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ABSTRACT 

 

The study relates to a hybrid rice seed production method to efficiently incorporate new 

herbicide tolerance into a systems using existing elite three-line hybrid rice parental lines, a WA-

CMS female line, a maintainer line, and a restorer line. The method requires the following steps: 

(1) breeding for an isogenic maintainer line consisting of the trait of interest, herein herbicide 

tolerance using the elite maintainer parent and a donor of the trait of interest; (2) breeding for an 

isogenic restorer line consisting the trait of interest, herein herbicide tolerance using the elite 

restorer parent and a donor of the trait of interest; (3) introduction of the herbicide tolerance trait 

into the female line at the last step of basic seed production by crossing the isogenic maintainer 

line with the elite female line to generate a hemizygous female line; (4) introduction of the 

herbicide tolerance trait into the hybrid during the hybrid seed production by crossing the 

isogenic restorer line with the hemizygous female line. This study has validated the effectiveness 

of this invention with the modified hybrid seed production scheme. This system is versatile 

under field conditions and provides the possibility of utilizing heterosis both during the 

production of the hemizygous female seed and during yield trials of hybrid lines. 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

Firstly, I would like to express my gratitude to my advisor Dr. Kirk Johnson for guiding 

me towards the right path, the continuous support throughout my entire Ph.D program, and all 

the mentorship related to the research and many life decisions.  I would also like to thank Dr. 

Steve Hague for his great patience and knowledge for providing me advices related to academic 

course selection and writing of this dissertation. I could not have imagined having better advisors 

than the two mentors I had for my Ph.D study. Without their support, I could not have possibly 

conducted this research and I will be forever grateful.  

My sincere thank also goes to my committee members, Dr. Amir Ibrahim and Dr. Russel 

Jessup, for all their insightful comments and inspiring ideas related to the research. Meeting with 

them always encouraged me to learn more through their questions and thus truly broadened my 

mind with their perspectives. 

Last but not least, my deepest gratitude goes to my parents, my life partner, my 

grandparents, and the rest of my family for their unconditional and unparalleled love and support.  

I am forever indebted to my parents for giving me the opportunities and experiences that have 

made me who I am. My entire life and accomplishment, if any, would not have been possible 

without them standing by my side.  I therefore dedicated this milestone to them. 

 

 

 

 

 

 

 

 



iv 

 

CONTRIBUTORS AND FUNDING SOURCES 

This work was supervised by a dissertation committee consisting of Dr. Steve Hague, Dr. 

Kirk Johnson, Dr. Amir Ibrahim, and Dr. Russel Jessup.   

All work was made possible under the supervision of Dr. Kirk Johnson and in 

collaboration with Brazilian colleague, Lifang Wang, with Bayer Crop Science.   The field 

planting, water, fertilizer management, and machine operation harvesting was partially helped by 

the colleagues from Crop Production Services (CPS), Qiming Shao and Kyle Cranek.   All other 

work, data gathering, and analysis was completed by the student.  

This research was made possible in part by Bayer Crop Science and Crop production 

Services (CPS) from breeding budget.  

 

 

 

 

 

 

 

 

 

 



v 

 

TABLE OF CONTENTS 

                                                                                                                                                    Page 

 

ABSTRACT………………………………………………………….………………………     ii 

 

ACKNOWLEDGEMENTS ...……………………………………….………………………     iii 

 

CONTRIBUTORS AND FUNDING SOURCES.....……...…,,……………………………       iv 

 

TABLE OF CONTENTS………………………………………….………………………..        v 

 

LIST OF FIGURES…………………………………………………………………………       vii 

 

LIST OF TABLES………………………………………………………………………….        x 

 

LIST OF APPENDIX TABLES…..………...………………………………………………        xi 

 

1. INTRODUCTION...………..…………………………………………………..……..…         1 

 

2. LITERATURE REVIEW…………………………………………………………...……        6 

 

2.1 Hybrid rice ……………………..………………………………..…….……….        6 

2.1.1 Three-line hybrid rice seed production ………………..…….….….         15 

2.1.2 Two-line hybrid seed production ………………..………………....         16 

2.2 Weeds in the rice fields …………………..………………………………..…..       18 

2.3 Modes of action of herbicides..………...…………………….…………….….        21 

2.4 Types of herbicide tolerance and mechanisms in plants …………………......         27 

2.4.1 Prevention of the herbicide from reaching the site of action ………         28 

2.4.2 Metabolic detoxification ……………………………………………        29 

2.4.3 Resistance at the site of action ………………………………………       31 

2.4.4 Overexpression of the target enzyme ……………………………….       35 

2.4.5 Different genetic actions of the resistance …………………………..       36 

2.5 Uses of herbicide tolerance in crop development………………………………       38 

2.5.1 Uses of herbicide tolerance in hybrid crops …………………………      55 

2.5.2 Uses of herbicide tolerance in hybrid rice …………………………..       57 

 

3. MATERIALS AND METHODS………………………………….……………….……..      70 

 

 3.1 Research objectives…………………..…………..………………………….…..     70 

  3.1.1 Objective 1- Development of the isogenic HT A’-line / B’-line……       70 

  3.1.2 Objective 2- Development of the isogenic HT R’-line………………      72 

  3.1.3 Objective 3- Seed production ability of various treatments in ESP....       73 

  3.1.4 Objective 4- Comparison of yields and quality of various treatments.      77 

  3.1.5 Objective 5- Patent application ………………………………………     80 

 3.2 Experimental designs………....…………….……………………...……….…..       80 

  3.2.1 Objective 1 - Development of the isogenic HT A’-line /B’-line…….       80 

  3.2.2 Objective 2- Development of the isogenic HT R’-line…………..….       85 

ii 

 

iii 

 

iv 

 

v 

 

vii 

 

ix 

 

x 

 

1   

 

6 

 

6 

15 

16 

18 

21 

27 

28 

29 

31 

35 

36 

38 

55 

57 

 

69 

 

69 

69 

71 

72 

76 

79 

79 

79 

84 

 



vi 

 

                                                                                                                                                    Page 

 

  3.2.3 Objective 3 - Seed production ability of various treatments in ESP...       87 

  3.2.4 Objective 4 - Comparison of yields and quality of various treatment.       91 

 3.3 Statistical analysis …………………………………………………….……..….      94 

 

4. RESULTS AND DISCUSSION..………………….……………………………………..      97 

 

 4.1 Objective 1 - Development the isogenic HT A’-line/ B’-line……………..…..        97 

 4.2 Objective 2- Development the isogenic HT R’-line……………………….…..      103 

 4.3 Objective 3- Seed produce ability of various treatments in ESP………………      105 

 4.4 Objective 4- Comparison of yields and quality of various treatments…...……      114 

 4.5 Objective 5- Patent application……………………………………...…………      135 

 

5. CONCLUSIONS..………………………………………………………...……………..      136 

 

REFERENCES….…………………………………………………..………………………     141 

 

APPENDIX TABLES…………………………………………………………..…………..     173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86 

90 

93 

 

96 

 

96 

102 

104 

113 

134 

 

135 

 

139 

 

171 



vii 

 

LIST OF FIGURES 

                                                                                                                                                    Page 

Figure 1 Combinations of A-lines and R-lines used in each treatment in  

objective 3 ESP, and the corresponding status of the HT gene……………..   73 

 

Figure 2 Combinations of A-lines and R-lines used in each treatment in  

objective 3 ESP, and the  resulting hybrids tested in the yield  

trial for objective 4 with corresponding status of the  

HT gene…………………………………………………………………...…   78    

 

Figure 3 Demonstration of the field setup for objective 3 and objective 4……...........    88 

 

Figure 4 Panicles of three females, A1, 7019A, and A1/7019B ………………………………….  97 

 

Figure 5 Florets of three females, A1, 7019A, and A1/7019B………………………....  98 

 

Figure 6 Panicles, florets, and plant types of the two male plants, R7 and  

CF R7…………………………………………………………..……………   104 

 

Figure 7 Main panicles from three female plants from three different ESP blocks  

with R7……………...…………………………………………..…………..   110 

 

Figure 8 Combinations analysis from 2015 and 2016 of the stigma  

viability calculated from the average of the seed set rates (%) of the  

main panicles of 30 randomly picked female plants in a same  

ESP block………………………………………………………….…….…    112    

 

Figure 9 Responses to NewPath
™

 herbicide 10 days after the 1
st
 and the  

2
nd

 applications of A1/R7 and A1/7019B//CFR7 plots …..…………..…..…   114                                                                           

 

Figure 10 Combined analysis of the germination, plant stand, and seedling  

vigor of the ten genotype entries from the yield trials from two years  

and two locations. ………………………………………….......................…  116 

 

Figure 11 Combined analysis of the height of the ten genotype entries from the yield  

trial from two years and two locations..…..…………...................................   117 

 

Figure 12 Combined analysis of the days to 50% heading of the ten genotype  

entries from the yield trial from two years and two locations………………   118 

 

Figure 13 Analysis of the days to 50% heading of the ten genotype entries from  

the yield trial by locations, combining two years ………….….…………….  119 

 

 

 

 



viii 

 

                                                                                                                                                    Page  

 

Figure 14 Combined analysis of the phenotype rating of the ten genotype entries from  

the yield trial from two years and two locations …………………….....…   125 

 

Figure 15 Combined analysis of the lodging rating of the ten genotype entries  

from the yield trial from two years and two locations …………… 126 

 

Figure 16 Combined analysis of the disease responses rating to sheath blight of the  

ten genotype entries from the yield trial from two years and two  

locations ………………………………………………………………….…   128 

 

Figure 17 Analysis of the disease responses rating to sheath blight of the ten  

genotype entries from the yield trial by years and locations……………......   129 

 

Figure 18 Analysis of the percentages of milled rice and head rice of the ten  

genotype entries from the yield trial from two years and two locations.…..    131 

 

Figure 19 Analysis of the 1000 grain weight measured in grams of the ten genotype  

entries from the yield trial from two years and two locations………………   132 

 

Figure 20 Analysis of the percentages of the chalkiness and length : width (L:W)  

ratios of the ten genotype entries from the yield from two years and  

two locations………………………………………………………………...   133 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF TABLES 

                                                                                                                                                    Page 

Table 1  The theoretical percentages of homozygosity and recurrent parent genome 

  with every generation of backcrossing..………………………….………..       60 

 

Table 2 The phenotypes, floret characteristics, and grain types descriptions of  

female plants, A1, 7019A, and A1/7019B……………………….………         99 

 

Table 3 The phenotypes, floret characteristics, and grain types descriptions of  

male plants, R7, and CFR7……………………………………….………       103 

 

Table 4 Seed set yield (kg/ha) for the six entries analyzed separately in 2015,  

2016, and combined analysis from the two years ESP…..……….………       103 

 

Table 5 Combined analysis of the grain yields (kg/ha) and grain quality data of  

the ten genotype entries from the yield trial…………………………...…       121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF APPENDIX TABLES 

                                                                                                                                                   Page 

Table A.1 F-test of Entry, Year and Entry*Year interaction effects for seed set yield 

   From ESP………………………………………………………….……..       171 

 

Table A.2 F-test of Entry, Year, Location, and all possible interactions effects for  

50% heading from yield trial………………...…………………….……..       171 

 

 



1 

 

1. INTRODUCTION 

Rice (Oryza sativa) is one of the world’s most important crops and is the staple food for 

more than half of the population (Khush, 2004).  About 90% of rice production and consumption 

worldwide occurs in Asia (Gealy et al., 2003).  China and India are currently the two countries 

with the largest population with 1372 million and 1314 millions of people respectively.  Both of 

the countries are known to have rice as their staple foods.  The world’s population is projected to 

reach 9.7 billion by 2050.  If rice remains a staple and land resources are limited, a large increase 

in rice production will be needed (Population Reference Bureau, 2015). 

In order to meet the demand for rice consumption, it is necessary to increase grain yield 

potential to close the gap between demand and production to ensure food security. The discovery 

and commercialization of hybrid rice in China was an important development that increased 

yield in that country. Breeding and improvement of cultivation methods have been the main 

strategies to increase the yield potential of cultivated rice.  

Many approaches have been taken to improve the yields in rice.  Grain yield increases 

can be attributed to improved management practices and genetic advancements over the years. 

Various conventional breeding and selection techniques have been the oldest and most important 

methods of improving the genetic potential of yield through modification of yield components, 

various agronomic traits, and abiotic/biotic stress tolerances.  During the last few decades, one of 

the predominant ways to increase the genetic potential of grain yield is utilization of heterosis 

within hybrid rice, which was made possible by the discovery in the 1970s of a commercially 

usable genetic tool for hybrid rice production - a wild abortive type of male sterility in rice.  

Hybrid rice has been reported to have 20-30% yield advantage over pure line varieties. Moreover, 

it requires roughly 1/4 amount of the seeds to plant an acre of field compared to the pure line 
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varieties, and requires less input for fertilizer, chemicals for pest and disease control (Salam et al., 

2012).   

Despite the steady increase of grain yields from 3,790 kg/ha to 8,373 kg/ha from 1959 to 

2015 based on harvest records in the Mid-South of the United States (Rice-belt: Arkansas, 

Louisiana, Mississippi, Missouri, and Texas), the total planting acreage hasn’t been increasing at 

the same pace as yield increases.  It was reported that the total rice planting acreages in the Rice-

belt area increased steadily from 1,607,000  in 1959 to 3,384,000 acres in 2005, but fallen back 

to below 3,000,000 acres since 2015 (USDA–ERS, 2016).   Among the five states in the Rice-

belt,  Arkansas has the highest relative and absolute acreage of rice production with about 

40.80% of US acreage or 439,000 acres  being sown to hybrid rice in 2013 (Nalley and Tack, 

2015).   The primary determining factor of growers choosing to plant hybrid over conventional 

rice is the difference in the price for hybrid seeds versus pure line varieties.  The price of hybrid 

seeds is usually 2-3 times higher than conventional pure line varieties because the cost of 

producing hybrid seed is much more expensive than with conventional varieties.  A good hybrid 

may not be used by many growers unless it is feasible to produce hybrid seed at an economically 

competitive rate. 

Researchers have been trying to incorporate various traits of interest into the existing 

rice germplasm to create more valuable rice through conventional breeding or genetic 

engineering. Breeding objectives have included increasing micronutrient content in grain, 

higher photosynthetic rates, herbicide tolerance, pests and disease resistance, and grain size 

(Boyle, 2011). However, only a small portion of hybrid lines is ever commercialized due to 

regulations or the feasibility of large-scale seed production.  Clearfield rice varieties and 

Clearfield hybrids are the most widely grown types of rice in the US. They were bred by 

traditional breeding and selection techniques from mutation screening and not considered 
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genetically engineered.   The incorporation of herbicide tolerance traits allows growers to lower 

the cost in production and more easily control weeds, which in turn improves grain yield, in 

comparison to normal rice. However, the lengthy process of converting the herbicide tolerance 

trait into the existing hybrids in order to develop a Clearfield version of that hybrid adds to the 

cost of the hybrid seeds. 

Other than the issues of higher seed cost related to the seed production, for a new hybrid 

rice to be accepted by both growers and millers in the U.S., it must have high yield potential, 

high milling quality, lodging resistance, and meet established cooking quality criteria. However, 

it is widely believed that hybrids have higher yields but lower milling quality compared to 

conventional inbred rice varieties (Lyman and Nalley, 2013). Breeders often find the yield is 

frequently negatively correlated with quality and therefore breeders must compromise between 

these two important objectives when developing parental lines for the hybrid rice.  Therefore the 

hurdles of the current hybrid rice system being largely adopted by the growers include the high 

cost of seed production and the hybrid seed quality.    

Our proposed novel seed production method offers an alternative and effective way to 

incorporate traits of interest, such as herbicide tolerance (HT), into the current 3-line hybrid seed 

production system with a pair of existing elite parental lines.  HT trait was introduced to the 

female seeds by the use of the converted isogenic HT B’-line to cross with the original A-line 

only at the last step of basic female seed production as opposed to the traditional way that 

requires the development of HT version of both A’-line and B’-line. The resulting hemizygous 

A-line/B’-line seeds will then be used as female seeds in the hybrid seed production field with 

the converted isogenic HT-R’-line as restorer male parents to produce HT 3wayF1 hybrids.   The 

biggest advantages of this proposed novel seed production method is to reduce the time required 

for the breeders to develop promising HT hybrids, reduce the cost of hybrid seeds production, 
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and the hybrid seed costs to the farmers while allowing seed producers and farmers to more 

efficiently maintain the purity of the seeds by the use of corresponding herbicides.   

The overall research was divided into five objectives to prove the actual feasibility of the 

proposed method in the hybrid production field conditions.   Objectives 1 and 2 relates to the 

development of the isogenic HT version of A’-line/B’-line and R’-line respectively through the 

use of the parental lines of one of our promising hybrid and Puita-Inta-CL, one of the IMI-rice 

inbred cultivars, as the donor of the gene of interest (HT) through conventional repeated 

backcrosses.  The development of A’-line is the most time consuming process, and it would not 

be needed if not to compare our proposed method with other traditional way of incorporating HT 

genes into hybrid rice production.  Moreover, we tolerate minor differences between the original 

B-line and R-line with the converted B’-line and R’-line through only four generations of 

backcrosses to minimize the length of time required for the development while allowing us to 

make small improvements of the minor issues with the original parental lines through field 

selection during the backcrosses.  Objectives 1 and 2 were done in collaboration with Brazilian 

coworkers previously with Bayer. Objective 3 was formulated to compare the seed production in 

the experimental seed production (ESP) field of the six hybrid combinations with 3 female lines 

(A-line, A’-line, and A-line/B’-line) and 2 male lines (R-line and R’-line).  This serves to prove 

the incorporation of HT genes has no negative effects on the perceptivity of female and 

pollination of male lines. Most importantly, our hypothesis that the use of A-line/B’-line and R’-

line as parents that produce no significant differences in the seed set yields on the female plants 

and other important agronomic traits with other combinations, would be tested.  Objective 4 was 

formulated to compare the final grain yields, several important agronomic traits, and seed 

qualities of the hybrid seeds produced from various combinations in objective 3 in the actual 

yield trial. The hybrids will be referred to iso-hybrids throughout the article as they were produce 
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from combinations of isogenic parents, and the resulting hybrid produced from our proposed 

method would be referred to 3wayF1 hybrid as it has.   Our hypothesis of objective 4 is that there 

are no significant differences of yield, important agronomic traits, and seed quality of the 

3wayF1 hybrid compared to other iso-hybrids. The 5
th
 objective was to seek for patent for this 

proposed new seed production method. 
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2. LITERATURE REVIEW 

2.1 Hybrid rice 

Heterosis is the phenomenon utilized by every hybrid crop that describes the superior 

vigor of the hybrid offspring over the average performance of parents usually when the two 

inbred parents are adequately genetically distant.  Heterosis can be positive or negative (Zhai et 

al., 2013; Nuruzzaman et al., 2002; Rahimi et al., 2010).  It is often expressed as complex traits 

in plants, including plant height, duration to flowering, resistance to biotic or abiotic stress, and 

especially yield components that are probably controlled and influenced by many loci (Lippman 

and Zamir, 2007). In most cases, positive heterosis, especially in regards to yield related traits, is 

desirable, but negative heterosis can also be of value when it creates an early-maturing or short-

statured F1 plant.  

Heterosis was first explained by Davenport (1908) as being the result of additive, 

dominance gene action. Others (East, 1908; East, 1936) described heterosis as being an over-

dominance effect. The method of measuring the degree of over-dominance gene action was 

proposed by Comstock and Robinson (1952), who also tried to explain the mechanism of 

heterosis. However, all three hypotheses were later proven to be inadequate as more hybrid crop 

studies were conducted and information ascertained. Heterosis may also be a function of 

maternal effects, specifically when the cytoplasm of the female parent beneficially interacts with 

portions of the nuclear genome inherited from the paternal parent. There have been some studies 

reporting the different heterosis observed between same pollinator with female parents with 

different cytoplasmic male sterility sources, which can be an example of this type of heterosis 

(IRRI, 2000). This is in accordance with a later research in dissecting QTLs’ responsible for 

hybrid cotton heterosis in five developmental stages. At single locus level, most QTLs related to 
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heterosis that were identified at later stages displayed over-dominance effects (Shang et al., 

2016).  

