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Abstract: Hydrologic models are not able to compute unsteady flood flows, and the hydraulic models are sometimes found less effective in
uncertainty estimation in the modeling outcomes. This study presents a coupled modeling framework to analyze the unsteady flows in the
downstream of the Teesta and Lachung Rivers using hydrodynamic and hydrological models. The present approach leads to unsteady flow
simulations along stream channel reach. Soil andWater Assessment Tool (SWAT) model is used for the projection of streamflow, water depth,
and precipitation at various gauged and ungauged locations over the selected catchment using Coupled Model Intercomparison Phase 5
(CMIP5) CM3 model data sets with their representative concentration pathway (RCP) experiments and observed hydrometeorological data.
SWAT-based projected scenarios are incorporated in the hydrodynamic model for the projection of water level, flood discharge, and flooded
area at different sections in the downstream of the Teesta and Lachung Rivers. Using projected flood flows and water-level data, the rating
curve equations have been developed at the outlets such as Chungthang and Lachung. The study outcomes resulting from both models show a
very good agreement between the simulated streamflow and observed streamflow at the outlet locations. The uncertainties can also be
associated in the modeling outcomes. Thus, a statistical-cum-stochastic downscaling method has been applied to downscale the CMIP5 CM3
model-based meteorological variables (e.g., temperature and precipitation). The modeling errors prior to project streamflow have been ad-
justed using a sequential parameter fitting approach (SUFI2). The hydrodynamic model-based projected unsteady flood flows are found
highly uncertain in the downstream portion of both rivers, and thus several extreme flood peaks have been observed in the final outcomes.
The observations show that the water velocities have increased in the projected scenarios (recorded as 8.5 m=s), as compared to historical
scenarios (6.5 m=s). Using projected time series discharge and water level (stage), the rating curve equations, which have been developed as
per the low to extreme emission scenarios, can be used in the future planning and management of the water resources systems.DOI: 10.1061/
(ASCE)HE.1943-5584.0001530. © 2017 American Society of Civil Engineers.

Author keywords: Hydrodynamic model; Soil and Water Assessment Tool (SWAT); Coupled Model Intercomparison Phase 5 (CMIP5)
CM3 GCM; Rating curves; Design flow; Teesta River.

Introduction

The Himalayan rivers such as the Lachung and Teesta Rivers con-
tribute their flow from snow-glacier melting throughout the year.
Therefore, current climatic uncertainties can significantly affect the
downstream flow of these two rivers (Singh and Goyal 2016b). The
hydroclimatology of the Teesta River catchment is very dynamic
because the upstream portion belongs to moderate to extreme high-
elevation zones (from 1,400 to 7,400 m) (Krishna 2005), thus in
extreme flood discharge conditions, the water velocity can be dis-
astrous. Therefore, an accurate estimation of river flow is necessary
in the downstream portion for flood management. A few studies
revealed that due to climate change, the precipitation and discharge
amount will be enhanced in the streams in future (Singh et al. 2015;
Karahan et al. 2013). The relationship between the river discharge
and water level (stage) or rating curves are thus important to design

hydraulic structures of a flood management project and in the
making of reservoir releasing policy (Rahman et al. 2011).

An analysis of river water level at various cross sections using
a physically based flood routing hydrodynamic model is quite
weighty because it requires large numbers of data sets such as time
series discharge, river morphometric parameters, river hydraulics
variables, bed resistance, and roughness coefficients (Vansteenkiste
et al. 2013; Doulgeris et al. 2012). Several research studies dem-
onstrated a successful utilization of hydrodynamic models in flood
routing and stage-discharge computations using measured cross
sections and time series data sets (Doulgeris et al. 2012; Rahman
et al. 2011; Thompson et al. 2009; Patro et al. 2009). These models
require precise river geometric data, which is difficult to measure at
the desired study area locations because a few studies also reported
several instability issues in the river flow hydrodynamic models
(Rahman et al. 2011; Thomson et al. 2004). The one dimensional
(1D) hydrodynamic model MIKE 11 has already proved its capa-
bilities in the hydrodynamic computation of design flow, water
levels, and water velocity around the world (DHI 2004; Doulgeris
et al. 2012; Rahman et al. 2011; Thomson et al. 2004).

Several studies found that the occurrences of extreme pre-
cipitation events and flood discharges are increased and will be fre-
quent in the 21st century because of climate change (Singh et al.
2015; Karahan et al. 2013). Floods are one of the main causes of
the destruction of physical property and life (Karahan et al. 2013).
Many studies used the latest Coupled Model Intercomparison
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Phase 5 (CMIP5) climate model data sets in the forecasting of pre-
cipitation extreme events and flood discharge through hydrologic
models such as the Soil and Water Assessment Tool (SWAT) (Singh
et al. 2015, 2013; Zucco et al. 2015; Taylor et al. 2012; Abbaspour
2011). A few studies significantly highlighted the severity of ex-
treme events and high volumedischarge overHimalayan catchments
(Singh and Goyal 2016a; Singh et al. 2015; Goyal 2014; Goyal
and Ojha 2010). The CMIP5 model ensembles are determined by
the emission scenarios reliable with the representative concentration
pathway (RCP) experiments (RCP2.6, RCP4.5, andRCP8.5), which
explores an estimate of the radiative forcing (RF) in the 21st century
(Change 2013; Taylor et al. 2012). The RCP8.5 is categorized
as the high emission scenarios experiment, and as per RCP8.5,
RF will be increased in the 21st century. Likewise, the RCP2.6
and RCP4.5 are the intermediate scenarios (Taylor et al. 2012).

