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ABSTRACT 

 

Unconventional tight/shale reservoirs have become an important component of the 

world’s energy map in the recent decade and have been attracting a lot of interests in both 

academia and industry. However, the industry today still faces significant challenges in 

understanding the fundamental mechanisms. Unconventional tight/shale reservoirs are 

characterized by low or ultra-low permeability, such that the transient pressure behavior 

might last throughout the production lifetime. Recent research has proposed a novel 

approach for unconventional reservoir analysis based on the high-frequency asymptotic 

approximation of diffusivity equation. By solving the Eikonal equation with the Fast 

Marching Method (FMM), one can rapidly obtain the diffusive time of flight (DToF) 

which depicts the pressure transient propagation process. A fast DToF-based forward 

simulation is further proposed to solve the fluid flow equation in a 1D equivalent 

coordinate system, with the DToF as the spatial coordinate. 

In this study, we first adopt the DToF-based simulation as a rapid forward 

simulator to formulate an efficient hydraulic fracture design and optimization workflow. 

The DToF-based simulation can be orders of magnitude faster than the conventional finite 

difference/volume based simulation, and is ideal for optimization process where hundreds 

or thousands of simulations are necessary. Our workflow focuses on optimizing the 

number of hydraulic fracture stages, their spacing, and the allocation of proppant. The 

workflow also accounts for the geologic uncertainty, which given by different natural 

fracture distributions. 



 

iii 

 

Next, we extend this DToF-based simulation from Cartesian and corner point grid 

system to unstructured grids to better characterize the complex fracture geometry induced 

by hydraulic fracturing job. Two different constructions of the local Eikonal equation 

solver, based on Fermat’s principle and Eulerian discretization, are investigated and 

compared. Numerical examples are presented to illustrate the power and validity of this 

extended DToF-based simulation workflow. 

Finally, we propose a model-free production data analysis method to analyze the 

performance of unconventional reservoirs when a full simulation model is not available. 

The transient drainage volume is derived directly based on bottom-hole pressure and 

production rate. We further define the drainage volume derivative and instantaneous 

recovery ratio, which can measure how effectively the hydraulic fractures have stimulated 

the reservoir. This technique is then applied to select candidate wells for refracturing. 
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CHAPTER I  

INTRODUCTION 

1.1 Introduction 

Unconventional tight/shale reservoirs have become an important component of the 

world’s energy map in the recent decade. The successful development of such reservoirs 

relies on horizontal wells completion and multistage hydraulic fracturing techniques 

(Holditch 2010). Even through the industry practice has become quite successful in the 

U.S., the engineers today still face significant challenges in understanding the fundamental 

mechanisms involved in the production of unconventional resources. Further research in 

simulation and analysis of unconventional reservoirs has been attracting a lot of interest 

in both academia and industry. Further technology advancement can help optimize the 

unconventional reservoir development by reducing costs and minimizing risks. 

Currently, decline curve analysis (Fetkovich 1980; Valko and Lee 2010) and 

pressure/rate transient analysis (Clarkson et al. 2012; Ilk et al. 2010; Song and Ehlig-

Economides 2011) are two types of widely used analytical methods for production forecast 

in tight/shale reservoir development. The methods in the decline curve analysis are mostly 

curve-fitting, used to predict production via extrapolation and obtain the estimated 

ultimate recovery. There is no physical model associated with the decline curve analysis 

and the reservoir and fracture properties are mainly ignored. In the pressure/rate transient 

analysis, reservoir and fracture properties are first estimated from identified flow regimes, 

and then well production is predicted with the estimated properties. Pressure/rate transient 

analysis can only incorporate simplified completion and reservoir geometry, such as a 
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homogeneous reservoir, planner hydraulic fractures, and full completion. The predictive 

power of these analytical techniques highly relies on the quantity and quality of production 

data. The analytical models are very useful especially when only production data are 

available, and there is very limited subsurface information. However, they become 

inadequate when we have a better knowledge of the reservoir heterogeneity and complex 

hydraulic fracture geometry through the integration of geological, geophysical, and 

engineering data.  

When adequate subsurface information is available, numerical simulations have 

also been used to perform unconventional reservoir analysis (Cipolla et al. 2010; 2012; 

2011; Fan et al. 2010; Freeman et al. 2010). The advantage of numerical simulation is that 

it can rigorously account for reservoir heterogeneity, complex fracture geometry and 

complicated physical processes, such as rock compaction, gas diffusion, and adsorption. 

However, the biggest disadvantage of numerical simulation is that it can be very time-

consuming, particularly when a high-resolution simulation model is used to accurately 

model complex fracture geometry and the flow in the vicinity of the hydraulic fractures. 

In order to obtain a reliable prediction, the parameters of numerical models usually need 

to be calibrated by matching available production/pressure history data. The calibration 

process, as well as uncertainty quantification and field development optimization, require 

hundreds or thousands of simulation runs and thus become extremely computational 

expensive for a high-resolution simulation model.  

In our recent research, we have proposed a novel approach for unconventional 

reservoir analysis based on the diffusive time of flight (DToF) provided by the Fast 
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Marching Method (FMM) (Datta-Gupta et al. 2011; King et al. 2016; Xie et al. 2015a, 

2015b; YangVyas et al. 2017; Zhang et al. 2016; Zhang et al. 2013). This DToF-based 

approach stands midway between the simplified analytical models and conventional 

numerical simulations. Compared with simplified analytical models, this proposed DToF-

based approach can incorporate reservoir heterogeneity, complex fracture geometry, and 

complicated physical processes. Compared with conventional numerical simulations, it is 

computationally more efficient, making it ideal for uncertainty analysis, parameter 

calibration, model ranking/selection, and field development optimization. 

Before we introduce our proposed DToF-based approach for unconventional 

reservoir analysis, let’s first take a brief look at the Fast Marching Method. 

1.2 Fast Marching Method 

The Fast Marching Method is a numerical technique, first proposed by Sethian 

(1996) and Sethian (1999), to efficiently solve nonlinear Eikonal equations, which are 

typically seen in first-arrival ray tracing or wave fronts propagation. In the Eikonal 

equation (shown by Eq.1.1), ( )x  and boundary condition of ( )x  are usually supplied 

as known input.  

 ( ) ( ) 1x x    (1.1) 

FMM is a single-pass method which utilizes the fact that the value of ( )x  for the 

first-order partial differential equation depends only on the value of   along the 

characteristic(s) passing through the point x  (Sethian 1996). Thus, the solution of   can 

be constructed in an orderly one-pass fashion from smaller values of   to larger values. 

This monotonic marching behavior of FMM directly considers the causality requirement, 
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which as defined by Vidale (1988), that “the time for the part of the ray path leading to a 

point must be known before the time of the point can be found.” As an efficient approach 

to solving the nonlinear Eikonal equations, FMM has been widely applied to many 

disciplines, including computational geometry, medical imaging, computational fluid 

dynamics and seismic analysis. The basic framework of the Fast Marching Method 

comprises of the following steps (Sethian 1999): 

(1) Label all grid nodes as unknown; 

(2) Assign   values (usually zero) to the nodes corresponding to the initial 

position of the propagating front and label them as accepted; 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered; 

(4) For each node labeled as considered, update its   value based on its accepted 

neighbors using the minimum local solutions; 

(5) Once all nodes labeled as considered have been locally updated, we pick the 

node which has the minimum   value among them, and label it as accepted; 

(6) Go to step (3) until all nodes are accepted. 

These steps can be illustrated with Dijkstra’s Algorithm in a 5-stencil Cartesian lattice grid 

(as depicted in Figure 1.1). We put one point as the initial position of the propagating front 

and label it as accepted (solid) as shown in (a). Then its immediate neighbors A, B, C, and 

D are marked as considered (circle) as shown in (b). After the   values of A, B, C and D 

have been updated, we pick the smallest one (suppose it is A) and mark it as accepted as 

shown in (c). Then its neighbors E, G, and F are added into the considered as shown in 



 

5 

 

(d). These steps will repeat for the next accepted point, suppose it is D as shown in (e), 

and then suppose it is H as shown (f) until all the points of the entire domain are accepted. 

 

Figure 1.1 Illustration of Dijkstra’s Algorithm (modified from Xie et al. (2015b)) 

The local update of   value for the 5-stencil Cartesian grid can be written with the 

standard finite difference notation as (Hassouna and Farag 2007; Sethian 1996): 

    
2 2 1

max , ,0 max , ,0x x y y

ij ij ij ijD D D D   


        (1.2) 

Here the upwind finite difference operator D for x  directions can be written as 

, 1,( ) /x

ij i j i jD x  

    and 1, ,( ) /x

ij i j i jD x  

   . Similar equations hold for y  

directions. In Eq.1.2,   values at unknown points are regarded as infinity, and the “max” 

function is used to guarantee the “upwind” criteria. Eq.1.2 leads to a quadratic equation, 
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and its minimum positive root gives us the   value at point ( , )i j . Alternatively, the   

values can be calculated from each of the four quadrants (bottom-left, bottom-right, top-

left, and top-right) by conventional finite difference formulation and then take the 

minimum   value obtained. 

The computational efficiency of the FMM mainly comes from two facts, which 

are: 1) FMM only involves solving local quadratic equations and visiting every grid point 

once; 2) the implementation of the min-heap data structure to find the minimum value 

from the considered list. As a result, the FMM calculation only has a computational 

complexity of ( log )O N N , where N  is the total number of computing nodes in the 

domain (Sethian 1999). More details of the algorithm and some extensions can be found 

in previous works (Fomel and Sethian 2002; Lelièvre et al. 2011; Sethian 1996; Sethian 

1999; Sethian and Vladimirsky 2000).  

1.3 DToF-based Fluid Flow Simulation 

The depth of investigation is an important concept in the traditional pressure 

transient analysis to link the pressure response and reservoir properties. Lee (1982) 

proposed the definition to be the propagation distance of the maximum pressure draw-

down for an impulse source/sink. In 2D radial flow, the depth of investigation (also known 

as the radius of investigation) in field units is calculated by Eq.1.3, which is originally 

derived from the line-source analytical pressure transient solution in homogeneous 

reservoirs.  

 
948 t

kt
r

c
  (1.3) 
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Unconventional tight/shale reservoirs are characterized by low or ultra-low 

permeability, which might result in a pressure transient behavior throughout the 

production lifetime. Therefore, the concept of depth of investigation is not limited to 

traditional well test analysis, and it becomes an important parameter to characterize the 

production of unconventional wells (Datta-Gupta et al. 2011). In the presence of reservoir 

heterogeneity, Vasco et al. (2000) and Kulkarni et al. (2000) derived the Eikonal equation 

for pressure front propagation and introduced the concept of the diffusive time of flight 

using the asymptotic ray theory from geometric optics and seismology. Their derivation 

provides the asymptotic solution of diffusivity equation (Eq.1.4) to capture the pressure 

front propagation, in analogy to the wave-front propagation. 

 t

k p
p c

t




  
   

 
 (1.4) 

By applying Fourier transform and asymptotic expansion of the diffusivity 

equation (Eq.1.4), it can be shown that in the high-frequency limit the pressure front 

propagation can be described by Eikonal equation (as given by Eq.1.1). In this case, the 

unknown   is called diffusive time of flight (DToF), which is analogous to the radius of 

investigation in Eq.1.3 and is conceptually a measure of distance rather than time. The 

other term   is called diffusivity, defined by Eq.1.5. It is worthy to point out that all the 

reservoir heterogeneity information is lumped into this diffusivity term and later be 

embedded in variable   after solving the Eikonal equation. 

 
( )

( )
( ) t

k x
x

x c


 
  (1.5) 
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The derived Eikonal equation (Eq.1.1) describes the propagation of the pressure 

front and can be efficiently solved by the Fast Marching Method, developed by Sethian 

(1996) and Sethian (1999). The DToF obtained at each location characterizes the general 

connectivity to the sink/source point. By applying different DToF cut-offs or contours and 

adding up all the pore volume within the contours, the well drainage volumes can be 

approximated as a function of DToF. The drainage volume can provide intuitive 

visualization of the pressure propagation process and is obtained without solving any 

actual diffusivity equation. Thus, we generalize the drainage volume from pseudo-steady 

state flow in conventional reservoirs, where the drainage volume is usually fixed and is 

determined by well rates and spacing, to transient flow in unconventional reservoirs. 

Our major contribution is to calculate the well performance based on the DToF 

and drainage volume. Xie et al. (2015b), Zhang et al. (2016) and Cui et al. (2016) have 

demonstrated the validity and the speed of DToF-based approach, and have shown how it 

can be utilized to provide the necessary understanding to describe unconventional 

reservoirs and optimize the development. 

Xie et al. (2015a) proposed a pseudo-steady state (PSS) geometric approximation 

for pressure calculation under the constant flow rate boundary condition. The PSS 

geometric approximation assumes that the Darcy flux is negligible beyond the drainage 

volume and that the pressure is approximated by a pseudo-steady state solution within the 

drainage volume (Agarwal 2010; Nordbotten et al. 2004). For unconventional reservoir 

simulation, the constant wellbore pressure boundary condition is commonly implemented. 

The production rate under constant BHP condition is also presented by Xie et al. (2015b).  
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In geometric approximation, drainage pore volume as a function of time t  is 

required. However, by solving the Eikonal equation using FMM, we obtain the drainage 

pore volume as a function of the DToF. In previous studies, Xie et al. (2015a) and Xie et 

al. (2015b) provided an approximate conversion from DToF to physical time. For 

homogeneous media with known flow regimes, this conversion can work accurately. 

Nevertheless, it brings inaccuracy for heterogeneous media because there is no global flow 

pattern. 

Since the reservoir heterogeneity (or connectivity) information is embedded in the 

DToF  , Zhang et al. (2016) derived a more direct approach to solving the fluid flow 

equation, using   as a spatial variable. The details of this   coordinate transformation 

can be found in the original work by Zhang et al. (2016), and it is also provided in 

Appendix A for completeness. By applying the DToF coordinate transformation, the 

diffusivity equation is then transformed into the following formula, given by Eq.1.6  

 
1 ( , ) ( , )

( )
( )

p t p t
w

w t

 


  

   
 

   
 (1.6) 

where ( )w   is the derivative of drainage volume with respect to  , given by Eq.1.7 

 
( )

( )
pdV

w
d





  (1.7) 

Note that ( )w   is proportional to the surface area of the drainage pore volume and 

is directly related to the geometry of the drainage volume of the well. The heterogeneity 

and the physical properties appear to have “vanished” from the diffusivity equation in 

Eq.1.6, but actually, the heterogeneities have been lumped into the   and ( )w   function. 
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The pressure which appears within the equivalent 1D diffusivity equation will then be the 

pressure averaged over the differential volume at the  -contour, ( , ) ( ( ), )p x t p x t . This 

simplification in the representation of the pressure is especially useful for production 

analysis as it allows us to examine the relationships between pressure, rate and drainage 

volume without the need for high-resolution flow simulation or detailed reservoir 

modeling.  

The direct analogy with the diffusivity equation for a single vertical well in 

homogeneous reservoirs is shown in Figure 1.2. For the homogeneous reservoir with a 

simple well geometry, the depth of investigation or pressure propagation surface of the 

well is circular. However, in the presence of reservoir heterogeneity or with complex 

fracture geometry, the shape of the pressure propagation surface becomes twisted area and 

is unknown before solving the pressure propagation equation on the simulation model. 

 

Figure 1.2 Analogy between the ( )w   formulation in a heterogeneous reservoir and the 

circular drainage volume in a homogeneous reservoir 
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Similar to streamline simulation technique (Datta-Gupta and King 2007), the  -

coordinate transformed diffusivity equation (Eq.1.6) reduces the fluid flow from the 3D 

physical domain into a 1D  -coordinate system, which can be efficiently solved with 

conventional numerical technique, such as finite difference method. Besides, this 

transformation allows more easily to incorporate complicated physical processes.  

Fujita et al. (2016) extended this framework to a triple-continuum system for the 

modeling of shale gas reservoirs. In his approach, the DToF is calculated based on the 

equivalent diffusivity, and then the governing equations of different physics are 

transformed with the DToF coordinate. Fujita et al. (2016) comprehensively investigated 

the dominant physical mechanisms for shale gas reservoirs, including the Knudsen 

diffusion and slippage effects, gas adsorption/desorption, rock compaction, and gas 

diffusion from the kerogen.  

King et al. (2016) also developed an analytical approach to solving the  -

coordinate transformed fluid flow equation (Eq.1.6), for the ease of use and simplicity of 

interpretation. They rewrote Eq.1.6 in terms of flux based on Darcy’s law and solved the 

newly derived equation for flux by integrating its spatial gradient. They validated their 

analytical solution against conventional diagnostic plot for pressure draw-down and 

Fetkovich type curves (Fetkovich 1980), and obtained good agreement. Regarding 

composite reservoirs, King et al. (2016) introduced the reflection and transmission 

coefficients into the solution. 

No matter whether being solved numerically or analytically, Eq.1.6 serves as the 

starting point in our DToF-based simulation for unconventional reservoirs.  
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1.4 Dissertation Outline 

In this study, we first adopt the DToF-based simulation as a forward simulator and 

develop a systematic and efficient fracture design and optimization workflow. Then, we 

extend the DToF-based simulation to the unstructured grid system to better capture the 

complex fracture geometry. Finally, we propose a model-free production data analysis 

technique based on our cumulative understanding of the diffusive time of flight and 

transient drainage volume. The primary goals of the corresponding chapters are as follows: 

Chapter I: General introduction and review of the DToF-based fluid flow 

simulation. 

Chapter II: Development of a systematic and efficient fracture design and 

optimization workflow using the DToF-based simulation as a rapid forward simulation. 

The workflow also accounts for the geologic uncertainty, which is indicated by different 

natural fracture distributions. 

Chapter III: Extension of the DToF-based simulation from Cartesian and corner 

point grid system to unstructured grids to better characterize the complex fracture 

geometry. The local Eikonal equation solvers based on Fermat’s principle and Eulerian 

discretization for unstructured grids are investigated and compared.  

Chapter IV: Development of a model-free production data analysis method to 

analyze the performance of unconventional reservoirs. This technique is then applied to 

select the candidate wells for refracturing. 

Chapter V: Conclusion of this study and future work recommendations. 
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CHAPTER II  

MULTISTAGE HYDRAULIC FRACTURE DESIGN AND OPTIMIZATION USING 

FAST MARCHING METHOD 

2.1 Introduction 

This chapter extends the DToF-based simulation to dual porosity system and then 

it is used as the rapid forward simulator for the multistage hydraulic fracture design and 

optimization. We will present the Oda’s method for calculating the permeability for 

fracture system from discrete fracture network, the proppant and fluid calculation with 

assumed hydraulic fracture geometry, and the derivative-free genetic algorithm based 

optimization workflow. The proposed multistage hydraulic fracture design and 

optimization workflow is demonstrated through a synthetic shale reservoir model. The 

optimization results are presented and discussed, especially the influence of reservoir 

heterogeneity induced by the distribution of nature fractures and the geologic uncertainty. 

