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ABSTRACT

New Bounding Techniques for Channel Codes over Quasi-static Fading Channels.

(August 2003)

Jingyu Hu, B.E., Shanghai Jiao Tong University, P.R.China

Chair of Advisory Committee: Dr. Scott L. Miller

This thesis is intended to provide several new bounding techniques for channel

codes over quasi-static fading channels (QSFC). This type of channel has drawn more

and more attention recently with the demanding need for higher capacity and more

reliable wireless communication systems. Although there have been some published

results on analyzing the performance of channel codes over QSFCs, most of them

produced quite loose performance upper bounds.

In this thesis, the general Gallager bounding approach which provides convergent

upper bounds of coded systems over QSFCs is addressed first. It is shown that pre-

vious Gallager bounds employing trivial low SNR bounds tended to be quite loose.

Then improved low instantaneous SNR bounds are derived for two classes of con-

volutional codes including turbo codes. Consequently, they are combined with the

classical Union-Chernoff bound to produce new performance upper bounds for simple

convolutional and turbo codes over single-input single-output (SISO) QSFCs. The

new bound provides a much improved alternative to characterizing the performance

of channel codes over QSFCs over the existing ones.

Next the new bounding approach is extended to cases of serially concatenated

space-time block codes, which show equivalence with SISO QSFCs. Tighter perfor-

mance bounds are derived for this coding scheme for two specific cases: first a convo-

lutional code, and later a turbo code. Finally, the more challenging cases of multiple-
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input multiple-output (MIMO) QSFCs are investigated. Several performance upper

bounds are derived for the bit error probability of different cases of space-time trellis

codes (STTC) over QSFCs using a new and tight low SNR bound. Also included in

this work is an algorithm for computing the unusual information eigenvalue spectrum

of STTCs.
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CHAPTER I

INTRODUCTION

Fading is known as a common phenomenon in modern wireless systems. It hap-

pens when communication over the wireless channel suffers from multiple superim-

posed delayed versions of the transmitted signal. A fading channel is said to be either

frequency flat or selective due to multipath time delay spread. If the channel pos-

sesses a constant gain and linear phase response over a bandwidth that is smaller

than the signal bandwidth, then the fading is frequency selective, if not the fading is

frequency flat. Depending on how rapidly the transmitted baseband signal changes

as compared to the rate of change of the channel, a channel is classified as either a

fast fading or slow fading channel. A fading is said to be fast or time-selective if the

channel gain changes rapidly within the symbol duration of the transmitted signal.

The channel of particular interest in this thesis is frequency flat and very slow

whose fading has little variations in time to the point where it can be considered

constant over a transmission frame. This type of channel is known in the literature

as the quasi-static fading channel (QSFC). Increasing data rates along with demand

for higher capacities and more reliable connections in today’s wireless communication

systems have motivated a large interest in this type of channel. For example, in a

classical time-division multiuser system over a fading channel, each user has a very

short period of time (slot) to transmit signals over which the channel fading gain

remains relatively constant. However, the fading process may have great variations

within a frame. The type of fading here can safely be characterized as being static.

When the data rate is quite high, this is especially true. Practical communications

The journal model is IEEE Transactions on Automatic Control.
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systems include GSM and IS-136.

Communication over this kind of channel has proven quite challenging especially

for channel code design. Unlike in the case of fast fading where the use of interleaving

allows recovering from the loss of information occurring during deep fades, there is

no time or frequency from which to earn a diversity gain. Thus, the performance

of a single code such as a convolutional or turbo code with no transmit and receive

diversity on a QSFC would be severely degraded as compared to the cases of the

AWGN channel and interleaved fading channels. The main reason that a QSFC

affects communications is that in such a channel the instantaneous signal-to-noise

ratio (SNR) varies independently from one frame to the next, some of the frames

sent over it may have very low channel gain causing low instantaneous SNR over the

length of the frames. Consequently, the transmitted signal will be lost in the ambient

gaussian noise and the channel will suffer poor performance even at very high average

SNRs. In addition, all code designs relying on maximizing the free distance will be

undermined for the QSFC because they assume that at a high enough SNR, the error

rate performance of a code can be approximated by a single term in the sum of all

possible error events while in a QSFC, many frames experience very low SNRs thus

the performance of a code over QSFCs cannot be characterized by the worst pairwise

error probability (PWEP) event.

However, The quality of the communications over QSFCs can be substantially

improved by using diversity which means the transmission of redundant signals over

preferably independent channels. Two common ways to achieve diversity are time

diversity and space (antenna) diversity. Time diversity is achieved mostly by using

channel coding or error correction codes. Space diversity means employing multiple

transmit or received antennas. Codes combining space and time diversity are known

as space-time codes which has gained more and more interest in both the industry
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and academic community in recent years. Although there has been much research

work done to develop new channel codes for QSFCs, there is relatively little done

with the analysis of their performance. There is a great need to synthesize reliable

analytical tools for characterrizing the performance of channel codes over QSFCs.

This thesis is set out to propose several novel performance upper bounds for

various coded systems over QSFCs. The main part of the thesis is preceded by a brief

overview of past research done in this area. In this part, the so-called Gallager bound

is discussed to show that the looseness of the previous bounds comes from the trivial

form of the low SNR part of the Gallager bound.

Chapter III is dedicated to introducing a new approach to classify convolutional

codes and comparing their performance over single-input single-output (SISO) QS-

FCs. The results given in this chapter allow later chapters to focus attentions on

developing improved upper bounds for two specific classes of convolutional codes -

systemtic codes and differential detectable (DD) codes. It is noted that turbo codes

also belong to systematic codes. Chapter IV looks into deriving two new upper

bounds correspondingly for the bit error rates of these two classes of convolutional

codes in the low instantaneous SNR region. Then it is shown that all the new bounds

represent improvement over the trivial low SNR bound.

Consequently, these new low SNR upper bounds are applied to cases involving

convolutional and turbo codes over SISO QSFCs in Chapter V. In that chapter, upper

bounds using a combination of a classical union bound when the fading channel is

in a high SNR state with the new upper bounds in Chapter IV for the low SNR

state are presented. This new bounding technique produces bounds which are at

least 1dB tighter than the existing ones. The following chapter investigates the cases

involving space-time block codes which is shown to be equivalent to SISO QSFCs.

The new bounding approach is applied to derive improved upper bounds for the serial
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concatenations of convolutional/turbo and space-time block codes (STBC).

In Chapter VII, the performance of space-time trellis codes (STTC) over multiple-

input multiple-output (MIMO) QSFCs is addressed. A spherical upper bound on the

bit error rates of systematic 4-state STTCs employing single receive antenna and an

cubical upper bound for multiple receive antennas cases are derived using a low SNR

bounding approach. Additionally, a brief procedure for computing the information

eigenvalue spectrum similar to the one introduced formerly for computing the eigen-

value spectrum of STTCs is described. Finally, Chapter VII concludes the thesis.
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CHAPTER II

PRESENT STATUS OF THE RESEARCH

In this chapter, we present a summary review of the past research done in per-

formance analysis of channel codes over QSFCs. First a simple method which uses

the direct extension of the union bound is described. Following this is a brief review

of the Gallager bound along with its applications to various coded systems.

A. Modified union bound for QSFCs

If the union bound approach is simply extended to the QSFC case, it can be ap-

plied in a conditional form of the pairwise error probability (PWEP). The conditional

PWEP is then a function of the channel gain, which needs to be integrated out. Let

h be the magnitude of the complex channel gain, which will be Rayleigh distributed.

