mukhopadhay, Mostafa, & Palakal,

1996), AMALTHEA (Moukas & Zacharia, 1997), NEWT (Sheth, 1993). An interest

category in the profile of these agents is represented by a descriptor (feature vectors),

which is a list of feature and its weight pairs.

NEWT and AMALTHEA are multi-agent systems for personalized information

filtering. Both systems employ evolutionary algorithms where populations are

composed of individual agents each of which acts as a filter for an interest category.

When the user interests change, the filter agents assigned to the old interests are

eventually left out from the population by evolution and natural selection while new

individual agents are created to filter the new interests. The fitness of each agent,

which affects the agent survivability, is determined from the user’s relevance

feedback. AMALTHEA is essentially an extension of NEWT. While NEWT employed

only a single type of agent (e.g., those for information filtering), AMALTHEA also

 29

introduces information discovery agents whose relationship with the filtering agents

is based on a simple economic model. Due to the nature of the algorithm, a great

amount of effort from the user is required to rate information received.

SIFTER (Smart Information Filtering Technology for Electronic Resources)

is a document filtering system developed by Lam et al. (1996). The system has been

applied to filtering LISTSERV mails as well as research reports in computer science

domain. Its algorithm for updating the user profile, which is designed to be able to

detect and adapt to the shift in user interests, consists of two-level (meta-level like)

learning approaches. The lower level employs a standard reinforcement-learning

algorithm to learn the user interests. The upper level uses a Bayesian method to detect

changes in the user model. The learning process in the lower level is reinitialized

when the upper level detects the shift in the user interests.

 FAB is a Web page recommendation service that combines the technique

based on the Web page contents and the recommendations of other users, often called

as collaborative filtering (Balabanovi�, 1997 & 1998). It uses the user feedback to

update its user profile, which constitutes short-term learning. A user’s interest that

changes over time is modeled using a simple decay mechanism. For example, all

weights in the profiles are multiplied by 0.97 at regular intervals.

ALIPES is a newsagent that regularly retrieves information from on-line

newspapers and magazines on the Internet and presents a personalized news page to

its users (Widyantoro, Yin, Seif El-Nasr, Yang, Zacchi, & Yen, 1999). A user’s

 30

interest category in this system is decomposed into long-term and short-term interest

models, and the user profile maintains the representation of multiple interest

categories. The system learns the user profile from explicit user feedback and adapts

to changing user interests by exploiting negative examples and decaying the user

profile’s weights. The MTDR learning algorithm described in Chapter III in this

dissertation is a significant improvement and refinement over the original learning

algorithm of ALIPES.

Personal View Agent (PVA) is a software agent for tracking, learning and

automatically organizing documents from the Internet (Chen, Chen, & Sun, 2002). A

proxy (one of the system’s components) logs every browsing request made by a user

and the system uses this information to build the user’s profile, assuming that a

document visited longer that a threshold (e.g., 2 minutes) can serve as a positive

feedback document. This allows a user profile to be learned automatically without

requiring an explicit user feedback. A user profile in the system is represented by a

category hierarchy called a personal view. The personal view is dynamically

constructed based on the implicit feedback document received from the proxy whose

classification in the personal view is guided by a pre-defined master category

hierarchy called world view. PVA adapts to changing user interests by decaying the

feedback document, which will eventually remove any interest category that has not

been recently visited from the personal view. This method is essentially the same as

learning from a window of recent interest categories seen.

 31

There are also many other systems that have been developed for information

filtering task where their learning algorithms cannot be used (or have not been

designed) to handle the changes in user interests. Table 2.2 summarizes most of these

systems and their major learning techniques or features. These systems either simply

adopt the standard convergence-type machine-learning algorithm or employ a single-

descriptor model for the representation of user profile. The typical machine learning

System Main Methods

SYSKILL & WEBERT
(Pazzani & Billsus, 1997)

Naïve Bayes Classifier

NEWSDUDE (Billsus &
Pazzani, 1999)

Hybrid Naïve Bayes and Nearest Neighbor

WEBMATE (Chen & Sycara,
1998)

Multiple TFIDF-based descriptor representations

NEWSWEEDER (Lang, 1995) Minimum Description Length algorithm

WAIR (Seo & Zhang, 2000) Implicit Feedback and Reinforcement Learning

PIN (Tan & Teo, 1998) Fuzzy Adaptive Resonance Associative Map

INFOSCOPE (Fischer &
Stevens, 1991)

Heuristic rules for automatic profile generation
and direct profile update by user

SIFT (Yan & Garcia-Molina,
1999)

User-supplied keywords and relevance feedback

Table 2.2: A list of traditional information filtering systems.

 32

algorithms applied on some of these systems cannot be applied in an on-line fashion,

which limits their utility.

Employing a single-descriptor representation, which is a single list of features

and their weights, lacks the capability to adapt flexibly to a user’s changes in

interests. Given a sequence of negative feedback to a previously learned interest

category, and/or a sequence of positive feedback representing a new interest to be

learned, an algorithm built on this single-descriptor representation adapts to this new

interest at a fixed, pre-determined pace. Systems that employ a single-descriptor

representation as above make an implicit assumption that user interests change at a

constant rate.

2.3 Theoretical Results on Concept Drift Learning

Concept drift learning has also been studied in the field of computational learning

theory. Results from this field mainly establish theoretical bounds based on some

assumptions regarding the number of examples to be tracked within a window and the

kind of drift that can occur.

The first theoretical studies on tracking a concept as it evolves over time have

been conducted by Kuh, Petsche, and Rivest (1991). They provide bounds on the

number of examples needed for adapting to concept changes and the maximum rate

of concept changes that can be tracked by a batch tracker (a tracking algorithm that

maintains a sliding window of recent examples and learns from all examples in the

window). The bounds are dependent only the complexity of target concepts,

 33

theoretically measured by the VC-dimension of the concepts. The adaptation to a new

concept is faster if the new concept is similar to the previous concept.

Helmbold and Long (1994) analyze a concept drift problem on domains

whose target concepts change continuously but at a slow drift rate. They evaluate

tracking algorithms that minimize the number of disagreements with the most recent

examples based on the rate of target concept movement that can be tolerated between

examples. More specifically, a general-purpose algorithm can tolerate concept drift

rates up to)
1

ln/(2
1 ε
ε dc where ε is the desired error rate, and d is the Vapnik-

Chervonenkis dimension of the concept class (Blummer et al., 1989). A more

computationally efficient variant of this algorithm can tolerate target concept

movements of at most)
1

ln/(22
2 ε
ε dc . They also provide results for the classes of

half-spaces and axis-aligned hyper-rectangles showing that no algorithm can tolerate

a concept drift greater than nc /2
3ε .

The main result above is essentially a special case of a later work due to Barve

and Long (1997), which constrains the allowable drift rate by ensuring that

consecutive probability distributions have small total variation distance. The result

was subsequently improved by Long (1998) to d/3ε for agnostic learning and

to d/2ε for the realizable case.

Blum and Chalasani (1992) address the problem of learning switching

concepts. Rather than slowly drifting through the concept spaces, their work allows to

 34

switch between concepts in the class, representing a target concept that changes

rapidly and abruptly. They restrict their framework on the number of concepts visited,

or on the frequency of switching. The main results are mainly the computational

complexity of predicting switching concepts on various switching concept models.

Bartlett, David and Kulkarni (1996) investigate the estimation of a target

function sequence from a sequence of labeled, random examples. They provide the

bounds on the sample complexity and the allowable drift rate of the target function

estimation problem on three models. The first model allows infrequent but arbitrary

changes of target concept, similar to Blum and Chalasani’s work switching concepts.

The second model allows target concept changes that correspond to slow walks on a

graph whose nodes are functions. The last model limits the changes to small concept

sizes, measured by the disagreement between consecutive target functions. They also

studied the sample complexity and drift rate bounds for prediction of changing

concepts.

WINNOW is an on-line algorithm for learning k-literal disjunctions that

associates each disjunction with a weight and performs multiplicative update to its

weights. Auer and Warmuth (1998) extend the WINNOW algorithm into SWIN

(shifting WINNOW) to deal with target concepts that change over time. SWIN makes a

stochastic prediction that returns one with a probability equal to the current weights.

The weights of disjunction are updated only when SWIN makes a prediction mistake,

and lower bound weights are added to guarantee a quick adaptation to the changes of

 35

disjunction. They also provide worst-case bounds on the expected number of mistakes

on any sequence of examples and any kind of target drift.

Herbster and Warmuth (1998) consider the problem of on-line prediction from

a pool of experts in which the best expert might change as the patterns in the on-line

sequence change. They extend the weighted majority algorithm (Littlestone &

Warmuth, 1994) that maintains a single weight for each expert. The master algorithm

combines the predictions of each expert according to their current weights. The

experts’ weights are then exponentially updated with respect to the past loss incurred

by each expert. In order to be able to effectively track the sequence of best experts,

they also redistribute a portion of an expert weight to the weights of other experts.

Their theoretical results are mainly proofs for the guaranteed loss bounds of the

master algorithm, relative to the loss of the best expert, for a variety of weight

redistribution methods.

More recently, Bousquet and Warmuth (2002) propose a method for tracking

a sequence of best experts in domains where the experts in the best partitions are from

a small pool of m out a much larger set of n experts. Building on the methods

developed by Herbster and Warmuth, they solve the problem by adding a mixing

update that takes into account past posteriors to update the current weight of each

expert. Loss bounds analysis on various coefficient-mixing schemes are also

provided.

 36

CHAPTER III

ALGORITHMS

FOR LEARNING CHANGING USER INTERESTS

This chapter presents a novel concept drift learning algorithm specifically developed

for information filtering domains. The primary focus is to describe and evaluate a

Multiple Three-Descriptor Representation (MTDR)-based approach for learning

changes in user interests. Significantly refined from a master thesis work

(Widyantoro, 1999), this chapter extends a previous work (Widyantoro, Ioerger, &

Yen, 2001) by (1) evaluating the MTDR algorithm effectiveness on other aspects

using a larger test collection, and (2) providing its performance comparison with

other major algorithms. It demonstrates the advantage of MTDR algorithm for

tracking multiple target concepts simultaneously, particularly when the tracking task

involves long-live and short-live target concepts. This chapter also points out the

limitation of MTDR and other existing concept drift learning algorithms for learning

from a stream containing a few labeled examples.

The rest of this chapter is organized as follows. Section 3.1 describes basic

representations and related techniques typically employed in information filtering

domain. The next three following sections describe the Rocchio algorithm, the

MTDR algorithm and two other generic concept drift learning algorithms based on

the window of recent examples. The experiment procedures are presented in Section

 37

3.5, and the experiment results on various concept drift learning tasks are then

discussed in Section 3.6. This chapter concludes by summarizing the key

contributions of this chapter in the last section.

3.1 Text Document Processing

The vector space model (Witten, Moffat, & Bell, 1994) is a commonly used

representation for describing text documents. In this model, the content of a text

document is represented by a feature vector in n-dimensional space where n is the

number of unique terms contained in a document collection. Let D be a text

document, then { }),(,),,(),,(2211 nn wtwtwt � is the feature vector of D where t is a

term (word) and w is the weight of term t.

Weighting Document Terms. The text document representation as above

requires a method to determine the weight of each term. A term’s weight represents

the degree of importance of the term in a document. A term that is more important is

usually assigned a higher value than a less important one. Term Frequency-Inverse

Document Frequency (TF-IDF) is one of the major weighing schemes that has been

well studied in the information retrieval literature. This weighing method assumes

that terms that occur in fewer documents are better discriminators. If two terms occur

with the same frequency in a document, the term occurring less frequently in other

documents will be assigned a higher value. More specifically, the importance of a

term is proportional to the occurrence frequency of the term in each document, and

inversely proportional to the total number of documents to which the term occurs in a

 38

given document collection (Salton & McGill, 1983). The importance of word i,

denoted by wi, in a document D is calculated as follows:

��
�

�
��
�

�
=

i

i
i DF

N
D

TF
w log

where TFi is the frequency of occurrence of term ti in D, DFi is the corresponding

document frequency, and N is the number of documents in the collection.

�=
j jTFD is the length of document, and is used to normalize term frequency in

order to avoid favoring long documents over short documents.

Measuring Document Similarity. Given two document feature vectors, a

similarity measure is needed to assess the degree to which a document matches a

reference feature vector. This metric is usually used to evaluate documents in order to

rank them and then filter those that are not relevant to the user interest. In the vector

space model, the cosine coefficient is the most widely used similarity measure (Salton

& McGill, 1983). The cosine coefficient calculates the difference in direction

between two feature vectors, measuring the angle between these feature vectors,

irrespective of their length. Given documents Di and Dj, the similarity between the

feature vectors of the two documents according to cosine formula is given by the

following equation:

ji

ji
jiji

DD

DD
DDDD

×

⋅
==),(cos),sim(θ

(3.1)

(3.2)

 39

Text document representation is generally employed to represent a user’s

interest because the latter is often inferred from the former. Hence, the cosine

similarity measure above is also an appropriate method for measuring the degree of

interests. A set of documents is considered relevant to a user’s interests if the cosine

similarity of the two in vector space representation is high (e.g., closer to one).

3.2 Rocchio Algorithm

Rocchio relevance feedback is a query expansion mechanism for improving the

quality of retrieval results based on relevance feedback in a static collection. It works

by iteratively reformulating a new query from (1) the query of the preceding retrieval

request, and (2) a set of relevant and irrelevant documents. Specifically, a query at a

particular iteration t, denoted by Qt, is of the form of vector

{ }),(,),,(),,(2211 nnt wtwtwtQ �= , containing a set of weighted words similar to

documents retrieved so far. The relevance feedback process then generates the new

query for the next retrieval iteration { }),(,),,(),,(22111 nnt wtwtwtQ ′′′=+ � with altered

weights iw′ .

The original Rocchio algorithm for query expansion during the relevance

feedback process is as follows (Rocchio, 1971; Salton & Buckley, 1990):

1

1 1
(1)t t i j

pos negpos neg

Q Q D D
n n

β β−= + − −� �

where β is positive constant between 0.0 and 1.0, npos is the number of relevant

documents, and nneg is the number of non-relevant documents. The parameter β

(3.3)

 40

determines the amount of influence of relevant documents relative to irrelevant

documents in query modification. The document retrieval process uses the cosine

similarity measure to rank the retrieval results according to the similarity between the

new query and documents in the collection.

Although originally designed to work in a batch process, the Rocchio

algorithm can be easily adapted for learning changing user interests in incremental

setting. The algorithm in this setting learns one document, either relevant (positive)

document Dpos or non-relevant (negative) document Dneg at a time, practically setting

1pos negn n= = in the Rocchio algorithm. Naturally, the Rocchio representation is

suitable for tracking a single target concept. As will be described shortly, this

algorithm is also adopted for modeling the long-term interest of the MTDR algorithm.

3.3 MTDR Algorithm

MTDR algorithm is a concept drift learning algorithm that is crafted for tracking

multiple target concepts in information filtering domain (Widyantoro, Ioerger, &

Yen, 2001). The ability for tracking multiple target concepts is based on the

observation that one can have several interest categories at the same time. The

development of the algorithm is motivated by the need for capturing the long-term

and short-term components of an interest category. The algorithm also inherently

adopts the persistence assumption, which allows it to adapt to the change of short-

term interests without disrupting the presence of long-term interests, and vice versa.

 41

Long-term interests (e.g., interests in a research area) represent a user's

general preferences (Billsus & Pazzani, 1999; Widyantoro, Ioerger, & Yen, 1999).

These interests are formed gradually over the long run, and are fairly stable after they

converge. In a concept drift algorithm that learns from a window of recent examples,

the long-term interest model corresponds to the stable concept and can be acquired by

applying large window sizes. Consequently, long-term interests tend to be inert, and

the effort it takes to change the long-term interests could be proportional to the effort

it takes to build them. On the other hand, short-term interests are very unstable by

nature. For example, interests in current hot topics can change on a day-to-day basis.

Such interests are inevitable and a common phenomenon in real life. Applying small

window sizes can capture the short-term interests that correspond to unstable

concepts in concept drift learning, enabling one to keep up with changes in the world

quickly.

The MTDR algorithm attempts to learn the long-term and short-term interest

models of an interest category and then to tradeoff the shortcomings and benefits

between these two models. Conceptually, each interest category can be derived from

a large and a small window of recent examples that are maintained simultaneously.

Hence, it would require multiple window sets for tracking multiple interest

categories. Instead of maintaining explicit windows, the MTDR algorithm creates

explicit representations for each interest category model and applies an incremental

update method that mimics the behaviors of having a large and small window in a

window-based approach.

 42

3.3.1 Interest Category Representation

The rationale is to represent long-term and short-term interest models of an interest

category in separate descriptors and then to combine both models to get a more

expressive representation; that is, a three-descriptor representation. The three-

descriptor model is then extended to learn multiple user interest categories.

Modeling Long-term Interests. The motivation behind the modeling of long-

term interests is to capture a user's general interests (i.e., stable concepts). The long-

term interest model is built up gradually and the performance of the model is

expected to improve consistently in-line with the increasing number of feedback

examples learned. Consequently, the long-term interest model lacks the ability to

respond promptly to recent feedback particularly when the model has learned from a

large number of examples in the past.

The Rocchio algorithm satisfies the requirements to model long-term user

interests over the long run since the effect of the Rocchio weight update rule is to

cause a gradual change in interests. A long-term interest is modeled by a long-term

descriptor LTD, which is updated using the following learning rule adopted from the

Rocchio algorithm:

negpostt DDLTDLTD)1(1 ββ −−+= −

where 10 ≤≤ β . The degree of interest in D with respect to LTD, denoted by

)(DI LTD , is simply the similarity value between D and LTD, i.e.,

),sim()(LTDDDI LTD = .

(3.4)

 43

Modeling Short-term Interests. The objective of short-term interest

modeling is to adapt quickly to recent feedback. This ability is crucial particularly

when the recent feedback reflects transient interests of the user. During the transition

of change in an interest category (i.e., concept drift), the short-term interest models

are also expected to help quickly eliminate the influence of the hard-to-forget long-

term interests.

The short-term interest component is modeled by a pair of descriptors

),(NegDPosDSTD = where PosD is a positive descriptor for representing the

category of recent interest, and NegD is a negative descriptor for representing

specific subject not of interest. Given a positive feedback document D, the update of

the positive descriptor is carried out as follows:

DPosDPosD tt αα +−= −1)1(

where α = (0,1) is the learning rate. It can be easily shown that for a sequence of

positive documents Di, the positive descriptor can be formulated by

�
=

−−=
t

i
i

it
t DPosD

1

)1(αα

A similar computation is defined for learning from a negative feedback document by

exchanging PosD and NegD.

The cumulative discounted weight update rules applied for the short-term

descriptors allow new interests to take over the representation space of the old

interests as quickly as needed by setting the appropriate value of the learning rate.

(3.5)

(3.6)

 44

The degree of interest in a document D according to the short-term interest model,

denoted by)(DI STD , is given by the difference between the similarities of D to the

positive and negative descriptors.

),sim(),sim()(DNegDDPosDDI STD −=

Positive value of)(DI STD indicates that D is interesting, and vice versa.

An Interest Category Model. An interest category is represented by three

descriptors combining the descriptors from the long-term and short-term interest

models. Thus, an interest category is a three-descriptor model),(STDLTDTDR = .

Given a document D, the interest in D according to TDR, denoted by)(DITDR , is a

mixture of the interests according to the long-term and short-term models, defined by

() () (1) ()TDR LTD STDI D I D I Dη η= + −

where η is a constant parameter between 0.0 and 1.0 that determines the impact of

the long-term and short-term interest models in the three-descriptor model.

3.3.2 Learning Multiple Interest Categories

The three-descriptor model is designed to learn a single interest-category concept.

This section describes an extension of this model for learning multiple interest

categories using multiple three-descriptor representations. In principle, the algorithm

maintains { }mTDRTDRTDRMTDR ,,, 21 �= where each TDR is a distinct interest

category concept. The interest in any document D given MTDR, denoted by

(3.7)

(3.8)

 45

)(DI MTDR , is obtained from the maximum value of the interest in D for any TDR in

MTDR. That is,)}({max)(DIDI iTDRiMTDR −= .

Figure 3.1 describes the MTDR algorithm for learning and tracking the

changes in multiple interest categories. A new interest category model will be created

to store the category concept of a new document if the content of the document is

MTDR Algorithm (fbD, : the relevance feedback document)

Let TDR j be the jth interest category model of MTDR,

 M be the maximum number of TDRs maintained in MTDR, and

 θ is the decision threshold constant (0,1).

Let),sim(iTDRDs = such that

 sim(,) max {sim(,), sim(,), sim(,)}i j j j jD TDR D LTD D PosD D NegD=

 where jLTD , jPosD and jNegD are the three descriptors of MTDRTDR j ∈ .

If)(θ<s

 If)(MMTDR <

 Create a new category TDR k using fbD, .

 Else
 Update the long-term and short-term interest models of TDRi using fbD, .

Else

 For θ≥∀),sim(mTDRDm

 Update the long-term and short-term interest models of TDRm using fbD, .

Figure 3.1: MTDR algorithm.

 46

different enough from all existing models. A decision threshold θ is used to determine

when the highest similarity to an existing interest category is low enough to justify

creating a new interest category model.

The similarity of a document to an interest category model is defined as the

maximum similarity between the document and either the long-term descriptor, the

positive descriptor, or the negative descriptor of the model. When the similarity of a

document to existing models exceeds a decision threshold θ for several interest

category models, all these models are updated in order to maintain the consistency

among similar target concepts (Widyantoro, Ioerger, & Yen, 2001). The parameter M

is applied to limit the number of interest category models that can be generated in a

multiple three-descriptor model.

3.4 Window-based Concept Drift Learning Algorithms

A window-based algorithm as shown in Figure 1.1 adapts to concept drift by sliding a

window over recent examples and relearning a target concept from examples within

the window. Variants of this method mainly differ from one another on the base

learner employed for inducing the target concept and the method for adjusting the

window size. Figure 3.2 provides the algorithm adapted for text document domain. It

consists of two main components typically exist in an on-line learner. For each new

relevance feedback document presented, the first component attempts to predict the

document relevance by applying the Prediction() function and uses the relevance

value that accompanies the document to check the accuracy of its prediction. It

 47

returns one (zero) for a correct (an incorrect) prediction. The prediction results are

maintained in a list P for monitoring the system performance whenever needed.

The second component performs the actual learning. For simplicity, the new

target concept is regenerated periodically after seeing k new documents by relearning

n most recent feedback documents. n is the window size determined by the

Window-based Algorithm (,D fb : the relevance feedback document)
Input:
 D = Document.
 fb = {1,0}, 1 for relevant document and 0 for irrelevant document.

Initialization:
 S = ∅ , a list of relevance feedback documents in order of arrival time.
 C = null, a target concept.
 P = ∅ , a list of prediction results for performance monitoring.

On observing a feedback document D with relevance value fb:
 Concatenate D at the end of S.
 If)(nullC ≠ then

 Let p = 1 if Prediction(D) = fb, or p = 0 otherwise.
 Concatenate p at the end of P.
 End-If

Target Concept Learning:
 n = GetWindowSize(P).
 DLIST = Get the most recent n documents from S.
 C = LearnTargetConcept(DLIST).

Figure 3.2: Window-based concept drift learning algorithm.

 48

GetWindowSize() function. If the algorithm employs a fixed window size, the

GetWindowSize() function returns a pre-defined constant value. The window size n

can also be determined by an adaptive window adjustment heuristic. The

LearnTargetConcept() function induces the target concepts derived from the n recent

documents using a selected concept learner.

3.4.1 Adaptive Window Adjustment Heuristic

Typical adaptive window adjustment heuristics (Widmer & Kubat, 1996; Klinkenberg

& Renz, 1998) adjust the window sizes based on the changes in the system’s

predictive performance. The details of these heuristics are generally domain

dependent. Figure 3.3 describes the heuristic implemented in the window-based

concept drift algorithm used in this chapter, which has the same performance-based

adaptation principle as those in the existing heuristics. The system’s predictive

performance is calculated from the outcomes of a fixed number of past predictions.

Let 1−tAccuracy be the system’s predictive accuracy measured when a

concept Ct-1 is learned at time (1−t) using a window of size 1−tWindowSize . After

predicting the class of k new examples using the learned concept Ct-1, let tAccuracy

be the new system’s predictive accuracy that incorporates the prediction outcomes on

the new examples. The heuristic will expand the window if it observes a performance

increase (e.g., 1−> tt AccuracyAccurracy) so that the new window size, e.g.,

tWindowSize , will include both older examples for generating Ct-1 and the new k

 49

Figure 3.3: Window adjustment heuristic algorithm.

Window-Adjustment-Heuristic Algorithm
Input:
 P = {1|0}*, a sequence of prediction results where 1 or 0 indicates a correct or
 an incorrect prediction.

Initialization:
 Accuracy0 = 0, previous predictive performance.
 #PastPred = 10, the number of past predictions for performance assessment.
 WindowSize = PastPred.