This study aimed to compute (1991–2005) and project (2008–
2100) the flood discharge, water level, and water velocity by cou-
pling the hydrological model SWAT and hydrodynamic model
MIKE 11. A Sequential Uncertainty Parameter Fitting version 2
(SUFI2) method has been performed to reduce the model uncer-
tainties and the modeling outcomes (Singh et al. 2013; Abbaspour
2011). To compute and project the flood discharge, water level, and
water velocity in MIKE 11, initially, the streamflow discharge sce-
narios at different catchment outlets were generated in SWAT
model using CMIP5 CM3 based on the RCP experiments. SWAT
is fully capable of simulating and projecting the streamflow scenar-
ios using climate model data, while MIKE 11 is fully able to com-
pute the design flow, water level, and water velocity. Another prime
objective of this study was to develop the rating curve equations at
various cross sections/chainages (Ch) of the Teesta and Lachung
Rivers using RCP experiments based on projected water level
and discharge data. To maintain the accuracy level in modeling out-
comes, several field surveys were carried out to measure the cross
sections along the Teesta and Lachung Rivers. However, due to the
remote locations and very high elevated topography of the Teesta
and Lachung Rivers, the majority of cross sections using a very
high spatial resolution cartographic satellite (CARTOSAT) digital
elevation model (DEM) (10 m).

Physical Geography and Hydroclimatology of the
Study Area

ATeesta River catchment (up to Chungthang gauge station) that is
also a part of north Sikkim Himalaya Sikkim state of India has
been selected for the study. Lachung is one of the major tributaries
of the Teesta River and also a part of the Teesta River catchment
included in the study work. In this study, the Chungthang and
Lachung gauge stations as outlets of the Teesta and Lachung
Rivers, respectively (Fig. 1). The origin point of the Teesta River
is Chhombo Chhu from a glacial lake named Khangchun Chho at
an elevation of 5,280 m in the north Sikkim eastern Himalayas
(Krishna 2005). Teesta River has many small and big tributaries.
Many shorter course streams meet the Teesta River on the eastern
flank, while the larger tributaries meet on the western flank. These
tributaries contribute a large amount of drainage to the main
Teesta River.

The Teesta River catchment is influenced mainly by the south-
west monsoon, which normally sets in around mid-June and with-
draws by the end of September. The average normal precipitation in
Sikkim is about 2,534 mm. The Teesta basin upstream portion is
mainly fed by snowfall during winters, and the downstream portion
is fed by rainfall in summer. Due to the high altitudinal variations
over the upstream catchment parts of Teesta River, the meteoro-
logical factors (e.g., temperature and precipitation) show high vari-
ability across their subcatchments. The upstream portion of the
catchment corresponded to very high elevations (7,000 m), and
the downstream portion of the catchment corresponded to moder-
ate elevations (1,400 m). Thus, temperature lapse rate (TLR) also
varies from downstream to upstream parts of the catchment
(Singh and Goyal 2016a; Gardner et al. 2009). The Teesta River
catchment receives around 75% of the rainfall during monsoon
season (June–September). The Teesta River catchment receives the
maximum amount of precipitation from June to August, while
maximum snowfall is received during February and March
(Krishna 2005).

Fig. 1. Map of the study area
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Methodology and Data Sets

Description of SWAT Model

SWAT is deterministic, semidistributed, and continuous time hydro-
logical model, which is capable of simulating and forecasting vari-
ous water balance components on a daily, monthly, and annual
basis. SWAT is fully capable of simulating and forecasting surface
water parameters and snow melt hydrology parameters on the sub-
catchment and point scales (Ficklin and Barnhart 2014; Neitsch
et al. 2011; Arnold et al. 2012). Each subcatchment contains the
main channel and many hydrologic response units (HRUs), which
consist of homogeneous land use/land cover (LULC), soil types
and slope. Around 2,400 peer-reviewed publications are available
related to SWAT model applications, thus the model equations and
their theoretical description have been avoided in this research ar-
ticle (Singh et al. 2015, 2013; Ficklin and Barnhart 2014; Arnold
et al. 2012; Neitsch et al. 2011; Jain et al. 2010; Abbaspour et al.
2007). The weather generator parameters, such as daily precipita-
tion, daily minimum and maximum temperature, daily humidity,
daily wind speed, and daily net solar radiation are necessarily re-
quired to set up the SWAT model. The physical and topographical
parameters, such as LULC, soil, and DEM, are required to generate
the drainage and physiographical characteristics of the selected
study region.

In SWAT, streamflow is computed at each HRU and subcatch-
ment scale using soil conservation services (SCS) curve number
(CN) method (Arnold et al. 2012). Several authors reported that
are necessary to be modified as per the HRU slopes because several
time extreme peaks are observed in simulated discharge (Singh
et al. 2015). Thus for the current study area, CNs are modified
according to HRU slopes by the equation given by Mishra et al.
(2014). In SWAT, there is a limited scope for CN modifications
(Neitsch et al. 2011). Therefore, SWAT-based generated CNs are
exported from the SWAT management database then CNs are
modified as per the HRU slopes. For CN modification, a modified
CN equation was used (Huang et al. 2006; Mishra et al. 2014)
then SWAT-derived CNs are adjusted as per the respective classes
(Mishra et al. 2014). The modified CN table is given as supple-
mental data. In SWAT, the main hydrological component, such
as runoff, is simulated for each HRU, and the contributions of each
HRU are then aggregated for the subcatchment by a weighted aver-
age. Water is then routed to the main outlet of the catchment
(Neitsch et al. 2011).

