Application of Kinematic Wave Equations to Border Irrigation Design

RAMA S. RAM*; VIJAY P. SINGH[†]

Accuracy of the kinematic wave (KW) approximation was tested on 31 experimental irrigation borders by computing the KW number and its modified version. In a majority of cases, this approximation was found to be sufficiently accurate. A KW model, reported previously, was used to derive dimensionless advance and recession curves for application to border irrigation design. These curves can be developed for a wide range of design variables and parameters for ready practical use. A step by step design procedure, based on this model is presented. Its validity was tested by comparing observed irrigation efficiencies with those computed by the model. A close agreement between computed and observed efficiencies suggests that the KW model is reasonably accurate. Its simplicity and physical basis may justify its large-scale field application.

1. Introduction

A knowledge of advance, recession, distribution of depth of water and distribution of infiltrated water is required for optimal design of border irrigation. One way to determine these design variables is by using mathematical models. There are many models of border irrigation. Most of these models can be classified in order of increasing complexity as (1) storage models, (2) kinematic models (3) zero-inertia models, and (4) hydrodynamic models. A recent study by Ram¹ presented a comprehensive survey of these models. Bassett, Fangmeier and Strelkoff² have discussed the current state of the art of hydraulics of surface irrigation.

This study employs a kinematic wave (KW) model. Sherman and Singh,^{3.4} and Singh and Sherman⁵ provided a comprehensive mathematical treatment of KW modelling of surface irrigation. Singh and Ram⁶ tested this KW model by using data from 31 experimental borders and concluded that the model was sufficiently accurate for predicting advance and horizontal recession; the model is not capable of accommodating vertical recession. This concurred with the earlier studies by Smith,⁷ and Chen, McCann and Singh.⁸ However, these studies did not provide quantitative estimates regarding the accuracy of the KW model. Neither were irrigation efficiencies, required for irrigation design, computed. In this study we compute the kinematic wave number⁹ and its modified version¹⁰ indicating the model accuracy for all the data sets used in that study.

Although the KW approximation has been employed in a number of studies on surface irrigation, $3^{-5.7.8.11-14}$ its application to actual border irrigation design does not appear to have been reported. One of the objectives of designing a border irrigation system is to make optimum use of the water available for irrigating a given crop. In practice there exists a wide range of inflow stream sizes, irrigation durations and border lengths for which this objective should be achieved. This can be done more conveniently by employing dimensionless solutions of KW equations. We attempt to develop a design procedure based on dimensionless solutions of the KW model. The design procedure is tested by computing irrigation efficiencies for a typical depth of application of 0.1 m for data from 31 experimental borders, and by comparing them with observations.

^{*}Department of Mathematics, Alcorn State University, Lorman, MS 39096, U.S.A.

⁺Department of Civil Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

Received 15 November 1983; accepted in revised form 9 August 1984

	ΝΟΤΑΤΙΩΝ
a	Dimensionless exponent in the Kostyakov infiltration equation (Ean 4)
u A	Dimensionless exponent in the Rostyakov inintration equation (Eqn 4)
A _s	Dimensionless bulk density of soli
u_a	Depin of water applied (L)
a_d	Average absolute numerical deviation of stored depth from the average depth of u
J	water stored in root zone along the border (L)
a_n	Depin of water needed in the root zone (L)
a_s	Average depth of water stored in the root zone (L)
D_r	Depin of root zone (L)
E_a	Application efficiency (dimensionless)
E_d	Distribution efficiency (dimensionless)
E_s	Storage efficiency (dimensionless)
<i>f</i>	Capacity rate of infiltration (LT^{-1})
F_o	Froude number (dimensionless)
G	Normal depth of flow at the upstream end (L)
h	Depth of flow (L)
h*	Normalized depth of flow (dimensionless)
K	Parameter in the Kostyakov infiltration equation (Eqn 4, LT^{-*})
K_1	Kinematic flow number (dimensionless)
K_2	Dimensionless number corresponding to the momentum term associated with
	inhitration
L	Border length (L)
n	Dimensionless exponent in the depth discharge relation (Eqn 2)
n_m	Manning's roughness coefficient $(L^{-1/3}I)$
P_w	Soil moisture deficit in percent (dimensionless)
P_1	Modified kinematic flow number (dimensionless)
P_2	Modified dimensionless number corresponding to the momentum term associated
	with infiltration
q	Inflow rate per unit width $(L^2 T^{-1})$
q_{o}	Constant inflow rate per unit width at the upstream end (L^{-1})
q^*	Normalized inflow rate (dimensionless)
Q	Discharge per unit width $(L^2 I^{-1})$
S_f	Slope of the energy line (dimensionless)
S_o	Bed slope (dimensionless)
t .	$\lim_{t \to \infty} e(T)$
(* T	Normalized time (dimensionless)
	Normalizing time (1)
	Duration of irrigation (1)
I_1^{\star}	Normalized duration of irrigation (dimensionless)
V	Velocity of flow (LT^{-1})
V 。	Normalizing velocity (L1 ⁻¹)
V**	Normalized velocity (difficultisionless) Distance along the border measured from the unstream end (I)
X*	Distance along the bolder measured from the upstream end
X*	(dimensionless)
V	(unitensioness) Normalizing distance (I)
A R	Normalizing distance (L) Kinematic friction parameter $(L^{1-n}T^{-1})$
р R	Kinematic friction parameter in the relation between normal depth of flow at the
P_{o}	unstream and the corresponding inflow $(I^{1-n}T^{-1})$
۶	Time history of advance front (T)
7 ×*	Normalized time history of advance front (dimensionless)
ר ד	Infiltration opportunity time (T)