Algorithm:

If (>P #PastPred) then

 Let # 1

#

P

i
i P PastPred

t

P

Accurracy
PastPred

= − +=
�

 If)(1−> tt AccuracyAccurracy /* predictive performance is increasing */

 /* increase the window size to include unaccounted k new examples */
 WindowSizet = WindowSizet-1 + k
 Else
 If)(1−< tt AccuracyAccurracy /* predictive performance is decreasing */

 /* reduce the window size proportionally to the current performance */
 WindowSizet = Max {2, Accuracyt * WindowSizet-1}
 Else
 /* predictive performance is stable */
 If (0.5)CrntAcc ≥ /* stable at a higher accuracy */

 /* increase the window size by one */
 WindowSizet = WindowSizet-1 + 1
 Else
 /* reduce the window size when stable at a lower accuracy */
 WindowSizet = Max {2, Accuracyt * WindowSizet-1}

 50

examples. The window size is proportionally reduced with respect to current

performance if it either decreases from previous performance or is stable at a lower

accuracy. If the predictive performance is stable at a higher accuracy, the window is

slightly increased.

3.4.2 Base Learners

A base learner carries out the LearnTargetConcept() function in the window-based

concept drift learning algorithm. For the evaluation of this algorithm, this dissertation

considers two widely used learning methods as the base learner: Rocchio and k

Nearest Neighbor (KNN). For reference convenience, Window-Rocchio algorithm

will be used to denote the window-based learning algorithm that employs the Rocchio

learner, and a version that uses the KNN base learner will be called Window-KNN

algorithm.

In the Window-Rocchio algorithm, the positive and negative examples in

DLIST, which contains the n most recent relevance feedback documents, are equally

weighed and the learning process in the Rocchio algorithm is performed using

Equation 3.3. Let DRocchio be the Rocchio descriptor, that is, the concept generated by

the Rocchio algorithm. The prediction is performed by thresholding the similarity

between a document D and the Rocchio descriptor DRocchio. Hence, the Prediction()

function in Figure 3.2 is defined as follows:

1 if (,)
()

0 otherwise
Rocchio

Rocchio

sim D D
Prediction D

θ≥�
= 	

 (3.9)

 51

where θ is the decision threshold for the Rocchio classifier.

The Window-KNN method learns by simply storing all the given examples in

DLIST. Let DKNN be the k documents in DLIST that are most similar to a new document

D. The class prediction of D, with respect to the stored documents, is based on the

class of examples in DKNN that maximizes their sum of similarities to D as follows:

{0,1}
() arg max Sim(,) (, ())

i KNN

KNN i i
v D D

Prediction D D D v fb Dδ
∈ ∈

= ⋅�

where 1))(,(=iDfbvδ if)(iDfbv = and where 0))(,(=iDfbvδ otherwise.

3.5 Experiment Setup

This section describes the setting of experiments for evaluating the four concept drift

learning algorithms described earlier (e.g., MTDR, Rocchio, Window-Rocchio, and

Window-KNN algorithms). Its primary purpose is to empirically validate the

advantages and shortcomings of these algorithms on three aspects: (1) the ability for

tracking multiple target concepts simultaneously, (2) the compliance with the

persistence assumption about the change of target concepts, and (3) the effect of

reducing the number of (labeled) examples. The following describes the data,

experiment procedures and tracking problems needed to achieve this goal.

3.5.1 Document Collection

A subset of the Reuters-21578 1.0 test collection (Blake & Merz, 1998) was used in

the experiments. The original collection contains 135 topics and 21,578 stories

(3.10)

 52

obtained from the Reuters newswire in 1987. Of these stories, 12,902 had been

assigned to one or more categories. The stories were divided into training and test

documents according to ModApte split, which had 9,603 documents for the training

set and 3,299 documents for the test set (Apté, Damerau, & Weiss, 1994).

The documents used in the experiments are selected among those in the

ModApte split that have been assigned a single topic category. As a result, the test set

contained 2581 documents consisting of 59 topics. The test documents were used to

measure the model's accuracy. The rest of the training set, which contained 6452

documents, is used to generate a sequence of relevance feedback documents for

modeling user interests incrementally. The documents are pre-processed by removing

stop words, stemming the remaining words, identifying bigrams and extracting them

as individual terms, and counting term frequencies. The document terms are then

weighed according to the TF-IDF method (see Equation 3.1). These processes are

common in the information retrieval literature (Witten, Moffat, & Bell, 1994).

3.5.2 Experiment Procedure

Following the standard in concept drift learning, the goal of experiments is to observe

the system performance as target concepts (i.e., current user interests) change from

time to time. Accordingly, the system is presented with a stream of feedback

documents to learn sequentially, and its performances are measured on a fixed test set

with respect to current target concepts at regular intervals after processing m

 53

consecutive documents. A period of incremental learning on the m-document

sequence and system performance measurement is then called a tracking cycle.

The test data was used to measure the model performance on each tracking

cycle. The accuracy of a model measured at the end of a tracking cycle was calculated

as follows. First, all documents in the test data were ranked using the learned model.

The prediction accuracy of the model was then measured by calculating the

percentage of target test documents ranked within the top n documents (where n is set

to maximum number of documents in desired categories). Specifically, let P be the

number of documents in positive topics that appear in the top n documents ranked by

a model. The accuracy of the model at a tracking cycle t is calculated using the

following equation:

%100×=
�i i

t TC
P

Accuracy

where TCi are the numbers of documents in positive topic categories being considered

in the current tracking cycle and �=
i iTCn is the total number of target test

documents in the test data. This accuracy measure is essentially equivalent to the

standard performance measure of recall-precision break-even point, a value at which

precision is equal to recall in text categorization tasks (Lewis & Ringuette, 1994).

The average accuracy value is calculated by averaging the system accuracy from the

first tracking task to the end.

(3.11)

 54

3.5.3 Tracking Tasks

The data streams are generated according to a tracking task, a scenario that describes

the evolution of topics of interest over time. The changes in topics of interest over

time are simulated by alternating among interests in Trade, Coffee, Crude, Sugar and

Acq topics. These five topics are called target topics (concepts) whose sizes in the test

Tracking Cycle
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100

(Trade, +) (Trade, −)
(Coffee, +)

(Coffee, −)
 (Crude, +)

(Crude, −)
(Sugar, +)

(Sugar, −)
(Acq, +)

(m=1) (m=2) (m=2) (m=2) (m=2)

Table 3.1: Tracking task 1.

Tracking Cycle

1 − 20 21 − 40 41 − 60 61 − 80

(Trade, +)
(Coffee, +)

(Trade, −)
(Coffee, +)
(Crude, +)

(Coffee, −)
(Crude, +)
(Sugar, +)

(Crude, −)
(Sugar, +)
(Acq, +)

(m=2) (m=3) (m=3) (m=3)

Table 3.2: Tracking task 2.

Tracking Cycle

1 − 20 21 − 40 41 − 60

(Trade, +)
(Coffee, +)
(Crude, +)

(Trade, −)
(Coffee, +)
(Crude, +)
(Sugar, +)

(Coffee, −)
(Crude, +)
(Sugar, +)
(Acq, +)

(m=3) (m=4) (m=4)

Table 3.3: Tracking task 3.

 55

set are 75, 22, 121, 25 and 696, respectively. Tables 3.1 through 3.5 provide five

tracking tasks used in the experiments. Each column in the tables describes the

number and the topic of documents in the m-document sequence that is processed at

each tracking cycle. In Table 3.1, for example, tracking cycles 21−−−−40 process two-

instance sequences; each contains one Trade document and one Coffee document

ordered randomly in the sequence. Each tracking cycle uses a new set of documents

from the training set that has not been seen. Information regarding the document topic

category is not told to the system.

For simplicity, target concepts are made stable for periods of twenty tracking

cycles. Feedback document set that marks the beginning of change in target concepts

are given at the first tracking cycles during the twenty-tracking cycle periods, that is,

Tracking Cycle
1 − 20 21 − 40

(Trade, +)
(Coffee, +)

(Coffee, −)
(Crude, +)

(m=2) (m=2)

Table 3.4: Tracking task 4.

Tracking Cycle

1 − 20 21 − 40
(Trade, +)
(Coffee, +)
(Crude, +)

(Coffee, −)
(Crude, +)
(Sugar, +)

(m=3) (m=3)

Table 3.5: Tracking task 5.

 56

at tracking cycles 1, 21, 41 and so on. Topics with positive (+) labels indicate the

desired target concepts at the respective tracking cycles. Documents with positive

labels indicate relevant documents and are used to establish new (or emphasize the

existing) target concepts. The negative labels are used to demote previously

established target concepts. For example, a positive Trade document in Table 3.1 is

given during the first tracking cycle to establish the new interest in Trade topic. The

document set provided during the 21st tracking cycle contains one positive Coffee

document and one negative Trade document, which changes the target concept from

Trade to Coffee.

 Tracking Cycle

 1 − 20 21 − 40 41 − 60 61 − 80 81 − 100

Tracking Task 1 Trade Coffee Crude Sugar Acq

Tracking Task 2 Trade
Coffee

Coffee
Crude

Crude
Sugar

Sugar
Acq

Tracking Task 3
Trade
Coffee
Crude

Coffee
Crude
Sugar

Crude
Sugar
Acq

Tracking Task 4 Trade
Coffee

Trade
Crude

Tracking Task 5
Trade
Coffee
Crude

Trade
Crude
Sugar

Table 3.6: Summary of target concept evolution over twenty-tracking cycle periods.

 57

Table 3.6 summarizes the evolution of target concepts implied by each

tracking task over the twenty-tracking-cycle periods. The tracking tasks 1, 2 and 3

represent learning problems in order of increasing levels of difficulty, in terms of the

number of target concepts that must be learned in each tracking cycle. These three

tasks provide tracking problems satisfying the assumption in that only latest examples

are relevant to current target concepts. The tracking tasks 4 and 5 involve long-live

and short-live target concepts, which require the persistence assumption in order to

properly track all the target concepts. Specifically, positive Trade documents are

given during the first twenty tracking cycles but these tracking tasks never provide

negative Trade documents afterwards implying that the Trade topic remains to be one

of the target concepts for the rest of the tracking cycles. In these tracking tasks, Trade

topic is the long-live target concept.

To observe the effect of labeled data reduction, the actual example sets are

provided only at certain tracking cycles, and the same number of performance

measurements is performed as the number of tracking cycles defined in the original

tracking tasks. Therefore, the system performance at tracking cycles during which the

examples sets are not given are expected to be the same. Table 3.7 provides the

Amount of Labeled Data Tracking Cycles

5 Percent 1, 21, 41, …

10 Percent 1, 11, 21, 31, 41, …

Table 3.7: Data streams with reduced number of examples.

 58

details of tracking cycles at which the labeled example sets are made available for

each data stream. For example, a data stream that contains only five percent as many

examples as provided in the original tracking task can be obtained by providing the

example sets on tracking cycles 1, 21, 41 and so on.

3.5.4 Parameter Settings

The algorithms described earlier introduce several parameters. The settings of

parameter values employed in the MTDR algorithm are the same as those defined

empirically in prior work (Widyantoro, Ioerger, & Yen, 2001). That is, the learning

rate α = 0.3 in short-term descriptor models, β = 0.1 in long-term descriptor models,

η = 0.5 in interest category (three-descriptor) models, and M = 8 as well as θ = 0.175

in MTDR models.

The Prediction() function in the Window-Rocchio algorithm, as described

before, also relies on a pre-defined classification threshold. The experiments on

tracking tasks 1-3 are conducted by varying the threshold values from 0.025 to 0.35 at

0.025 intervals. The performance achieved by this algorithm is selected from a

threshold setting that produces the best outcomes. These thresholds are 0.15, 0.075

and 0.1 for tracking tasks 1, 2 and 3 respectively. The threshold for tracking task 4 is

set to 0.075 simply because this task has the same number of target concepts as that

of tracking task 2. Similarly, the threshold defined on tracking task 5 is 0.1.

Lastly, the performance of the Window-KNN algorithm is also selected from

the k value in the KNN classifier that produces the best result in the respective

 59

tracking task. The k values have been varied from 1 to 21 at intervals of two. The

experiment results for tracking tasks 1 through 5 presented in the next section are a

result from setting the k values to 9,9,7, 9 and 7, respectively.

3.6 Experiment Results

This section summarizes the results of numerous experiments that have been

conducted using the four algorithms described earlier. The first two sections briefly

review empirical results that explain the behaviors of the MTDR algorithm’s

components as well as the window-based learning algorithms. The capability of each

algorithm on addressing the three aspects mentioned earlier will be discussed in the

last three sections.

3.6.1 The Behavior of MTDR Algorithms

The interest category representation that underlies the MTDR algorithm is composed

of long-term and short-term interest models. Figure 3.4 depicts empirical results that

demonstrate the characteristics, strengths and weaknesses of these models. The figure

also shows how their characteristics agree with the motivations behind the

development of these models. The results presented in this figure used tracking task 1

as the learning problem, averaged over 10 runs. The more detail behaviors of these

models on various parameter values were described in (Widyantoro, Ioerger, & Yen,

2001).

 60

As shown in Figure 3.4, the long-term interest model improves its prediction

accuracy consistently as it learns more relevance feedback documents. This property

also represents the behavior of Rocchio algorithm because the long-term interest

model is learned using this algorithm. The weight update rule of this model allows

preserving common features of documents. Its weakness is that a long-term interest

model by itself suffers from learning a dynamically changing interests at a slow, fixed

rate. Because it learns and unlearns documents gradually, this model cannot remove

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81

Tracking Cycle

A
cc

ur
ac

y
(%

)

Short-term Model Long-term Model TDR Model

Figure 3.4: The characteristics of long-term, short-term and TDR models.

 61

its old interests quickly enough when it has to learn a new interest. Therefore, the

performance of this model usually drops drastically at each learning phase transition.

The short-term model at a higher learning rate tends to destabilize the model,

causing the prediction accuracy of the short-term interest model to fluctuate

erratically. However, the effect of changing interests on the prediction accuracy of the

model is slight, if any. Lowering the learning rate could improve the stability and the

average performance of the model (the figure of this is not shown) but could also

cause the model to be more sensitive to changing interests, similar to the problem

faced by the long-term interest model. Thus, there is a tradeoff between achieving

higher performance and a more stable model, versus obtaining a more adaptive model

for learning changing interests as a function of the learning rate. This tradeoff

represents the strength and, at the same time, the weakness of the short-term interest

model.

The three-descriptor model possesses a combination of the strengths and

weaknesses of the long-term and short-term interest models. The expected strengths

of this model are: achieving high prediction accuracy obtained from the long-term

interest model, and being able to respond quickly on changing interests as in the

short-term interest model. The weaknesses of both the long-term and short-term

interest models hopefully can be reduced as much as possible.

 62

3.6.2 The Behavior of Window-based Algorithms

Determining the appropriate window size is the main difficulty in the concept

drift learning algorithm that relies on a fixed window of recent examples. Figure 3.5

depicts the average accuracies obtained from this algorithm as a function of window

sizes. The figure confirms the expectation that both too small and too large of

window sizes generate non-optimal performances. A smaller window size would

retrieve examples with less or even no noise but the small number of examples

retrieved is not enough to generalize the target concept. Conversely, a larger size of

window draws more examples but the retrieved data would contain many more

60

62

64

66

68

70

72

74

76

2 12 22 32

Window Size

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Window-Rocchio Window-KNN

Figure 3.5: The effect of window size in the window-based learning algorithms with
a fixed window size on the average accuracies.

 63

conflicting examples, hindering the learner to build an accurate target concept

representation.

The window adjustment heuristic overcomes the window size determination

problem by adaptively changing the window size in an attempt to include more

examples or avoid incorporating noise. Figure 3.6 depicts the evolution of window

sizes over time as a result from applying the window adjustment heuristic described

by Figure 3.3. The window sizes expand as expected to include more relevant

examples during stable periods, and shrink quickly during the transition of target

concept changes (e.g., at tracking cycles 20, 40 and so on) that introduce potentially

many conflicting examples. This indicates at least that the mechanism for adapting to

concept drift works properly.

0

5

10

15

20

25

30

35

1 21 41 61 81

Tracking Cycle

W
in

do
w

 S
iz

e

Window-Rocchio Window-KNN

Figure 3.6: The adaptation of window size over time in window-based learning
algorithms.

 64

3.6.3 Performance Comparison

Now, the MTDR algorithm’s components and the window adjustment heuristic of the

window-based algorithms have been shown to behave as expected. This section will

discuss the performance comparisons of these two classes of algorithms on three

aspects: the ability for tracking multiple target concepts, the conformance to the

persistence assumption, and the ability for handling few examples.

Tracking multiple target concepts. Recall that the numbers of target

concepts to be tracked in tracking tasks 1, 2 and 3 are one, two and three,

respectively. Table 3.8 depicts the average accuracies of the four algorithms on the

three tracking tasks. In the task involving only a single target concept (e.g., tracking

55

60

65

70

75

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

MTDR 74.90 71.80 69.85

Rocchio 70.92 66.06 60.54

Window-Rocchio 73.71 66.40 58.48

Window-KNN 73.58 71.77 64.41

Tracking Task 1
(Single Concept)

Tracking Task 2
(Two Concepts)

Tracking Task 3
(Three Concepts)

Table 3.8: Performance comparison on tracking tasks 1, 2 and 3.

 65

task 1), all algorithms perform comparably well except the Rocchio algorithm. The

average accuracies of Window-Rocchio algorithm are worse than the others in tasks

involving larger number of target concepts. Lastly, the MTDR algorithm outperforms

the Window-KNN algorithm when tracking three target concepts simultaneously

although their performances are still comparable in tracking task 2.

Figure 3.7 shows the performances over time of all algorithms on tracking

task 3. The MTDR algorithm consistently performs relatively very well throughout

the tracking cycles on this task. The observation that the performances of Rocchio

and Window-Rocchio algorithms are relatively much worse are not surprising

because the Rocchio algorithm is biased toward learning a single target concept and

30

35

40

45

50

55

60

65

70

75

80

1 21 41

Tracking Cycle

A
cc

ur
ac

y
(%

)

MTDR Rocchio Window-Rocchio Window-KNN

Figure 3.7: Performance over time on tracking task 3.

 66

thus lacks the representational power needed for learning multiple target concepts. At

the opposite end, KNN algorithm is biased toward generating target concepts as many

as example it acquires. This algorithm is naturally capable of learning multiple target

concepts. Its classification accuracy in the Window-KNN algorithm, which is based

on the k nearest examples, appears to be better than that of the Rocchio (Window-

Rocchio) algorithm when involving multiple target concepts but is still not as good as

the classification accuracy achieved by the MTDR algorithm. This observation

provides a piece of empirical evidence that the MTDR algorithm, which has been

designed to recognize and to track multiple target concepts, is better than the window-

based algorithms applying the window adjustment heuristic.

55

60

65

70

75

80

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

MTDR 78.12 74.13

Rocchio 71.50 69.81

Window-Rocchio 64.47 57.25

Window-KNN 66.06 62.78

Tracking Task 4 Tracking Task 5

Table 3.9: Performance comparison on tracking tasks 4 and 5.

 67

Conformance to the Persistence Assumptions. Technically, the recency

example assumption that underlies the window-based learning algorithm will not

properly work on tracking tasks 4 and 5 because these tasks require the conformance

of the persistence assumption in order to track the long-live concept (e.g., Trade

topic) defined in the tasks. Table 3.9 provides the average accuracies of all algorithms

on these tracking tasks. While the performances of MTDR algorithm remain high, the

performances of Window-Rocchio and Window-KNN are severely degraded.

Figures 3.8 and 3.9 depict the performances over time of the four algorithms

on tracking tasks 4 and 5, respectively. As described earlier, the Trade target concept,

which requires the persistence assumption to track on this task, was given only during

37

42

47

52

57

62

67

72

77

82

87

1 11 21 31

Tracking Cycle

A
cc

ur
ac

y
(%

)

MTDR Rocchio Window-Rocchio Window-KNN

Figure 3.8. Performance over time on tracking task 4.

 68

the first twenty tracking cycles. The change of non-Trade target concept that occurs

during the 21st tracking cycles triggers the window-based algorithms to shrink their

windows. Figure 3.8 clearly shows that the window-based algorithms start regaining

their performances as they see more examples representing the new target concepts

during the first few tracking cycles after the target concept change but it happens only

shortly. As the windows move forward, they also quickly remove all examples

needed for learning the Trade target concept, causing sudden drops in performance

for failures in learning the old (long-live) target concept.

40

45

50

55

60

65

70

75

80

1 11 21 31

Tracking Cycle

A
cc

ur
ac

y
(%

)

MTDR Rocchio Window-Rocchio Window-KNN

Figure 3.9. Performance over time on tracking task 5.

 69

The effects of labeled data reductions. Figure 3.10 illustrates a typical

performance over time produced by learning with significantly reduced numbers of

labeled examples. Starting from the first tracking cycles, the next example set in the

5% data stream is given at tracking cycles 21, 41 and so on (see Table 3.7 for a full

description on this). The jagged lines on the curves with reduced number of labeled

examples are due to the use of the same test set so that the performance will not

change until the next labeled data are made available. In 5% and 10% cases,

specifically, the performances are not expected to change until the next twenty and

ten tracking cycles, respectively.

40

50

60

70

80

90

1 21 41 61 81

Tracking Cycle

A
cc

ur
ac

y

100% 10% 5%

Figure 3.10: Performance over time with reduced number of examples on tracking
task 1 and on MTDR algorithm.

 70

 Average Accuracy (%)
 MTDR

Rocchio

Window-
Rocchio

Window-KNN

Tracking Task 1
100 Percent 74.90 70.92 73.71 73.58

10 Percent 65.16 53.26 66.19 59.19

5 Percent 63.29 46.35 60.26 57.09

Tracking Task 2

100 Percent 71.80 66.06 66.40 71.77

10 Percent 62.77 53.27 54.52 49.69

5 Percent 60.12 49.25 39.49 46.80

Tracking Task 3

100 Percent 69.85 60.54 58.48 64.41

10 Percent 63.73 55.53 48.26 51.18

5 Percent 59.53 53.00 42.93 46.66

Tracking Task 4

100 Percent 78.04 71.57 64.35 66.22

10 Percent 68.94 59.05 57.20 59.92

5 Percent 65.45 52.35 57.20 56.29

Tracking Task 5

100 Percent 74.13 69.81 57.25 62.78

10 Percent 68.22 59.72 45.79 51.24

5 Percent 64.69 56.90 41.50 39.55

Table 3.10: Summary of experiments with reduced number of examples on all tracking
tasks and all algorithms.

 71

Table 3.10 summarizes the average accuracies of all algorithms on all tracking

tasks. The “100 Percent” rows are rewritten from Tables 3.8 and 3.9 for convenience

in interpreting the results. Clearly, all algorithms suffer from being unable to maintain

the high average accuracies at the reduced size of data streams. Although the window

adjustment heuristic works pretty well with a sufficiently large number of examples

(e.g., 100 Percent), its performance predictor in the window-based algorithm seems to

be no longer accurate for properly adjusting the window size, resulting in even worse

performance degradation than those of the MTDR algorithm.

3.7 Summary

This chapter has described four concept drift learning algorithms for tracking the

evolution of user interests in the information filtering domain. The first one is the

Rocchio relevance feedback algorithm. Originally developed as a batch process for

improving the retrieval effectiveness in a static setting, this algorithm in this chapter

is adapted through parameter tuning to work on a dynamic and incremental setting.

This algorithm is selected mainly because it has been widely used and studied in the

information retrieval community.

The second algorithm so-called MTDR represents a novel algorithm for

learning the dynamics of tracking multiple interest categories. The algorithm adopts

the persistence assumption regarding the user interests; that is, the user interests

remain relevant until explicitly declared otherwise, and vice versa. Its main feature is

combining the notions of long-term and short-term interest models in order to obtain

 72

the strength of both models. The long-term and short-term interest models in the

window-based concept drift learning algorithms correspond to models learned from

large and small-size windows, respectively. These windows in the MTDR algorithm

are implicitly modeled.

The last two algorithms are Window-Rocchio and Window-KNN; both are

window-based algorithms that employ the Rocchio and KNN algorithms,

respectively, as the base learners. Since a base learner is essentially a batch process in

the main algorithm, the Rocchio algorithm in Window-Rocchio is applied as

originally intended as a batch learner. The two algorithms employ an adaptive

window adjustment heuristics for adapting to concept drift. The heuristics are derived

from a general method based on the change in predictive performance. These two

algorithms represent existing, commonly used algorithms for learning concept drift in

the machine learning community.

This chapter provides empirical evidences that confirm the expected behaviors

of the above four algorithms. The Rocchio algorithm adapted for learning concept

drift (also the long-term interest model in the MTDR algorithm) is able to

consistently improve its performance as it learns more examples, but is very

susceptible to a change in target concept. The short-term interest model is relatively

unstable but insensitive to concept drift. This chapter empirically shows the difficulty

in determining the appropriate window size in a window-based learning algorithm;

Small window results in an insufficient target concept generalization while large

window precludes generating an accurate target concept. It also demonstrates that the

 73

adaptive window adjustment heuristics employed in the Window-Rocchio and

Window-KNN can alleviate the problem. In particular, the heuristics allow the

window to expand during the period of stable concept learning and to quickly shrink

when a concept drift does occur.