For example, for a simple convolutional code over a QSFC, the probability of bit error

can be written as:

Pb ≤
∑
d

Nd

∫ +∞

0
Q

(√
2dh2Es

N0

)
f(h)dh, (2.1)

where Nd is the information weight spectrum of the code and f(h) the probability

density function (pdf) of the fading gain magnitude. The equations beyond are de-

rived assuming that the distance spectrum is the same regardless of the transmitted

codeword and perfect channel state information is available at the receiver.

Using the Chernoff bound on the Q function [1], the integration in (2.1) is per-

formed without difficulties resulting in:

Pb ≤
∑
d

Nd
1

2 + 2dEs/N0

. (2.2)

It is obvious that the PWEP in (2.2) does not decrease exponentially with in-



6

creasing distance of d while it is known that Nd increases exponentially with d. Hence

the overall bound is not convergent for any SNRs and is thus invalid for such codes

over QSFCs. The reason underlying is that for a QSFC the received instantaneous

SNR for a given frame can be quite low and it is well established that the union bound

diverges for low SNRs, hence the use of the union bound over a QSFC is questionable.

B. Gallager bound for QSFCs

Past research provided valid upper bounds on codes performance over QSFCs.

For example, the so-called Gallager bound which is somewhat similar to the one

introduced by Gallager in [2] has been used extensively. In this novel approach, the

error probability (Pe) is conditioned on an instantaneous channel gain region R and

its complement R. R is a region such that when the channel gain h falls within its

boundaries the union bound is assumed to diverge and the probability of making an

error will be upper bounded by one for frame error rates and one half for bit error

rates. The general form of the Gallager bound is as follows:

Pe = P (e|h ∈ R)P (h ∈ R) + P (e|h ∈ R)P (h ∈ R), (2.3)

≤ 1

2
P (h ∈ R) + P (e|h ∈ R)P (h ∈ R). (2.4)

Although this approach seems quite simplistic, it will still yield quite good upper

bounds. One of its nice features is that the conditional PWEP decreases exponentially

with the increase of distance while the distance spectrum of codes of interest increases

exponentially.
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1. Gallager bounds for convolutional and turbo codes

For a single-input single-output (SISO) QSFC, the region R is simply a segment

of the real axis. Hence the error probability Pe is conditioned on a low/high instanta-

neous SNR (h2Es/N0 where h is the complex channel gain magnitude) region, which

is translated into the following equation:

Pe = P (e|h < h0)P (h < h0) + P (e|h > h0)P (h > h0). (2.5)

The classical Union-Chernoff bound [1] is generally used for the high instanta-

neous SNR region (h > h0), while for the low instantaneous SNR region, a trivial

bound which takes the form of

P (e|h < h0) ≤




1/2 for bit error rate,

1 for frame error rate,
(2.6)

is commonly used. Then the final form of the bit error rate bound is expressed as:

Pb ≤ 1

2
(1 − e−h2

0) +
∑
d

Nd
e−(1+γd)h2

0

2 + 2γd
. (2.7)

Where γ = Es/N0 is the signal-to-noise ratio of the coded symbol, d is the Hamming

distance between two output codewords and Nd its corresponding multiplicity, taking

into account the number of bit errors. The minimization of the final expressions for

the derived bounds is performed with respect to h2
0.

Several published studies have applied this general approach to bounding convo-

lutional code performance over QSFCs such as [9]-[12], and turbo codes performance

such as [11],[15]. Although those bounds were convergent for all SNRs, they still

tended to be quite loose. In some cases, they were almost 4 ∼ 5dB away from the

actual simulated performance. One of the reason is that the trivial low SNR bound

is not tight enough, although the high SNR term in (2.5) can be tightened by using
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bounds other than the union bound proposed in [6]-[8]. Hence (2.7) is not a reliable

analytical tool to characterize the performance of such codes over QSFCs. This has

motivated the search for a tighter upper bound for the low instantaneous SNR region

to improve the tightness of the Gallager bound in [20].

2. Gallager bounds for transmit diversity schemes

a. Space-time block code design in QSFC

A simple coding scheme that provides both transmit diversity and coding gain is

a serial concatenation. In this serial concatenation, the outer code provides a trade-

off between desired coding gain and rate loss and the inner code is an orthogonal

space-time block code (STBC) providing diversity. STBCs were firstly introduced in

[3] and latter generalized to more than two transmit antenna diversity in [5] using

orthogonal designs.

Performance of serially concatenated STBCs over fading channels has been stud-

ied in [26],[27],[28],[29]. The Gallager bound was used in the performance analysis

of such diversity schemes in several published works. For example, one concatenated

scheme involving TCM codes as outer codes was proposed in [4] and then discussed

in details in [30] which gave a tight upper bound on the frame error rate (FER) of its

performance over QSFCs. Besides, in [11] and [15], an upper bound on the bit error

rate of concatenation schemes employing turbo codes as outer codes and an inner

Alamouti code proposed in [3] was presented. However, that bound was not quite

tight (around 4 ∼ 5dB loose). In [20], tighter upper bounds for concatenated schemes

over QSFCs were given.
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b. Space-time trellis code design in QSFC

Space-time trellis codes (STTC) have the ability to provide both diversity and

coding gain at the expense of higher complexity. It has proved a challenging and

popular research orientation among the academic community. Several famous STTCs

were presented in [22], [23],[24] and their performance results over QSFCs given. In

[11],[23] and [25], it was pointed out that the overall performance of STTCs over

QSFCs cannot be characterized by the worst case PWEP, hence the determinant

criterion proposed set forth in [22] is a poor criterion by which to design good STTCs

for QSFCs.

The performance analysis of STTCs using Gallager bounds over QSFCs was first

studied in [12], [13], later in [14]-[18]. In [13], a so-called minimum upper bound

using the Gallager approach gave the tightest bound on FER, but it was not in

closed form, hence gave little insight into code design. In [14] and [17], the region R

had two choices: spherical and cubical as described and the resulting bounds are in

closed forms and quite effective in predicting performance of STTCs. Additionally, a

general procedure along with several complexity reduction techniques for computing

the eigenvalue spectrum of different constraint length and frame length STTCs was

proposed in [11], [17] and [19].

However, there has been little analytical study of the bit error rates (BER) of

STTCs over QSFCs. In [21], several approximations of the BER of STTCs over QS-

FCs were presented, but they didn’t provide valid upper bounds. Tight performance

upper bounds for the bit error probability of STTCs are still needed.
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C. Summary

This chapter was dedicated to reviewing the past work done in bounding per-

formance of channel codes over quasi-static fading channels. The extension of the

union bound to the QSFC was performed and then the Gallager bounding approach

described. The next chapter will deal with the first step for developing tighter per-

formance upper bounds – classifying convolutional codes.
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CHAPTER III

CLASSIFICATION OF CONVOLUTIONAL CODES

A. Introduction

Although few studies have been focused on the design of single convolutional

codes in a QSFC due to their poor performance, it is rather worthy to spend some

time studying them to generalize a more reliable performance analytical tool for the

QSFC from the simplest case.

B. Different classes of convolutional codes

A rate 1/n constraint length K feed-forward convolutional code can be repre-

sented by n K−tap connection vectors

g(j) = (g
(j)
0 , g

(j)
1 , ..., g

(j)
K−1), j = 1, ..., n, (3.1)

where g(j)
m ∈ {0, 1} (0 ≤ m ≤ K − 1) are the tap connections. Then, for each input

bit, xi ∈ {0, 1}, n bits are output according to

y
(j)
i =

K−1∑
m=0

xi−mg(j)
m . (3.2)

When studying the performance of convolutional codes over QSFCs, it is conve-

nient to classify them as follows:

• Catastrophic codes,

• Systematic codes,

• Differentially detectable (DD) codes,

• Other codes.