2.2 Background 

Horizontal well completion and multistage hydraulic fracturing allow the wells in 

unconventional reservoirs to contact as much rock as possible by generating fracture 

networks with enough conductivity (Fisher et al. 2005; Maxwell et al. 2002). The resulting 

fracture networks could be quite complex due to the existence of natural fractures. Savitski 

                                                 

 Part of data reported in this Chapter is reprinted with permission from “Rapid Multistage Hydraulic 

Fracture Design and Optimization in Unconventional Reservoirs Using a Novel Fast Marching Method” by 

Yang, C., Vyas, A., Datta-Gupta, A., Ley, S. & Biswas, P. (2017), paper published in Journal of Petroleum 

Science and Engineering 156: 91-101. Copyright [2017] Elsevier. 
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et al. (2013) showed that during hydraulic fracturing, the total area of pressurized discrete 

fracture networks (DFN) could be very significant. Riahi and Damjanac (2013) reported 

that natural fractures reopen when fracturing fluids are injected through numerical study. 

The reopening of pre-existing natural fractures and the induced fractures by hydraulic 

fracturing bring more challenges to better characterize the geological model and optimize 

hydraulic fracturing design. Saldungaray et al. (2013) summarized four broad categories 

of optimization parameters: a) wellbore placement and lateral length; b) completion 

hardware and isolation techniques; c) fracture spacing or the number of fractures; d) 

fracture geometry and conductivity. 

Several researchers previously carried out the study on multistage fracture 

optimization. Sierra et al. (2013) investigated the correlations between various fracturing 

parameters, such as permeability, viscosity, and drawdown pressure, and the optimum 

fracture spacing through numerical simulation. Sehbi et al. (2011) presented an approach 

to optimize well completion design, and they found that an optimum number of hydraulic 

fracture stages exist for a given reservoir. Ma et al. (2013) applied a couple of stochastic 

optimization algorithms to address the hydraulic fracturing placement problem. They 

assigned uniform properties to the hydraulic fractures but didn’t account for geological 

heterogeneity of the model, which may lead to suboptimal hydraulic fracturing design. 

2.3 Methodology 

This subsection describes all the techniques used for the hydraulic fracture design 

and optimization, which includes Oda’s permeability upscaling, fracturing proppant and 

fluid calculation, DToF-based dual porosity model simulation, and genetic algorithm. 
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2.3.1 Oda’s Permeability Upscaling 

Approaches to calculating grid effective directional permeability include Oda’s 

tensor approach (Oda 1984) and flow based permeability upscaling. Oda’s tensor approach 

does not account for the connectivity of fractures and can, thus, underestimate the 

permeability when the fracture intensity is low. However, Oda’s tensor approach is much 

faster with acceptable accuracy on a limited number of fracture planes. 

Oda’s crack tensor is expressed in the integral formula, but an empirical crack 

tensor can be calculated as shown by Eq.2.1, by adding the individual fracture weighted 

by its fracture area kA  and transmissivity kT  (Dershowitz et al. 2000). 

 
1

1 N

ij k k ik jk

kcell

F A T n n
V 

   (2.1) 

where, 
ijF  is the crack tensor, cellV  is the grid cell volume and ikn , 

jkn  are the 

components of a unit normal to the fracture k. 

Oda’s permeability tensor is derived from crack tensor 
ijF  by assuming that crack 

tensor expresses fracture flow as a vector along the unit normal direction of the fractures. 

With the assumption that fractures are impermeable in the direction which is parallel to 

their unit normal, crack tensor needs to be rotated into the planes of fracture to obtain the 

permeability tensor (Eq.2.2). 

  
1

12
ij kk ij ijk F F   (2.2) 

where, ij  is Kronecker delta function and kkF  is the summation of three principal 

component of the crack tensor ijF  (i.e. 11 22 33kkF F F F   ). 
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2.3.2 Proppant and Fluids Calculation 

In this study, we assume simple Khristianovic-Geertsma-de Klerk (KGD) fracture 

geometry. With desired fracture geometry, the total volume of hydraulic fractures per 

stage can be calculated using Eq.2.3, 

 2p f f fV x w h  (2.3) 

where, 
fx , 

fw , and 
fh  are fracture half-length, fracture height and average width, 

respectively. The proppant mass 
pM  per stage then can be calculated with Eq.2.4, where 

p  is proppant density, and 
p  is porosity of proppant.  

 (1 )p p p pM V     (2.4) 

With specified fluids pumping rate, the pumping time can be estimated by applying 

material balance equation to fluids leakage (Eq.2.5). 

 (2 ) (2 ) 0inj inj f f L inj f f p f f fq t h x C t h x S x w h     (2.5) 

where, 
injq  is injection rate per half fracture of a bi-winged fracture, 

injt  is injection 

time,   is the opening time distribution factor, LC  is the fluid leak-off coefficient for the 

formation, and 
pS  is spurt loss coefficient. Then, the total proppant slurry volume and 

total fracturing fluid volume per fracture stage can be determined by the following Eq.2.6 

and Eq.2.7: 

 2slurry inj injV q t  (2.6) 

 2
p

fluid inj inj

p

M
V q t


   (2.7) 
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2.3.3 Extension of DToF-based Simulation to Dual Porosity System 

In fractured reservoir, natural fractures will reopen and contribute to fluid flow 

during the hydraulic fracturing process. Generally speaking, dual porosity model (Warren 

and Root 1963), rather than single porosity model, is more suitable to characterize and 

model naturally fractured reservoir. Dual-porosity modeling is computationally 

inexpensive and structurally simplified compared direct modeling with the discrete 

fracture networks (DFN). In dual porosity model, the fracture system is highly conductive 

but can store little fluid due to its very low porosity; whereas the matrix system has low 

conductivity and large storage capacity compared to fracture system.  

The fluid transport equation in the fracture system is given by Eq.2.8, with a mass 

transfer term connecting to the matrix:  

 
( )

( )
f m

f f up f m f

up

k
k p p p q

t

 
  

 

  
      

  
 (2.8) 

The fluid transport equation in the matrix is given by Eq.2.9: 

 
( )

( )m m
up f m

up

k
p p

t


 




 


 (2.9) 

where,   is the fluid density,   represents porosity, 
fq  is the sink/source term, 

  stands for fluid viscosity and k  denotes the permeability. Subscript f  stands for the 

fracture and m  represents the matrix. The right hand side of Eq.2.9 is the mass transfer 

term between fracture and matrix (Kazemi et al. 1976), among which   is called shape 

factor that defines the connectivity between the matrix block and the surrounding fracture 

network. 
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As fluid flow only happens in the fracture system, the pressure propagation is 

solved with FMM in fracture system, where the drainage volume as a function of DToF is 

calculated. When solving the fluid flow equation to estimate the reservoir performance, 

we assume the matrix properties (i.e., porosity, permeability, and shape factor) are 

spatially uniform. Eq.2.8 and Eq.2.9 are transformed into   coordinate for the DToF-

based 1D flow simulation. After the   coordinate transformation, the mass balance 

equation in fracture takes the following form as Eq.2.10 (Fujita et al. 2016), where 
,f ref  

denotes the fracture porosity at the reference pressure. The matrix equation can be written 

as Eq.2.11. The dual porosity system on the DToF coordinate is illustrated in Figure 2.1, 

where the fracture network is the system through which the pressure front primary 

propagates and the matrix serves as a fluid source to the fracture system.  

 
, ( )

( ) ( )
( )

f f ref f ft init m
f m

p qc k
w p p

t B w B B B

  
 

    

    
       

     
 (2.10) 

 ( )m m
f m

k
p p

t B B





  
  

  
 (2.11) 

 

Figure 2.1 Dual-porosity system on the DToF coordinate (adapted from Fujita et al. (2016)) 
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Here, we demonstrate the DToF-based dual porosity simulation model with a 

naturally fractured gas reservoir. The reservoir size 1990ft, 1990ft, and 50ft along x, y, and 

z directions respectively. A vertically completed well sits in the middle of the reservoir. 

The simulation model is comprised of total 19919910 grids, where the first five layers 

are the matrix system, and the other five layers represent the fracture system. Figure 2.2 

shows the permeability and porosity distribution in the fracture system. The fracture 

permeability ranges from 0.032 to 0.493 md in x direction, 0.032 to 0.498 md in y direction, 

and 0.0034 to 0.0634 md in z direction. Porosity ranges from 0.97% to 12%. The initial 

reservoir pressure is 5470 psi and the model is simulated at constant bottom-hole pressure 

(2000psi) constraint for five years. Other key parameters are listed in Table 2.1.  

 
                            a) PERMX                                                      b) PERMY 

 
                            c) PERMZ                                                      d) PORO 

Figure 2.2 Distribution of the fracture permeability and porosity for synthetic model 
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Table 2.1 Parameters used in synthetic dual porosity model 

Reservoir size 1990×1990×50 ft3 

Matrix porosity 0.1 

Matrix permeability 0.0001 md 

Initial pressure 5470 psi 

Rock compressibility(at pinit) 1.0×10-6 psi-1 

Shape factor 0.15 

Wellbore radius 0.5 ft 

Bottom-hole pressure 2000 psi 

 

After running FMM, the drainage volume as a function of DToF is shown in Figure 

2.3 (red circle). It is observed that the drainage volume increases monotonically with 

increasing DToF; however, the rate of drainage volume growth (Eq.1.7), named drainage 

volume derivative, is not uniform and is controlled by the reservoir heterogeneity and the 

finite reservoir size. The drainage volume derivative falls to zero at late DToF because the 

pressure feels all boundary of the finite reservoir volume. 

 

Figure 2.3 Drainage volume and drainage volume derivative as a function of DToF 

0.0E+00

2.5E+06

5.0E+06

7.5E+06

1.0E+07

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

0 0.5 1 1.5

D
ra

in
ag

e 
V

O
lu

m
e 

D
er

iv
at

iv
e 

D
ra

in
ag

e 
V

o
lu

m
e

DToF



 

21 

 

Figure 2.4 shows the gas production rate comparison between the DToF-based 

simulation and finite difference simulator (ECLIPSE here). From the figure, we see a good 

agreement. Regarding computational efficiency, the DToF-based simulation only takes 13 

seconds while ECLIPSE takes 124 seconds in this case, which is about ten times speedup. 

The computational complexity of DToF-based simulation is ( log )O N N , while that of the 

finite difference simulation is 2( )O N , thus the computational advantage of DToF-based 

simulation will continuously increase as the number of simulation cell N  increases.  

 

Figure 2.4 Gas production rate comparison for the synthetic dual porosity model 

2.3.4 Optimization Algorithm and Workflow 

To optimize the placement of multi-stage hydraulic fractures, a class of 

evolutionary algorithms known as Genetic Algorithms (Holland 1992; Mitchell 1999) is 
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process (Cheng et al. 2008; Yin et al. 2010; Yin et al. 2011). The main advantage of 

evolutionary algorithms is that they are derivative free. Yin et al. (2010) and Yin et al. 

(2011) had successfully applied the genetic algorithm to calibrate reservoir and hydraulic 

fracture parameters. We follow the same GA implementation as Yin et al. (2011) for our 

optimization process, and the workflow for GA is sketched in Figure 2.5. 

 

Figure 2.5 General workflow for Genetic Algorithm (GA) 

The objective function evaluation process in Figure 2.5 is expanded in detail in 

Figure 2.6. We start with the parameters describing the number of hydraulic fractures, 

fracture spacing, half-lengths, and widths. The proppant and fracturing fluid are calculated 

with the method described above, and then the cost is estimated with assumed economic 

parameters. Based on reservoir model with DFN network, we upscale natural fractures to 

obtain properties of fracture systems using Oda’s method. Next, the gas production is 

predicted with DToF-based dual porosity simulation approach. With the gas production, 

revenue and net present value (NPV) are calculated and NPV is optimized.  
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Figure 2.6 Workflow of objective function evaluation for each hydraulic fracture model 

2.4 Application 

To demonstrate our proposed workflow, we applied it to a synthetic multi-stage 

hydraulic fracture model. Discrete fracture network (DFN) is generated based on statistical 

properties and then upscaled to dual porosity model, with permeability upscaled by Oda’s 

method. The DToF-based dual porosity simulation is utilized here as a rapid forward 

simulator. The net present value (NPV) of the model is optimized using the genetic 

algorithm. It is worth mentioning that our proposed workflow can easily be extended to 

account for the geological uncertainty, represented by different realizations of DFNs here. 

In that case, the objective function is calculated using the expected value on each 

realization with the same parameter set. The optimization results from single realization 

and multiple realizations are presented and compared.  
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2.4.1 Model Setting 

The model used for this hydraulic fracture design and optimization study is a multi-

stage hydraulic fractured horizontal well. It is a dual porosity model with “tartan” grid, 

where the grid in y direction is logarithmic near the fractures to provide better flow 

resolution. The well is BHP constrained at 3000 psi for first three years and then at 1000 

psi for the rest of production time. Other parameters are given in Table 2.2.  

Table 2.2 Model parameters for hydraulic fracture design and optimization 

Reservoir properties  Reservoir size (ft) 1200×5000×60 

 Simulation grid size 240×various×5 

 Initial pressure (psi) 5000 

 BHP for first 3 years (psi) 3000 

 BHP for rest of production (psi) 1000 

 Matrix porosity 0.076 

 Matrix permeability (md) 0.0001 

 Rock compressibility (psi-1) 4.0×10-6 

Well properties  Horizontal well length (ft) 4600 

HF properties  HF Permeability (md) 1000 

 HF Porosity  0.3 

Fluid properties  Initial viscosity (cp) 0.0278 

 Initial compressibility (psi-1) 1.2×10-4 

 

Discrete natural fractures are generated based on statistical properties of the 

fracture system (shown in Figure 2.7a). We assume normal distribution for the properties 

of the DFNs, such as natural fracture length, log-aperture, dip angle, and azimuth. Denser 

natural fractures are deliberately generated in two regions so as to investigate the influence 

of heterogeneous geologic properties (mainly fracture density) on hydraulic fracturing 
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design. This natural fracture information is transformed into heterogeneous permeability 

field by applying the Oda’s method, showing in Figure 2.7b (the hydraulic fractures are 

also shown in the figure with red line segments). For these cells without any discrete 

natural fractures passing through, a lower bound value of 100nd is assigned so as to 

account for the implicit natural fractures. It can be observed that the permeability field 

adequately captured the natural fracture information. 

 

   

Figure 2.7 a) Discrete natural fracture networks (first layer); b) Upscaled permeability field 
for the fracture system (first layer) 

The performance prediction of DToF-based simulation is first validated with finite 
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comes from the fact that the pressure propagation process is calculated only once and then 

the fluid flow is computed in the transformed 1D domain.  

 

Figure 2.8 Simulation results comparison a) production rate; b) cumulative production 
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After model validation, the DToF-based simulation is used to conduct the 
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to observe the effect on NPV once at a time. For sensitivity study, the base and perturbed 

values of various variables are given in Table 2.3. Hydraulic fractures are grouped into 

five groups here for the purpose of reducing the number of parameters during 

optimization. In this table, average fracture width, fracture half-lengths and fracture 

spacing for five groups of hydraulic fractures adjacent to each other are utilized. For all 

the cases, the lateral length is kept the same by rescaling the fracture spacing.  
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Table 2.3 Base and perturbed values for sensitivity analysis 

Variable Min Value Base Value Max Value 

Stages Number (STAGE) 10 15 25 

Avg Width (WF1 to WF5) (ft) 0.02 0.05 0.08 

Fracture half-length (XF1 to XF5) (ft) 150 350 550 

Fracture spacing (DIS1 to DIS5) (ft) 100 250 400 

 

Table 2.4 Economic parameters used to calculate NPV  

Cost of proppant (USD/ton) 400 

Cost of Fracturing Fluid (USD/gal) 0.4 

Price of Gas (USD/Mscf) 3.6 

Horizontal Well Cost (USD/Well) 1.2×106 

Equipment Rent (USD/min) 1250 

Interest Rate (per year) 10% 

 

The assumed economic parameters, such as the cost of well, gas sale price, the cost 

of fracturing fluid and proppant, are listed in Table 2.4. With these model parameters and 

economic parameters, the sensitivity results of NPV are shown in Figure 2.9, where the 

red bar corresponds to the lower bounds of the parameters, and blue bar corresponds to 

the upper limits of the parameters. The NPV is mainly controlled by the gas production 

and the completion cost. For instance, fewer hydraulic fracture stages restricts the gas 

production while too many stages increases the completion cost. From the sensitivity 

results, the number of stages, average fracture width, and the fracture half-length are the 

dominant parameters. 
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Figure 2.9 Sensitivity results of NPV on various variables under investigation 

Before optimization process, we first investigate how the stage number affects the 

performance under uniformly distributed hydraulic fracture scenario (i.e. uniform 

spacing). Simulations are performed with 10, 15, 20 and 25 fracture stages. Figure 2.10 

shows the gas rate production and cumulative gas production comparisons with a different 

number of fracture stages. As we can see from this figure, the case with a larger number 

of hydraulic fracture stages obtains higher gas production rate at the early time. But it will 

have a lower rate at the late time because the reservoir is depleted more quickly with a 

larger number of hydraulic fracture stages. This rate behavior gives more cumulative 

production at the early time for a larger number of hydraulic fracture stage case but 

eventually, they all reach a comparable level.  
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Figure 2.10 a) Gas rates comparison for various numbers of fracture stages; b) 
Cumulative gas production for different numbers of fracture stages 

Higher production rate delievers more total revenue, accounting for the discounted 

interest rate. But it costs more as well to obtain higher production rate. Then, where is the 

balance point? Figure 2.11 shows the comparison between NPV and cost of different 

hydraulic fracturing stage numbers. It can be seen that the total revenue (NPV plus cost) 
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increases with the number of fracture stages. But the cost of the fracturing job also 

increases significantly, thus the NPV decreases after a certain point. It can be observed 

that the optimum number of fracture stages is around 15 to 20 for this study case under 

the uniform spacing scenario. 

 

Figure 2.11 NPV vs Cost comparison for cases with various number of fracture stages 

2.4.3 Optimization Results 

Next, we perform hydraulic fracturing placement optimization study by 

simultaneously changing all the variables used in the sensitivity analysis. The genetic 

algorithm (GA) is deployed for optimization process as described above. A total of 15 

generations with a population of 70 in each generation is used. The number of fracture 

stages could vary between 10 and 25. All other variables have same value ranges as given 

in Table 2.3. Since this study involves a large number of forward simulations, the DToF-

based forward simulation is used for its computational advantage. Figure 2.12 shows that 
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overall NPV increases with the number of generations in the GA. Also, with the progress 

of generations, more samples get closer to higher NPV values. 

  

Figure 2.12 Genetic algorithm optimization results based on single realization 

  

Figure 2.13 a) Permeability field; b) DToF map with sub-optimum hydraulic fracture 
design; c) DToF map with optimum hydraulic fracture design 
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From the simulations, the best model is picked based on the maximum NPV (18 

stages with $10.17 million), and it is compared with one suboptimum case which has the 

same number of stages but just delivers an NPV of $8.63 million. The comparison 

confirms that the NPV can be increased by reallocating the hydraulic fractures, proppant, 

and fluids. The difference between the hydraulic fracture placements can be visualized 

using the diffusive time of flight map (Figure 2.13), which is a visual and intuitive display 

of the pressure propagation and drainage volume information. By comparing the 

permeability field (Figure 2.13a) and DToF map (Figure 2.13c), we observe the fractures 

in the high permeability region are wider but shorter and the fractures in the low 

permeability region are narrower but longer.  