 The superiority of the MTDR algorithm for tracking multiple target concepts

has also been shown. Its main competitor is the Window-KNN whose performance is

significantly worse than that of the MTDR algorithm only in tracking task 3 (tracking

three target concepts). Furthermore, the performances of both window-based

algorithms are significantly degraded when the persistence assumption is needed (i.e.,

when tracking long-live target concepts) in order to properly track the target concepts.

The recency assumption that underlies the window-based algorithms represents the

weakness addressed by the MTDR algorithm. Finally, this chapter empirically shows

that all of these algorithms suffer from learning with significantly reduced number of

examples.

 74

CHAPTER IV

A COMPUTATIONAL FRAMEWORK FOR EXTENDING

INCOMPLETE LABELED DATA STREAM IN CONCEPT DRIFT

Chapter III has shown that the performances of four concept drift learning algorithms

consistently degrade when they learn from reduced numbers of labeled examples.

This chapter presents FEILDS: a new computational Framework for Extending

Incomplete Labeled Data Stream in concept drift learning, which extends the

algorithms to deal with the issue. One of the system’s inputs is the original labeled

data stream that would normally be the input to the concept drift learners. FEILDS

produces a new data stream that is fed to the (concept drift) learners. Hence, the

system extends existing concept drift learning algorithms by modifying their inputs

without modifying the algorithms.

The following section briefly reviews some practical and theoretical

observations surrounding the problem that sheds light on a way to a solution. Section

4.2 provides the overview of the proposed solution. Section 4.3 describes the details

of the system’s components and methods. The advantages and shortcomings of the

proposed method are then discussed in Section 4.4, followed by the chapter’s

summary in the last section.

 75

4.1 Theoretical and Practical Observations

Poor performance as a result of learning from few examples is not only a problem in

concept drift learning but also an issue in a less difficult, stable concept learning

scenario. The requirement on the quantity of labeled data for learning stable concepts

and adapting to concept drift is unfortunately inevitable without additional

knowledge. As widely shown in Computational Learning Theory literature (Blummer

et al., 1989; Mitchell 1997), reducing the sample size in stable concept learning

would undercut the ability to approximate target concepts, which in turn would

increase the classification error.

The problem is exacerbated in concept drift learning because the task also

involves adaptation to possible concept drift, which is generally exploited from the

given examples. More specifically, a few examples cannot provide reliable predictive

performance needed by the heuristics of the window based algorithms for adapting to

concept drift. A few negative examples in the MTDR and Rocchio algorithms are also

insufficient for demoting old target concepts.

The empirical observations shown in Chapter III and the above practical

observations are also well justified by existing theoretical findings. The drift rate in

concept drift learning, as briefly explained in Chapter I, is an essential parameter,

which denotes the probability that two successive target concepts ci and ci+1 disagree

on a randomly drawn example (Helmbold & Long, 1994), e.g., Pr (ci ≠ ci+1). Hence, a

slower drift rate corresponds to learning from a data stream whose target concepts

 76

change less frequently, that is, having a longer sequence of data with the same target

concept, and vice versa. Helmbold and Long (1994) provide theoretical bounds on the

allowable drift rates that guarantee tractability with an error of at most ε as follows:

)/1ln(

2

ε
ε

d
c≤∆

where c > 0 is positive constant, and d is the Vapnik-Chervonenkis dimension of a

concept/hypothesis (Blummer et al., 1989). Because c and d values are fixed, the

bounds imply that the tracking problem is more difficult (i.e., producing higher error

rates) on learning with fewer labeled data per target concept (i.e., higher drift rates).

Hence, reducing the rate of drift according to the above equation is apparently the

only option for improving the performance of a concept drift learner. FEILDS takes

this general approach.

4.2 Overview of Approaches

Inspired by the success of techniques that combine labeled and unlabeled data in

stable concept learning (Dempster, Laird, & Rubin, 1977; Blum & Mitchell, 1998;

Blum & Chawla, 2001), a similar technique is developed for learning concept drift.

FEILDS uses a set of relevant unlabeled data to compensate for the lack of labeled

data, but for learning dynamically changing concepts. From the perspective of

Computational Learning Theory, this general approach is guaranteed to improve

performance. Provided that the relevant unlabeled data exist and can be correctly

identified, incorporating these unlabeled data is equivalent to reducing the rate of

(4.1)

 77

concept drift, which would increase the tracking accuracy. The setting of the input

data is also well supported in the information filtering domain. Although labeled data

in this domain are very expensive, the availability of unlabeled data is virtually

unlimited and can be relatively easier to collect.

Without losing generality, the rest of this chapter assumes that the label value

of a labeled instance is either 1 or 0. In the information filtering domain, this value

corresponds to either a positive or a negative feedback document, respectively. In

addition, an instance can be associated with a concept category. For example,

document topic is the concept category of a text document. However, the information

about the concept category of an instance is never told to the system.

The input of the system, as typical in concept drift learning setting, is a stream

of instances. Unlike ordinary concept drift learning in which the labels of all instances

in the stream are provided, only a very few of the instances’ labels in the problem

setting being addressed are made available to the learners. Furthermore, the majority

of unlabeled data under a more realistic condition are irrelevant. Let { }nxx ,,1 �=S

be a set of instances taken from the stream (see Figure 4.1). The stream contains

labeled data }|{ SL ∈= ii xx and unlabeled data }|{ SU ∈= jj xx such that

ULS ∪= and L U∩ = ∅ . Changing label values because of the change in target

concepts is the main characteristic in the concept drift learning problem. When

tracking the evolution of user interests, for example, a feedback document previously

deemed relevant will become irrelevant when a later feedback document of the same

 78

topic (i.e., the same underlying concept category) is judged irrelevant. The crux of the

FEILDS’s approach is to identify the set of labeled data LL ⊆R whose label values

have not changed. For each Li Rx ∈ , let UU ⊆i be the corresponding subset of

unlabeled data with the same underlying concept category as that of xi. It then uses

the set }|{' Riii xx LUS ∈∪= to generate a new stream and assigns the label of each

unlabeled instance ijx U∈ with ix ’s label.

Identifying the set LR requires knowledge about the concept category of each

instance in L. As in the above example, the change of feedback document relevance

can only be accurately detected by knowing the topics of feedback document.

However, the concept category of a given instance is unknown, and cannot be

induced reliably from only a small set of labeled data. For example, identifying a set

Figure 4.1: The illustration of approach for reducing the drift rate in a sparsely
labeled data stream.

Labeled Data

Relevant unlabeled data
Irrelevant unlabeled data

genuine labeled data stream (L)

data stream with reduced drift rate containing }|{' Riii xx LUS ∈∪=

original data stream containing the set ULS ∪=

 79

of terms that are representative to a topic category from a few document examples is

difficult because a document typically contains many irrelevant terms. In order to

provide a means for associating an instance with its concept category, FEILDS

employs a concept hierarchy that is automatically constructed by clustering all

incoming labeled and unlabeled data from the data stream. The next section describes

the idea in greater details.

4.3 FEILDS Architecture

Figure 4.2 depicts the architecture of FEILDS that extends an existing concept drift

learner to deal with incomplete labeled data stream (Widyantoro, Ioerger, & Yen,

2003). It consists of three main entities: (1) a concept formation system, (2) a concept

hierarchy, and (3) a concept drift tracker. As shown in the figure, the concept

S: Labeled &
Unlabeled Data

A stream of input data (#unlabeled data > > #labeled data)

Concept
Formation

System
(CFS)

Concept
Hierarchy

Concept
Drift

Tracker
(CDT)

L: Labeled
Data

Existing
Concept-Drift Learner

S ′ → new
 stream

Figure 4.2: FEILDS architecture.

 80

hierarchy is at the heart of the FEILDS architecture. The concept formation system

(CFS) incrementally constructs the concept hierarchy by organizing the input stream

into a cluster hierarchy along with their corresponding concepts. The concept drift

tracker (CDT) component is invoked only when needed by the concept drift learner. It

takes as input a hierarchy of concepts and a sequence of labeled examples L, and

infers the relevance of each concept category associated with a labeled example in L.

This component outputs a new set { | }i i ix x′ = ∪ ∈ RS U L that, as described above,

contains the expanded relevant data LL ⊆R . Concept drift learning algorithms such

Figure 4.3: The summary of FEILDS’s approach.

Input: a stream of documents Stream-S.

Initialization:
 Stream-L = �∅�, the sequence of labeled instances.
 H = ∅, the concept hierarchy.

Incremental Learning:
 For each instance x observed from the stream Stream-S
 Apply the CFS system to incorporate x�into�H incrementally.
 If the label q of instance x is available
 Concatenate �(x, q)� at the end of Stream-L.

Target Concept Induction (only when needed):
 Apply the CDT component to identify a new expanded set ′S based on the

current values of Stream-L and H, and then generate a new stream
Stream-S′′′′ arranged by the arrival time of data in ′S .

 Apply a selected (conventional) concept drift learner to relearn Stream-S′′′′.

 81

as those described in Chapter III can then be used to relearn Stream-S′′′′, the new

stream generated by rearranging all instances in ′S according to the instance arrival

times. Figure 4.3 summarizes the interactions among these components. Stream-S and

Stream-L in the figure are the streams generated from the S and L sets, respectively.

4.3.1 Concept Formation System

The role of the concept formation system (CFS) component is to build a concept

hierarchy incrementally from the input stream in an unsupervised mode. The

construction of the concept hierarchy is essentially the same as building a hierarchy

of clusters. During the course of learning, the concept hierarchy grows dynamically

as the system receives more observations from the stream.

Because the concept hierarchy plays a central role in FEILDS, its quality is of

great importance for success. Additionally, the requirement that it should also be

constructed incrementally presents another challenge that would not be encountered

had it been built in batch mode, which is not practical in the problem setting. FEILDS

employs a new concept formation system that has been developed in this dissertation

to address this challenge. Chapter V is devoted to describe and evaluate the concept

formation algorithm.

4.3.2 Concept Hierarchy

The concept hierarchy is basically a tree structure with the following characteristics:

(1) all leaf nodes represent document instances and thus are the most specific concept

 82

nodes with respect to their ancestors, and (2) all internal nodes represent concepts that

generalize their descendant concept nodes. Hence, the concept generality is increasing

on any path from a leaf node to the root.

The concept hierarchy serves for the identification of (1) the concept category

of an instance, (2) the set of instances belonging to a concept category and (3) the

least common subsumer (lcs) concept. These processes are needed by the concept

drift tracker (CDT) component. Let X be the instance space (e.g., leaf nodes) and C be

the concept space (e.g., all nodes in the hierarchy). The following defines three

general functions needed by the CDT for utilizing the concept hierarchy:

• δ : X → C is an instance generalization function and is used for recognizing

the concept category of an instance. For an instance x that is a leaf node, let

Ax = x ∪ {c1, …, cn} be the set of x and x’s ancestors where cn is x’s parent,

ci-1 is ci‘s parent and c1 is the root node. Given x, the δ function returns a

concept node c ∈ Ax that represents the concept category of x.

• ε : C → X * is a concept instantiation function, which returns all leaf nodes

that are descendants of a concept node c∈ C . Since the node c represents a

concept category, the ε function identifies all instances covered by the concept

category.

• ϕ : C�*→ C is a function that returns the least common subsumer (lcs) node of

a given set of nodes. A node cn subsumes a node cm, denoted subsume(cn,cm),

if cm is a descendant of cn or cm = cn in the concept hierarchy.

 83

The functions ε and ϕ above are straight forward given a concept hierarchy.

The instance generalization function δ still requires a method that can accurately

select the appropriate generalization of an instance from a sequence of concept nodes

with increasing concept generality. This is a non trivial task even when provided with

a perfect concept hierarchy. Because the concept hierarchy is automatically built in an

unsupervised mode, no reliable information is available in order to determine a node

that can best represent the concept category of an instance.

Best concept category representation implies that a node selected is neither

too general (close to the root) nor too specific (close to the instance). Over

generalization could mistakenly include unintended nodes of other concept

categories, thereby adding noise to the concept category members. By contrast, too

specific a node would lead to the problem of overfitting the instance that contributes

little to providing new information. More detailed impact resulting from these two

problems and how to address them will be discussed in the next section.

A node that distinctively partitions instances appears to be the one that

appropriately generalizes an instance. The difficulty in identifying such a distinct

node arises from the fact that the concept hierarchy alone does not have enough

information for recognizing distinct node from a sequence of concept nodes with

increasing generality (e.g., concept nodes in Ax). The issue is addressed by using a

validation set in order to characterize a distinct node. Section 4.3.4 elaborates this

approach for implementing the instance generalization function above.

 84

4.3.3 Concept Drift Tracker

The main CDT task is to infer a subset of labeled instances that are still truly relevant

and then expand the subset with relevant unlabeled data. Given Stream-L, a stream of

labeled data, the following six steps provide the detail processes performed by the

CDT for generating 'S , the set of expanded LR .

Step 1: Instance Sequence Generalization

Instance generalization is a process of identifying a concept category that can be

associated with an instance, using the δ function described in Section 4.3.2. In this

process, a sequence of labeled instances is transformed into a sequence of labeled

concept nodes while preserving their ordering with respect to the ordering of the

labeled instances. Let Q be the set of labels, and let Stream-L = �(x1,q1),…,(xn,qn)� for

each xi∈X and qi∈Q be a sequence of n labeled instances where an instance on the

left side arrives earlier. Given a sequence of n labeled instances Stream-L, the

instance sequence generalization process will output a sequence of n concept nodes

Stream-C = �),(),...,,(11 nn qcqc � such that)(ii xc δ= for each Cci ∈ .

Step 2: Concept Node Sequence Partitioning

In this step, the problem of tracking multiple target concept categories is converted

into multiple sub-problems of tracking a single concept. More specifically, this step

partitions the concept node sequence according to a shared concept category, and

rearranges concept nodes in each partition into a concept node sequence partition by

maintaining their relative ordering in the original concept node sequence. Concept

 85

nodes in a set C = {c1,…,cn} share the same concept category if there exists a least

common subsumer (lcs) concept node in C that subsumes all other concept nodes, i.e.,

ci = ϕ (C) and ci∈C.

Example 1. This example refers to the concept hierarchy given by Figure 4.4. Let

Q={1,0} be the set of labels. Let Stream-C = �(b,1),(h,0),(e,1),(g,0),(i,1),(d,0),(c,1),

(d,1),(m,0),(f,0),(k,0),(b,0)� be the sequence of concept nodes generated by the

instance generalization process during the first step. According to Figure 4.4 and

Stream-C above, P1={b,e,f}, P2={i,c,m,k} and P3={h,g,d} are the concept node

partitions since b, c and d are the lcs concept nodes for all concept nodes in partitions

P1, P2 and P3, respectively. Three concept node sequence partitions are generated

from the second step: Stream-CP1= �(b,1),(e,1),(f,0),(b,0)�, Stream-

CP2=�(i,1),(c,1),(m,0),(k,0)� and Stream-CP3= �(h,0),(g,0),(d,0),(d,1)�.

b c d

g

h

e f

a

i k j

m n

Figure 4.4: An illustration of concept hierarchy.

 86

Step 3: Concept Node Sequence Contraction

The shared concept category in a concept node sequence partition (e.g., Stream-CP) is

essentially the same so that two or more consecutive concept nodes in a Stream-CP

with the same labels constitute a redundant fragment. Let a fragment be a sequence

�(cm, qm), (cm+1, qm+1),…,(cm+n, qm+n)� satisfying qm=qm+1=…=qm+n and

ck=ϕ({cm,cm+1,…,cm+n}) for some ck∈{cm,…,cm+n}. The current step eliminates this

redundancy by iteratively searching for such a fragment and replacing it with it’s lcs

concept node until no further fragment is found. The final result is a normalized

concept node sequence partition, or Stream-nCP for short. This stream describes the

evolution of labels of a concept category and possibly its subcategory.

Example 2. Stream-CP1 in Example 1 contains two fragments �(b,1),(e,1)� and

�(f,0),(b,0)�. The normalized Stream-CP1 is Stream-nCP1= �(b,1),(b,0)� since the

fragments’ lcs is b. Similarly, Stream-nCP2 = �(c,1),(m,0),(k,0)� and Stream-nCP3 =

�(d,0),(d,1)�.

Step 4: Concept Node Label Identification

This step infers the label value of each concept node in the normalized concept-node

sequence partition (e.g., Stream-nCP). The basis for inferring the label value is that of

the persistence assumption in temporal reasoning, which states that once a fact is

declared to be true, it remains true thenceforth until the fact is negated (Gabbay,

Hogger, & Robinson, 1995). Consequently, the label of a sequence of identical

concept nodes �(c, qm), …, (c, qm+n)� from a Stream-nCP can be represented by the

 87

label assigned to the last concept node, i.e., qm+n. A system in information filtering

domain, as described earlier, typically uses two-value label: 1 and 0 for denoting

relevant and irrelevant concept, respectively; and this system is interested only in

relevant concepts. In such a system, a sequence of two identical concept nodes with

conflicting labels whose label of the most recent concept node is 0 (i.e., �(c,1), (c,0)�)

can be dropped.

Example 3. Using Stream-nCP given by Example 2, the labels of b and d from Stream-

nCP1 and Stream-nCP3 , respectively, are both 0. No further simplification can be made

on Stream-nCP2 . Hence, the simplified Stream-nCP , denoted Stream-snCP, are Stream-

snCP1 = �(b,0)�, Stream-snCP2=�(c,1),(m,0),(k,0)� and Stream-snCP3= �(d,1)�.

Step 5: Concept Node Decomposition

A set of concept nodes contains exceptions if the label of at least one descendant of

the lcs concept node in the set disagrees with that of the lcs concept node. Concept

exceptions can be directly identified from the simplified normalized concept node

sequence partition that still contains two or more concept nodes, e.g., Stream-snCP in

Example 3. This step decomposes the lcs concept node in such a sequence by

enumerating its descendants that are indifferent to any of the conflicting nodes.

Let),(),()(, mnnmnm ccsubsumeccsubsumeccind ¬∧¬= be an indifferent

relation in which no concept node subsumes the other. Let E be the set of concept-

node exceptions, which are all descendants of an lcs concept node c whose labels are

different from the label of c. Let (,)Ecψ be a function that returns the decomposition

 88

of lcs concept node c with regard to E. The decomposition function is recursively

defined as follows:

{ }
{ }E E

E EE
∈¬∧∈

∈∧∈=

nnmmm

nnmmm

eecindccc

eecindcccc

 somefor),(nodes child s'|)(

each for),(nodes child s'|),(

,ψ
ψ

�

�

It returns the union of the exception set and the set of disjoint, most general of lcs

node’s descendants that are indifferent to all concept nodes in the exception set. The

ψ function simply flattens the lcs concept node in order to separate its descendant

concept nodes with contradictory labels from the ones that agree with its label.

Example 4. The decomposition of concept node c in snCSP2 from Example 3 results

in Stream-snCP2 =�(i,1),(n,1),(m,0),(k,0)� since ψ (c,{m,k}) = {m,k} ∪ {i} ∪ ψ

(j,{m,k}) = {i,n,m,k}. Note that {m,k} is the set of concept-node exceptions (see

Figure 4.4).

Note that the concept node decomposition above resolves any conflict in hierarchical

concept nodes. In a special case where all concept nodes returned by the instance

generalization function are disjoint (i.e., form flat partitions), such a conflict would

never happen. Thus, the current step would be useful only if the method employed for

realizing the instance generalization function might return concept nodes that form a

hierarchy.

Step 6: Concept Instantiation

The last step extends concept nodes in all simplified, normalized concept node

sequence partitions (e.g., Stream-snCP), using the concept instantiation function ε ,

 89

into a set of artificially labeled instances ′S . All instances are labeled with the label

values of their associated concept nodes, and are arranged into a sequence of pairs of

instance and its label according to instance arrival times (the new stream Stream-S′′′′).

Example 5. From Examples 3 and 4, the list of concepts and their labels are (b,0),

(d,1), (i,1), (n,1), (m,0) and (k,0). Suppose ε(b)={x2, x4}, ε(d)={x1, x8}, ε(i)={x3,x7},

ε(n)={x5,x10}, ε(m)={x6, x11} and ε(k)={x9,x12}. Then, it generates the new stream

Stream-S′′′′ = {(x1,1), (x2,0), (x3,1), (x4,0), (x5,1), (x7,1), (x8,1), (x9,0), (x10,1), (x11,0),

(x12,0)} containing the expanded set of relevant labeled data.

The quality of Stream-S′′′′ generated by the CDT component depends heavily

on the accuracy of instance generalization function δ employed. As defined in Section

4.3.2, the function δ returns a concept node in the set Ax = {x ∪ x’s ancestors} that

represents the concept category of x. The concept node returned by the function can

be either too specific or too general. If the concept node selected is too specific, the

CDT component may be unable to detect the occurrence of concept drift, introducing

noise that contains conflicting examples in the set ′S . To illustrate this, suppose the

concept hierarchy contains a concept node A, which has child nodes B and C, and A is

the correct node for representing the concept category of all instances covered by

nodes B and C. Suppose also that B or C is the node that will be selected by the

instance generalization function instead of A. If B’s instance is used to establish the

target concept A, which is demoted later using C’s instance, then the CDT algorithm

will not be able to detect the fact that the target concept A is no longer relevant

 90

because the concept categories of B and C’s instances are considered different by the

instance generalization function. As a result, the expanded set 'S generated by the

CDT algorithm will contain A’s instances with conflicting label values, which are

supposed to be the same. In addition, too specific a concept node also reduces the

coverage of correct examples retrieved from the concept hierarchy, which potentially

decreases the ability of a concept drift (or stable) learner to accurately learn target

concepts from the retrieved examples.

Furthermore, an instance generalization function that returns too general

concept node can also cause the CDT component to generate false positive (or

negative) examples. Similar to the above illustration, suppose that a concept node A

has child nodes B and C, but now B and C are the correct nodes for representing the

concept categories of all instances covered by nodes B and C, respectively. Suppose

also that the instance generalization function returns node A for any input that is

either B or C’s instance. False positive (or false negative) examples will be generated

when either B or C (but not both) is declared as the target (or non-target) concept

because the instance generalization function, which recognizes A instead of B or C,

would consider B and C’s instances the same concept category. Unlike concept node

that is too specific, the more general concept node could increase the coverage of

correct examples.

Given a perfect concept hierarchy and a perfect instance generalization

function, any stable concept learner, rather than a concept drift learner, can be

applied for learning all (artificially) labeled instances identified as ′S in the last step

 91

without requiring instance ordering. However, the set ′S can contain noise as

described above. While a stable concept learner could not properly learn conflicting

instances in 'S , a concept drift learner could mitigate this issue by learning the

Stream-S′′′′, especially for recovering the failure in detecting a concept drift due to the

problem associated with selecting too specific concept nodes. Nonetheless, the latter

learner still cannot resolve a noise that results from overly generalizing instances.

This observation suggests avoiding selecting too general concept node if at all

possible.

4.3.4 Instance Generalization Scheme

This section develops the technique for realizing the instance generalization function

δ. FEILDS employs a validation set for providing the information needed to

recognize distinct concept nodes based on their general characteristics in the concept

hierarchy. As will be described in more details in Chapter V, one of the concept node

properties in a concept hierarchy generated by the concept formation system

employed (Widyantoro, Ioerger, & Yen, 2002) is the concept (or cluster) density,

which is calculated from the average distance to the nearest neighbor among the child

concept nodes. The concept density in the hierarchy tends to decrease at higher-level

concept nodes. That is, the density of a concept node covering a smaller number of

instances is higher that the density of the concept node’s ancestors. Distinct concept

nodes are identified by thresholding the concept density information whose cutoff

point is empirically determined from the validation set. This method is essentially

 92

similar to the process in proximity dendogram cutting that identifies clusters in the

cluster hierarchy according to dissimilarity levels (Jain & Dubes, 1988). First, a

concept hierarchy is incrementally built from a stream of data in the validation set.

Because the instances’ concept categories are known in the validation set, distinct

concept nodes can be accurately recognized from the concept hierarchy. The

threshold is then calculated from the densities of these distinct nodes.

More specifically, let H be the concept (cluster) hierarchy generated from the

validation set containing a set of known concept categories T. Let Hnc ∈ be a

concept node in the hierarchy that corresponds to a concept category c∈T.

Furthermore, let ()nε be a set of leaf nodes (document instances) in the hierarchy

that are the descendants of concept node n. Let ()cε be a set of document instances

that are the members of concept category c. The cluster nc is identified from H by:

�
�

	
�

′−= � ��
−∈′ ∈∈∈ }{)()(

),(),(maxarg
cTc nxnxHn

c cxmcxmn
εε

where m: X × T→ {1,0} is a binary matching function such that m(x, c) = 1 if

)(cx ε∈ , or 0 otherwise. Hence, nc maximizes the difference between the numbers of

instances that are members of c and non-c concept categories. Now let µc be the

average distance to the nearest neighbor among nc’s child nodes; µ represents the

node density in the concept hierarchy. Thus, a higher µ value corresponds to a lower-

density node and vice versa. Let µc’s parent be the density of nc’s parent. Taking µc as

the threshold poses the risk of overfitting to a more specific concept node while

(4.1)

 93

selecting µc’s parent is completely inappropriate because it also covers the instances of

other concept categories (overgeneralization). Therefore, the threshold is selected at a

value between µc and µc’s parent, averaged over all concept categories in T:

(){ }�
∈

−⋅+=
Tc

cparentsccck k
T

µµµµθ ',max
1

where 10 ≤≤ k is a non-negative constant. By default, 5.0=k , which maximizes the

margins between overfitting and overgeneralization.