The definitions for the first two classes are already well known. A differentially
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Table I. Classification of rate=1/2, K = 3 convolutional codes

octal g(1) g(2) class

53 101 011 catastrophic

55 101 101 catastrophic

63 110 011 catastrophic

77 111 111 catastrophic

41 100 001 systematic

45 100 101 systematic

46 100 110 systematic

47 100 111 systematic

75 111 101 DD

76 111 110 DD

detectable (DD) convolutional code is defined as a non-systematic code whose tap

vectors have the property that at least one pair of them differ in exactly one position.

The significance of the classification described above is illustrated in the following

tables. Table I, Table II and Table III list all of the distinct feed-forward codes and

their classifications for n = 2, K = 3; n = 2, K = 4 and n = 3, K = 3, respectively.

Furthermore, in Table IV, Table V and Table VI, the size and proportion of each class

of codes among all distinct codes are listed for each specific set of rate and constraint

length. It seems from these tables that most of the non-catastrophic convolutional

codes are either systematic or differential detectable especially for lower code rates.
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Table II. Classification of rate=1/2, K = 4 convolutional codes

g(1) g(2) type g(1) g(2) class

1100 1001 catastrophic 1100 0101 catastrophic

1100 0011 catastrophic 1100 1111 catastrophic

1010 1001 catastrophic 1010 0101 catastrophic

1010 1111 catastrophic 1110 1001 catastrophic

1110 0111 catastrophic 1001 1001 catastrophic

1001 1111 catastrophic 1101 1101 catastrophic

1011 1011 catastrophic 1111 1111 catastrophic

1000 0001 systematic 1000 1001 systematic

1000 0101 systematic 1000 1101 systematic

1000 0011 systematic 1000 1011 systematic

1000 0111 systematic 1000 1111 systematic

1100 1101 DD 0011 1011 DD

0011 0111 DD 0101 1101 DD

1010 1011 DD 0101 0111 DD

1110 1111 DD 1001 1101 DD

1001 1011 DD 1101 1111 DD

1011 1111 DD 1110 1101 other

1110 1011 other 1101 1011 other
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Table III. Classification of rate=1/3, K = 3 convolutional codes

g(1) g(2) g(3) type g(1) g(2) g(3) class

011 011 011 catastrophic 011 011 101 catastrophic

011 101 101 catastrophic 101 101 101 catastrophic

111 111 111 catastrophic 001 001 001 systematic

001 001 011 systematic 001 001 101 systematic

001 001 111 systematic 001 011 011 systematic

001 011 101 systematic 001 011 111 systematic

001 101 101 systematic 001 111 111 systematic

001 101 111 systematic 011 011 111 DD

011 101 111 DD 011 111 111 DD

101 101 111 DD 101 111 111 DD

Table IV. Properties of each class of rate=1/2, K = 3 convolutional codes

Class Size Proportion

Catastrophic 4 40%

Systematic 4 40%

DD 2 20%
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Table V. Properties of each class of rate=1/2, K = 4 convolutional codes

Class Size Proportion

Catastrophic 14 38.9%

Systematic 8 22.2%

DD 11 30.6%

Other 3 8.3%

Table VI. Properties of each class of rate=1/2, K = 3 convolutional codes

Class Size Proportion

Catastrophic 5 25%

Systematic 10 50%

DD 5 25%
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C. Performance comparison over QSFCs

Further analysis of convolutional codes can be seen from their performance over

QSFCs. In Figure 1, simulated performance of each code in Table I over a single-

input, single-output quasi-static Rayleigh fading channel is shown. It is clear, from

this figure, that the codes form into three groups based on their performance. The

upper four curves are the catastrophic codes, the middle two curves correspond to DD

codes, while the last four curves are the systematic codes. This is further illustrated

in Figure 2 and 3. Once again, it is seen that the codes naturally divide themselves

according to the classification above when viewed in terms of performance over a

SISO QSFC.

By investigating results for more codes rates and constraint lengths, we have

found that: For a given code rate and contraint length, the systematic codes tend

to offer the best performance, followed by the differential detectable codes and other

codes, and then naturally the catastrophic codes are the worst performing.

However, the above trends are only true for the quasi-static fading channels. In

AWGN and interleaved fading channels, the free distance of a code is the main feature

to chracterize performance. The observation that the systematic codes perform best

over QSFCs is not new and can be found in [33]. However, the observation that the

DD codes offer the next best performance seems to be new. Therefore, in the later

chapters, we will focus attentions on developing performance upper bounds for these

two classes of convolutional codes.

D. Summary

In this chapter, one possible classification of convolutional codes was introduced.

Codes with various rates and constraint lengths were classified into three or four
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Fig. 1. Performance of rate=1/2, K = 3 convolutional codes listed in Table I

classes. Each class of codes was defined according to the code structure. In addition,

performance of each of them over QSFCs was shown. Finally a general conclusion

was made for code performance comparison over QSFCs. It was quite opposite to

the AWGN case. The next chapter tackles the low SNR bounds for the two classes

of codes that tend to offer the best performance.
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Fig. 2. Performance of some rate=1/2, K = 4 convolutional codes listed in Table II
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Fig. 3. Performance of some rate=1/3, K = 3 convolutional codes listed in Table III
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CHAPTER IV

IMPROVED BOUNDS FOR THE LOW INSTANTANEOUS SNR REGION

A. Introduction

As was indicated in Chapter II, for most coded systems over QSFCs, one source

of the looseness of the existing bounds is the trivial form of the low SNR bound

employed. In this chapter, we will look into finding improved upper bounds for the

error rate of convolutional codes in the low instantaneous SNR region.

B. Improved low SNR bound for systematic codes

Consider a rate r = k/n systematic convolutional code. There are two coded

bits (systematic bit and parity bit) out of the encoder in each information bit inter-

val. Suppose we have a sub-optimal receiver that ignores the parity bits and only

demodulate/decode the systematic bits on a symbol-by-symbol basis. While it is not

the best way to decode the data, the bit error rate of such a receiver (conditioned

on an instantaneous channel gain of h) must provide an upper bound for that of the

optimal receiver at all practical SNRs. It is not hard to write the bound as

P (e|h) ≤ Q
(√

2rh2Eb

N0

)
, (4.1)

where r is the rate of the code and Eb/N0 is the signal-to-noise ratio of the uncoded

information symbol (bit).

Figure 4 illustrates the comparison of this bound and the union bound with the

true bit error rate of the optimum receiver for a typical systematic code whose taps

are described by the octal number 45 over the AWGN channel. It is no doubt that the

new bound in (4.1) represents an improvement over the trivial bound P (e|h) ≤ 1/2
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Fig. 4. Simulated performance and upper bounds for code 45 over the AWGN channel

for all SNRs. It is especially tight for low SNRs while at high SNRs, the union bound

is tighter.

C. Improved low SNR bound for DD codes

A similar approach can also be used for the DD codes. The structures of DD

codes allow a simple sub-optimal differential detector to extract the input data bits

from the coded bits. That is, if as defined, two tap vectors g(j1) and g(j2) differ

only in the mth position, then xi−m = y
(j1)
i ⊕ y

(j2)
i . We note that once the coded

symbols are transmitted over a channel with additive Gaussian noise, using such a
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Fig. 5. Simulated performance and upper bounds for code 75 over the AWGN channel

differential detection scheme may not be the most intelligent way to decode tha data.