SWAT-Based Calibration and Uncertainty Analysis

Streamflow simulation and validation were done using SWAT-CUP
(Abbaspour et al. 2007), which takes SWAT-simulated outcomes.
For the model calibration and validation, the daily discharge time
series data sets were used at the two outlet locations (such as
Lachung and Chungthang) for the years 1989–2005. The mea-
sured streamflow data sets were collected from the Central Water
Commission (CWC), India. The model calibration has been per-
formed using the concept of aggregate parameter selection method
(Abbaspour 2011). An aggregate parameter is defined by adding a
term such as v , a , and r to the front of the original parameter
to mean a replacement, an absolute increase, and a relative change
to the initial parameter value, respectively (Zhang et al. 2014). The
goodness-of-fit criteria using coefficient of determination (R2) and
Nash–Sutcliffe Equation (NSE) (Nash and Sutcliffe 1970) were
used for the evaluation of streamflow at all the gauging outlets
(Zhang et al. 2014; Abbaspour et al. 2007).

Parametric Uncertainty and Sensitivity Analysis
Approach

The hydrological model consists of deterministic description of
precipitation, discharge, evapotranspiration (ET), storage, and trans-
port processes. A deterministic hydrological model such as SWAT
is not fully able to explore the stochastic behavior of the random
variables, such as precipitation and resultant discharge (Zhang et al.
2014; Singh et al. 2013; Abbaspour et al. 2007). Calibration of any
distributed hydrological model using observed hydro-observation
data sets always leads to the nonidentifiable parametric uncertain-
ties due to an involvement of the complex hydrological processes
and relevant data sets (Zhang et al. 2014). Many authors found that
model parameterization and uncertainty analysis can reduce the
various input data uncertainties and parameter-related uncertainties
in the simulated and projected modeling outcomes (Singh et al.
2013; Abbaspour et al. 2007).

As per the above considerations, the SUFI2, a stochastic opti-
mization method, has been selected to overcome the model un-
certainty issues in streamflow computation (Zhang et al. 2014;
Abbaspour et al. 2007). SUFI2 is a Bayesian inference system,
which operates parametric uncertainty within the uncertainty do-
mains (prior and posterior) associated with each parameter using
stratified Latin hypercube sampling (Singh et al. 2015; Abbaspour
2011; Abbaspour et al. 2007).

Parameter uncertainty is usually caused as a result of inherent
nonuniqueness of parameters (involved model calibration parame-
ters) in inverse modeling due to wrong data inputs and parameter-
ization. The adaptation of inverse modeling approach is a very
popular method for the model calibration (Abbaspour et al. 2007).
In SUFI 2, an iterative process run for the model calibration and it
tries to maximize the given objective function, such as R2 and NSE.
Each iteration comprises a number of simulation steps and finds the
optimal solution in each stratified random sample interval. In each
simulation, it modifies the parameter ranges, and once the function
is maximized, the fitted parameter coefficient values corresponding
to the given objective function values are given (Singh et al. 2013;
Abbaspour et al. 2007).

The SUFI2 algorithm basically assumes a large parameter un-
certainty to ensure the observed data fall into the 95 percent pre-
diction uncertainty (95PPU) band for the first iteration and decrease
the uncertainty in steps while monitoring the p-factor and r-factor
for the next several iterations (Abbaspour et al. 2007). The p-factor
determines the percentage of simulated data falls into the observed
data set, and the r-factor determines the uncertainty thickness in the
simulated data sets when compared to observed data sets. The
95PPU can be calculated between the 2.5 and 97.5% levels of
the cumulative distribution of an output variable obtained through
Latin hypercube sampling, disallowing 5% of the very bad simu-
lations (Abbaspour 2011). The value of p-factor ranges between 0%
and 100% and r-factor ranges between zero to infinity. It means that
the value of p-factor = 1 and r-factor = 0 corresponds to measured
data equivalent to observed data. The values are computed far from
these values and can be utilized to judge the strength of the cali-
bration. A larger p-factor can be achieved at the expense of a larger
r-factor (Abbaspour 2011). The mathematical expressions of the
SUFI2 algorithm are defined in the SWAT-CUP user manual
(Abbaspour 2011).

In this study, a total of five calibration parameters were taken
for the calibration and validation. The sensitivity of model calibra-
tion parameters has been ranked using p-value and t-stat using the
global sensitivity analysis (GSA) method (Zhang et al. 2014; Singh
et al. 2013; Abbaspour 2011). In GSA outcomes, a significance test
(t-stat) is evaluated based on the significance level alpha (α ¼ 0.05)
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and p-values. The alpha value of 0.05 was chosen as the local
significance level. Based on this significance level, values larger
than 1.96 or lower than −1.96, respectively, indicate a significant
(p < 0.05) positive or negative trend. If the p-value will be closer to
zero, the corresponding values will be more significant for the trend
(Singh et al. 2013; Abbaspour 2011).

Coupling of SWAT–MIKE 11 and Their Boundary
Conditions

MIKE 11 has many modules such as rainfall-runoff (RR), hy-
drodynamic (HD), advection-dispersion (AD), water quality, and
DAM break analysis (Patro et al. 2009; DHI 2004). In this study,
theMIKE 11 HDmodule has been used for the Teesta and Lachung
Rivers and thus coupled with SWAT to analyze flood discharge and
rating curves in historical (1991–2005) and future time series do-
mains (2008–2100). The fully hydrodynamic approach inMIKE 11
was performed to compute various HD variables, such as discharge
and water level. The HD model setup is grouped into various sec-
tions, such as river network linking, river cross section and con-
veyance definition, boundary condition, HD parameter setup, and
simulation time step. Stage in the Teesta River is also influenced
during the flood period by other rivers that have also been consid-
ered in the river network and calculated from the cross sections.
The HD parameter details are given in Table 1. MIKE 11 results
from high order fully hydrodynamic wave formulation are the der-
ivations of the Saint Venant equations (Soleymani and Delphi 2012;
Rahman et al. 2011; Thompson et al. 2004).