2. Kinematic wave model

The KW model, developed by Sherman and Singh,^{3.4} can be expressed for flow over a plane with a small slope and porous bed on a unit width basis as

$$\frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} = -f[t - \xi(x)] \qquad \dots (1)$$

$$Q = v(x,t) h(x,t) = \beta h^n \qquad \dots (2)$$

$$\frac{d\xi(x)}{dx} = \{\beta h^{n-1} [x,\xi(x)]\}^{-1} \qquad \dots (3)$$

in which h(x,t) is depth of flow, Q(x,t) is discharge, v is velocity of flow, $f(\tau)$ is infiltration rate, $\tau = t - \zeta(x)$, infiltration opportunity time, and *n* and $\beta > 0$ are *KW* parameters; *n* varies from 1 to 3 inclusive. From now on, a symbol will be defined when it appears for the first time. For easy referencing, all the symbols are given in the Notation. Note that $t = \xi(x)$ denotes the time history of the advance front or the advance function. The infiltration rate $f(\tau)$ is assumed to depend only on the difference τ between the total elapsed time and the advance time, that is, it is timedependent but independent of x for x > 0. It can be determined by the Kostyakov equation¹⁵ as

$$f(\tau) = \begin{cases} aK\tau_c^{a-1}, 0 \le \tau \le \tau_c \\ aK\tau^{a-1}, \tau \ge \tau_c \end{cases} \dots (4)$$

 τ_c is a constant and can be specified for a given soil. It was taken to be 0.1 min in this study. The exponent a varies between 0 and 1, and K > 0 is a parameter.

The initial conditions can be expressed as

$$h(0,t) = h_o(t), \quad 0 \le t \le T_1 \qquad \dots (5a)$$

$$h(0,t) = 0, \quad t \ge T_1 \qquad \dots (5b)$$

$$\xi(0) = 0 \qquad \dots (5c)$$

Where T_1 is duration of irrigation. One can also define initial conditions in terms of discharge at the upstream end. $Q(0,t) = q(t), 0 \le t \le T_1; Q(0,t) = 0, t \ge T_1, q(t)$ specifies the time-varying rate of inflow.

2.1. Dimensionless solutions

A principal advantage of dimensionless solutions is the reduced number of parameters contained in them. Further, the dimensionless solutions are independent of the system of units used. The dimensionless variables appear as ratios with respect to normalizing quantities. Therefore, it is easy to interpret the effect of proportional variations of one variable on the other. Because of the reduced size of the variables, dimensionless solutions are easy for graphical representation. To reduce Eqns 1–3, the following normalizing quantities are defined:

- $q_o = \text{ constant inflow at the upstream end}$
- $V_o^{\prime \prime} =$ normal velocity at the upstream end G = normal depth of flow at the upstream end corresponding to the constant inflow q_o , and can be determined as

$$G = (\beta_o q_o)^{0.6} \tag{6}$$

$$\beta_o = n_m / S_o^{0.5} \qquad \dots (7)$$

where n_m is Manning's roughness coefficient and S_a bed slope.

 T_{o} = normalizing distance defined as

$$T_o = (G/K)^{1/a}$$
 ...(8)

 $X_o =$ normalizing distance defined as

$$X_o = V_o T_o \qquad \dots (9)$$

By using the normalizing quantities, the dimensionless variables can be defined as

$$q^* = \frac{q}{q_o}, \ h^* = \frac{h}{G}, \ v^* = \frac{v}{V_o}, \ x^* = \frac{x}{X_o}, \ t^* = \frac{t}{T_o}, \ \tau^* = \frac{\tau}{T_o}, \ T_1^* = \frac{T_1}{T_o} \qquad \dots (10)$$

By substituting dimensionless variables in Eqns 1 and 3 and coupling Eqns 1 and 2, we obtain

$$\frac{\partial h^*}{\partial t^*} + nh^{*n-1} \frac{\partial h^*}{\partial x^*} + a(\tau^*)^{a-1} = 0 \qquad \dots (11)$$

$$\frac{d\xi^*(x^*)}{dx^*} = \frac{1}{h^{*n-1}}, \, \xi^*(0) = 0 \qquad \dots (12)$$

These equations are subject to

$$h^*(0,t^*) = h^*_o(t^*), \qquad 0 \le t^* \le T^*_1 \qquad \dots (13a)$$

$$h^*(0,t^*) = 0, t^* \ge T_1^*$$
 ...(13b)

$$\xi^{*}(0) = 0$$

The solution of Eqns 11 and 12 subject to Eqn 13 consists of two parts. The first part, representing the advance and storage phases, is for $0 \le t^* \le T_1^*$. The second part, representing the recession phase, is for $t^* \le T_1^*$. The solution for the first part was obtained numerically by the kinematic wave train (*KWT*) method. This is described by Ram, Singh and Prasad¹⁴ and Singh and Ram.⁶ This requires specification of grid spacing which was taken as 1.524 m and ratio of advance tip depth to normal depth of flow which was taken as 0.05. The solution for the second part was obtained explicitly in a sequential manner, and is described by Ram, Singh and Prasad.¹⁴ This method of solution of Eqns 11–13 is part numerical and part analytical, and is simpler and more efficient than the numerical method proposed by Sherman and Singh,⁴ and Singh and Sherman.⁵

2.2. Experimental data

Thirty-one sets of data, as given in Tables 1–3, were used in this study. Four sets of data, designated as Roth-8–Roth-11, are due to Roth,¹⁶ and Roth *et al.*¹⁷ These data were collected on non-vegetated borders (soil classified as sandy loam, bulk density 1·4). Nine sets of data, referred to as K-1–K-9, were collected for irrigations on vegetated borders (bromegrass, bromegrass alfalfa, grain sorghum, barley), and are due to Kincaid¹⁸. Eighteen sets of data, designated as R-1–R-18, are due to Ram.^{19–20} The data sets R-1–R-9 were collected on non-vegetated borders, and R-10–R-18 on vegetated (wheat crop) borders. For complete details on these data, see the cited references.