A concept c is a distinct concept node if it satisfies the following conditions:

1) p kµ θ< for 'p c∀ ∈ s descendants (the densities of all c’s descendants are higher

than the threshold), and

�� 'c k c s parentµ θ µ≤ ≤ (c is the lowest-density node whose density is still higher or

at least the same as the threshold).��

These conditions virtually cut the concept hierarchy into non-overlapping distinct

concept nodes each of which represents the concept category of its descendant leaf

nodes. Hence, the function δ(x) returns a distinct concept node c, as defined above,

that is either x or one of x’s ancestors.

4.4 Advantages and Shortcomings

Theoretically speaking, there are at least three benefits of FEILDS that exploits

unlabeled data as described above:

(4.2)

 94

1. In the absence of additional labeled data, FEILDS can automatically improve

the performance of a concept drift learner over time as more relevant

unlabeled data become available.

2. Provided that a perfect concept hierarchy can be constructed and a correct

generalization of each instance can be realized, the number of labeled data

becomes less relevant for improving the system’s performance. Nonetheless, a

minimal number of labeled data would still be needed in order to establish or

to negate target concepts. This advantage makes it possible to apply FEILDS

in a more realistic setting particularly in an information filtering domain in

which a real user tends to give only a few relevance judgments.

3. Although in this dissertation FEILDS is applied only in information filtering

domain, the technique presented is relatively general, which allows it to be

used in other application domains as well. In addition, the output produced by

the concept drift tracker (CDT) component in the FEILDS‘s framework

provides a more flexible architecture, enabling any concept drift learner

suitable for a particular application is to be applied.

FEILDS also has a drawback. As in typical on-line learning in which a

learning method is expected to be incremental, the proposed method is only partially

incremental. Although the construction of concept hierarchy is incremental, the

process of target concept induction is carried out in a batch mode because the CDT

component must reprocess the entire sequence of labeled data, and the concept drift

learner has to relearn the new stream generated by the CDT component. This

 95

certainly adds an extra computational cost to compensate for the lack of labeled data.

Nonetheless, this extra cost is not discouraging because the number of labeled data is

assumed to be small, and the batch process is performed only when needed and when

the concept hierarchy has changed.

4.5 Summary

Learning concept drift from an incomplete labeled data stream poses a serious

problem, both theoretically and practically, to existing concept drift learners. The

main contribution of this chapter is the description of the FEILDS architecture that

modularly extends the capabilities of existing concept drift learning algorithms in

dealing with the issue. The system analyzes and expands the learners’ original input

streams with unlabeled data into new data streams that would improve the learnability

of the learners’ inputs.

FEILDS architecture consists of three main entities: (1) a concept formation

system, (2) a concept hierarchy, and (3) a concept drift tracker. The system assumes

that the input is a stream of labeled and unlabeled data. The concept formation system

(CFS) incrementally constructs a concept hierarchy from the input stream in an

unsupervised mode. The detail of the CFS algorithm is described in Chapter V.

Utilized mainly by the concept drift tracker (CDT) component, the concept hierarchy

serves as the knowledge base for recognizing the concept category of an instance, and

for identifying relevant unlabeled data associated with a labeled instance. The CDT

 96

component analyzes the labeled data stream, resolves any conflicting examples and

then expands relevant data identified.

The CDT component performs its task in several steps. First, it transforms a

stream of labeled instances into a stream of labeled concept nodes. Next, it partitions

the concept node streams into several, smaller concept node streams with respect to

the categories of concept nodes. This process essentially converts the problem of

tracking multiple target concepts into several sub-problems of tracking a single target

concept. Each partition is then normalized, allowing the system to identify the

relevance of concept nodes within the partition. Any exception of relevance within

the concept node’s subcategory in each partition is resolved using the concept

decomposition technique. Finally, all instances belonging to the relevant concept

nodes are retrieved from the concept hierarchy, and are arranged into a new stream in

the order of instances’ arrival times.

One of the critical processes is identifying a concept node in the hierarchy that

best represents the concept category of an instance. FEILDS addresses this problem

by thresholding the concept density (i.e., one of the concept properties in the concept

hierarchy). The threshold value is determined empirically from a validation set.

Finally, the advantage and shortcomings of FEILDS are described. It can take

benefits from unlabeled data, is suitable for situation that can only provide a little

data, and is potentially transferable to other domains. However, it also introduces

extra computational costs.

 97

CHAPTER V

CONCEPT FORMATION SYSTEM

Concept hierarchy is the central entity that plays a significant role in the FEILDS

architecture described in Chapter IV. Constructing the concept hierarchy manually is

not practical and not scalable particularly in information filtering setting because the

information that needs to be incorporated incrementally proliferates from the input

stream. Hence, a more desirable method is to generate the concept hierarchy

automatically, which is a form of process known as concept formation (Gennari,

Langley, & Fisher, 1989; Fisher, Pazzani, & Langley, 1991). The process basically

resembles the task of generating a cluster hierarchy in numerical taxonomy (Jardine &

Sibson, 1971).

This chapter describes and evaluates a new concept formation algorithm so-

called HOMOGEN. It has been developed in this dissertation for constructing a quality

concept hierarchy incrementally. The following two sections describe the motivations

behind the development of the algorithm and then outline the general approaches

taken. Section 5.3 describes the foundations, the detail of the concept formation

algorithm, and its time complexity analysis. Section 5.4 presents the evaluation of the

algorithm, followed by the discussion of related works in Section 5.5. This chapter

concludes by summarizing its contribution in Section 5.6.

 98

5.1 Design Motivations

Constructing a quality concept hierarchy is the main issue in designing an incremental

concept formation system, and particularly for supporting the success of the

framework described in Chapter IV. A quality concept (cluster) hierarchy is the one

that represents the intrinsic hierarchical structures of concepts (clusters) that exist in

the input data. Thus, the hierarchy construction should be capable of capturing such

intrinsic cluster (concept) structures. More importantly, the quality of the hierarchy

contructed should be comparable to the quality of those generated by non-incremental

methods. While no consensus yet exists on what constitutes intrinsic structures, it is

likely that such structures cannot be assumed to have certain shapes or distributions.

Although many incremental concept formation systems have been developed

in the past, most of these systems have not been designed to work in the text

(information filtering) domain. In addition, the construction of these systems is

mostly biased toward the shape and the class distribution of clusters, which could

prevent discovering intrinsic structures inherent in the data. Although systems such as

DBSCAN (Ester et al., 1996), CURE (Guha, Rastogi, & Shim, 1998) and CHAMELEON

(Karypis, Han, & Kumar, 1999) can handle clusters with complex shapes and/or

different sizes, these systems employ non-incremental methods. In incremental

systems, COBWEB and its family (Gennari, Langley, & Fisher, 1989; Biswas,

Weinberg, & Fisher, 1998; Wagstaff & Cardie, 2000) prefer clusters with similar

sizes. ARACHNE tends to build compact clusters (McKusick & Langley, 1991).

Similar cluster shapes are also formed by the INC system (Hadzikadic & Yun, 1989)

 99

whose underlying algorithm is based on the prototypical representations. HIERARCH’s

constraints (Nevins, 1995), which place child nodes around their parent, also appear

to exhibit a bias toward certain cluster shapes.

The sensitivity to input orderings is a long-standing problem in incremental

conceptual clustering (Fisher, Xu, & Zard, 1992), hindering a concept formation

system from consistently building a quality concept hierarchy. Two major issues that

can affect the sensitivity problem are nodes misplacement and early commitment on

cluster membership. The former is mainly due to the changes of hierarchy structures

while processing new observations so that nodes that are previously well placed

become misplaced. The latter refers to the use of a fixed threshold value for deciding

an observation's cluster membership, for example, those applied in INC (Hadzikadic

& Yun, 1989) and UNIMEM (Lebowitz, 1987), which despite its practicality has its

limitation in that it cannot adapt a cluster membership test to local properties of the

cluster. Hence, early commitment on a cluster membership decision could prevent

capturing an intrinsic hierarchical structure in the data set. The design of a concept

formation system should minimize the nodes misplacement problem and avoid

providing early commitment on the cluster membership.

5.2 Design Approaches

Motivated by the above problems, the conceptual clustering approach of HOMOGEN

works on a metric space model that views an object (e.g., observation, cluster or

node) as a point in a high-dimensional space. The density of points is used to define

 100

the characteristic of a good cluster and as guidance to hierarchically organize a set of

clusters. Informally, the density describes the spatial distribution of points, measured

in terms of the average distance from a point to its nearest neighbor (this will be

formally defined in Section 5.3). A hierarchy is represented as a tree structure in

which a node in the tree denotes a cluster in the hierarchy. The approach to concept

formation aims to construct a tree structure with two properties:

Property 1 (Homogeneity). A tree structure satisfies a homogeneity property if every

node in the tree consists of child nodes with similar density locally, with respect to

the distances to nearest sibling among the child nodes.

Property 2 (Monotonicity). A tree structure satisfies a monotonicity property if the

density of a node is always at least as high as the density of its parent. That is, the

density of nodes monotonically increases along any path in the tree structure from the

root to a leaf node.

These two properties serve as guiding principles for minimizing the

occurrence of misplaced nodes during the hierarchy construction. The homogeneity

requirement is needed in order to form clusters with local density properties, that is,

the densities of objects vary in intrinsic cluster structures. This property also does not

bias toward the shape and the class distribution of clusters that makes it suitable for

tracking evolving clusters in an on-line situation. In fact, the homogeneity property

also relaxes the commitment in the cluster membership function by flexibly defining

it based on the cluster density. Accordingly, a new object can be a member of a

 101

cluster if the inclusion of the new object in the cluster will not violate the

homogeneity property of the cluster.

Additionally, the monotonicity property requirement is based on the

observation that higher-level hierarchies in most hierarchical systems are generally

used to represent entities with broader contexts. This characteristic can be captured

with the notion of monotonicity, also in terms of cluster density. Thus, the

monotonicity property helps properly organize the hierarchical structures of clusters.

The structure needs to be changed whenever the property is violated, and construction

of the new structure aims to satisfy this property. Taken together, both properties are

expected to construct a natural hierarchical structure such that nearby (resp. distant)

clusters share a lower (resp. an upper)-level ancestor.

The clustering process of HOMOGEN can be viewed as the incremental version

of hierarchical agglomerative clustering (HAC) methods (Everitt, Landau, & Leese,

2001; Miyamoto, 1990; Jain & Dubes, 1988) with two respects. First, it works in a

bottom-up fashion, which is the same as to the manner HAC algorithms form cluster

hierarchies in batch modes. The second similarity is that HAC also produces cluster

hierarchies that tend to be monotonic. HOMOGEN’s notion of monotonicity is basically

a generalization of HAC’s notion since the former produces a more general tree

structure. In particular, the monotonicity in HAC is always determined from the

distance between two child nodes (clusters) because of the binary tree structure it

generates. HOMOGEN’s monotonicity is based on the average distance to the nearest

neighbor among the child nodes so that its notion of monotonicity will be the same as

 102

that in HAC if a node has only two off springs. Unlike HAC that is biased toward

generating tree structures with the fewest branching factors, HOMOGEN relaxes this

restriction that allows it to construct a more comprehensible hierarchical structure.

5.3 Concept Hierarchy Construction

The first part of this section describes the hierarchy representation and provides the

operational definitions of the homogeneity and monotonicity properties. This part

lays the foundations for analyzing the problem complexity and for the development of

HOMOGEN’s concept formation algorithm. The time complexity analysis of the

algorithm will be given in the last part.

5.3.1 Formal Foundations

A hierarchy { }nNNNH ,,, 21 �= is a tree consisting of n nodes. Each node in the

tree maintains two types of information: concept and density. The concept

summarizes the descriptions of all observations covered by a node. The density

describes the spatial distribution of the child nodes. An internal node has at least two

child nodes. A node in the tree represents a cluster whose members are the set of

child nodes. A leaf node is a singleton cluster covering a single observation whose

concept description is the description of the observation itself.

Concept Representation. Let an observation { }idiii oooo ,,, 21 �= be a d-dimensional

point where ijo represents the value of the jth dimension of the ith observation. A

concept),,,(21 dcccC �= also has the same dimension as that of the observation.

 103

Let ()Nε , the extension of N, denote the set of observations (leaf nodes) that are

descendants of N.

Definition 1 (Concept Description). The concept description C of a node N is the

center of m observations (leaf nodes) that are descendants of N, that is,

{ }dcccC ,,, 21 �= where �
=

=
m

i
ijj o

m
c

1

1 and ()ijo Nε∈ .

Definition 1 is basically the cluster center in a prototype-based clustering. The

calculation of cluster centers for domains with continuous attribute values is

straightforward. In domains with nominal attribute values, observations need to be

represented as binary feature vectors in which the value of each dimension is either

one or zero representing the presence or absence of an attribute value.

Density Representation. The density of a node is defined as the average distance to

the closest neighbor among the child nodes. A natural way of obtaining the distances

to the nearest neighbors is from the path given by the minimum spanning tree (MST)

of the child nodes. The density representation of a node N is a triple σµ,,NDPD =

where { }ℜ∈= ii ddNDP | is a population of nearest distance id , µ and σ are the

average and the standard deviation of NDP. Each id in NDP is the length of an edge,

measured by the distance from a child node to its nearest sibling, in the MST structure

connecting the child nodes of N. Thus, the µ and σ values are locally defined over

the distances among the child nodes. The distance between two nodes, with respect to

 104

the concept descriptions of the two nodes, in general can be measured by using nL

distance functions as defined below:

() nd

k

n
jkikjin ccNNL

1

1

),(
�
�

�

�

�
�

�

�
−= �

=

where iC and jC are the concept descriptions (i.e., clusters centers) of nodes iN and

jN , respectively. For example, the Manhattan (Euclidean) distance function is

derived from n =1 (n = 2). The average value of NDP, µ , characterizes the density of

a node (cluster) in which the density is higher with lower µ value. The average

distance of a leaf node is defined to be zero (i.e., the distance between the leaf node

and itself). Hence, a leaf node represents a cluster with infinitely large density.

Definition 2 (Monotonic Node). Let Nµ and Pµ be the average nearest distances

with respect to the density representations of nodes N and its parent P respectively. N

is a monotonic node if only if PN µµ ≤ , that is, the density of N is higher than or

equal to the density of its parent.

Definition 3 (Homogeneous Node). Let σµ,,NDPDN = be a density

representation of a node N. Given a lower limit LL kµ σ= − and an upper limit

LU kµ σ= + where k is a positive constant, the node N is homogeneous, with respect

to k, if and only if LiL UdL ≤≤ for NDPd i ∈∀ . The functions LL and LU define the

lower and upper bounds based on the mean and the variance of the population.

(5.1)

 105

Thus, a node is homogeneous if its distribution of the distances to the closest

neighbors among the child nodes is within a bounded range around the mean. The

variance factor k in LL and LU functions controls the tightness of the bounds. On

smaller k values (i.e., tighter bounds), the notions of homogeneity are less tolerant to

the variations of the child nodes, reducing the node sizes and increasing the depths of

the tree generated. As k values are made closer to zero, the trees constructed would

approximate the binary trees produced by HAC methods. Although very restrictive,

binary tree representations are capable of reconstructing any distinct clusters inherent

within the data. Higher k values (i.e., looser bounds) behave in the opposite

directions. Sufficiently large k values would form single-level tree structures with

very large branching factors, which are obviously very undesirable because these

structures cannot separate distinct clusters. Hence, the bound functions should be

sufficiently tight for preserving the representational power of binary trees and yet

loose enough for capturing intrinsic cluster structures. The experiment results as

reported in this chapter are obtained by setting k=1 (see Section 5.4.2 for more

discussion on this).

Definition 4 interprets the effects of observing a new point that is not within

the bounds of a node. See Figure 5.1 for the illustration of this interpretation.

Definition 4 (Low and High Density Regions Formation). Let N be a homogenous

node with LL and LU as the node's lower and upper limits, respectively. Given a new

point A, let B be an N’s child node that is the nearest neighbor to A. Let d be the

 106

distance from A to B. If LLd < , the region covering A and B represents the nearby

(or within) N that has higher density than N. In this case, A (and B) is said to form a

high-density region on N. If LUd > , the region covering both the new point and its

closest point represents a sparser region, in which case A (and B) is said to form a

low-density region on N.

It is easy to show from Definitions 2 and 3 that a leaf node (or a singleton

cluster) is by itself monotonic and homogeneous. An internal node with two child

nodes is also a homogeneous node because the distance between the two child nodes

is always within the node bounds. Accordingly, a hierarchy generated from the first

two observations always satisfies the monotonicity and the homogeneity properties.

Finally, any node forms a low-density region on a leaf node by Definition 4, except

the leaf node's ancestors, due to the fact that the average nearest distance of a leaf

node is zero.

High-density
regions

new points

C
Low-density region

N’s child nodes

Figure 5.1: A set of new points that create regions of high and low density.

 107

5.3.2 A Preliminary Analysis of Problem Complexity

This section attempts to analyze the time complexity for producing a tree satisfying

the monotonicity and homogeneity properties. First, it extends a batch clustering

method for constructing a tree with the desired properties and then provides the time

complexity for maintaining the tree properties in on-line situation. It also discusses an

argument of why a tractable incremental algorithm that would perform similar task is

an elusive problem.

Many variants of HAC algorithm can produce binary tree structures that meet

the monotonicity and homogeneity criteria, with respect to Definitions 2 and 3. The

tree structures generated by these algorithms, except the Centroid-based HAC, always

satisfy the monotonicity property (Jain & Dubes, 1988) because a new higher-level

cluster is formed in the order of increasing distance between two clusters. According

to Definition 3, the binary tree structures generated by the agglomerative methods

also satisfy the homogeneity property (i.e., due to the fact that a node with two child

nodes is always homogeneous). The time complexity of these algorithms is at least

)(2NO (Jain & Dubes, 1988).

Single-linkage method is a variant of HAC algorithms in which the distance

between two clusters is determined by the distance of two closest data points in the

different clusters. This variant can be extended using Definition 3 to generate more

general tree structures that still meet the two criteria. Let's call this algorithm the

Extended Single Linkage HAC (or ESL-HAC for short). Briefly, the ESL-HAC

 108

algorithm initially considers all points in the data set as singleton clusters similar to

HAC algorithms. It selects a pair of clusters with the closest distance and then either

(1) merges the two clusters if both are singleton clusters or if neither cluster can be

inserted as the child node of the other, or (2) insert one of the clusters as a child node

of another if doing so still maintains the homogeneity of the hosting cluster. The

merging or insertion process is repeated for the next pair of clusters with the closest

distance until there is only a single cluster. In the single-linkage method, the distance

between nodes A and B is the same as the distance between A and a node C where C

is the nearest B’s child node from A. If the distance between A and B is not smaller

than the greatest distance among di where di is the distance between a child node of B

and its nearest sibling, then inserting A as B’s child node will never decrease the

average distance of di, and hence, will never violate the monotonicity properties of

B’s child nodes. Since ESL-HAC algorithm processes pairs of clusters with

increasing distances, the merging and the insertion operations described above also

preserve the monotonicity property.

The main skeleton of ESL-HAC algorithm is the same as that of HAC

algorithm so that the time complexity for generating a general tree satisfying the

monotonicity and homogeneity criteria is also)(2NO . In strictly on-line setting, these

two properties can be preserved by rebuilding the tree each time encountering a new

observation. The time complexity for continuously maintaining the hierarchy with the

desired properties is therefore at least)(3NO , which is clearly not interesting.

 109

However, it is also not obvious whether there exists an algorithm with a time

complexity of less than)(2NO that can incrementally incorporate a new point into an

existing tree while still preserving the tree properties. The difficulty for inventing

such an algorithm is based on the observation that an operation for maintaining the

homogeneity of a node could destabilize the monotonicity of surrounding nodes (e.g.,

the child nodes and the ancestors), and vice versa. An algorithm that repeatedly

repairs any node violating either property until the properties are satisfied would

solve the problem but its termination cannot be guaranteed; it confounds the time

complexity analysis of the algorithm.

Rather than pursuing both properties, the incremental algorithm of HOMOGEN

takes a strategy that guarantees producing only a tree satisfying the homogeneity

property. The algorithm relies only on heuristic rules for building a tree that tends to

be monotonic. As will be discussed in Section 5.3.6, incorporating a new data point in

HOMOGEN requires)(log NO time, making the time complexity of)log(NNO for

incrementally processing all the data points.

5.3.3 The Algorithm Development

The approaches for generating a concept hierarchy incrementally can be divided into

two stages, which are summarized by Figure 5.2. This two-stage algorithm is applied

on observing the third and subsequent data points. The initial hierarchy is created by

merging the first two points (the merging process will be described later). During the

first stage, the algorithm locates a node in the hierarchy that can accept a new

 110

observation in a bottom up fashion, and then inserts the new observation into the

hosting node. The second stage performs hierarchy restructuring.

First Stage: Locating the Initial Placement in Concept Hierarchy

Locating the initial placement of a new observation is performed in the following

sequence:

1. Find the best match concept over leaf nodes based on the closest distance to

the new observation. To avoid exhaustive search by scanning the entire leaf

nodes, the system performs a beam search, which maintains k best search

paths, through the hierarchy in order to approximate the best match leaf node.

2. Starting from the parent of the closest leaf node, perform upward search to

locate a cluster (or create a new cluster hierarchy) that can host the new

observation. Heuristic rules are employed during this search.

Algorithm Incremental Concept Formation (new observation)

Stage I: Find and place the initial location for the new observation.
Stage II: Perform hierarchy restructuring on the affected nodes.

Figure 5.2: High-level description of HOMOGEN’s concept formation algorithm.

 111

Let’s first define two basic operators that are needed to place a new observation in the

hierarchy: node insertion operator and hierarchy insertion operator. For both

operators, let jN be the new observation.

Definition 5 (Node Insertion Operator) The node insertion operator, denoted by

),(_ jNNNODEINSERT , inserts jN as a new child of a node N (see Figure 5.3a).

Definition 6 (Hierarchy Insertion Operator) Let iN be one of N's child nodes. The

hierarchy insertion operator, denoted by),(_ ji NNHIERARCHYINSERT , inserts a

new node kN in the hierarchy so that kN becomes a parent of iN and jN , and is a

child node of N (see Figure 5.3 b).

The upward search employs two heuristic rules to determine which insertion

operator to apply. By utilizing the monotonicity property of cluster hierarchy, the

N + Nj �

Nj

N

),(_ jNNNODEINSERT

(a) node insertion

+ Nj �

Ni

N

),(_ ji NNHIERARCHYINSERT

(b) hierarchy insertion

Nk

N

Nj Ni

Figure 5.3: Node and hierarchy insertion operators.

 112

general idea of upward search is similar to the strategy of inserting a new element

into a sorted list of bins.

Heuristic 1 (Node Insertion). Let d be the distance from a new observation jN to

the nearest child node of N, i.e., min{ (,)}n j id L N N= where iN is a child node of N

(see Equation 5.1 for the definition of nL). Let LL and LU be the lower and upper

bounds of N, respectively, as in Definition 3. For N with two child nodes, these

bounds are defined to be NLL dkL ⋅= and NUL dkU ⋅= where 10 << Lk is a lower

limit constant, 1>Uk is an upper limit constant, and Nd is the distance between the

two N child nodes. Perform),(_ jNNNODEINSERT if and only if LL UdL ≤≤ .

In a node with two child nodes, the zero variance in the node’s density

representation would hardly allow the heuristic to insert a third child node. The

heuristic addresses this problem by providing bounds derived only from the mean

value. These special case bounds also play the role of determining the allowable

variation in the distances to nearest neighbors. The bound constants are 3/2=Lk and

2/3=Uk , which are determined empirically (see Section 5.4.2).

Heuristic 2 (Hierarchy Insertion). Let iN be the child node of N closest to a new

observation jN . Perform),(_ ji NNHIERARCHYINSERT if and only jN if forms a

high-density region on N, and jN forms a low-density region on at least one of N's

child nodes.

 113

The node insertion operator, when applied on Heuristic Rule 1's conditions,

attempts to preserve the cluster homogeneity. The applicability conditions of

Heuristic Rule 2 are an indication that no cluster in the hierarchy can host the new

observation without causing a significant density disturbance. Therefore, a new

cluster hierarchy needs to be inserted in order to accommodate the new observation

while minimizing the perturbation of the hierarchy monotonicity.

On each level in the hierarchy, the algorithm during the upward search

examines the applicability conditions of each heuristic rule, applies the corresponding

insertion operator whenever the conditions are satisfied and then stops. If none of the

rules can be applied, the search proceeds to the next higher-level cluster (i.e., the

parent of current cluster). If the search process reaches the top-level cluster (i.e., the

root node), a new cluster hierarchy will be inserted at the top level using the hierarchy

insertion operator, which replaces the root node with the new cluster.