There have been multiple experiments examining the genetic basis of heterosis 

(reviewed by Schnable and Springer, 2013), including the complementation of allelic variation 

(e.g. Springer and Stupar, 2007) and variation in gene expression patterns (e.g. Guo et al., 2006), 

as well as proteomic variation (e.g. Goff, 2011). There was even study suggesting the interaction 

between epigenetics and epistasis contributes to the overall performance of F1 hybrid as well 

(Chen, 2010; He et al., 2010).  In plants, most miRNA have non-additive expression pattern.  In 

maize (Zea mays, L.) and Arabidopsis (Arabidopsis thaliana, L.), epigenetic modifications 

resulting from differentially expressed small RNAs have been linked to improved yield 

performance, and was thought to be the contribution to the heterosis (Ni et al., 2009; Groszmann 

et al., 2011). A new model explaining heterosis has been proposed dividing the growth of the 

plants into three phases, young vegetative, mature vegetative and reproductive stages (Baranwal 

et al., 2013). The additive expression pattern has been reported to be at higher level performance 

during the younger vegetative stages contributing biomass, and reduced significantly as the plant 

grow into later vegetative stage. Most non-additive gene actions contribute to phenotypic 

differences among plants in the reproductive stage (Baranwal et al., 2012).  This is in accordance 

with a later research in diseecting QTL responsible for hybrid cotton heterosis in five 

developmental stages. At single locus level, most heyerosis related QTL identified at later stages 

displayed overdominance effects (Shang et al., 2016).  

There has yet to be a straight forward and persuasive argument with a molecular basis 

that sufficiently explains the phenomenon of heterosis, especially for the more complex traits, 

such as grain yield. Most breeders tend to believe the phenomenon of heterosis is a joint result 

from the above hypotheses, while crops may have different degrees of heterosis due to unique 
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interactions of gene effects. Hybrid crops have become the predominant form of many cultivars 

since the launch of the first successful hybrid corn in the 1920s (Duvick, 1994; Stuber, 1994; 

Duvick, 2005; Wang et al., 2005). While additional studies are needed to fully explain the 

phenomenon of hybrid vigor, plant breeders continue to exploit combinations of inbred parents 

that result in hybrids possessing higher yield and better performance than current inbred cultivars. 

Heterosis is often utilized within cross-pollinating crops such as maize, pearl millet, 

sorghums, onion etc.; but itis also applicable to self-pollinating crops, such as wheat and rice 

(Franklin-Tong, 2008).  Hybrid seed technology has been used extensively in maize since 1930s 

and initially accounted for 30% increase in yield over conventional varieties (Duvick, 1992; 

Duvick, 1997). Differences in pollination mechanisms seem to relate to  heterosis in terms of the 

relevance of epistasis in self-pollinating species which contributes more to  heterosis than 

epistasis does in cross-pollinating crops as suggested by a series of studies investigating the 

genetic basis of heterosis in the model species Arabidopsis (Kusterer et al., 2007; Melchinger et 

al., 2007; Reif et al., 2009).   Heterosis is only expressed within the F1, and therefore growers 

must buy new seeds from the hybrid seed companies each growing season.  Other crops utilizing 

three line hybrid seed production includes oilseed rape (WO92/05251, WO97/0737, or 

WO2005/002324), wheat (Wilson and Ross, 1962), sunflower (Chepurnaya et al., 2003), beet, 

carrot, maize, onion, petunia, rye, and sorghum (Kuck and Wrick, 1995).  

Heterosis of hybrid rice is expressed mostly in terms of grain yield potential, in which 

hybrid rice consistently out-performs inbred varieties by 15-20% under similar growing 

conditions and requires nearly 50% less nitrogen fertilizer for maximum grain yield (Virmani, 

2003; Yuan, 2003).  Beyond grain yield performance, hybrid rice has better agronomic traits 

including tolerance to various biotic and abiotic stresses, which in turn, results in less usage of 

pesticides (Fujimaki and Matuuba, 1997; Sasaki, 1997; IRRI 2015). Consequently, acreage 
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worldwide over the past 10 years has increased substantially. There are two types of hybrid rice 

systems, three-lines and two lines.  Hybrid rice employing three-line systems was initially 

developed in the 1970s by Chinese scientists (Li, 1977; Li et al., 2007). Research of a two-line 

system started in the late 1980s (Virmani et al., 1982; Yuan and Virmani, 1988; Mao and 

Virmani, 2003; Mou et al., 2003; Rongbay and Pandey, 2002; Rudger, 2001).   Until now, most 

commercial hybrid rice was developed based upon the three-line system (Barclay, 2010). 

Both three-line and two-line hybrid systems require stable male-sterile lines as female 

parents. Typically, the cause of male sterility can be classified into several categories, including 

cytoplasmic male sterility (CMS), cytoplasmic genetic male sterility (CGMS), genetic male 

sterility (GMS), environmental sensitive male sterility (EGMS), genetically engineered male 

sterility (GEMS), and chemically induced male sterility (CIMS). EGMS can be further sub-

categorized into those that induce sterility or fertility of the plants due to temperature (TGMS) or 

induction based on photoperiod (PGMS). CMS and EGMS are most commonly used in the 

three-line and two-line systems respectively. Among all of the male sterility systems, the CMS is 

the most effective and popular method for commercial hybrid production. More than 20 different 

CMS sources have been identified in rice (Virmani et al., 2003). Some studies suggest the CMS 

female is associated with yield penalties or other undesirable traits (Kaul, 1988); however, 

numerous breeders have proven that this penalty can be abated with breeding efforts.    

The three-line system involves the CMS (A-line), maintainer (B-line), and restorer lines 

(R-line).  The male sterility relies upon the interaction between specific cytoplasm genomes in 

the mitochondria and nuclear genome (Virmani et al., 2003). The male sterility in the A-line 

requires both the nuclear restorer genes to be homozygous recessive (rf) and the cytoplasm genes 

in the mitochondria to be abnormal. Absence of either factor will possibly make the plant 

produce fertile pollens.  Both A-line and the B-line have homozygous recessive nuclear genes 
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conferring male sterility. The B-line is the isogenic line that differs from A-line only in the 

cytoplasm that carries the normal fertility restoration genes in the mitochondria genome, which 

makes itself a fertile plant. B-line maintains the sterility of A-line by pollinating on the A-line 

plants.  The A-line is multiplied by crossing with its maintainer B-lines, while B-lines or R-lines 

can easily be maintained and multiplied by selfing. The seed set harvested from the A-line will 

be further used as female in the hybrid production. 

The Wild-Abortive type CMS (WA-CMS) has been the major source of the A-line in the 

three-line system since its discovery from the wild rice (Oryza rufipogon Griff.) and its Rf genes 

from the indica rice (Oryza sativa L. ssp. indica) cultivar (Lin and Yuan, 1980).  It is accounted 

for almost 90% of hybrid rice production in China, and nearly all of hybrids developed outside 

of China (Sattari et al., 2007; Huang et al., 2014). It has the sporophytic manner of inheritance 

(Virmani et al., 1998). WA352 gene in the mitochondria of WA-CMS was recently identified and 

found to be constitutively expressed in the WA-CMS lines. The encoded WA352 protein 

accumulates in the anther tapetum, where it interacts with the nuclear-encoded mitochondria 

protein, COX11, which intiates programmed cell death of the anther cells thereby causing male 

sterility (Luo et al., 2013). 

The R-line, on the other hand, is a different line having the dominant restorer genes (Rf) 

in the nuclear genome and a normal mitochondrial genome. Several different restorer genes have 

been discovered.  Rf1a and Rf1b were identified to be the restorer genes in the CMS-BT rice 

(Komori et al., 2004; Wang et al., 2006). Rf17 was identified as a single nucleus gene that was 

able to restore gametophytically sterility of the CW-CMS type rice (Fujii and Toriyama, 2009). 

The genes Rf3 and Rf4, on chromosome 1 and 10 respectively, are believed to be the two major 

genes responsible for counteracting the cytoplasm sterility in the WA-CMS system (Zhang et al., 

1997; Zhang et al., 2002; Lu et al. 1997; Yao .et al. 1997; Tan et al. 2008; Jing et al. 2001; 
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Ahmadikhah and Karlov 2006; Ngangkham et al. 2010; Sure.sh et al. 2012). In some systems, 

one Rf gene can confer complete restoration the fertility of the CMS females, while sometime, it 

takes two or more Rf genes to restore adequate fertility (Schnable and Weise, 1998). The R-line 

is used as a pollinator in hybrid seed production.  Strips of R-line are grown next to strips of A-

line in hybrid seed production. The dominant restorer gene will restore the fertility in the derived 

F1 hybrids.  

There are several other requirements for a CMS line to become a usable A-line in a 

three-line system. First, it needs to be stable and completely male-sterile across different 

environments; second, it needs to be easily maintained by its isogenic line (B-line); third, fertility 

needs to be easily restored to 70-80% so that it can  combine with different R-lines; fourth, it 

needs to have a favorable specific combinability with R-lines to promote heterosis in the F1 

hybrid; fifth, it should have important agronomic traits that relate to yield and grain quality; last 

but not least, is the ability to produce seed via cross-pollination.  Traits like floret opening, 

anther size, stigma size, anther extrusion, stigma exertion, stigma longevity, pollen longevity, 

pollen load, pollen size, and synchronized heading time between the A-line and the R-lines all 

significantly contribute to production of hybrid seed.  A big and well-exerted stigma is an 

extremely critical character of an A-line to increase the outcrossing rates necessary for high 

production of hybrid seeds (Xu, 1988).  It was reported that the vitality of a stigma can range 

from 3 to 7 days (Li et al., 2004). Therefore, increasing the rate of stigma exertion can not only 

increase the chance of pollination on the day of flowering, but also few days afterward, which 

can partially compensate for losses due to imperfect synchronization of the heading days 

between the A-line and the R-line. It was suggested that with an increase of 1% of stigma 

exertion rate of the A-line, the seed set rate of hybrid seed production can be increased by 0.74-
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0.92% (Yang, 1997). Therefore the floret characteristics of A-lines are important for achieving 

high yield in the hybrid seed production. 

Normal inbred rice varieties have an outcrossing rate of 0.5% or lower because rice is 

normally a self-pollinating plant. Male sterile rice plants, used as females in hybrid seed 

production, are grown together with male pollinator plants will have a 5.0-7.5% rate of cross-

pollination with no artificial treatments (Kim, 2003).   This rate is not high enough in order to 

make hybrid seed production economically feasible.  Some important environmental factors 

known to influence the outcrossing rate include temperature (Beachell et al., 1938), relative 

humidity (Ramaiah, 1953), and wind speed (Kato and Namai, 1987). Methods to further improve 

cross-pollination include supplemental pollination by ropes, bamboo sticks, or in developed 

countries helicopters are used to move pollen from male to female strips.   Gibberellic acid (GA3) 

is used to extend the peduncle of the males panicles in strips extends over the female at the time 

of flowering to facilitate cross-pollination.   GA3 is also used to extend receptivity of the A-line 

stigmas.  The outcrossing rate with these additional auxiliary methods has been reported to 

increase cross-pollination up to 30% (Mao and Vermani, 2003). However, these efforts require 

extensive labor, and therefore often only carried out in countries where labor cost is low. In areas 

with higher labor costs, helicopters are often used as a way to cross-pollinate in the hybrid rice 

seed production system. 

Hybrid seed production practices were initially standardized in China by the father of 

hybrid rice, Long-Ping Yuan, during the 1970s. This technology has been introduced to growers 

in India, Vietnam, Philippines, Thailand, and United States, and many other rice producing 

countries.  Because of the rice’s natural tendency of self-pollination, the process of hybrid rice 

production is complicated. Increasing the outcrossing rate of A-lines has been one of the most 

challenging issues for the hybrid rice seed producers. The floret characteristics traits with A-lines 
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are critical to producing an abundance of F1 hybrid seeds. Breeding efforts in recent years has 

focused largely on modifications of floret traits and the duration of flowering time to have a 

better synchronization between A-lines and R-lines regardless of the two-line system or three-

line system. Hybrids are typically grouped into three maturity durations, i.e. early (<120 days to 

harvest), medium (121 to 130 days to harvest), and late (>130 days to harvest).   

Large variation in heading time has been found among cultivated varieties (Vergara and 

Chang 1985). Breeders often introduce naturally occurring early maturity varieties to make 

crosses with elite lines to modify the duration of the heading dates on both female and male sides 

(McKenzie et al., 1978; Carnahan et al., 1989; Rutger et al., 1987). However, the duration and 

flowering time are complex quantitative traits that can be regulated through the interaction of 

several QTL and the environment.  Many studies have been reported from early researches 

(Chang et al., 1969; Yoko et al., 1980; Yamagata et al., 1986; Sato et al., 1988; Poonyarit et al., 

1989; Sano 1992; Ohshima et al., 1993). However, the allelic relationships among these genes 

were not clearly explained.  Several more studies were conducted later to indicate the pleiotropic 

effects of some major QTL on several different traits, including duration. In 2008, A QTL 

analysis revealed a gene, GHD7, has a large pleiotropic effect on the number of grains per 

panicle, heading date, and plant height in response to day-length (Xue et al., 2008).  GHD8 (also 

known as days to heading8, DTH8) was also identified later to be pleiotropically regulate grain 

yield, heading date, and plant height (Yan et al., 2011). The expression of both are enhanced 

under long day condition (LD), which acts upstream of HD3A and EHD1 (Heading Date 3a and 

Early Heading Date 1) by repressing expression so that a phenotype develops with delayed 

flowering, increased plant height, increased panicle size, and an increased number of primary 

and secondary tillers, while no differences in the total number of tillers. Oppositely, short-day 

conditions diminish the effects. GHD7 encodes for a CCT-domain proteins, which has been 
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identified in many plant species that regulate the process of photoperiodic flowering (Turner et 

al., 2005; Putterill et al., 1995; Yano et al., 2000), vernalization (Yan et al., 2004), circadian 

rhythms (Salome et al.,2006; Strayer et al.,2000), and light signaling (Kaczorowski and Quail, 

2003). Therefore it is believed that the influence of GHD7 on heterosis, which affects grain yield 

in rice hybrids is through the regulation of the duration of panicle differentiation that affects the 

panicle size (Huang et al., 2006). It was also suggested that GHD7 plays an important role in 

both productivity and adaptability in rice globally (Xue et al., 2008).  Another later study 

suggested that genes HD1 (Heading Date 1) and EHD1 jointly control the number of primary 

rachis branches and panicle size via regulation of flowering genes HD3A and RFT1 (Rice 

Flowering Locus T1) in the rice leaves at floral transition stage (Endo-Higashi and Izawa, 2011).  

Because of the complex nature of this trait and EHD1 alone was reported to be the major QTL 

responsible for at least 65% variation of the heading and most likely inherited additively (Yano., 

et al., 1996), breeders generally expect the progenies from two parents with different heading 

dates to segregate as a continuous pattern with most of the plants having heading dates in 

between the parents. Breeders will make selections from the progenies if they wish to adjust the 

headings.  
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2.1.1 Three-line hybrid rice seed production 

Once the promising hybrids have been tested and parental lines determined, hybrid seed 

production using three-line system  is a two-step process: female and male seed production (A-

lines x B-lines; R-lines); and hybrid seed production (A-lines x R-lines). 

To maintain genetic purity, all parental lines need to be maintained each year with a 

standard procedure where systematic pair-crosses of A-line and B-line single plants using only 

the A-line that possess 99.99% male sterility.  Any plants that lack uniformity will be removed 

prior to the pair crosses. A-line and B-line seeds is harvested from each pair of crosses.  Each A 

and B pair is planted as a row.   Bulk pollinating of B-lines rows with the A-lines rows within 

each pair form Pre-Basic Seed.   Pre-Basic seeds (A x B) are then used in a larger scale to 

produce Basic Seed.  Basis Seed (A x B) is increased to becomes foundation seed. Breeder and 

Pre-Basic seeds have the highest genetic purity and require supervision of experienced breeders 

during production.  The purity of an R-line is maintained by test-crossing it with the 

corresponding A-line and evaluation of F1 progeny offspring.  F1 progeny are examined for 

pollen fertility to verify restoration.  Phenotypes of F1 progeny also need to be evaluated by 

breeders to ensure uniformity and nearly identical with the proposed hybrid lines.  Any progeny 

row that looks different from the potential hybrid lines are discarded, as well as the 

corresponding R-line.  Only seeds from R-lines with corresponding near-identical potential 

hybrid lines will be bulk harvested and kept as purified Nucleus Seeds.  R-line Nucleus Seeds 

will then be grown and multiplied on a bigger scale to produce Pre-Basic, Basic, and Foundation 

Seed used in the hybrid seed production system as pollinator.  Planting regulations, field plot 

designs, isolation distance, and pollen sterility examinations follow standard procedures from the 

hybrid rice breeding manual (IRRI, 1997).    

 



16 

 

2.1.2 Two-line hybrid seed production 

EGMS is a male sterility line used in the two-line system in which the sterility is based 

upon two environment factors, temperature and photoperiod.  The varieties with photoperiod 

conditioned fertility are called PGMS. Most of the PGMS lines do not produce fertile pollen 

during long days (> 13.75 hours) but will revert back to fertile plants under short days (<13.75 

hours). The sterility of TGMS lines is sensitive to temperature, and the first TGMS was found in 

peppers (Capsicum spp.) (Martin and Crawford, 1995). Other examples of PGMS can be found 

in tomatoes (Solanum lycopersicum), wheat (Triticum spp.), maize, and rice (Ku et al., 2003; 

Dwivedi et al., 2008; Shi et al., 2009). The rice TGMS system was found and utilized in a hybrid 

system in the 1980s (Cheng et al., 2007). Most of the TGMS rice lines are male sterile at higher 

temperature and the male fertility will be retrieved at lower temperature at a particular 

reproductive stage, which is around 15-25 days before heading or 5-15 days after panicle 

initiation.  The actual temperature or day length for the critical points of fertility may vary from 

genotype to genotype. Hence the commercialization of a certain two-line hybrids will be 

extremely regional limited (Virmani et al., 2003).  IRRI has suggested the maximum temperature 

determines the sterility/fertility pattern of the indica rice TGMS lines, which is around 29 °C (He 

and Yuan, 1989). 

The nature of the fertility-alteration conditioned by the environment in EGMS is the 

biggest difference between two-line system and three-line production system. Unlike the three-

line system, multiplication of the EGMS lines does not require another maintainer line. It can be 

done by self-pollination just like an inbred variety, which makes the process relatively simple 

and fast.  Hence, only the EGMS and the pollinator are needed as female parent and male parent 

respectively for hybrid seed production.  Some other advantages of the two-line system include a 

wider pool of possible male parents to search for good heterosis combinations in the F1 since 
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any fertile lines can be used as male parent.  It was also reported that the EGMS system can be 

incorporated into any genetic background because it is governed by major genes, which again 

provides greater diversity when considering female parents in a hybrid (IRRI, 2003). The 

possible negative effect from the interaction between a sterile-inducing cytoplasm with another 

male is absent in the two-line system, which may allow a higher expression of heterosis. 

The requirement for pollen sterility for the EGMS line under critical sterile condition 

should be more than 99.5% and the sterile phase should last for more than 30 consecutive days. 

During the fertile phase, the seed setting rate should be higher than 30%.  Maintenance of EGMS 

lines and male parents through Nucleus Seeds are necessary to avoid genetic segregation that 

may affect sterility as generations advance. Nucleus Seeds of EGMS lines are produced by self-

pollinating under conditions favorable for high seed set at a critical reproductive stage. The main 

panicle is scored for fertility after harvest and the top 50 plants with highest seed set are kept. A 

portion of the seeds from each of the selected 50 plants are grown as progeny rows under 

sterility favorable conditions, while remnant seed is stored. Sterility and uniformity of each 

progeny row is carefully examined, and only the remaining seed from the completely male 

sterile lines are bulked to form the Nucleus Seeds. Nucleus Seeds are used to produce Breeder 

Seeds under environmental conditions favorable for pollination. These plants are used to produce 

foundation seed of EGMS lines. The resulting EGMS lines are used in hybrid seed production.  

This is a standard purification procedure suggested by IRRI; however, in reality, the two-line 

system is notoriously for its potential instability of the female plant’s sterility, EGMS. A sudden 

temperature changes in just few days during critical reproductive stages can lead to reversion of 

sterility of the EGMS lines used in the hybrid production field and causes many self-pollinated 

EGMS seeds to become mixed with hybrid seeds. The most ideal female line needs to be 

completely sterile for at leastfour consecutive weeks during the sterile phase with optimum 
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environmental conditions (Yuan 1998; Virmani et al., 2003). Many seed companies performing 

two-line hybrid rice system have experienced low purity of their commercialized products due to 

the instability of the EGMS lines used in hybrid production. This not only leads to apparent off-

types in the field, but also causes the reduction of yield and grain quality.  

