Reliability Improvement for Reciprocating Compressor Valve in CCR Reformer (Case study)

Lee Sang Suk (SK Innovation, Korea)

40th Turbomachinery Symposium

Contents of Table

- 1. Abstract
- 2. Problem faced
- 3. Root Cause Failure Analysis
- 4. Solution provided and its Result
- 5. Lesson Learned

Appendix

1. Abstract

Background

After revamp of reformer CCR process where all three compressors are running without stand-by, compressor valve life decreased drastically from 1 year to a few(2~3) months.

Troubleshooting

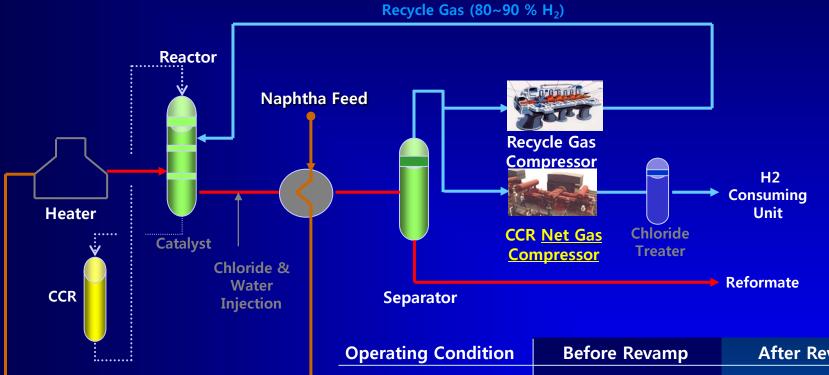
Whole entire factors were investigated from process condition change, piping layout, separating drum size and valve design. Very viscous and sticky heavy hydrocarbon called `Green Oil' was found at the valves & cylinder could cause valve late closing and consequential excessive impact stress during valve closing. Increased colder spill-back by-pass flow could cool down gas after separator drum made easy formation of heavy hydrocarbon condensate.

Moreover liquid condensate could exist as slug at low point of suction manifold piping directly connected to compressor suction. Valve dynamics and pulsation after revamp was acceptable but plate type valve seemed to be not good choice under service including sticky liquid showing bouncing at edge of plate during late closing.

1. Abstract

Solution implementation and Result

Low point drain of compressor suction manifold piping was added for liquid removal and spill-back flow was reduced by running compressors at partial load to reduce condensation by colder by-pass flow.


Valve type was changed to poppet type which is known as relatively better for very viscous and sticky liquid service. Detail study and investigation on suction separator showed nothing bad. After all improvement implementation valve life increased to over 1 year.

Lesson Learned

This is a case study for valve failure where entire relevant factors were investigated and any failure of each parameter or its combination can reduce valve life. Mechanical engineer should have relevant knowledge(from mechanical even more to process) and capability to organize the knowledge even process to find root cause.