Therefore, the bit error rate of the optimal receiver can be upper bounded by that of

the differential detector. Once again, the bound is written as

P (e|h) ≤ 1

2
exp

(
− rh2Eb

N0

)
. (4.2)

Figure 5 gives the bound in (4.2) for the one-half rate DD code whose taps are

described by the octal number 75 over an AWGN channel. The union bound, trivial

low SNR bound and simulated performance are also plotted to show that the new

bound is quite tight for low SNRs.
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Fig. 6. Simulated performance and upper bounds for a rate 1/3 turbo code over the

AWGN channel

D. Improved low SNR bound for turbo codes

A rate r turbo code can be also viewed as a systematic convolutional code. Hence

a similar low SNR bounding approach in (4.1) for the systematic codes can be used

on it. In Figure 6, we select the one with generator polynomials g0 = 05, g1 = 07

and plot its correponding bounds and simulated performance over an AWGN channel.

The information weight spectrum can be found in [32]. As can be seen from the figure,

this new bounding technique seems to work particularly well for the turbo codes.
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E. Summary

In this chapter, several improved low SNR bounds for convolutional codes were

presented. The improved bounds are derived using a sub-optimal receiver which

provides an upper bound on the performance of the optimal receiver at all SNRs.

First the bounds were derived for systematic codes, then for DD codes and finally for

turbo codes. These bounds will be used in the next chapter to present bounds for

convolutional and turbo codes over a single-input, single-output QSFC.
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CHAPTER V

NEW PERFORMANCE BOUNDS FOR SINGLE-INPUT SINGLE-OUTPUT

QUASI-STATIC FADING CHANNELS

A. Introduction

In this chapter, the new low SNR bounds proposed in Chapter IV will be applied

to derive tighter upper bounds on the performance of some codes that can be used on

single-input single-output (SISO) quasi-static fading channels. First the simple case

of convolutional code performance over SISO QSFCs will be studied. An improved

upper bound on the bit error rates is derived and an alternative for free distance as a

measure of performance is proposed. In addition, different bounds on the frame error

rates are mentioned. The more interesting case of turbo codes is investigated next.

B. Convolutional codes over SISO QSFCs

Convolutional codes are extensively used in communications systems today. The

performance of convolutional codes over QSFCs has been studied so far by [9], [10]

and [12]. While they gave quite good bounds, they still had a several dB looseness.

In this chapter, the bounds derived in Chapter IV will be combined with the Gallager

bounding approach presented in Chapter II to derive tighter upper bounds on the

performance of different classes of convolutional codes over QSFCs. The derived upper

bound will give a much improved analytical tool for understanding the performance

of convolutional codes over QSFCs.
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1. System model and notation

The system under consideration is a BPSK convolutional code over a single-

input single-output fading channel. The fading channel under consideration is a

QSFC, its complex magnitude will be denoted by h and it is constant over a frame

and independently changes from one frame to the next. The convolutional codes have

rate r and their constraint length and coding gains are captured in their information

weight spectrum Nd.

2. A new upper bound for systematic convolutional codes

In this section, we will use the general approach in (2.5) to present an improved

upper bound for the bit error rate of a systematic convolutional code over a SISO

QSFC. The low SNR term in (2.5) can be expressed as:

P (e|h < h0)P (h < h0) =
∫ h0

0
P (e|h)f(h)dh. (5.1)

Instead of using the trivial bound for P (e|h), we use the bound in (4.1) with the

Rayleigh distribution for the instantaneous channel gain given by f(h) = 2he−h2
,

then (5.1) is bounded by:

P (e|h < h0)P (h < h0) ≤
∫ h2

0

0
Q

(√
2γh

)
e−hdh, (5.2)

=
1

2

(
1 −

√
γ

1 + γ

)
+

√
γ

1 + γ
Q

(
h0

√
2 + 2γ

)

−e−h2
0Q

(√
2γh0

)
, (5.3)

where γ = Es/N0 = rEb/N0 is the signal-to-noise ratio of the coded symbol. A

standard Union bound is used for bounding the high SNR term,

P (e|h > h0)P (h > h0) ≤
∑
d

Nd

∫ +∞

h2
0

Q

(√
2dγh

)
e−hdh, (5.4)
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where d is the Hamming distance between two output codewords and Nd its cor-

responding multiplicity, taking into account the number of bit errors. Using the

Chernoff bound on the Q function [1]

Q(x) ≤ A0e
−x2

2 , (5.5)

the parameter A0 is generally taken to be 1/2 but in this case in order to tighten the

bound, it can be chosen as

A0 = Q
(√

2dfγh0

)
edf γh2

0 , (5.6)

because the bound on the Q-function only needs to be valid over the range h > h2
0.

In the above equation, df is the free distance of the code. By using this modified

Chernoff bound on the Q-function, the integral in (5.4) can be easily evaluated in

closed form. Hence, the overall bound for systematic convolutional codes, operating

over a SISO QSFC, the bit error probability is upper bounded by:

Pb = P (e|h < h0)P (h < h0) + P (e|h > h0)P (h > h0), (5.7)

≤ 1

2

(
1 −

√
γ

1 + γ

)
+

√
γ

1 + γ
Q

(
h0

√
2 + 2γ

)
− e−h2

0Q

(√
2γh0

)

+A0

∞∑
d=df

Nd
e−(1+γd)h2

0

1 + γd
. (5.8)

The minimization of the final expression for the derived bound is performed with

respect to h0. From a practical view of point, for most SNRs of interest, the series in

(5.8) can be truncated after only a few spectrum terms without affecting its accuracy.

This is shown in Fig. 7.

Simulated performance and the new upper bound is plotted for a systematic code

(octal 45) over a SISO QSFC in Fig. 8. For comparison purposes, an old upper bound

which employed the trivial bound for the low SNR region is also plotted. As can be
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Fig. 7. New upper bound vs number of spectrum terms for code 45 over QSFC

seen from the figure, the derived upper bound is at least two full decibels tighter than

the existing bound(s) and is only 1 ∼ 2dB away from the simulation results.

3. A new upper bound for DD convolutional codes

Now we develop a slightly looser bound for the DD codes by starting with the

low SNR bound in (4.2). In which case, the low SNR term in (2.5) can be written as:

P (e|h < h0)P (h < h0) ≤
∫ h2

0

0

1

2
e−γhe−hdh, (5.9)

=
1

2 + 2γ
(1 − e−h2

0(1+γ)), (5.10)
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Fig. 8. Simulated performance and upper bounds for code 45 over QSFC

the resulting upper bound for the performance of a DD convolutional code over a

SISO QSFC can then be given by the sum of (5.9) and the last term in (5.8):

Pb ≤ 1

2 + 2γ

(
1 − e−h2

0(1+γ)

)
+ A0

∞∑
d=df

Nd
e−(1+γd)h2

0

1 + γd
. (5.11)

Again, this new bound is illustrated in Fig. 9 for DD code 75 as an example.

4. Improved performance indicator

It is not hard to find that the bound in (5.11) can also serve as an upper bound

on the performance of systematic codes as well since (4.2) serves as a bound for (4.1).
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Fig. 9. Simulated performance and upper bounds for code 75 over QSFC

The value of h0 which minimizes the new upper bound in (5.11), h0min, is a function

of the spectrum of the code. By definition, h2
0min is a root of the following equation:

dPb

dh2
0

= 0, (5.12)

which can be in turn expressed as:

1

2
e−(1+γ)h2

0 − A0

∑
d

Nd
1

1 + γd
(1 + γd)e−(1+γd)h2

0 = 0, (5.13)

∑
d

Nde
−γh2

0(d−1) =
1

2A0

, (5.14)
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let T (x) be the information weight enumerating function of the code:

T (x)

x
|
x=e

−γh2
0=x0

=
1

2A0

, (5.15)

the constant A0 can be set to 1/2 or more generally:

A0 = x
−df

0 Q
(√

−2df lnx0

)
. (5.16)

Therefore, x0 has a relationship only with the distance spectrum of the code and it

can be found by solving numerically (5.15). Table VII gives the parameter x0 for each

distinct convolutional code in Table I.