Many efforts have been made to improve the floret traits of female lines that will 

enhance pollen reception. Breeders around the world have also worked to improve the pollen 

production from male parents which ultimately leads to cross-pollination rates for both 3-line 

and 2-line systems. Equally important as breeding efforts are developments of other techniques 

that improve cultivation and seed production technology. Together, these are a package allowing 

growers to improve profits from higher grain yield, especially in the areas where labor costs are 

high, such as in the United States. This was the motivation leading to the initial introduction of a 

herbicide tolerance trait into the hybrid rice systems. 

 

 

2.2 Weeds in the rice fields 

The biggest impact of weeds upon rice production is the negative effect on grain yield 

due to direct competition for sunlight, nutrition, and water. Poor weed management, especially 

early-season control,   results in compromised yield and higher costs for late season use of 

herbicides or labor when attempting to control a mid-season flush of weeds. Weeds can reduce 

grain quality by mixing in weed seeds with the harvested rice grain, which can cause dockage. It 

has been reported that with intense weed density and high labor cost, herbicide applications are 

approximately 80% (about $US 200 per ha) more profitable than hand weeding (Beltran et al., 

2012). Therefore, an efficient weed management system for rice production is critical.   
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It is estimated that more than 80 species belonging to 40 genera can be problem weeds in 

the US rice production. Weed species in rice can be regionally specific. In the United States, the 

most common weeds in rice production field include red rice (Oryza sativa L., AKA weedy rice), 

barnyardgrass [Echinochloa crus-galli (L.) Beauv.], California arrowhead (Sagittaria 

montevidensisCham. & Schlecht.), eared redstem (Ammania auriculata Willd.), late watergrass 

[Echinochloa oryzicola (Vasinger) Vasinger], redstem (Ammania coccinea Rottb.), ricefield 

bulrush [Scirpus mucronatus (L.) Palla], rice flatsedge (Cyperus iria L.), and smallflower 

umbrella sedge (Heap, 2014). Among these, barnyard grass and red rice are two of the most 

serious yield-threatening weeds in rice grown in the United States, Brazil, Australia, Spain, and 

in most other rice-producing countries.   In Brazil, the major representative of narrow leaf weeds 

are red rice, barnyard grass, the aquatic grasses (Leersia hexandra and Luziola peruviana), and 

the sedges (Cyperus difformis, C. esculentus, C. ferax, and C. laetus) with the increasing 

occurrence of Alexander grass (Brachiaria plantaginea), crab grass (Digitaria horizontalis), and 

goosegrass (Eleusine indica) as monocotyledonous weeds, while some perennial weeds are also 

seen in some areas with excess of moisture. The major broad leaf weeds in Brazil include 

morning glory (Ipomoea spp), Olive hymenachne (Hymenachne amplexicaulis), jointvetches 

(Aeschynomene spp.), alligator weeds (Alternanthera philoxeroides), water pepper (Polygonum 

hydropiperoides), and some aquatic weeds mainly in the water-seeded system fields (Andres and 

Theisen, 2013). 

The barnyard grass is summer annual grass that germinates in the late winter or early 

spring through the summer. It will widely disperse its seed which makes it a troublesome weed. 

A mature barnyard grass plant can grow taller than most cultivated rice plants; therefore it poses 

a substantial threat due to its capacity to out-compete rice for sunlight and nutrients. Studies have 

shown that a single barnyard grass per square foot can reduce rice grain yield by about 25%, and 
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25 barnyard grasses per square meter can reduce the yield up to 50% . It can also serve as an 

alternate host for tungro and rice yellow dwarf viruses. Some researchers have shown the 

resistance in barnyard grasses to propanil and quinclorac or both, two of the most frequently 

used herbicides (Baltazar and Smith 1994; Lovelace, 2003; Norsworthy et al. 2009; Weed 

Science, 2005). Riceshot™ and Facet™ are the commonly seen Trade names for propanil and 

quinclorac respectively. 

Red rice is a weedy relative of cultivated rice that is difficult to control because it is so 

closely related to domesticated rice (Chen et al., 2004).  Red rice is highly competitive to rice not 

only due to the weed’s early vigor, greater tillering, and greater height in comparison to rice; but 

also because of its long seed dormancy and propensity of shattering its panicle. Red rice can take 

up to 60% of applied nitrogen (N) fertilizer and has higher N use efficiency for biomass 

production than cultivated rice. The loss in yield of rice due to heavy red rice infestation can be 

up to 60% to 80% depending upon the degree of infestation (Burgos et al., 2006; Volgsaroj, 

2000; Chauhan, 2013). It also reduces the quality of the milled rice (Burgos et al., 2008). For 

these reasons, red rice is important but also difficult to manage in direct seeded rice cultivation 

(Noldin et al., 2006). Growers in the United States reportedly lose and estimated $50 million per 

year because of dockages from millers for grain contaminated with red rice. Total economic 

losses due to red rice in southern United States rice production are estimated to be $500 to $750 

million a year (Croughan, 2001). Due to the increasing discoveries of resistance to propanil and 

quinclorac in barnyard grass and red rice, the use of AHAS-inhibiting herbicides has increased 

worldwide in rice production system (Sudianto et al., 2013). 
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2.3 Modes of action of herbicides 

One of the key advantages of this proposed new 3-way hybrid production method is to 

simplify the process to incorporate the gene of interest, most often the resistance to a certain 

herbicide, into the hybrids. Therefore it is crucial to understand different modes of actions of 

various herbicides that are most often used in hybrid crops for weed control. Knowing the basic 

modes of action of the herbicides will help the development of new herbicide resistance crops 

and the incorporation of it into the new hybrid production system. 

There are various methods to classify herbicides, for instance: 1. broad spectrum vs. 

narrow spectrum herbicides; 2.systemic vs. contact; 3. residual duration in the soil; 4. means of 

uptake; 5.timing of application; 6. modes of action. Broad spectrum herbicides kill a large range 

of weeds, while the narrow spectrum herbicides target specific weeds, and also known as 

selective herbicides. The selectivity may be due to differences of translocation, absorption, or 

physiological effects between the crop and weed species in response to certain chemicals.  

Modes of action are the mechanisms by which herbicides with different chemical families affect 

plants at the tissue or cellular level. Herbicides with similar modes of action will generally 

produce similar injury symptoms.  

2.3.1 Amino acid synthesis inhibitors 

The most common class of herbicides is those that inhibit branched-chain amino acid 

synthesis enzymes in plants, acetolactase synthase (ALS), also called acetohydroxyacid synthase 

(AHAS). This enzyme catalyzes the first step in the synthesis of the branched-chain amino acids 

leucine, valine, and isoleucine essential for growing point or meristem (Avila et al., 2005). The 

herbicides that inhibit AHAS were discovered in the mid-1970s, and still widely used (Shaner et 

al., 1991; Stetter, 1994). The family includes the following five chemical classes: sulfonylureas 
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(SU), imidazolinones (IMI), triazolopyrimidines (TP, penoxsulam), pyrimidinyl-thiobenzoates 

(PTB), and sulfobylamino-carbonyltriazolinones (SCT). The sulfonylureas, imidazolinones, and 

triazolopyrimidines are known as ALS or AHAS inhibitors, and imidazolinones is the most 

commercially available herbicide to inhibit the activity of AHAS. Inhibition of this enzyme is 

normally fatal in plants. Most members in this category are phloem mobile, with exception of 

phosphorylated amino acids.  Imidazolinones include imazapyr, imazapic, imazethapyr, 

imazamox, imazamethabenz and imazaquin, sharing an imidazole moiety in the molecular 

structure of each compound. They are further divided into three groups based on the second 

cyclic structure of their molecules. The first group, imazaquin, has a quinoline moiety; the 

second group, imazamethabenz, has a benzene ring; the last group, imidazolinones, has a 

pyridine ring composed of four analogs including imazapyr, imazapic, imazethapyr, and 

imazamox that differ only at position five of the pyridine ring. Imazapyr, imazapic, imazethapyr 

and imazamox have hydrogen (H), methyl and methoxymethyl functional groups at position five 

of the pyridine ring. All three groups have molecular sites of action on AHAS, but only the last 

group, imidazolinones, is used with imidazolinone-tolerant crops. The commonly seen trade 

names are Beyond™, NewPath™, Regiment™, and Permit™ for imazamox, imazethapyr, 

bispyribac-sodium, and halosulfuron respectively. 

Another amino acid synthesis inhibitor family, glycine, includes glyphosate and 

glyphosate-trimesium, is an amino acid derivative. Glyphosate is a highly competitive inhibitor 

of the 5-enolpyruvyl-shikimimate-3-phosphate synthase (EPSPS), which is a key enzyme in the 

shikimate pathway synthesizing many aromatic compounds and formation of 5-enolpyruvyl-

shikimimate-3-phosphate (EPSP) in plants from phosphoenolpyruvate (PEP) and shikimate 3-

phosphate (S3P) (Steinrucken and Amrhein 1980).. The inhibition of EPSPS deregulates the 

shikimate pathway and reduces synthesis of aromatic amino acids, including phenylalanine, 
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tyrosine, and tryptophan, which are known to be precursors of many secondary products, such as 

lignin, anthocyanins, and certain growth regulators and is deleterious to plants (Franz et al., 1997; 

Duke et al., 2003). This strategy has been used to develop herbicide resistance in many crops 

since 1996 (Cajacob et al., 2004; Green et al., 2009; Duke et al., 2009).  

Product names of this family include Classic, Pursuit, Roundup, and Liberty Link, which 

inhibit the synthesis of ALS, ALS, EPSPS, and Glutamine respectively.  These herbicides are 

used to control a wide spectrum of grass and broadleaf weeds, including red rice found in rice 

fields. Several of these herbicides have residual activity and effective at low application rates, so 

that one treatment controls both existing weeds and weeds that emerge later, which is a 

significant advantage in rice production.  This feature also allows growers to have flexibility in 

water management for weed control in rice fields by delaying the flooding time, which in turns, 

results in a greater control for water weevil (Lissorhoptrus oryzophilus Kuschel). 

2.3.2 Growth regulator 

Synthetic auxin is the oldest known action of mode for herbicides. It acts as the hormone 

agonist on the auxin receptor that mimics the action of auxin, and thus often called auxinic 

herbicide which was discovered in the 1910s (Went, 1926).   Members of this family include 

phenoxy acids, benzoic acids, carboxylic acids (pyridine acids), and the picolinic acids. The 

most well-known common name is 2,4-D. Members in this family are all highly phloem mobile 

and affect both dicots and monocots.  

2.3.3 Photosynthesis inhibitors 

Chemicals that inhibit photosynthesis in plants work by blocking one of several binding 

sites in the process of photosynthesis were developed after the development of herbicides in the 
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growth regulator families. Members of this family can be further broken down into five 

subgroups:  

a. Triazines, uracils, phenylureas, benzothiadiazoles, and pyridazines are known as 

inhibitors of photosynthesis at photosystem II site A, and block electron transportation and the 

transfer of light energy. They are usually only xylem upwardly mobile. Triazines herbicides are 

among the largest and most important family from this group first discovered in 1952, and 

commercialized in 1957. They control broad leaf and grassy weeds. The most important member 

in this family is atrazine, which blocks the electron transport on the reducing site of PSII (Trebst, 

1980).  

b. Substituted urea herbicides inhibit photosystem II at site β, and block the electron 

transport and transfer of light energy. This is xylem mobile.  

c. Benzothiadiazole (bentazon), Nitrile (bromoxynil), Phenyl-pyridazine (pyridate) 

herbicides inhibit photosynthesis at photosystem II, Site α. This subgroup differs from the first 

two groups inthat plants are injured by contact only. 

 d. Bipyridylium herbicides act on the site of photosystem I as electron diverters, and is a 

contact only chemical.  

e. Bentazon (Bentazone) is a selective herbicide manufactured by BASF belonging to 

the thiadiazine group of chemicals. Since herbicides with this mode of action inhibit 

photosynthesis, they only start working once plants have emerged and exposed to light, or light-

activated. Injury symptoms occur after the cotyledons and first true leaves emerge. One of the 

most important differences between this type of herbicide and others is that they inhibit 

photosynthesis by binding with proteins encoded by chloroplast genes, which is only inherited 

from the female parent to the progeny. 
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Common herbicides include Atrazine®, Sencor®, Hyvar®, Karmex®, Basagran®, 

paraquat, and Buctril®. This is currently the second most common mode of action in herbicides.  

2.3.4 Lipid synthesis inhibitors 

Aryloxyphenoxypropionates (AOPP), phenylpyrazolines (PPZ), and cyclohexanediones 

(CHD) are the three families within this systemic mode of action herbicide. All three are used 

extensively at post-emergence by inhibiting the same enzyme, acetyl-coenzyme A carboxylase 

(ACCase), which acts on the substrate, Acetyl-CoA in annual or perennial weeds. They have 

little effect on dicots or non-graminaceous monocots (Harwood., 1988; Devine et al. 1993; 

Harwood, 1991; Duke and Kenyon, 1988). The ACCase is a pivot enzyme localized in the 

chloroplasts, which catalyzes the first step of ATP-dependent carboxylationof acetyl-CoA to 

form malonyl-CoA in the lipid biosynthesis pathway in plants. There are two isoforms of 

ACCase in plants, the plastid ACCase accounting for more than 80% of the total ACCase 

activity and the cytosolic ACCas involved in the long-chain fatty acid and flavonoids 

biosynthesis (Gronwald, 1991). Both isoforms carries two domains, the biotin-carboxylase (BC) 

domain and the carboxyl-transferase (CT) domain (Nikolau et al., 2003). Most of the herbicides 

work on the active domain of the plastid ACCase. Inhibiting the enzyme will block the 

production of phospholipids required for new membranes in new cells or cell growth.  Other than 

the three major families, there is another active ingredient, cyhalofop-butyl that was intensively 

used in rice production. Cyhalofop-butyl acts as ACCase inhibitor, which breaks the structure of 

cell membranes (Oliveira Junior et al., 2011). 

Most of these are known to systemically affect monocots, mainly used to control 

graminaceous weeds, with no effects on dicot weeds. Broadleaf species are naturally resistant to 

this herbicide family; therefore these herbicides are often used to control annual or perennial 
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grasses in broad leaf crops (Stoltenberg, 1989). Examples of trade names of products within this 

mode of action include Poast®, Assure II®, quizalofop, sethoxydim, fluazifop, and Select®.  

2.3.5 Cell membrane disruptors 

Chemicals including diphenylethers, aryl triazolinones, phenylpthalamides, and 

bipyridilium react with the cell membrane to form super oxides and hydroxyl radicals to destroy 

cell membranes. This family of herbicides is usually acting through contact and only affects the 

sprayed area of the plant. The herbicide families with this mode of action include: diphenylethers, 

aryl triazolinones, phenylpthalamides, and bipyridilium. Some common trade names of 

herbicides include Cobra®, Blazer®, Authority®, Aim®, and Gramoxone®. 

2.3.6 Pigment inhibitors 

The pigment inhibitor mode of action works by preventing the production of compounds 

that protect the plant from chlorophyll destruction. Instead of being green in color plant tissue 

turns white. Herbicides within this mode of action are typically preemergence treatments; 

however, a few have postemergence activity. Isoxazolidinones, isoxazoles, and pyridazinones 

make up the chemical families in this mode of action. Common trade names of pigment inhibitor 

herbicides include: Balance®, Callisto®, and Command®. 

2.3.7 Seedling growth regulators 

The seedling growth inhibition mode of action interrupts new plant growth and 

development. Herbicides within this mode of action must be soil applied and either inhibit root 

or shoot growth in emerging plants. Carbamothiates, phosphorodithioates, chloroacetamides, 

acetamides, and the dinitroanilines makeup of the herbicide families within this mode of action. 

Carbamothioates, Phosphorodithioates, chloroacetamides, and acetamides conjugate with acetyl 
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co-enzyme causing shoot emergence fail, while dinitroanalines and pyridines acts as the 

inhibitors of tubulin protein, which is responsible for microtubule assembly in cell division 

during mitosis and cause the root growth fail. Common trade names in this mode of action 

include Eptam®, Dual®, Harness®, Prowl®, and Treflan®. 

2.4 Types of herbicide tolerance and mechanisms in plants 

Herbicide resistance and tolerance are defined by Weed Science and Society of America 

in 1998 as following:  “Herbicide resistance is the inherited ability of a plant to survive and 

reproduce following exposure to a dose of herbicide normally lethal to the wild type. In a plant, 

resistance may be naturally occurring or induced by such techniques as genetic engineering or 

selection of variants produced by tissue culture or mutagenesis.  Herbicide tolerance is the 

inherent ability of a species to survive and reproduce after herbicide treatment. This implies that 

there was no selection or genetic manipulation to make the plant tolerant, it is naturally tolerant” 

(Weed Science and Society of America, Weed Technology, 1998) 

Crop resistance to herbicides has been long considered to be conferred by one of three 

mechanisms: resistance at the site of action, metabolic detoxification, and prevention of the 

herbicide from reaching the site of action. The degree of resistance is primarily due to the 

herbicide metabolic detoxification, secondarily due to differential resistance at the site of action, 

and lastly due to prevention of the herbicide from reaching the site of action (Devine et al., 1993). 

Recently it was found in several transgenic plants that overexpression of the target enzyme can 

also confer a fair amount of resistance to herbicides.  

2.4.1 Prevention of herbicides from reaching the site of action 

The first barriers designed to prevent herbicide uptake are external structure on the 

outside surface of plants, including cuticle, waxes, cell wall etc. The prevention of herbicide 
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uptake can be due to differences in interception and absorption. Herbicides absorption through 

roots occurs mostly at the apical ends through passive diffusion through the outer structure, 

epidermis and cortex, protecting the Casparin strips and the even inner structures in which the 

root endodermis contains vascular tissues. Different factors in plants, including the species, age 

of plants and environment, can contribute to varying degrees of chemical resistance by the leaf. 

Other mechanisms involved in the prevention of direct contact of herbicides with the more 

susceptible parts of the plants include translocation and compartmentalization (sequestration). It 

was found in some weed populations, plants that are naturally resistant to glyphosate accumulate 

glyphosate in the leaves rather than being translocated. This type of resistance is inherited as a 

single dominant or semi-dominant allele (Preston and Wakelin, 2008). Another mechanism 

utilizing compartmentalization was found in Conyza Canadensis and Lolium rigidum that 

shuttles and store 85% of the glyphosate to the vacuoles (Ge et al., 2010).  

2.4.2 Metabolic detoxification 

Detoxification of the chemical before it reaches the site of action is one of the most 

widely adapted mechanisms in plants providing resistance to certain herbicides. Metabolism-

based resistance does not involve the binding sites of herbicides, but instead herbicides are 

broken down into non-toxic forms by chemical processes. The reactions of metabolic 

detoxification can be further grouped into four categories: reduction, oxidation, hydrolysis, and 

conjugation.  Reduction plays a relatively less important role in herbicide detoxification in plants 

compared to other three reactions. Oxidation reactions are catalyzed by monooxygenases, known 

to possess functions of both oxidases and one of the following biochemistry actions: alkyl 

oxidation, aromatic hydroxylation, epoxidation, N-dealkylation, O-dealkylation, and sulfur 

oxidation.   
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Hydroxylation is common in plants resistance to several herbicides, including 

bromoxinyl (Buckland et al., 1973), propanil (Lamoureux and Frear, 1979), cyanazine (Benyon 

et al., 1972), and carboxylix acid ester such as 2,4-D (Loos, 1975). Conjugation is the most 

important type of reaction among the mechanism of detoxification. It is also the most commonly 

used approach among the four metabolic detoxification reactions when integrating herbicide 

resistance with improvement. Conjugation in plants typically converts the herbicide metabolite 

formed earlier by joining it with an endogeneous substrate to form a larger compound that is 

more water-soluble, and thus leads to metabolism. The cytochrome P450 mono-oxygenases 

(P450s) are a large family of herbicides that are involved in many plant metabolic processes. The 

enzymes are reported to detoxify the herbicide by catalyzing the hydroxylation reaction in plants. 

After the reaction, the active molecule from the herbicides will be inactivated by conjugating 

with the sugar and ready to be exported to the vacuole or to be incorporated into the cell wall.  It 

is one of the predominant mechanisms utilized by plants to confer resistance to the ALS-

inhibiting herbicides (Siminszky B, 2006).  

There are three major types of conjugation detoxification mechanisms utilized by plants, 

including glucose conjugation, amino acid conjugation, and glutathione conjugation.  