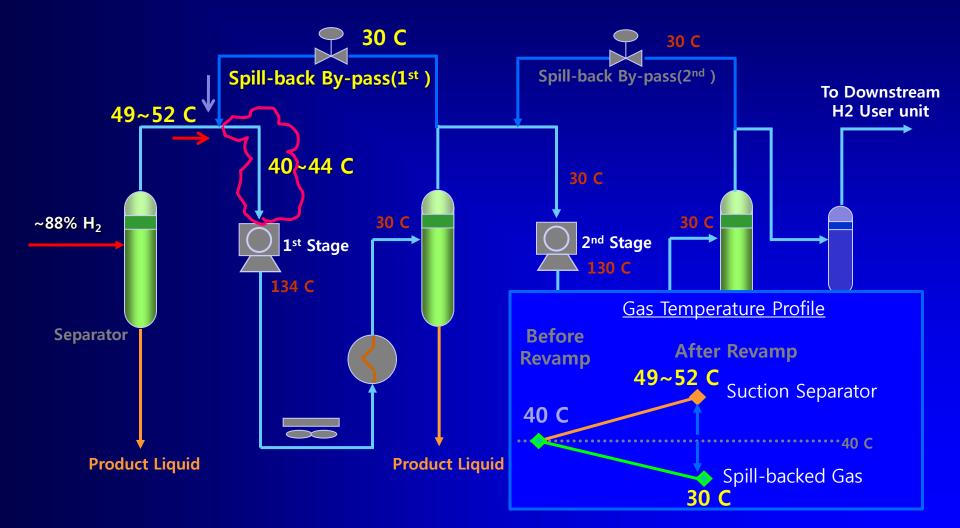
2. Problem faced

Reformer process was revamped where all three net gas compressor run and process condition are changed

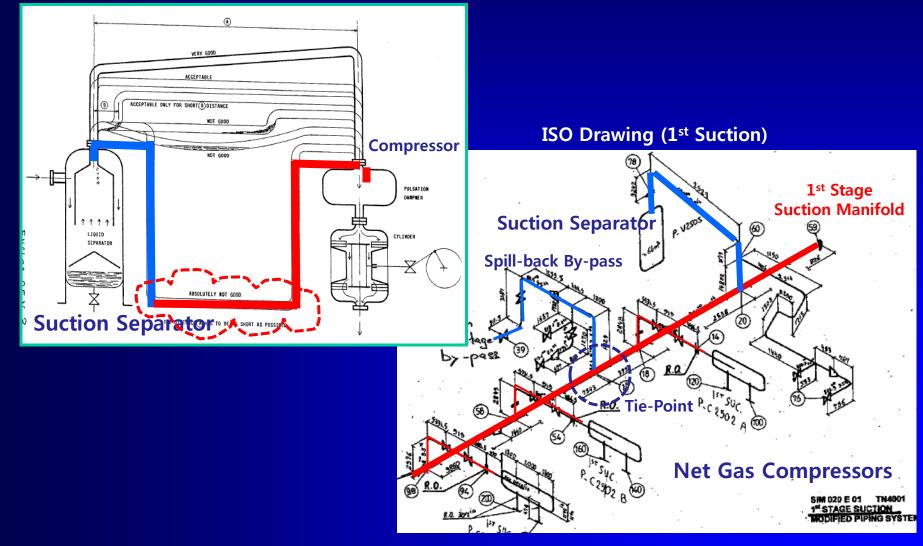
Operating Condition	Before Revamp	After Revamp
Mw (1 st / 2 nd)	11.8 / 9.7	< 11.6 / 8.5
Suction Temp. (1 st /2 nd)	40 / 38	49~52 / 38
Pressure Ratio (1 st /2 nd)	2.38 / 2.78	3.14 / 2.83
Net Gas Compressor at Operating	2 out of 3	3 run out of 3

2. Problem faced

1st stage discharge valve failed every 3 months after the revamp. Sticky hydrocarbon deposit on the valve and large amount liquid found in the cylinder

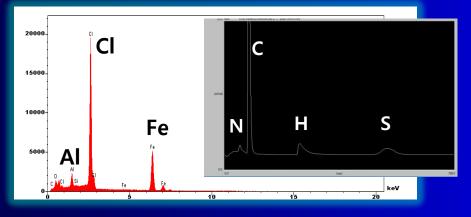


- Heavy Hydrocarbon Deposit
 Liquid phase at running
- ✓ PEEK Plate / Spring Failed
 - Typically edge of valve plate failed with its springs