Then the bound in (5.11) can be rewritten through x0:

Pb ≤ 1

2 + 2γ

[
1 − elnx0(1+ 1

γ
)
]
+ A0

∑
d

Nd
x

d+1/γ
0

1 + γd
, (5.17)

since the first term in (5.17) tends to dominate the whole bound which is shown in

Table VIII and IX, (5.17) can be approximated by:

Pb ≤ 1

2 + 2γ

[
1 − elnx0(1+ 1

γ
)
]
≈ ln(1/x0)

2γ
. (5.18)

The above equation shows that the new upper bound in (5.11) for convolutional

codes depends on the particular code only through the parameter x0. Codes with

larger x0 have tighter analytical bounds and are predicted to give better performance

over QSFCs. Relating Table VII, it is obvious that systematic and DD codes have the

largest x0 while catastrophic codes have the smallest ones. This seems to agree with

the simulation results in Chapter III which states systematic and DD codes to be the

best codes over QSFCs. The parameter x0 can thus serve as an improved indicator of

the performance of convolutional codes over QSFCs. We can search for good codes by

evaluating the parameter x0 for each candidate code and this procedure will produce

better codes than searches based on the free distance.
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Table VII. Correlation between connecting vector, free distance, class and x0 of con-

volutional codes

octal free distance class x0

53 4 catastrophic 0.2135

55 4 catastrophic 0.1184

63 4 catastrophic 0.0981

77 4 catastrophic 0.1126

41 2 systematic 0.5229

45 3 systematic 0.4986

46 3 systematic 0.5352

47 4 systematic 0.5058

75 5 DD 0.4491

76 4 DD 0.4807

Table VIII. Domination of the first term in the new bound for code 75

SNR(dB) first term value percentage second term value percentage

3dB 0.2001 97.3% 0.0055 2.7%

6dB 0.1171 96.5% 0.0042 3.5%

9dB 0.0637 95.9% 0.0027 4.1%

12dB 0.0333 95.6% 0.0015 4.4%
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Table IX. Domination of the first term in the new bound for code 45

SNR(dB) first term value percentage second term value percentage

3dB 0.1838 89.5% 0.0217 10.5%

6dB 0.1056 86.2% 0.0169 13.8%

9dB 0.0568 84.1% 0.0108 15.9%

12dB 0.0296 83.0% 0.0060 17.0%

5. Bounds on the frame error rates

The previous bounds are valid for the bit error rates (BER) only. For the frame

error rates (FER) of convolutional codes, we can tighten the trivial low SNR bound

P (e|h) < 1 using (4.1) and (4.2). Let L be the frame length and P (f) be the frame

error rate,

For systematic codes:

P (f |h) ≤ 1 −
[
1 − Q

(√
2rh2Eb

N0

)]L

. (5.19)

For DD codes:

P (f |h) ≤ 1 −
[
1 − 1

2
exp

(
− rh2Eb

N0

)]L

. (5.20)

Upper bounds can be similarly derived for the frame error rates of convolutional

codes over SISO QSFCs except that Nd is replaced by the total number of simple and

compound error paths of weight d. Numerial evaluations of (5.19) and (5.20) show

that for practical frame lengths, they are very close to one at low SNRs. Therefore,

it is expected that the corresponding bounds for QSFCs will only improve little over

the previous bounds employing the trivial low SNR bound. This is confirmed by Fig.
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Fig. 10. Simulated performance and FER upper bounds for code 45 over QSFC

C. Turbo codes over SISO QSFCs

In this section an upper bound on turbo codes performance over single-input

single-output QSFCs is derived. As in the case of systematic convolutional codes, the

improved low SNR bound in (4.1) is used. The upper bound obtained is shown to be

much closer to the actual simulated performance compared to the previous bound.
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Fig. 11. Simulated performance and FER upper bounds for code 75 over QSFC

1. System model and notation

The system model of interest here is a simple rate 1/3 BPSK turbo code over a

SISO QSFC. The decoder used is an iterative decoder with each iteration using two

map decoders, similar to the one proposed in [31]. The information weight spectrum

Nd to compute the upper bound is found in [32] and df is the minimum hamming

distance of the code. This structure is retained in the third generation (3G) celluar

systems.
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2. New upper bound

It is obvious that equation (5.8) for systematic codes can also serve as an upper

bound for turbo codes. For turbo codes over a SISO QSFC, the bit error rate is upper

bounded by:

Pb ≤ 1

2

(
1−

√
γ

1 + γ

)
+

√
γ

1 + γ
Q

(
h0

√
2 + 2γ

)
−e−h2

0Q

(√
2γh0

)
+A0

∞∑
d=df

Nd
e−(1+γd)h2

0

1 + γd
.

(5.21)

Where γ, A0 and h0 are as previously defined.

Fig. 12 shows the derived upper bound along with the simulated performance

for the rate 1/3 turbo code proposed in [32]. The new bound is compared with the

previous bound proposed in [11] and [15]. As can be seen from the figure, the derived

upper bound is particularly tight for turbo codes and provides a more useful analytical

expression to depict their performance.

D. Summary

In this chapter the issue of channel code performance over single-input single-

output quasi-static fading channels was investigated. First the results of Chapter IV

was used to derive upper bounds for systematic and DD convolutional codes. The

resulting bounds are much tighter than previous bounds employing the trivial low

SNR bound. It was then shown that the new bounds give an idea about the relative

performance of different classes of convolutional codes in QSFCs and some insight

into code design for QSFCs. The same approach was successfully reproduced for the

more interesting case of turbo codes. The derived upper bound also gave at least 2dB

addidtional tightness. The case of transmit diversity over QSFCs is the main subject

of the next chapter.
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Fig. 12. Simulated performance and upper bounds for turbo code over QSFC
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CHAPTER VI

NEW PERFORMANCE BOUNDS FOR EQUIVALENT SINGLE-INPUT

SINGLE-OUTPUT QUASI-STATIC FADING CHANNELS

A. Introduction

Space-time block codes (STBC) is one category of codes that are able to provide

transmit diversity. The best known STBC scheme for two transmit antennas is that

proposed by Alamouti in [3]. This scheme has an advantage that it is a rate one

code, i.e. there is no loss of transmission rate by using it. Such a scheme is adopted

in several wireless communications standards such as 3G and the broadband wireless

access standard (802.16).

The general system under study in this chapter is a serial concatenation of an

outer convolutional or turbo code which provides coding gain and an inner orthogonal

STBC offering space diversity. It is shown in Fig. 13. The system employs the

Alamouti STBC scheme with two transmit antennas and Nr receive antennas. The

received symbol at the jth receive antenna in the kth time interval is given by:

rj,k = h1,js1,k + h2,js2,k + nj,k, j = 1, ..., Nr, (6.1)

where s1,k and s2,k are the symbols transmitted from the first and second transmit an-

tennas at time instant k, respectively. More specifically, (s1,2i−1, s1,2i) = (x2i−1,−x∗
2i)

and (s2,2i−1, s2,2i) = (x2i, x
∗
2i−1). In (6.1), h1,j and h2,j are the two zero-mean complex

Gaussian channel gains from the two transmit antennas to the jth receive antenna

and nj,k is the zero-mean complex Gaussian noise received at the jth receive antenna

during the kth time instant. The space-time block decoder uses linear processing

techniques according to y2i−1 = (h∗
1r2i−1 + h2r

∗
2i)/h and y2i = (h∗

2r2i−1 − h1r
∗
2i)/h
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Fig. 13. System model using serially concatenated Alamouti STBC

where h =
√
|h1|2 + |h2|2, and |hi|2 is defined as: |hi|2 = |hi,1|2 + |hi,2|2 + . . . + |hi,Nr |2

where i ∈ {1, 2}. Hence, h2 is the sum of the squared magnitude of all the channel

gains.