Glutathione conjugation has a wider range of herbicide substrates compared to the other two and 

therefore is the most important type of conjugation conferring resistance to herbicides in plants. 

The glutathione conjugation reaction involves nucleophilic displacement between herbicides and 

glutathione by the action of glutathione-s-transferases (GSTs) with different specificities to 

different herbicides leading to direct detoxification of the herbicide active ingredients. GSTs 

belong to a family of enzymes that attach to the tripeptide glutathione through the cysteine 

residue to electrophilic, hydrophobic compounds. GSTs are involved in the metabolism of 

herbicides, such as triazine and chloracetanilide, providing herbicides resistance in corn and 
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sorghum. Once glutathione is bound to the herbicide, the herbicide is no longer toxic and may be 

moved to the vacuole.  Studies indicate that the GST-endowed resistance is inherited as a single, 

partially dominant, nuclear-encoded trait. However, despite the relatively important role of 

glutathione conjugation in plants, there has been little interest in modifying gene encoding 

enzymes conferring herbicide detoxification in plant development (Bakkali et al., 2007).   

Another enzyme that’s also found to be responsible for metabolism based resistance is 

the aryl acylamidases.  Aryl acylamidase is an enzyme responsible for the metabolism of 

propanil in rice, and it has been found that the resistance to the herbicides is significant in the 

population where the expression of aryl acylamidase is at higher level (Santos et al., 1998). The 

cytochrome P450 monooxygenases are a large family of enzymes involved in many plant 

metabolic processes (Fischer et al., 2000b; Osuna et al., 2002; Yun et al., 2005; Yasuor et al., 

2009, 2010). 

2.4.3 Resistance at the site of action 

Most of the herbicides work on single sites of action controlled by single or few genes, 

and many times even just a single gene mutation can confer to resistance to the corresponding 

herbicides. Therefore this mechanism of modifying the sites of action by single gene mutation of 

single gene transformation has been the largest focus on developing herbicide resistance plants.  

Numerous studies have identified point mutations in different plants that changes only one 

amino acid in the target sites of the herbicides conferring resistance to different herbicides. 

However resistance to the same herbicide may not sue to the same mutation at the same locus of 

a gene. Several target-site mutations have been identified in plants to be responsible for the 

resistance to the herbicides, including Photosystem II (PSII), microtubule assembly, and the 

enzymes, acetolactate synthase (ALS), acetyl-CoA carboxylase (ACCase) and 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), etc.  
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Seven point mutations on ACCase gene had been identified in Avena sterilles (a wild 

sterile oat species): Ile-1781-Leu in the chloroplast, Trp-1999-Cys, Trp-2027-Cys, Ile-2041-Asn, 

Asp-2078-Gly, Cys-2088-Arg, and Gly-2096-Ala that all confers some levels of resistance to 

various ACCase-inhibiting herbicides at different rates (Powles and Preston, 1995; Zagnitko et 

al., 2001; Liu et al., 2007; Delye 2005; Deley et al., 2008; Papapanagiotou et al., 2015). 

Herbicides in the family include the aryloxyphenoxypropionic acid (APP) and cyclohexanedione 

(CHD) herbicides, which target the plastid enzyme ACCase in plants, which are selectively 

lethal to many Graminaceae but not to dicot species, therefore they have become widely 

employed for grass weed control in many dicot crop production systems (Devine and 

Shimabukuro, 1994). A different type within this mode of action involves overproduction of the 

target enzyme, ACCase in Sorghum halepense as an example here. 

Several PS2 inhibiting herbicides, triazine, phenylurea, and uracil, bind to the D1 protein 

at different sites in plants and block the transport system of electrons to the plastoquinone within 

the PS2 reaction center. Amino acid substitution at Ser-263-Gly on D1 protein in most plant 

species confers the resistance to symmetrical triazine herbicides only. The Ile-219-Val 

substitution in Poa annua was responsible for resistance to the phenylurea, diuron, and to 

metribuzin (an asymmetrical triazine). A Ser-264-Thr substitution in D1 protein in Portulaca 

oleacea provided resistance to the phenylurea, linuron, and to the symmetrical triazine herbicide 

families. The substituted urea and triazine herbicides bind to overlapping, but not identical, sites 

in PS2. As a result, mutating at one site doesn’t affect the binding of another chemical to the 

enzyme (reviewed by Trebst, 1991).  The inheritance of this resistance is maternal only since the 

D1 protein is encoded by genes in the chloroplasts (reviewed by Gronwald, 1994). Different 

levels of resistance were observed in different plant species reacting to the same chemical, this 

phenomenon was explained by the possibility of the  chloroplast envelopes probably provide 
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differential barrier to these herbicides, as well as some species have differences in the reaction 

center proteins surrounding the active site (Trebst, 1991). 

Site of action is so far the only mechanism found to be involved in the plants that are 

resistant to the AHAS–inhibiting herbicides. AHAS exhibits a wide range of mutations in the 

target sites (AHAS isoenzymes) found in many weed types that confers resistance to at least 

fifteen chemical classes of herbicides. Among them, sulfonylurea, imidazolinone, and 

triazolopyrimidine herbicides have been commercialized and widely use (Saari et al. 1994). In 

most cases, the sulfonylurea-resistant biotypes due to altered AHAS enzyme exhibit varying 

levels of target site cross resistance to the chemically dissimilar, but AHAS-inhibiting, 

imidazolinone, and triazolopyrimidine herbicides (Hall and Devine, 1990; Christopher et al., 

1992; Saari et al., 1990; 1992; 1994). The resistance to the AHAS-inhibitors usually exhibit a 

semi-dominant trait conferred by a single dominant or partially dominant nuclear-encoded gene 

(Saari et al., 1990). The wide range of vitiation in target sites cross resistant weed biotypes 

implies there are a number of different functional mutations of the AHAS gene. There are two 

domains in the AHAS enzyme, domain A and domain B, which are involved in the 

resistance/sensitivity. It was initially found that amino acid substitution at Pro-197-His, a highly 

conserved region, in Lactuca sativa confers resistance to the AHAS-inhibiting herbicides 

(Eberlein et al., 1999). More studies conducted revealed that substitutions of Pro-197-Ser, Pro-

197-Glu, or Pro-197-Ala in domain A can all result in the resistance to the herbicides (Saarri et 

al., 1994; Lee et al., 1988; Tranel and Wirght, 2002). Many other studies were also conducted in 

many weed species indicating point mutation at Pro-173 confers some levels of resistance to one 

or two families among all the AHAS-inhibiting herbicides, including Kochia scoparia and 

Lactuca serriola (Guttieri et al. 1992). Other than mutations at Pro-173 of domain A, several 

other point mutations were discovered to result in the resistance to sulfonylurea and/or 
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imidazolinone resistance in higher plants, such as Ala-122, Ala-205, Asp-376, Trp-574, Trp-753, 

Ser-653, and Gly-654 in the AHAS gene in Arabidopsis thaliana and Nicotiana tabacum to 

sulfonylurea and/or imidazolinone (Lee et al., 1988; Sathasivan et al., 1991; Yu et al., 2010; 

Heap, 2014). Obviously this is suggesting that there are several point mutations of the AHAS 

gene which will confer resistance to sulfonylurea and imidazolinone herbicides possibly due to 

subtly different binding by different herbicides on the AHAS enzyme and different mutation of 

AHAS. The wide variation in target sites conferring resistance to different herbicides implies 

that there are a number of different functional mutations of the AHAS gene (Durner et al., 1991; 

Landstein et al., 1993).  

It is worth noting that other than the resistance, some of these mutations were associated 

with poor agronomic phenotypes. Examples include the Trp-574-Leu mutant of Amaranthus 

powellii were found to have thinner roots and stems, and also reduced number of leaves, which 

all influenced the yield of seed production (Tardif et al., 2006). Similar negative effects were 

also seen in the rice that Gly-654-Glu showed 5 to 100 percent of yield loss (Sha et al., 2007). It 

was therefore speculated that the active site and binding site in AHAS are different, and also 

explains why Pro-173 are most widely adapted naturally in the weeds for the change in this 

amino acids  renders resistance to specific AHAS-inhibiting herbicides while causing no 

penalties on the normal catalytic functions (Warwick et al., 2010).  

A common mechanism found in most plants that were found to be resistant to glyphosate 

is through the modification of the site of action in the EPSPS at Pro-106. Pro-106 is not at the 

binding site, but the amino acid substitution at position 106 from Pro to Ser, Thr, or Ala causes 

the disorientation of the enzyme that causes the reduced affinity of the actual binding site to the 

glyphosate, which thus confers to some degree of resistance to glyphosate (Bostamam et al., 

2012). 
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The mechanisms of the resistant to the auxinic group are considered relatively complex 

because it was suggested that resistance in several weeds is due to multiple sites of action to 

auxinic compounds (Gressel and Segel, 1982; Morrison and Devine, 1994). Mechanisms can 

also be quite different across plant species, it was shown that the resistance to 2,4-D in Sinapis 

arvensis was controled by a single dominant gene (Jasieniuk et al., 1995; Jugulam et al., 2005).  

Later it was found that resistance in Arabidopsis thaliana to 2,4-D is due to a recessive mutation 

caused by a single gene, axrl (Estellel and Somerville, 1987), while actually there are at least 5 

axrl alleles that can confer the similar phenotypes and reactions to the 2,4-D (Lincoln et al., 

1990). Mutations in the five auxin-signaling F-box (tir1-1, afb1, afb2, afb3, and afb5) were also 

found to be conferred to resistance in different auxinic herbicides (Gleason et al., 2011).  This 

recessive resistance is in contrast to most reports of herbicide resistance being controlled by a 

dominant or semi-dominant gene. 

Another example of target-site based resistance controlled by recessive nuclear gene is 

the resistance to Dinitroanaline herbicides, such as prodiamide, oryzalin, and trifluralin. They 

bind to tubulin α and block the interaction between the tubulin, α and β, and thus inhibits the 

formation of microtubules, which are important in cell division. A point mutation in the gene 

that encodes for α-tubulin results in dinitroanaline resistance in plants, which has been reported 

to be controlled by a single, recessive nuclear gene.  
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2.4.4 Overexpression of the target enzyme 

 

When a mutated enzyme identified to be responsible for the resistance to the herbicide, it 

is often to find the increase of resistance related to overexpressing the same protein. Therefore it 

is logical for the breeders to develop a resistant line through this approach. 

It was suggested that the EPSPS expression level was positively correlated with the 

number of copies of EPSPS gene in plants (Powles, 2010; Gaines et al., 2010). The EPSPS genes 

are amplified through jumping gene, and at least 30 to 50 genome copies of EPSPS are necessary 

to allow plants to survive at the glyphosate rates between 0,5 to 1.0 kg/ha (Gaines et al., 2011).  

Several transgenic crops had been engineered to overexpress the EPSPS gene were reported to 

be successfully maintain normal metabolism after absorbing glyphosate at even four times the 

dose of herbicide needed to kill non-transgenic plants. This technique has been applied to many 

transgenic glyphosate-resistance crops to commercialize (Dill et al., 2008). The most well-

known product is the Roundup Ready
®
 Soybean, which was launched in US in 1995 (Delanney 

et al., 1995), and the CP4 EPSPS has still been the most widely used trait within all the 

genetically modified crops grown in the world (Dill et al., 2008).   

Photoporphyrinogen oxidase (PPO) is the key enzyme in the chlorophyll/heme 

biosynthesis pathway, which is in charge of oxidizing photoporphyrinogen IX into 

protoporphyrin IX (Smith et al., 1993). It was found that plants overexpressing PPO gene confer 

resistance to herbicide containing diphenyl ether that causes light-dependent membrane damage 

(Lee et al., 1993; Li et al., 2003), which also serves as an effective selectable marker in the 

transformation in maize and rice, with transformation frequency similar to pat or pmi systems 

(Lee et al., 2007). Other research was conducted to transfer the over-expressed Arabidiopsis 

PPO genes into tobacco, maize, and rice, which conferred tolerance to acifluorfen, butafenacil, 
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and oxyfluorfen respectively (Lermontova and Grimm, 2000; Ha et al., 2004). Transgenic over-

expression of the PPO gene from Myxococcus xanthus confers high resistance to PPO inhibitors 

including oxadiazon, butafenacil, oxyfluorfen, and acifluorfen in rice (Jung and Back, 2005; 

Jung and Kuk, 2007; Lee et al., 2007; Jung et al., 2008). 

As mentioned above, the enzyme P450s responsible for detoxifying many herbicides 

through hydroxylation followed by exporting the inactivated herbicide molecules to the vacuoles 

or the cell wall. It has also been reported that by overexpressing the P450s genes increased the 

P450-based metabolism and confers higher resistance or quicker detoxification in several weeds 

(Fischer et al., 2000b; Osuna et al., 2002; Yun et al., 2005; Yasuor et al., 2009, 2010). 

Sometimes the resistance to certain herbicides can be a function of two mechanisms, 

such as the resistance to s-triazine in some weeds due to a combination of both alteration to the 

site of action, the D1 protein in chloroplast, and metabolic exclusion before reaching the target 

sites (Arntzen et al., 1982).  

2.4.5 Different genetic actions of the resistance  

The resistance/sensitivity responses in plants to herbicides with various mechanisms are 

controlled by different genetic actions.  Most of the resistance or even semi-resistance responses 

are conferred by dominant or partial-dominant genes. Target-site resistance is often controlled by 

a single gene, such as resistance to AHAS inhibitor herbicides, which have been reported to be 

controlled by single dominant or semi-dominant gene. Heterozygous plants are often found to be 

injured, but do not die after application of the herbicides.  This type of resistance is often found 

when strong selection pressure is applied, while other resistance that doesn’t involve in the site 

of action (non-target-site resistance) usually are screened and identified under moderate selection 

pressure that’s regulated by multiple alleles.  Moreover,  resistance controlled by a single or just 

a few genes possess major effects and less likely be affected by the environments, while the 
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polygenic resistance often involves higher proportion of additive genetic effects with mostly 

minor effect and higher GxE interactions. Hence the sites of action regulated by a single gene is 

more widely used by breeders to incorporate into cropping systems among all of the modes of 

actions (Preston, 2003; Delye et al., 2013; Powle and Yu; 2010). A point mutation causing a 

single amino acid substitution at Leu-1780-Ile in the chloroplast ACCase was identified in a 

grass species, Setaria viridis, which confers resistance to sethoxydim, a cyclohexanediones (one 

of the ACCase inhibitor herbicide chemicals). The inheritance of this resistant trait is controlled 

by a single, semi-dominant gene.  

AHAS inhibiting herbicides includes five chemical families. The resistance and the level 

of resistance in plants to each of the families can be conferred by different point mutations at 

different sites on the AHAS as stated previously. Some mutations contribute to resistance to 

more than two chemical families; it is also possible to have multiple point mutations in the AHAS 

gene that can provide a greater level of resistance to multiple chemical families of AHAS 

inhibiting herbicides.  The resistance to the AHAS inhibitors has been reported to be controlled 

by a single, dominant or semi-dominant gene (Tranel and Wright, 2002; Tranel et al., 2014; 

http://weedscience.com). Heterozygous plants are often reported to possess less resistance to the 

herbicide that they became injured, but not killed by the herbicides. 

Some herbicide resistances were reported to be controlled by a single recessive gene. 

The development of frequency distribution of the resistance alleles in a population throughout 

the breeding process also depends upon the types of pollination. In cross-pollinating crops, 

dominant resistance alleles will increase in the population more rapidly than recessive alleles.  

The recessive resistance trait will evolve in the population at a slower rate than dominant 

resistant because the dominant homozygotes and heterozygotes will be removed by herbicide 

application. However in self-pollinating plants, dominant or recessive alleles are likely to 
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accumulate at equal frequency in population under selection pressure, which also explains why 

most of the recessive dominance were conducted and identified in self-pollinating crops 

(Charlesworth 1992; Jasieniuk et al., 1996). The types of chemicals that have been reported in 

this type of action are also limited. Resistance to Dinitroanaline in goosegrass (Eleusine indica) 

is an example of recessive resistance. Dinitroanaline is one type of growth regulator herbicide 

that binds to the tubulin and blocks the formation of microtubules and further affects the cell 

division. The replacement of Thr-239-Ile239 in the α-tubulin gene causes the resistance in the 

goosegrass (Yamamoto et al., 1998).  Studies also were conducted showing resistance to 

herbicides clopyralid and picloram in a wild oat, yellow starthistle (Centaurea solstialis), is 

controlled by a single recessive gene (Van et al., 2004). There also were attempts, although rare, 

of utilizing the mutant of the α2-tubulin gene in maize to create a herbicide resistance line 

through traditional breeding and genetic engineering (Landi et al., 1999; Anthony and Hussey, 

1999).   

As briefly mentioned previously, the resistance in Arabidopsis thaliana to 2,4-D , which 

can be a result from point mutation of any of the 5 axl alleles demonstrating another recessive 

resistance example (Lincoln et al., 1990).   

2.5 Uses of herbicide tolerance in crop development 

The adoption of herbicide-tolerance has increased considerably in the last few years in 

different cropping systems. Currently, three herbicide tolerant systems are most commonly used.  

These include Glufosinate (LibertyLink
®
) resistance commercialized by Bayer CropScience, 

glyphosate (Roundup Ready
®
) resistance commercialized by Monsanto (Franz, 1970), and 

Imidazolinine tolerance (Clearfield
®
) commercialized by BASF (Duke, 2005). The occurrence of 

mutated sites of action within plants can be the sources of potential resistance development.  One 

of the sources of tolerance or resistance can occur as a result of random mutation, which is 
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relatively infrequent.   Human induced mutation can come from mutagen induction, including, 

radiation, ethyl methane sulphonate (EMS), or chemical herbicide-induces mutations.  There is 

also an increasing acceptance of transgenic traits improving the crop performance and even more 

and more widely used cisgenic technique.  Commercial development of respective varieties 

resistant to each herbicide of different crops is underway.  Despite various ways of creating 

allelic variants, the resistance cannot be observed without the selection pressure of 

corresponding herbicide exposure.  The selection of herbicide resistance plants followed by the 

selection pressure application can be accomplished by either traditional plant breeding or/and 

biotechnological techniques.  DNA responsible for the herbicide resistance in these plants are not 

inserted from foreign species, and therefore not considered to be GMO. 

Screening for individual plants possessing resistance to herbicides in a mutagen treated 

population has been an effective way to identify plants with mutant enzymes withenzymatic 

activity directly resistant to normally-inhibitory levels of a herbicidally-effective active 

ingredient.  Herbicide tolerant crops developed through this conventional process have an 

advantage in commercialization with fewer regulation hurdles compared to transgenic herbicide 

tolerance crops, and therefore more readily acceptable by growers (David et al., 2003).  

Selectable marker genes confer resistance to herbicides such as glyphosate, glufosinate, 

imidazolinine, or broxynil were often used in the selection process (Comai et al, 1985; Gordon-

Kamm et al, 1990; and Stalker et al, 1988). Genetically modification (GM) was used as strategy 

to incorporate herbicide resistance genes into crops to manage weeds since 1996. There are 

many ways for plans to acquire the trait of tolerance transgenically. One way is to incorporate a 

gene producing the herbicide tolerant form of the target enzymes.  Another way is to incorporate 

the gene producing herbicide degrading enzyme.   Modern biotechnology has greatly widened the 

efficiency of the procedures to identify, purify, and transfer the genes from one organism to 
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another (Osuntoki, 2005). Today, GM crops incorporated with herbicide resistance accounts for 

more than 80% of the currently grown GM crops worldwide (James, 2012).  