We also plot the parameter distributions from the first generation and selected 70 

good matched models, as shown in Figure 2.14. Here, the parameters are normalized by 

its min and max value to fall between zero and unity. The blue boxes indicate the 25 

percentile and 75 percentile of model parameters in the population and the red lines are 

the median. From Figure 2.14a, we see that the parameter distribution is quite uniform in 

the first generation; however, Figure 2.14b displays that the better-performed models 

show a preference for the parameters. Most of the models have 20 stages. It is also worth 

to notice that the fractures in the second group, which locate in high permeability region, 

have larger fracture width (larger WF2) with shorter half-length (smaller XF2); while, the 

fractures in the first and fifth group, which locate in low permeability region, have smaller 

fracture width (smaller WF1, WF5) with longer half-length (larger XF1, XF5). This can 

be illustrated from the diffusive time of flight map as well (Figure 2.13c). It suggests that 



 

33 

 

in the high permeability region, the conductivity of the fracture is more important, and 

shorter length can help save the completion cost. While in the low permeability region, 

creating more fracture surface area (longer half-length but smaller fracture width) can help 

improve the reservoir performance.  

 

 

Figure 2.14 Normalized parameter distribution for a) first generation; b) selected 70 
models 

2.4.4 Effects of Geologic Uncertainty 

The results discussed above assume that the locations of natural fractures are 

known as a priori with a reasonable degree of confidence. In practice, we can infer the 

natural fracture information near the wellbore, and natural fractures far away cannot be 

accurately characterized. If the locations of natural fractures are not known, it may lead to 
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a suboptimal design with a much lower NPV. To take into account the effect of uncertainty 

in natural fracture locations, we performed the optimization simultaneously on different 

geologic realizations. In our study here, 12 different realizations (Figure 2.15) are 

generated, including the natural fracture realization in the previous subsection. The same 

optimization algorithm discussed earlier is applied except that the objective function used 

now is the expected value (shown by Eq.2.12) of the NPVs of the 12 realizations for the 

same given set of parameters. The results of the genetic algorithm are presented in Figure 

2.16. The maximum NPV from the optimization is $10.08 million, which is not as high as 

that in Figure 2.12 because of the compromised uncertainty in the natural fractures. 

 
1

1 N

i i

i

NPV w NPV
N 

   (2.12) 

 

Figure 2.15 Permeability field (first layer) of twelve different realizations 
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Figure 2.16 Genetic algorithm optimization results based on twelve realizations 

      

Figure 2.17 Four different blind test models for evaluating the robustness of the proposed 
optimization workflow 

To validate the robustness of proposed optimization workflow with uncertainty, 

another four different realizations are created (Figure 2.17) as blind test models and four 

best designs from single realization and multiple realization optimizations are applied on 

each of them. Table 2.5 summarizes the NPVs of individual model after applying these 
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designs and the average values across the four test models. It can be observed that the 

optimum designs also provide high NPV on the blind test models and the variability in 

NPV is relatively small. It is also worth noticing that when the optimization process 

considers the uncertainty of natural fracture locations using multiple realizations, the 

performance is superior to using single realization (relatively higher average NPV values). 

Table 2.5 NPV (million) for different blind test models 

Parameter Set Test 1 Test 2 Test 3 Test 4 Average 

Para 1 (single) 10.119 10.205 10.106 10.102 10.13 

Para 2 (single) 10.067 10.150 10.079 10.141 10.11 

Para 3 (single) 10.040 10.199 10.155 10.069 10.12 

Para 4 (single) 10.052 10.218 10.173 10.030 10.12 

Para 1 (multiple) 10.108 10.209 10.155 10.075 10.14 

Para 2 (multiple) 10.212 10.209 10.159 10.172 10.19 

Para 3 (multiple) 10.079 10.271 10.163 10.143 10.16 

Para 4 (multiple) 10.160 10.205 10.142 10.121 10.16 

 

2.5 Conclusions 

In this chapter, we extend the DToF-based simulation to dual porosity system and 

apply it as the rapid forward simulator for the multistage hydraulic fracture design and 

optimization. The Oda’s method is used for calculating the permeability for fracture 

system from DFN, and the proppant and fluids required for hydraulic fracturing are 

calculated through material balance. The optimization process is carried out through a 

derivative-free evolutionary algorithm, genetic algorithm. We demonstrate the proposed 

workflow with a synthetic multistage hydraulic fracture model and show the capability to 

account for the geologic uncertainty (DFN distribution here). 
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The main conclusions from this study can be summarized as follows: 

(1) DToF-based simulation is demonstrated to be an efficient approach to compute 

the well performance in unconventional reservoirs and shows good agreement 

with commercial finite difference simulators at a fraction of computation time. 

Two big advantages of this method are its computational efficiency and its 

capability of intuitively visualizing the well drainage volume. 

(2) Given reservoir and horizontal well conditions, more stages of hydraulic 

fractures can lead to higher early production rate and higher revenue. However, 

the associated cost with more stages of hydraulic fractures increases as well. 

For a particular problem, optimum fracture stage number exists. 

(3) With a reasonable knowledge of the natural fracture distribution, our proposed 

workflow can help obtain an optimum hydraulic fracture design. Based on our 

observations, the optimum design emphasizes the conductivity more for 

hydraulic fracture located in high permeability region, while it prefers more 

fracture surface area in low permeability region. 

(4) When there is considerable uncertainty associated with the natural fracture 

distributions, multiple realizations can be included in our proposed workflow 

by applying the same parameter set simultaneously on each realization and 

evaluating the objective functions based on the expected value. From our 

study, the optimum design with consideration of the uncertainty provides 

superior results on blind test models. 
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CHAPTER III 

EXTENSION OF THE DTOF-BASED SIMULATION WORKFLOW TO 

FRACTURED RESERVOIR WITH UNSTRUCTURED GRIDS 

3.1 Introduction 

Our previous study demonstrated the DToF-based simulation to be an efficient 

approach for unconventional reservoir modeling; however, this workflow is currently 

limited to structured grids. This chapter extends the DToF-based simulation to 

unstructured grid system so as to better model the fractured reservoirs. On top of our 

previous experience with DToF-based simulation, the unstructured mesh generation and 

local Eikonal equation solver are the essential parts of this chapter. Force-equilibrium 

algorithm is utilized to provide unstructured grids with good mesh quality. The local 

Eikonal equation solver based on Fermat’s principle and Eulerian discretization are 

investigated and compared. Through the numerical examples, the proposed method is 

demonstrated to be an efficient approach to simulate the naturally fractured reservoirs.  

3.2 Background 

In naturally fractured reservoirs, complex fracture networks are induced due to the 

interaction between hydraulic fractures and natural fractures. It is feasible to characterize 

the statistical properties of the natural fractures from outcrop, image-log, and core 

                                                 

 Part of data reported in this Chapter is reprinted with permission from “Rapid Simulation of Naturally 

Fractured Unconventional Reservoirs with Unstructured Grids Using the Fast Marching Method” by Yang, 

C., King, M. J., & Datta-Gupta, A. (2017), paper SPE-182612-MS presented at the SPE Reservoir 

Simulation Conference, 20-22 Feb., Montgomery, Texas, USA. Copyright [2017] SPE. 
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analysis. Based on these statistical properties, Kim and Schechter (2009) developed a 

fractal discrete fracture network model, which can generate multiple realizations of the 

natural fracture system. The evolving technology of micro-seismic event measurements 

has been used to capture complex fracture system (Cipolla et al. 2012; 2011). 

Despite the capability to detect and characterize the complex fracture systems, the 

industry is still struggling to efficiently and accurately simulate the fractured reservoir 

with complex fracture network. Traditionally, a fractured reservoir is modeled with a dual-

porosity model (Warren and Root 1963) or dual permeability model. However, as 

discussed by Kuchuk and Biryukov (2014), the dual-porosity model cannot capture the 

behavior of most fractured reservoirs, with one limitation being due to the assumption of 

uniformly distributed well-connected orthogonal fractures. Continuous representation 

methods, such as multiple interacting continua, will have similar issues. 

Discrete fracture models (DFM) provide a better representation of the fracture 

geometry. In DFM, the discrete fractures are modeled either implicitly by modifying the 

transmissibility lists (Branets et al. 2009; Mallison et al. 2010) or explicitly with high 

permeability Voronoi cells (Cipolla et al. 2011; Sun and Schechter 2015), and the fluid 

flow equation is solved using finite volume simulation. One common drawback of the 

conventional simulation method with unstructured grids is the substantial computational 

cost. The embedded discrete fracture model (EDFM) can incorporate the effect of each 

fracture without an explicit simulation mesh (Lee et al. 2001; Li and Lee 2008), which is 

computationally efficient. However, the performance of EDFM highly depends on how 

accurately the modified transmissibility can capture the effects of the fractures. 
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Combining the advantages of unstructured grids and the DToF-based simulation, 

we propose the rapid simulation workflow for modeling naturally unconventional 

reservoirs. Unstructured grids allow better characterization of the transient drainage 

volume for complex fracture systems while the DToF-based simulation provides a rapid 

simulation of reservoir performance based on the transient drainage volume (YangKing et 

al. 2017). As mentioned earlier, two essential parts of this work include the generation of 

unstructured mesh and local Eikonal equation solver.  

3.3 Generating Unstructured Grids 

Since fracture systems are too complex to be accurately modeled with Cartesian 

and corner-point grids, unstructured grids, such as Voronoi grids, are considered as more 

appropriate discretization schemes. However, it is a crucial and challenging task to obtain 

unstructured grids with good mesh quality because highly skewed cells are inhibitive for 

either conventional finite volume simulation or our DToF-based simulation. Highly 

skewed cells will increase the inaccuracy of flux calculation in additional to the increased 

computational burden posed by the Courant-Friedrichs-Lewy (CFL) condition. For DToF-

based simulation, the highly skewed cells will increase the possibility of violating the 

causality requirement while solving the Eikonal equation with FMM.  

3.3.1 Mesh Generation Overview 

Heinemann et al. (1991) first introduced the unstructured grid system to the 

petroleum industry. In their paper, they discussed the grid-construction method and finite 

volume flow discretization. Karimi-Fard et al. (2004) proposed a scheme to discretize 

fracture networks, and Branets et al. (2009) defined protection areas around fractures to 
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handle the fracture intersections. Olorode et al. (2013) modeled nonplanar fractures and 

performed a high-resolution numerical study of the behaviors. Sun and Schechter (2015) 

presented a very comprehensive study with Voronoi grids which can characterize fractures 

with non-uniform aperture, which allows more accurate representation of unpropped 

fractures. 

The local orthogonality of Voronoi grids is appealing to reservoir simulation since 

it reduces the grid orientation effects. As the Voronoi grid is the dual of the Delaunay 

triangulation, a well-shaped Delaunay triangulation is the first step to constructing 

Voronoi tessellation. According to Edelsbrunner (2001), any set of nodes in the x,y-plane 

can be triangulated by the Delaunay algorithm. Then the task of constructing well-shaped 

Voronoi grids is essential to obtain better-distributed nodes for Delaunay triangulation. 

Different approaches can be found in the literature to optimize the locations of triangle 

nodes (Field 1988; Freitag and Ollivier-Gooch 1997; Persson and Strang 2004), among 

which the force-equilibrium algorithm proposed by Persson and Strang (2004) tends to 

produce meshes with better quality and uniformity. 

The workflow to generate unstructured grid is sketched in Figure 3.1, with the 

force-equilibrium algorithm as the key optimizer. This workflow starts with assigning the 

fixed nodes and flexible nodes, and then Delaunay triangulation is performed based on 

current nodes distribution. The locations of the flexible nodes are optimized with the force-

equilibrium algorithm, which will be discussed in detail later. The optimization process 

will iterate until desired mesh is obtained or stop criteria is reached. Finally, the Voronoi 

cell is generated based on the optimized Delaunay nodes.  
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Figure 3.1 Workflow to generate Voronoi cell with force-equilibrium algorithm 

3.3.2 Assignment of Fixed Delaunay Nodes  

As mentioned above, one should design the fixed nodes to create protection areas 

so as to maintain the characteristics of the mesh objects, which here are complex fracture 

networks. The following procedure is implemented to design the fixed nodes for modeling 

complex fracture systems with intersections (note that hydraulic fracture and natural 

fractures are treated in the same manner): 

(1) Each single fracture is first divided into fracture segments at intersections and 

fixed Delaunay nodes are placed at fracture tips and fracture intersections. 

(2) Then, each fracture segment is further divided into fracture sub-segments 

based on user-defined interval size or minimum grid size. 

(3) For each fracture sub-segment, three fixed Delaunay nodes are designed with 

the distance of fracture width (or aperture), with one node for the fracture grid 

block and the other two for the matrix grid blocks. 
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Figure 3.2 Illustration of assigning fixed points to represent fracture segment 

     

Figure 3.3 Illustration of fracture intersection: a) proposed fixed points; b) corresponding 
Voronoi cell; c) property (permeability) field 

Figure 3.2 illustrates how a single fracture, without any intersections, is designed. 

The gray lines show the Delaunay triangulation and the red lines depict the corresponding 

Voronoi cells. It is worth mention that we have proposed a novel scheme to handle fracture 

intersections. As illustrated in Figure 3.3a, the fixed nodes of Delaunay triangulation are 

placed starting from the acute intersecting angle perpendicular to all other representing 

lines. Additional fixed nodes are placed at the intersection of central lines and the normal 

projection locations. Figure 3.3b displays the resulting Voronoi cells. Figure 3.3c shows 

how reservoir properties (e.g. permeability) are assigned to the intersection cells. 

Specifically, properties will take the higher value from the two fractures. We can observe 

that the intersecting Voronoi cell introduces minimum geometry alteration and maintains 
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the same connecting surface area corresponding to each fracture. This assignment of fixed 

nodes can work well for small angle intersections. 

3.3.3 Force-equilibrium Algorithm 

After assigning all the fixed nodes, the force-equilibrium algorithm is applied to 

optimize the locations of the flexible nodes, following Persson and Strang (2004). This 

force-equilibrium algorithm is based on a mechanical analogy between a triangular mesh 

and a truss structure, where the edges of the triangles correspond to bars, and the vertices 

of the triangles are considered as joints of the truss (Persson and Strang 2004). The force 

displacement of each bar is calculated based on the difference between its current length 

and its unextended length (or desired edge length). The hope of the force-equilibrium 

algorithm is that the relative lengths of all the bars at equilibrium could be as close as 

possible to the desired relative size, which is a function of the position specified by the 

user and controls the eventual Voronoi cell size. The desired relative size (or Voronoi cell 

size) increases away from the mesh objects, which here are hydraulic fractures and natural 

fractures, following a predefined distance function. 

The above force-equilibrium problem is a static equilibrium problem. However, to 

numerically solve this problem, an artificial time-dependent ordinary differential equation 

(Eq.3.1) is introduced: 

 ( )
dp

F p
dt

 , 0t   (3.1) 

Here p  denotes a 2N   vector array, consisting of the x-and y-coordinates of all 

N  mesh-points. ( )F p  is the force vector at corresponding nodes and t  is (artificial) time. 
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 1 ( )n n np p t F p     (3.2) 

The forward Euler discretization can be applied to approximate the differential 

equation, as shown by Eq.3.2, where t  is the discretized (artificial) time. Eq.3.2 is 

iteratively solved until the maximum change of positions is within a tolerance, or a 

maximum number of iteration is reached. When evaluating the force function at the thn  

time step, the positions np  are known, i.e. the truss topology or Delaunay triangulation of 

the current node set is known. The force vector of each internal point is the summation of 

the force induced by all the connecting edges, as shown in Figure 3.4a. For the nodes on 

the boundaries of the domain, an additional external force is added in the normal direction 

of the boundary, as illustrated in Figure 3.4b. The magnitude of the external force is just 

sufficient to prevent the nodes from moving outside the computational domain. 

   

Figure 3.4 Force calculation for a) internal points b) points on the boundary 

To calculate the scalar force function of each bar (triangle edge), a simple ordinary 

linear spring model, shown by Eq.3.3, is adopted: 
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Here 0( , )f l l  is the internal force in each truss bar where l  and 
0l  represent the 

current edge length and the desired edge length respectively. Here k  is a unit conversion 

factor. Note that Eq.3.3 only defines a repulsive force, which acts on the edges with a 

length smaller than desired edge length thereby ensuring that the nodes spread out from 

the mesh objects. Even though many alternatives exist and slightly nonlinear force-

functions might generate better meshes, in general, the linear spring model has been 

demonstrated to work well (Persson and Strang 2004). 

     

Figure 3.5 FMM computation domain: a) discretization of 2D Voronoi cells; b) 2.5D 
Voronoi cells; c) triangular prism  

After obtaining 2D unstructured grid, 2.5D grid system can be easily constructed 

by assembling multiple layers and allowing vertical thickness variation. The Voronoi cells 

are then subdivided by connecting the centers of the Voronoi cells to the nodes of each 

corresponding edge (as shown in Figure 3.5a and Figure 3.5b). Any triangle in the 2D 

plane, for instance, ABC in Figure 3.5a, corresponds to a triangular prism in the 2.5D 

A 
B 
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domain, shown in Figure 3.5c. The triangular prism is the basic unit of our computation 

domain for 2.5D unstructured grids. To update the DToF value at one particular node, we 

search for “virtual tetrahedrons”, as the unstructured FMM local solver is constructed by 

the tetrahedron. For instance, to calculate the DToF value for node A in Figure 3.5c, the 

“virtual tetrahedrons” ABCA0, ABCB0, ABCC0, and AA0B0C0 are the candidates. 

3.3.4 Illustration 

Figure 3.6 shows the Delaunay triangulations of the Voronoi centers. Skewed cells 

can be obviously detected in Figure 3.6a for only ten iterations, and with more iterations, 

the triangles can be qualitatively observed well-shaped. Persson and Strang (2004) has 

quantitatively shown that the force-equilibrium algorithm improves both the quality and 

the uniformity of the mesh. The commonly used mesh quality measure is expressed by the 

ratio between the radius of the largest inscribed circle (times two) and the smallest 

circumscribed circle, as shown by Eq.3.4. 

 
( )( )( )

2 in

out

r b c a c a b a b c
q

r abc

     
   (3.4) 

where a, b, c are the side lengths. Higher q  value corresponds to better mesh 

quality and 1q   represents an equilateral triangles. As a rule of thumb, if all triangles 

have 0.5q  , the mesh quality is pretty good. Figure 3.7 shows the distribution of mesh 

quality for each cell after 10, 100 and 400 iterations. With more iterations, the cells 

obviously have better mesh quality. This observation can be reflected from the average 

mesh quality plot as well (Figure 3.8a).  
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Figure 3.6 Delaunay triangulations of Voronoi centers after a) 10 iterations; b) 100 
iterations; c) 400 iterations 

 

Figure 3.7 Element quality after a) 10 iterations; b) 100 iterations; c) 400 iterations 

 

Figure 3.8 Convergence check of a) mesh quality; b) mesh uniformity 
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The mesh uniformity can be measured by the standard deviation of the ratio of 

actual sizes to desired sizes. That number is normalized by the mean value of the ratio 

since only the relative desired length is specified. From Figure 3.8b, we can see the 

average size deviations decline as a function of iterations and eventually the average size 

deviations are less than 6.5%. 