A Walk Through Example

To clarify the idea during the first stage of algorithm, this section provides a walk

through example explaining a step-by-step process as observing new data points (see

Figure 5.4 for the illustration). Let's begin by observing the first two points, A and B,

in which case the two points will be merged to generate an initial hierarchy (see

Figure 5.4a). The algorithm starts executing the first stage when observing the third

and subsequent points.

 114

Given a point C at the location as shown by Figure 5.4b, the closest point to C

is B. Point C forms a low-density region on B, relative to the density of local cluster.

Meanwhile, points B and C form a high-density region on cluster I. These two

conditions satisfy the applicability of Heuristic Rule 2 that applies the hierarchy

��

��

����

��

����

��

���I
I

��	�

� ��

��	�

� ��

�

��	�

���
��

��	�

� ��

�

��

�����

� ��

�
��

���

��	�

��

�����

� ��

�

��
��

��

� ��

��

�

��

���

�

��

�

��

���

�

��

��

�

��

���

�

��

����

��

��

�

��

���

�

��

���

��

��

��

��

��

����

Figure 5.4: A walk through example.

 115

insertion operator. As a result, it creates a new cluster II with B and C as its members

and cluster I as the parent of cluster II.

Let’s proceed by observing point D as illustrated in Figure 5.4c. The closest

point to D is C in cluster II. Since D forms a low-density region on C, and points D

(and C) form a low-density region on cluster II, the search then continues to the

parent of cluster II (i.e., cluster I). The position of cluster II in cluster I is represented

by the center of cluster II, which is in the middle of points B and C. Suppose the

distance between D and the center of cluster II is still within the bounds of cluster I so

that the applicability conditions of Heuristic Rule 1 are satisfied. As a result, point D

is inserted as the member of cluster I using the node insertion operator.

Next, point E is observed (see Figure 5.4d). Point C in cluster II is the closest

point to E. Point E forms a low-density region on C so that the search continues to the

parent of C. It is obvious that E and C also form a lower dense region on cluster II,

which directs the search to the parent of cluster II (i.e., cluster I). Cluster II is the

member of cluster I closest to point E. Since E and the center of cluster II still form a

lower dense region on cluster I, none of the heuristic rules is applicable on cluster I.

Now the upward search has reached the top-level hierarchy. The first stage of

algorithm then inserts a new cluster III on the top-level hierarchy so that the old root

(cluster I) becomes a child of the new root (cluster III). Figure 5.4e illustrates the

final hierarchy after observing points F, G and H.

 116

Second Stage: Hierarchy Restructuring

Changes in the hierarchy structures always occur after incorporating new

observations, which are generally unseen during their initial placement. The

restructuring process is performed to adapt the hierarchy to new structures by (1)

recovering any misplaced nodes and (2) repairing the homogeneity property that has

been violated. To do this effectively, the algorithm pinpoints nodes in the tree that are

affected by the change of a node's structure once a new observation is incorporated in

the hierarchy. Then, local operators are applied systematically on these affected

nodes.

A node is affected if its concept description changes, which is an indication of

structural change. The notion of concept descriptions in Definition 1 implies that the

affected nodes are the hosting node and its ancestors, that is, all nodes that are in the

path from the hosting node to the root inclusive. Obviously, hosting node is the most

Algorithm Hierarchy Restructuring

1. Let crntNode be the hosting node.
2. While (crntNode ≠ null)
3. Let parentNode ← Parent(crntNode).
4. Detect and recover the siblings of crntNode that are misplaced.
5. Perform homogeneity maintenance process on crntNode.
6. Let crntNode ← parentNode.

Figure 5.5: Hierarchy restructuring algorithm.

 117

affected node, followed by its parent and so on. Figure 5.5 summarizes the hierarchy-

restructuring algorithm that performs the restructuring process on the hosting node

and its ancestors. The following two sections will discuss steps 4 and 5 described in

the figure.

Detection and Recovery of Misplaced Nodes

A hierarchy that meets the homogeneity and monotonicity properties is not unique.

The hierarchy restructuring in HOMOGEN is biased toward constructing a hierarchy

structure that places a set of homogeneous points into a single cluster rather than in

multiple, multi-level clusters. Figure 5.6 illustrates an example that demonstrates the

tendency of the first stage of algorithm for separating homogeneous points into a

multi-level cluster. Briefly, Figure 5.6a depicts the spatial distribution of four points

whose desired target hierarchy structure of these points is given by Figure 5.6b.

Learning A, B and D in any order would result in concept structure as depicted by the

Figure 5.6: An example of structural change from observing a new instance.

I

A II
A B C D

B C D

I

A B D

I

A B II

C D

(a) (b) (c)

�

 118

left side of Figure 5.6c. Providing C as the last observation would trigger a structural

change to the structures of the target hierarchy. Assume C is closer to D than to B so

that C and D form a high-density region on cluster I. As shown by the right side of

Figure 5.6c, the first stage of algorithm will produce a hierarchy structure that splits

homogeneous points (e.g., B, C and D) in two hierarchy levels in that B is misplaced

as the sibling of cluster II, which is supposed to be the child node of cluster II, even

though the presence of B in cluster I on the final hierarchy may not necessarily violate

the homogeneity and the monotonicity properties.

Stranded at upper hierarchy levels as illustrated above is an inevitable

consequence of the first stage of algorithm. As the density of some regions in a

cluster increases from observing new points, it will insert new cluster hierarchies on

deeper hierarchy levels in an attempt to preserve the homogeneity and the

monotonicity properties. As a result, more nodes could be misplaced at higher-level

clusters, or more specifically, misplaced as the siblings of other nodes. The following

N

Nj Ni

� Ni

N

Nj

),(JI NNDEMOTE
(a)

�

),(JI NNMERGE
(b)

Nk

N

Nj Ni

N

Nj Ni

Nk

N

Sk

�

N

Nj Ni

Si Sj

),(),(NSPLITNN JI θ=
(c)

Figure 5.7: Demotion, merging and splitting restructuring operators.

 119

formally defines this problem and then provides a demotion operator that can

eliminate it.

Definition 7 (Misplaced Sibling) Let iN and jN be siblings to one another. jN is

said to be misplaced as the sibling of iN , denoted by Misplaced_Sibling(iN , jN), if

and only if jN does not form a low-density region on iN .

Definition 8 (Demotion Operator) Let iN and jN be siblings to one another. A

demotion operator, denoted by (,)i jDEMOTE N N , is a process of retracting jN from

its parent and inserting it as a child node of iN (see Figure 5.7a).

Obviously, if jN is misplaced as the sibling of iN , (,)i jDEMOTE N N will

solve the problem by Definition 7. Since applying a single demotion operator could

also lead to further problems to the iN ’s remaining siblings, the algorithm checks the

rest of the siblings and reapplies the demotion operator, repeatedly, until no

misplaced sibling is found.

Figure 5.8 describes the detail process. The restriction on the next sibling

chosen in Line 5 guarantees that once the selected node is found to be not a misplaced

sibling, then neither do the remaining siblings. If the algorithm terminates by the

second condition (i.e., Siblings = null), which means that iN is the only child node of

its parent, additional minor restructuring is performed (not shown in the algorithm) in

order to satisfy the requirement that an internal node must have at least two child

nodes.

 120

Homogeneity Property Maintenance

This section describes the process of repairing a cluster whose homogeneity property

has been violated. In such a case, some areas in the cluster form high and/or low-

density regions. HOMOGEN eliminates a high-density region by merging two nearest

nodes using a merging operator, which is defined below.

Definition 9 (Merging Operator) Merging operator, denoted by),(ji NNMERGE

is),(_ ji NNHIERARCHYINSERT where jN is a sibling of iN (see Figure 5.7b).

Algorithm Detection and Recovery of Misplaced Nodes (iN)

1. Let the input iN be the recipient of demoted nodes.

2. Let Siblings ← the set of iN ’s siblings.

3. Let No_Misplaced_Sibling ← false.
4. Repeat
5. Let jN ∈ Siblings be the closest node to a child node of iN .

6. If Misplaced_Sibling (iN , jN) (i.e., see Definition 7)

7. Then (,)i jDEMOTE N N ,

8. Remove jN from Siblings.

9. Else Let No_Misplaced_Sibling ← true.
10. Until (No_Misplaced_Sibling = true) or (Siblings = null).

Figure 5.8: Misplaced node detection and recovery algorithm.

 121

The merging operator replaces two nodes in a cluster with a single node that is

the center of the two nodes. The merging operator, therefore, has a likely effect of

lessening the density around the center if the two nodes to be merged are restricted to

those with the smallest nearest distance. Moreover, if the smallest nearest distance is

further restricted to be below the cluster's lower limit, the merging operator will

remove a high-density region from the cluster. Repeating the merging process on

these nodes will eventually eliminate all high-density regions.

A low-density region can be removed by splitting the cluster into two or more

smaller ones using sparser regions as the cutting points. The process is similar to

Zahn's clustering algorithm that removes inconsistent edges on the MST structures to

form connected components (1971). The following defines the splitting operation.

Definition 10 (Splitting Operator) Let kN be a child node of N, and kS be a set of

child nodes of kN (see Figure 5.7c for the illustration). Let θ be a splitting function

that divides kS into two disjoint subsets iS and jS , that is,)(),(kji SSS θ=

satisfying jik SSS ∪= and i jS S∩ = ∅ . Let),(),(kji NSPLITNN θ= where

SPLIT is a splitting operator. The SPLIT operator retracts kN from N and makes

iN and jN , as N’s child nodes where iS and jS are the sets of child nodes of iN and

jN , respectively. If iS or jS contains a single child node, then that node becomes

iN or jN , that is, effectively promoting the child node one level higher in the tree.

 122

To maximally eliminate the low-density regions, the algorithm employs a

splitting function θ that selects a cutting point on the middle of a path that connects

an object with the farthest distance to its nearest neighbor. Using the MST graph of

the cluster being split, the members and the MST structure of each split can be

obtained by disconnecting the selected path. If the splitting operation is performed

only when the farthest distance to the nearest neighbor exceeds the cluster's upper

bound, then recursively applying this operator on each new split will eventually

obtain a cluster that is free from low-density regions, in which case the splitting

process stops.

Figure 5.9 describes the homogeneity maintenance process of a cluster that

combines the merging and splitting operators. The termination conditions of the inner

loop (in Line 6) and the algorithm guarantee that the input cluster has neither low-

density region nor high-density region. Since a split node (iN or jN , in Line 10) that

is promoted from a child node of kN is already homogeneous and its homogeneity

property is not affected by the SPLIT operator, the recursive calls to the homogeneity

maintenance process (Lines 11 and 12) are not applied to this node. Let ku NS ∪ be

the set of child nodes of N where uS is the set of kN ’s siblings. Working in a divide

and conquer fashion, the algorithm receives an input cluster kN and replaces kN by

a non empty set of homogeneous nodes vS . That is, the set of N’s child nodes is

now vu SS ∪ .

 123

5.3.4 Time Complexity Analysis of HOMOGEN

Let B be the average branching factor of the tree1 and D be the dimension of the data

points (observations). For data with nominal attribute values, D=AV where A is the

1 The analysis assumes that the notion of homogeneity in Definition 3 is defined over tighter
bound functions. As discussed in Section 5.3.1, tighter bound functions will generate tree
structures with better representational powers, that is, smaller branching factors. In all
experiments σµ ± is used as the bound functions, which indeed construct trees with well-
behaved branching factors ranging from 2.5 to 4.5.

Figure 5.9: Homogeneity maintenance algorithm.

Algorithm Homogeneity Maintenance (kN)

1. Let an input kN be the node that is being examined.

2. Repeat
3. Let iN and jN be the pair of neighbors among kN ’s child nodes with the

closest distance.
4. If iN and jN form a high-density region with respect to kN ,

5. Then),(ji NNMERGE ,

6. Until there is no high-density region found in kN during the last iteration.

7. Let iM be the child of kN with the largest id and jM be iM ’s nearest neighbor

where id is the distance from node i to its nearest neighbor.

8. If iM and jM form a low-density region in kN ,

9. Then Let kS ← the set of kN ’s child nodes.

10. Let),(),(kji NSPLITNN θ= .

11. If ki SN ∉ Then Call Homogeneity Maintenance (iN).

12. If j kN S∉ Then Call Homogeneity Maintenance (jN).

 124

number of attributes and V is the average number of attribute's values. D can be

associated with the cost of calculating the distance between two objects, or the cost of

updating the concept description of a node. Moreover, let n denote the number of

observations that have been previously incorporated in the hierarchy. Thus, nBlog is

the average depth of the hierarchy. The most expensive process is rebuilding the MST

structure2 every time the concept descriptions are modified, which is currently

dominated by recalculating the distances of all pairs of child nodes (i.e., B2D).

Finding the initial location during the first stage of algorithm involves

searching the closest leaf node using a beam search through the hierarchy, performing

upward search and then inserting the observation into the hosting node. Assume P is

the beam size. The cost for determining the closest distance to a child node on each

level in the hierarchy and on each beam path is BD, and therefore the total cost for

finding the closest leaf node is nBPBD log . The upward search requires only

nBBD log time whereas inserting a single observation into a hosting node involves

updating the concept description and the MST structure of the hosting node and its

ancestors. The last step requires nBDB log)1(2+ time. Thus, the update time of the

first stage of algorithm is nBDBPB log)1)1((2 +++ , or)log(2 nDBO B .

2 Currently the implementation employs Prim’s algorithm (Corment, Leiserson, & Rivest,
2001) to rebuild the MST structure, which has an every-case time complexity of)(2BΘ .

Fortunately, there exists an incremental MST algorithm (Fredericson, 1985) with)1(−Θ B
update time that could be used to improve the efficiency of the MST update.

 125

Now, the analysis proceeds to the time complexity of the hierarchy

restructuring (see Figure 5.5 for the algorithm description). Let crntNode be the node

being restructured. The cost of recovering the misplaced siblings consists of two

major components. The first component is finding the closest node to a node’s child

node (see line 5 in the algorithm described in Figure 5.8), which is amount to B2D

time. The second one is updating the concept descriptions (i.e., D time) and

rebuilding the MST structures (i.e., B2D time) of crntNode and its parent due to

applying the demotion operator. On a worst-case scenario, the number of misplaced

crntNode’s siblings is at most)1(−B and thus requires =++−)22)(1(22 DBDBB

DBDDBDB 2233 23 −+− time. Next, the MST structure update time is also the

major cost during the homogeneity maintenance process (recall the description of the

algorithm in Figure 5.9). Applying the merging and splitting operators requires

updating two and three concept descriptions as well as their MST structures,

respectively. On a worst case scenario, there will also be at most)2(−B splitting

operations on crntNode including its splits. Therefore, the cost of the homogeneity

maintenance process originating from crntNode is at most =+−)33)(2(2 DDBB

DBDDBDB 6363 23 −+− time. Thus, the time for misplaced nodes restructuring

and the homogeneity maintenance process is DBDDBDB 8596 23 −+− . Since the

hierarchy restructuring is performed on the hosting node's ancestors along the path to

the root, the total cost requires nDBBB Blog)8596(23 −+− time. This provides a

time complexity of nDB Blog3 for the second stage algorithm.

 126

Hence,)log(3 nDBO B is the legitimate time complexity for incorporating a

single observation. This is one order higher than the time complexity of Fisher's

COBWEB with respect to the branching factor B, which is)log(2 nDBO B (Fisher,

1987). The actual time of HOMOGEN’s algorithm could be less because the number of

child nodes that need to be restructured can be anywhere from none to)1(−B .

Currently B2D time, the MST update time could be improved to BD by maintaining

the calculated distances, recalculating only those that are affected, and applying the

Fredericson’s MST incremental update algorithm. This possible improvement,

however, comes with the price of maintaining more complicated data structures

(Fredericson, 1985).

Given a sequence of N observations, the total cost to incorporate all

observations is NDNBNDB B
N

n B loglog 3
1

3 <� =
. This gives the complexity of

)log(NNO , which is basically the same as COBWEB’s time complexity (Fisher,

1987) and is comparable to the incremental version of WITT system (Hanson &

Bauer, 1989). As another comparison, the time complexity of typical agglomerative

methods is)(2NO . The incremental algorithms are generally more efficient because

these approaches can take advantage the tree structures generated during the

clustering process. This privilege, however, is not possessed by the agglomerative

methods.

 127

5.4 Evaluating the Concept Formation Algorithm

This section describes the experimentation of HOMOGEN. The objective is to evaluate

the system's performance by examining the quality of concepts (or clusters) hierarchy

it generates. To avoid confusion, the evaluation is divided into two parts. The first

part investigates the behavior of various restructuring strategies employed by the

concept formation algorithm using synthetic and natural data sets, which represent

structured data sets, and then compares its performance with other incremental

systems. The second part evaluates the system in clustering text documents (i.e.,

unstructured data set). In this part, the system’s performance is compared with those

of HAC methods, the most common hierarchical clustering algorithms applied in this

domain. The following defines several measures employed for quantifying the

hierarchy quality.

5.4.1 Quantifying the Hierarchy Quality

The evaluation uses both internal and external criteria to quantify the hierarchy

quality produced by HOMOGEN. A hierarchy quality that is based on the internal

criterion measures the compliance of the hierarchy to the monotonicity and

homogeneity properties. Due to its subjectivity, this measure is used only in

evaluating the behavior of various components in HOMOGEN. Alternatively, an

external criterion-based quality measure quantifies the hierarchy quality with respect

to its match with an expected hierarchy structure (Jain & Dubes, 1988). The latter

measure is more objective and can be used for comparison with the hierarchy

 128

qualities produced by other systems. This measure is also employed to confirm the

utility of the above two properties.

Internal Criterion-based Measure

In this measure the hierarchy quality is quantified by calculating the percentage of

nodes in the hierarchy that satisfy the homogeneity property or the monotonicity

property. Let Non_Leaf _Nodes be all internal nodes and the root. The percentage of

nodes satisfying the homogeneity property by Definition 3 is given by Equation 5.2

below, which is the fraction of non leaf nodes that are found to be homogeneous.

%100
__#

__ ×=
NodesLeafNon

NodesLeafNonsHomogeneou
yHomogeneit

Meanwhile, the percentage of nodes satisfying the monotonicity property by

Definition 2 is the fraction of monotonic internal nodes. Equation 5.3 gives the

formulae needed.

%100
#

×=
NodesInternal

NodesInternalMonotonic
tyMonotonici

Since leaf nodes always satisfy the two properties, these nodes in Equations 5.2 and

5.3 are not counted. The root node is also not counted in Equation 5.3.

External Criterion-based Measure

Cluster validation methods that are based on external references measure the degrees

of overlap between partitions generated by a clustering algorithm and predefined

structures. The degrees of match between two partitions can be calculated using Rand

(5.2)

(5.3)

 129

index (Rand, 1971}, Jaccard coefficient (Theodoridis & Koutroumbas, 1999),

Hubert’s γ-statistic (Hubert & Arabie, 1985) or Fowlkes and Mallows index (Fowlkes

& Mallows, 1983); among others. However, measures that have been developed to

utilize external references are all fundamentally limited to flat partitions. The

hierarchy quality is usually computed from the partition obtained by cutting

dendogram generated by an HAC algorithm (Theodoridis & Koutroumbas, 1999;

Fowlkes & Mallows, 1983), which results in a different value of quality measure on

different specified cutting level.

This dissertation devises two methods for quantifying the quality of a cluster

hierarchy that do not require cluster partitioning. Instead, the approaches are to search

the best match cluster in the hierarchy that corresponds to a target (predefined)

cluster. The first method is to measure the hierarchy quality that also considers the

organizational structure of the discovered, distinct clusters. This method is applicable

on data sets whose hierarchical structures are well known. The second one only

measures the quality of distinct clusters found in the hierarchy.

Measuring the Quality of Hierarchy Structures

Given a hierarchy LH produced by a system, the quality of LH is quantified by

measuring the degree of its match with a known target hierarchy TH . Generally

speaking, the degree of match between TH and LH is calculated by the number of

nodes in TH , except the root node, that match with their corresponding nodes in LH .

 130

Furthermore, a node in LH is said to be the corresponding node in TH if both nodes

match conceptually and structurally.

Let TT HN ∈ and LL HN ∈ be nodes in the target hierarchy TH and in the

hierarchy produced by a system LH , respectively, where both hierarchies are derived

from the same set of observations. Let ()Nε denote the set of observations

(singleton nodes) that are descendants of node N. The generalized Jaccard coefficient

(Miyamoto, 1990) is used to measure the degree of conceptual match between nodes

TN and LN , denoted by),(LT NNCMatch .

() ()
(,)

() ()
T L

T L
T L

N N
CMatch N N

N N

ε ε
ε ε

∩
=

∪

CMatch measures the overlap of two concepts from the cardinality ratio between

shared and distinct observations covered by the concepts. For each target node TN in

TH , let *
LN be the corresponding node in LH such that3:

{ }*

() ()
arg max (,)

L L L

L T L
N H N Root

N CMatch N N
∈ ∧ ≠

=

Then, the degree of structural match between TN and LN , denoted by

),(*
LT NNSMatch , is defined as the degree of conceptual match between the parents

of TN and *
LN .

3 Ties are handled by selecting the first encountered node with maximum value. Note that
multiple target nodes could correspond to a single node in LH . Since the objective is to
measure the quality of target node reconstruction in LH and not to partition LH , this is still
acceptable. Besides, its occurrence is extremely rare only when the target nodes are poorly
reconstructed in LH .

(5.4)

(5.5)

 131

))(,((),(**
LTLT NParentNParentCMatchNNSMatch =

Finally, by incorporating the conceptual match as well as the structural match above,

the degree of match between TH and LH , denoted by),(LT HHHMatch , is

computed as follows:

�
≠∧∈

⋅=
)()(

**),(),(),(
RootNHN

LTLTLT

TTT

NNSMatchNNCMatchHHHMatch

The root node in Equation 5.7 is not included because this node always contains the

same set of observations as those covered by the root node of LH . The maximum

score varies depending on the number of target nodes defined in the target hierarchy.

Measuring the Quality of Distinct Clusters

In this measure, the hierarchy generated by a clustering algorithm is examined

whether a distinct target cluster can be rediscovered. The degree of match between

the target cluster and its corresponding cluster in the hierarchy, measured using the

CMatch above, is then weighted according to the target cluster size. The final value is

obtained by averaging the weighted CMatch over all target clusters, similar to the

micro-averaging measuring technique (Yang et al., 2000). More specifically, let

DATA be the set of all observations, and TCTCi ∈ be the ith target cluster in a set of

target clusters TC. Let ()iTCε denote the set of observations belonging to the target

cluster iTC such that ()iDATA TCiε= � for TCTCi ∈∀ and

() ()i jTC TCε ε∩ = ∅ . Moreover, let LH be a hierarchy produced by a system using

all observations in DATA. For each TCTCi ∈ , let *
LN be the corresponding node in

(5.6)

(5.7)

 132

LH and be determined similarly as in Equation 5.5. The quality of LH is then

calculated as an accuracy measure denoting the percentage of match between the

target clusters and their corresponding clusters in LH , as defined by Equation 5.8

below4.

*() (,)
(,) 100%i

i i LTC TC
C L

TC CMatch TC N
Accuracy T H

DATA

ε
∈

×
= ×
�

4 Both),(LT HHHMatch and),(LC HTAccuracy are asymmetric measures.

(5.8)

 Synthetic Data Sets Natural Data Sets a
 Grid Triangle Symbol Soybean

Small
Soybean
Large

Voting

#Observations 288 108 27 47 307 435
#Target Clusters b 38 12 12 5 19 2
#Distinct Clusters 24 9 9 4 19 2
#Target Hierarchy
 Levels

4 2 2 2 − −

#Attributes c 2 2 3 35 35 15
Dimension Size 2 2 39 76 132 48
Attribute Value Types Cont Cont. Nom. Nom. Nom. Nom.
Distance Functions L2 L2 L1 L1 L1 L1
aFrom UCI repository of machine learning database (Blake & Merz, 1998)
b#TargetClusters = #Distinct Clusters + #Internal Nodes, except the root node, that
groups the distinct concepts and their larger groups.
cThe number of attributes does not include the target (class) attribute.

Table 5.1: Summary of non text data sets.

 133

5.4.2 Experiments in Non Text Domains

The experiment uses six data sets as summarized in Table 5.1. The data sets Grid,

Triangle, Symbol, and Soybean Small have known, clear target hierarchy structures

while the hierarchy structure of the Soybean Large is unknown. Since the Voting data

set contains only two target classes, it has the simplest hierarchy structure. Figure

5.10 shows the target hierarchy of the first four data sets; three are from synthetic

domains. The first four data sets are used to evaluate the performance of HOMOGEN in

discovering both the distinct clusters and their organizational structures inherent in

the data sets.