One substantial category of the current GM herbicide resistant crops is the glyphosate-

resistant crops including corn, soybean, canola, alfafa, sugarbeet, and cotton, commonly known 

as Roundup Ready
®
 cropping system (Bertges et al., 1994; Cajacob et al., 2004; Green et al., 

2009; Duke et al., 2009). Glyphosate is a non-selective herbicide has been the mostly widely 

used herbicide even before the development of any herbicide resistant crops (Gianessi and 

Reigner, 2006).  There are several approaches of generating glyphosate-resistant crops. The most 

popular way is to alter the structure of EPSPS enzyme by transferring a naturally occurring gene, 

CP4 EPSPS, from an Agrobacterium tumefaciens strain CP4 encoding a modified form of 

EPSPS that confers natural resistance to glyphosate. This has been done intensively since it was 

discovered and has been found to be effective in many transformed crops, such as cotton, corn, 

and soybean (Barry et al., 1992; Padgette et al., 1995; Padgette et al., 1996).  It has been reported 

that the CP4 EPSPS alone makes soybean roughly 50-fold more tolerant to glyphosate (Nandula 

et al. 2007). Some other glyphosate-resistant crops rely on a mutant E coli gene fused to EPSPS 

enzyme chloroplast transit sequence to create transgenic plants, have been continuously grown 

(OECD, 1999; Michiels and Johnson, 2001). Researchers from China also developed a 

transgenic glyphosate resistance rice line, EP3, by transferring a native rice EPSPS gene into an 

existing popular rice variety, Minghui86 (Xu et al., 2002; Yan et al., 2011).  A range of modified 

EPSPS genes were utilized to develop transgenic rice resistant to glyphosate herbicides (Charng 

et al., 2008; Zhao et al., 2011; Chandrasekhar et al., 2014).   A recent research introduced a 

codon-optimized mCP4-EPSPS gene (modified CP4-EPSPS) with N-terminal chloroplast 

targeting peptide from Petunia hybrida into a popular inbred rice variety, IR64. The transformed 

rice plants exhibit high EPSPS activity even treated with high concentration of glyphosate 
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herbicide compared to the control plants, which showed tolerance to 1% of commercial Roundup 

(equivalent to 10 g
-1

 or 10,000 ppm, or 10 mM (175 ml)), which is roughly 5 times higher of 

dosage used to kill regular weeds in the field conditions at seedling stage (Chhapekar et al., 

2015).   

Another strategy that has been reported is to metabolically degrade glyphosate into non-

toxic products in plants (Coupland, 1985; Thompson et al., 1987; Pline-Srinc, 2006; Duke, 2011). 

Some crops, such as canola can use a gene transferred from a microbe Ochrobatrum anthropic 

that encodes glyphosate degradation enzyme, glyphosate oxidase (GOX), which also detoxifies 

the glyphosate into and yield the less-toxic  products, aminomethyl phosphonic acid (AMPA) 

and glyoxylate, by cleaving the carbon-nitrogen bond of glyphosate that are treated on the plants 

(Padgette et al., 1996). Canola and some other crops, such as tobacco, were reported to be able to 

use the glyphosate oxidoreductase enzyme isolated from Pseudomonas sp. Strain LBr to 

metabolize the treated glyphosate (Franz et al., 1997). The GOX gene isolated are often put in 

combination with CP4 EPSPS and transformed into plastids for the efficiency of transformation 

and an elevated tolerance was found (Zhou et al., 1995; Mannerlof et al., 1997). GOX and CP4 

genes together provide approximately 50-fold of resistance to glyphosate in canola (Nandula et 

al., 2007). A fungal gene encoding glyphosate decarboxylase was patented and used to develop 

different transgenic glyphosate resistant crops (Hammer et al., 2005).  Other researches 

transferred another gene encoding for glyphosate acetyl-transferase (GAT) from Bacillus 

licheniformis into crops to detoxify the glyphosate (Castle et al., 2004; Siehl et al., 2007). GAT 

can convert the glyphosate into N-acetylglyphosate that doesn’t inhibit the function of EPSPS in 

plants.  Glycine oxidase (GO) from Bacillus subtilis also were found to be able to convert 

glyphosate into AMPA and glyoxylate through a different reaction mechanism. The genes 

encoding for GO were successfully transformed in rice plants as a source of resistance to 
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oxyfluorfen herbicide (Jung et al., 2004).  The GO genes were also utilized to develop other 

transgenic glyphosate-tolerant crops (Nicolia et al., 2014).  A number of assays worked on 

recognizing GO variants with improved affinity with glyphosate through site saturation 

mutagenesis on the active sites. Different genes were therefore used to combat glyphosate in 

various crops (Pedotti et al., 2009; Pollegioni et al., 2011; Zhan et al., 2013; Nicolia et al., 2014).   

Some of the latest research associated with Arabidopsis involved transferring a gene, the DAAO 

gene, from Bradyrhizobium japonicum responsible for encoding the D-amino acid oxidase 

(DAAO), which can oxidatively cleave the carbon-nitrogen bond on the carboxyl side of 

glyphosate to AMPA and glyoxylate. The transformed Arabidopsis plants were found to be 

significantly more tolerant to glyphosate than untransformed plants (Han et al., 2015).  DAAO 

and GO belong to the same structural family with different substrate specificities. They show 

modest sequence similarity to GO (Pedotti et al., 2009). 

Glufosinate is another fast-acting, non-selective post-emergence herbicide chemical 

ingredient that has been widely used to control weeds by inhibiting the enzyme glutamine 

synthetase in plants (WSSA, 1994; Wild and Manderscheid, 1984). Glufosinate is a synthetic 

version of the natural product, phosphinothricin. Glutamine synthetase is the key enzyme 

catalyzing the reaction of forming the amino acid glutamine from glutamate and ammnonia 

(Bayer et al., 1972; Lea et al., 1984). This enzyme is known to have two types of isoforms (GS1 

and GS2) in the roots and the leaves respectively. The GS1 in cytoplasm of roots shows greater 

sensitivity to the glufoniate than the isoform GS2 in chloroplast the leaves due to different 

kinetic effects (Wild and Manderscheid, 1984; Manderscheid and Wild, 1986). The inhibition of 

the enzyme caused the accumulation of ammonia, reduced synthesis of glutamine, and further 

reduced the other amino acids including glutamate, aspartate, alanine, glycine, and serine. The 

depletion of these amino acids in plants will lead to inhibition of the glycolate pathways, 



43 

 

resulting in accumulation of phosphoglycolate, glycolate, and glyoxylate (Wild and Wendler, 

1991). Glyoxylate accumulation is toxic to the ribulose bisphosphate (RuBP) carboxylase 

activity (Ziegler and Wild, 1989), and therefore leads to the rapid inhibition of the 

photosynthesis, chlorosis of contact tissues, and the ultimate death of the treated part of the plant 

(Sauer et al., 1987; Wild et al., 1987; Lacuesta et al., 1992).  Glufosinate has been reported to be 

better at controlling broadleaf weeds, such as s morningglories (Ipomoea spp.), hemp sesbania 

(Sesbania herbacea (P. Mill.) McVaugh), Pennsylvania smartweed (Polygonum pensylvanicum 

L.), and yellow nutsedge (Cyperus esculentus L.) compared to the glyphosate. However the 

limitation of glufosinate is that it is a contact herbicide, and translocation is significantly slowed 

down 24 hours after absorption. Therefore it must be applied to the smaller plants and not as 

effective as glyphosate on perennial weeds that require translocation for complete control 

(Ullricj et al., 1990; Steckel et al., 1997).  

The pat and bar (bialaphos resistance) genes, were later discovered from Streptomyces 

viridochromogenes and Streptomyces hygroscopicusby respectively researchers are known to be 

homologous and encode for structurally similar proteins that’s able to detoxify the glufosinate 

via acetylation (Wehrmann et al., 1996). The bar gene from Streptomyces encoding acetyl 

transferase is responsible for detoxification of glufosinate by actylating the free NH2 group 

(Thompson et al., 1987; Wohlleben et al., 1988). The pat gene is found to be encoding for 

enzyme, phosphinothricin-acetyltransferase, which inactivates glufosinate by acetylation the 

phosphinothricin, which serves as an active ingredient in the broad spectrum herbicides. These 

two genes are mostly infused with a strong promoter when transferred into various crops to 

allow high expression of the acetyl transferase that confers the resistance, including rice, alfafa, 

corn, wheat, canola, poplar, soybean, rapeseed, potato, sugar beet, tobacco, and tomato crops 

known as LibertyLink
®
cropping system (De Block et al., 1987; Botterman and Leemans, 1989; 
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Mullner et al., 1993; Vasil et al., 1992; Cobb, 1992, Christou et al., 1991; Gordon-Kamm et el., 

1990; D’Halluin et al., 1992; De Greef et al., 1989; De Block et al., 1987; Bertges et al., 1994). 

Both BAR and PAT enzymes selectively acetylate only glufosinate, but not other amino acids 

(Wehrmann et al., 1996). LLRICE06 and LLRICE62 were the two transgenic lines produced by 

Bayer by transforming pat gene and bar gene in the regulatory region into the existing variety, 

M202 and Bengal respectively, which were approved to plant in USA in 2006. LLRICE601 is 

called the LibertyLink rice possessing the herbicide resistance pattern is similar to LLRICE06 

(WO2000/026356) and LLRICE62 (US20082289060), but with PAT expression lower than 

detectable (Bayer, 2006). Different levels of resistance to glufosinate were observed in different 

rice varieties transformed with bar gene, which is also seen in the transgenic barley with bar 

gene. This phenomenon was explained by the possibility of pleiotropic effects due to different 

genetic back grounds of the recipient plants (Oard et al., 1996; Bregitzer et al., 2007). 

It is noteworthy that reportedly when treated with glufosinate, transgenic rice 

transformed with pat gene was less susceptible to the fungi, Magnaporthe grisea and 

Rhizoctonia solani, that causes blast and sheath blight disease in rice (Tada et al., 1996; 

Uchimiya et al., 1993). 

A new gene isolated from a marine bacterium Rhodococcus sp. Strain YM12, named 

RePAT, was found to encode for protein RePAT, a novel phophinothricin N-acetyltransferase 

(Wu et al., 2014). This protein shows 37% similarity to the phophinothricin N-acetyltransferase 

encoded by bar or pat genes. The Agrobacterium RePAT  transgenic plant (PAT7, PAT 11), 

transformed japonica rice Zhonghua11, showed stable inheritance, no negative effect on the 

agronomic traits, and most survived at high glufosinate concentration at 5000 g/ha, which is 

about 10 time higher than recommended dosage (Cui et al., 2016). The relatedness of the 

expression level of RePAT and the tolerance level to glufosinate was also validated, and this 



45 

 

newly cloned RePAT can be used as selective marker in the development of new crops tolerant to 

glufosinate.  

Development of crops with double tolerance to multiple herbicides or even pathogens 

provides growers a choice between two broad spectrum herbicides and other optional selective 

herbicides. Crops stacked with genes resistant to both glufosinate and glyphosate are 

commercially available in cotton, soybeans, corn, and rice (Deng et al., 2014). “WideStrike” or 

“WideStrike3” are the cotton hybrid produced by Dow AgroSciences by crossing two transgenic 

cotton lines, DAS-21023-5 and DAS-24236-5, that are resistant to glufosinate herbicide and 

lepidopteran insects respectively. The pat gene, was used as the selectable marker during the 

Agrobacterium-mediated transformation process of cry1F and cry1Ac genes for its known to be 

closely linked to both genes. However the tolerance to glufosinate of WideStrike is not as robust 

as in LibertyLink Cotton, developed by Bayer.  The triple transformation cotton hybrid was later 

developed by crossing “WideStrike” with a MON88913 event, which is a line resistant to 

glyphosate. The line derived thus expresses the four transformed, CRY1F, CRY1Ac, PAT and 

CP4 EPSPS proteins (WideStrike Roundup Ready). “TwinLink” is the cotton product developed 

by Bayer that is also built to incorporate cry2Ae and cry1Ab genes conferring resistance to 

lepidopteran larvae, and the bar gene that’s resistant to glyphosate by crossing two lines T304-

40 X GHB119 (Reviewed by Rao, 2014). In soybean, there are several products are 

commercialized or close to commercialization engineered or stacked to express multiple traits, 

so crops are tolerant to multiple herbicides, such as Roundup Ready 2 Xtend
TM

 soybeans, which 

are tolerant to both glyphosate and dicamba; Enlist
TM

 soybeans which are tolerant to 2,4-D 

choline, glyphosate, and glufosinate; Balance
TM

 Bean which is tolerant to glyphosate and 

isoxaflutole; and Bolt
TM

 soybeans with enhanced tolerance to ALS-inhibiting herbicides and 

glyphosate. There are recently developed corn plants tolerant to both glyphosate and glufosinate.  
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Other platforms are looking to combine the tolerance to glyphosate and sulfonylurea class of 

herbicide (ALS inhibitor), or the triple combination of 4-hydroxyphenylphenylpyruvate 

dioxygenase (HPPD) inhibitor with glyphosate and glufosinate varieties. 

Bromoxynil is a nitrile herbicide that blocks photosynthesis through the action of 3,5-

dibromo-4-hyroxybenzonitrile on inhibiting photosynthesis by binding to the Photosystem II 

complex of chloroplast membranes and blocking electron transport (Ahrens, 1994).  The bxn 

genes (Bromoxynil specific nitrilase) was first identified by McBride et al., in 1986 encoding 

bromoxynil-specific nitrilase, which is a critical enzyme that converts the 3,5-dibromo-4-

hydroxybenzonitrile to its metabolite 3,5-dibromo-4-hydroxybenzoic acid that is at least 100-

fold less toxic (McBride et al., 1986). The codon-optimized synthetic gene of bxn has been 

developed and been transferred into cotton, tomato, potato, and rapeseed (Dyer et al., 1993). The 

advantages of codon optimization is that it allows secondary structure modification of the 

transcribed mRNA, increase of the protein level expressed in the transferred organism from 2 to 

10 fold by adding signal peptide sequence at the 5’ end and the retention peptide signal sequence 

to the 3’ end of the foreign gene. It can be designed for specific crops or even specific 

subcellular sites by adding signal sequences to localize the foreign proteins (Wong et al., 1992; 

Welch et al., 2009; Kim et al., 2009).  Therefore, transferring synthetic genes instead of natural 

genes are expected to cause higher tolerance to the herbicide and act more rapidly on 

degradation of the active ingredients in herbicides in plants.  This approach of transformation has 

become more and more popular creating transgenic crops, including TSP gene in tobacco and 

EPSPS and BAR genes in rice (Wang et al., 2003; Deng et al., 2014). 

Several reports are available for other synthesizing herbicide resistance genes and 

transferred into various crops conferring resistance to different herbicides. The enzyme 2,4-

dichlorophenoxyacetate monooxygenase  encoded by tfd gene was discovered to be resistant to 
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herbicide 2, 4-D , and later was synthesized and transferred to into crops, including pepper, apple, 

tomato, hirse, sunflower, tobacco, potato, corn, cucumber, wheat, soybean and 

sorghum  (Perkins et al., 1990; Bayley et al., 1992; Fukumori and Hausinger, 1993; Lyon et al., 

1993; Oliver et al., 2003). Using synthetic cryIC gene encoding a Bacillus thuringiensis δ-

endotoxin protein confers spodoptera resistance has been reported in alfalfa and tobacco 

(Strizhov et al., 1996). The transgenic expression of synthetic Bt genes are reportedly effective 

for controlling insect pests in several major crop plants, including corn, rice, cotton, potato, 

tomato, tobacco, soybean and canola (Miklos et al. 2007). 

The cyanamide hydratase gene, Cah, from the soil fungus Myrothecium verrucaria was 

found to confer resistance to cyanamide by converting this chemical to its metabolite urea that 

has a narrow substrate specificity (Maier-Greiner et al., 1991). Selection of resistance to 

cyanamide due to Cah has been conducted on different crops, including Arabidopsis, potato, rice, 

and tomato (Damm, 1998).  The method of transformation in wheat with this gene and selection 

using cyanamide was patented in the United States in 2001 (Weeks, 2000; US6268547 B1).  

Direct introduction of Cah gene into seeds was also carried out in soybean and tobacco using 

hygromycin phosphotransferase as the selectable marker gene and hygromycin as the selection 

agent (Zhang et al., 2005).  

Several forms of cytochrome P450 monooxygenases (P450s) are known detoxify 

herbicides by metabolizing the phytotoxic ingredients. Transgenic plants with mammalian 

cytochrome P450 genes were first developed to introduce herbicide resistance (Ohkawa et al., 

2009).  Rice endogenously expresses multiple P450 enzymes genes, and it was later found that 

the transgenic rice plants with other P450 isoforms conferred higher resistance to the herbicides, 

such as the human P450, CYP1A1. Transgenic rice (Nipponbare) with CYP1A1 under the 

control of modified CaMV 35S had broad cross-resistance towards various herbicides, 
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xenobiotics chemicals, by metabolizing them at a higher pace (Kawahigashi et al., 2003; 

Kawahigashi et al., 2006). The CYP1A1 transgenic rice plants also showed enhanced resistance 

to the actyl-CoA carboxylase-inhibiting herbicide, zalofop-ethyl, the very long-chain fatty acid 

(VLCFA) synthesis-inhibiting herbicide, mefenacet, and 10 other herbicides belonging to 

different chemical families while the germination of WT was inhibited by these chemicals. 

Similar results were observed in transgenic potato (Solanum tuberosum) plants when it was 

transferred with rat or human CYP1A1 genes that showed broad resistance to herbicides 

chlorotoluron, atrazine, and diuron, suggesting that CYP1A1 works efficiently in both monocots 

and dicots (Inui et al., 1998; Inui et al., 1999). The herbicide tolerance during germination might 

thus allow the CYP1A1 transgenic rice plants to be directly seeded in the field with various 

herbicides for weed control. The transgenic CYP1A1 rice plants were also proposed to be used as 

a phytoremediation tool to reduce various agrochemical residual contaminates in the 

environment (Kawahigashi et al., 2006).   

Plant species differing in resistance level to AHAS can develop resistance to different 

classes of AHAS inhibitors. Most resistance cases are due to point mutation in AHAS gene that 

causes the reduction of affinity of the enzyme to the herbicide (Kolkman et al., 2004). AHAS-

inhibiting herbicides resistant crop development can also be accomplished by the transfer of 

resistance genes between different higher plants species (Falco et al., 1989; Haughn et al., 1988; 

Miki et al., 1990). Various mutant forms of AHAS genes for herbicide resistance have been used 

as selectable molecular markers in the transformation and molecular assisted selection process 

(MAS). Among all the AHAS genes, csr1 genes isolated from Arabidopsis is the most common 

used as selection marker (Haughn and Somervilee, 1986). It was later taken as selection marker 

in several transgenic crops, such as rice (Li et al., 1992), tobacco (Charest et al., 1990), maize 
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(Fomm et al., 1990), canola (Miki et al.,1990), common bean (Bonfim et al., 1992), and jujube 

(Gu et al., 2008). 

AHAS inhibitors are generally highly active and selective, and therefore particular 

compounds have been designed for specific crops are favored for certain crops. Both 

sulfonylurea-resistance and imidazolinine-resistance have been used to develop the herbicide 

resistance crops. Sulfonylurea-resistance crops generated via mutant selection includes tobacco 

(Chaleff and Ray, 1984), flax (Jordan and McHughen, 1987), soybean (Sebastian et al., 1989), 

canola (Tonnemaker et al., 1992), sugar beet (Saunders et al., 1992; Hart et al., 1993), barley 

(Baillie et al., 1993), cotton (Rajasekaran et al., 1996), and rice (Terakawa and Wakasa, 1992; 

Wakasa et al., 2007). This herbicide resistance trait is a single gene mutation and is usually 

heritable as semi-dominant or dominant trait. Genetic engineered sulfonylurea-resistance crops 

were also developed with different sources of AHAS genes. A mutated tobacco AHAS gene was 

used to develop transgenic sulfonylurea-resistance cotton (Saari and Mauvais, 1994) and sugar 

beet (D’Halluin et al., 1992). A mutated Arabidopsis AHAS gene was used to transform tobacco 

(Gabard et al., 1989), flax (McSheffrey et al., 1992), canola (Miki et al., 1990), and rice (Li et al., 

1992). 

The Clearfield production system combines various imidazoline-tolerant crops, firstly 

developed in rice through seed mutagenesis, and later utilized in other crops, such as wheat, 

maize, oil seed rape and sunflower (Croughan 1994; Lincombe, 2004; Sha et al., 2007; Tan et al., 

2005).  Mutations of AHAS gene in various crops provide ways to develop more imidazolinone-

tolerant crops. The selection for imidazolinone-resistance maize started in 1982 (Shaner et al., 

1994). Since the first commercially launched imidazolinone-tolerant maize in 1992 in the US, 

many other major imidazolinone-tolerant crops have been developed and commercialized using 

mutagenesis mutating several variants of AHAS genes and through selection, including wheat, 
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canola, oilseed rape, rice, sunflower, cotton, and a few other vegetative crops. Generally, one 

single target site mutation in the AHAS gene is sufficient enough to confer tolerance to AHAS-

inhibiting herbicide.  The eukaryotic AHAS protein is made of two sub-units, one catalytic sub-

unit and one regulator sub-unit. The regulatory sub-unit is also known as the smaller sub-unit of 

AHAS (SSU). The catalytic sub-unit is a homodimer formed by folding two large sub-units 

(LSU) monomers, and each of them has three domains of similar size, α, β, and γ.  Structural 

analysis of wild type and mutated AHAS enzymes have suggested that the binding sites of 

imidazoline herbicide is within the herbicide-binding pocket near the actives site of located at the 

interface of the two LSU monomers of the catalytic sub-unit. The herbicide-binding pocket was 

later identified through molecular modeling to be at the entry channel for the substrate of the 

AHAS enzyme. The AHAS LSU is composed of about 670 amino acids varying from species to 

species. 