Boundary conditions in MIKE 11 are defined by combined use
of time series data prepared in the time series editor and specifica-
tions made on locations of boundary points and boundary types in
the boundary editor. Initially, the location of the boundary point and
the boundary description and type are specified. Location name is
defined based on the river name and chainages. Initially at the inlet
source, initial water depth and discharge were defined as per the
information given by the SWATmodel. During historical time com-
putation, measured discharge data sets are used at the defined outlet

locations, such as Lachung and Chungthang. The inlet source data
sets were taken from the SWAT model. During projected time
series, the inlet and outlet point data sets were taken from the SWAT
model. The discharge taken as variable time series and water level
is defined as constant variable in boundary condition. Wind shear
stress is required for time variable boundary condition to evaluate
the effect of wind on turbulence flow and thus it is included in the
simulation (DHI 2004). Several cross sections (X-sections) were
measured in the field and several computed from DEM input to
define the rating curve equation. The cross-section data sets and
conveyance factor are necessary parameters in hydrodynamic river
flow modeling.

Accurate bathymetric data (or river depth information) are
needed to compute accurate discharge and time-of-travel predic-
tions. Full cross-sectional and longitudinal depth-profile data (10
cross sections) were collected, referenced to an elevation datum,
in the main stem using Total Station Instrument. The longitudinal
depth-profile data are useful in identifying all of the shallow and
deep areas of the river channel, allowing interpolated cross sections
to be created for a model grid that captures these characteristics
of the channel. Additionally, around 25 cross sections were com-
puted using CARTOSAT DEM at different locations in the Teesta
and Lachung Rivers. In an ungauged catchment, the availability of
hydrological and hydrodynamic parameters, which are required for
modeling, are sometimes limited. Because of these above consid-
erations, MIKE 11 has coupled with SWAT to fulfill all the objec-
tives taken in this study. The coupled diagram of MIKE 11 and
SWAT are shown in Fig. 2.

The stream channel network and catchment area initially delin-
eated in the SWAT model is used in MIKE 11. For the stream
network extraction, multispectral high-resolution Indian Remote
Sensing Satellite (IRS) Linear Imaging Spectral Scanner (LISS)
3 (2009) imagery, downloaded from the BHUWAN (www.bhuwan
.nrsc.gov.in) portal, is used in this study. For the catchment and
subcatchment boundary delineations, a high resolution CARTO-
SAT DEMwas used. SWAT classifies the LULC and river geometry
at hydrological response unit spatial scale (Abbaspour et al. 2007;

Table 1. MIKE 11 HD Model Parameters and Their Descriptions

Parameter Factor Method/values Description

Initial parameters Initial discharge 10 m3=s Discharge
Initial depth 0.5 cm Water-level depth

Wind factor Friction factor 0.0024 Friction parameter value
Topographical factor 1 Slopes

Bed resistant Resistance number 10–15 (10–100) Manning parameter
Approach Uniform section
Resistance formula Manning’s/Chezy’s

Number/0.010–0.015 sm−1=3

Wave approximation Method High order fully dynamic Routing method
Coefficient values Delta 0.6 (0.5–1.0) For model stabilities

Delhs 0.01 The minimum allowable water-level differences across a weir
Delh 0.1 Controls the dimensions
Alpha 1 Velocity distribution coefficient
Theta 1 A weighting factor for momentum equation
Eps 0.0001 Water surface slope uses in diffusive wave equation
Dh node 0.01 Computational coefficient
Zeta minimum 0.1 Minimum head loss coefficient
Inter 1 maximum 20 Maximum number of iterations
Nolter 1 No iterations
Maxlter steady 100 Maximum number of iterations for steady condition
Froude maximum −1 Suppression term for convective acceleration
Froude exp. −1 Suppression term for convective acceleration
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Arnold et al. 2012); thus Manning’s roughness coefficient gener-
ated at each HRU level near to stream in SWATwas used in MIKE
11 because SWAT calculates the accurate Manning’s roughness co-
efficient n value at each HRU using LULC and slopes (Neitsch et al.
2011). Channel and floodplain resistance factors for the given cross
sections are calculated in the cross section editor file in MIKE 11
(DHI 2004).

The boundary conditions (upstream and downstream), initial
condition (time t ¼ 0) and stability parameters such as courant con-
dition (Cr < 1) to determine time step are necessary for the model
simulation (Soleymani and Delphi 2012; Rahman et al. 2011). The
stability and other hydrodynamic parameter details are given in
Table 1. However, several assumptions relevant to design flow,
water velocity, and cross sections associated with the governing
equations are considered (DHI 2004).

Spatial Interpolation and Climate Downscaling of
Hydrometeorological Variables

High-resolution daily gridded (0.5° × 0.5°) precipitation and tem-
perature data sets for the period of 1980–2005 are available at
the Indian Meteorological Department (IMD) and the Indian Insti-
tute of Tropical Meteorology (IITM) India and are used for the
study. This data set is prepared from quality-controlled observed
precipitation/rainfall data from more than 1,800 gauges and is in-
creasingly being used in studies on the Indian and Himalayan

continents (Subash and Sikka 2014). The two gauge stations, such
as Lachung and Chungthang, point source measured daily pre-
cipitation data sets (1980–2005) were also available andused for
study.

The whole catchment of the selected study area is divided into
seven subcatchments (SB) to highlight the spatial variations in the
climatological factors, such as temperature and precipitation. There
are seven climate stations, such as Chopta Valley (at SB1), Thangu
(at SB2), Muguthang (at SB3), Lachen (at SB4), Yumthang (at
SB5), Lachung (at SB6), and Chungthang (at SB7), that were de-
fined to project the local-scale changes associated with temperature
and precipitation. Then, the gridded and measured precipitation
and temperature data sets were adjusted at each SB (at different
point locations) by calculating the TLR and precipitation lapse rate
(PLR) (Singh and Goyal 2016a; Escurrat et al. 2014; Gardner et al.
2009). The TLR and PLR are calculated from CARTOSAT DEM,
which was downloaded from BHUWAN portal. The detailed meth-
odology of the TLR and PLR is earlier discussed by Singh and
Goyal (2016a) and Neitsch et al. (2011).