The experiments are run by providing a stream of observations to the

incremental systems. The hierarchy quality produced by the system is measured once

the last observation has been processed. To determine the appropriate tightness of the

bound functions, HOMOGEN is run using the Triangle data set and the variance factor

k is varied from 0.3 to 2 in all nodes with three or more child nodes. The lower bound

constant kL is also varied from 0.1 to 0.9 and from 1.1 to 2 for the upper bound

constant kU particularly for nodes with two child nodes in the Heuristic Rule 1. From

these experiments, k=1, kL=2/3, and kU=3/2 are found to be among those that give

good measures of hierarchy quality. These settings are then fixed for other data sets in

the rest of experiments.

 134

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A B C D E F G H

I J K L

M N

1 2 3 4 5 6 7 8 9

A B C

D1 D D2

D3 D4

Grid

Triangle Soybean Small

(A, *, *)

(A, A, *) (A, B, *) (A, C, *)

(B, *, *)

(B, D, *) (B, E, *) (B, F, *)

(C, *, *)

(C, G, *) (C, H, *) (C, I, *)

(*, *, *)

Symbol

Figure 5.10: Target hierarchy structures of four data sets.

 135

The experiments are performed in two ordering scenarios: random and bad

orderings. The observation in random ordering is selected randomly from one of the

unseen observations regardless of the observations’ classes. In bad ordering, the

stream is ordered by observations’ classes (Fisher, Xu, & Zard, 1992) where

observation of a different class will not be given until all observations of the same

class have been processed. In each case the experiment results are averaged over 25

trials.

Preliminary Experiments

The first experiments investigate the ability of HOMOGEN to construct a hierarchy

satisfying the homogeneity and monotonicity properties. Table 5.2 describes the

effects of applying various restructuring techniques on approximating the two

hierarchy properties. The percentages of the homogeneity clusters and the monotonic

nodes are calculated using Equations 2 and 3, respectively, and are averaged over 25

runs on random ordering. "+" and "−" denote significant improvement (and

degradation, respectively) of performances, measured at most at 0.012 levels, relative

to those achieved by running only the first stage algorithm.

As shown in the second column of the table, the heuristics employed during

the first stage generate hierarchies that tend to be more monotonic (i.e., the

percentages of monotonic nodes are much larger than those of the homogeneous

nodes). Applying nodes misplacement restructuring during the second stage improves

the hierarchy monotonicity but also reduces the percentage of homogeneous nodes.

 136

The homogeneity maintenance process, on the contrary, can repair all the

homogeneity violations although it also decreases the number of monotonic nodes.

Nonetheless, performing misplaced nodes recovery that is followed by the

homogeneity maintenance process prevents degrading the monotonicity property

from the latter process with respect to the percentages of monotonic nodes achieved

by first stage process. Additionally, combining these two restructuring strategies in

the proper order preserves the hierarchy homogeneity property.

The next experiments observe the effects of restructuring processes on the

hierarchy quality with respect to its match with a known target hierarchy structure.

Table 5.3 summarizes this observation. The hierarchy quality is measured by using

Equation 5.7, averaged over 25 trials. The maximum quality scores are based on

Stage I: Initial Observation Placement √ √ √ √
Stage II: Misplaced Node Restructuring √ √
Stage II: Homogeneity Maintenance √ √

Homogeneous Nodes (%)
Grid 61.52 51.40− 100.00+ 100.00+
Triangle 62.03 51.01− 100.00+ 100.00+
Symbol 88.71 83.47− 100.00+ 100.00+
Soybean Small 71.79 56.24− 100.00+ 100.00+

Monotonic Nodes (%)
Grid 98.08 99.33+ 93.97− 98.16
Triangle 98.12 99.74+ 94.11− 98.48
Symbol 100.00 97.81− 97.53− 100.00
Soybean Small 96.18 99.31+ 89.61− 95.81

 Table 5.2: The effect of restructuring techniques on achieving the homogeneity
and monotonicity properties.

 137

#target clusters described in Table 5.1. The improvement "+" and degradation "−" of

performances over those in the second column are statistically significant at 0.05

levels.

As shown on the second column of the table, the performances achieved

without performing any further restructuring process are not optimal. Additionally,

misplaced nodes restructuring could improve or degrade the hierarchy quality, which

could be related to the fact that this restructuring process improves the monotonicity

property and also degrades the homogeneity property (i.e., see Column 3 of Table 5.2.

Moreover, applying only the homogeneity maintenance process is likely to improve

Stage I: Initial Placement √ √ √ √ √
Stage II Rest. Method:
− Misplace Nodes √ √ √
− Homogeneity Maint. √ √ √ Max
Stage II Rest. Scopes: Scores
− Hosting Node (HN) √ √ √ √
− HN’s Ancestors √ √ √

Random Ordering
Grid 35.38 35.17 35.58 38.00+ 30.81− 38
Triangle 11.60 11.97+ 11.65 12.00+ 10.81− 12
Symbol 9.31 6.37− 11.68+ 12.00+ 12.00+ 12
Soybean Small 4.26 4.43 4.55+ 4.68+ 4.37 5

Bad Ordering
Grid 31.75 32.74 33.80+ 37.97+ 32.25 38
Triangle 11.93 12.00 11.87 12.00 11.28− 12
Symbol 9.79 6.34− 11.76+ 12.00+ 12.00+ 12
Soybean Small 4.31 4.59+ 4.58 4.61+ 4.48 5

 Table 5.3: The effect of various restructuring processes on the hierarchy quality.

 138

the hierarchy quality. As combining both restructuring techniques increases the

percentages of nodes satisfying the homogeneity and monotonicity properties (i.e.,

see the last column of Table 5.2), it is reasonable to expect that the full restructuring

processes would significantly improve the hierarchy quality. The fifth column of

Table 5.3 confirms this expectation. The results described in this column are

produced by the restructuring process that is applied on the hosting node and its

ancestors, representing a tradeoff between the local and global approaches. Finally,

the sixth column of Table 5.3 reports non-optimal performances obtained when the

restructuring process is applied only on the hosting node, which is more similar to the

local approaches.

To sum up, it has been empirically shown that the homogeneity and

monotonicity are indeed desirable properties. As indicated in the experiment results,

improving the hierarchy in satisfying these properties leads to producing a better

measure of hierarchy quality that is independent of the hierarchical clustering

objectives.

Performance Comparison with Other Incremental Systems

In this section the performances of HOMOGEN are compared with those of COBWEB

(Fisher, 1987) and two versions of ARACHNE systems. The first version of ARACHNE,

denoted by ARACHNE-L(ocal), implements the original ARACHNE’s control strategy as

described by McKusick and Langley (1991). This version applies restructuring

operators on neighboring nodes that violate the nodes' constraints. The second

 139

version, ARACHNE-G(lobal), extends ARACHNE-L by pushing the power of tree

constraints employed by the system further into its limit. In particular, it also globally

searches and restructures nodes that do not adhere to the constraints, and iteratively

performs this process until all nodes obey the imposed constraints or until a

maximum number of global restructuring iterations has been reached.

Table 5.4 provides the performance comparison of HOMOGEN with other

incremental systems with respect to the systems' abilities to rediscover distinct

clusters inherent in the data and to properly organize the discovered clusters into

higher-level clusters. HOMOGEN on the four data sets consistently generates better

hierarchy qualities than other systems. On bad ordering, the hierarchy qualities

produced by the system are as good as those on random ordering. This evidently

indicates that HOMOGEN is relatively insensitive to input ordering. COBWEB, in

contrast, suffers from input ordering where its performances drop on bad orderings by

approximately 29% and 24% for the Soybean Small and Symbol, respectively,

averaged over the 25 trials. The observation of COBWEB's behavior that is sensitive to

input ordering, as was shown in Table 5.4, is consistent with the results reported by

Fisher, Xu and Zard, (1992). Furthermore, both versions of ARACHNE are relatively

not affected by the input ordering although the performances of these systems drop by

approximately 24% on the average on the Soybean Small data set. The systems are

also unable to reproduce a more complex hierarchy structure such as in the Grid data

set.

 140

Next, the ability of systems in rediscovering distinct clusters regardless of the

cluster hierarchy is observed. The same experiments as described previously are

performed but the hierarchy qualities are measured using Equation 5.8. Now, Soybean

Large and Voting data sets are also included. Table 5.5 summarizes the experiment

results, averaged over 25 runs. The table shows that HOMOGEN performs comparably

well to or better than the other systems. Consistent with the experiment results on bad

ordering scenario described earlier in Table 5.4, the performances of HOMOGEN are

even better, the performances of COBWEB are degraded while the ARACHNE’s

performances could be degraded or improved. Note that on bad ordering the

underlying partition of the seen instances becomes suddenly unbalanced every time

the data stream starts supplying a new class of instances. The performance of

COBWEB, which is always worse on bad ordering, might have been due to the

system's bias against unbalanced partitions (Fisher, 1996), leading to construct

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G Max
 Random Ordering Scores
Grid 38.00 − 24.20 24.25 38
Triangle 12.00 − 11.99 12.00 12
Symbol 12.00* 9.62 9.75 11.31 12
Soybean Small 4.67* 4.23 3.81 4.29 5
 Bad Ordering
Grid 37.97 − 26.65 26.65 38
Triangle 12.00* − 11.81 11.85 12
Symbol 12.00* 7.12 10.18 11.19 12
Soybean Small 4.61 2.91 2.78 3.30 5

 Table 5.4: The quality of hierarchy structures. The quality is measured according
to Equation 5.7 averaged over 25 trials.

 141

hierarchy structures with lower quality measures. The consistency of HOMOGEN in

maintaining good performance on this ordering is an evidence that its clustering

process, guided by the homogeneity property, is much less affected by the temporal

change in cluster class distribution.

One can notice from Tables 5.4 and 5.5 that the performances of ARACHNE-G

are relatively comparable to those of HOMOGEN on data sets containing distinct and

compact clusters (e.g., Soybean Small, Triangle and Symbol). A plausible explanation

for this observation is the bias in ARACHNE’s restructuring constraints (McKusick &

Langley, 1991) that prefer to form a cluster whose members are closer to the cluster

center. The clustering of HOMOGEN, in contrast, is relatively not affected by the

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G
 Accuracy (%) on Random Ordering

Grid 100.00 − 84.50 85.76
Triangle 100.00 − 99.93 100.00
Symbol 100.00 87.99 95.74 99.85

Soybean Small 96.00 94.03 83.38 96.83
Soybean Large 59.18 55.91 47.61 53.66

Voting 79.07 75.22 74.10 76.42
 Accuracy (%) on Bad Ordering

Grid 99.99 − 94.43 95.09
Triangle 100.00 − 98.55 98.89
Symbol 100.00 71.18 96.96 100.00

Soybean Small 97.28 72.32 67.96 85.92
Soybean Large 61.61 50.31 49.74 53.26

Voting 79.60 68.40 63.79 75.22

Table 5.5: The quality of distinct clusters. (measured using Equation 5.8)
The differences of bold numbers are statistically significant
from non-bold numbers on the same row at 0.001 levels.

 142

cluster shapes. For example, the shapes of clusters A through H in Grid data set are

obviously different from the rest of clusters, and HOMOGEN is able to properly

identify these clusters. Furthermore, the cluster boundaries on Voting and Soybean

Large are also not clear-cut, indicating the irregularity of cluster shapes and/or the

overlap between clusters. Yet HOMOGEN performs better on these data sets. To some

extent, this confirms the expectation that the homogeneity property can guide the

incremental process of HOMOGEN to reconstruct clusters of fairly arbitrary shapes.

5.4.3 Experiments in Text Domains

A subset of the Reuters-21578 1.0 test collection (this collection is available at UCI

KDD Archive (Blake & Merz, 1998) is used for experiments. The original collection

contains 21,578 stories divided into 135 topics. Of these stories, 12,902 had been

assigned to 118 categories; one category has approximately 4000 documents while

most of the categories contain less than ten documents. Among these topics, only six

topics are used from the training set part of the ModApte split (Apté, Damerau, &

Weiss, 1994) with moderate topic sizes in order to avoid a bias toward large topic

sizes. Furthermore, since each topic may have multiple topic categories that could

confuse the assessment in measuring the cluster quality, the experiments use only the

stories from the selected topics that were assigned a single topic category. The

number of selected documents is 951 consisting of target topics Coffee (90), Crude

(253), Gold (70), Interest (190), Sugar (97) and Trade (251).

 143

Text document hierarchy is evaluated from the quality of target topic

categories found in the hierarchy as measured according to Equation 5.8. The same

parameter values for the cluster's bounds are employed as those applied in the

previous experiments. The distance between two documents or clusters is measured

by Euclidean distance function. Because a document topic is independent of the

document length, the concept representation (recall Definition 1) of each node is

normalized by Euclidean normalization. Specifically, given a concept description

),,,(21 dcccC �= , the normalized concept description of C is

)',,','(' 21 dcccC �= where
� =

=
d

i i

j
j

c

c
c

1
2

' and � =
=d

j jc
1

2 1' .

Seven variants of HAC (i.e., non-incremental algorithms for hierarchical

clustering) are considered for performance comparison. Briefly, HAC initially

considers all points in the data set as singleton clusters, and then repeatedly merges

two clusters with the closest distance until there is only a single cluster. The seven

variants differ from each other in their methods in calculating the distances of a

cluster to a non-singleton cluster. Lance and Williams provide recurrent formula for

calculating these distances (Lance & Williams, 1967):

hjhiijhjjhiihk dddddd −+++= γβαα

In the equation above, hkd is the distance between two clusters h and k, and cluster k

is the parent of cluster i and cluster j. More specifically, the clustering process starts

by calculating all distances of document pairs using Equation 5.1. The recurrent

(5.9)

 144

formula above is then employed to calculate the distances between existing clusters

and a new non-singleton cluster, after two clusters are merged, using the distances of

cluster pairs that have already been computed earlier. By implementing a generic

agglomerative clustering, variants are determined from the parameters in the recurrent

formula above. Table 5.6 provides the common parameter values for each of the HAC

variants (Everitt, Landau, & Leese, 2001; Miyamoto, 1990; Jain & Dubes, 1988).

Document Pre-Processing, Feature Selection and Weighting

Text documents represent a noisy domain in which many features (words) tend to be

irrelevant. Feature subset selection and feature weighting are two important processes

to deal with this problem and this section describes these two processes. Each

document is pre-processed as follows:

iα jα β γ

Single-link 0.5 0.5 0 −0.5
Complete-link 0.5 0.5 0 0.5

Group-average
ji

i

nn
n
+

ji

j

nn

n

+
 0 0

Weighted-average 0.5 0.5 0 0

Centroid
ji

i

nn
n
+

ji

j

nn

n

+
 ji βα− 0

Median Method 0.5 0.5 −0.25 0

Ward’s Method
jih

ih

nnn
nn
++

+

jih

jh

nnn

nn

++
+

jih

h

nnn
n

++
− 0

 Table 5.6: Parameter values for the agglomerative clustering variants. Note that
mn denotes the number of data points that belong to a cluster m.

 145

• Ignoring case and removing punctuation.

• Extracting unique words and bi-grams (i.e., two-word sequence that occurs at

least twice in a document). “term” will be used to denote a word or a bi-gram.

• Removing all stop words (e.g., “a”, “the”, “although”, etc.).

• Counting the term frequency TF (i.e., the number of times the term occurs in

the document) for each of the remaining unique terms.

Each document is now represented by a feature vector containing a set of unique

terms and their term frequencies. Note that the document pre-processing is ordering

independent.

The feature selection process is applied to remove irrelevant terms from a

document feature vector. Unlike in a supervised learning method that can employ

information-theoretic or other well-grounded approaches for selecting a set of

discriminating features from training examples, the nature of the clustering task

makes it difficult to apply such methods. Instead, two alternatives of heuristics are

considered here:

1. MDF-FS: minimum document frequency-based feature selection that selects

terms occurring in at least n documents, and

2. MTF-FS: minimum term frequency-based feature selection that selects a term

t if there exists at least one document in which t occurs at least m times.

 146

The first alternative, which uses document frequency for filtering non-relevant

features, is common in information retrieval, text classification (Joachims, 1997), and

text clustering (Dhillon & Modha, 2001). Terms with low document frequency are

non-content bearing and thus cannot be used as the discriminatory features. The

second alternative assumes that term frequency is an indicator for topical words.

Terms thus must appear with high term frequency in at least one document in order to

be considered as topical words. Although term frequency has been heavily used for

feature weighting, it has been rarely exploited for feature selection process.

The last process is to weigh each selected feature. Two feature weighting

methods are considered: term frequency (TF) and term frequency inverse document

frequency (TF-IDF). The former only uses term frequency as the weight of term while

the latter also takes into account the document frequency. The TF-IDF has been well

studied in Information Retrieval and has been shown to improve the retrieval

effectiveness (recall Equation 3.1 in Chapter III). All feature weights are then

normalized using Euclidean normalization.

The incremental system performs feature selection and weighting on the fly as

it receives a new document to learn. In this system, the statistical information needed

for feature selection is derived only from documents that have been previously

processed. This clearly poses a problem for the MDF-FS feature selection because at

least the first (n−1) seen documents will never be included in the clustering process.

Therefore, only the MTF-FS feature selection is used in the incremental system.

Although it cannot completely avoid throwing a document out, the likelihood of the

 147

MTF-FS feature selection for encountering such a problem is much smaller. The TF-

IDF weighting method, with similar reason, is also not applicable so that the system

only uses the TF weighting method. During the course of incremental learning, a

feature that is considered irrelevant in earlier seen documents could become suddenly

relevant in more recent documents. To maintain the incremental nature of the system,

documents that have already been learned are not reprocessed. In batch systems, the

feature selection and weighting processes are performed over all documents well

before the clustering process begins.

 Accuracy(%) Total #Features
Sample Sizes 75 200 400 600 75 200 400 600

mtf = 1 77.14 77.30 69.50 66.62 2151 3769 5875 7270
mtf = 2 80.82 80.70 72.61 71.42 929 1896 3211 4163
mtf = 3 85.85 83.94 77.49 76.20 366 748 1234 1576
mtf = 4 92.14 93.06 88.79 87.56 184 396 654 834
mtf = 5 91.25 92.29 89.94 89.49 116 241 398 510
mtf = 6 93.18 92.60 89.44 89.19 79 156 266 342
mtf = 7 91.51 89.95 87.00 87.31 54 103 181 234
mtf = 8 91.75 88.27 85.20 86.01 39 75 131 168
mtf = 9 86.69 84.47 81.62 83.64 30 57 97 126
mtf=10 88.98 83.65 80.55 82.04 25 45 74 98

 Table 5.7: The sensitivity of MTF-FS parameter values on HOMOGEN over various
sample sizes. The results are averaged over 25 trials. Bold numbers
indicate the highest accuracies in their respective sample sizes over
various mtf values. Note that the feature sizes are the final counts once
the system processes the last documents. The actual feature sizes vary
during the clustering process and can grow when the system encounters
new distinct words by processing more documents.

 148

Experiment Results

First of all, the experiments are conducted to explore the sensitivity of MTF-FS

feature selection parameter values on HOMOGEN using smaller sample sizes. The

minimum term frequency (mtf) values in the experiments are varied from 1 to 10.

Setting mtf = 1 is identical to running the system without performing feature selection

process, and increasing the mtf value will reduce the total number of features selected

during the clustering process. Table 5.7 describes the experiment results. In general,

the system's accuracies improve with increased mtf values until optimal points are

reached, and then the performances degrade slowly by further reducing the feature

sizes. This entails that HOMOGEN’s performance is affected by the presence of noise.

Reducing the amount of noise by removing non-relevant features improves the

system performance. However, aggressively removing the features considered as

noise will also eliminate salient features and degrade the system's performance.

Clearly, feature selection helps improve the hierarchy qualities provided the right mtf

values.

The next experiments exploit the peak accuracies that can be achieved by

HOMOGEN and the seven HAC variants on the full data set (951 documents consisting

of six topics). The experiments are conducted by varying the pairs of feature

weighting method (i.e., TF or TF-IDF) and feature selection method (i.e., MTF-FS or

MDF-FS) that will be applied in each HAC variant. Because the value of feature

selection parameter affects the hierarchy quality, each clustering algorithm is run

several times on different values of feature selection parameter and the one that

 149

maximizes the hierarchy quality is taken as the representative of the best result of a

clustering algorithm. More specifically, the best result is taken by varying the mtf

values from 1 to 15 for the MTF-FS feature selection, or by varying the minimum

document frequency (mdf) values to 2, 4, 8, 12, 16, 32, 48, 64, 80 and 96 for the

MDF-FS feature selection.

Table 5.8 presents the best results for each variation of feature selection and

weighting methods as well as their corresponding parameter settings. The best

accuracy from HAC algorithms is achieved by the Group-average method (89.16%)

and the peak performance attained by HOMOGEN is slightly higher (89.32%). A higher

parameter value, shown next to the accuracy in the table, is an indication that the

corresponding clustering algorithm is more sensitive to noise since it needs to be

more aggressive in removing irrelevant features in order to maximize its performance.

 Accuracy (%) (parameter value)
Feature Selection MTF-FS MDF-FS
Term Weighting TF TF-IDF TF TF-IDF
HOMOGEN 89.32 (5) − − −
Single-link 70.20 (9) 61.71 (12) 59.80 (48) 62.45 (64)
Complete-link 72.81 (2) 68.04 (1) 72.81 (4) 68.01 (1)
Group-average 89.16 (4) 86.86 (4) 81.12 (2) 80.24 (8)
Weighted-average 88.62 (5) 83.94 (4) 76.05 (8) 80.42 (32)
Centroid 83.43 (14) 79.05 (14) 58.31 (64) 50.18 (80)
Median Method 74.37 (8) 67.80 (12) 62.09 (80) 61.34 (64)
Ward's Method 84.36 (5) 83.37 (6) 77.19 (8) 80.11 (32)

Table 5.8: Peak accuracies achieved by HOMOGEN and HAC methods. The
accuracy of HOMOGEN is averaged over 25 runs. The italic numbers
following the accuracies are the parameter values of their respective
feature selection methods (i.e., mtf or mdf values) that produce the
results.

 150

In this respect and on the data set used in the experiments, Single-link, Centroid and

Median methods appear to be very sensitive to irrelevant features. Complete-link is

the most insensitive method, while the others including HOMOGEN are somewhat in

the middle.

The detail results of HOMOGEN and Group-average algorithms are provided

by Table 5.9. The fractional numbers in HOMOGEN are due to the averaging of the

experiment results over 25 trials. Let precision be the percentage of correct

HOMOGEN
 Document Topics Total
 Coffee Crude Gold Interest Sugar Trade Docs.

Cluster-1 81.28 0.20 − 0.16 − 0.72 82.36
Cluster-2 0.08 226.72 1.60 1.24 0.16 3.44 233.34
Cluster-3 − 0.08 64.88 − − 0.08 65.04
Cluster-4 1.04 2.96 0.24 175.32 0.88 6.64 187.08
Cluster-5 0.60 0.32 0.68 − 90.28 0.12 92.00
Cluster-6 0.24 0.96 0.04 5.24 0.04 227.92 234.44
#Excluded docs. 6.76 21.76 2.56 8.04 5.64 12.08 56.84

Group-average Hierarchical Agglomerative Clustering
 Document Topics Total
 Coffee Crude Gold Interest Sugar Trade Docs.

Cluster-1 83 − − − − 1 84
Cluster-2 1 226 − − 1 1 229
Cluster-3 − 1 66 − − − 67
Cluster-4 3 12 − 186 − 11 212
Cluster-5 − − − − 94 − 94
Cluster-6 − 10 3 2 − 233 248
#Excluded docs. 3 4 1 2 2 5 17

Table 5.9: The confusion matrices of clusters generated by HOMOGEN and Group-
average HAC methods.

 151

assignment of documents in all found clusters and recall be the percentage of correct

assignment over all 951 documents, i.e., micro-average precision or recall (Yang et

al., 2000). The precision and recall of HOMOGEN are 96.9% and 91.1%, respectively

(see Table 5.10). The group-average algorithm, on the other hand, produces clusters

with slightly lower precision (95.1%) but higher recall (93.4%).

5.5 Discussion of Related Work

Previous work has mitigated the effect of input ordering by applying restructuring

operators such as cluster merging, splitting, and promotion (Fisher, 1987). The

strategies for applying these operators can be broadly divided into local and global

approaches with their advantages and shortcomings. The local approaches apply

restructuring operators on the neighborhood of a hosting node (i.e., a node that serves

as the parent of a new observation). Systems such as COBWEB (Fisher, 1987),

85

90

95

100

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)
HOMOGEN 96.9 91.1

GA-HAC 95.1 93.4

Precision Recall

Table 5.10: The precision and recall of HOMOGEN and Group-average (GA)-HAC.

 152

UNIMEM (Lebowitz, 1987) and INC (Hadzikadic & Yun, 1989} are examples of those

employing these restructuring strategies. Fisher’s COBWEB selects and applies a

restructuring operator that locally maximizes the measure of partition utility value.

Lebowit’s UNIMEM employs a somewhat less informal method for deciding between

restructuring operators, which is based on a confidence score and a set of user-

specified parameters. Likewise, the restructuring strategy in INC is largely heuristic,

basing its decision for applying various restructuring operators on user-defined

thresholds over relevance and strength measures. Although relatively efficient to

recover nodes misplaced at neighboring nodes, the local approaches in general suffer

from their inability to deal with major structural changes.