There are at least 10 mutation sites in the AHAS-encoding gene that has been found to 

confer herbicide resistance without compromising enzyme activity significantly because of the 

herbicide binding sites are different from the enzyme active sites (Mazur and Falco, 1989). Most 

mutations causing amino acid substitutions in any of the three domains are found to be 

responsible for the reduced sensitivity of AHAS to the imidazolinones.  It was later identified 

that the herbicides containing different classes of active ingredients bind to different, but 

overlapping sites within the herbicide-binding pocket. Both sulfonylureas and imidazolinones 

were found to be impeding the binding of the substrate to AHAS by binding sites in the channel 

where the substrates normally go through. Hence the enzymatic activity of AHAS is directly 

resistant to normally-inhibitory levels of imidazolinones herbicides. The most common 

mutations of amino acids substitutions that contribute to the tolerance to the AHAS-inhibiting 

herbicides are at the positions of Ala122, Pro 197, Ala205, Trp574, and Ser653 of the AHAS 
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LSU. It was found that plants with mutation at position Ser653 confer tolerance to 

imidazolinones, but not other classes of AHAS-inhibiting chemical families.  A recent attempt to 

develop the imidazolinones-tolerant barley was done through induced mutation at the Ser653 of 

the AHAS enzyme, which led to high levels of resistance to the IMIs herbicides, but not to other 

AHAS inhibitors, such as sulfonylureas and trizolopyrimidines (Moody et al., 2015).   Plants 

with mutation at Trp574 are cross-tolerant to different families of AHAS-inhibiting herbicides 

and therefore have been more widely used to develop imidazolinones-tolerant crops. Mutations 

at Ala122 and Ala205 also confer some level of tolerance to the imidazolinones and also were 

used in some crops. Plants with mutation at Pro197 have good tolerance to sulfonylureas, but 

low tolerance to imidazolinones, therefore less frequently used for imidazolinones-tolerant crop 

development. The most common mutations of all the commercialized imidazolinones-tolerant 

crops are found to be either one or a combination of Ala205, Trp574, and Ser653. The cross 

tolerance patterns to various AHAS-inhibiting herbicide families from mutations of 

combinations at different sites of AHAS are often similar across different crops.  

Mutation at site Ala122 of AHAS in sugar beet was found to confer resistance to AHAS-

inhibiting herbicide imidazolinones, and mutation at Pro197 was reported to confer resistance to 

sulfonylureas and triazolopyrimidines. Homozygous of the mutation at site Ala122 showed 

higher tolerance to the herbicides compared to the heterozygotes, which is suggesting the semi-

dominant action of the resistance gene (Wright et al., 1998). A naturally occurring mutation in 

maize was used to develop a variety, ICI 8532IT, that exhibits a high level of resistance to 

imazethapyr and pyrimidinylthiobenzoates but a relatively low tolerance to sulfonylurea and 

triazolopyrimidine (Bernasconi et al., 1995). Similar mutation conferring similar tolerance 

pattern to the chemicals were also found in cotton and was commercialized (Rajasekaran et al., 

1996).  
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The combination of imidazolinone-tolerance traits and imidazolinone herbicides is the 

basis of the Clearfield production system. Imazamox, imazethapyr, imazapyr and imazapic have 

been registered for imidazolinone-tolerant crops. Imidazolinone-tolerant sunflower was 

developed from a naturally occurring mutation at Ala205-to-Val205 in AHAS, which is different 

from most of other Imidazolinone-tolerant crops developed through mutagenesis. The 

imidazolinone-tolerant maize was reported to be derived from selections of cell culture after 

mutagenesis utilizing mutation at Ser653-to-sn653 and Trp574-to-Leu574 in AHAS. Similarly, 

Imidazolinone-tolerant oilseed rape was derived from mutagenesis of microspores at the same 

sites of mutation. Trp574-to-Leu574 is currently the only site of mutation that confers high 

tolerance to all other families of AHAS inhibitors. Imidazolinone-tolerant rice and wheat, on the 

other hand, were developed via mutagenesis of seeds.  Several IMI-tolerant wheat cultivars have 

been developed and commercialized since 1992 by agriculture research institute in Chile in 

partnership with the BASF under the name “Clearfield Crops” (Newhouse et al., 1992; BASF, 

2010).  Several vegetable crops were also reported to possess AHAS-inhibiting herbicides via 

mutations at different sites in AHAS including lettuce, tomatoes, and tobacco. All of these 

commercialized imidazolinone-tolerance traits are reported to be semi-dominant and the 

tolerance level depends on the level of zygosity along with the rates of herbicide. These crops 

were all able to be launched as Clearfield crops because they are non-GMO and do not contain 

foreign DNA.   

Imazethapyr, one of the AHAS inhibitor in the family of imidazolinone chemical, is the 

herbicide labeled for use in imidazolinone-resistance rice production (Masson and Webster 

2001). Imazethapyr is widely used to control many key weeds, such as barnyard grass, broadleaf 

signalgrass, and rice flatsedge, especially red rice. Therefore it was used as a screening chemical 

for mutants resistant to it. Imidazolinone tolerant soybeans are genetically engineered to be 
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resistant to the ammonium salt of imazethapyr (active ingredient of BASF's herbicide Pursuit) 

and ammonium salt of imazamox (active ingredient of BASF's herbicide Raptor), and has yet to 

be deregulated for commercial sale (BASF, 2012).  The first imidazolinone-resistance rice was 

developed in 1993, line 93-AS-3510 (Croughan, 1994), and has been used as donor of 

imidazolinone resistance for many rice cultivars through conventional breeding since then. The 

first two commercialized imidazolinone-tolerance rice varieties are ‘CL121’ and ‘CL141’ 

utilizing Clearfield system developed by mutation induced by ethyl sulfonate (Carlson et al., 

2002; Lincombe, 2004). New imidazolinone-tolerance rice varieties, ‘CL161’ and ‘Clearfield 

XL8’, were developed from second mutation from a line ‘PWC-16’ in 2003 (Wenefrida et al. 

2004). The segregation of progenies from the crosses using the initial herbicide-resistant mutants 

suggested the gene controlling the resistance trait is a dominant gene. However, it was found that 

CL 121 and CL 161 differ greatly in their level of tolerance to imazethapyr. This is due to the 

level of tolerance in the parents used in developing these two cultivars (Line PWC-16 was 

known to be eight times more tolerant to line 93-AS-3510) (Wenefrida et al. 2004; Bond and 

Walker, 2011).  ‘Puita-Inta-CL’ was another rice variety initially developed in Argentina through 

the artificial mutation, the nontransgenic way that are also resistant to the imidazolinone (IMI-

rice) (Livore, 2003). The Puita-Inta-CL has a point mutation of a single amino acid substitution 

at the Ala-122-Thr, whereas the other IMI‐rice lines 93‐AS‐3510 and PWC-13/PWC-16 have 

mutations at the Gly-654-Glu, and Ser-653-Asn respectively (Roso et al. 2010). Mutations at 

different target sites on the same enzyme can confer different levels of imidazolinone herbicides 

due to conformation changes of the enzyme in each mutation (Avila et al. 2005). These IMI-rice 

cultivars were reported to increase the rice grain yield by 50% in southern Brazil (Merotto et al., 

2016). Puitá INTA CL was reported to be the only cultivar of irrigated rice among the IMI-rice 
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in Brazil that was not negatively affected by the use of imazamox as the imazamox dose 

increased (Merotto et al., 2016). 

Transgenic approaches were less common in developing imidazolinone-resistant rice, 

but it was also used to develop AHAS-inhibitor resistance rice via gene targeting technique 

through Argobacterium-mediated introduction of two point mutations AHAS genes into rice 

(Endo et al., 2007).  Recently, a much more precise technique, CRISPR/CasR9-mediated 

genome targeting was adopted to generate point mutations or even gene replacement in several 

crops to develop AHAS-inhibiting herbicides resistant lines, including soybean, maize, and rice 

(Li et al., 2015; Svitashev et al., 2015; Sun et al., 2016). 

Since the imidazolinone-resistant rice was developed through chemically induced seed 

mutagenesis and conventional breeding incorporating resistance to the imidazolinone group of 

herbicides, and therefore it is not considered to be transgenic thus receiving less regulatory 

scrutiny than transgenic crops (Gealy et al., 2003).  However, scientists have raised the concerns 

about the escape of the resistance traits from Clearfield rice to the weedy rice. It was therefore 

predicted that the rice Clearfield technology would last only 8-10 more years due to accelerated 

evolution of herbicide resistance in weedy rice from gene flow (Sudianto et al., 2013).  Moreover, 

some residual activity occured in the soil where there were frequent applications of imazethapyr 

and imazapic in Brazil (Kraemer et al., 2009). The residual activity was injurious to non-tolerant 

rotation crops, such as soybeans, corn, and sorghum. Therefore the discovery of new genes 

conferring resistance to the herbicide and the technology allowing quick introduction into elite 

varieties becomes increasingly important. 

Glufosinate and glyphosate resistant rice were mostly developed through transgenic 

technologies and convey resistance to these broad-spectrum, non-selective herbicides. Both 

glufosinate-resistant and glyphosate-resistant transgenic rice have not been approved for 
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commercial use (Kumar et al., 2008 Demont et al., 2009).   Other than the three existing rice 

systems that have been used for decades since development, BASF is likely to launch a new rice 

system in 2017, Provisia™ Rice, which is proposed to provide a new tool for post-emergence 

control of broad range of grass weeds, including AHAS-resistant grasses, weedy rice, and red 

rice. The Provisia™ Rice was developed through natural selection and traditional breeding using 

ACCase inhibitor herbicides as selection tools. Provisia™ Rice is not a GMO technique; 

therefore, it can be used by the rice growers to rotate with the Clearfield system in the US, which 

reduces the risk of developing weeds resistant to a specific type of herbicide.   

2.5.1 Uses of herbicide tolerance in hybrid crops 

Hybrid crops of any kind involve male sterile plants as female parents and its pollinators, 

and the seeds that are harvested off of female plants are the final products to sell.   

Herbicide was not only applied in the production field to control the weeds, but was also 

used in combination of the herbicide resistance/susceptibility in crops as a method to simplify 

the production procedure, lower the cost and labor, increase the yield, and improve the seed 

purity. The strategy of combining herbicide and utilizing herbicide resistance gene in crops to 

control the purity of hybrid seed production was first proposed by Yan in 2000 (US Patent 

6066779). The differences in the responses of different lines in a hybrid system can be viewed as 

phenotypic marker.  The most predominant genetic mechanisms controlling the herbicide 

resistance/susceptibility are either the utilization of recessive sensitivity genes or the dominant 

resistance genes of the crops to the herbicides. Recessive sensitivity genes are usually screened 

for or introduced into the line that ought to be removed with corresponding herbicide, while the 

plants with dominant resistance genes are designed to be kept for harvesting after the application 

of corresponding herbicides. In most of the hybrid crop systems, usually the male pollinator, the 
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fertile /partially fertile female parents, or any other genetic off-type are the targets to be 

precluded in the field. The male-sterile female lines are the plants to be kept and harvested. 

The use of the different levels of herbicide tolerance/susceptibility in the hybrid 

production systems generates several benefits that supposedly lead to cost reduction and increase 

the yield and purity. Mixed sowing the female and male seeds is one of the biggest differences 

that is convenient for growers compared to conventional strip planting. Advantages from this 

seed mixture includes: 1. Increase in the efficiency of pollination since there is less space in 

between parents, which further allows the increase the ratio of female : male plants which 

facilitates outcrossing resulting in higher seed sets and yield. It’s even more substantial for self-

pollinating crops 2. Allowing mechanical harvesting after application of herbicides after 

unwanted plants are killed. 3. Increases the purity of the seeds by chemically excluding 

contamination from various possible sources depending on the design of the system of which 

parents are resistant. All of mentioned can greatly increase the profits and decrease the invested 

cost and time. 

It is thus crucial to determine whether to have one, two, or even three parents carrying 

genes conferring herbicide resistance traits in a hybrid system depending on the need from the 

growers and the level of weed infestation in the area. 

It was reported the use of triazine resistance in the hybrid seed production in canola 

CMS hybrid system to eliminate the off-types in the hybrid seed production field (Conner and 

Christey, 1997). The transfer of the herbicide resistance was through somatic hybridization of 

protoplasts, which allows the regenerated cells carrying new combination of mitochondria and 

chloroplasts that is normally not allowed through conventional sexual hybridization due to the 

usual maternal inheritance of organelles (Conner and Meredith, 1989).  This technique allows 

the chloroplast encoding for herbicide resistance and mitochondria encoding for CMS in one 
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hybrid, so the regenerated canola plants are thus male-sterile with resistance to herbicide and to 

be utilized as female plants in the canola hybrid production system.  Randomly mixed planting 

of the female and male seeds were performed in the production field to allow more efficient 

transfer of the pollens. The male pollinators are removed by application of herbicide before the 

harvesting of seeds on the female plants since only male plants or other possible off-types are 

susceptible to the herbicide, and thus all the non-hybrid seeds are said eliminated. The same 

application of herbicide can also be applied to the next generation of F1 hybrid to remove any 

non-hybrid off-types, which also shows the inheritability of the triazine resistance. 

2.5.2 Uses of herbicide tolerance in hybrid rice 

The conventional protocol of hybrid seed production for either two-line or three-line 

system was established almost 40 years ago, that is female plants and male plants are planted in 

separate rows with ratios about (2 to 3 male): (8 to 10 female) repeatedly grown. There’s usually 

about 20 cm space between each female rows and the adjacent male rows.  Roguing to remove 

fertile male plants in the female rows is required to maintain the sterility system. This process 

requires experienced technician or breeders to correctly identify the offtypes. Supplementary 

pollination is required for hybrid seed production unless natural wind is constantly blowing 16 to 

32 km/h. The major pollination tool in both systems to increase the outcrossing rate on the 

female plants is the application of GA3 at about 30% heading of female plants and 10% of male 

plants.  GA3 as mentioned earlier helps with panicle exertion because plants with WA cytoplasm 

system are known to have poor or incomplete panicle exertions.  GA3 not only helps with panicle 

exertion on both male and female plants, but also increase the duration of flowering time, widens 

the flag leaf angle, and improve the stigma exertion and its receptivity on female plants. Other 

supplementary pollination methods include shaking the male plants using bamboos, ropes, sticks 

or even helicopter.  This operation has to be done at least 3-4 times a day when florets open 
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during the peak of anthesis for 6- 10 days. The harvesting and threshing of the hybrid seed using 

this system is critical. Male plants have to be carefully cut and removed completely from the 

production field to prevent harvest of pollinator seeds with the hybrid seeds. 

The purity and volume of hybrid seed is often the limiting factor of profit in hybrid rice 

production.   Potentially good hybrids with high heterosis which can be difficult to produce and 

limited due to either purity or hybrid seed production volume. Therefore the incorporation of the 

herbicide resistance technique into hybrid rice production systems allows the simultaneous 

improvement of profits and reduction of the cost of production which is why it has a growing 

demand among customers.  Utilization of herbicide resistance engineering as a strategy to 

provide efficient means of controlling purity in the production of hybrid seeds was first proposed 

by Yan (Yan, 2000). Since then, the hybrid rice production has been extensively studied to 

integrate the herbicide resistance to increase the purity and reduce the labor and cost. However, 

there are currently only a limited number of herbicide-tolerant hybrids available commercially. 

The need for developing herbicide-tolerant hybrid rice is continuously growing because it would 

allow growers not only to easily manage the weeds and seed purity, but retain other 

agronomically desirable characteristics and yield potential within hybrid rice. Backcross 

breeding has been a method of transferring target trait controlled by favorable allele from a 

donor line into the recipient elite line. However, there are two major disadvantages of this 

method: 1. The amount of time may be too long for a highly converted isogenic line. See the 

table below for the assumed percentages of homozygosity and the recurrent parent genome for 

each backcross generation; 2. The linkage drag may cause the simultaneous transfer of other 

genes closely linked with the target gene. Therefore breeders usually don’t have direct control 

over the recombination rate or the actual size of the transferred gene through this backcross 

breeding method. The number of backcrosses depends on the desired level of homozygosity or 
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the percentage of the recurrent parent genome for different purpose (Semgan et al., 2006).  As 

homozygosity increases through backcrossing, so does the contribution of the recurrent parent to 

the offspring’s genome (Table 1).  
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BC 

Generation 

Homozygosity Recurrent Parent Genome 

% % 

BC1F1 50.00 75.00 

BC2F1 75.00 87.50 

BC3F1 87.50 93.75 

BC4F1 93.75 96.87 

BC5F1 96.87 98.44 

BC6F1 98.44 99.22 

BC7F1 99.22 99.61 

Table 1. The theoretical percentages of homozygosity and recurrent parent genome with 
every generation of backcrossing. 

 

 

The use of herbicide resisatnce in hybrid rice can be discussed in different systems and 

the use of parental lines carrying herbicide resisatnce traits. In the three-line system, many 

researcher were introduced herbicide resistance gene from only restorer. 

Bar gene was used to transform into some restorer lines for the CMS three-line systems, 

such as Minghui63 (Xue et al., 1998), R752 (Zhang et al., 2000, Rao et al., 2003), T461 and 

R402 (Rao et al., 2003), Jingyin119 (Zhu et al., 1996) Jingdao162 and Jingdao18 (Shi et al., 

2004), and H84 (Wang et al., 2007). Most of the existing restorer lines are from indica varieties, 

while Jingyin119, Jingdao162, Jingdao18, and H84 are transformation from Japonica varieties. 

Japonica varieties are known to have much higher transformation efficiency than indica varieties. 



61 

 

Therefore most of the transgenic indica varieties are developed from continuous backcrosses of 

an elite indica line that was used in a cross with another transformed japonica line. Minghui63, 

Ce64 and Teqing (Li et al., 2000), and Milyang46 (Xue et al., 2001), R402 (Zhong et al., 2000) 

are all famous transformed restorer lines used in the three-line systems.  

Development of herbicide resistance hybrid rice via transgenic was evaluated in regional 

trials under control in China since 2000 (Li et al., 2000, Xue et al., 2001, Xiong et al., 2004, 

Xiong et al., 2007), such as hybrid Xiang125S/Bar68-1 using the herbicide resistance restorer 

line, Bar68 -1 (Xiao and Yuan 2007). Bar68-1 was further used in other restorer line breeding 

and another line, Bar9311 was later developed from the pedigree selection.  The resulting hybrid 

using this restorer line, Pei’ai64S/ Bar9311, 244S/ Bar9311, and 81S/ Bar9311 were evaluated in 

2004 and 2006 in China, and all of them were reported to possess strong vigor, equal yield to the 

checks and resistance to the herbicides. 

Recent studies used an elite R-line, indica Rice 93-11, treated with irradiation to screen 

and develop a library of mutant lines resistant to bentazon while still possessing desirable 

agronomic traits. Gene CYP81A6, which has been patented in 2005, was responsible for the 

resistance in these mutant lines. Genetic study of the segregation of wildtype and mutant plants 

is 3:1 suggesting this trait is controlled by a single recessive gene. This library of mutation can 

then serve as germplasm of elite R-line breeding in the three-line system (Tuan et al., 2015). 

There are other researchers who developed herbicide resisatnce lines to serve as female 

parent of a hybrid. 

Bar gene was used to transform into some CMS lines, such as II32A and LongtepuA. 

The sterility of these two lines was, however, reported to be unstable under abnormally high 

temperature, which could also lead to a decrease in hybrid seed purity.  
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05Z221A and 05Z227A are two CMS lines developed by the transformation of Bar gene 

and continuous backcrossing into the corresponding maintainer lines derived from 

FengyuanB/Bar68-1. The sterility of the CMS lines needs to be evaluated and confirmed to be 

completely sterile in every backcross generation before proceeding (Xiao, 2007).  In recent years, 

a few herbicide-tolerant rice varieties and hybrids have been successfully introduced to the 

market. See U.S. Patent Nos. 5545822; 5736629; 5773703; 5773704; 5952553; 6274796, 

US8598080 (CL131), US8841525 (CL111); and 6,943,280. The published International Patent 

Applications include WO 00/27182, WO 01/85970, WO2007032807 A2 (CL131), 

WO2011044315A1 (CL111), etc. These herbicide-tolerant rice plants are resistant to or tolerant 

of herbicides that normally inhibit the growth of rice plants.  

