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Aeroderivative, Industrial, and Light Aeroderivative Engines
Industrial Gas Turbines
A Comparison

» Better response to load changes (less GG mass)

« Condition maintenance may be easier due to more
The purpose of this Tutorial is to compare inspection ports.

Industrial, aeroderivative, and light

. . . S  Higher firing temperatures
industrial gas turbine characteristics and 9 gtemp

thelr app"cathnS It Wl” aISO prOVIde some . H|gher efficency’ better fuel Consumption
example economic comparisons for
different applications and constraints * Higher NOX and CO
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Aeroderivative Engines Aeroderivative Engines
*Based of aircraft flight engine Gas Turbine KW Fressirs, furbing Sistor

Second Stage Nozzle

Lightweight, fabricated casing

First Stage Nozzle \ . )

Bullet Nose
Bellmouth
Fro

- &
/ Turbine Mid-Frame Rear Frame
High Pressure Turbine Rotor

Low Pressure Turbine Rotor

*Modular construction

*Rolling element bearings

Combustor
*Two separate oil systems, gas turbine and driven equipment C.,mp,e,,,,,m,\v
Compressor Stator
*Synthetic oil required because of higher bearing temperatures wsem
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Industrial Engines “Lightweight” Industrial

* Robust design
+ Cast main casings
+ Common lube oil system

* Mineral oil suitable

* Hydrodynamic bearings

Lower firing temperatures

Slide 5. Slide 9.
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Industrial Engines Lightweight” Industrial
» Lower in emissions than other engines + Fabricated Main Casings
« Lower firing temperatures
» Lower efficiency, 32-25% simple cycle + Hydrodynamic bearings

* Mineral lube oll

* Common lube oil system

Slide 6. Slide 10.

Application Considerations

« Original capital cost

» Sparing philosophy

* Maintenance turn-around time
* Maintenance access

+ Field service availability

» Costof fuel gas

* Weight of package

» Emissions requirements

Slide 11.

| ol Typical Package Layout

* Moderate Compression Ratio
Driven * Moderate Firing Temperature
Equipment (...New generation GTs
approaching Aeros’)
* 30MWGT Typical Efficiency
36% for Recent Models
* Simpler, Heavier, Cheaper
* Less Maintenance

Aeroderivative
Bomb * Gas Generator and Power
FuslGes im: Y 1 Exhaust Turbine in Separate Modules
* Always double shaft (or more)
Driven * High Compression Ratio

Equipment * Higher Firing Temperature

* 30MW GT Typical Efficiency
39%

* High Tech., Lighter, Expensive

* Higher Maintenance

e -

Gas Generator Power Turbine
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An auxiliary Section contains
the main unitauxiliaries:
* Lubrication System
 Starting System
(Expansion Turbine/
Diesel Engine / Electric
Motor)
* Hydraulic System

Slide 13. Slide 17.

Application Considerations Application ansiderations

Platform

Slide 14. Slide 18.

Application Considerations Case Studies

+ Capital Cost

+ Installed cost

+ Fuel cost

+ Heat rate

+ CO and NOX penalties or credits

« Offdesign performance (if required)

+ Design points/alternate operating conditions
+ Replacement/repair costs

Slide 15. Slide 19.

Case Studies

EVALUATION PROCEDURE FOR REINJECTION COMPRESSOR PACKAGE

Tenderer: Date:

ible Person: L

Calculation 3 - Reinjection Lifecycle Costs :
Calculation of OPEX vs Production Profile : Years 1 though 19.
[ [ [ |
[ [ [ |

Annual figures are based on 97% plant uptime
[

|
Monthly Support Contract Cost

I
[
T
|
| SUS
Fired Hour Charge I $150|$US/equiv hr
Data to be entered from evaluation - CAPEX calculation
[ *MEUS
Reference data
on

NOx Polluter Pays Cost
CO2 Polluter Pays Cost
Fuel Gas Cost/MBTU

I
|
Power |
Fired Hours per Year

Data to be entered from tender
|
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Case Studies Case Studies
DATA \n:::gy::' ANNUAL PERFORMANCE TOTALS OPEX COSTS LIFECYCLE COST
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