After the spatial adjustment of observed hydrometeorolog-
ical variables, the downscaling of daily temperature and precipita-
tion data sets were performed at each climate station using climate
model 3 (CM3) climate model with their RCP experiments
(RCP2.6, RCP4.5, and RCP8.5). The six global circulation model
(GCM) grids (at 2.5° × 2.5° scale) surrounding the study region
were selected as the spatial domain of the 16 most relevant GCM

Fig. 2. Methodology chart of coupled framework using MIKE 11 and SWAT
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predictors (Zhang et al. 2014; Taylor et al. 2012) to adequately
cover the various circulation domains of the predictors considered
in this study. These six GCM grid points are spatially interpolated
at each climate station using an inverse distance weightage ap-
proach (IDWA) (Kharin et al. 2013; Goyal and Ojha 2010; Snell
et al. 2000). The IDWA method interpolates the GCM grid points
(for each predictor) at the known observed grid point (predictand,
such as temperature and precipitation) as per the weighted average
of each grid point.

The statistical downscaling model (SDSM) implies empirical
relationships between the local-scale predictands and large-scale
predictor(s) (Wilby et al. 2014; Mahmood and Babel 2013) and
can be classified as a conditional and stochastic weather generator
in which regression equations are used to estimate the parameters
of daily minimum-maximum temperature and precipitation rate
and amount, separately, so it is slightly more sophisticated than a
straightforward regression model. The large-scale variable fields
from GCMs or reanalysis data (NCEP predictors) are chosen such
that they are strongly related to the local-scale conditions of interest
(the predictands or response variable) (Singh and Goyal 2016b;
Mahmood and Babel 2013).

Because of the linear concepts of SDSM, the selection of pre-
dictors was performed based on the correlation and partial corre-
lation analysis between the interested predict and the predictors,
and weights of the predictors which are estimated via ordinary
least-square method (Mahmood and Babel 2013). Among the 16
predictors for GCMs, the negatively correlated predictors were
dropped. Hence, out of 16 GCM predictors, finally 12 positive cor-
related predictors were selected for the Singh and Goyal (2016b).
To select the first and most suitable large-scale variable, a more
quantitative method has been adopted for screening large-scale var-
iables for each local-scale variable at each of the climate stations
(Singh and Goyal 2016b; Mahmood and Babel 2013).

In this method, first a correlation matrix between 12 reanalysis
predictors for GCMs and the predictand (observed data) is pre-
pared. Then, the predictors of a high-correlation coefficient were
taken and arranged in descending order. The first-ranked predictor,
having the highest correlation coefficient among the others, is
selected and defined as the first suitable super predictor (FSSP)
(Mahmood and Babel 2013). After this, the absolute correlation (R)
between predictor and predictand, and the correlation coefficient
between individual predictors are also calculated. Then the other
highly correlated predictors (for precipitation it is 0.5 and above,
and for temperature it is 0.7 and above in this case) are taken out in
order to remove any multi-colinearity. The correlation coefficient
up to 0.7 between two predictors is acceptable (Singh and Goyal
2016b; Mahmood and Babel 2013).

The selection of the second, third, and so on reanalysis pre-
dictors was performed using percentage reduction in an absolute
partial correlation (PRP) with respect to absolute correlation is cal-
culated for each predictor (Singh and Goyal 2016b; Mahmood and
Babel 2013). The PRP is the percentage reduction in partial corre-
lation with respect to correlation coefficient. The predictor, which
has a minimum PRP in partial correlation, is selected as the second
most suitable predictor. As a result, this predictor has almost no or
a very insignificant multicolinearity with the FSSP. The third,
fourth, and following predictors could be obtained by repeating the
same procedure. For the 21st century (2006–2060) scenario gen-
eration, the combined calibration/validation of the SDSM model
is performed using daily observed minimum and maximum tem-
perature, and precipitation data sets (predictands) with reanalysis
NCEP predictors. For the model calibration and parameterization,
SDSM is developed on monthly submodels. The model performance

is evaluated using multiple evaluation methods such as R2, RMSE,
mean bias, and standard deviation (Singh and Goyal 2016b).

Results and Discussions

In this study, an unsteady flow routing model has been developed
at different cross sections or chainage (Ch) locations on the main-
stream network of the Teesta and Lachung Rivers [Figs. 3(a and b)].
For the cross section definition, the mainstream network has been
created in the model. If there is no difference in the stream channel
length and floodplain flow paths from cross section to cross section,
which have been given as input to the model, then model-computed
output will be the same as compared to the observed data sets. The
bathymetric survey data for several cross sections on the Lachung
and Teesta Rivers has been shown in the Figs. 3(a and b). The
water-level flow area and water-level conveyance relationships us-
ing observed discharge and water-level data sets at the main catch-
ment outlets, such as Chungthang and Lachung have been shown in
Fig. 3(c). The conveyance (K) has been calculated based on the
roughness coefficient n by calculating hydraulic radius (DHI 2004).

Channel and floodplain resistance factors for the given cross
sections are calculated in the cross section editor file in MIKE 11.
Initially, theMIKE 11 unsteady flow model was set up by applying
the default constant value of roughness coefficients. The default
value of n is taken as 0.045 s=m1=3 (DHI 2004). As per the initial
runs and computed outcomes, the model overpredicted the water
level and discharge. Therefore, for the implementation of local
roughness coefficient as per the existing slope and LULC condi-
tions, the Manning’s roughness coefficient n value for each cross
section is adopted from the SWAT model. SWAT calculates the ac-
curate Manning’s roughness coefficient n value at each HRU using
LULC and slopes as defined in Table 1. The constant roughness
coefficient as suggested by the Danish Hydraulic Institute (DHI)
(2004) is insignificant for this study due to the slope variations
and LULC variations. For this study area, the Manning’s roughness
coefficient n that ranges from 0.010 to 0.015 s=m1=3 (Table 1) is
adopted, which is almost same value revealed by other researchers
(Neitsch et al. 2011).