TABLE	

Irrigation data sets for freely draining borders^{16 – 18}

Parameters	Roth-8	Roth-9	Roth-10	Roth-11	<i>K-1</i>	K-2	K-3	K-4	K-5	K-6	K-7	K-8	K-9
Inflow rate, q_o (m ² min ⁻¹)	0.105	0.145	0.201	0.146	0-301	0-206	0-307	0-223	0.323	0-457	0-346	0.329	0.379
(<i>muin</i> autor constant, A <i>(muin^{-a})</i> Infiltration exnonent <i>a</i>	0-009	0-015	0.024	0-0178	0-012	0-016	0-020	0-014	0-008	0-008	0-0189	0.022	0.027
Death at the upstream end, $G(m)$	0-015	0.029	0.028	0.026	9.114	0.108	0.135	0.137	0-11-0	0-102	0-131	0-087	0.087
Manning's roughness										,	,		
coefficient, n_m ($m^{-1/3}$ s)	0-017	0-035	0.026	0.029	0-070	0.100	0-136	0.191	0·132	0.080	0.182	0-220	0.190
Chezy's roughness coefficient, C,													
$(m^{-1/2} s^{-1})^n$	29-32	15.78	21-23	18-74	96.6	6.89	5.27	3.76	5.30	8.55	3.92	3-03	3.51
Border bed slope, S _o Kinematic friction,	0.0010	0-0010	0-0011	0.0010	0-0002	0.0002	0.0004	0-004	0-0006	0.0008	100.0	0.005	0-005
$(m^{1/3} \min^{-1})$	111.6	52.4	76.5	65-4	11-2	8.5	8.6	1.9	11.5	20.5	10-3	19-2	22-2
Border length, $L(m)$	91-46	91-46	91-46	91-46	121-95	182.93	213-41	167.68	213-41	213-41	182-93	213-41	213-41
Length of one reach (<i>m</i>) Duration of irrigation	9-15	9.15	9.15	9.15	15.24	15-24	15-24	15-24	15-24	15-24	15-24	30-49	30-49
(min)	181-4	179-9	0-6/1	179-3	30-0	82.0	55.0	110.0	48·0	43-0	51.0	65-0	105-0
Number of stations	Ξ	Π	11	11	6	13	15	12	15	15	13	×	8
						1							

R. S. RAM; V. P. SINGH

TABLE 2

Irrigation data sets for non-vegetated	borders with bund a	at the downstream	end ^{19,20}
--	---------------------	-------------------	----------------------

R-2	R-3	R-4	R-5	R-6	R- 7	R- 8	R-9
50 0.120	0.080	0.160	0.120	0.080	0.160	0.120	0.080
	0.005	0.005	0.007	0.004	0.004	0.001	0.007
0.005	0.002	0.002	0.002	0.004	0.004	0.003	0.000
0.574	0.500	0.605	0.588	0.615	0.690	0.690	0.527
5/ 0.5/4	0.390	0.003	0.200	0.013	0.030	0.030	0.527
0.023	0.015	0.035	0.033	0.037	0.050	0.039	0.031
0010	00.0						
59 0·066	0.048	0.077	0.092	0.100	0.080	0.071	0.073
5 <u>8</u> ·11	10.26	7.44	6.15	5.49	7.54	8.21	7.72
0.005	0.002	0.003	0.003	0.003	0.001	0.001	0.001
64.5	077	477	25.7	22.0	22.6	26.9	26.2
04.5	8/./	4/*/	100.0	100.0	100.0	100.0	100.0
100.0	100'0	100.0	100.0	100.0	1000		100 0
10.0	10.0	10-0	10-0	10.0	10.0	10.0	10.0
100	10 0	100	100			10 0	
82.0	88·0	70.0	70.0	74.5	35.0	38.0	40.5
							1
37.0	59.0	35.5	50.0	74.0	50.0	59.0	95.0
11	11	11	11	11	11	11	
	R-2 50 0.120 04 0.005 57 0.574 26 0.023 59 0.066 50 8.11 0.005 64.5 1000 10.0 82.0 37.0 11 11	R-2 $R-3$ 50 0.120 0.080 04 0.005 0.005 57 0.574 0.590 26 0.023 0.015 59 0.066 0.048 55 8.111 10.26 0.005 64.5 87.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1	R-2 R-3 R-4 50 0.120 0.080 0.160 04 0.005 0.005 0.005 57 0.574 0.590 0.605 56 0.023 0.015 0.035 59 0.066 0.048 0.077 55 8.11 10.26 7.44 0.005 0.003 64.5 87.7 47.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 82.0 88.0 70.0 35.5 11 11 11 11	R-2 R-3 R-4 R-5 50 0.120 0.080 0.160 0.120 04 0.005 0.005 0.005 0.005 57 0.574 0.590 0.605 0.588 26 0.023 0.015 0.035 0.033 59 0.066 0.048 0.077 0.092 55 8.11 10.26 7.44 6.15 505 8.11 10.26 7.44 6.15 505 8.615 10.05 7.44 6.15 10.00 10.00 10.00 10.00 10.00 10.0 10.0 10.0 10.0 10.0 82.0 88.0 70.0 70.0 50.0 37.0 59.0 35.5 50.0 11	$R-2$ $R-3$ $R-4$ $R-5$ $R-6$ 50 0.120 0.080 0.160 0.120 0.080 04 0.005 0.005 0.005 0.005 0.005 07 0.574 0.590 0.605 0.588 0.615 06 0.023 0.015 0.035 0.033 0.037 059 0.066 0.048 0.077 0.092 0.100 055 $\frac{8\cdot11}{0.005}$ 10.26 7.44 $6\cdot15$ 5.49 050 10.00 10.00 10.00 10.00 10.00 10.0 10.00 10.00 10.00 10.00 10.00 10.0 10.0 10.0 10.0 10.0 10.0 82.0 88.0 70.0 74.5 50.0 74.0	$R-2$ $R-3$ $R-4$ $R-5$ $R-6$ $R-7$ 50 0.120 0.080 0.160 0.120 0.080 0.160 04 0.005 0.005 0.005 0.005 0.004 0.004 57 0.574 0.590 0.605 0.588 0.615 0.690 26 0.023 0.015 0.035 0.033 0.037 0.050 59 0.066 0.048 0.077 0.092 0.100 0.080 50 $\frac{8\cdot11}{0.005}$ 10.26 7.44 6.15 5.49 7.54 0.005 0.005 0.003 0.003 0.003 0.001 50 10.26 7.44 6.15 5.49 7.54 0.005 10.05 10.00 10.00 10.00 10.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11 11 11 11 11 11	$R-2$ $R-3$ $R-4$ $R-5$ $R-6$ $R-7$ $R-8$ 50 0.120 0.080 0.160 0.120 0.080 0.160 0.120 04 0.005 0.005 0.005 0.005 0.004 0.004 0.003 57 0.574 0.590 0.605 0.588 0.615 0.690 0.690 26 0.023 0.015 0.035 0.033 0.037 0.050 0.039 59 0.066 0.048 0.077 0.092 0.100 0.080 0.071 50 $\frac{8\cdot11}{0.005}$ 10.26 7.44 $6\cdot15$ 5.49 7.54 8.21 0.005 0.005 0.003 0.003 0.003 0.001 0.001 $\frac{64\cdot5}{100\cdot0}$ 87.7 47.7 35.7 32.9 23.6 $26\cdot8$ 10.0 11 11 11 11 11 11 11