   

   

Figure 3.9 Comparison of mesh quality: a) with force-equilibrium optimization from this 
study; b) after Mirzaei and Cipolla (2012); c) after Kappa (2013) 

After all the flexible points are determined based on the force-equilibrium 

algorithm, Voronoi cells can be generated based on the optimized Delaunay triangulation. 
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Figure 3.9 shows a comparison between the mesh from this study and other meshes from 

the literature for complex fracture networks, namely unstructured grids from Mangrove 

software and Kappa software. It is evident to notice that the Voronoi cells in Figure 3.9a 

are at uniform sizes at the same distance from the mesh objects. Not only are the Voronoi 

cells well oriented in a radial pattern around the fracture tips but also each Voronoi cell is 

well shaped (i.e. no highly skewed cells).  

3.4 Local Eikonal Equation Solver 

The main steps to implement the Fast Marching Methods in triangulated 

unstructured mesh remain the same as the those in the structured grid system, which has 

already been presented in Chapter I. The only difference is the procedure to update the 

value of one particular node based on the values of its neighbors.  

In this subsection, we will present these two constructions in detail for both 2D 

triangles and 3D tetrahedron. One is based on the Fermat’s principle; the other is based on 

Eulerian discretization. These two constructions are first presented for isotropic media, 

where the characteristic direction align with the DToF gradient. The local solver for 

anisotropic media is investigated separately. The construction based on Fermat’s principle 

is more transparent to the physical meaning and shows the causality condition in a way 

much easier to be understood; however, the construction based on Eulerian discretization 

is found more straightforwardly be implemented and more easily be extended to 

anisotropic media. The causality requirement is more likely be violated in unstructured 

grid system or anisotropic media. Recursive Fast Marching Method is summarized for the 

completeness as it proves to be a good approach to deal with the causality issue.  
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3.4.1 Fermat’s Principle 

The Fermat’s principle requires the ray from the source to the calculating point 

corresponds to the minimum arrival time. The construction based on Fermat’s principle 

provides the first-order accuracy. Here we follow the derivation of Sun and Fomel (1998), 

Sethian (1999) in 2D and the derivation of Lelièvre et al. (2011) in 3D.  

2D Local Solver 

As shown in Figure 3.10, we assume the DToF values for nodes A and B are known 

and to solve for node C. Let (0 1)    be the normalized distance from A to S along the 

segment AB. The DToF at point ( )S   can be approximated by the linear interpolation, 

shown by Eq.3.5: 

 (1 )S A B       (3.5) 

 

Figure 3.10 Travel-time updating procedure via Fermat’s principle in 2D 

According to Fermat’s principle, the actual travel time to C corresponds to the 

minimum of the travel time with respect to path perturbations: 
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2 2 2

0 0

[0,1]

( )
minC S

c d



 
 



   
  

  

 (3.6) 

where 0 0( )S   and 0d  are the normal projection point and the distance of C to AB. 

  is the diffusivity. Eq.3.6 can be solved by setting the derivative to zero 

 
2

0

2 2 2

0 0

( )
0

( )
B A

c

c d

 
 

   


  

 
 (3.7) 

This is a quadratic equation for   and the solution is 

 0
0

2 2

( )

( )

A B

A B

d

c c

 
 

  


 

 
 (3.8) 

Substituting Eq.3.5 and Eq.3.8 into Eq.3.6 and selecting the appropriate branch of 

the square root, we obtain the solution  

 
2

0 2

( )1
cos cosA B

C A B B A

a b
d

c c c

 
    




     (3.9) 

It is worth to mention that the minimization constraint 0 1   makes sure the 

causality relationship is satisfied, i.e. the characteristic direction estimated lies inside the 

triangle and thus the acceptance of solution values always in acceding order (Eq.3.10). 

  max ,C A B    (3.10) 

3D Local Solver 

For the 3D tetrahedron, as shown in Figure 3.11, we assume the DToF values for 

nodes A, B and C are known and to solve for node D. Let , ,    be the normalized 

distance from B to A, C to B, and A to C, respectively. The DToF at any point ( , , )D     

can be approximated by the linear interpolation, shown by Eq.3.11: 
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 A B CD
       (3.11) 

where , ,    satisfy the following requirements: 

 0 , , 1     and 1      (3.12) 

 

Figure 3.11 Travel-time updating procedure via Fermat’s principle in 3D 

According to Fermat’s principle, the actual travel time to D corresponds to the 

minimum of the travel time with respect to path perturbations: 

 
   

2
2

0 0 0 0 0

, ,

, , , ,
minD D

D D d

  

     
 



 
 

  
 
 

 (3.13) 

where 0 0 0 0( , , )D     is the normal projection of node D onto face ABC, 0d  is the 

length from node D to point 0D , and   is the diffusivity. We define a , b  as the vectors 

from C to B and C to A respectively, also define 0     and 0     such that the 

distance between D and D  can be expressed as:  
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d b a h d
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    

 

      b a

 (3.14) 

where we have defined  

 2 cosT

Ch ab  b a  (3.15) 

and C  is the angle at node C between the two vectors a  and b . Now the Eq.3.13 

can be written as 

     
2 2 2 2 2 2

0
0 0 0

, ,

2
minD A B C

b a h d

  

  
          



    
        

  

 (3.16) 

By invoking Fermat’s principle, Eq.3.16 can be solved by setting the derivative of 

D  with respect to both   and   to zero 
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 (3.17) 

and similarly 

 
2 2

2
0D

B C

d a h

d d

  
 

 


     (3.18) 

By solving Eq.3.17 and Eq.3.18 for the two unknowns, we obtain 
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where A Cu    , 
B Cv     and S is defined as: 

 
1 1 1

sin sin sin
2 2 2

A B CS bc ac ab      (3.20) 

Substituting Eq.3.19 and Eq.3.20 into Eq.3.16, we can obtain  

 0

2

2

1

1

(2 )

d
d

w

S





 



 (3.21) 

where w  is defined by Eq.3.22, which can be further expressed in the symmetric 

formula as Eq.3.23. 

 2 2 2 2 2 22w u a v b uvh    (3.22) 

         2 2 2 2

A B A C B A B C C A C Bw a b c                     (3.23) 

Substituting Eq.3.19 and Eq.3.21 into Eq.3.16, we arrive at 

 
2

0 0 0 02

1

(2 )
D A B C

w
d

S
      


      (3.24) 

Similarly, the minimization constraints 0 , , 1     and 1      make sure 

the characteristic direction estimated lies inside the tetrahedral and thus the acceptance of 

solution values always in acceding order (Eq.3.25). 

  max , ,D A B C     (3.25) 

3.4.2 Eulerian Discretization 

The concept of the Eulerian construction is to approximate the gradient of the ray 

by finite difference discretization and then solve the characteristic vector as unknown. 

Here we follow Sethian and Vladimirsky (2000) and Qian et al. (2007). 
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2D Local Solver 

Similarly, as shown in Figure 3.12, suppose we already know the DToF value for 

nodes A and B and now solve for the DToF for node C. Let a be the length of BC and b be 

the length of AC. Let 
AC  be the unit vector pointing from A to C and 

BC  be the unit 

vector pointing from B to C Then, 

 

1
( , )

1
( , )

AC C A C A

BC C B C B

x x y y
b

x x y y
a





  

  

 (3.26) 

 

Figure 3.12 Travel-time updating procedure via Eulerian discretization in 2D 

Assuming a linear approximation to   locally, we have the following finite 

difference equation: 

 

1
( )

1
( )

C A AC

C B BC

b

a

   

   

   

   

 (3.27) 
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If we define the matrix P  with rows 
AC  and 

BC , then the characteristic direction 

  can be calculated using Eq.3.28. 

 
1

/1/

/1/

A

C

B

bb

aa


 




   

     
    

P  (3.28) 

Substituting the above   into the Eikonal equation, we obtain a quadratic 

equation with C  as the unknown parameter. The solution for C  should be verified against 

the causality condition, i.e., the computed characteristic direction must lie inside the 

triangle. In the implementation, the value obtained for point C will be updated only if the 

causality condition is satisfied. If the causality condition cannot be satisfied, the solution 

is updated from the triangle edges by solving a 1D Eikonal equation.  

3D Local Solver 

 

Figure 3.13 Travel-time updating procedure via Eulerian discretization in 3D 
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Similar to Eulerian discretization 2D, suppose we already know the DToF value 

for nodes A, B and C and now solve for the DToF for node D (shown in Figure 3.13). Let 

a, b and c be the length of DA, DB, and DC, respectively. Let AD , 
BD , and 

CD  be the 

unit vector pointing from A to D, B to D and C to D, respectively. Then, 

 

1
( , , )

1
( , , )

1
( , , )

AD D A D A D A

BD D B D B D B
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





   

   

   

 (3.29) 

Assuming a linear approximation to   locally, we have the following finite 

difference equation: 

 

1
( )

1
( )

1
( )

D A AD

D B BD

D C CD
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b

c

   

   

   

   

   

   

 (3.30) 

If we define the matrix P  with rows AD , BD , and CD , then the gradient   

can be calculated using Eq.3.31. 
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

  




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    

      
    
    

P  (3.31) 

Substituting the above   into the Eikonal equation, we obtain a quadratic 

equation with D  as the unknown parameter. The solution for D  should be verified 

against the causality condition. If the causality condition cannot be satisfied, the solution 
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is updated from the tetrahedron faces by solving 2D Eikonal equation in 3D space. 

Suppose we are solving the DToF value within tetrahedron face ABD, with the value at 

node A and B as known. Eq.3.30 cannot be directly applied since gradient approximation 

from 
CD  are not available. But the causality relationship requires the characteristics lays 

within the ABD plane, which can be mathematically expressed as ( ) 0AD BD      for 

isotropic media. Then Eq.3.30 can be replaced by Eq.3.32: 

 

1
( )

1
( )

0 ( )

D A AD

D B BD

AD BD

a

b

   

   

  

   

   

  

 (3.32) 

The matrix P  are now with rows AD , BD , and AD BD  . The gradient   then 

can be calculated using Eq.3.33 and be substituted into Eikonal equation. 
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1/ /

1/ /

0 0

A

D B

a a

b b



  

    
    

      
    
    

P  (3.33) 

3.4.3 Comments on Implementation and Performance Comparison 

Since the local Eikonal equation solver based on Fermat’s principle provides the 

analytical solution, Eq.3.9 and Eq.3.24 can be directly implemented. To ensure the 

causality requirement, i.e. the characteristic line comes within the triangle or tetrahedron, 

the requirements of 0 1   (in 2D) and 0 , , 1     (in 3D) need be satisfied, which 

can be calculated from Eq.3.8 and Eq.3.19, respectively. Based on the perpendicular 
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property, the parameters for the normal projection point 0  (in 2D) and 
00 ,   (in 3D) can 

be calculated as Eq.3.34a (in 2D) and Eq.3.34b (in 3D), 

 0 0( ) 0CS AB AB AC AB      (3.34a) 

 
0

0

0 0

0 0

( ) 0

( ) 0

DD CA CA CB CD CA

DD CB CA CB CD CB

 

 

      


     

 (3.34b) 

For Eikonal equation based on Eulerian discretization, the characteristic direction 

is approximated using Eq.3.28 (in 2D) or Eq.3.31 (in 3D) with the calculated DToF value. 

The vector, connecting the target node and intersection point on AB edge or ABC plane, 

should be parallel to the characteristic direction. This parallel relationship can be 

represented by forcing the outer product equals zero (Eq.3.35a in 2D and Eq.3.35b in 3D). 

After solving the Eq.3.35, the condition 0 1   (in 2D) or 0 , ,1 1        (in 3D) 

will ensure the causality requirement. 

 ( ) 0CS AB AC        (3.35a) 

 ( ) 0DD CA CB CD          (3.35b) 

Another approach to check the causality condition is to decompose the   to the 

unit vector direction (Eq.3.36a in 2D and Eq.3.36b in 3D).  ,  and   are parameters to 

be determined through Eq.3.36. The causality condition is verified only if the condition 

, , 0     is satisfied. 

 AC BC          (3.36a) 

 AD BD CD              (3.36b) 
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With the implementation of causality check, the above two constructions provide 

identical results. We demonstrate the comparison between these two constructions by 

application to a regular tetrahedron for which each face is an equilateral triangle (Lelièvre 

et al. 2011). The coordinates of this tetrahedron are given in Table 3.1, with the centroid 

at the origin. This tetrahedron is sketched in Figure 3.14. Here we investigate the error 

associated with the planar wave-front assumption during the local update based on 

Fermat’s principle and Eulerian discretization. 

A source is placed at some distance away from the tetrahedron on the negative side 

of the z-axis and set the homogeneous diffusivity to 1 ft∙hr-1/2. The travel time for node A, 

B, C are assigned with the exact value. The travel time for node D is calculated and 

compared to the exact solution. The distance of source to origin varies between 1 ft and 

10 ft, and the results are presented in Figure 3.15a, where the absolute error decreases as 

the source point moves far away. Then, we allow the location of the source to move away 

from the z-axis while maintaining the distance to the origin at 10 ft, and the results are 

shown by Figure 3.15b, with the largest errors occurring when the polar angle is close to 

180°. The point here is that, from Figure 3.15, we observe the Eikonal equation solver 

based on Fermat’s principle and Eulerian discretization provide the same solution. 

Table 3.1 Coordinates that define a regular tetrahedron with centroid at the origin 

Node x y z 

A 0.9428 0.0000 -0.3333 

B -0.4714 0.8165 -0.3333 

C -0.4714 -0.8165 -0.3333 

D 0.0000 0.0000 1.0000 
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Figure 3.14 Tetrahedron defined in Table 3.1 as viewed from a) +z direction b) +x 

direction, with azimuthal angle   and polar angle  (after Lelièvre et al. (2011)) 

 

Figure 3.15 Absolute error versus source distance and polar angle for the FMM local 
update based on Fermat’s principle and Eulerian discretization, showing two 

constructions provide identical results 

The second error analysis model is a 50×50×50 ft homogeneous cubic. This cubic 

is discretized into tetrahedrons using the force-equilibrium based optimization, with 15469 

nodes and 83712 cells. The homogeneous diffusivity is set to 1 ft∙hr-1/2. The source is 

placed at one corner, and nodes within a distance of 1 ft to the source point are initialized 

with the analytical solution. The calculated DToF based on Eulerian discretization is 

shown in Figure 3.16a, which provides a nice 1/8 sphere. The average relative error of 

calculated to the analytical solution is 1.74%. Figure 3.16b shows the Q-Q plot of the 

A

B

C

D

A BC

D

y

z

x

y






 

63 

 

calculated DToF value between FMM local solvers based on Fermat’s principle and 

Eulerian discretization. All the results perfectly lay on the 45° line, which demonstrates 

that these two constructions provide identical results. The absolute errors between these 

two constructions for this case are all less than 5.0E-12 hr1/2.  

   

Figure 3.16 a) DToF for homogeneous cubic; b) Q-Q plot of results based on Fermat’s 
principle and Eulerian Discretization 

3.4.4 Extension to Anisotropic Permeability Field 

The properties of the subsurface porous medium are seldom purely isotropic, at 

least in vertical and horizontal direction; therefore the development of Eikonal equation 

solver for anisotropic properties is crucial. From the previous comparison for isotropic 

media, we observe that the local Eikonal equation solver based on Fermat’s principle and 

the one based on Eulerian discretization provide identical results. However, the local 

Eikonal equation solver based on Eulerian discretization is more straightforwardly and 

easily to be extended to 3D from 2D.  
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In Fermat’s principle construction for anisotropic media, the diffusivity term   in 

Eq.3.6 and Eq.3.16 becomes a function of location and direction, instead of a constant 

value. We cannot obtain as concise derivative results as Eq.3.7, Eq.3.17 and Eq.3.18. On 

the other hand, the Eulerian discretization is more ready to be extended to anisotropic 

permeability, as it only approximates the DToF gradient   and it doesn’t touch the 

permeability tensor at all. The approximated DToF gradient can be directly substituted 

into the Eikonal equation for anisotropic permeability, expressed as Eq.3.37 (Datta-Gupta 

and King 2007), where the permeability tensor k  is a positive-definite symmetric matrix. 

  ( ) ( ) ( )
T

tx x x c      k  (3.37) 

        

Figure 3.17 a) Contours of arrival time in homogenous anisotropic case showing the 
difference between characteristic direction and the gradient; b) Possible triangular mesh 

near point C showing the necessity of extending FMM for anisotropic case 

Then we follow the same procedure as discussed in section 3.4.2 for the DToF 

calculation. The only difference is the causality requirement check. For the isotropic 
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medium, the characteristic direction coincides with the gradient direction, which is critical 

to derive the causality relationship in ordinary fast marching methods. The extension of 

fast marching methods to solve anisotropic Eikonal equations is not trivial because the 

characteristic direction will be in general different from the gradient direction. For 

example, Figure 3.17a shows the travel time contours of the wave propagating from the 

source O in the homogeneous anisotropic medium. The characteristic direction and the 

gradient direction are shown in the figure at point C. Figure 3.17b shows one possible 

situation of local triangular mesh near the point C, where the upwind scheme does not 

guarantee causality relationship even for acute triangle ABC. 

For anisotropic media, with the DToF gradient as 
1 2 3(( ) ,( ) , ( ) )T        , the 

characteristic direction can be expressed as the derivative of Eikonal equation with 

respective to the DToF gradient, which results in the dot product of the permeability tensor 

and DToF gradient (expressed as Eq.3.38a). It can be expanded as Eq.3.38b. 

  ( )
( )

T  



    

 
k k  (3.38a) 
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  

  

     
 

     
      

 (3.38b) 

For specific scenarios, such as 2D general problem (Eq.3.39a) or 3D problem but 

the principle direction of the permeability tensor aligns with the coordinates (Eq.3.39b), 

the characteristics can be calculated using Eq.3.40a and Eq.3.40b. 

 
11 12

21 22

k k

k k

 
  
 
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In the anisotropic scenario, the third equation of Eq.3.32 should be Eq.3.41, 

because it is essentially the characteristic direction that should be constrained to the plane 

and the characteristic direction is no longer align with the DToF gradient. 

 0 ( )AD BD     k  (3.41) 

For the same reason, the causality condition check, which is previously expressed 

as Eq.3.35 and Eq.3.36 for isotropic media should be as Eq.3.42 and Eq.3.43, respectively. 

When the causality requirement is further violated or only one data point is known for the 

tetrahedron, the problem reduces to a 1D Eikonal calculation. In which case, the 

maganitude of permeability along that edge should be calculated, which is given in 

Appendix B. The 1D Eikonal equation automatically satisfys causality requirement. 