The global approaches address the sensitivity issue by iteratively reinserting

nodes into the entire hierarchy. As an extreme example, ITERATE redistributes

observations on a single-level clustering, which is initially built non-incrementally,

until there is no cluster formation change in two consecutive iterations (Biswas,

Weinberg, & Fisher, 1998). ITERATE’s optimization technique is clearly very

expensive. Alternatively, Fisher proposes a hierarchical redistribution method that

intermittently performs nodes redistribution on an existing, incrementally built

concept hierarchy (Fisher, 1996). The technique represents a hybrid approach that

combines incremental and batch methods. It is less expensive but relearning all nodes

iteratively makes the algorithm less incremental.

The restructuring strategy in HOMOGEN represents a tradeoff between the local

and the global approaches. The system pinpoints nodes whose structures are

 153

potentially affected by the presence of new observations and then applies

restructuring operators only to nodes that actually experience structural change. The

structural change problems are detected through checking the nodes’ conformity with

the homogeneity and monotonicity properties. Intuitively, this strategy improves the

ability of the system to recover from major structural changes while preserving the

incremental nature of the algorithm.

HOMOGEN’s approach that uses a set of conceptual constraints (e.g., the

homogeneity and monotonicity properties) as the guiding principles during the

hierarchy restructuring can be related to the ARACHNE (McKusick & Langley, 1991)

and the HIERARCH (Nevins, 1995) systems. ARACHNE constructs well-formed concept

hierarchies with regard to explicit constraints on the tree structure. A well-organized

concept tree in the system is defined as the one that has horizontally and vertically

well-placed concepts with respect to a similarity metric. The system applies

restructuring operators recursively at neighboring concepts until the two constraints

are satisfied locally. Alternatively, the HIERARCH system uses information theoretic

considerations to constrain the placement of a node in a hierarchy (Nevins, 1995).

The system redistributes any node that violates the constraints as if it is a new object

to learn, repeatedly, until every single node in the tree satisfies the imposed

constraints. Besides the similarity of ARACHNE’s restructuring process to the local

approaches, its control structure is not guaranteed to halt theoretically (McKusick &

Langley, 1991). Although in lesser extents, the HIERARCH’s restructuring strategy can

be related to the global approaches.

 154

Unlike the ARACHNE and the HIERARCH systems that rely exclusively on their

constraints as the only guiding principles (i.e., both systems apply restructuring

operators for the sake of satisfying the given constraints), HOMOGEN also explicitly

detects and rectifies structural problems that cannot be recovered by satisfying the

imposed constraints. The premise is that no single approach covers all cases, and a

complementary approach that addresses a different restructuring objective can be

implanted to handle the uncovered cases. Although differing greatly in detail, this

idea is similar in spirit to COP-COBWEB (Wagstaff & Cardie, 2000) and COP-KMEANS

(Wagstaff, Cardie, Rogers, & Schroedl, 2001), a version of COBWEB (KMEANS) that

enforces instance-level hard constraints irrespective to the clustering decision of the

main approaches. The instance-level constraints in these systems are heavily

dependent on the input domains so that a different set of hard constraints needs to be

defined on a different data set. In contrast, HOMOGEN is more general because it deals

only with a structural property, allowing it to work across data sets without additional

efforts.

Finally, the homogeneity property in HOMOGEN is based on a notion of

density. Several density-based algorithms with various notions of density have also

been developed mostly for batch clustering methods. For example, a density is

determined by the number of neighboring points at a specified radius (Ester et al.,

1996), a mathematical model (Hinneburg & Keim, 1998), or the number of points

lying inside a cell grid (Agrawal et al., 1998). The foundation of HOMOGEN’s notion

of density as described earlier is a graph theoretic approach (Jain & Dubes, 1998).

 155

5.6 Summary

The central role of concept hierarchy in the architecture of FEILDS described in

Chapter IV makes its construction a critical process. One of the main contributions of

this chapter is the description of new concept formation algorithm that exploits the

homogeneity property coupled with the monotonicity property for incremental

induction of hierarchical concepts and clusters from a data stream. Both properties are

essential for discovering intrinsic hierarchical structures in which one cannot assume

about the shape and the class distribution of clusters.

The other main contribution is providing a comprehensive, in depth empirical

evaluation on the performance of the algorithm. It has been experimentally shown

that the homogeneity and monotonicity are indeed desirable properties in that

improving the hierarchy in satisfying these properties leads to producing a better

measure of hierarchy quality that is independent of the hierarchical clustering

objectives. Experiments conducted on a variety of domains involving structured and

unstructured data sets also indicate the effectiveness of HOMOGEN. The system is

relatively insensitive to input ordering and can produce a quality hierarchy structure

inherent within the input data. Its performance in the given unstructured data set is

also comparable to the best performance achieved by HAC methods.

 156

CHAPTER VI

EVALUATION OF FEILDS

FEILDS, as discussed in Chapter IV, is a computational framework for extending the

capability of an existing concept drift learner to deal with variable drift rates. Its main

role is to convert a stream of sparsely labeled data (with a rapid drift rate) into one

with a slower drift rate that can be conveniently tracked by the learner. This chapter

presents an empirical evaluation of FEILDS. The main evaluation objective is to

observe the extent to which the performance of the existing concept drift learners can

be improved by learning from the stream generated by FEILDS with respect to its

performance as a result of learning from the original labeled data stream.

The first section of this chapter describes the experiment data and procedure.

Section 6.2 describes three tracking tasks to be used in the experiments. These

tracking tasks are modified from those described in Chapter III in order to suit the

need of FEILDS’s input. The discussion of primary experiments is provided in

Section 6.3, followed by the discussions of empirical system behaviors in Sections

6.4, 6.5 and 6.6. Finally, Section 6.7 describes the summary of this chapter.

6.1 Data and Experiment Procedure

All experiments use the same data set as the one employed in the experiments

presented in Chapter III. In the rest of this chapter, any experiment reference intended

 157

for those described in Chapter III will be called previous experiment. The experiment

described in this chapter is denoted by “current” experiment. The size of test set is

2581, taken from the test set of the ModApte split in the Reuters-21578 1.0 collection

(exactly the same test set as used in previous experiments). The training set in

previous experiments is further split in current experiments into a validation set of

size 100 and a training set of size 6352 documents. The validation set is used to

empirically determine the concept density threshold for identifying distinct concepts

(see Chapter IV Section 4.3.4). Unless mentioned otherwise, all experiments are

produced by setting the threshold parameter k in Equation 4.2 to its default value (i.e.,

k=0.5 or θ0.5). Recall that this default setting maximizes the margins between

overfitting and overgeneralization (see Section 4.3.4 in Chapter IV). The experiment

uses the training set to generate data streams to be learned by the system.

To observe the performance over time, the data stream is divided into k m-

instance sequences. The system performance is measured on the same test set after

learning an m-instance sequence. As defined before, the sequence of learning m-

instance sequence that is followed for system performance measurement constitutes a

tracking cycle. Unlike previous experiments in that the system learns only from

labeled data, FEILDS in current experiments also allows learning from unlabeled

data. Figure 6.1 summarizes the procedure employed in current experiments, which is

slightly modified from the summary of FEILDS’s approach in Figure 4.3. It ties

together various system components and accommodates both the incremental and

batch processes needed in the framework.

 158

Stream-S in Figure 6.1 denotes a stream of labeled and unlabeled data fed to

the system. Stream-L represents a stream of labeled data extracted from Stream-S,

preserving the relative ordering of labeled data in Stream-S. Initially empty, the

length of Stream-L grows incrementally when the system sees a labeled instance from

Stream-S (see Step 1 in Figure 6.1). Stream-S′′′′ is the new stream generated by the

Input: a data stream Stream-S generated from the training set.

Initialization:
1. Let Stream-L = �∅�, the sequence of labeled instances.
2. H = ∅, the concept hierarchy.
3. Determine the density threshold of distinct concepts from the validation set.

Experiment Procedure:
For each tracking cycle i = {1 … k}
1. Process incrementally the ith m-instance sequence from Stream-S.
 For each instance x from the m-instance sequence
 Update H to incorporate x using incremental concept formation algorithm

described in Chapter V.
 If the label q of x is available

then concatenate �(x, q)� to the tail of Stream-L.

2. Execute the concept drift tracker (CDT) algorithm, described in Chapter IV, to
generate the new stream Stream-S′′′′ from current values of Stream-L and H.

3. Run a selected concept drift learner (e.g., one of the four algorithms described in
Chapter III) to learn Stream-S′′′′ and measure the accuracy of the learned
concepts on the test set.

Figure 6.1: The procedure of experiment for FEILDS evaluation.

 159

concept drift tracker (CDT) component, which contains genuine and artificially

labeled data.

During the initialization stage, the procedure empirically determines the

concept density threshold from a validation set. This threshold, as described in

Chapter IV Section 4.3.4, is used for instance generalization through the concept

hierarchy, a process needed by the concept drift tracker algorithm. Initially empty, the

concept hierarchy H is updated incrementally when observing each new instance

from Stream-S regardless of whether the instance is labeled or not. Next, it invokes

the CDT algorithm after observing m-instance sequence in order to generate Stream-

S′′′′ based on the current value of Stream-L and the concept hierarchy built up to that

point. An existing concept drift learner is then applied in Step 3 to learn Stream-S′′′′.

The system performance is measured in the same way as in previous experiments

based on the performance of a selected concept drift learner on a separate test set.

Four concept drift learners are considered for learning the stream Stream-S′′′′:

(1) MTDR algorithm, (2) Rocchio algorithm, (3) Window- KNN, and (4) Window-

Rocchio. These algorithms have been used for performance comparison against one

another in previous experiments, and that is not the case in current experiments. The

main idea of FEILDS is to extend an existing concept drift learner for dealing with a

few labeled data stream. Therefore, the performance of an existing concept drift

learner is expected to improve by learning Stream-S′′′′ over the performance of those

that learn only Stream-L (i.e., the original labeled data stream) regardless of the

 160

concept drift learner employed. The four concept drift learners with diverse methods

above will be used to confirm this expectation.

6.2 Tracking Tasks

The experiments employ similar tracking tasks to the ones summarized in Table 3.6

in terms of the sequence of target concept classes that need to be tracked over time.

The evaluation is focused on the system performance when the shortest possible

sequence of labeled data, as reflected by Stream-L, is presented. This sequence

corresponds to the 5% of labeled instances used in previous experiments.

If data streams used in previous experiments are employed in current

experiments, and if only 5% labeled instances in the streams are made available, the

rest 95% of the data in the streams can actually serve as unlabeled data that can be

utilized by FEILDS. Although still a valid method, the streams contain only a small

number of concepts and the portions of instances belong to current target concepts

(i.e., relevant unlabeled data) are still relatively high. To make the problem more

challenging, current experiments extend the original data streams so that they contain

mostly non-target instances while preserving the relative ordering of instances in the

original streams.

Tables 6.1−6.5 describe tracking tasks 1-E(xtended) − 5-E; these have been

extended from tracking tasks 1−5 used in previous experiments (see Tables 3.1−3.5).

While the number of instances at each tracking cycle in the original tracking tasks

varies from 1 to 4, the extended tracking tasks contain the same 10-instance sequence

 161

per tracking cycle. As a result, the lengths of the data streams in tracking tasks 1-E −

5-E are 1000, 800, 600, 400 and 400, respectively. In contrast, the original stream

lengths are 180 for tracking task 1, 220 for tracking tasks 2 & 3, and 40 for tracking

tasks 4 & 5. The additional instances in the extended tracking tasks, which are

Tracking Cycle
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100

(Trade, +)
& 9 others

(Trade, −)
(Coffee, +)
& 8 others

(Coffee, −)
 (Crude, +)
& 8 others

(Crude, −)
(Sugar, +)
& 8 others

(Sugar, −)
(Acq, +)

& 8 others

Table 6.1: Tracking task 1-E(xtended).

Tracking Cycle

1 − 20 21 − 40 41 − 60 61 − 80

(Trade, +)
(Coffee, +)
& 8 others

(Trade, −)
(Coffee, +)
(Crude, +)
& 7 others

(Coffee, −)
(Crude, +)
(Sugar, +)
& 7 others

(Crude, −)
(Sugar, +)
(Acq, +)

& 7 others

Table 6.2: Tracking task 2-E

Tracking Cycle

1 − 20 21 − 40 41 − 60

(Trade, +)
(Coffee, +)
(Crude, +)
& 7 others

(Trade, −)
(Coffee, +)
(Crude, +)
(Sugar, +)
& 6 others

(Coffee, −)

(Crude, +)
(Sugar, +)
(Acq, +)

& 6 others

Table 6.3: Tracking task 3-E.

 162

randomly selected from the training set, belong to non-target concepts so that the

portions of non-target instances in tracking tasks 1-E − 5-E are 90%, 80%, 70%, 80%

and 70%, respectively. It is worth mentioning that the definition of 5% labeled data in

the original streams (e.g., tracking tasks 1−5) corresponds to roughly from 0.9% −

1.1% in tracking tasks 1-E − 5-E. The portions of labeled instances in the extended

tracking tasks with respect to instances in the original streams remain the same (5%).

Tracking Cycle

1 − 20 21 − 40

(Trade, +)
(Coffee, +)
& 8 others

(Coffee, −)
(Crude, +)
& 8 others

(m=2) (m=2)

Table 6.4: Tracking task 4-E.

Tracking Cycle
1 − 20 21 − 40

(Trade, +)
(Coffee, +)
(Crude, +)
& 8 others

(Coffee, −)
(Crude, +)
(Sugar, +)
& 8 others

(m=3) (m=3)

Table 6.5: Tracking task 5-E.

 163

6.3 Primary Experiment Results

This section describes the main experiment results that demonstrate the utility of

FEILDS. Tables 6.6 – 6.8 summarize the outcomes of previous and current

experiments on tracking tasks 1-E – 3-E, respectively. The system performances, as

shown in the figures, are the average accuracies from the first tracking cycle to the

end, averaged over ten trials (from running ten data streams).

The “100%-L” performances are simply taken from Table 3.8. These results

are generated in previous experiments by making the labels of all instances in the

original streams available to the concept drift learner. In contrast, the “5%-L” average

43

53

63

73

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

100%-L 74.90 70.92 73.58 73.71

5%-L 63.29 46.35 57.09 60.26

FEILDS (5%) 70.06 65.71 64.61 60.12

FEILDS (10%) 70.81 67.36 65.90 62.46

MTDR Rocchio
Window-

KNN
Window-
Rocchio

Table 6.6: System performances on tracking task 1-E.

 164

accuracies, which also serve as the baselines, describe the system performances when

given only 5% of labeled data (e.g., Stream-L) with respect to the number of labeled

data used to produce the “100%-L” performances. The “5%-L” performances are

obtained from Table 3.10 in previous experiments. The FEILDS rows show the

concept drift learner’s performances from learning Stream-S′′′′. As described above,

Stream-S′′′′ is the stream generated by the CDT component in the FEILDS architecture,

which is also given the same Stream-L as one of its inputs (its other input is the

unlabeled data in Stream-S). The FEILDS rows provide the main results of current

experiments.

36

46

56

66

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

100%-L 71.80 66.06 71.77 66.40

5%-L 60.12 49.25 46.80 39.49

FEILDS (5%) 68.17 57.37 57.36 52.61

FEILDS (10%) 68.46 57.96 58.32 52.99

MTDR Rocchio
Window-

KNN
Window-
Rocchio

Table 6.7: System performances on tracking task 2-E.

 165

The difference between “5%-L” and “100%-L” performances represents a

room for improvement, the extent to which the “5%-L” performances can be

improved by FEILDS; although desirable, it is not realistic to expect that its

performance would exceed that of the “100%-L” system. As shown in Tables 6.6 –

6.8, FEILDS can effectively improve the average accuracies of existing concept drift

learning algorithms except for the results of FEILDS (5%) employing Window-

Rocchio learner on tracking task 1-E. It is worth noting that all the four learning

algorithms receive the same Stream-S′′′′ at a given tracking cycle and a tracking task.

Therefore, the failure of the Window-Rocchio learner for improving its performance

as above is more likely due to the problem within the algorithm itself rather than the

quality of the Stream-S′′′′; the other three algorithms do not encounter this problem.

40

50

60

70

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

100%-L 69.85 60.54 64.41 58.48

5%-L 59.53 53.00 46.66 42.93

FEILDS (5%) 66.38 57.32 58.55 53.32

FEILDS (10%) 66.63 57.70 59.11 53.48

MTDR Rocchio
Window-

KNN
Window-
Rocchio

Table 6.8: System performances on tracking task 3-E.

 166

Tables 6.6 − 6.8 also show that the performances of FEILDS can be further

improved when given streams with 10% labeled data (again, with respect to the “5%-

L” performances). The improvement over FEILDS (5%), however, is not significant.

It is likely that most additional labeled data of the same concept category is classified

on the same concept node in the concept hierarchy, yielding no additional

information.

6.4 Performance over Time

Figures 6.2 − 6.4 depict the MTDR algorithm performances over time on tracking

tasks 1-E − 3-E, respectively. Clearly, the FEILDS performances improve over the

baseline (“5%-L”) performances. Using the same sequence of labeled data as that

given to the “5%-L” systems, FEILDS gains its performances as more relevant

instances became available, which is expected. Except in the last twenty tracking

cycles whose current target topics involve Acq, most of the performance gains

achieved over the baseline performances are significant, and in some cases are even

better than the performances of the “100%-L” systems. In the experiment setting, it is

found that Acq is the most difficult target concept to learn, causing a drastic

performance drop when the systems start to track this target concept. Nonetheless,

FEILDS is still able to improve its performances automatically, although rather

slower, with the increasing availability of Acq documents. This tendency is very

encouraging.

 167

20

30

40

50

60

70

80

90

100

1 21 41 61 81
Tracking Cycle

A
cc

ur
ac

y
(%

)

100%-L 5%-L FEILDS (5%)

Figure 6.2: The MTDR algorithm performance over time on tracking task 1-E.

20

30

40

50

60

70

80

90

1 21 41 61
Tracking Cycle

A
cc

ur
ac

y
(%

)

100%-L 5%-L FEILDS (5%)

Figure 6.3: The MTDR algorithm performance over time on tracking task 2-E

 168

 As discussed in Section 4.3, the quality of the concept (cluster) hierarchy as

well as the accuracy of the instance generalization method could affect the quality of

the system’s output. Section 6.4 shows that although FEILDS is able to retrieve more

relevant unlabeled data, which can improve its performance, some of the unlabeled

data retrieved are irrelevant or incorrectly labeled, which degrades system’s

performance. It is likely that this noise prevents FEILDS’s performance from being

better than the performance of “100%-L” system on tracking tasks 1-E – 3-E.

20

30

40

50

60

70

80

90

1 21 41

Tracking Cycle

A
cc

ur
ac

y
(%

)

100%-L 5%-L FEILDS (5%)

Figure 6.4: The MTDR algorithm performance over time on tracking task 3-E.

 169

6.5 Overcoming the Persistence Assumption Problem

Tables 6.9 and 6.10 summarize the performance of the four algorithms on tracking

tasks 4-E and 5-E, respectively. Like in tracking tasks 1-E − 3-E, the performance of

the MTDR and Rocchio algorithms significantly improves over the baseline (“5%-L”)

performance but cannot surpass the performances of “100%-L” systems. Deviating

from these typical results, interestingly, the performance of the Window-KNN and

Window-Rocchio algorithms is at least comparable (in tracking task 4-E) to and is

even better (in tracking task 5-E) than that of the “100%-L” system.

48

53

58

63

68

73

78

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

100%-L 78.04 71.57 66.22 64.35

5%-L 65.45 52.35 56.29 57.20

FEILDS (5%) 72.75 66.44 67.91 64.00

FEILDS (10%) 73.46 67.74 68.91 65.28

MTDR Rocchio
Window-

KNN
Window-
Rocchio

Table 6.9: System performances on tracking task 4-E. The differences of means

between 100%-L and FEILDS (5% & 10%) in the Window-Rocchio,
as well as between 100%-L and FEILDS 5% in the Window-KNN are
not statistically significant (measured using the paired two-tailed t test).

 170

36

46

56

66

76

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

100%-L 74.13 69.81 62.78 57.25

5%-L 64.69 56.90 39.55 41.50

FEILDS (5%) 72.92 66.53 67.61 63.00

FEILDS (10%) 73.33 66.77 67.95 63.26

MTDR Rocchio
Window-

KNN
Window-
Rocchio

Table 6.10: System performances on tracking task 5-E.

35

40

45

50

55

60

65

70

75

80

85

1 11 21 31

Tracking Cycle

A
cc

ur
ac

y
(%

)

100%-L 5%-L FEILDS (5%)

Figure 6.5: The Window-KNN algorithm performance over time on tracking task 4-E.

 171

Figure 6.5 depicts the performance over time provided by the Window-KNN

algorithm on tracking task 4-E. Recall that tracking tasks 4(-E) and 5(-E) require the

persistence assumption in order to properly track the tasks because these tasks have to

track the Trade, long-live, topic. As has been discussed in Chapter III, the “100%-L”

system based on the window-KNN algorithm is not able to retain relevant older

examples (e.g., Trade documents given during the first twenty tracking cycles) when

a concept change occurs at the 21st tracking cycle, stumbling the system performance

during the rest of the tracking cycles. FEILDS as shown in Figure 6.5 can avoid this

problem. The accuracy of the Window-KNN algorithm improves over time after the

concept change transition.

The “100%-L” performances provided by the Window-KNN and Window-

Rocchio algorithms on tracking tasks 4-E and 5-E obviously suffer from being not in

conformity with the persistence assumption needed to track these tasks. However, the

problem can be addressed by learning from the stream generated by FEILDS. In

addition to dealing with fewer labeled data, FEILDS generates a new stream that

complies with the persistence assumption. Specifically, the new stream explicitly

retains the older relevant examples, allowing the Window-KNN and Window-

Rocchio algorithms to learn with better accuracies. This explains why the algorithm

can achieve performances of at least comparable to the performances achieved by the

“100%-L” systems.

 172

6.6 The Sensitivity of Threshold in Instance Generalization Method

This section explores the sensitivity of threshold for recognizing the concept category

of an instance and its impact on the system’s performance. To do this, the

experiments are re-run by varying the threshold values other than the default setting.

The first part of this section examines the quality of the expanded data set ′S

produced by the CDT component of the system. The second part shows the system’s

average accuracies on the test set after learning the stream Stream-S′′′′.

As described in Chapter IV Section 4.3.3, a threshold that selects too specific

or too general a concept node could introduce noise, and affect the coverage of the

target instances retrieved. The quality of the set ′S is thus expressed in terms of noise

and coverage. The former denotes the percentage of instances in ′S that are

incorrectly labeled, while the latter refers to the percentage of target instances in ′S

over all target instances currently maintained in the concept hierarchy. These two

measures are calculated cumulatively from the first tracking task to the end over ten

trials. Specifically, let ′i, jS be the set of expanded instances generated at the jth

tracking cycle during the ith trial, and let ,i je be the number of instances in ′i, jS that is

incorrectly labeled. The noise is calculated as follows:

,
,

'
,

100%
| S |

i j
i j

i j

e
Noise = ×

�
 (6.1)

 173

Furthermore, let ,i jc be the number of target instances that are correctly labeled in

′i, jS , and ,i jh be the number of target instances currently maintained in the concept

hierarchy. The coverage measure is defined by:

,
,

,

100%
i j

i j

i j

c
Coverage

h
= ×
�

Table 6.11 reports the absolute threshold values obtained empirically from the

validation sets. As described in Section 4.3.4, 0θ refers to the threshold value

calculated by setting k in Equation 4.2 to 0, while 0.5θ is the default thresholding

scheme (k=0.5). For readability, a thresholding factor
0

tf
θ
θ

= will be used to

describe a relative threshold with respect to 0θ . For example, the last column of Table

6.11 provides the threshold factor of 0.5θ on each tracking cycle. Thus, 1tf < (resp.

0θ 0.5θ (default) 0.5

0
tf θ

θ=

Tracking task 1-E 1.106 1.144 1.03

Tracking task 2-E 1.109 1.150 1.04

Tracking task 3-E 1.103 1.141 1.03

Table 6.11: Automatic threshold value selection.

(6.2)

 174

1tf >) represents a threshold value that would lead the instance generalization

function to select a more specific (resp. more general) concept node.

Figures 6.6 depicts the coverage of the system’s outputs (e.g., the expanded

set ′S) over various threshold factors. The X threshold factors in the figure denote the

values of threshold generated by the default setting, which, as described in Table

6.11, fall between threshold factors 1 and 1.05. On tracking tasks 1-E − 3-E, the

coverage of the system’s output increases as expected with the increased threshold

factors, and the coverage of smaller thresholds converges to about 5 − 10%. It is

likely that the coverage of 5% − 10% is obtained mainly from the labeled target data

0

10

20

30

40

50

60

70

80

90

0.60 0.70 0.80 0.90 0.95 1.00 X 1.05 1.10 1.20 1.30

more specific <-- threshold factor (tf) --> more general

C
ov

er
ag

e
(%

)
Tracking task 1-E
Tracking task 2-E
Tracking task 3-E

Figure 6.6: The effect of varying threshold values on the coverage of ′S .