2.3. Parameter estimation

The KW model, expressed by Eqns 1–3, contains two unknown infiltration parameters K and a of the Kostyakov equation and two unknown KW parameters n and β . The values of these parameters for each data set are given in Tables 1–3. The infiltration parameters were estimated by using a volume balance method. The KW parameters were estimated by representing Eqn 2 by Manning's equation. This yields n = 5/3 and β as expressed by

$$\beta = S_f^{0.5} / n_m \qquad \dots (14)$$

where S_f is slope of the energy line or friction slope.

3. Validation of the KW model

Criteria for assessing accuracy of the KW model can be derived from dimensionless forms of St Venant equations of shallow flow over a border as proposed by Katopodes and Strelkoff.¹⁰ They, following the work of Woolhiser and Liggett,⁹ derived the following parameters:

$$P_1 = K_1 F_0^2 \qquad ...(15)$$

$$P_2 = K_2 F_o^2 \qquad \dots (16)$$

R. S. RAM; V. P. SINGH

TABLE 3

Irrigation data sets for vegetated (wheat crop) borders with bund at the downstream end 19,20

Parameters	R-10	R-11	R-12	R-13	R-14	R-15	R-16	R-1 7	R-18
Inflow rate, q_o	0.160	0.120	0.080	0.160	0.120	0.080	0.160	0.120	0.080
Infiltration									
constant, K			0.005	0.004	0.004	0.007	0.004	0.000	0.005
(m min ")	0.004	0.004	0.005	0.004	0.004	0.006	0.004	0.003	0.002
Infiltration				0 / 7 /			0.440	0.700	0.505
exponent, a	0.620	0.630	0.533	0.674	0.600	0.533	0.640	0.690	0.282
Depth at the									
upstream end, $G(m)$	0.038	0.035	0.030	0.045	0.043	0.040	0.072	0.053	0.044
Manning's roughness									
coefficient, n_m									
$(m^{-1/3} s)$	0.114	0.132	0.154	0.117	0.145	0.189	0.146	0.116	0.130
Chezy's roughness									
coefficient, C_h									
$(m^{-1/2}s^{-1})$	5.07	4 ·32	0.363	5.10	4 ·10	3.10	4.41	5.26	4.57
Border bed slope, S_o	0.005	0.002	0.005	0.003	0.003	0.003	0.001	0.001	0.001
Kinematic friction,									
$(m^{-1/3} min^{-1})$	37.1	32.0	27.6	28.1	22.7	17.5	13.0	16-3	14.6
Border length, $L(m)$	100.0	100-0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Length of one									
reach (m)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Length from the									
upstream end where									
impounding starts	70.0	71.5	76.0	57.5	60.0	65.0	10.0	15.5	35.0
Duration of irrigation									
(min)	41.0	51.0	75.0	50.0	60.0	96.0	60.0	77.0	105.0
Number of stations	11	11	11	11	11	11	11	11	11

in which

$$F_{o}^{2} = \frac{V_{o}^{2}}{gG} \qquad \dots (17)$$

$$K_1 = \frac{S_o X_o}{G F_o^2} \qquad \dots (18)$$

$$K_2 = \frac{aK^*}{2} \qquad \dots (19)$$

$$K^* = \frac{KT_o^2}{G} \qquad \dots (20)$$

Here F_o is Froude number, g is acceleration due to gravity, K^* is dimensionless infiltration constant, K_1 is kinematic flow number, K_2 is dimensionless number corresponding to the momentum term associated with infiltration, P_1 is modified kinematic flow number, and P_2 is modified dimensionless number corresponding to the momentum term associated with infiltration.