 ( ) ( ) ( ) 0CS AB AC        k k  (3.42a) 

 ( ) ( ) ( ) 0DD CA CB CD          k k  (3.42b) 

 AC BC        k  (3.43a) 

 AD BD CD            k  (3.43b) 
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Zhang et al. (2013) showed that the causality relationship in structured grids could 

be easily satisfied if the principal direction of anisotropy is aligned with the grid. However, 

it is impossible to align all the unstructured grid in the same direction with the principal 

direction of anisotropy, which makes the causality requirement a more severe issue 

compared to the structured grid. Therefore, the causality requirement is more likely be 

violated in the unstructured grid system. 

There are two approaches to deal with causality violation. One approach, known 

as the expanded neighborhood method, was proposed by Sethian and Vladimirsky (2000). 

The basic idea of the expanded neighborhood method is to find a “virtual triangle” that 

contains the characteristic direction and can “support” the calculation of DToF at the target 

point. In the example shown by Figure 3.17b, the “virtual triangle” AB’C may be used to 

correctly update DToF at point C. It is critical to realize that not only the immediate 

neighboring nodes but also nodes farther away may need to be considered for local 

updates. This process can relatively easily be implemented for the structured grid system, 

but it is quite challenging for unstructured grid system since it becomes difficult to find 

the candidate nodes to form “virtual triangle”. Another way to deal with the anisotropic 

case is the Recursive Fast Marching Algorithm. 

3.4.5 Recursive Fast Marching Method 

The Recursive Fast Marching Algorithm (Konukoglu et al. 2007) uses the 

immediate neighboring nodes to compute arrival times, but it includes a recursive 

correction scheme taking into account the fact that due to anisotropy the immediate 

neighborhood used for computation may not always capture the characteristic direction. 
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The key element in the algorithm is that whenever a new node n is accepted, all its 

immediate neighboring nodes need to be re-computed using the newly accepted value at 

n including those that are already accepted. Thus it is possible that some of the already 

accepted nodes will get even smaller values because of the newly accepted value at n. If 

that happens, those accepted nodes will be updated and added to a list called changed. 

Then we try to work on the changed nodes and empty them in a recursive process before 

the front is marching forward again. The framework of recursive fast marching method 

comprises of the following steps: 

(1) Label all grid nodes as unknown; 

(2) Assign   values (usually zero) to the nodes corresponding to the initial 

position of the propagating front and label them as accepted; 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered; 

(4) For each node labeled considered, update its   value based on its accepted 

neighbors using the minimum of local solutions; 

(5) If the changed list is not empty, pick the node with minimum   value and 

remove it from the changed list. Otherwise, we pick the node which has the 

minimum   value among considered list, and label it as accepted; 

(6) For all the accepted neighbors of current picked node, update its   value. If a 

better solution is found, this accepted neighbor is added into the changed list.  

(7) For all unknown neighbors of current picked node, label them as considered. 
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(8)  For all considered neighbors of current picked node, update its update its   

value based on its accepted neighbors using the minimum of local solutions; 

(9) Go to step (5) until the changed list is empty and all considered nodes are 

accepted. 

As a test of the recursive fast marching algorithm, we compare the solutions of the 

same homogeneous anisotropic Eikonal equation in the same 5-stencil square grid (29 by 

29) using both ordinary FMM and recursive FMM. The results in Figure 3.18 show that 

ordinary fast marching algorithm provides inaccurate results in the anisotropic case.  

 

Figure 3.18 Solution of anisotropic Eikonal equation in 5-stencil square grid using a) 
isotropic fast marching algorithm; b) recursive fast marching algorithm 

Figure 3.19 and Figure 3.20 show some numerical examples of calculated solution 

of the anisotropic Eikonal equation in 2D and 3D. The diffusivity anisotropy is 2:1 in the 

2D case and Figure 3.19 shows accurate DToF calculation when the principle axis is 

rotated by an angle of 0o, 30o, -45o. The diffusivity anisotropy with the 3D example is 

3:2:1 and Figure 3.20 shows the DToF map precisely captures the anisotropy. 
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Figure 3.19 Solution of anisotropic Eikonal equation in 2D with diffusivity anisotropy 2:1 
and rotation angle a) 0o; b) 30o; c) -45o 

 

Figure 3.20 Solution of anisotropic Eikonal equation in 3D with diffusivity anisotropy 3:2:1 

3.5 Solving Fluid Flow Equation 

Without additional complexity and loss of generality, we just demonstrate the 

single phase fluid flow problem with the unstructured grid system. Starting with the mass 

conservation equation for single phase fluid flow, shown by Eq.3.44 

 
( )

( )u
t





 


 (3.44) 
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u p

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where   is porosity,   is fluid density, and u  is the Darcy velocity. k ,   and p  

are permeability, fluid viscosity and pressure, respectively. 

Our proposed simulation approach relies on transforming the above equations into 

the 1D  -coordinate. The mathematical details of the derivation are given in Appendix 

A. The transformed equation can be written as (with the sink/source term) Eq.3.46: 

 
 

 
 

 tinit init
c p

w q
t w

 
  

   

   
  

   
 (3.46) 

   pdV
w

d



  (3.47) 

The ( )w   function is obtained from solving the Eikonal equation with the FMM, 

and then Eq.3.46 is solved numerically with a finite difference scheme. Since Eq.3.46 is 

solved only in a 1D spatial coordinate system, it is very computationally efficient. The 

heterogeneity and the physical properties appear to have “vanished” from the diffusivity 

equation in Eq.3.46, but actually, the heterogeneities have been lumped into the ( )w   

function. Note that ( )w   is proportional to the surface area of the drainage volume and it 

is directly related to the geometry of the drainage volume of the well. 

One approach to obtaining the ( )w   function is to calculate the drainage volume 

first, by adding up the pore volume within each  -contour at different cut-off values, and 

then take the derivative with respect to  . However, due to the grid effects and the 

reservoir heterogeneity, such a calculation for ( )w   is usually noisy and not smooth. In 

such a case, an appropriate smoothing technique should be carefully applied to extract 

accurate ( )w   response. Here, we propose a local discretization of ( )iw   for each triangle, 
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which works well without any additional requirements for smoothing. Eq.3.48 assumes a 

constant ( )iw   value within each triangle between the corresponding min and max   

values and zero beyond this range. To compute ( )w   for the model at a particular   value, 

we add local ( )iw   from all triangles whose DToF range contains   (shown by Eq.3.49). 

   ,

max, min,

p p i

i
i i

dV V
w

d


  
 


 (3.48) 

    
min, max,i i

i
w w

  

 
 

   (3.49) 

3.6 Model Validation 

3.6.1 Accuracy Comparison 

To validate our proposed approach, we apply it to a shale oil reservoir model with 

a single infinite conductivity planar fracture, which can provide a simple cross-validation 

between our proposed approach and commercial finite difference based simulation. A 

finite volume based simulator has been implemented for the unstructured grid system and 

the performance is compared with commercial finite difference based simulation as well.  

Figure 3.21a shows the tartan grid system for finite difference simulation and 

Figure 3.21b is the Voronoi grid (with 6343 cells) used for finite volume based simulation 

and our proposed approach. The key parameters are summarized in Table 3.2. This single 

fracture reservoir is produced at a constant BHP of 1000 psi for three years. Figure 3.22 

compares the production rate from the three different techniques and from the comparison 

our proposed approach provides good agreement with the other two. Figure 3.22 also 

validates the correct implementation of the finite volume simulation. 
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Figure 3.21 Single fracture: a) tartan grid b) Voronoi grid 

Table 3.2 Parameters used in the 2D single fracture model 

Reservoir size 500×1000×100 ft3  Oil FVF (pinit) 1.37 bbl/STB 

Initial pressure 5470 psi  Wellbore radius 0.2 ft 

Matrix porosity 0.046  Fracture porosity 0.25 

Matrix permeability 0.0001 md  Fracture permeability 1000 md 

Rock compressibility(pinit) 1.0×10-6 psi-1  Fracture width 0.2 ft. 

Oil viscosity 0.2 cp  Fracture height 100 ft 

Oil compressibility 2.0×10-5 psi-1  Fracture half-length 250 ft 

 

 

Figure 3.22 Production rate comparison for single fracture model 

0

10

20

30

40

0 200 400 600 800 1000 1200

P
ro

d
u
ct

io
n
 R

at
e 

(S
T

B
/D

)

Time (days)

FDSim

FVSim

FMM



 

74 

 

3.6.2 CPU Comparison 

The goal of our proposed approach is to provide rapid reservoir simulation for 

complex fracture systems. As discussed in the previous section, the computational 

efficiency of our proposed approach with the FMM comes from the transformation of the 

3D fluid flow equation into an equivalent 1D  -based coordinate. Figure 3.23 shows the 

computational efficiency comparison between the finite volume based simulation and our 

proposed approach for different unstructured cases, including the above single fracture 

case (Figure 3.23b) and the application case in next section. Figure 3.23a shows the total 

CPU time for each scenario and Figure 3.23b presents the speedup ratio. 

 

Figure 3.23 Computational efficiency comparison a) CPU time for FMM and finite volume 
method; b) Speedup ratio 

According to the cases tested, our proposed approach provides orders of magnitude 

increase in computational speed with the computational advantage continuing to increase 
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with the increase of the number of Voronoi cells. It is because that finite volume 

simulation (or finite difference simulation) has the computational complexity of 2( )O N  

while the FMM calculation only has the computational complexity of ( log )O N N  and the 

fluid flow simulation in transformed 1D coordinate only takes a few seconds as it is 

independent of N , where N  is the number of Voronoi cells. 

3.7 Application 

3.7.1 2D Synthetic Example 

This section demonstrates the applicability of our proposed approach to a 2D 

synthetic naturally fractured reservoir with multiple hydraulic fractures. The natural 

fracture system (green and blue line segments in Figure 3.24) is generated according to 

statistical properties. Only the segments directly connected to the hydraulic fractures (blue 

line segments) are assumed to contribute to the flow. This model considers 10 hydraulic 

fractures with a spacing of 250 ft, and a half-length 250 ft or 300 ft. Other key parameters 

are listed in Table 3.3. 

Table 3.3 Parameters used in the 2D multiple fracture model 

Reservoir size 3500×1000×100 ft3  HF permeability 1000 md 

Initial pressure 5470 psi  HF porosity 0.25 

Matrix porosity 0.046  HF width 0.2 ft 

Matrix permeability 0.0001 md  HF height 100 ft 

Rock compressibility(pinit) 1.0×10-6 psi-1  Number of HF 10 

Oil viscosity 0.2 cp  HF half-length 250, 300 ft 

Oil compressibility 2.0×10-5 psi-1  Propped NF permeability 10 md 

Oil FVF (pinit) 1.37 bbl/STB  Propped NF width 0.2 ft. 

Wellbore radius 0.2 ft  Propped NF porosity 0.1 



 

76 

 

 

Figure 3.24 Multiple hydraulic fractures in a naturally fractured reservoir  

Figure 3.25 shows the discretization for this complex fracture network, with 31038 

Voronoi cells. We can see that all the fractures contributing to the flow are captured, and 

each Voronoi cell is well-shaped. Figure 3.26 is the diffusive time of flight map for this 

reservoir. The smaller value means it takes the shorter time for the pressure front to 

propagate to that location. The connected natural fractures help facilitate the pressure 

propagation into the matrix and therefore contribute to the flow. 

 

Figure 3.25 Voronoi grid for 2D multiple fracture model 

 

Figure 3.26 DToF map for 2D multiple fracture model calculated from the FMM 
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The synthetic multiple fracture model is simulated for three years under a constant 

bottom-hole pressure constraint of 1000 psi. After solving the 1D fluid flow equation in 

the  -coordinate, the pressure value can be interpolated back to the physical cells based 

on their corresponding  -value. Figure 3.27 shows the pressure distribution at different 

times. From pressure map at three years (Figure 3.27c), it can be detected that the fracture 

interference already occurs.  

 

Figure 3.27 Pressure distribution for 2D multiple fracture model: a) 3 months; b) 1 year; c) 
3 years 

The oil production rate and cumulative production are presented in Figure 3.28 and 

Figure 3.29, respectively, where the results between cases with natural fractures and 

without natural fractures are compared. It can be observed that the production rate at very 

early times are quite similar due to the same hydraulic fracture areas for both cases, while 

the case with natural fractures maintains much higher production rate at the late time due 

to the contribution of the connected natural fractures. It takes only 70-100 seconds for 
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solving the Eikonal equation using FMM and solving the 1D fluid flow simulation, as 

shown by the case with the largest number of Voronoi cell in Figure 3.23a. While the finite 

volume simulation takes 40 to 50 times longer (Figure 3.24b), which demonstrates the 

computational advantages of our proposed approach. 

 

Figure 3.28 Production rate comparison for 2D multiple fracture model 

 

Figure 3.29 Cumulative production comparison for 2D multiple fracture model 
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3.7.2 3D Synthetic Example 

The synthetic example is a gas reservoir, with reservoir size 1000×1000×100 ft3. 

This synthetic reservoir is divided into five layers with non-uniform thickness. There are 

one dominating hydraulic fracture, with fracture permeability 1.0×105 md, and three 

intersecting fractures, with fracture permeability 1.0×103 md. All the fractures are fully 

penetrated, and they share the same fracture porosity and width. The synthetic example is 

simulated under bottom-hole pressure (1000 psi) constraint for 3 years. Other key 

parameters used in the synthetic example are listed in Table 3.4.  

Table 3.4 Parameters used in the 3D synthetic model 

Reservoir size 1000×1000×100 ft3  Wellbore radius 0.16 ft 

Grid thickness 20, 10, 30, 15, 25 ft  Fracture porosity 0.25 

Initial pressure 5000 psi  Fracture width 0.2 ft. 

Matrix porosity 0.046  Frac1 perm/length 1E5 md, 600ft 

Matrix permeability 0.0001 md  Frac2 perm/length 1E3 md, 640 ft 

Rock compressibility(pinit) 4.0×10-6 psi-1  Frac3 perm/length 1E3 md, 400 ft 

Gas viscosity 0.0278 cp  Frac4 perm/length 1E3 md, 283 ft 

Gas compressibility 1.45×10-4 psi-1  BHP 1000 psi 

Gas FVF (pinit) 0.725 bbl/Mscf  Simulation time 3 years 

 

Figure 3.30a shows the top-view of unstructured grids generated with the force-

equilibrium algorithm. The unstructured grids are then further divided into the triangular 

prism and the DToF values at each node of the triangular prism are calculated with FMM. 

For each unstructured cell, the average value based on all nodes is assigned as the cell 

property, and Figure 3.30b represents the DToF map on the basis of each cell. 
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Figure 3.30 a) Top-view of unstructured Voronoi cells; b) DToF map in 2.5D unstructured 
grids 

 

Figure 3.31 ( )w   function indicating the flow geometry for 3D synthetic model 

With the proposed procedure to calculate the ( )w   function, we can skip the 

calculation of drainage volume. The ( )w   function for this synthetic example is presented 

in Figure 3.31. From Figure 3.31, four distinctive stages can be identified, where stage 1 

corresponds to the pressure propagation in the dominating hydraulic fracture, stage 2 is 

the propagation into intersecting fractures (with smaller diffusivity), stage 3 represents the 
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pressure propagation from fracture to formation and stage 4 is finite volume effect when 

pressure approaches the boundary. More analysis about the characteristic of ( )w   function 

can be found in Xue et al. (2016).  

 

Figure 3.32 Gas production rate comparison (DToF-based vs. finite volume simulation) 

 

Figure 3.33 Pressure distribution for 3D synthetic model at a) 3 months and b) 3 years 

The reservoir performance is then simulated based on the calculated DToF and 

( )w   function. Figure 3.32 shows the comparison of gas production rate from the DToF-

based approach and finite volume simulation, where a good agreement is obtained. For 
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higher once the programming is further optimized. The pressure data on the DToF 

coordinates can be interpolated on the DToF map to obtain the pressure distribution in the 

3D physical domain. Figure 3.33 shows the pressure distribution calculated in this manner 

at 3 months and 3 years, which honors the geometry of the fractures.  

This DToF-based approach is also applied to a field-scale problem to demonstrate 

the applicability. The reservoir properties are based on an Eagle Ford shale well. In this 

model, four hydraulic stages are created with five fracture per stage and a fracture spacing 

100 ft. Other key parameters are summarized in Table 3.5.  

Table 3.5 Parameters for Eagle Ford shale reservoir 

Reservoir size 2000×2800×155 ft3  Bottom-hole pressure 2500 psi 

Reservoir permeability 150 md  Gas viscosity 0.25 cp 

Reservoir porosity 0.061  Gas compressibility 1.63×10-4 psi-1 

Reservoir pressure 4280 psi  Slickwater viscosity 1.5 cp 

Young’s Modulus 6.11×106 psi  7.5% HCL viscosity 1.37 cp. 

Min horizontal stress grad 0.9 psi/ft  Linear Gel viscosity 31 cp 

Pore pressure gradient 0.58 psi/ft  Crosslinked Gel vis. 600 cp 

Overburden stress gradient 1.15 psi/ft  No. of perfs per stage 5 

Stress anisotropy 1.03  No. of stage 4 

Rock compressibility 3.6×10-6 psi-1  Cluster spacing 100 ft 

 

Commercial software, Mangrove, is used to simulate the fracture propagation 

process using Unconventional Fracture Model (UFM) method (Wu et al. 2012), which 

takes into account the stress shadow effect and the interaction between hydraulic fractures 

and natural fractures. The fracturing pumping schedule for the fracture propagation 

simulation is listed in Table 3.6, and the resulting complex fracture system is shown by 
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Figure 3.34a. Based on the fracture geometry, the unstructured grids are generated using 

the force-equilibrium algorithm, and the top-view of the grids is shown by Figure 3.34b.  

Table 3.6 Fracturing pumping schedule 

 Fluid type Fluid volume  

(gals) 

Proppant type Proppant concentration 

(PPA) 

Step 1 Slickwater 10500 - 0.0 

Step 2 7.5% HCL 1000 - 0.0 

Step 3 Slickwater 30000 - 0.0. 

Step 4 Slickwater 8333 100 mesh 0.5 

Step 5 Linear Gel 15000 100 mesh 1.0 

Step 6 Linear Gel 70000 100 mesh 1.5 

Step 7 Crosslinked Gel 74000 100 mesh 2.25 

Step 8 Crosslinked Gel 73143 40/70 White 3.0 

 

      

Figure 3.34 a) Complex fracture system generated by Mangrove; b) top-view of 
unstructured Voronoi cells 

Figure 3.35a denotes the DToF map in log10 scale calculated using FMM, from 

which the fracture geometry is well captured. The ( )w   function is shown in Figure 3.35b, 

where we can observe the pressure propagation within the hydraulic fracture, from fracture 

to formation, fracture interference, and finite boundary effect.  
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Figure 3.35 a) DToF map (in log10 scale) calculated using FMM; b) ( )w  function 

indicating the flow geometry 

 

Figure 3.36 Pressure distribution for field-scale model at (a) 3 months (b) 3 years 

 

Figure 3.37 Gas production rate comparison (DToF-based vs. commercial simulator) 
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Figure 3.36 shows the pressure distribution for the multiple fracture field model 

calculated at 3 months and 3 years. It can be observed that the fractures interference 

already happens at 3 years based on the pressure distribution in Figure 3.36b. Figure 3.37 

shows the comparison of gas production rate from the DToF-based approach and 

commercial simulator, where a good agreement is obtained as well.  