Therefore, the outer code sees an equivalent single-input single-output (SISO)

QSFC which is described by the following input/output relationship:

yk = hxk + nk, (6.2)

where k refers to the time instant and nk is a complex Gaussian noise sample with

the same variance as nj,k which is N0/2 in each complex dimension. The equivalent

channel gain h2 is a Chi-square random variable with 2Nr degrees of freedom (χ2
2Nr

).

The probability density function (pdf) of h has a Nakagami distribution given by:

f(h) =
2

(2Nr − 1)!
h4Nr−1e−h2

U(h). (6.3)

This newly defined equivalent SISO QSFC will facilitate the use of the approach

adopted in Chapter V to derive an upper bound on the performance of a serially

concatenated scheme. With this equivalent model, the concatenated space-time code

can be viewed as an outer code operating over a SISO QSFC where the fading happens
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to follow a distribution given by (6.3). The remainder of this chapter focuses on

developing improved analytical tools for the performance of this coding scheme for

two specific outer codes: first a convolutional code and later a turbo code. The upper

bounds will be derived for the bit error rates (BER) in both cases.

B. Convolutional codes over equivalent SISO QSFCs

Using the system description in Fig. 13, we now present a serially concatenated

convolutional code and STBC scheme over QSFCs in this section. For a rate r = k/n

outer code, k information bits with energy Eb are encoded through the convolutional

encoder into n BPSK symbols. Only systematic and DD codes will be dealt with as

we have the improved low SNR bounds for them in Chapter IV. At the decoder end,

a Viterbi algorithm is used to extract the maximum likelihood transmitted codeword.

The next sections will provide improved performance bounds using similar approaches

proposed in the previous chapter for these concatenated schemes.

1. Performance analysis

a. Upper bound employing trivial low SNR bound

As was stated in [11], the BER of a convolutional code concatenated with an

Alamouti space-time block code can be upper bounded by

Pb ≤ 1

2
[1 − (1 + h2

0)e
−h2

0 ] + A0

∞∑
d=df

Nd
1 + (1 + γd)h2

0

1 + γd2 e−(1+γd)h2
0 . (6.4)

Where γ = rEb/N0, and A0 is as defined in (5.6). For bit error rates, Nd denotes

the information distance spectrum of the convolutional code which is easily obtained

from the transfer function of the code [1]. As in previous cases, h0 is chosen properly

to ensure the tightest possible form of this bound.
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b. Upper bound employing new low SNR bound

Given the defined equivalent SISO QSFC in (6.2), the same approach in upper

bounding convolutional codes over SISO QSFCs in Chapter V can be reproduced.

The fading pdf f(h) in (5.1) is now replaced by (6.3). Starting with the DD codes

defined in Chapter III and using the bound in (4.2), the low SNR term is bounded

by:

P (e|h < h0)P (h < h0) ≤
∫ h0

0

1

2
exp

(
− rh2Eb

N0

)( 2

(2Nr − 1)!
h4Nr−1e−h2

)
dh,

=
γ(n, (1 + γ)h2

0)

2(n − 1)!(1 + γ)n
, (6.5)

where γ = rEb/N0, and γ(A,B) =
∫ B
0 xA−1e−xdx is the incomplete gamma function.

The parameter n = 2Nr is the total diversity offered by the inner space-time code.

The high SNR term in the Gallager bound is still bounded using a standard Union-

Chernoff bound technique resulting in:

P (e|h > h0)P (h > h0) ≤ ∑
d

Nd

∫ +∞

h0

Q

(√
2dγh

)
f(h)dh, (6.6)

≤ A0

∞∑
d=df

Nd

(1 + dγ)n

[
1 − γ(n, (1 + dγ)h2

0)

(n − 1)!

]
, (6.7)

where df is the free distance of the outer code, and Nd, A0 are as defined previously.

Hence, the bit error rate of a DD convolutional code serially concatenated with an

Alamouti code over a QSFC is upper bounded by:

Pb ≤ γ(n, (1 + γ)h2
0)

2(n − 1)!(1 + γ)n
+ A0

∞∑
d=df

Nd

(1 + dγ)n

[
1 − γ(n, (1 + dγ)h2

0)

(n − 1)!

]
. (6.8)

This bound is then tightened by numerically optimizing with respect to the parameter

h0. Also, for most SNRs of interest, only the first few terms in the series in (6.8) need

to be kept in computing the bound without losing accuracy.
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By starting with the low SNR bound in (4.1), we now develop a slightly tighter

bounds for the cases when the outer code is systematic. In which case,

P (e|h < h0)P (h < h0) ≤
∫ h0

0
Q(

√
2γh2)

( 2

(2Nr − 1)!
h4Nr−1e−h2

)
dh, (6.9)

= I0 −
n−1∑
m=1

Bm, (6.10)

where

I0 =
1

2

[
1 −

√
γ

γ + 1

]
+

√
γ

γ + 1
Q(

√
2h2

0(1 + γ)) − e−h2
0Q(

√
2γh2

0), (6.11)

Bm =
h2m

0 e−h2
0

m!
Q(

√
2γh2

0) +

√
γ/π

[
γ

(
m + 1/2, (1 + γ)h2

0

)]
2(m!)(1 + γ)m+1/2

. (6.12)

The resulting upper bound for the performance of a systematic convolutional code

serially concatenated with an Alamouti code over a SISO QSFC is then given by the

sum of (6.10) and the second term in (6.8).

2. Numerical results

These new upper bounds are illustrated in Fig. 14 and 15 for the r = 1/2, K = 3,

systematic outer code (45) and DD outer code (75), respectively. BPSK modulation

is used. For each type of code, the new bound is compared with the previous bound

employing the trivial low SNR bound as well as the simulated performance. Each

figure represents the results for two cases:

• Nr = 1, n = 2, a transmit diversity system with no receive diversity,

• Nr = 2, n = 4, a transmit/receive diversity system.

The upper three curves show for n = 2 while the lower three ones for n = 4. In all

cases, the fading coefficients are independent in space (from each transmit antenna to

receive antenna) and in time from one code block to the next, however they remain

constant over the duration of the codeword length of the outer code.
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Fig. 14. Simulated performance and upper bounds for serially concatenated systematic

code and STBC over QSFCs

As can be seen from the figures, in all cases, the new upper bound is at least

1dB tighter than the existing bounds. This new analytical tool provides a more

reliable prediction of the performance of these codes over QSFCs. It works better for

systematic outer codes than for DD outer codes.

C. Turbo codes over equivalent SISO QSFCs

In the second part of this chapter, an improved upper bound on the performance

of serially concatenated turbo codes and STBCs is proposed.
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Fig. 15. Simulated performance and upper bounds for serially concatenated DD code

and STBC over QSFCs

1. Performance analysis

The same derivation used for computing upper bounds of systematic codes over

equivalent SISO QSFCs in the previous section is reiterated for this concatenation

case. The resulting upper bound is the sum of (6.10) and (6.6).