To define the boundary conditions, SWAT-based generated dis-
charge data sets at several point locations over the selected study
area were used. For the outlet locations, observed discharge data
sets were input in model. To make the data readable in MIKE 11,
the discharge data sets from SWAT and observed gauges are con-
verted according to MIKE 11 specified format. To fulfil the boun-
dary conditions and for the model stability conditions, several
hydrodynamic parameters are adopted as per literature survey and
measurements. The HD parameters, given in Table 1, are calculated
from SWAT, and some of them are taken as the global values (DHI
2004). The hydrodynamic parameter file requires bed and flood-
plain resistance data sets for the river network. Bed and floodplain
are input as Manning’s roughness coefficient n values. The resis-
tance factor is input from one point to another point along the river
flow path. Any local differences in resistance can be given to the
cross section file at a specific cross section. The Delta and Delhs
coefficients were found very sensitive parameters for the stability
conditions. The best Delta value was 0.6 after doing several trial
and error computations. All the input data sets and boundary layers
were set up into the SWAT simulation file. The Teesta slopes cor-
respond with very steep slopes thus the model run time is taken as
1 min to find the stability conditions. The initial water-level depth
and streamflow information computed from measured streamflow
and field survey measurement were provided to avoid a dry bed
situation in the simulation.
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Fig. 3. (a) Cross section detail for Teesta River; (b) cross section details for Lachung River; (c) cross section area versus water level at both the outlet
locations, such as Chungthang and Lachung
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MIKE 11 has been calibrated for the historical period from 1989
to 2005. The initial two years (1989–1990) are taken as a warm-
up period, hence the results are shown from 1991 to 2005. The
observed discharge data sets are available at Teesta and Lachung
gauges, hence MIKE 11-generated discharge data sets were com-
pared at both the outlet gauge locations’ gauges. Based on the ob-
served data inputs, water level, water velocities, flooded area, and
discharge have been computed at different downstream chainages.
Based on the computed discharge and water level, stage-discharge
(Q-h) rating curves at different changes of the Teesta and Lachung
Rivers have been produced [Figs. 4(a and b)]. Figs. 4(a and b)
clearly show that the upstream chainages corresponded to low flows
because of less catchment area, and the downstream chainages cor-
responded to a high amount of flow because of the contribution of
flows from upstream chainages.

At the origin point of the Teesta River (Ch-0), where the river is
very shallow with water depth less than 0.3 m, the maximum dis-
charge is recorded around 150–200 m3=s. Whereas, at the down-
stream cross-section point (Ch-85419) near to Chungthang gauge
(Ch-84373), around 85 km distance from the origin of the river,
the maximum discharge (during monsoon season from June to
September) is recorded around 700–800 m3=s. It also showed sev-
eral high discharge values (1,000 m3=s), and the computed river
depth is 4.0 m. Similar rating curves were obtained for the Lachung
River also where the upstream chainages (e.g., Ch-0 and Ch-366)
show the discharge and water depth around 140 m3=s and 1.8 m,
respectively. The downstream chainages of the Lachung River
(e.g., Ch-12969 and Ch-40247) show the computed discharge (dur-
ing monsoon season) and water level as 250–300 m3=s and 3.5 m,
respectively [Figs. 4(a and b)]. The Teesta River originates from the
extremely high elevation zones thus during the monsoon season,
Teesta gets flashy.I In this study, high-order fully hydrodynamic
wave approximation method is used.

In Fig. 5(a), the discharge computed from MIKE 11 during the
historical time (1991–2005) at both the outlet locations (Ch-84373
and Ch-40247) has been compared with the observed discharge.
The results were found to be satisfactory at both the chainages.
Figs. 5(b–d) show the time series plots of discharge computed from
MIKE 11 at different chainages of the Teesta and Lachung Rivers.
These plots show how discharge varies across all the given cross
sections in the downstream of the rivers. Figs. 5(b and c) show the
upstream and downstream chainage discharge of the Teesta River,
respectively. These plots show that the upstream flow ranges be-
tween 40 and 80 m3=s during lean season, while during monsoon
season flow can go up to 80–180 m3=s. In the downstream of the
Teesta River, the discharge varies from 40 to 200 m3=s during the
lean season, and during monsoon, it varies from 400 to 800 m3=s.
Similarly, Lachung discharge varies from 50 to 150 m3=s (during
a lean season) to 200–300 m3=s (during monsoon season) from
upstream to downstream, respectively.

Figs. 6(a and b) show water velocities (m=s) at various cross
sections of the Teesta and Lachung Rivers. Water velocity meas-
urement is necessary because both the rivers originate from

extremely hilly terrains, and the whole catchment corresponds to
very high-degree slopes. During monsoon season, Teesta gets
flashy in nature and high-velocity flood waves travel into the down-
stream. Fig. 6(a) shows that the maximum average velocity of the
Teesta River varies from 1.5 to 8 m=s, though several extreme
velocity events can also be notified (e.g., 9–10 m=s).