3.8 Conclusions 

In this chapter, we extended the DToF-based simulation approach to unstructured 

grid system so as to better model the fractured reservoirs. We presented the procedure of 

unstructured mesh generation, which includes a force-equilibrium optimization algorithm 

to provide the mesh with high quality. Next, we investigated the two constructions of local 

Eikonal equation solver for unstructured grids, which are based on Fermat’s principle and 

Eulerian discretization. The performance of these two constructions are compared and the 

Eulerian discretization approach is extended to anisotropic media. After calculating the 

DToF with FMM, a novel process of constructing the ( )w   function is presented and the 

fluid flow equation is solved numerically. Through the numerical examples, our proposed 

approach proves to be an efficient workflow to model the fractured reservoirs. 

The main conclusions from this study can be summarized as follows: 

(1) Unstructured grids allow better characterization of the transient drainage 

volume for complex fracture systems while the DToF-based simulation 

provides a rapid simulation of reservoir performance. 

(2) A novel scheme is proposed to handle fracture intersections for Voronoi grid 

systems. The force-equilibrium optimization algorithm proves to be an 
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efficient approach to optimize the location of Delaunay nodes, which yields 

unstructured mesh with good mesh quality and uniformity.  

(3) We derived a symmetric formula for the 3D Eikonal equation solver based on 

Fermat’s principle. We provided the detailed implementation of Eulerian 

discretization, especially, the degradation from the tetrahedron to the plane in 

3D and the causality requirement constraint. 

(4) The construction based on Fermat’s principle is more transparent to physical 

meaning; while the construction based on Eulerian discretization is more 

straightforwardly be implemented and more easily be extended to anisotropic 

media. 

(5) Based on the numerical test cases in isotropic media, the Fermat’s principle 

and Eulerian discretization yields equivalent results even though they follow 

different constructions.  

(6) After computing the DToF with FMM, all the complex fracture geometry and 

reservoir heterogeneity information are lumped into the ( )w   function. And 

we adopt a new procedure to construct the ( )w   function without resorting to 

an explicit calculation of drainage volume. 

(7) The accuracy of the DToF-based simulation approach is validated against 

conventional finite volume simulation, and the applicability is demonstrated 

through field-scale numerical examples. Compared with conventional finite 

volume simulation, our proposed approach shows orders of computational 

reduction.  
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CHAPTER IV 

MODEL-FREE PRODUCTION DATA ANALYSIS BASED ON THE TRANSIENT 

DRAINAGE VOLUME 

4.1 Introduction 

Based on our study in previous chapters, the DToF-based simulation approach 

proves to be an efficient method to model the unconventional reservoirs. However, a high-

resolution simulation model is necessary to compute the accurate transient drainage 

volume. The reality is that a high-resolution simulation model is usually not available 

while the production and pressure data is abundant for unconventional wells. Based on 

our knowledge of the transient drainage volume through the development of DToF-based 

simulation, we propose the model-free production analysis technique (Yang et al. 2015).  

In this chapter, we work directly with field production and pressure data to infer 

the drainage volume, the instantaneous recovery ratio, defined as the ratio of the produced 

volume to the drainage volume and the ( )w   function that is related to a combined fracture 

and reservoir surface area. Our work draws upon the commonly used pressure transient 

and Rate Normalized Pressure (RNP) concepts. However, it specifically generalizes the 

                                                 

 Part of data reported in this Chapter is reprinted with permission from “A Novel Approach for Production 

Transient Analysis of Shale Gas/Oil Reservoirs” by Yang, C., Sharma, V. K., Datta-Gupta, A., & King, M. 

J. (2015), paper URTEC-2176280-MS presented at the Unconventional Resources Technology Conference, 

20-22 Jul., San Antonio, Texas, USA. Copyright [2015] URTeC. 

 Part of data reported in this Chapter is reprinted with permission from “Rapid Refracturing Candidate 

Selection in Shale Reservoirs Using Drainage Volume and Instantaneous Recovery Ratio” by Yang, C., 

Xue, X., Huang, J., Datta-Gupta, A., & King, M. J. (2016), paper URTEC-2459368-MS presented at the 

Unconventional Resources Technology Conference, 1-3 Aug., San Antonio, Texas, USA. Copyright [2016] 

URTeC. 
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concept of the drainage volume from pseudo-steady state flow to transient flow, as is 

required for unconventional reservoirs, and then infers the underlying flow geometry to 

help differentiate and analyze different reservoir and fracture properties. The proposed 

formulation is applied to the analysis of the production data from shale oil reservoirs 

(Yang et al. 2016). The field data has been interpreted to describe the variations in 

performance characteristics seen in many wells. 

4.2 Background 

Unconventional shale gas/oil reservoirs are characterized by extremely low 

permeability. Due to this low permeability, the time scale for a transient response in 

unconventional reservoirs is orders of magnitude greater than in conventional reservoirs, 

which have led to the development of reservoir analyses more akin to conventional 

reservoir rate and pressure transient techniques. Various analytical techniques are 

routinely applied, such as decline curve analysis (Arps 1945; Fetkovich 1980; Valko and 

Lee 2010) and pressure/rate transient analysis (Al-Kobaisi et al. 2006; Ilk et al. 2011; Song 

and Ehlig-Economides 2011) in unconventional reservoir analysis. Analytical techniques 

are easy to implement; however, analytical techniques are limited to homogeneous media 

with simple geometry. Conventional numerical reservoir simulation (Cipolla et al. 2011; 

Freeman et al. 2009; Sun and Schechter 2015; Yan et al. 2013) can rigorously account for 

reservoir heterogeneity, complex fracture geometry, different geological components, 

geo-mechanics effects, and many other physical processes. However, the need to develop 

a detailed reservoir model instead of utilizing a simpler conceptual model is a significant 

disadvantage of numerical simulation. 
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Our earlier studies have emphasized the prediction of the reservoir response given 

an underlying model. In current study, we work directly with field production and pressure 

data to infer the drainage volume, and the instantaneous recovery ratio, defined as the ratio 

of the produced volume to the drainage volume. Our work is similar to late time reservoir 

analysis in conventional reservoirs where pseudo steady state concepts can be applied 

(Callard and Schenewerk 1995; Pratikno et al. 2003; Ye and Ayala 2013). It also draws 

upon the pressure transient concepts and Rate Normalized Pressure (RNP) of Song and 

Ehlig-Economides (2011). However, it specifically generalizes the concept of the drainage 

volume from PSS flow to transient flow, as is required for unconventional reservoirs, and 

then infers the underlying flow geometry to help differentiate and analyze different 

reservoir and fracture properties. 

The unconventional shale reservoir wells experienced sharp production declines. 

One direct application of our model-free approach would be evaluating the hydraulic 

fracturing effectiveness and reservoir properties to select candidate wells for refracturing. 

Studies by Miller et al. (2011) showed that about one-third of the perforation clusters in 

unconventional reservoirs are not producing, which can be attributed to reasons such as 

inefficient completion, proppant degradation, near wellbore damage and pressure 

depletion (Malpani et al. 2015). Refracturing the older underperforming wells, which costs 

approximately one-third of the total initial completion of a new well (Dahl et al. 2016), 

becomes an economical practice to enhance the production and gain additional economic 

returns (Jacobs 2015), which is especially important during the low oil price environment. 
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Vincent (2011) summarized numerous mechanisms of improving production with 

refracturing treatments, such as to enlarge fracture geometry, restore or increase fracture 

conductivity, and contact “new” rock due to reorientation effects. Refracturing can also 

improve the performance of previous suboptimal design with relatively large cluster 

spacing and small proppant volumes (Malpani et al. 2015). The benefit of refracturing 

unconventional shale reservoir is studied theoretically with numerical simulation (Araque-

Martinez et al. 2013; Dahl et al. 2016; Huang et al. 2016) and practically by analyzing the 

performance of field refractured wells, mostly with decline curves analysis (Craig et al. 

2012; Diakhate et al. 2015; French et al. 2014; Oruganti et al. 2015). The success of 

refracturing practice relies on several key factors, such as correct candidate selection, 

effective diversion techniques and proper execution and diagnostics (Grieser et al. 2016; 

Lindsay et al. 2016; Vincent 2011). Among these key factors, selecting the correct 

candidates for refracturing is the first critical step (Grieser et al. 2016; Malpani et al. 2015). 

Currently, most of the refracturing candidate selection experiences, mentioned by 

Vincent (2011) or proposed by Roussel and Sharma (2012, 2013), are limited to 

conventional reservoirs or tight reservoirs. From the industry practice, the candidate 

selections are mostly empirical and operator specific (French et al. 2014; Grieser et al. 

2016), which causes difficulties for decision-makers when considering multiple factors 

simultaneously, such as production, completion, and reservoir factors. Zoveidavianpoor 

et al. (2012) and Wang et al. (2013) proposed refracturing candidate selection based on 

data mining techniques but the correlations are not so promising. Sinha and Ramakrishnan 

(2011) proposed a more standardized screening method, which looks at the relationship of 
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the production and completion indicators, but it cannot account for the production history 

of the horizontal wells. Therefore, an efficient approach hinged on the physics is necessary 

for refracturing candidate selection. 

4.3 Mathematic Models 

We have developed a novel formulation of the diffusivity equation to model 

pressure, rate, and production, especially for trainset reservoir response in unconventional 

reservoirs. The formulation is derived from the asymptotic (high frequency) limit of the 

diffusivity equation for the impulse pressure solution. The formulation requires the 

solution of the Eikonal equation for the DToF and the corresponding pore volume 

geometry contained within a DToF contour. Once the pore volume geometry is 

constructed, it may be used as the basis for either numerical or analytic solution. Even 

through the numerical solutions are more general, the analytic approach is more readily 

applicable to production data analysis. 

4.3.1 Asymptotic Solution to Diffusivity Equation 

We may express the diffusivity equation for slightly compressible fluid in terms 

of the diffusive time of flight,  , and the ( )w   function as shown in Zhang et al. (2016). 

 
1

( ) 0
( )

p p
w

t w


  

   
  

   
 (4.1) 

The diffusivity equation is in terms of the pressure, as a function of   and t . The 

flux is defined as the total flux which crosses a   contour. We may express the Darcy flux 

in terms of the diffusive time of flight,  . 

 ( )t

p
q c w 







 (4.2) 
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The diffusivity equation may also be stated in terms of the flux instead of the 

pressure. 

 
1

( ) 0
( )

q q
w

t w


  

   
  

   
 (4.3) 

For a fixed flow rate drawdown in an infinite domain, the initial and boundary 

conditions are: 

 

0 0
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0

init

w
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t p p q

q q

p p q





  

 

  

 (4.4) 

The flux boundary condition at the well is specified at 0  , which may be at a 

finite wellbore radius, wr , or at a distance of 0r  . The later arises for a fault surface or 

for the line source approximation to a well. 

Consider the problem where ( )w   scales as a power-law in  . It captures all of 

the classical line source solutions to the diffusivity equation, as well as the more interesting 

formulation for the diffusion on a fractal as described by Barker (1988). As these equations 

are linear in pressure and flux, a dimensional analysis shows that the dimensionless flux 

function can only depend upon a dimensionless ratio of   and t . We will specifically 

work in terms of the Boltzmann variable. 

 
2

4t


   (4.5) 

 In contrast, because of the scaling of the boundary conditions at 0  , the pressure 

diffusivity equation will only have a self-similar solution in 2D. The self-similarity of the 

flux solution allows us to relate t  and   derivatives of the flux and to simplify Eq.4.3. 
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Hence: 

 
1 1
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dq dq
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    
   

 (4.7) 

In this form, the diffusivity equation may be integrated explicitly. 

 

2

4
1

( ) ( )

w t

d

qdq
e

w d V t



 



   (4.8) 

The spatial dependence of the solution is controlled by the diffusion kernel
2 4te  , 

the form of which is independent of ( )w  . In contrast, the flux, ( , )q t , and the drainage 

volume, ( )dV t , explicitly depend upon ( )w  . The flux may be obtained by an additional 

integration. 
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The unknown function ( )dV t , is determined from the boundary condition at 0  . 
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This completes the solution of the flux equation for power-law ( )w  . 

For more general ( )w  , we can write the diffusivity equation as: 

 
2
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If we replace the term in parentheses by either its upper or lower bound, then we 

again obtain power-law solutions of the form of Eq.4.8, but with differing functions for

( )dV t . These provide upper and lower bounds for the flux for general ( )w  , and justify 

the use of Eq.4.8 as an asymptotic solution to the diffusivity equation in an unbounded 

reservoir. 

4.3.2 Drainage Volume Calculation 

For a fixed rate draw-down in an infinite domain, Eq.4.12 and Eq.4.13 provide the 

starting point for our current production analysis: 

 
2 41

( ) ( )

tw
t

d

qp q
c e

t w V t



 

 
  

 
 (4.12) 

 
2 4

0

( ) ( ) t

dV t w e d 


   (4.13) 

For slowly varying flow rates, following Winestock and Colpitts (1965), we may 

replace the fixed flow rate by ( )wq t . For strong changes, superposition in time may be 

used instead, or more generally replaced by a convolution integral. Similarly, for multiple 

wells or no flow boundaries, superposition in space may be used to generalize the right-

hand side of the equation. For homogeneous models, these asymptotic solutions are exact. 

King et al. (2016) provide a detailed comparison of the asymptotic solutions with 

traditional analytical solutions for different scenarios. For systems with complex flow 

geometry, these analytic approximations may still be fairly accurate.  



 

95 

 

The drainage volume of a well has been defined by Matthews et al. (1954) for PSS 

flow. In our work, we extend their definition to transient flow, based upon the qualitative 

aspects of the asymptotic solution, as summarized in Table 4.1 and shown in Figure 4.1. 

 

Figure 4.1 Spatial profile of the fixed rate draw-down solution to the asymptotic pressure 
approximation in terms of the time derivative to the pressure drop, normalized to its value 

at the well (modified from King et al. (2016)) 

Table 4.1 Characteristics of the asymptotic pressure solution 

Boltzmann Variable Diffusion Kernel Characteristic 
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The spatial characteristics of these solutions are controlled by the Boltzmann 

variable, 2 4t , which is a dimensionless combination of the diffusive time of flight and 

time. The exponential in Eq.4.12 is the “diffusion kernel” which controls the solution 

characteristics for both homogeneous and heterogeneous reservoir models and in arbitrary 

dimensions. The choice of characteristics is consistent with the general literature 

discussions of the validity of infinite acting radial flow, Lee (1982), and to field data 

interpretation of the radius of investigation, Kuchuk (2009), but here expressed in terms 

of the pressure transient and applied to our general solution. 

Let’s describe the characteristics of the solution, starting from the bottom of Table 

4.1. For sufficiently large values, 2 4 4t  , the diffusion kernel is essentially equal to 0, 

and the pressure is still at its initial value. For values of 2 4t  between 0.01 and 4, we 

have a moving transient solution where the solution depends upon both   and t . Finally, 

for sufficiently small values, 2 4 0.01t  , the diffusion kernel is essentially equal to 1, 

and p t   is independent of  , i.e., Pseudo-Steady State flow. Since we are in PSS near 

the well, we may define the drainage volume from production data, following the analysis 

of Matthews et al. (1954). It is important to recognize that this is the drainage volume 

within the region of the moving transient solution, and so will increase with time. For 

conventional reservoirs, the PSS limit will be reached in the entire reservoir and ( )dV t  will 

be the pore volume of the reservoir. However, we have no evidence of reaching the PSS 

limit in any of the unconventional reservoir examples we have examined, and instead, the 

drainage volume continues to increase during production. ( )dV t  is not the volume 



 

97 

 

produced. Instead, it describes the footprint in the reservoir within which depletion has 

begun. 

Given a model for ( )w   we may evaluate the drainage volume, ( )dV t , and then 

integrate the equation in time to determine the pressure drop calculated from the initial 

pressure. This solution is for a fixed rate draw-down. 

  
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For instance, ( )dV t t  for infinite acting radial flow and this solution is the Ei  

function. In the PSS limit, it reduces to the ln approximation of the Ei  function. Similarly, 

we may predict the flow rate, given a fixed bottom-hole flowing pressure. 
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In terms of pressure transient analysis, we can directly evaluate the well-test 

derivative from Eq.4.12 without any further integration. 
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This provides an interpretation of the well-test derivative directly in terms of the 

drainage volume. 

In the absence of a model, ( )w   is not known, but instead, we have field 

production data with variable pressure drop and flow rate. 
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Following the earlier work of Winestock and Colpitts (1965), and of Song and 

Ehlig-Economides (2011) specifically for unconventional reservoirs, this relationship for 

the drainage volume may be extended to variable rate production through the use of rate 

normalized pressure and superposition time. As with previous authors, we approximate 

superposition time using the material balance time. The drainage volume is evaluated from 

variable production and pressure data based on the following equations: 
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We may also calculate the Instantaneous Recovery Ratio, defined as the ratio of 

the produced volume to the drainage volume. The IRR measures how quickly or how 

efficiently the accessed drainage volume has been produced. Both the operations of the 

well and the conductivity of the hydraulic fractures in unconventional reservoirs will 

govern the behavior of IRR curves. 

  
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  (4.20) 

4.3.3 Inversion Procedure for ( )w   Function 

The ( )w   function is inverted in a way which truncates the infinite integral to be 

finite and divides the domain into small intervals with piecewise constant at each interval. 

 
2

1

( ) ( )exp
4

b

a

N

d i

j i

V t w d
t






 



 
  

 
  (4.21) 



 

99 

 

Any type of ( )w   function can be assumed, here ( )w   is considered as piecewise 

constant. This is a fair assumption for two reasons: firstly, we are not trying to obtain a 

purely analytical solution of ( )w   and it is not possible to do so without an analytical 

formula for ( )dV t ; and secondly, it is good approximation as long as a sufficient number 

of intervals are used. The integral in Eq.4.21 can be explicitly expressed in terms of error 

function as follows: 
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We end up solving a linear matrix x bA , where each term is expressed as 

Eq.4.23.  
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, ( )i ix w   and ( )i d ib V t  (4.23) 

The error function gets quite close to unity (0.9996), at arguments larger than 2.5, 

thus the coefficient is small. The coefficient matrix quickly becomes singular, and the 

entire system is not readily solvable. We can further reduce the upper limit of the integral 

for particular time t , here we choose 5 t . For the first step, i.e. smallest time 1t , the 1( )w   

is considered constant in the entire interval and can be solved directly. And at the 
thn  

interval, all previous ( )w   values have been solved, and the corresponding interval for 

solved value ( )iw   is 
12 ,2i it t

 
 

. We can then build a serious of equations in Eq.4.24, 

and solve them recursively. 
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Through this way, we can obtain a fairly good ( )w   function, which shows distinct 

characteristics and helps to explain the differences of model responses. However, other 

means of inverting for the ( )w   function are still worthy of investigation. 

4.4 Illustration and Validation 

In this subsection, we will illustrate our proposed calculation of drainage volume, 

instantaneous recovery ratio, and drainage volume derivative, ( )w  , with both single 

fracture model and multiple fracture models. The accuracy of these calculation is validated 

against the actual reservoir pore volume.  