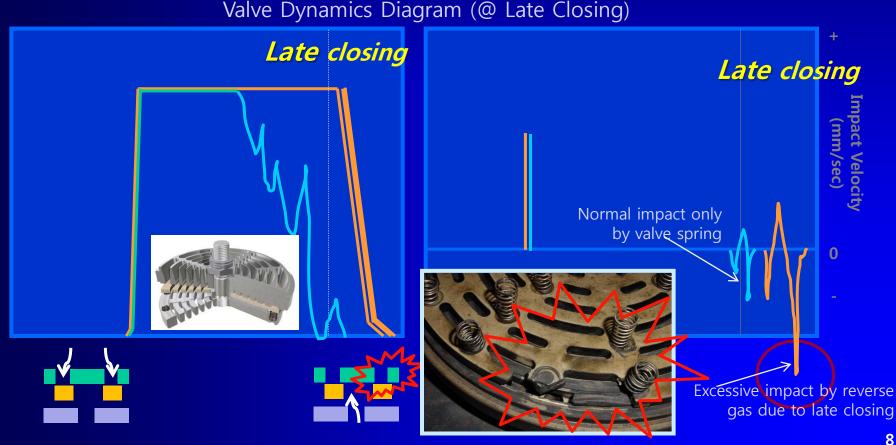
Cooled spill-backed gas seems to condense suction gas because of temperature difference after revamp

X Area where gas seemed to condense (Cloud Mark)


Condensed liquid will be collected at suction manifold piping and can be ingressed to compressor suction as liquid slug because of its layout

Liquid phase hydrocarbon is very viscous and sticky which is composed of inherent process reaction

EDX / EA Result (Deposit)

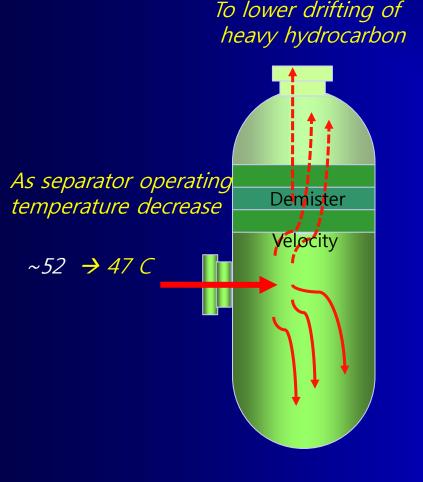

Component found

Cl, Fe, Al, N, Si, C, H N (0.9~3.7%)

<u>NH₄Cl</u>, FeCl₂, Al₂O₃

Valve late closing caused by sticky liquid(sticktion) seem to cause excessive valve impact consequently during valve closing by gas flow

Liquid slug could slam the valve and seemed cause excessive stress on the plate & spring



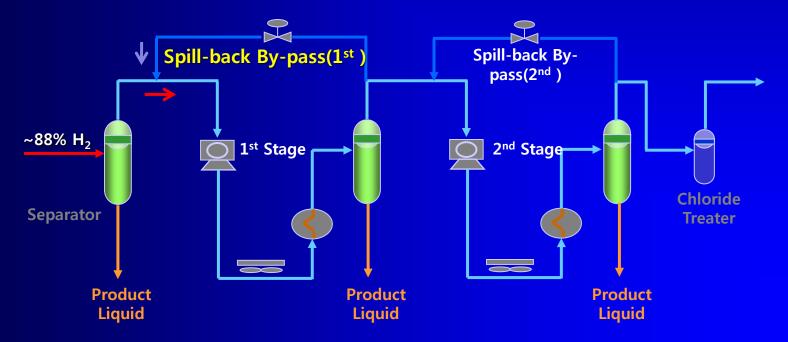
Valve Lift(m)

Solution to reduce formation of sticky liquid and to remove it effectively is provided (phased as I & II)