I	À	B	L	E	4	
---	---	---	---	---	---	--

Dimensionless parameters in Eqns 15-20

Data set Roth-8 Roth-9 Roth-10 Roth-11 K-1 K-2 K-3 K-4 K-5 K-6 K-7 K-8 K-9 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8 R-9 R-10 R-11 R-12 R-13 R-14 R-15			Dimensic	nless paramete	ers		
	а	F _o	<i>K</i> ₁	<i>P</i> ₁	K*	<i>K</i> ₂	P ₂
Roth-8	0.44	0.30	15.79	1.38	1.00	0.22	0.019
Roth-9	0.34	0.16	45.53	1.16	1.00	0.17	0.004
Roth-10	0.11	0.23	21.46	1.08	1.00	0.06	0.003
Roth-11	0.25	0.19	27.01	0.96	1.00	0.13	0.005
K-1	0.24	0.04	29920-00	51-35	1.00	0.12	0.000
K-2	0.26	0.03	6214.50	6.03	1.00	0.13	0.000
K-3	0.16	0.03	97438·00	1061-10	1.00	0.08	0.000
K-4	0.31	0.02	14963.00	8.18	1.00	0.15	0.000
K-5	0.43	0.04	4258·00	7.80	1.00	0.21	0.000
K-6	0.33	0.08	10927.00	60.70	1.00	0.11	0.001
K-7	0.22	0.04	79567.50	120.50	1.00	0.11	0.000
K-8	0.16	0.07	254974.00	1179.00	1.00	0.08	0.000
K-9	0.28	0.08	2637.00	16.36	1.00	0.14	0.000
R-1	0.57	0.21	77 1·90	33.70	1.00	0.28	0.012
R-2	0.57	0.18	530.80	19.40	1.00	0.28	0.009
R-3	0.59	0.23	245.50	13-18	1.00	0.29	0.016
R-4	0-61	0.13	620.30	10.49	1.00	0.30	0.005
R-5	0.59	0.11	802.50	9.28	1.00	0.29	0.003
R-6	0.62	0.10	942.30	8.68	1.00	0.30	0.003
R- 7	0.69	0.08	425.90	2.47	1.00	0.35	0.002
R-8	0.69	0.08	411.30	2.83	1.00	0.35	0.002
R-9	0.53	0.08	281.41	1.71	1.00	0.26	0.002
R-10	0.62	0.11	1367-10	17.92	1.00	0.31	0.004
R-11	0.63	0.10	1904.00	18.10	1.00	0.32	0.003
R-12	0.53	0.08	1711.77	11.48	1.00	0.27	0.002
R-13	0.67	0.09	1120.90	8.94	1.00	0.34	0.003
R-14	0.60	0.07	1947.20	9.98	1.00	0.30	0.002
R-15	0.53	0.05	1745.80	5.13	1.00	0.27	0.001
R-16	0.64	0.05	1348-30	2.67	1.00	0.32	0.001
R-1 7	0.69	0.05	815·90	2.30	1.00	0.35	0.001
R-18	0.59	0.05	921-90	1.96	1.00	0.29	0.001

In border irrigation the Froude number is usually very small.¹⁰ The acceleration terms in the momentum equation can therefore be neglected and the zero-inertia approximation thereof is sufficiently accurate. If X_o is large then the zero-inertia approximation reduces to the kinematic wave approximation. Morris and Woolhiser²¹ found that the KW approximation was sufficiently accurate for $P_1 \ge 5$ where X_o was considered as the length of the overland flow plane. Katopodes and Strelkoff¹⁰ suggested $P_1 x^* \ge 100$ for the KW model to be accurate for border irrigation.

To evaluate the accuracy of the KW model employed here, P_1 and P_2 were computed for each of 31 data sets. Their values along with those of other relevant parameters are given in Table 4. The two parameters K_2 and P_2 which are associated with the infiltration term in the momentum equation are very small ($0.06 \le K_2 \le 0.345$, $0.000 \le P_2 \le 0.019$). Therefore, their effect on the flow phenomenon is negligible. The values of the Froude number F_o are small ($0.023 \le F_o \le 0.296$), $P_1 \ge 5$ and $K_1 > 100$ for a majority of the data sets. However, there are some data sets where the criteria for accuracy of the KW approximation^{9.21} are not satisfied. It is not clear if the model would be acceptable on these borders from a design standpoint.

Fig. 1. Dimensionless advance and recession curves for a constant value of a=0.2 in the Kostyakov equation and various durations of irrigation. The advance is computed by the KWT method and the recession by the sequential method

Fig. 2. Dimensionless advance and recession curves for a constant duration of irrigation $t^* = 11.5$ and various values of a in the Kosryakov equation. The advance is computed by the KWT method and the recession by the sequential method