At the upstream portion, the maximum velocity of the Teesta
River varies around 1.5 m=s, while in the downstream portion, it
varies from 5.5 to 8 m=s, illustrating high-velocity flow move-
ment in the Teesta River especially in monsoon time. Similarly,
in Fig. 6(b), the Lachung River corresponded to water velocity
around 0.5–3.8 m=s. Upstream, the Lachung River corresponded
to maximum water velocity around 0.5–1.5 m=s while in down-
stream, it goes up to 3.8 m=s. However, it is comparatively lower
than the Teesta River. Figs. 6(c and d) show the flooded area (m2)
at each chainage location of the Teesta and Lachung Rivers.
Water velocity increases in the downstream as more water is
added to rivers via tributary rivers. This means that less of the
water is in contact with the bed of the river and the mouth so
there is less energy used to overcome friction. Hence, the rivers
flow progressively faster on their journey downstream. The
flooded area computed from MIKE 11 is based on the given cross
sections. Figs. 6(c and d) show a significant variability in the
computed flooded area at different downstream chainages of
the Teesta and Lachung Rivers.

The effect of climate change on the main hydrodynamic varia-
bles, such as water level, flood discharge, and water velocity, is
evaluated utilizing CMIP5 CM3 model-based RCP experimental
scenarios. The discharge time series is used as a variable parameter
in the input boundary conditions. Before that, SWAT has been
calibrated and validated at both the outlet locations to reduce the
model uncertainty issues in the projected scenarios. A SUFI2-based
parameter optimization method has been performed to project the
accurate and precise scenarios of streamflow at various gauged and
ungauged locations over the catchment.

The SWAT model calibration and uncertainty analysis results in
a daily simulation step shown in Table 2. The objective functions,
such as R2 and NSE, were used to assess the model performance
during the historical time from the 1991 to 2005. The NSE coef-
ficient is computed nearly close to R2 during both model calibration
and validation for each outlet. The daily basis results are found
acceptable, and the computed R2 and NSE values are comparable
to previous studies (Zhang et al. 2014; Jain et al. 2010; Abbaspour
et al. 2007; Gosain et al. 2006). Among both the stations, the
Chungthang gauge-based predicted discharge values are well opti-
mized as compared to the observed discharge, as their R2 and NSE
showed a better correlation than Lachung. This is because the
model has been calibrated from upstream (e.g., Lachung) to down-
stream (e.g., Chungthang). The best computations of the parame-
ters of upstream make limited contributions to the next calibration
processes, leading to enhanced simulation results at downstream
gauge stations.

Table 2 also provided the results of the SUFI2 method-based
streamflow parameterization sensitivity and uncertainty analysis
outcomes. The modeled uncertainties determined through the
objective functions, such as p-factor and r-factors, are shown in
Table 2. The modeling outcomes show that the simulated data are
mostly falling within the uncertainty band (upper 95PPU), as al-
ready explained in the methodology section. As per the daily com-
putational outcomes, around 55% simulated data (in some cases it
is more than 60%) sets are matching with the observed data sets,
while as per the monthly basis observations, around 60% simu-
lated discharge values are matching with the observed data values.
The r-factor showed an optimal uncertainty level in the simulated

Table 2. SUFI2-Based Model Calibration and Validation Results on a
Daily Basis

Time
step

Calibration/
validation Outlet p-factor r-factor R2 NS

Daily Calibration Lachung 0.48 0.32 0.52 0.38
Chungthang 0.58 0.14 0.62 0.46

Validation Lachung 0.54 0.45 0.60 0.53
Chungthang 0.55 0.45 0.61 0.77
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discharge. The overall uncertainty evaluation results, using p-factor
and r-factor, suggest that the predicted outcomes are fairly opti-
mized and comparable to previous studies (Zhang et al. 2014;
Schilling et al. 2008; Abbaspour et al. 2007).

The sensitivity of the calibrated-validated streamflow parame-
ters (e.g., five parameters are identified as the most relevant param-
eters to streamflow process in literature survey) was evaluated to
overcome the model calibration uncertainty issues. The selection

Fig. 4. Stage–discharge relationship or rating curves (RC) at different cross-sectional locations or chainages; (a) RC for the Teesta River; (b) RC for
the Lachung River
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of the most relevant and influencing parameters in the final cal-
ibration process improved the accuracy of the modeling out-
comes (Table 3). For optimizing best-fitted coefficient value, R2

and NSE objective functions were applied. For sensitivity ranking,

the statistical significance tests, such as t-stat and p-value, were ap-
plied (Singh et al. 2013). The best-fitted parameter coefficients are
obtained after performing multiple iterative processes and thus the
final fitted best coefficient values were obtained during initial and

Fig. 4. (Continued.)
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Fig. 5. (a) Comparison of MIKE 11- with reference to both the outlet locations; (b) streamflow discharge at upstream chainages (Ch) of Teesta
River; (c) streamflow discharge at downstream chainages of Teesta River; (d) streamflow discharge at upstream and downstream chainages of
Lachung River
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final iterations (Table 3). Among five calibration parameters, three
parameters, such as r_CN2, v_GW_DELAY, and r_SOL_K, are
computed as the most significant sensitive parameters for the
model calibration, whose p-values are recorded almost zero and
t-stat values are opted >þ 1.96 or < − 1.96. These parameters
show a significant response in the optimization of best coefficient
values.