2. Numerical results

Fig. 16 shows the new upper bounds along with the previous ones and simulated

results of a rate 1/3 BPSK turbo code in [32] over equivalent SISO QSFCs for n = 2
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Fig. 16. Simulated performance and upper bounds for serially concatenated turbo code

and STBC over QSFCs

and n = 4. For the turbo code results, a uniform interleaver and a block length of

1000 were used. The information distance spectrum Nd is found in [32]. The upper

three curves correspond to n = 2 while the lower three ones are for n = 4. Obviously,

the new bound is around 2dB tighter for n = 2 and 1dB tighter for n = 4. It works

better for systems with higher orders of diversity.
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D. Summary

In this chapter the performance of serially concatenated STBCs over QSFCs was

studied. First a system model that defined an equivalent single-input single-output

quasi-static fading channel (SISO QSFC) was proposed. This simplification enabled

the extension of the bounding approaches proposed in Chapter V. Three specific cases

for outer codes in the concatenation scheme were mentioned in details: systematic

convolutional code, DD convolutioal code and turbo code. For each code, new upper

bounds were derived for two different diversity cases. As in the SISO QSFC case, the

derived upper bounds exhibit much closerness to the simulation results.
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CHAPTER VII

NEW PERFORMANCE BOUNDS FOR MULTIPLE-INPUT

MULTIPLE-OUTPUT QUASI-STATIC FADING CHANNELS

A. Introduction

This chapter deals with another type of space-time codes - space-time trellis codes

(STTC) which can provide coding gain along with space diversity. It is organized

as follows: First a multi-dimensional system model is presented. Next a tight low

SNR upper bound is derived for systematic STTCs after which two tight bounds are

respectively derived for the bit error probability of STTCs with single and multiple

receiver antennas over QSFCs . The new bounds depend on the unusual information

eigenvalue spectrum which is mentioned finally.

B. System model and notation

STTCs fall into the category of multiple-input multiple-output (MIMO) QSFCs.

The general system model is as follows:

   STTC
  Encoder

STTC
Decoder

h11

hNM

Fig. 17. STTC system model
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At time instant k, the received signal at antenna j, rt
j can be written as:

rk
j =

√
Es

N∑
i=1

hijx
k
i + nk

j , j = 1, ...,M, (7.1)

where N and M denote the number of transmit and receive antennas, repectively. In

(7.1), hij is the complex channel gain from transmit antenna i to receive antenna j.

It is assumed in the rest of the thesis that those channel gains are independent from

each other. The noise nk
j is the usual additive Gaussian noise with variance N0/2 in

each dimension and xk
i is the transmitted symbol with unit energy from antenna i at

time instant k. The channel gains will be regrouped in a matrix h, where the (i, j)

element hij is defined as above. In the case of one receive antenna, h reduces to a

vector. For the QSFC case, h is constant over a frame and independently changes

from one frame to the next. A full frame of transmitted symbols xk
i , k ∈ 1, ..., T and

i ∈ 1, ..., N , is considered to be a transmitted codeword x which is chosen among the

ensemble of all possible valid codewords χ. Similarly, a received vector r regroups all

rk
j :

r = hx + n. (7.2)

Where n groups all nk
j in a similar way.

C. Upper bounds on the bit error probability of STTCs over QSFCs

As in the previous cases, the bit error rates (BER) of STTCs over QSFCs can be

upper bounded using the Gallager bounding approach in (2.3). The following general

form of the BER will be used:

Pb = P (e|h ∈ R)P (h ∈ R) + P (e|h ∈ R)P (h ∈ R). (7.3)
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In the above equation, a low SNR bound tighter than 1/2 needs to be derived for

P (e|h ∈ R); the high SNR term P (e,h ∈ R) is upper bounded using the classical

Union-Chernoff bound; and the choices of region R can be found in details in [11],

[14] and [17]. In addition, the information eigenvalue spectrum of the STTCs needs

to be known for computing the overall bound.

1. Low SNR upper bound

Consider a systematic QPSK space-time trellis code with two transmit antennas

and single receive antenna, the receiver sees at time instant k a signal rk which is:

rk = h1s1,k + h2s2,k + nk, (7.4)

where s1,k, s2,k are the systematic and parity PSK symbols transmitted from antenna

1 and 2 at time instant k, respectively, and h1,h2 are the complex channel gains from

each transmit antenna.

If h2 is unknown to the receiver and only h1 is used in decoding which means

partial channel state information is known, a simple way to detect the received signal

is to just decode the received signal on a symbol-by-symbol basis:

mins1,k
|rk − h1s1,k|2, (7.5)

as h2 can be treated as a complex Gaussian random variable with zero mean and

unit variance, h2s2,k + nk turns out to be zero-mean Gaussian with variance N0 + Es.

Since the code is systematic, the two input information bits at time instant k can be

easily extracted from the detected s1,k. While this simple decoding strategy is not the

most intelligent way to decode the received signal, it must provide an upper bound

for the performance of the optimal receiver that has availability to perfect channel

state information at all SNRs. Hence, we note that for such a systematic STTC,
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the bit error probability of the optimal receiver conditioned on the two instantaneous

channel gains is bounded by:

P (e|h) ≤ Q
(√

Es|h1|2
N0 + Es

)
. (7.6)

Obviously, it is tighter than the trivial low SNR bound P (e|h) ≤ 1/2.

2. Spherical upper bound

Now we present an upper bound for a systematic QPSK STTC over QSFCs

corresponding to a choice of the region R as a N -dimensional hypershere. Only the

two transmit antennas (N = 2) and one receive antenna case (M = 1) is considered.

According to [11], the spherical region can be defined as:

R = {h/
N∑

i=1

|hi|2 ≤ h2
0}, (7.7)

where h0 is the radius of R. Hence, R corresponds to the low instantaneous SNR

region and R vice versa. Using this region and the bound in (7.6), the low SNR term

in (7.3) can be expressed as:

P (e|h ∈ R)P (h ∈ R) ≤
∫ h2

0

0
Q

(√
Es|h1|2
N0 + Es

)
e−|h1|2

∫ h2
0−|h1|2

0
e−|h2|2d|h2|2d|h1|2. (7.8)

The Union-Chernoff bound for the high SNR term in (7.3) was derived in [14] and

[17] for the frame error rates (FER). Suppose x is the all-zero codeword transmitted

and the valid codeword corresponding to an error event is x’ ∈ χ, it was shown in these

two papers that the two eigenvalues λ1 and λ2 of matrix A(x,x’) = (x−x’)(x − x’)H

uniquely define the pairwise error probability (PWEP) between x and x’. For the bit

error rates, all error events that contribute the same set of eigenvalues are grouped

and their multiplicity taking into account the number of bit errors are kept track of

to compute the union bound. Let γ = Es/4N0, the final form of the spherical upper
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bound is as follows:

Pb ≤ I1 + I2 +
A0

b

∑
(λ1,λ2)

N(λ1,λ2)

[
e−(1+λ1γ)h2

0

γ(1 + λ1γ)(λ2 − λ1)
+

e−(1+λ2γ)h2
0

γ(1 + λ2γ)(λ1 − λ2)

]
, (7.9)

where b = 2 is the number of input information bits per trellis transition. The

parameters I1 and I2 are given by:

I1 =
1

2
(1 −

√
x

1 + x
) − e−h2

0Q(
√

2xh0) +

√
x

1 + x
Q(

√
2 + 2xh0), (7.10)

I2 = e−h2
0h2

0Q(
√

2xh0) − 1√
4πx

e−(1+x)h2
0h0 +

1

4x
e−h2

0

(
1 − 2Q(

√
2xh0)

)
,(7.11)

where x = γ/(2γ + 1/2). In (7.9), N(λ1,λ2) is the information eigenvalue spectrum of

the STTC, i.e. the total number of bit errors associated with error events which will

produce eigenvalues (λ1, λ2). To tighten the bound, the constant A0 is given by:

A0 = Q
(√

2λminγh0

)
eλminγh2

0 . (7.12)

where λmin is the minimum eigenvalue. The final form of the upper bound is a

function of h0, which can be numerically optimized.