TABLE 5

			Dimensic	onless time	
Data	Dimensionless	Au	lvance	Re	cession
sei	aisiance	From Fig. 2	Observed	From Fig. 2	Observed
Roth-8	3.04	7.75	7.75	63.7	60.5
Roth-9	2.75	6.37	6.34	33.5	32.7
Roth-11	3.70	8.75	9.00	48.8	49 ·7
K-5	0.15	0.21	0.17		
K-9	0.74	1.20	0.95	—	—
R-1	0.58	1.04	1.06	1.82	1.39
R-2	1.12	2.25	2.50	4·30	3.21
R-3	2.30	5.37	6.60	10.90	12.30
R-4	0.57	0.85	0.77	2.32	2.08
R-5	0.69	1.20	1.04	2.80	2.52
R- 6	0.90	1.60	1.55	4.30	3.62
R- 7	0.24	0.30	0.23	1.79	1.79
R-8	0.36	0.48	0.46	2.30	2.26
R-9	0.75	1.30	1.38	6.30	5.64
R-10	0.51	0.75	0.71	2.26	1.89
R-11	0.55	0.82	0.78	2.37	1.92
R-12	1.01	1.90	1.68	5.00	3.72
R-13	0.37	0.20	0.45	2.32	1.86
R-14	0.42	0.56	0.51	1.66	1.72
R-15	0.89	1.55	1.35	4.80	3.81
R-18	0.35	0.50	0.40	2.70	2.74

Advance and recession times from dimensionless curves

4. Dimensionless advance and recession

For a fixed value of n (n=5/3 for Manning's equation and n=3/2 for Chezy's equation) the only unknown parameter appearing explicitly in Eqns 11 and 12 is a if we seek the solution for advance. However, if the solutions are extended to calculate recession, the duration of irrigation will also enter as another parameter in solutions for the complete irrigation cycle.

Fig. 1 shows a plot between dimensionless distance x^* and time t^* for various durations of irrigation T_1^* for a specified value of a=0.2. We get only one advance curve but a number of recession curves corresponding to different values of T_1^* . All the recession curves are approximately parallel and can therefore be transferred to a single recession curve for a specified parameter a. By keeping $T_1^*=11.5$, the dimensionless advance and recession curves were derived by varying a from 0.2 to 0.8 as shown in Fig. 2. For any other T_1^* the recession curve can be shifted parallel to the recession curve of Fig. 2 corresponding to the given parameter a. To test the accuracy of these dimensionless curves, the values of t^* at some x^* for different data sets were read from Fig. 2 and are given along with observed t^* in Table 5. The values of t^* read from the figure and those observed for the same values of x^* agree quite closely. This shows that these dimensionless curves are sufficiently accurate. However, their validity still remains to be tested for all possible applicable ranges of input data.

5. Application to border irrigation design

To design an irrigation border the variables assumed to be known are: (1) depth of water to be applied in the root zone; (2) soil infiltration characteristics; (3) border bed roughness, and (4) the

initial and boundary conditions. The unknown variables are: (1) inflow rate; (2) duration of irrigation; (3) length of the border, and (4) infiltrated depth of water. The inflow rate, duration of irrigation and length of the border are adjusted to match the advance and recession curves. This affects the infiltrated depth of water and the depth of water stored in the root zone and in turn the irrigation efficiencies corresponding to the specified depth of water application.

The procedure for design of border irrigation is as follows.

(1) Depth of water to be applied in the root zone can be calculated by using the following relationship:

$$d_n = \frac{P_w A_s D_r}{100} \qquad \dots (21)$$

where d_n is depth of water needed in the root zone. A_s bulk density of soil, P_w soil moisture deficit in percent and D_s depth of root zone.

(2) We assume that inflow rate q_o is known.

(3) We determine advance and recession curves as described previously.

(4) Although there are various ways of expressing irrigation efficiencies, 2^{2-32} we compute them by using the following most commonly used equations: 2^{2}

Application efficiency,
$$E_a = 100 \frac{d_s}{d_a}$$
 ...(22)

Distribution efficiency,
$$E_d = 100 \left(1 - \frac{d_d}{d_s}\right)$$
 ...(23)

Storage efficiency,
$$E_s = 100 \frac{d_s}{d_n}$$
 ...(24)

where d_s is average depth of water stored in root zone, d_a is depth of water applied, and d_d is average absolute numerical deviation of stored depth from d_s along the border. The depth of water infiltrated along the border length and stored in the root zone can be calculated from Eqn 4. The opportunity time is obtained from advance and recession curves determined in step (3).

(5) If the computed efficiencies are at least equal to the efficiencies desired, the design is completed and the length of the border and the duration of irrigation as assumed in step (3) are sufficient. However, if the efficiencies are less than desired, we change duration of irrigation and repeat steps (3)-(5).

(6) We continue steps (3)-(5) until the desired irrigation efficiencies are achieved. If efficiencies are less than desired, we change the border length and continue steps (3)-(6); otherwise the design is completed.

6. Validation of design procedure

Irrigation efficiencies were used to validate the design procedure. These efficiencies are measures of the effective utilization of the water applied to the border. The observed and computed irrigation efficiencies for all the data sets in Tables 1–3 are given in Tables 6–7. For the data sets K-1–K-9 there are no observed efficiencies. For the data sets Roth-8–Roth-11, the observed and computed distribution efficiencies compare with a difference of less than 8%. The observed and computed application efficiencies compare equally well with a difference of less than 9%. Likewise, the observed and computed storage efficiencies differ by about 11%. For the data sets R-1–R-18, the difference between observed and computed results ranges up to about

TABLE 6

			Effici	iencies		
Data set		Observed			Calculated kinematic mod	el
	E _e	E _d	E _s	Ea	E _d	Es
Roth-8	40.01	91.67	83.57	44.09	99.05	92.08
Roth-9	28.24	91.67	80.44	31.12	99.57	88.64
Roth-10	10.12	91.57	39.85	11.18	99.50	43.99
Roth-11	21.15	91.67	60.42	23.54	99.71	66.66
K-1			_	45.12	95.28	33.43
K-2	_	_	_	63.05	96.87	58.33
K-3		_	_	57.01	96.71	45.06
K-4		_	_	47.68	96.43	69 .77
K-5			_	76.01	96.02	55.30
K-6		_	_	39.96	95.04	36.82
K-7		_		56.10	96.32	54.09
K-8				47.98	97.44	48.08
K-9		_		53.59	100.00	100.00