Another application of herbicide susceptibility/resistance in the three-line hybrid 

production system is again utilizing genes causing lethality to bentazone. Researchers transferred 

it into an existing B-line (B) to create an isogenic line (B’) that’s only different from the old B-

line in the gene that’s responsible for the lethality to the bentazone. Crosses between regular A-

line and B-line (AxB) is still done to produce more A-line seeds, however AxB’ still used to 

produce A-line seeds for AxR hybrid seed production. Since B and B’ are isogenic lines 

differing by only one gene, the hybrids produced using A-lines from AxB or AxB’ should have 

similar heterosis. The advantage of this method is to maintain the seed purity in the parental seed 

production step by spraying bentazone in the AxB’ field to remove all the bentazone susceptible 

B-line plants that could self and mixed in the A-lines seeds (Zhu et al., 2002). 

Herbicide resistance gene in both female and restorer has more limitations but it allows 

the growers to apply herbicide in the seed production field. 

Atrazine is a slightly water-soluble triazine herbicide (6-chlro-N2-ethyl-N4-isopropyl-

1,3,5-triazine-2,4,-di-amine) that is most commonly used in the  sorghum, corn, and sugarcane 
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production (Udikovic-Kolic et al.,2012). A gene, atzA (atrazine chlorohydrolase gene), 

discovered and isolated from a soil bacterium Pseudomonas ADP was identified to encode for 

atrazine chlorohydrolase (Cai et al., 2003). A recent study indicated that transgenic atzA 

japonica rice lines showed resistance to the atrazine herbicide, specifically during germination 

and young seedlings stages. The transgenic lines include maintainers (Jindao7 and Jindao8) and 

a restorer (Jinhui3), therefore they were proposed to serve as parental lines in the three-line 

system. However the transgenic plants were only tested for resistance at germination and 

seedling stages, but not at reproductive stages, which is critical for utilizing mechanical 

harvesting. Almost all of the transgenic lines produced larger seedlings with similar or higher 

germination rate, taller, and higher total chlorophyll content than conventional control in the 

presence of atrazine (Zhang et al., 2014). The differences in the level of resistance in the F1 

hybrid between using only one parent carrying the atzA gene or both parents carrying two atzA 

genes were also not determined. Therefore the actual application of this new gene in the 3-line 

hybrid rice production system will need more investigation in the future. 

Other than the three-line system, two-line system is widely used to incorporate the 

herbicide tolerance into the hybrid through the development of parental lines. As mentioned, the 

two-line system has its own risk of instability of P/TGMS lines that can cause sterility 

fluctuation during the hybrid seed production.  Using the herbicide-resistance trait was therefore 

investigated extensively since the discovery of the use of herbicide resistance in the two-line 

system to mainly minimize this potential yield loss due to seed impurity. 

The introduction of herbicide tolerance into the hybrid solely via restoere lines in a two-

line system includes many types of herbicide systems. Various herbicide resistance genes, such 

as BAR, EPSPS, CPS, and AHAS, were used in the development of restorer lines in the two-line 

system.  The restorer lines and the hybrids then acquire the trait of herbicide resistance while the 
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female plants are susceptible to the same herbicides. This technique is used to allow the 

producers to kill all the plants selfed from P/TGMS plants in the F1 hybrid field to increase the 

seed purity.  

The herbicide resistant restorers, R187 and Xiushui04, in the two-line hybrid rice were 

successfully developed through transgenic approach by Agrobacterium-mediated transformation 

of Bar gene (Hu et al., 2000). D68 and E32 were developed through particle bombardment of 

Bar gene and pollen-tube pathway method, respectively (Xiao et al., 2007; Wang et al., 2004). 

9311 was another indica type restorer line in the two-line hybrid system that’s widely used 

(Wang et al., 2002). 

There are more examples of incorporating herbicide tolerance traits into the femal lines 

than the restoere lines in the two-line system. The advantage of doing so is to allow the 

producers to reduce the cost of planting by mixing the male and female plants when sowing. 

Male plants can be removed simply by applying herbicides to kill them before harvesting. 

Mechanical harvesting of hybrid seeds on the female was carried out after all the male plants 

were killed. This technique is made possible by transferring the herbicide resistance gene in to 

the female line only (Xiao 1997; Kim et al., 2007).  

Bar gene has been widely used in developing herbicide resistant lines in the two-line 

system resistant to herbicide glufosinate ammonium. The marker for the bar gene has ever since 

been used as an efficient tool to select for genetically modified crops (Miki and McHugh, 2004) 

and some crops pertaining the transformed bar gene were even commercialized in the US (Reddy 

et al., 2011). In rice, the Bar gene was transformed into a popular indica P/TGMS line, Pai’ai64, 

which was used in many two-line hybrid combinations with various elite restorer lines, such as 

Pai’ai64/Teqing, Pai’ai64/9311 (Fu et al., 2001).  Kim et al. also transferred the Bar gene via 

Agrobacterium transformation into an elite PGMS line, 920S and develop a herbicide resistant 
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PGMS line, YA3530ms, in 2007. E coli strain DH10B was used as recipient of pCAMBIA3300 

vector containing the Bar gene. Vector construction, rice transformation, and plantlets 

regeneration procedures were from publication by Lee (1999). A conventional pedigree breeding 

technique was used after successful transformation of the initial transgenic lines to include good 

agronomic characteristics.  The seeds from the resulting herbicide resistance PGMS line, 

YA3530ms, are then mixed with seeds from the pollen plants with a ratio of 4:1 in weight to 

produce hybrid seeds. Herbicide was sprayed after the pollination to remove the pollinator plants, 

and harvest seeds only from the female plants YA3530ms.  

Another gene, EPSPS, was also utilized for another herbicide resistance system into a 

japonica PGMS rice line to develop 7001S via the transformation through Agrobacterium. This 

line was later used in various superior hybrid combinations (Peng et al., 2008; Deng 2008, Deng 

et al., 2008).  

The possibility of developing resistance to specific herbicide in weeds due to continuous 

use of a single herbicide has been a concern among agronomist for many years (Neve, 2007; 

Kuk et al., 2008; Heap, 2012). For instance, barnyard grass in rice fields was found to possess 

remarkable resistance to several herbicides, especially selective ones, such as propanil, molinate, 

thiobencarb, and etc (Fischer et al., 2000). On the other hand, non-selective herbicides seem to 

be difficult for plants to induce resistance since almost all plants are susceptible to them. Both 

glyphosate and glufosinate have been used in weed control for more than 40 years, and it is 

reported that only a few of weeds have resistance to glyphosate, and no reports finding resistance 

in weeds to glufosinate (Nandula et al., 2005). Moreover, it is logical to believe the alternative 

use of two or more herbicides should lower the chance of developing herbicide resistance in 

weeds compared to using a single herbicide. Therefore, this same group of researchers have 

developed a PGMS line tolerating two types of herbicides, glyphosate and glufosinate, by 
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transferring two genes with optimized codon, EPSPS and Bar genes, into the 7001S (a japonica 

PGMS line) to develop a new transgenic line, EB7001S (Della et al., 1986; Deng et al., 2014). 

The EPSPS gene from bacteria only expressed and accumulated in the cytoplasm leading to 

EPSPS protein transcribed in the chloroplast in the plant cell, resulting in the transformed plants 

resisting 3.332g glyphosate 2.7 times higher than the suggested rate by Monsanto (Barry et al., 

1997). The hybrid generated from this PGMS line can therefore tolerate both glufosinate and 

glyphosate allowing the growers to control various weeds in the rice fields with lesser chance of 

developing herbicide resistance in the weeds (Deng et al., 2014). 

EB7001S was proposed to serve as female in the two-line hybrid production system, 

mixed-grown with the herbicide-sensitive restorer line.  Restorers can therefore be removed by 

application of herbicides after pollination to reduce the labor cost and possibilities of 

contaminating from the restorer seeds when harvesting. The F1 hybrids can also be applied with 

the corresponding herbicides due to the dominant inheritance pattern of the resistance genes 

from the female, EB7001S. A similar idea has been applied to develop a PGMS rice line that is 

resistant to both striped stem borer and glufosinate herbicide by introducing two genes, Cry2A 

and Bar, after codon optimization based on preferred codon in rice and transferred into a PGMS 

line, 4008S, via Agrobacterium transfer method. Again the developed line was also proposed to 

serve as a potential female germplasm in future two-line hybrid production combining resistance 

to both striped stem borer and glufosinate herbicide (Weng et al., 2014).  

Unlike dominant resistance to the herbicides, which is more widely adapted in different 

crops systems, recessive sensitivity to herbicides was relatively rare, but was also used as a tool 

to be incorporated into crop protection.  A herbicide sensitive mutant developed through 

radiation was first found to be lethal to bentazon, while it is bentazon was usually safe with 

normal rate on most graminaceous crops (Mori et al., 1984).  Bentazone, an active ingredient of 
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herbicides such as Basagran and Bentazone, is used in rice production fields to kill weeds by 

inhibiting photosynthesis. A similar mutation found in maize also was sensitive to bentazon 

(Green et al., 1999). 

The initial utilization of herbicide lethally sensitivity technology in the three-line hybrid 

rice production system started in 1984. Herbicide lethality was incorporated into R-lines instead 

of introduction of herbicide resistance in the A-lines. ‘Norin 8 m’, a mutant version of a japonica 

rice variety ‘Norin 8’, was found to be lethal to bentazone after screening of the induced mutants 

due to a recessive gene, bls. Mutated R-line consisting recessive homozygous of this gene in the 

three-line systems allows the growers to blend the A-line seeds with the R-line seeds and to be 

planted and transplanted together.  The field was sprayed with bentazone herbicide after 

pollination to kill all the male plants in order to bulk harvest the A-line plants bearing all the 

hybrid seeds. The advantage of this technology is of the reduction of required labor to produce 

hybrid seed, as well as the increase of hybrid seed yield and purity. The limitation of this method 

is that the R-line and A-line have to have similar growth durations for synchronization of 

flowering time. Norin 8 m was therefore used as a donor plant for the lethality to bentazone to 

develop different R-lines with various durations to synchronize with various A-lines to create 

different hybrids. The genes responsible for the susceptibility to bentazone were mapped in rice 

and had been used as molecular marker to select for. In a study in 2004, this system with 

lethality to bentazone in R-lines was proven to outyield 42% more hybrid seeds than the 

conventional way of production, and 25% of which was from a higher seed set rate (Zhu et al., 

2002). 

In the two-line hybrid system, this lethality was later identified to be controlled by a 

single recessive gene, bel, found in a mutated PGMS line M8077S (Maruyama et al., 1991). 

M8077S carrying homozygous recessive bel was found to be lethally sensitive to bentazone and 
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sulfonylurea. This characteristic was used in a two-line hybrid production system to eliminate 

the selfed seeds of TGMS by spraying bentazone and sulfonylurea in the hybrid seed field since 

the real F1 generated from this TGMS with a normal male parent will be insensitive to the 

herbicide. A microsatellite marker was also found to be closely linked to this gene that can 

served as marker in the MAS breeding in the future. This method was proposed to solve the 

impurity problem caused by sterility instability of TGMS in the two-line hybrid system (Zhu et 

al, 2002). However the concentration of herbicide applied at different timing of rice stages is 

critical to determine the responses of the treated rice. If the concentration of herbicide is below 

the critical point, it will not cause damage to the self-pollinated PGMS plants mixed in the 

hybrid field, and if the herbicide concentration is higher than suggested, it may also cause 

damage on the actual hybrids. The previous scenario might be hard to detect unless the PGMS 

plants have obvious different phenotype than the hybrids for regular growers to identify. 

Otherwise not being able to kill any plants in the two-line hybrid seed field will only suggest that 

a seed lot has total purity to growers. The sensitivity of M8077S was also suggested to be 

decreased with other herbicide, such as Londax with sulfonylurea as the active ingredient. 

Moreover, the application of bentazon will only workwith the correct concentration, on the 

selfed PGMS lines, but may not work on other potential offtypes or other graminaceous weeds. 

Therefore the proposed use of the bel gene as insurance for purity of hybrid seeds still has its 

own challenges. 

It was later found that the locus of bel in 8077S and bsl for Norin8m are allelic to each 

other and both mutants were due to single-base deletion. The two loci are renamed bel(a) and 

bel(b) relatively. The wild-type Bel gene encodes a novel cytochrome P450 monooxgenase, 

named CYP81A6, and the gene responsible for the tolerance was patented (Pan et al., 2006; 

EP1900817 B1).   
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3. MATERIALS AND METHODS 

3.1. Research objectives 

3.1.1 Objective 1 – Development of the isogenic HT A’-line / B’-line 

A1/B1 and R7 are the parents of an elite hybrid in our breeding program. A1 has good 

agronomic traits and most importantly it has the floral characteristics to be a good female in the 

hybrid seed production. It has good general combining ability (GCA), large stigma, high exertion 

rate (48-65%), and as a result a high out crossing rate.   The complete sterility of A1 is also 

maintained in a stable state by B1, and it can be restored to 80-90% of fertility by the restorer 

parent R7.  

We used this elite A/B lines (A1/B1) that has been tested before and known to produce a 

hybrid with the R-line (R7) with good heterosis in the F1.  The IMI herbicide resistance plant, 

Puita-Inta-CL, was used as a donor the glutamine resistance trait to cross with the B1 to obtain 

the HT1-line. Puita-Inta-CL contains the INTA gene with point mutation at the Ala122-to-

Thr122 on the larger subunit of AHAS enzyme that contributes to the tolerance to the AHAS-

inhibition herbicides.  The inheritance of the herbicide resistance was validated in the progeny 

by spraying the NewPath herbicides at normally lethal rates and only the resistance plants were 

selected by simultaneously killing the susceptible ones.  Without the markers availablem, four 

generations of conversion backcrosses with B1 were conducted to increase the B1 background 

genetic contribution. Validation of herbicide tolerance was done again by spraying NewPath at 

each backcrossing generation.  Confirmation testcrosses were done using A1 at each generation 

of backcrosses.  The sterility of the tested F1 plants was tested by standard procedure of pollen 

staining with 1% iodine I2-KI solution. Only plants that showed irregular shapes of pollen grains, 

and less than 0.01% of the pollens stained were considered as perfect maintainers. Panicles on 
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the same plants at each backcross generations were bagged to insure that there was zero seed set 

due to self-pollination.   

Finally, selection was performed in field conditions based upon phenotypic ratings for 

the best line from all HT1-BC4 that met all the requirements as the derived converted B’-line 

(7019B).  The development of the corresponding CMS line using the developed maintainer line 

is normally done through the standard procedure of repeated backcrossing the newly developed 

maintainer line to a known male sterile line with CMS cytoplasm for generations until the new 

CMS line has the same nuclear genome as the maintainer line and stable male sterility (Chen et 

al., 2011; Wei et al., 2012). In our proposed method, there would be no need to transfer the CMS 

cytoplasm to the 7019B to create its corresponding isogenic A’-line (7019A) if there were no 

attempt to compare the traditional methods of incorporating the GOI into the hybrid utilizing the 

CMS-converted A’-line, which usually takes 2-3 years to complete.  This is one of the biggest 

advantages of this proposed method of incorporating GOI into the hybrid in a more efficient way. 

However, the development of the CMS-converted A’-line was needed in order to make proper 

comparisons.   To develop the CMS line of the 7019B, the CMS were transferred from A1 with 

four generations of cytoplasm backcrosses (CBC).  The sterility was validated by the same 

procedures of pollen staining with 1% iodine I2-KI solution and bagging of panicle to ensure 

zero seed set from self-pollination to develop the corresponding CMS-BC4 line, A’-line (7019A).  

Herbicides were applied at each backcross population to rogue for non-HT plants before 

selecting for desired plants to advance with further backcrosses.  Restorer- and heterosis- 

testcrosses (HTC) were done using 7019A with R7 and CFR7, which were generated from 

efforts detailed in the objective 2. This was to test the fertility of the F1 hybrid and verify that it 

could be fully restored and to compare the heterosis with the hybrid generated from the original 

parents, A1 and R7.   
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The most novel aspect of this approach is using the 7019B as a donor of herbicide 

resistance when producing female seeds for hybrid seed production by crossing 7019B with A1 

only at the last step of basic seed production. This novel hybrid production system is referred to 

as a three-way F1 hybrid production system because it comprises three parents in the hybrid, in 

contrast to the conventional two-way system using only A1/B1 and the R-line as the two parents 

of the hybrid. 

3.1.2 Objective 2- Development of the isogenic HT R’-line 

The elite R-line (R7) was crossed with the donor parent, Puita-Inta-CL, which is a 

glutamine herbicide resistant plant, to obtain the HT1-line. Inheritance of herbicide tolerance in 

progenies was validated by spraying the herbicides and selecting for resistance plants.  Four 

generations of repeated backcrosses with R7 were made with a validation of herbicide tolerance 

at each generation of backcrossing to simultaneously remove susceptible plants. Heterosis 

testcrosses with A1 were made and the fertility of the resulting F1 plants were tested to confirm 

the restorability using the pollen staining protocol with 1% iodine I2-KI solution. Only parents 

with round-shaped pollen grains higher than 85% stained were considered a suitable restorer 

candidate. Bagging panicles on the rest of the panicles on the same plant was done to make sure 

plants had higher than 85% seed set at each backcross generation to further validate perfect 

restorability of the plants selected for advancement.  Finally, selections were made in the field 

for a best-line based upon phenotyping from HT1-BC4 that met all the requirements as the 

derived converted R’-line (CFR7).   Heterosis testcrosses were made using the candidate plants, 

CFR7, with the A1 and 7019A, and the HTC F1s were planted in the field to ensure the presence 

of the heterosis within the F1 and the restorability of the CFR7. 
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3.1.3 Objective 3- Seed production ability of various treatments in ESP 

The third objective was to compare hybrid seed produce ability of various treatments in 

the ESP to look at the actual feasibility of our proposed method. The treatments are referred to 

six different methods composed of six different combinations of (Females x Males) that 

incorporate the herbicide tolerance (HT) into the hybrid seed production systems, including the 

use of HT A’-line (7019A), non-HT A-line (A1), or hemizygous A-line (A1/7019B) with HT R’-

line (CFR7) or non-HT R-line (R7). Our proposed new method is treatment 4. The hypothesis of 

the objective 3 is that the treatment 4 does not have significantly lower seed set yield and 

negative effects on the important agronomic traits compared to the control and other treatments 

(Fig 1). 
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Figure 1. Combinations of A-lines and R-lines used in each treatment in Objective 3 ESP, 
and the corresponding status of the HT gene.    

 

 

Treatment 1 is the most common method of seed production incorporating HT into the 

F1 hybrid seeds.  It is effective because all F1 seed produced will be herbicide tolerant with the 

presence of one copy of HT gene in heterozygous state in the F1 hybrid supplied by the Restorer.   

Treatment 2 is another method of seed production.  It is less frequently utilized because 

it involves backcrossing the trait onto the B-line (maintainer) and the converting the maintainer 

into an A-line (female). The F1 hybrid is also expected to be tolerant to herbicide carrying one 

copy of HT gene inherited from the female parent.  

Treatment 3 is coveted by seed producers because both the A’-line (7019A) and the R’-

line (CFR7) have the HT gene in homozygous status and therefore the production field can be 

sprayed with the herbicide the system utilized.  



74 

 

Treatment 4 is a new method of seed production summarized by this thesis.   The 

incorporation of the herbicide tolerance into the female seeds to be used in the ESP will only 

occur at the last step of foundation seed production by crossing the original A-line (A1) with the 

HT B’-line (7019B) to produce female seeds in a hemizygous state at the locus of GOI 

(A1/7019B).  The incorporation of the herbicide tolerance will occur by crossing the HT R’-line 

(CFR7) with A1/7019B in the hybrid seed production.  

Treatment 5 serves as a control using non-HT restore line that is known to have good 

combinability and heterosis with the female used, A1/7019B, comparing all the measurements 

with our proposed method in treatment 4 using isogenic HT R’-line (CFR7) as the restorer. It 

also can show outcrossing of the F1 female using two different males. 

Treatment 6 serves as base control using both non-HT female and non HT-restorer 

identified by molecular markers as near iso-lines to the HT females and HT restorers. This 

hybrid combination was tested earlier and demonstrated good heterosis for yield.   

Entry numbers (1 to 6) assigned to each of the hybrid combinations in the ESP were 

used in the statistical analysis instead of the treatment numbers. 