The resultant flood water level, discharge, and water velocity
scenarios (2008–2100), which were generated in MIKE 11 at both
the outlet locations (e.g., Lachung and Chungthang) are shown in
Fig. 7. Fig. 7(a) shows the projection of water level. In Fig. 7(a),
one can observe an increase in the water level during the monsoon
season in the given time series except July. In July, it shows a
slight decrease in the water level. Among all the monsoon months,

Fig. 6. (a) Water velocities at different chainages of Teesta River; (b) water velocities at different chainages of Lachung River; (c) flooded area at
different chainages of Teesta River; (d) flooded area at different chainages of Lachung River

© ASCE 04017023-12 J. Hydrol. Eng.
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Table 3. Sensitivity Results as per SUFI2 on a Daily Basis Analysis

Parameters Parameter name

First iteration Final iteration Sensitivity results

Minimum
value

Maximum
value

Fitted
value

Minimum
value

Maximum
value

Fitted
value t-stat p-value

Curve number coefficient R__CN2.mgt −0.2 0.2 −0.02 −0.03 0.10 0.01 −6.869 0
Baseflow alfa factor coefficient V__ALPHA_BF.gw 0.0 0.3 0.14 0.173 0.257 0.18 −1.562 0.119
Groundwater delay time V__GW_DELAY.gw 10 450 15.13 2 27.19 14.67 −4.812 0
Soil hydraulic conductivity R__SOL_K.sol N/A N/A N/A −0.04 −0.84 −0.81 1.96 0.045
Slope fraction at HRU R__HRU_SLP.hru N/A N/A N/A −0.02 0.03 0.02 −1.95 0.52

Fig. 7. Projected scenarios of monthly (monsoon durations): (a) water level; (b) discharge; (c) water velocities at both the catchment outlet locations,
such as Chungthang and Lachung, using CMIP5 CM3 GCMs during the years 2008–2100
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August has shown a consistent increase in the water level. In the
projected scenarios of water level, several uneven extreme events
can also be identified in the time series plots. Fig. 7(b) shows the
projected scenarios of discharge during the monsoon period. In the
projected time series, a consistent increase in the discharge amount
is observed across all the months except July.

As per the comparison between observed [Figs. 5(b–d)] and
projected scenarios [Fig. 7(a)], at the Chungthang outlet, it showed
a large variation in the future discharge amount. In the projected
discharge, the amount of discharge has been increased, and it

ranged from 1,200 to 1,400 m3=s, illustrating an extreme flow
movement in the downstream of the Teesta River. MIKE 11 shows
very noteworthy projection scenarios of discharge and other vari-
ables. Apart from a consistent increase that has been observed in
the maximum peak (2008–2100), the amount of discharge is also
increased during the projected time (2008–2100). Among all the
RCPs, the extreme emission scenario (RCP8.5) shows maximum
increments in the future discharge values. Fig. 7(c) shows the future
projected monthwise (monsoon period) water velocities at both the
chainages. Fig. 7(c) clearly shows that the water velocity will be

Fig. 7. (Continued.)
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increased in the 21st century over the Teesta and Lachung Rivers.
At Teesta River, the maximum water velocities vary from 6.5 to
8 m=s, while at Lachung River it varies from 1.7 to 3 m=s during
monsoon months. In the time series plots of projected water veloc-
ities, a consistent increasing trend has been observed, illustrating
that if the discharge volume will be increased, then the water veloc-
ity will also be increased.

There are various kinds of functions that can be used for fitting
the rating curves or stage-discharge relationship and extrapolation.

A polynomial of second and third degree is commonly used
(Rahman et al. 2011) and is used in this study. Based on the pro-
jected water level (h) and discharge (Q), under the CMIP5 CM3
GCMs with multiple RCP experiments (RCP2.6, RCP4.5, and
RCP8.5), the rating curve equations (stage-discharge relationships)
have been developed using logarithmic method (Rahman et al.
2011) (Table 4). During high velocity and amount of flows or
high stages, computational conditions tender serious practical com-
plications, thus it is often necessary to extend the rating curve

Fig. 7. (Continued.)
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beyond the measured highest discharges. The logarithmic plot
method performs well in extrapolating the flow corresponding to
high and low stages. For the development of the rating curve equa-
tions, around 93 years monthly discharge and water level data sets
were considered under RCP experiments generated in SWAT and
MIKE 11. The rating curve equation previously developed by
Mosley and McKercher (1993) has been considered for the devel-
opment of the rating curve equations as given

Q ¼ Cðh − Z0Þn ð1Þ
whereQ = discharge (m3=s);C and n = constants; h = water level or
height (m); and Z0 = height at which discharge is zero. Values of n
and C have been determined as the calibration parameter. The value
of n varies with cross-section shape, from 1.67 for a rectangular
section up to 2.67 for a triangular section (Rahman et al. 2011).

As per a literature survey, natural channels are generally para-
bolic in cross section. Therefore, in this study n equal to 2 is

Fig. 7. (Continued.)
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considered for the optimization. The statistical evaluation method,
such as R2, was considered for evaluation of predicted discharge
and projected discharge. The R2 is obtained greater than 0.85 in
all the equations. The newly developed rating curve equations have
been shown in Table 4. Using these rating curve equations at both
the gauges i.e., Chungthang and Lachung, the flood stages and
return periods can be computed for the 21st century in climate
extreme conditions.

Conclusions

The Teesta River originates from the Indian Himalayan terrains,
which contributes a significant amount of discharge during mon-
soon season, making it vulnerable to flood events with different
extents and magnitudes almost every year. The present study dem-
onstrated the utility of a hydrological model SWAT and a hydraulic
unsteady flow model MIKE 11 in the computation of discharge,

Fig. 7. (Continued.)
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water level, and water velocities in the historical and future time
series domain. For the projection of futuristic scenarios of water
velocities and discharge at various river cross sections, the SWAT
model is coupled with MIKE 11 under the latest CMIP5 CM3
GCMs. A current and futuristic computation and projection of un-
steady river flow and stage can be helpful in the ongoing and pro-
posed water resource projects, such as hydropower projects, flood

mitigation, and the establishment of drinking water projects. The
latest CMIP5 CM3 GCMs were significantly used in assessing
the current and futuristic climate change impacts on the down-
stream river flow of Teesta and Lachung Rivers. The development
of rating curve equations based on the downscaled stage and dis-
charge data sets can be effectively used to analyze the future
response of streamflows under the extreme events. The simulated

Fig. 7. (Continued.)
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streamflow computed from the model was calibrated and validated
with the observed/measured streamflow, and modeling results were
found well matching with the observed data.
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