To illustrate the ability of our upper bound to predict the performance of STTCs,

in Fig. 18, we plot our upper bound along with the simulated BER performance versus

the SNR at each received antenna of the 4 state systematic STTC code from [22] for

a frame length of 260 bits (130 PSK symbols transmitted out of each antenna). The

information eigenvalue spectrum can be computed using a similar procedure in [11]

and [17]. As can be seen from the plot, the upper bound is quite tight at all SNRs.

It is to the best of our knowledge the only useful upper bound for the bit error rates

of STTCs over QSFCs.
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Fig. 18. Simulated performance and spherical upper bound for 4 state STTC in [22]

with two transmit and one receive antennas over QSFC

3. Cubical upper bound

For systematic QPSK STTCs with two transmit (N = 2) and multiple receive an-

tennas (M > 1), the spherical region R doesn’t allow for a mathematically tracatable

form. Thus a cubical region should be used:

R = {h/|h1| ≤ h0, . . . , |h2| ≤ h0}. (7.13)

The advantage of this choice of R is the multiple integrals are not nested anymore.

It is reasonable to sum all the channel gains out of transmit i into a single equivalent
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channel gain whose magnitude squared is defined as: |hi|2 = |hi1|2+|hi2|2+. . .+|hiM |2

where 1 ≤ i ≤ N . These new equivalent channel gains are χ2 distributed with 2M

degrees of freedom. When all the equivalent channel gains are less than h0, the

conditional error probability will be upper bounded using the low SNR upper bound

in (7.6). For all other cases we apply the modified Union-Chernoff bound as in the

previous section which was also presented in [11],[14] for computing the FER. The

resulting multiple integrals are separable allowing the straightforward computing of

the final bound. Let GM(x) be the cumulative distribution function (cdf) of a χ2
2M

distributed random variable, the resulting upper bound is as follows:

Pb ≤ 1

(M − 1)!
(I0 −

M−1∑
m=1

Bm)γ(M,h2
0) +

A0

b

∑
(λ1,λ2)

N(λ1,λ2)
1

(1 + λ1γ)M(1 + λ2γ)M

{
[1 − GM((1 + λ1γ)h2

0)][1 − GM((1 + λ2γ)h2
0)] +

2∑
i=1

GM((1 + λ3−iγ)h2
0)[1 − GM((1 + λiγ)h2

0)]

}
, (7.14)

where

I0 =
1

2

[
1 −

√
x

x + 1

]
+

√
x

x + 1
Q(

√
2h2

0(1 + x)) − e−h2
0Q(

√
2xh2

0), (7.15)

Bm =
h2m

0 e−h2
0

m!
Q(

√
2xh2

0) +

√
x/π

[
γ

(
m + 1/2, (1 + x)h2

0

)]
2(m!)(1 + x)m+1/2

. (7.16)

(7.17)

In (7.14), the definitions for A0, x, γ and N(λ1,λ2) are as defined previously in this

chapter, and γ(A,B) is the incomplete gamma function defined in Chapter VI. The

final expression is a function of h0 which can be optimized numerically.

The cubical upper bound is used in Fig. 19 for the same STTC code as in Fig. 18

with two and four receive antennas. In these cases as well, the derived upper bound

continues to show remarkable ability in predicting the performance of STTCs when
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Fig. 19. Simulated performance and cubical upper bound for 4 state STTC in [22]

with two transmit and mutiple receive antennas over QSFCs

a higher number of receive antennas is used.

The final section of this chapter deals with the issue of computing the unusual

information eigenvalue spectrum of STTCs.

D. Information eigenvalue spectrum of STTCs

A similar procedure as in [11] and [17] can be used for computing the information

eigenvalue spectrum of STTCs. A trellis approach is used to compute the informa-

tion eigenvalue spectrum of linear STTCs. First, a N -tuple is defined for each trellis
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transition of the STTC. This vector keeps track of the Euclidean distance out of each

transmit antenna as well as the cross terms between antennas. Then the Euclidean

distance N -tuple is cumulated using a trellis structure. Finally, each distinct error

event is corresponding to one cumulated N -tuple which is used to compute the eigen-

values of the matrix A (previously defined in this chapter). For computing the bit

error rates, all error events that contribute the same set of eigenvalues are grouped

and the multiplicity of each pair of eigenvalues taking into account the number of bit

errors needs to be kept track of separately.

Several complexity reduction techniques are used. First, only error events that

diverge once from the all-zero codeword in the first trellis step and then merge back

only once are considered, which means concatenations of error events are excluded

from consideration. Also, we restrict our search to error events of up to one-half

frame length [11],[19]. All these greatly simply the task to compute the information

eigenvalue spectrum for low complexity STTCs with moderate frame lengths. Fig.

20 shows a flow chart of the full algorithm.

E. Summary

In this chapter, the general approach in Chapter II was combined with a low

SNR bounding approach to derive performance upper bounds for the bit error rates

of STTCs over QSFCs. First a tight low SNR bound was derived for systematic QPSK

STTCs using similar approaches in Chapter IV. Then two possibilities corresponding

to two different regions of R: cubical region and spherical region were provided to

apply the general Gallager bound after which a spherical upper bound was presented

for STTCs with single receive antenna and cubical upper bound for multiple receive

antennas cases. All these upper bounds showed particular tightness compared to
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Fig. 20. Flow chart for computing the information eigenvalue spectrum of STTC codes

the simulation results. Finally, the problem of computing information eigenvalue

spectrum of small contraint length STTCs was explored.
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CHAPTER VIII

CONCLUSION

The work contained in this thesis gave more reliable performance analysis of chan-

nel codes over quasi-static fading channels (QSFC). Previous approaches in bounding

codes performance over QSFCs used the Gallager bound and gave quite loose bounds.

The reason lied in the trivial form of the low instanstaneous SNR bound employed.

In this thesis, we started from finding a novel approach for classifying convolutional

codes according to their performance over QSFCs. Then tighter performance upper

bounds were provided for two classes of convolutional and turbo codes in the low

instantaneous SNR region. Consequently, they were used with the union bound to

bound codes performance over single-input single-output (SISO) QSFCs. This new

analytical bounding tool was applied to both systematic and differential detectable

convolutional codes as well as turbo codes. It produced new bounds at least 1 dB

tighter than the existing bounds. The new approach was then extended to several

more interesing cases. First two cases of serially concatenated space-time block codes

(STBC) systems over QSFCs were analyzed. The first case involved a convolutional

code as an outer code while the second a turbo code. As in the previous cases, the

derived new upper bounds were more likely to capture the performance of the concate-

nated scheme than the previous bounds. Towards the end, the case of the spectrally

efficient space-time trellis codes (STTC) was explored. Two upper bounds: spherical

and cubical upper bound were derived for the bit error probability of STTCs over

QSFCs. The upper bounds were very adequate for characterizing the performance of

systematic STTCs over QSFCs. Also included was a general procedure to compute

the information eigenvalue spectrum of STTCs.
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