 175

given to the system. Figure 6.6 also presents an interesting observation in that while

the coverage of the default setting is relatively high, the slope of the curve around the

default setting is relatively low.

The effect of threshold values on the noise of the system’s output is depicted

by Figure 6.7. Lower threshold factors (0.9tf <) generate a relatively high noise but

not as high noise as produced by higher threshold factors (1.1tf >). Except on

tracking task 1-E, the threshold factors within the range of 0.95 – 1.05 generate

valleys that contain good tradeoffs between small noise and high coverage. It is not

surprising that the default threshold value 0.5θ (the threshold factors X in Figure 6.7)

0

10

20

30

40

50

60

70

80

90

100

0.60 0.70 0.80 0.90 0.95 1.00 X 1.05 1.10 1.20 1.30

more specific <-- threshold factor (tf) --> more general

N
oi

se
 (%

)
Tracking task 1-E

Tracking task 2-E

Tracking task 3-E

Figure 6.7: The effect of varying threshold values on the noise of ′S .

 176

is always in the range. Although high threshold yields high coverage, it also generates

high percentage of noise whose negative effects might outweigh the benefit of having

high coverage. Similarly, low threshold produces a relatively low noise but its low

coverage might not help improve the system performance.

Figure 6.8 summarizes the performances of the MTDR algorithm over various

threshold values. The average accuracies in the figure denote the algorithm

performance on the test set, averaged over ten trials, after learning from the stream

Stream-S′′′′. As mentioned above, the threshold factor X also represents the results from

using the default threshold parameter value (θ0.5). As shown in the figure, smaller

10

20

30

40

50

60

70

0.80 0.90 0.95 1.00 X 1.05 1.10 1.20

more specific <-- threshold factor (tf) --> more general

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Tracking task 1
Tracking task 2
Tracking task 3

Figure 6.8: The effect of varying threshold values on the average accuracies of the

MTDR algorithm.

 177

threshold values (lower than θ0 or at tf=1) do not help improve the algorithm’s

performances because no new information can be provided, converging to the

baseline average accuracies. However, higher threshold factors (1.1tf >) are also

prone to producing a detrimental effect that degrades the algorithm’s average

accuracies even much worse than the baselines. The default threshold setting

improves the algorithm’s performance over θ0 (1tf =) in 2 out of 3 cases. In addition,

the default setting is still safe enough for not by accident selecting concept nodes that

are too general.

6.7 Summary

This chapter empirically evaluates the utility of FEILDS. The emphasis of the

evaluation is on observing its effectiveness in improving the performance of an

existing algorithm for learning concept drift from a stream with sparsely labeled data.

The experiments employ five tracking tasks in previous experiments that are further

expanded to include many more irrelevant unlabeled data.

The main experiment results show that FEILDS is indeed able to extend the

capability of concept drift learners, successfully improving most of their

performances when learning with a very small amount of labeled data. This

improvement is partly a result of the FEILDS’s ability to take advantage of relevant

unlabeled data as these become available over time. The experiment results also show

that the improvement achieved by adding more labeled data is not significant,

indicating that the performance as achieved by an existing concept drift learning

 178

algorithm from learning with a complete labeled data is unlikely to be recovered. It

further confirms the claim made in Chapter IV in that the number of labeled data to

FEILDS is no longer relevant as long as its minimum quantity is already satisfied.

To sum up, current implementation of FEILDS is useful in the presence of

minimal labeled data but could not effectively take advantage additional labeled data

if provided.

 179

CHAPTER VII

CONCLUSIONS

This dissertation has presented three major contributions: a concept drift learning

algorithm for tracking multiple user interest categories, a general method for

extending a concept drift learning algorithm to deal with a stream containing sparsely

labeled data, and a concept formation algorithm for incremental construction of

concept hierarchy. This chapter summarizes each contribution and discusses several

extensions to the work.

7.1 Major Contributions

Algorithm for tracking multiple interest categories. The MTDR algorithm has

been developed for learning the dynamics of tracking multiple interest categories

under the assumption that a full set of examples is available for learning. The

algorithm also satisfies the persistence assumption regarding the user interests,

modifying the interest category representations only when explicitly told to do so

from the relevance feedback examples. Conceptually, the algorithm extends the

typical single window-based concept drift learning approaches by maintaining

multiple window sets. Each set is used for deriving a distinct target concept, and is

composed of large and small windows. The algorithm learns a target concept by

combining the target concept representations from both large and small windows; this

is a novel method. The MTDR algorithm is a realization of the above general method

 180

with implicit windowing mechanism. It has been shown that the MTDR algorithm

outperforms the Rocchio algorithm and the single window-based approaches

particularly when tracking multiple target concepts simultaneously. The performances

of all algorithms, however, are severely degraded when the number of labeled data is

significantly reduced.

General Method for Extending Concept Drift Learning Algorithm. The

strong assumption about the availability of training data has inspired the development

of FEILDS, a general method for extending the capability of existing concept drift

learning algorithms to deal with few labeled data. From the Computational Learning

Theory perspective, the crux of the method is to convert a learning problem with

rapid drift rate that is difficult to track into one with a slower drift rate, which is easier

to learn by existing learners. The FEILDS architecture consists of three main entities:

(1) a concept formation system (CFS), (2) a concept hierarchy, and (3) a concept drift

tracker (CDT). The CFS component incrementally constructs a concept hierarchy

from the input stream of labeled and unlabeled data in an unsupervised mode.

Utilized mainly by the CDT component, the concept hierarchy serves as the

knowledge base for the entire system. The CDT component analyzes the labeled data

stream, removes any conflicting examples and then expands the remaining labeled

data with relevant unlabeled data. The experimental results show the effectiveness of

FEILDS, which greatly improves the performance of existing learners in learning

from incomplete labeled data stream.

 181

Concept Formation Algorithm. Since the concept hierarchy is a critical

entity in the FEILDS architecture, its construction process deserves a careful

treatment. This dissertation has developed a new concept formation algorithm so-

called HOMOGEN. The new algorithm exploits the homogeneity and monotonicity

properties for incremental induction of concept hierarchy from a data stream. Both

properties are essential for discovering intrinsic hierarchical structures. Experiments

conducted on natural, artificial and text documents data sets indicate the effectiveness

of HOMOGEN. The system is relatively insensitive to input ordering and is able to

produce a quality hierarchy structure inherent within the input data. Its performance

in text document collection is also comparable to the best performance achieved by

typical hierarchical agglomerative clustering methods. It is no wonder that this new

algorithm highly contributes to the success of FEILDS.

7.2 Extensions to Current Works

The utility of the main idea behind the MTDR algorithm (e.g., multiple window sets,

and combining large & small windows) has been shown in the information filtering

domain. Its effectiveness in other domains will be an interesting investigation.

Depending on the kind of concept representation that is most suitable for the domain,

applying the algorithm in other domains could require some modifications. The most

notable one is the definition of similarity between two concepts. The use of cosine

coefficient in the current MTDR algorithm is due to the popularity and the

effectiveness of this method for measuring the similarity of concepts in vector space

 182

model. Another possible modification is an alternative method for combining two

concept representations (i.e., those derived from examples in large and small

windows). Currently applying a linear combination of feature weights, the method

would need to be appropriately adjusted if the concept is represented as, for example,

Boolean-valued features.

Several research issues regarding FEILDS’s development are also worthy of

further study. The first possibility is exploring alternative methods for generalizing an

instance through the concept hierarchy. Current generalization method as described in

this dissertation requires a modest effort for preparing the validation set in order to

empirically determine the threshold value of generalization node. At one end of the

spectrum in terms of effort, making the process fully automatic such as applying a

heuristic would be the most desirable method. The most difficult problem with this

approach is finding the appropriate heuristic rules; for example, how to practically

and effectively define the notion of distinct concept. At the other end of the spectrum,

one can use a manually crafted domain theory to guide the selection of the most

appropriate concept in the concept hierarchy. Although promising when it involves a

small number of concepts, this approach is not scalable for a much larger number of

concepts particularly in the text domain where the variety of concept is virtually

unlimited.

The second possibility is to improve the efficiency of HOMOGEN, the concept

formation system currently employed by FEILDS. As described in Chapter V, the

most time-consuming process with the current implementation is the reconstruction of

 183

minimum spanning tree (MST) of objects that defines the concept density

information. Applying incremental MST algorithm (Fredericson, 1985) would likely

improve the efficiency of the concept hierarchy construction.

184

REFERENCES

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic
subspace clustering of high dimensional data for data mining applications. In
Proceedings of the 1998 ACM-SIGMOD International Conference on
Management of Data, pp. 94–105. New York, NY: ACM Press.

Allan, J. (1996). Incremental relevance feedback for information filtering. In
Proceedings of the Nineteenth International ACM-SIGIR Conference on
Research and Development in Information Retrieval, pp. 270–278. New
York, NY: ACM Press.

Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and
tracking. In Proceedings of the Twenty-first International ACM-SIGIR
Conference on Research and Development in Information Retrieval, pp. 37–
45. New York, NY: ACM Press.

Apté, C., Damerau, F., & Weiss, S. M. (1994). Automatic learning of decision rules
for text categorization. ACM Transactions on Information Systems, 12, 233–
251.

Auer, P., & Warmuth, M. K. (1998). Tracking the best disjunction. Machine
Learning, 32, 127–150.

Balabanovi�, M. (1997). An adaptive web page recommendation service. In
Proceedings of the First International Conference on Autonomous Agents,
pp. 378–385. New York, NY: ACM Press.

Balabanovi�, M. (1998). Learning to Surf: Multi-Agent Systems for Adaptive Web
Page Recommendation. Doctoral dissertation, Stanford University, Menlo
Park, CA: Department of Computer Science.

Bartlett, P. L., David, S. B., & Kulkarni, S. R. (1996). Learning changing concepts
by exploiting the structure of change. In Proceedings of the Ninth Annual
Workshop on Computational Learning Theory, pp. 131–139. New York, NY:
ACM Press.

185

Barve, R. D., & Long, P. M. (1997). On the complexity of learning from drifting
distributions. Information and Computation, 138, 170–193.

Billsus, D., & Pazzani, M. (1999). A personal news agent that talks, learns and
explains. In Proceedings of the Third International Conference on
Autonomous Agents, pp. 268–275. New York, NY: ACM Press.

Biswas, G., Weinberg, J., & Fisher, D. (1998). ITERATE: A conceptual clustering
algorithm for data mining. IEEE Transactions on Systems, Man, and
Cybernetics, 28, 100–111.

Blake, C., & Merz, C. (1998). UCI Repository of machine learning databases.
http://www.ics.uci.edu/_mlearn/MLRepository.html, University of
California, Irvine, CA: Department of Information and Computer Science.

Blum, A., & Chalasani, P. (1992). Learning switching concepts. In Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, pp. 231–242.
New York, NY: ACM Press.

Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using
graph min-cuts. In Proceedings of the Eighteenth International Conference
on Machine Learning, pp. 19–26. San Mateo, CA: Morgan Kaufmann.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-
training. In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pp. 92–100. New York, NY: ACM Press.

Blummer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability
and the vapnik-chervonenkis dimension. Journal of the ACM, 36, 929–965.

Bousquet, O., & Warmuth, M. K. (2002). Tracking a small set of experts by mixing
past posteriors. Journal of Machine Learning Research, 3, 363–396.

Buckley, C., Salton, G., Allan, J., & Singhal, A. (1995). Automatic query expansion
using SMART: TREC-3. In Proceedings of the Third Text Retrieval
Conference (TREC-3), pp. 69–80. NIST Special Publication 500-225.

Chen, C. C., Chen, M. C., & Sun, Y. (2002). PVA: A self-adaptive personal view
agent. In Special Issue on Automated Text Categorization, Journal of
Intelligent Information Systems, 18, 173–194.

186

Chen, L., & Sycara, K. (1998). WEBMATE: Personal agent for browsing and
searching. In Proceedings of the Second International Conference on
Autonomous Agents, pp. 132–139. New York, NY: ACM Press.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (2001). Introduction to Algorithms.
Cambridge, MA: MIT Press.

Crouch, C. J., Crouch, D. B., Chen, Q., & Holtz, S. J. (2002). Improving the retrieval
effectiveness of very short queries. Information Processing and
Management, 38, 1–36.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithms. Journal of the Royal Statistical
Society, Series B., 39, 1–38.

Dhillon, I. S., & Modha, D. S. (2001). Concept decompositions for large sparse text
data using clustering. Machine Learning, 42, 143–175.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge Discovery and Data
Mining, pp. 226–231. Menlo Park, CA: AAAI Press.

Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster Analysis. New York, NY:
Oxford University Press Inc.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2, 139–172.

Fisher, D. (1996). Iterative optimization and simplification of hierarchical
clusterings. Journal of Artificial Intelligence Research, 4, 147–180.

Fisher, D., Pazzani, M., & Langley, P. (1991). Concept Formation: Knowledge and
Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.

Fischer, G., & Stevens, C. (1991). Information access in complex, poorly structured
information spaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 63–70. New York, NY: ACM Press.

187

Fisher, D. H., Xu, L., & Zard, N. (1992). Ordering effects in clustering. In
Proceedings of the Ninth International Conference on Machine Learning, pp.
163−168. San Mateo, CA: Morgan Kaufmann.

Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78, 553–569.

Frederickson, G. (1985). Data structures for on-line updating of MST, with
applications. Siam Journal on Computing, 14, 781–798.

Gabbay, D. M, Hogger, C. J., & Robinson, J. A. (1995). Handbook of Logic in
Artificial Intelligence and Logic Programming: V4. Epistemic and Temporal
Reasoning. New York, NY: Oxford University Press.

Gennari, J., Langley, P., & Fisher, D. (1989). Models of incremental concept
formation. Artificial Intelligence, 40, 11–61.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm
for large databases. In Proceedings of the 1998 ACM-SIGMOD International
Conference on Management of Data, pp. 73–84. New York, NY: ACM
Press.

Hadzikadic, M., & Yun, D. (1989). Concept formation by incremental conceptual
clustering. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pp. 831–836. San Mateo, CA: Morgan Kaufmann.

Hanson, S. J., & Bauer, M. (1989). Conceptual clustering, categorization, and
polymorphy. Machine Learning, 3, 343–372.

Harries, M.B., & Horn, K. (1998). Learning stable concepts in a changing world. In
G. Antoniou, A. Ghose and M. Truczszinski (Eds.), Lecture Notes on
Artificial Intelligence 1359: Learning and Reasoning with Complex
Representation, pp. 106–122. Berlin; New York, NY: Springer-Verlag.

Harries, M. B., Sammut, C., & Horn, K. (1998). Extracting hidden context. Machine
Learning, 32, 101-128.

Helmbold, D. P., & Long, P. M. (1994). Tracking drifting concepts by minimizing
disagreement. Machine Learning, 14, 27–45.

188

Herbster, M., & Warmuth, M. K. (1998). Tracking the best expert. Machine
Learning, 32, 151–178.

Hinneburg, H., & Keim, D. (1998). An efficient approach to clustering in large
multimedia databases with noise. In Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining, pp. 58–65. Menlo
Park, CA: AAAI Press.

Hubert, L. J., & Arabie, P. (1985). Comparing partitions. Journal of Classification,
2, 193–218.

Hull, D. A. (1998). The TREC-7 filtering track: Description and analysis. In
Proceedings of the Seventh Text Retrieval Conference (TREC-7), pp. 33–56.
NIST Special Publication 500-242.

Iwayama, M. (2000). Relevance feedback with a small number of relevance
judgments: Incremental relevance feedback vs. document clustering. In
Proceedings of the Twenty-third ACM-SIGIR International Conference on
Research and Development in Information Retrieval, pp. 10–16. New York,
NY: ACM Press.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice Hall.

Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users and real needs:
A study and analysis of users queries on the web. Information Processing
and Management, 36, 207–227.

Jardine, N., & Sibson, R. (1971). Mathematical Taxonomy. New York, NY: John
Wiley & Sons.

Joachims, T. (1997). A probabilistic analysis of the rocchio algorithm with tf-idf for
text categorization. In Proceedings of the Fourth International Conference
on Machine Learning, pp. 143–151. San Mateo, CA: Morgan Kaufmann.

Karypis, G., Han, E. H., & Kumar, V. (1999). CHAMELEON: A hierarchical clustering
algorithm using dynamic modeling. Computer, 32, 68–75.

Klinkenberg, R. (1999). Learning drifting concepts with partial user feedback.
Beiträge zum Treffen der GI-Fachgruppe 1.1.3 Maschinelles Lernen (FGML-
99), Perner, Petra and Fink, Volkmar (ed.).

189

Klinkenberg, R. (2001). Using labeled and unlabeled data to learn drifting concepts.
In IJCAI-01 Workshop on Learning from Temporal and Spatial Data.
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/klinkenberg_2001a.pdf.

Klinkenberg, R., & Joachims, T. (2000). Detecting concept drift with support vector
machine. In Proceedings of the Seventeenth International Conference on
Machine Learning, pp. 487–494. San Mateo, CA: Morgan Kaufmann.

Klinkenberg, R., & Renz, I. (1998). Adaptive information filtering: Learning in the
presence of concept drifts. In AAAI Workshop on Learning for Text
Categorization, pp. 33-40.

Kuh, A., Petsche, T., & Rivest, R.L. (1991). Learning time-varying concepts.
Advances in Neural Information Processing Systems, 3, 183–189.

Lam, W., Mukhopadhay, S., Mostafa, J., & Palakal, M. (1996). Detection of shifts in
user interests for personalized information filtering. In Proceedings of the
Nineteenth ACM-SIGIR International Conference on Research and
Development in Information Retrieval, pp. 317–325. New York, NY: ACM
Press.

Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting
strategies 1 hierarchical systems. Computer Journal, 9, 373–380.

Lang, K. (1995). NEWSWEEDER: Learning to filter news. In Proceedings of the
Twelfth International Conference on Machine Learning, pp. 331–339. San
Mateo, CA: Morgan Kaufmann.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM.
Machine Learning, 2, 103–138.

Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for
text categorization. In Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval, pp. 81–93. Las Vegas, NV:
University of Nevada, Information Science Research Institute.

Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm.
Information and Computation, 108, 212–261.

190

Long, P. M. (1998). The complexity of learning according to two models of a
drifting environment. In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pp. 116–125. New York, NY: ACM Press.

McKusick, K. B., & Langley, P. (1991). Constraints on tree structure in concept
formation. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, pp. 810– 816. San Mateo, CA: Morgan Kaufmann.

Mitchell, T.M. (1997). Machine Learning. New York, NY: McGraw-Hill.

Mitra, M., Singhal, A., & Buckley, C. (1998). Improving automatic query expansion.
In Proceedings of the Twenty-first ACM-SIGIR International Conference on
Research and Development in Information Retrieval, pp. 206–214. New
York, NY: ACM Press.

Miyamoto, S. (1990). Fuzzy Sets in Information Retrieval and Cluster Analysis.
Boston, MA: Kluwer Academic Publishers.

Moukas, A., & Zacharia, G. (1997). Evolving a multi-agent information filtering
solution in AMALTHEA. In Proceedings of the First International Conference
on Autonomous Agents, pp. 394–403. New York, NY: ACM Press.

Nevins, J. (1995). A branch and bound incremental conceptual clusterer. Machine
Learning, 18, 3–22.

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-
training. In Proceedings of the Ninth International Conference on
Information and Knowledge Management, pp. 86–93. New York, NY: ACM
Press.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39, 103–
134.

Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, 27, 313–331.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 44, 846–850.

191

Rocchio, J. J. (1971). Relevance feedback in information retrieval. In G. Salton, The
SMART Retrieval System: Experiments in Automatic Document Processing,
pp. 313–323. Englewood Cliffs, NJ: Prentice-Hall.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science, 4, 288–
297.

Salton, G., & McGill, M. J. (1983). Introduction to Modern Information Retrieval.
New York, NY: McGraw-Hill.

Schlimmer, J. C., & Granger, R. H. (1986). Beyond incremental processing:
Tracking concept drift. In Proceedings of the Fifth National Conference on
Artificial Intelligence, pp. 502–507. Menlo Park, CA: AAAI Press.

Seo, Y. W., & Zhang, B. T. (2000). Learning user's preferences by analyzing web-
browsing behaviors. In Proceedings of the Fourth International Conference
on Autonomous Agents, pp. 381–387. New York, NY: ACM Press.

Sheth, B. D. (1993). A Learning Approach to Personalized Information Filtering.
Master thesis, Massachusetts Institute of Technology, Cambridge, MA:
Department of Electrical Engineering and Computer Science.

Tan, A., & Teo, C. (1998). Learning user profile for personalized information
dissemination. In Proceedings of International Joint Conference on Neural
Network, pp. 183–188. New York, NY: IEEE.

Theodoridis, S., & Koutroumbas, K. (1999). Pattern Recognition. San Diego, CA:
Academic Press.

Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. In
Proceedings of the Seventeenth International Conference on Machine
Learning, pp. 1103–1110. San Mateo, CA: Morgan Kaufmann.

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained k-means
clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, pp. 577–584. San Mateo,
CA: Morgan Kaufmann.

Widmer, G. (1997). Tracking context changes through meta-learning. Machine
Learning, 3, 259–286.

192

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23, 69–101.

Widyantoro, D. H. (1999). Modeling and Learning User Profile in Personalized
News Agent. Master thesis, Texas A&M University, College Station, TX:
Department of Computer Science.

Widyantoro, D. H., Ioerger, T. R., & Yen, J. (1999). An adaptive algorithm for
learning changes in user Interests. In Proceedings of the Eighth International
Conference on Information and Knowledge Management, pp. 405–412. New
York, NY: ACM Press.

Widyantoro, D. H., Ioerger, T. R., & Yen, J. (2001). Learning user interest dynamics
with a three-descriptor representation. Journal of the American Society for
Information Science and Technology, 52, 212–225.

Widyantoro, D. H., Ioerger, T. R., & Yen, J. (2002). An incremental approach to
building a cluster hierarchy. In Proceedings of the Second IEEE
International Conference on Data Mining, pp. 705–708. New York, NY:
IEEE.

Widyantoro, D. H., Ioerger, T. R., & Yen, J. (2003). Tracking changes in user
interests with a few relevance judgments. In Proceedings of the Twelfth ACM
International Conference on Information and Knowledge Management
(CIKM-2003), pp. 548–551. New York, NY: ACM Press.

Widyantoro, D. H., Yin, J., Seif El-Nasr, M., Yang, L., Zacchi, A., & Yen, J. (1999).
ALIPES: A swift messenger in cyberspace. In Proceedings of the AAAI
Spring'99 Symposium on Intelligent Agents in Cyberspace, pp. 62–67. Menlo
Park, CA: AAAI Press.

Witten, I. H., Moffat A., & Bell T. C. (1994). Managing Gigabytes: Compressing
and Indexing Documents and Images. New York, NY: Van Nostrand
Reinhold.

Xu, J., & Croft, W. B. (1996). Query expansion using local and global document
analysis. In Proceedings of the Nineteenth Annual International ACM-SIGIR
Conference on Research and Development in Information Retrieval, pp. 4–
11. New York, NY: ACM Press.

193

Yan, W. T., & Garcia-Molina, H. (1999). The SIFT information dissemination
system. ACM Transactions on Database Systems, 24, 529–565.

Yang, Y., Ault, T., Pierce, T., & Lattimer, C. (2000). Improving text categorization
methods for event tracking. In Proceedings of the Twenty-third International
ACM-SIGIR Conference on Research and Development in Information
Retrieval, pp. 65–72. New York, NY: ACM Press.

Yang, Y., Carbonell, J. D., Brown, R. D., Pierce, T., Archibald, B. T., & Liu, X.
(1999). Learning approaches for detecting and tracking news events. IEEE
Intelligent Systems: Special Issue on Applications of Intelligent Information
Retrieval, 14, 32–43.

Yang, Y., Pierce, T., & Carbonell, J. (1998). A study on retrospective and on-line
event detection. In Proceedings of the Twenty-first International ACM-SIGIR
Conference on Research and Development in Information Retrieval, pp. 28-
36. New York, NY: ACM Press.

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on Computers, C 20, 68–86.

Zhang, T., & Oles., F. J. (2000). A probability analysis on the value of unlabeled
data for classification problems. In Proceedings of the Seventeenth
International Conference on Machine Learning, pp. 1191–1198. San Mateo,
CA: Morgan Kaufmann.

194

VITA

Dwi Hendratmo Widyantoro graduated cum laude from the Institut Teknologi Bandung,

Indonesia, in 1991, obtaining his B.S. in Computer Science. After spending two years

working in a software industry, he joined the Department of Informatics Engineering of

the Institut Teknologi Bandung in 1993 as a teaching staff member. In 1997, Widyantoro

began his graduate study in the Department of Computer Science at Texas A&M

University and was awarded M.S. degree in Computer Science in 1999. During his

attendance at Texas A&M University, he has published at least twelve conference and/or

journal papers. His permanent address is at Jl. Puri Cipageran Indah I Blok A-36, Cimahi

50411 Indonesia.