Irrigation efficiencies on the basis of calculated and observed advance and recession times (min) for a total depth of application of 0.1 m for freely draining borders

TABLE 7

Irrigation efficiencies on the basis of calculated and observed advance and recession times (min) for a total depth of application of 0.1 m for closed end borders

			Effici	encies		
Data set		Observed		,	Calculated kinematic mode	21
	E _a	E _d	E _s	E _a	E _d	E _s
R-1	87.99	54.33	31.72	69.47	94.92	25.04
R-2	97.02	64.29	43.08	79.36	90.02	35.24
R-3	95.50	86.67	44.96	100.00	90.12	47.46
R-4	94.66	65.46	53.84	74.67	90.41	42.47
R-5	91.71	69.45	55.02	77.24	90.88	46.34
R -6	85.03	86-13	50.21	83.44	89.98	47.27
R- 7	92.14	85.50	73.81	77.93	92.38	62.43
R- 8	85-13	89-81	60-27	79.05	91.24	55.97
R-9	89-91	91.67	68-16	86.15	90.26	65.31
R-10	81.32	71.86	53.41	70.08	92.63	46.03
R-11	78.27	76.88	47.90	72.59	92.45	44.43
R-12	83.10	88.72	49.73	84.79	90.52	50.75
R-13	70.42	91.67	56-41	71.70	93.63	57.43
R-14	77.34	81.01	55.68	68.64	92.73	49.42
R-15	86.54	90.99	66.30	86.59	90.00	66.34
R-16	84.28	85.80	81.01	65.93	94.20	63·38
R-17	83.03	91.41	76.72	75.92	91.83	70.15
R-18	83.80	91.67	70.21	82.38	91.24	69.03

R. S. RAM; V. P. SINGH

25% for application efficiency, up to about 80% for distribution efficiency and up to about 15% for storage efficiency. It is not surprising that the KW model does not predict distribution efficiency as accurately as application and storage efficiencies, for the depth, as a function of time, over the border is not modelled accurately.⁶ This is partly because the depth of flow involved is quite small. This comparison suggests that the design procedure based on the KW model is reasonably accurate for purposes of border irrigation design if application and storage efficiencies are the governing considerations. This would not be true if the distribution efficiency is the controlling factor.

7. An example of border irrigation design

Let us assume that the infiltration characteristics of the soil, bed roughness and slope, inflow rate and the depth of water needed in the root zone are known. We want to determine the length of the border and duration of irrigation to obtain application, distribution and storage efficiencies above 90% for freely draining borders. We determine the border length and duration of irrigation as follows.

TABLE 8

Irrigation efficiencies by kinematic wave model for the data set Roth-9 for various lengths of border and durations of irrigation. Depth of water needed in root zone = 8 cm

				Duratio	on of irrigal	tion, min			
Length of		100			120			140	<u> </u>
border, m				Effici	encies perc	entage			
	E _a	E _d	Es	E _a	E _d	Es	Ea	E _d	E _s
80 100 120 140 160 180 200	40·71 50·21 60·25 70·29 80·33 90·37 100·00	98.13 98.95 98.95 98.95 98.95 98.95 98.95 98.95	92.12 90.90 90.90 90.90 90.90 90.90 90.90 90.90	35.82 44.52 53.42 62.32 71.23 80.13 89.03	99.11 99.21 99.21 99.21 99.21 99.21 99.21	97·27 96·71 96·71 96·71 96·71 96·71 96·71	31.56 39.45 37.34 55.24 63.13 71.02 78.91	100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00
		1		Duratio	n of irrigat	ion, min		I	
		160		180				200	
				Effici	encies perce	entage			
	E _a	E _d	E _s	E _a	E _d	Es	E _a	E _d	Es
80 100 120 140 160 180 200	27.62 34.52 41.43 48.33 55.24 62.14 69.04	100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00	24.55 30.69 36.82 42.96 49.10 55.24 61.37	100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00	22.09 27.62 33.14 38.66 44.19 49.71 55.24	100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00

For purposes of illustration, we use the data set Roth-9 and calculate irrigation efficiencies following the procedure outlined for the KW model. The efficiencies for 8 cm of depth of water application are given in Table 8. We see that a border length of 200 m and duration of irrigation of 100 min gives irrigation efficiencies above 90% ($E_a = 100.0$, $E_d = 98.95$, $E_s = 90.90$), if the KW model is used. For any other sets of efficiencies, the border length and duration of irrigation can be chosen from Table 8.

8. Conclusions

(1) The KW model is sufficiently accurate for modelling border irrigation for a majority of the data sets used in this study.

(2) One-parameter family of curves for advance as well as for recession can be generated for ready use in irrigation design. A sample of such curves has been presented in this study.

(3) The application and storage efficiencies computed by the model agree reasonably well with those observed on experimental borders. However, this is not the case with distribution efficiency.

(4) The design procedure, based on the KW model, can be reasonably accurate if application and storage efficiencies are the governing considerations.

Acknowledgements

This study was supported in part by funds provided by National Science Foundation under the project, Free Boundary Problems in Water Resource Engineering, ENG79–23345.