4.4.1 Single Fracture Model Illustration 

We first apply it to a simple model whose flow pattern is well-known: a single 

infinite conductivity fracture model. In this example, we use a ‘tartan’ grid to model a 

shale oil reservoir with a single hydraulic fracture. The fracture fully penetrates the 

reservoir in the vertical direction. The mesh size is 301×213×10 with 0.641 million cells. 

The grid sizes in the x and z directions are uniform (DX = 8 ft and DZ = 10 ft). The grid 

size in the y direction is logarithmic near the fracture to provide better flow resolution and 
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varies from a minimum width of 0.02 ft to a maximum of 30 ft (Figure 4.2a). Although it 

is not necessary to do so, we have set the minimum cell width to match the fracture width. 

If we had chosen to work with a slightly coarser grid, then both the permeability and 

porosity would be adjusted to preserve the fracture conductance and the fracture pore 

volume. The key parameters are summarized in Table 4.2. This single fracture reservoir 

is produced at a constant bottom-hole pressure of 1000 psi.  

Table 4.2 Parameters used in the single fracture example 

Reservoir size 2408×2400×100 ft3  Oil FVF (pinit) 1.37 bbl/STB 

Initial pressure 5470 psi  Fracture porosity 0.30 

Matrix porosity 0.046  Fracture permeability 1000 md 

Matrix permeability 0.0005 md  Fracture width 0.24 in. 

Rock compressibility(pinit) 1.0×10-6 psi-1  Fracture height 100 ft 

Oil viscosity 0.2 cp  Fracture half-length 400 ft 

Oil compressibility 2.0×10-5 psi-1    

 

 

Figure 4.2 a) Single fracture on a tartan grid and its pressure distribution (1000 days); b) 
Production rate and cumulative production for the single fracture model (1000days) 
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This synthetic model is simulated with a commercial finite difference reservoir 

simulator. The rate and cumulative production information for the first 1000 days are 

given in Figure 4.2b. For the purpose of showing flow regimes including reservoir 

boundary dominated flow, the model is simulated for approximately 1.0×105 days. We do 

not expect to see the late time flow regimes in practical field applications.  

Following the methodology described above, we can obtain the drainage volume, 

IRR, and ( )w   function (Figure 4.3). For this simple example, the reservoir pore volume 

is about 2.66×107 ft3, as the dashed line in Figure 4.3a, and the calculated drainage volume 

accurately converges to this value. We also intuitively know all the flow regimes, namely 

early linear flow, radial flow and boundary dominated pseudo-steady state flow. Our 

analysis in Figure 4.3d accurately captures the response for all the flow regimes. For linear 

flow, we expect the effective cross-section for flow to remain constant and the drainage 

volume to increase proportionally to the square root of time. For radial flow, we expect 

the effective cross-section for flow to increase linearly with   and for the drainage volume 

to increase linearly with time. Both of these trends also appear. At late time the drainage 

volume reaches the pore volume of the reservoir and the effective cross-section for flow 

should reduce towards zero. The trend of the IRR is interesting. It is plotted on semi-log 

axes to emphasize the early time behavior. The early time recovery ratio reaches a 

maximum when the cross-over from linear flow to radial flow begins. In other words, the 

drainage volume now increases more rapidly than does the produced volume. For late time 

boundary dominated flow, the drainage volume no longer increases, and the IRR will then 

increase monotonically with production. The pressure contours are given in Figure 4.4.  
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Figure 4.3 Analysis results for single fracture model: a) Drainage volume; b) IRR curve; c) 
Drainage volume and IRR in the same time scale; d) Drainage volume derivative function 

   

Figure 4.4 Pressure contours for single fracture model: a) Formation linear flow; b) Radial 
flow; c) Boundary dominated pseudo-steady state flow 
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4.4.2 Multiple Fracture Model Illustration 

The proposed approach is further applied to synthetic multistage hydraulic 

fractured horizontal wells for sensitivity study. The matrix, fracture, and fluid properties 

are listed in Table 4.3. For this sensitivity study, four different scenarios are compared: 1) 

base case (60 clusters with cluster spacing 50 ft) produced at a constant bottom-hole 

pressure of 1000 psi; 2) constant rate production at 15 STB/day; 3) the same horizontal 

well length but with fewer clusters (40 clusters with cluster spacing 75 ft); 4) shorter 

horizontal well length (40 clusters with cluster spacing 50 ft). 

Table 4.3 Parameters used for synthetic models for proposed production data analysis 

Reservoir size 2408×6000×100 ft3  Fracture porosity 0.30 

Initial pressure 5470 psi  Fracture permeability 1000 md 

Matrix porosity 0.046  Fracture width 0.24 in. 

Matrix permeability 0.0001 md  Fracture height 100 ft 

Rock compressibility(pinit) 1.0×10-6 psi-1  Fracture half-length 400 ft 

Oil viscosity 0.2 cp  Number of clusters 40/60 

Oil compressibility 2.0×10-5 psi-1  Cluster spacing 50/75 ft 

Oil FVF (pinit) 1.37 bbl/STB    

 

 

Figure 4.5 Drainage volume comparison: a) in Cartesian scale (first year); b) in log-log 

scale (1.0×104 days) 
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Figure 4.5 shows the drainage volume comparison for four different cases. The 

results are quite explanatory. For early time formation linear flow, the drainage volume 

shows a straight line with a unit slope in log-log plot with time. The good agreement 

between the base case and the constant rate constraint case validates that the proposed 

drainage volume is independent of operations. The drainage volume of case 3 agrees with 

that of case 4 at the early time because both cases share the same number of hydraulic 

fractures; while the drainage volume of case 3 gradually converges to that of the base case 

because the flow is into compound linear flow period and the horizontal well length is the 

controlling factors.  

The IRR curves are presented in Figure 4.6. The IRR values start with a relatively 

high value for constant bottom-hole pressure constant cases because the fractures have an 

effective infinite conductivity which boosts quite a fast production when drainage volume 

hasn’t increased too much. The bending up sections indicate the fracture interference: the 

case 3 with larger cluster spacing (75 ft) consequently shows the bending up feature later 

than other cases, with cluster spacing 50 ft. The results also indicate that the produced 

volume increase proportionally with the drainage volume under constant bottom-hole 

pressure constraint during the linear flow period. This explains the nearly flat section at 

quite early and late parts. The IRR of the constant rate constant case is significantly 

different from these of the constant bottom-hole pressure constant cases because the IRR 

curve incorporates the cumulative fluid production, which depends on and reflects the 

operation history.  
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Figure 4.6 IRR curves comparison in semilogx scale (1.0×104 days) 

 

Figure 4.7 ( )w   function comparison 

Figure 4.7 shows the ( )w   function for the above four synthetic simulations. The 

( )w   function combines the influence of diffusivity and fracture geometry; at given 
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diffusivity condition, all the differences on the ( )w   plot is attributed to fracture geometry. 

During the formation linear flow period for infinite conductivity scenario, the drainage 

volume increases at a rate which is proportional to the fracture surface area. Therefore, we 

see constant value on the ( )w   plot at the early time and the cases with 60 clusters show 

about 50% larger value for the cases with 40 clusters (note that the fracture half-lengths 

are the same). When the fractures inference with each other, the drainage volume increase 

slower and the ( )w   starts to decline. The case 3 with cluster spacing 75 ft shows about 

50% larger   value compared to cases with cluster spacing 50 ft at the same strength of 

fracture interference. The second section is due to that the pressure continues propagating 

in the reservoir as compound linear flow. The results are purely from synthetic 

simulations; for field cases, where one horizontal well is drilled near another, we don’t 

expect the second section. What’s more, due to finite conductivity effect (eg. proppant 

degradation) or partial penetration effect (eg. proppant sit lower part of the fracture), we 

don’t expect strong flat feature at early part followed by sharp drop, instead the ( )w   

might increases gradually before fracture interference and then drops slowly after fracture 

interference. 

4.5 Procedure for Field Data Application 

We now focus on the application of our methodology to field data and describe the 

specific steps of production data analysis. It is important to emphasize that our approach 

is model free, that is, we need not invoke any particular flow regimes for analysis of the 

field data. Thus, our analysis is data-driven rather than model-driven. 
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Field production data is always discontinuous, which limits our ability to take the 

derivatives required for the interpretation of drainage volume and instantaneous recovery 

ratio. These disturbances are either the results of planned or unplanned shutdowns in the 

production facility. Our primary method of simplifying the analysis is to ignore build-up 

pressure data taken during shut-ins, and the evaluation of derivatives with respect to 

cumulative production instead of time. However, further smoothing of the data is required 

to remove outliers and to capture the trend of the BHP. For shale reservoirs, the first 18 

months of production are of particularly importance, and the use of cumulative production 

will emphasize the data trends for this particular period. 

Below we provide a step by step analysis illustration of the procedure using 

production data from an Eagle Ford oil well. The figures cited appear below the 

description of these steps. 

Step-1: Calculate cumulative production from the data. Well production data 

typically includes the production rate and the surface pressure. As mentioned previously, 

we use cumulative production instead of time by accumulating the produced volumes 

accounting for variable flow rates and variable production times. For shale oil reservoir, 

like Eagle Ford field, where three phases (oil, gas, and water) coexist, the phases are 

converted into reservoir condition and treated as combined single phase liquid.  

Step-2: Bottom Hole Pressure calculation. The bottom-hole flowing pressure is 

generally not directly available. Surface production pressure needs to be converted to BHP 

(Figure 4.8a). This is done based on the pressure traverse calculation through the vertical 

well length, with production tubing pressure and production rate data. The quality of the 
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BHP calculation will directly affect the drainage volume calculation, thus more accurate 

BHP calculation is always preferred.  

Step-3: Smoothing of data for adjusted BHP and adjusted rate. BHP is plotted 

against the cumulative production and data smoothed curve is fitted (Figure 4.8b). On the 

other hand, the production rate is plotted against time directly and stretched exponential 

decline curves is fitted (Figure 4.8c). A sufficient number of points are selected so as to 

obtain a clear trend for the data. The data points are resampled at every cumulative 

production interval for BHP data fitting and for rate fitting we just ignore all the obviously 

off-trend points.  

Step-4: Computation of material balance time and rate normalized pressure. The 

smooth curve fit is used to represent the pressure and rate for data analysis. With the 

integration of fitted rate curve, the corresponding cumulative production is obtained with 

respect to time (Figure 4.8d). The idea of the analysis is to evaluate the reservoir response 

under circumstances of no planned or unplanned shut-ins. Therefore, the calculated 

cumulative is smooth, and it departs away from actual cumulative production during shut-

in periods. The material balance time is calculated from fitted rate and cumulative 

production at the corresponding time and the rate normalized pressure is computed from 

the fitted BHP and fitted rate at corresponding cumulative production.  

Step-5: Calculation of Drainage Volume, IRR and ( )w  . Based on the material 

balance time and rate normalized pressure computed from the smoothed curves, the 

drainage volume is calculated from Eq.4.18 and IRR is calculated from Eq.4.20 (Figure 

4.9a and Figure 4.9b). The drainage volume should look smooth because it measures the 
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pressure propagation response under circumstances of no shut-ins. On the other hand, the 

IRR curve is not smooth as it includes the actual production history, which is a result of 

operation events. Once the drainage volume (Figure 4.9a) is calculated as a function of 

time, the ( )w   function can be calculated using Eq.4.21. 

 

 

Figure 4.8 a) Pressure versus time; b) Pressure versus cumulative production; c) 
Production rate versus time; d) Cumulative production versus time 
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Figure 4.9 a) Drainage volume versus time; b) IRR versus time (semilogx scale); c) ( )w   

function 

4.6 Application to Refracturing Candidate Selection 

Since the drainage volume evaluates the accessed reservoir volume by the well 

after hydraulic fracturing while the IRR captures the depletion efficiency, a combination 
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are cross-plotted in quadrants, and the wells are qualitatively compared. Large drainage 

volume values indicate that the wells have access to large reservoir volumes (i.e. large 

fracture surface area); Large IRR reflects the accessed reservoir volume have been 

efficiently depleted. Even though the ( )w   function will not play a direct role in the 

quadrants analysis, it helps understand the flow geometry and might help determine the 

appropriate time at which the data is selected for comparison. 

4.6.1 Candidate Selection Criteria 

In the quadrants (Figure 4.10), we defined four regions, among which wells in the 

region I have the highest potential for refracturing, followed by wells in region II. Region 

I wells have accessed large drainage volume but cannot be efficiently depleted, indicating 

wells have large fracture surface area but poor fracture conductivity, which is more likely 

to be the hydraulic fracturing using slickwater. High IRR value for region II wells means 

the drainage volume for this type of wells can be efficiently depleted but the drainage 

volume itself is limited. This might happen when the proppants are not transported 

effectively. Figure 4.11 shows the possible scenarios for region I and region II wells 

respectively. The wells in region III are good wells already; therefore they are not 

considered for refracturing. One the other hand, the wells in region IV show small drainage 

volume and low IRR, but they are not good candidates for refracturing because of possible 

high risk, for instance, due to poor reservoir quality, completion failure, and other well 

integrity issues. 
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Figure 4.10 Refracturing candidate selection quadrants based on drainage volume and 
IRR  

   

Figure 4.11 Illustration of possible configurations for wells in region I and region II 

In the above quadrants, the drainage volume is the well drainage volume 

normalized by the horizontal well length, which essentially compares the depth into the 

formation by hydraulic fractures. For the particular time at which the data are compared, 

we recommend 18 months, which gives sufficient time for fracture interference. Engineers 

even compare the well performances based on the first six months, twelve months data, 

considering the sharp rate decline in unconventional shale reservoirs. Based on data 
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availability, using the data at one year or two years will work as well. From our field 

analysis, it gives consistent results for both one year and 18 months data. One alternative 

way could be to select the time when the fractures have detectable interference, which 

could be determined based on the ( )w   function. In that case, the time for different wells 

will vary, and it needs more investigation and validation. One additional thing should be 

noticed that the wells are compared in the qualitative sense. The boundaries to divide these 

four regions are at the user’s discretion, but the recommended value could be the 

arithmetic mean of all the data points, which is used in our analysis.  

Our proposed approach qualitatively compares the wells for the potential of 

refracturing. It can help narrow down the group of wells for consideration but will not 

guarantee the feasibility for refracturing because this quadrant analysis is from the 

perspective of reservoir simulation and it doesn’t directly account for drilling and 

completion factors. From the literature, almost all the refracturing candidate selection 

methods show a broad range of uncertainty, even for these methods directly derived from 

historical refractured wells. Therefore, after obtaining a narrowed group of candidate 

wells, it will be a good practice to further screen them from drilling and completion 

perspective.  

4.6.2 Validation with Synthetic Example 

We first demonstrate our approach with numerical simulations on synthetic cases. 

Our primary goal in this section is to create representative cases which fit in these four 

quadrants and evaluate their performance after refracturing. The key characteristics for 

refracturing simulation are the accurate quantification of the depletion-induced stress and 
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pressure field change. Thus, the finite element method is used to solve the coupled 

reservoir flow and geomechanics model while a cohesive zone model is adopted to 

simulate the fracture propagation. A fully coupled poroelastic model is used here to 

simulate both hydraulic fracture propagation and well performance, which can capture not 

only the complex fracture propagation process in multistage sequential hydraulic 

fracturing but also production simulation along with proppant degradation. We adopt 

cohesive zone model to simulate the planar fracture propagation by assuming that the out-

of-plane deflection is negligible. Bunger et al. (2012) provide a detailed algorithm to 

predict when it is valid to neglect the fracture path deflection and use the planar model. 

The entire simulation is performed based on the commercial finite element package 

ABAQUS platform, which provides a powerful interface for user-defined material and 

element properties, as well as complex initial and boundary condition variation through 

customized subroutines in FORTRAN.  

To better understand the fracture growth in space, a fully three-dimensional model 

coupled with the two-dimensional fluid flow within fracture is required. However, such a 

3D model generally requires substantial amounts of input data and can be extremely 

computationally intensive, which are limited mostly to academic research that provides us 

insights into the fracture and fluid interaction process in 3D space. Since the designed 

simulation here considers the effects of depletion on refracturing well performance at the 

reservoir scale, a 2D plane strain model is adopted to reduce the computational cost while 

capturing the most critical physics during the hydraulic fracturing process. The main input 

parameters for the simulation are listed in Table 4.4. To create the synthetic cases fit in 
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these four quadrants, we deliberately select different fracture fluid type, injection amount, 

and reservoir quality to differentiate these four cases in the initial fracturing. For the region 

I case, we inject 35 minutes using slickwater. In order to get higher IRR case in region III, 

we inject 35 minutes using crosslinked gel. The case in region II is obtained with 20 

minutes of gel injection. These three cases share the same reservoir quality; however, the 

case in region IV is assigned with porosity at 3.5%. And we inject 20 minutes of slickwater 

in the case for region IV.  

Table 4.4 Input parameters for candidate selection validation simulation 

Young’s Modulus 2.58×106 psi Minimum Horizontal Stress 7900 psi 

Poisson’s Ratio 0.3 Maximum Horizontal Stress 8300 psi 

Fracture Toughness 2000 psi∙in1/2 Overburden Stress 11000 psi 

Reservoir Permeability 25 nd Reservoir Thickness 200 ft 

Porosity 0.065 Injection Rate 60 BPM 

Reservoir Oil Viscosity 0.36 cp Injection Time 20, 35 min 

Total Compressibility 3.2×10-5 psi-1 Slickwater Viscosity  1.2 cp 

Initial Reservoir Pressure 4850 psi Gel Viscosity 100 cp 

Producing BHP 2000 psi Leakoff Coefficient 1.0×10-6 ft/(psi∙s) 

 

  

Figure 4.12 a) Drainage volume versus time; b) IRR versus time (semilog x scale) 
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Figure 4.13 Quadrants analysis for synthetic cases 

   

Figure 4.14 Pressure distribution at 18 months (a-d) and 3 years after refracturing (e-h) 

 

Figure 4.15 Cumulative liquid production for synthetic case with and without refracturing 
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Table 4.5 Cumulative oil production comparison 

Simulation 

Case 

Cum w/o refrac 

(bbl) 

Cum w refrac 

(bbl) 

Incremental Prod 

(bbl) 

Incremental 

(%) 

Region I  6744  14819 8075 120 

Region II  5182 11897 6714 130 

Region III 8072 10726 2654 33 

Region IV 3135 5108 1973 63 

 

The four synthetic cases are simulated for 18 months. The drainage volume and 

IRR behavior are calculated with the simulated production data based on our proposed 

calculation methods (Figure 4.12). The IRR curves for cases in the region I and IV show 

slight declines, which is due to bilinear flow effects resulting from low fracture 

conductivity (Figure 4.14a and Figure 4.14d). In this situation, the produced volume 

increases slower than the drainage volume increases, which can also be seen in radial flow 

regime. Figure 4.13 shows how these four cases fit in our four quadrants analysis. As 

mentioned earlier, the boundaries for the quadrants are the arithmetic mean. All the four 

simulation models are refractured at 600 days with the same refracturing schedule, which 

is 20 minutes injection of gel in our case, and then simulated for an additional three years. 