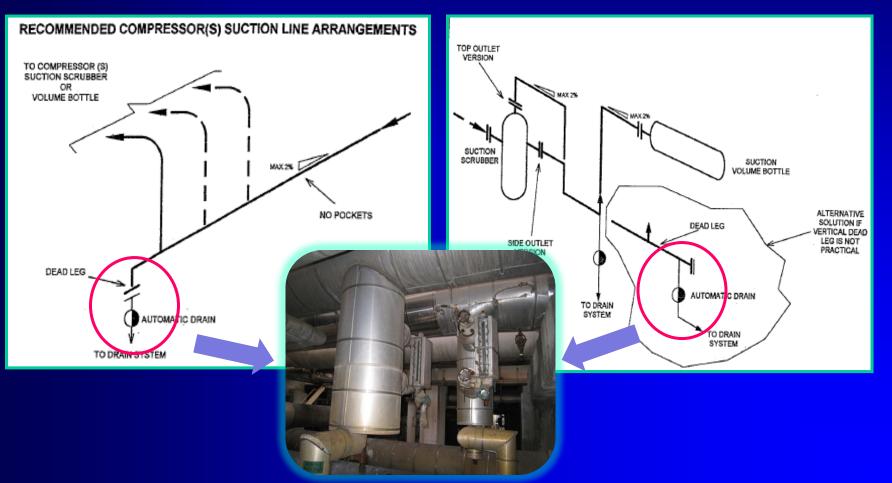
Possible Cause	Solution	Implementation Phase	
	① To decrease 1 st suction temp. to minimize carry-over of heavy hydrocarbon(49~52 → ~47 C)		
 Heavy H/C condensed because it is cooled down by spill-backed gas 	② To reduce spill-back flow by partial load operation (two compressor run at 75%)	Phase I	
	③ To add continuous drain trap at suction manifold piping and make slope of manifold		
	④ To Change spill-back tie point for preventing condensing	Phase II	

 To Decrease Suction gas temperature decreased as low as possible to expect minimize of heavy hydrocarbon carry-over

- To minimize drift of heavy hydrocarbon through separator demister as to lower operating temperature
- ✓ Separator drum size and state
 - : drum size is properly designed

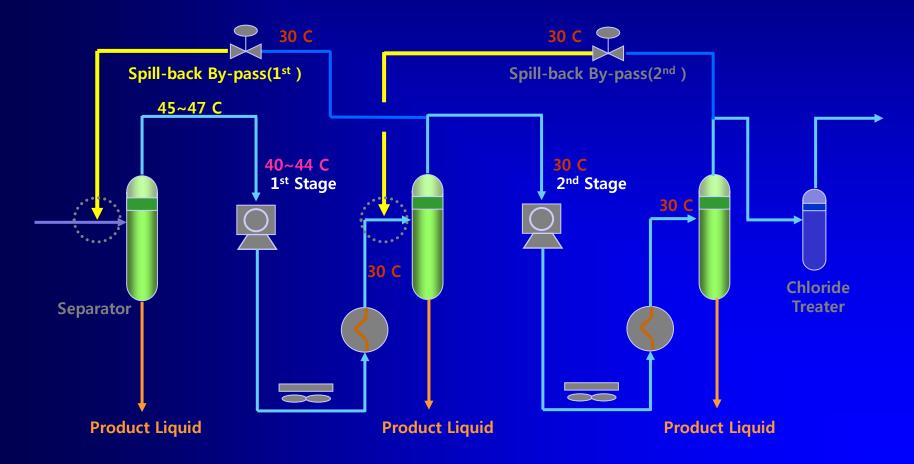

Stage	Actual Velocity	Allowable Velocity
1st	1.3	< 2.3
2nd	0.4	< 1.7

: Drum demister was investigated and found not damaged


 2 To reduce spill-back flow by partial load operation (two compressor run at 75%)

Stage	Before Improve	After Improve
Load	100 /100/100%(36,798 Nm ³ /Hr)	100 / 75/75%
LUUU	(29 % spill-backed)	(15 % spill-backed)

Reducing inlet flow condensing by reduced cold spill-back flow makes expected to give positive effect influence to compressor valve



③ Drain traps were added at end point of suction manifold to prevent accumulation of condensed liquid and let manifold piping sloped to ease collection to trap

 ④ To Change spill-back tie point for preventing condensing (Compressor inlet → Separator)

Due to high investment cost to modify piping layout and suction drum, it was decided to apply the option as phase II.