REFERENCES

- ¹ Ram, R. S. Mathematical modeling of surface irrigation. Unublished Ph.D. dissertation, Mississippi State University, 1982
- ² Bassett, D. L.: Fangmeier, D. D.; Strelkoff, T. Hydraulics of surface irrigation. In *Design and Operation of Farm Irrigation Systems* (M. E. Jensen, Ed.), 447–498. St Joseph, Michigan: American Society of Agricultural Engineers
- ³ Sherman, B.; Singh, V. P. A kinematic model for surface irrigation. Water Resources Res., 1978 14 (2) 357–364
- ⁴ Sherman, B.; Singh, V. P. A kinematic model for surface irrigation: an extension. Water Resources Res., 1982 18(3) 659–667
- ⁵ Singh, V. P.; Sherman, B. A kinematic study of surface irrigation: mathematical solutions. Tech. Report WRR4, Water Resources Program, Department of Civil Engineering, Louisiana State University, 1983
- ⁶ Singh, V. P.; Ram, R. S. A kinematic model for surface irrigation: verification by experimental data. Water Resources Res., 1983 19 (6) 1599–1612
- Smith, R. E. Border irrigation advance and ephemeral flood waves. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1972 98 (IR2) 289–307
- ⁸ Chen, B. J.; McCann, R. C; Singh, V. P. Numerical solutions to the kinematic model of surface irrigation. Tech. Rep. MSSU-EIRS-CE-81-1, Engineering and Industrial Research Station, Mississippi State University, 1981
- ⁹ Woolhiser, D. A.; Liggett, J. A. Unsteady, one-dimensional flow over a plane—the rising hydrograph. Water Resources Res., 1967 3 (3) 753-771
- ¹⁰ Katopodes, N. D.; Strelkoff, I. Dimensionless solutions of border irrigation advance. J. Irrig. Drain. Div. Proc. Am. Soc. Civil Engrs 1977 103 (IR4) 401–417
- ¹¹ Chen, C. L. Surface irrigation using kinematic-wave method. J. Irrig. Drain. Div., Proc. Am. Soc. Civil Engrs, 1970 96 (IR1) 39–48
- ¹² Woolhiser, D. A. Discussion of "surface irrigation using kinematic-wave method by C. L. Chen". J. Irrig. Drain. Div., Proc. Am. Soc. Civil Engrs, 1970 96 (IR4) 498–500
- ¹³ Cunge, J. A.; Woolhiser, D. A. Irrigation systems. In Unsteady Flow in Open Channels (K. Mahmood and V. Yevjevieh, Eds). Fort Collins, Colorado: Water Resources Publications, 1975 522–537

- ¹⁴ Ram, R. S.; Singh, V. P.; Prasad, S. N. Mathematical modeling of border irrigation. Water Resources Rep. No. 5, Department of Civil Engineering, Louisiana State University, 1983
- ¹⁵ Kostyskov, A. N. On the dynamics of the coefficient of water percolation in soils and of the necessity of studying it from a dynamic point of view for purposes of amelioration. *Trans. Sixth Comm. Int. Soc. Soil Sci* 1932, 17–21 (in Russian)
- ¹⁶ Roth, R. L. Roughness during border irrigation. Unpublished M.S. thesis, University of Arizona, 1971
- 17 Roth, R. L.: Fonken, D. W.; Fangmeier, D. D.; Atchison, K. T. Data for border irrigation models. Trans. Am. Soc. Agric. Engrs, 1974 8 157–161.
- ¹⁸ Kincaid, D. F. Hydrodynamics of border irrigation. Unpublished Ph.D. dissertation, Colorado State University, 1970
- ¹⁹ Ram, R. S. *Hydraulics of recession flow in border irrigation system*. Unpublished M.S. thesis, Indian Institute of Technology, Kharagpur, India, 1969
- ²⁰ Ram, R.S. Comparison of infiltration measurement techniques. J. Agric. Engng, 1972 9 (2) 67-75
- ²¹ Morris, E. M.; Woolhiser, D. A. Unsteady, one-dimensional flow over a plane: partial equilibrium and recession hydrographs. Water Resources Res., 1980 16 (2) 355–360
- ²² Hansen, V. E. New concepts in irrigation efficiency. Trans. Am. Soc. Agric. Engrs, 1960 **3**(1) 55–67. 61–64
- ²³ Keller, J. Effect of irrigation method on water conservation. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1965 84 (IR3) 61071
- ²⁴ Smerdon, E. T.; Glass, L. J. Surface irrigation water distribution efficiency related to soil infiltration. Trans. Am. Soc. Agric. Engrs, 1965 83 (1) 76–78, 82
- ²⁵ Erie, L. Management: a key to irrigation efficiency. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1968 94 (IR3) 285–293
- ²⁶ Jensen, M. E. Evaluating irrigation efficiency. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1967 93 (IR1) 83–98
- ²⁷ Willardson, L. S.; Bishop, A. A. Analysis of surface irrigation application efficiency. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1967 93 (2) 21–35
- ²⁸ Fok, Y. S.; Bishop, A. A. Expressing irrigation efficiency in terms of application time, intake and water advance constants. Trans. Am. Soc. Agric. Engrs, 1969 12 (4) 438–442
- ²⁹ Salazar, L. J. Spatial distribution of applied water in surface irrigation. Unpublished M.S. thesis, Colorado State University, 1977
- ³⁰ Karmeli, D. Distribution patterns and losses for furrow irrigation. J. Irrig. Drain. Divn. Proc. Am. Soc. Civil Engrs, 1978 104 (IR1) 59-68
- ³¹ **On-Farm Irrigation Committee.** Describing irrigation efficiency and uniformity. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1978 **104** (1) 35–40
- ³² Norum, D. I.; Peri, G.; Hart, W. E. Application of system optimal depth concept. J. Irrig. Drain. Divn, Proc. Am. Soc. Civil Engrs, 1979 105 (IR4) 357–365