Figure 4.14 displays the pressure distribution at 18 months and additional three years after 

refracturing. The pressure distribution reflects the fracture properties and reservoir 

properties. Region I case initially accesses a larger drainage volume with slickwater but 

cannot be efficiently depleted (Figure 4.14a); after refracturing, it produces quite well 

(Figure 4.14e). Region II case initially depletes quite well but with a smaller drainage 

volume (Figure 4.14b); it also increases drainage volume after refracturing but not as much 

as the region I case (Figure 4.14f). Due to the depletion-induced stress and pressure field 
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change, the fractures of region III case don’t show a significant increase (Figure 4.14c and 

Figure 4.14g). Region IV case doesn’t show much depletion either before or after 

refracturing because of poor reservoir quality (Figure 4.14d and Figure 4.14h). Figure 4.15 

shows the cumulative oil production comparisons with and without refracturing, and the 

actual numbers at the end of the simulation are listed in Table 4.5. From the comparison, 

we see the region I case gives the best refracturing improvement, followed by the region 

II case, in terms of increased cumulative production. 

4.6.3 Field Case Application 

Here we discuss the analysis of shale oil production data from the Eagle Ford field. 

These wells are at a depth of 11,000 ft, with an initial reservoir pressure of about 8125 psi. 

Reservoir temperature is 270 oF, average porosity of 8.2% and permeability in the range 

of 100-20000 nd. Wells have multiphase fluid flow with oil as the main fluid component. 

All phases are converted to reservoir conditions and combined to obtain the produced 

volume in reservoir barrels. Eight wells are studied here, where well 1-4H have about 950 

days of production data, and well 9-12H have 585 days. 

Following the procedures described above, the drainage volume and IRR are 

computed for these eight Eagle Ford wells (Figure 4.16). They show quite similar trends: 

the drainage volume quickly increases and then gradually become stable; the IRR 

monotonically increase with some fluctuations, which is the combination results of 

approximately constant pressure constraint and artificial shut-ins. Then the drainage 

volume and IRR information are put into quadrants analysis. To investigate the sensitivity 
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of selection drainage volume and IRR information at different times, we show both results 

at 12 months and 18 months (Figure 4.17).  

 

Figure 4.16 a) Drainage volume versus time; b) IRR versus time (semilogx scale) for eight 
Eagle Ford wells 

 

Figure 4.17 Refracturing candidate selection quadrants a) at 12 months; b) at 18 months 
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have been refractured, we cannot validate the result from the performance after 

refracturing. We further analyze our results by comparing current cumulative production 

(Figure 4.18). The recommended well 2H won’t necessarily be the least produced well, 

considering the risk of refracturing success. 

 

Figure 4.18 Cumulative liquid production for eight Eagle Ford wells 
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reservoir. We worked directly with production and pressure data to infer the drainage 

volume, the instantaneous recovery ratio, and the drainage volume geometry. This 

information is used to differentiate the performance of a group of wells and applied to 

select the candidate wells for refracturing.  

The main conclusions from this study can be summarized as follows: 

(1) The drainage volume measures how much reservoir volume is accessed by the 

hydraulic fractured well; the IRR provides information about how effectively 

the accessed drainage volume has been produced. The drainage volume 

derivative, ( )w  , provides diagnostics to thefracture geometry and reservoir 

properties. 

(2) This approach differs from our previous studies as the analysis is not model-

based but is instead driven directly by the field production data itself. Our 

approach differs from current approaches in pressure (and rate) transient 

analysis through an extension of the definition of the drainage volume and the 

IRR ratio based upon our asymptotic solutions to the diffusivity equation. 

(3) The four quadrants analysis to identify the refracturing candidates is based on 

the competition between the produced volume and drainage volume. The 

drainage volume measure how much reservoir pore volume is accessed while 

the IRR measures how efficiently the accessed volume is depleted.  

(4) Based on our observation, the wells which already show better access to 

reservoir volumes but poor depletion rates provide a higher potential for 

refracturing by increasing the fracture conductivity. 
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CHAPTER V 

SUMMARY 

5.1 Summary and Conclusions 

In this dissertation, we investigated rapid simulation approach and novel analysis 

techniques for unconventional reservoirs. All the simulation and analysis rely on the 

asymptotic solution to the diffusivity equation, leading to the diffusive time of flight 

(DToF) to capture reservoir heterogeneity and complex fracture geometry. We first 

adopted DToF-based simulation as a forward simulator and developed a systematic and 

efficient fracture design and optimization workflow. Then, we extended the DToF-based 

simulation to unstructured grid system to better capture the complex fracture geometry. 

Finally, we proposed a model-free production data analysis technique based on our 

cumulative understanding of the DToF and transient drainage volume. 

We extended the DToF-based simulation to dual porosity system and applied it as 

the rapid forward simulator for the multistage hydraulic fracture design and optimization. 

DToF-based simulation is demonstrated to be an efficient approach to compute the well 

performance in unconventional reservoirs. It shows good agreement with commercial 

finite difference based simulators at a fraction of computation time, which is ideal for 

optimization process where hundreds or thousands of simulations are necessary. The 

optimization process is carried out through a derivative-free evolutionary algorithm, 

genetic algorithm. We demonstrated the proposed workflow with a synthetic multistage 

hydraulic fracture model and showed the capability to account for the geologic 
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uncertainty. The optimum design with consideration of the uncertainty provides superior 

results on blind test models. 

We extended this DToF-based simulation from Cartesian and corner point grid 

system to unstructured grids to better characterize the complex fracture geometry induced 

by hydraulic fracturing job in fractured reservoirs. The local Eikonal equation solvers 

based on Fermat’s principle and Eulerian discretization for unstructured grids are 

investigated and compared. The construction based on Fermat’s principle is more 

transparent to physical meaning; while the construction based on Eulerian discretization 

is more straightforwardly implemented and easily extended to anisotropic media. Based 

on the numerical examples, the Fermat’s principle and Eulerian discretization yield 

equivalent result even though they follow distinctive constructions. Numerical examples 

are presented to illustrate the power and validity of this extended DToF-based simulation. 

We proposed a model-free production data analysis method to analyze the 

performance of unconventional reservoirs. The transient drainage volume is derived 

directly based on the pressure and production rate. We further defined the drainage volume 

derivative and instantaneous recovery ratio, which can measure how effectively the 

reservoir has been stimulated by the hydraulic fractures. This technique is then applied to 

select the candidate wells for refracturing. We proposed four quadrants analysis to identify 

the refracturing candidates, based on the competition between the produced volume and 

drainage volume. Based on our observation, the wells which already show better access 

to reservoir volumes but poor depletion rates provide a higher potential for refracturing by 

increasing the fracture conductivity. 
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5.2 Recommendations 

Based on the experiences gained from this study, several recommendations can be 

drawn for future further investigation: 

(1) For the application of the DToF-based simulation to the unstructured grids 

system, efforts are necessary to more efficiently characterize the complex 

fracture system and construct the unstructured grids. An alternative approach 

is to take advantage of unstructured grids generated from commercial software, 

Mangrove; however, this grid information is currently not accessible for 

general users.  

(2) For the implementation of the local Eikonal solver for unstructured grids, 

calculation of all the degraded scenarios because of causality violation and the 

computation of causality check might reduce the computational efficiency of 

FMM. Therefore, the optimized local Eikonal solver is worth investigation, 

especially for anisotropic media.  

(3) The inversion of the drainage volume geometry, ( )w   from calculated 

drainage volume is implemented using a simple formula, with piecewise 

constant assumption. More robust and accurate solution of this Fredholm 

integral equation of the first kind can allow quantitative analysis of the 

characteristic of ( )w   function, as being briefly summarized in Appendix C.  

(4) For the model-free production data analysis, current derivations are directly 

applicable for single phase slightly compressible liquid. It is worthwhile to be 

extended into highly compressible fluids, such as gas, and multi-phase fluids. 
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It will be substantially significant if more quantitative results can be inferred 

from this model-free production data analysis to characterize the reservoir and 

fracture properties. 

(5) For field application of the model-free production data analysis, the current 

data smoothing technique assumed specific functional form. It is necessary to 

investigate non-parametric regression/smoothing technique, such as B-spline. 

Besides, our refracturing candidate selection is mainly from the reservoir 

engineering perspective, integrating the drilling and completion information 

might lead to more reliable selection results.  
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NOMENCLATURE 

BHP = Bottom-hole Pressure 

DFM = Discrete Fracture Model 

DFN = Discrete Fracture Network 

DToF = Diffusive Time of Flight 

EDFM = Embedded Discrete Fracture Model 

FMM = Fast Marching Method 

GA = Genetic Algorithm 

IRR = Instantaneous Recovery Ratio 

NPV = Net Present Value 

PSS = Pseudo-Steady State 

RNP = Rate Normalized Pressure 

   

tc  = total compressibility (psi-1) 

k  = permeability, (md) 

k  = permeability tensor, (md) 

p  = pressure, psi 

p  = gradient of pressure, psi/ft 

wfp  = bottom-hole pressure, psi 

q  = flux (STB/day, Mscf/day) 

r  = distance, ft 
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t  = time (hr) 

et  = material balance time (hr) 

u  = Darcy velocity (ft/hr) 

( )w   = drainage volume derivative (ft3/hr-1/2) 

x  = spatial coordinate vector 

B  = formation volume factor (bbl/STB, rcf/Mscf) 

Q  = cumulative production (STB, Mscf) 

( ), ( )p pV V t  = drainage pore volume (ft3) 

  = diffusivity (ft2/hr) 

  = porosity 

  = viscosity (cp) 

  = angle parameter (o) 

  = fluid density (lb/ft3) 

  = shape factor (ft-2) 

  = diffusive time of flight (DToF) (hr1/2) 

  = gradient of DToF 
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APPENDIX A 

DTOF-BASED 1D FLUID FLOW EQUATION 

Following Zhang et al. (2016) and Fujita et al. (2016), the 1D DToF-based 

coordinate transformation of the fluid flow equation can be derived using the divergence 

theorem. To start, a single-phase mass balance equation is given by Eq.A-1: 

 
( )

( )u
t





 


 (A-1) 

Here u  is the Darcy velocity, expressed by Eq.A-2: 

 
( )k x

u p


    (A-2) 

As shown by Vasco et al. (2000), Kulkarni et al. (2000) and Xie et al. (2015a, 

2015b), the transient pressure propagation process can be captured through the following 

Eikonal equation (Eq.A-3), which is derived from the asymptotic solution of the 

diffusivity equation. 

 
( )

( ) 1
( ) t

k x
x

x c
    

 
        (A-3) 

To reduce the fluid flow equation (Eq.A-1 and A-2) to only one spatial dimension, 

we assume that the pressure only depends on   in space, which is equivalent to assuming 

that the pressure gradient direction aligns with the   gradient direction (Eq.A-4). 

 
p

p 



  


 (A-4) 

According to the pressure propagation equation (Eq.A-3), the permeability is 

related to   gradient: 
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( )t initc

k


 

 

 (A-5) 

Substituting Eq.A-4 and A-5 into Darcy’s law (Eq.A-2), we obtain the  -based 

velocity equation (Eq.A-6), where n̂  is the unit normal vector to the contour of  . 

 
( ) 1

ˆt initc p
u n



  


 

 
, n̂









 (A-6) 

We take the volumetric integral of the above mass balance equation (Eq.A-1) over 

the domain,  : 

 
( )

( )dV u dV
t




 


  

   (A-7) 

Based on the divergence theorem, the flux term is transformed to the following 

surface integral (Eq.A-8), accounting for the  -based velocity equation (Eq.A-6): 

 
( ) 1

ˆ( ) ( ) t initc p
u dV u n dA dA


  

  
  


    

     (A-8) 

The integral of the fluid flow equation, in the   coordinate system, then takes the 

following form: 

 
( )( ) 1t initc p

dV dA
t




  
 

 


     (A-9) 

From the calculation of the drainage pore volume, we can define the ( )w   function 

as Eq.A-11.  

 
1

ˆ
p init init initdV dV n dA dA    
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  

     
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Note that the ( )w   function is the derivative of the drainage pore volume with 

respect to  , which indicates how fast the drainage pore volume increases. 

Eq.A-11 induces ( )init V w     , and then the accumulation term can be 

expressed as Eq.A-12: 

 
( ) ( ) ( )

init

w
dV

t t

  





 
 

   (A-12) 

Substituting Eq.A-11 and A-12 into Eq. A-9, and let 0  , we obtain: 
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( ) t init
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cw p
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t
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   
  

   
 (A-13) 

Rearranging the above equation (Eq.A-13) and taking any sink/source terms into 

consideration, we obtain the following 1D fluid flow equation along  -coordinate.  
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w q
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APPENDIX B 

ANISOTROPIC PERMEABILITY ANALYSIS 

B.1 Principal Component in 2D 

With symmetric positive definite permeability tensor in 2D (shown by Eq.B-1), 

the permeability tensor after applying the rotation matrix could be expressed as Eq.B-2 or 

further expressed as Eq.B-3.  

 
11 12

21 22

k k

k k

 
  
 

k  (B-1) 
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 (B-3) 

The requirement for the rotated permeability tensor to serve as the principal 

direction is '

12 0k  . Thus the principal component and the rotation angle can be calculated 

using Eq.B-4. 
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' ' 211 22 11 22
11 22 12

12

11 22
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 (B-4) 

when   belongs to ,
4 4

  
 
 

, '

11k  corresponds to the maximum principal 

component if 11 22k k . 
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B.2 Principal Component in 3D 

Let’s first take a look at the rotation matrix in a standard right-handed Cartesian 

coordinate system. Any vector can be decomposed into a two-step rotations, as illustrated 

by Figure B-1: first rotate   with z axis as rotate vector and then rotate   with u  as rotate 

vector. The vector u  in Figure B-1 is within the x-y plane and perpendicular to the solid 

green and red vector. The rotation matrix for the first and second step are given by ( )Z R  

(Eq.B-5) and ( )
u

R  (Eq.B-6), respectively. The combined rotation matrix can be 

expressed as ( ) ( )Z   uR R R  (Eq.B-7). 

 

Figure B-1 Illustration of rotating coordinates to an arbitrary direction in 3D 
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 
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 
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uR R R  (B-7) 

Suppose the symmetric positive definite permeability tensor in 3D is expressed as 

Eq.B-8. By applying the rotation matrix, the permeability tensor could be expressed as 

Eq.B-9. Or the permeability tensor in original coordinates can be expressed in terms of the 

permeability tensor in new coordinates with Eq.B-10.  

 

11 12 13

21 22 23

31 32 33

k k k

k k k

k k k

 
 


 
  

k , 12 21 13 31 23 32, ,k k k k k k    (B-8) 

 ' T  k R k R  (B-9) 

 ' T  k R k R  (B-10) 

If '
k  serves as the principal direction, Eq.B-10 is equivalent to perform the Eigen- 

decomposition of k . The eigenvalue provide the principal component and the 

eigenvectors give the rotation matrix. 

B.3 Permeability Magnitude at Arbitrary Direction  

Let’s first look at 2D case. Suppose the principal direction has a rotation angle  , 

and we are computing the permeability in (cos ,sin )T n direction (shown by Figure 

B-2). In the rotated coordinate system, the permeability satisfys Eq.B-11, 
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'2 '2

1 2

1
x y

k k
   (B-11) 

The coordinate of the intersection between vector n  and the ellipse can be 

expressed as  cos( ), sin( )k k      Substitute it into Eq.B-11, the permeability 

can be calculated as Eq.B-12,  

 1 2

2 2

1 2sin ( ) cos ( )

k k
k

k k   


  
 (B-12) 

 

Figure B-2 Illustration of calculating the magnitude of permeability in anisotropic scenario 

If the principal direction of permeability tensor is aligned with coordinate axis in 

3D, which means the permeability tensor can be expressed as Eq.B-13 

 
2 2 2

1 2 3

1
x y z

k k k
    (B-13) 

For the any unit direction vector 
1 2 3( , , )Tn n nn , the endpoint of vector 

1 2 3( , , )kn kn kn  should satisfy equation Eq.B-13, which provides us the permeability 

in n  direction as,  



 

146 

 

 1 2 3

2 2 2

2 3 1 1 3 2 1 2 3

k k k
k

k k n k k n k k n


 
 (B-14) 

In the case the principal direction of permeability tensor is not aligned with 

coordinate axis in 3D, an additional rotation is applied. As illustrated by Eq.B-10, a Eigen-

decomposition procedure is first applied to the permeability tensor to obtain the rotation 

matrix R  and the principal component ' ' '

11 22 22( , , )Tk k k . The unit direction vector 

1 2 3( , , )Tn n nn  is rotated to the principal direction based coordinate system, and be 

expressed as ' ' '

1 2 3( , , )Tn n n R n . Finally, the permeability can be calculated as Eq.B-15, 
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11 22 33

' ' '2 ' ' '2 ' ' '2

22 33 1 11 33 2 11 22 3

k k k
k

k k n k k n k k n


 
 (B-15) 
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APPENDIX C 

FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND 

Eq.4.13 turns out to be Fredholm integral equations of this first kind, which exists 

in a broad class of continuous linear invasive problem in science and engineering, such as 

computerized tomography, image restoration, and digital signal processing (Mroczka and 

Szczuczyński 2009).  

 ( , ) ( ) ( )

b

a

k x t f t dt g x , a x b   (C-1) 

where ( )g x  and ( , )k x t  are known functions and ( )f t  is the unknown function to 

be determined. The discretized inverse problem formulated in terms of Fredholm inverse 

integral equation of the first kind is generally ill-posed and ill-conditioned. Several 

numerical inverse techniques were proposed by researchers for solving this type of 

problem, where the regularization method (Hansen 1992; Riele 1985; Weese 1992) and 

projection methods (Maleknejad and Sohrabi 2007), such as Galerkin and collocation 

methods, are widely utilized. 

In regularization method, the problem is set to minimize the following quadratic 

function Eq.C-2,  

 

2

2
( ) ( , ) ( ) ( )

b

a

f k x t f t dt g x Lf     (C-2) 

where   is a the so-called regularization parameter, L  is an operator, for which 

the identity ( Lf f ) or the second derivative ( ''Lf f ) is frequently used. In the 

discretization, the integral in Eq.C-2 at particular x  value is approximated by 
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 (C-3) 

Substituting Eq.C-3 into Eq.C-2, and with a selected operator L , the minimization 

problem shown by Eq.C-2 can be solved by imposing ( ) 0jf f   . 

In Galerkin method, a sequence of orthonormal basis function is used to 

approximate the solutions  

 
1

( ) ( )
nd

n j j

j

f t c t


  (C-4) 

By substituting Eq.C-4 into C-1, we have the approximated residual term 
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 To determine the unknown coefficients, the following requirements are imposed,  

 ( ( ), ) ( ) ( ) 0

b

n i n i

a

r x r x x dx    for 1,2,..., ni d  (C-6) 

which leads to the system 

 
1

( , ) ( ) ( ) ( ) ( )
n

b b bd

j j i i

j a a a

c k x t t x dtdx g x x dx  


   , 1,2,..., ni d  (C-7) 

For our problem in Eq.4.13, the challenges are that the Fredholm integral of the 

first kind is defined on interval (0, ) , and how to select the appropriate operator L  in 

regulation method or the basis function in Galerkin method to obtain an accurate and 

robust estimation of the unknown function. 