Solution to minimize late closing influence of valve is provided by changing valve type

Possible Cause	Solution	Implementation Phase
 Excessive valve impact stress by late closing at a presence of sticky hydrocarbon 	(5) To change valve type from plate to "poppet" valve to minimize sticktion	Phase I

Туре	Plate	Poppet	
Shape			
Remark	 Widely Used (Economical) Bounced at edge area at late closing by sticky liquid 	 Better at sticktion (from a inherent structure) Wear at edge of poppet Recently widely used and life proven for CCR 	

4. Solution Provided and its Result(Consolidated)

After application of the solution provided, valve life increased more than 1 year

Phase Improvement Idea		Implementation		ation	Result	
Phase	Improvement Idea		Yr2	Yr3 ~	(Valve Life)	
	1 Decrease suction temperature	0				
	③ Add continuous drain trap at suction manifold	0			(4) + (6):	
I	5 Change valve type to "poppet"	0			12 Months	
	 ② Reduce spill-back flow (by Partial Load operation) 		0		4+6+5+2:	
	Clean suction piping system during turnaround		0		>16 Months	
II	 ④ Change spill-back tie point for preventing condensing (Compressor inlet → Separator) 			Х	Due to high cost (As Phase II)	

- Valve life is a very complicated result caused not only by mechanical origin but also process(all system matter).
- Negative influence of process condition on compressor valve life is very important in this case
 Changed process condition made easy formation of sticky liquid and more influence to compressor valve
- ✓ In addition, process piping scheme can also short valve life by admitting liquid drain to compressor
- In case where process gas contain viscous and sticky liquid, good engineered "poppet" type valve also can be a good candidate for life extension over plate type valve

END of Document

App²dx. Specification of Net Gas Compressor

CCR Net Gas Compressor:

Compressor provide net hydrogen gas(> 85 %) from CCR to downstream H2 consuming plants

Summarized information of Net Gas Compressor

- Installed: since 1989
- Type : 2 Stages / 4 Cylinder (2 Cylinder per each stage)
 Double Opposed Horizontal Reciprocating Compressor
 Lubrication Type
- Capacity: 36,798 Nm3/Hr
- Pressure: 2.7(1st stage suction) → 25.7 kg/cm²G(2nd stage Discharge)
- Motor : 3960 kW / 300 RPM

Appdx. Root Cause Analysis Table

Туре		Possible Cause	Possibility
	 ✓ Influence of Liquid 	 Heavy H/C condensed because of temperature difference between separator and spill-back gas 	
Duciona		 liquid could carry over from accumulated at low point of suction manifold 	
Process		 Cylinder jacket cooling water temperature lower than suction gas temperature (44C < 49~52C) 	×
		 Size of suction separator and state of its demister 	×
	 ✓ Excessive lubricant 	 Excessive lubricant injected over vendor recommendation (Just above recommendation) 	×

Appdx. Root Cause Analysis Table

Pc	Possibility	
	 Spring material was suitable for the gas (Co-Based Alloy) 	×
✓ Valve material	 PEEK(plate) proven for the gas and similar service 	×
✓ Valve Design	 Valve dynamics report shows no significant problem at design (impact velocity, close angle) 	×
✓ Valve Type	 Plate type valve itself is not problem. However, plate type valve is more apt to close late by sticktion 	0 *
✓ Gas Pulsation	 Pulsation study satisfied API 618 Code requirement 	×
	 Valve material Valve Design Valve Type Gas Pulsation 	 Valve material PEEK(plate) proven for the gas and similar service Valve Design Valve dynamics report shows no significant problem at design (impact velocity, close angle) Valve Type Plate type valve itself is not problem. However, plate type valve is more apt to close late by sticktion Pulsation study satisfied

* It is evidently NOT a root cause. However if it is improved to other type valve less apt to sticktion, it will withstand longer service life even at presence of sticky liquid.