Measurements on both female A-line plants and male R-line plants included important 

agronomic traits, such as plant height (cm), average tiller numbers per plant, days to 50% 

heading, days to GA3 application (10% heading of the later heading parent), lodging rating (1-5; 

1: no lodging, 5: flat on ground), phenotype (1-7; 1: poor, 7: excellent), moisture content of both 

R-lines, seed set on A-lines when harvested (%), and major pest or disease responses (1-5; 1: not 

affected, 5: severely infested).  Measurements on only male plants included the following three 

floret characteristics that are most often used to determine a good pollinator: anther size (1-5; 1: 

small, 5: large), floret opening angle (1-5; 1: narrow, 5: wide), and the average of anther exertion 
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rate (%).  Measurements on female A-line plants were related to floret characteristics that are 

often used to determine females with good outcrossing, including average stigma size (1-5; 1: 

small, 5: large), seed set rate (%), and eventually seed set yield (kg/ha). The seed set rate 

measures the number of filled grains per panicle, also known as receptivity, outcrossing rate (%), 

or spikelet fertility (%). The average of the seed set rate (%) from randomly selected 30 A-line 

panicles within the same ESP block has been used as an indicator of stigma viability (Li et al., 

2008). 

Physical comparisons of the agronomic traits and floret characteristics as pollinator were 

made between R7 and CFR7. Comparisons of final seed set between treatment 1 and treatment 6 

(both use A1 as female), between treatment 2 and treatment 3 (both use 7019A as female), and 

between treatment 4 and treatment 5 (both use A1/7019B as female) allowed us to assess if there 

is any negative effect of incorporating the HT trait into the pollinators.  

Heterosis has been widely utilized to increase the yield in hybrid rice by improving the 

performance of various yield-related traits in the F1 hybrids. However, the floret characteristics, 

such as stigma size, stigma exertion rate, stigma receptivity, or stigma viability, have received 

very little attention because it is not directly related to the yield. Moreover, numerous studies 

have been suggesting the floret and stigma characteristics are complex quantitative traits 

controlled by many major and minor QTL (Li et al., 2001; Li et al., 2003; Yamamoto et al., 2003; 

Yu et al., 2006; Deng et al., 2009; Li et al., 2014).  In the ESP of objective 3, comparison of all 

the aforementioned measurements of female characteristics and the number of tillers on female 

plants between treatment 2, 5, and 6 (all have the same pollinator R7, but different females) and 

between treatment 1, 3, and 4 (all have the same pollinator CFR7, but different females) would 

serve as a way to address if there is any positive heterosis effect on the receptivity of the stigma 

of A1/7019B and/or number of tillers. These measurements would suggest the existence of 
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heterosis in the A1/7019B could be validated by comparing final seed set yields. If the heterosis 

is proven to be expressed in the traits related to hybrid seed production, it could be stated as one 

of the advantages for this new seed production method that could largely reduce the cost of seed 

production. 

3.1.4 Objective 4- Comparison of yields and quality of various treatments 

The fourth objective is to compare the final yields of all the hybrids and control varieties 

in the yield trials at two locations in the two consecutive years for various treatments.   The six 

hybrid types as specific outcomes from objective 3, one conventional Clearfield hybrid (XL745), 

two conventional Clearfield inbred varieties (CL131 and CL151) and the converted HT R’-line 

(CFR7) were the ten treatments entries in the model of Objective 4. Entry numbers (1 to 6) 

assigned to the iso-hybrids were used in the statistical analysis instead of the treatment numbers.  

The hypothesis in the Objectvie4 is that the treatment 4 (A1/7019B//CFR7) does not have 

significantly lower yield and negative effects on the important agronomic traits compared to the 

control and the iso-hybrids from other treatments (Fig 2).  

Corresponding herbicides (NewPath
TM

) were applied twice at suggested rate (4 oz/acre = 

280.2 g/ha) to each of the treatments of F1 hybrid trial possessing HT genes at homozygous or 

heterozygous states and did not segregate for non-tolerant plants for validation of the inheritance 

of the trait (treatments 1 to 4).  Herbicide was also applied to the adjacent plot without any HT 

genes to serve as control to prove the effectiveness of the herbicide. Estimates of the levels of 

tolerance of hybrids with different states of HT genes at its locus were based on measurements 

10 days following the 2
nd

 herbicide application, including germination (1-5), plant stand 

establishment (1-5), seedling vigor (1-5), and phytotoxic effects due to the corresponding 

herbicide (1-5).  More measurements were conducted to compare the F1 performances generated 

from various treatments, including number of tillers, 50% flowering (days), major disease 
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response (1-5), lodging (1-5), plant heights (cm), phenotype rating (1-7), and final grain yields 

(kg/ha). NewPath herbicide was applied to the ratoon in every trial at 3X as suggested rate after 

harvest. 

Grain quality was compared by measurements in seed sizes (length, width, and the 

length-to-width ratio), seed appearances ratings (color, translucency, and chalk %), head rice 

recovery (%), milling rice yield (%), and 1000 grain weights (g) for each treatment.   

Comparisons of the yield and important agronomic trait performances between 

treatments 1 and treatment 6, and between treatment 2 and treatment 6 served as evidence of the 

similar or better heterosis in the F1 hybrid to the original hybrid (treatment 6) that neither the 

incorporation of HT gene into F1 from isogenic A’-line (7019A) nor isogenic R’-line (CFR7) 

will affect the heterosis and yields. In this case, the resistance to the herbicide will be a benefit 

and the only major difference between the three treatments.   
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Figure 2. Combinations of A-lines and R-lines used in each treatment in Objective 3 
ESP, and the  resulting hybrids tested in the yield trial for objective 4 with corresponding 
status of the HT gene.    

 

 

Comparisons made between treatments 1 and 2 (both have one copy of HT gene), 

treatment 3 (has two copies of HT genes), helped to answer if there are any positive or negative 

effects on grain yields or tolerance to the herbicide due to the copy number of the HT genes.   

Treatment 4 compared to treatment 3 showed if any yield penalty or gain is observed when ½ the 

population is homozygous and ½ is heterozygous for the HT gene.   Treatment 5 versus 

treatment 3 also provided insight to the effect of HT percentages using a heterozygous HT 

female versus a homozygous HT female.  Comparisons between treatment 4 with treatments 1 & 

3 and comparisons between treatment 5 with treatments 2 & 6 showed if there are any yield 

advantages from including the 3
rd

 parent in the 3WayF1 hybrids.  If the yields are higher, and the 

grain quality or other important agronomic traits are better than the iso-hybrids from other 
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treatments, there is a possible positive heterosis by incorporating the 3
rd

 parent into the hybrid, 

which we called it 3wayF1 hybrid. 

Finally, the grain quality analysis along with the total yield comparisons determined the 

actual feasibility of our proposed method of hybrid seed production. If grain yield, grain quality, 

and other important agronomic traits from treatment 4 are similar to other treatments, the 

feasibility of this new proposed method will have been proven.  

3.1.5 Objective 5- Patent application  

The objective 5 was to seek patent for the proposed new hybrid rice seed production 

method. 

3.2 Experimental designs 

3.2.1 Objective 1 - Development of the isogenic HT A’-line / B’-line 

The first objective is to develop the isogenic HT B’-line (which was later named as 

7019B) through four backcrosses using the donor plant, Puita-Inta-CL, to transfer the GOI, INTA 

gene at homozygous state (HH) (Roso et al., 2010), and the recurrent parent, the elite maintainer 

line (B1) of a known promising hybrid that is not in the recessive state of INTA gene (hh), thus 

has no tolerance to the herbicide.   

The theoretical percentage of homozygosity of BC4F1 is 93.75% and the percentage of 

the recurrent parent genome is expected to be 96.87%.  The objective was to have majority of the 

original parent genome transferred at the generation of BC4F1 to keep the heterosis, but allow for 

some differences for a few traits, which are not critical to grain yield, and to save time which 

may be needed for the backcrossing procedure.   

The F1 plants generated from the first cross between the Puita-Inta-CL and B1 were 

screened for the inheritance of the herbicide tolerance traits by application of the corresponding 
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herbicides, NewPath, at seedling stage at labeled rates. Since the HT trait is controlled by the 

INTA gene in a complete dominant pattern, all of the F1 plants will survive the herbicide 

treatments. Confirmation test crosses (CTC) is a process using the corresponding A-line to cross 

with the new plants to validate the maintainer role of the plants. This process was done using A1 

to cross with every plant from the F1 population and the resulting CTC plants were tested for the 

sterility using two methods, pollen staining and self-bagging.  Standard procedures are as 

following:  Pollen staining using 1% I2-KI iodine solution will be performed make sure the 

viable pollens are less than 0.05% to ensure the maintainer role of the 7019B.  The pollen 

sterility and fertility identification was according to Chaudhary et al. (1981). The standard 

procedure of the pollen staining was to collect two spikelets from the upper, middle, and lower 

parts of a panicle one day after heading. Two to three anthers from each spikelet were crushed 

using tweezers in the 1% iodine I2-KI solution and inspected under a microscope. Pollen grains 

that were round shape and were intensely stained were classified as fully developed and fertile; 

clear, irregular shapes of pollen grains were classified as sterile; anything in-between were 

classified as partially fertile or sterile.  Pollen sterility of a single plant was calculated as the 

mean of sterile pollen rate from six spikelets from each of the three panicles from the same plant.  

Bagging the panicles on the same plant was done to ensure the results of the sterility of the plants.  

The rest of the panicles were bagged before flowering from the same plants from which pollen 

was stained with the sterility pollen rate of 99.99% or higher to validate the staining results. The 

self-seeding rate was calculated by the average of the seed set rate on the bagged panicles. Only 

the ones that had no self-seed set were considered as male sterile and to moved forward and 

crossed with the recurrent parent, B1, to generate BC1F1.  The BC1F1 had the theoretical 

homozygosity percentage of 50% and the recurrent parent genome of 75%. Similar procedures of 

application of NewPath herbicide was conducted at the seedling stage to eliminate the plants 
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with hh.  The remaining of the BC1F1 plants at the heterozygous state of INTA gene (Hh) were 

tested for the role of maintainer with same procedures and standards of pollen staining and self-

bagging within CTC F1 plants created by crossing A1 with each of the BC1F1 plants. Only the 

ones passed the 99.5% sterility standard were used to further cross with B1 to generate BC2F1.  

Theoretically, BC2F1 plants have 75% of homozygosity and 87.5% of recurrent parent genome. 

50% of the BC2F1 population would inherit the herbicide tolerance at heterozygous state (Hh) 

while the rest of the 50% of the population would be at recessive homozygous state (hh) and 

would be killed and removed by the application of the herbicide. All of the remaining BC2F1 

plants carrying INTA gene at heterozygous states (Hh) were tested for the role of maintainer with 

same procedures and standards of pollen staining and self-bagging within CTC F1 plants created 

by crossing A1 with each of the BC2F1 plants.  The ones that passed the sterility standards that 

reach 99.5% of sterility were used to further cross with B1 to generate BC3F1.  The BC3F1 had 

the theoretical homozygosity percentage of 87.5% and the recurrent parent genome of 93.75%.  

50% of the plants would carry INTA gene at heterozygous state (Hh) and the other 50% would 

carry recessive homozygous state of the gene (hh).  Similar procedures of spraying NewPath 

herbicide were conducted at the seedling stage to eliminate the plants with hh.  The remaining 

BC3F1 plants with Hh went through the same procedures to check the maintainer role within the 

BC3F1 plants through of pollen staining and self-bagging within CTC F1 plants created by 

crossing A1 with each of the BC3F1 plants. Only the ones passed the sterility standards of 99.5% 

of sterility were used to further cross with B1 to generate a population of BF4F1.  BC4F1 had the 

theoretical homozygosity percentage of 93.75% and the recurrent parent genome of 96.87%. 

Again, 50% of the plants would carry INTA gene at heterozygous state (Hh) and the other 50% 

would carry recessive homozygous state of the gene (hh), which would be removed from the 

tolerance screening by herbicide application. The remaining BC4F1 plants were tested for the 
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maintainer role by the same procedures and standards of pollen staining and self-bagging within 

CTC F1 plants created by crossing A1 with each of the BC4F1 plants.  Only the plants passed the 

sterility percentage of 99.9% were selected as possible candidates. The selected BC4F1 plants 

were grown under the field conditions in a typical growing season that allowed self-pollination 

to generate BC4F2 population. BC4F2 were planted as a population segregating for herbicide 

tolerance trait since BC4F1 is at heterozygous state for the herbicide tolerance (Hh). 25% of the 

population were at homozygous state possessing hh, which would be killed and eliminated from 

the population followed by NewPath herbicide application.  The remaining 75% of the BC4F2 

population consists 50% of homozygous HH and 50% of heterozygous Hh, which was identified 

by allowing selected plants to self-pollinate again without the identification of molecular 

markers associated with the trait of interest. Seed harvested from the selected BC4F2 were grown 

into BC4F3 panicle rows in the field following the application of herbicide to screen for 

segregation of the tolerance.  Panicle rows that had about 50% of the plants killed were not 

further selected from since the plants survived in the same row are consisted of 50% of HH and 

50% of Hh.  The panicle rows that had no plants responded to the herbicide application and 

survive are consist of homozygous HH status for the GOI. Finally phenotypic selections were 

made based upon good agronomic characteristics and various floret characteristics as good 

female. The one with the best floret characteristics, such as stigma exertion rate (%), stigma size, 

and floret opening angle, and other suitable agronomic traits was selected as the converted B’-

line (7019B). Seed was harvested from individual plants.   

A1 was used as the donor of the CMS cytoplasm to cross with the resultant 7019B. The 

process is called the Confirmation backcrosses (CBC) and the resulting F1 was checked for 

sterility using the same sterility testing procedures and standards. The validated F1 containing the 

CMS cytoplasm with at least 99.99% of sterility were used to crossed with the 7019B again for 
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CBC to generate CMS-BC1F1.  The same plant was crossed with the male parent in the 

promising hybrid, R7, for heterosis testcross (HTC). The resulting HTC F1 seeds were grown 

under field conditions with the R7 side-by-side to evaluate the existence of heterosis and to make 

sure the sterility is restored by the R7 to at least 85% in the HTC F1 plants. Only plants that met 

both of the requirements from the CTC and HTC were selected to make more backcrosses with 

7019B.  Similar procedures were repeated to obtain CMS-BC4F1 through three more times of 

repeated CBC using the resulting CMS-BC lines from each cycle and HTC using R7. Any CMS-

plants with stained pollen of more than 0.01% were discarded.  Application of the corresponding 

herbicide, NewPath, on the selected plants was conducted at seedling stage to validate the 

transfer of the HT gene and the trait of herbicide tolerance at each generation of CTC. Selections 

for good agronomic traits and floret characteristics as female were done throughout the process 

of CTC following the herbicide application at each generation of backcrosses. The resulting 

CMS-BC4F1 plants with CMS cytoplasm and herbicide tolerance transferred, good agronomic 

traits, and floret characteristics will be determined as 7019A, the CMS-converted line of 7019B.   

Again, the whole process of development of a new A-line by transferring CMS and conversion 

of the newly developed B-line is a time consuming and labor intensive work,  whereas in this 

proposed new method, only 7019B is required to be developed through repeated backcrosses.  

This is one of the biggest advantages in this method in regards to time saved from not having to 

develop the corresponding 7019A.  The purity maintenance and seed amplification of 7019A 

was made by crossing with 7019B.   Each HT female, if developed independently, would require 

its own maintenance and seed amplification adding additional work load to a breeding program. 
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3.2.2 Objective 2- Development of the isogenic HT R’-line 

The second objective is to develop the isogenic HT R’-line (which we later name it as 

CFR7) through repeated backcrosses using the same donor plant of INTA gene, Puita-Inta-CL, 

and the recurrent parent, the elite male parent (R7) of our promising hybrid.  The conversion 

process is similar to the conversion of HT B’-line 7019B, except for the need to check for pollen 

sterility at each generation of backcrosses and the CMS transfer process at the end. 

The F1 plants generated from the first cross between the Puita-Inta-CL and R7 were 

screened for the inheritance of the herbicide tolerance traits by application of the corresponding 

herbicides, NewPath, at seedling stage at recommended rate. Since the HT trait is controlled by 

the INTA gene in a complete dominant pattern, all of the F1 plants will survive the herbicide 

treatments.  All of the F1 plants were then further crossed with R7 to generate BC1F1 seeds. The 

BC1F1 had the theoretical homozygosity percentage of 50% and the recurrent parent genome of 

75%. Similar procedures of application of NewPath herbicide were conducted at the seedling 

stage to eliminate the plants with hh.  The remaining of the BC1F1 plants at the heterozygous 

state of INTA gene (Hh) were further crossed with R7 to generate BC2F1. Theoretically, BC2F1 

plants had 75% of homozygosity and 87.5% of recurrent parent genome. 50% of the BC2F1 

population would inherit the herbicide tolerance at heterozygous state (Hh) while the rest of the 

50% of the population would be at recessive homozygous state (hh) and would all be killed and 

removed by the application of the herbicide. All of the remaining BC2F1 plants carrying INTA 

gene at heterozygous states (Hh) were further crossed with R7 to generate BC3F1. The BC3F1 had 

the theoretical homozygosity percentage of 87.5% and the recurrent parent genome of 93.75%.  

50% of the plants would carry INTA gene at heterozygous state (Hh) and the other 50% would 

carry recessive homozygous state of the gene (hh). Similar procedures of spaying NewPath 
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herbicide were conducted at the seedling stage to eliminate the plants with hh.  The remaining 

BC3F1 plants with Hh were backcrossed again with R7 to generate BC4F1. BC4F1 had the 

theoretical homozygosity percentage of 93.75% and the recurrent parent genome of 96.87%. 

Again, 50% of the plants would carry INTA gene at heterozygous state (Hh) and the other 50% 

would carry recessive homozygous state of the gene (hh), which would be removed from the 

tolerance screening by herbicide application. The remaining BC4F1 plants were grown under the 

field conditions in a typical growing season to allow self-pollination to generate BC4F2 

population. BC4F2 were grown as a population segregating for herbicide tolerance trait since 

BC4F1 is at heterozygous state for the herbicide tolerance (Hh). 25% of the population would be 

at homozygous state possessing hh, which would be killed and eliminated from the population 

followed by NewPath herbicide application.  The remaining 75% of the BC4F2 population 

consists 50% of homozygous HH and 50% of heterozygous Hh, which we would need to identify 

by allowing the selected plants to self-pollinate again in the absence of molecular marker for the 

HT gene. The seeds harvested from the selected BC4F2 were grown into BC4F3 panicle rows in 

the field following the application of herbicide to screen for segregation of the tolerance.  Panicle 

rows that had about 50% of the plants killed were not further selected from since the plants 

survive in the same row consisted of 50% of HH and 50% of Hh.  The panicle rows that had no 

plants responded to the herbicide application and survived were consisted of homozygous HH 

status for the HT. Finally phenotypic selections were made based upon agronomic characteristics 

and various floret characteristics such as anther size and pollen exertion rate. The selected plants 

were crossed with the A1 to generate F1 seeds to grow in the field with the corresponding 

reference male plants to evaluated the heterosis within the F1 and to assure the sterility of F1 that 

were restored to at least 85%, a process also known as heterosis testcrosses (HTC).  Seeds were 

then harvested from the selected plant, named CFR7. 
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3.2.3 Objective 3 - Seed production ability of various treatments in ESP 

The A-line seeds for treatments 4 and 5 were produced ahead of the ESP planting by 

crossing ht/ht A-line (A1) with its isogenic HT/HT B’-line (7019B) to generate hemizygous state 

of HT/ht A/B’-line (A1/7019B). Hemizygous A1/7019B seeds were first produced in the 2014 

ESP field in El Campo, TX to be used as female seeds later in the ESP production; A1 and 

7019A were separately annually produced from the maintenance seed production system in 2014 

and 2015. R7 and CFR7 were also produced annually from the maintenance seed production 

system in 2014 and 2015 field in El Campo, Texas. 

For each of the ESP block, GA3 was applied at stage when A-line or R-line, whichever 

was later, reached 10% heading stages to enhance the panicle exertion in each ESP block. 

Supplementary pollination was carried out four times a day with a leaf blower roughly 20 

minutes during the peak of flowering each day. The supplementary pollination lasted until the R-

lines finished flowering, which was about 10 days since the 10% heading. 

A randomized complete block design (RCBD) was the experimental design for objective 

3. Each treatment had its own A-line female plants as pollen receiver and R-line male plants as 

pollinators.   A-lines from treatments 1 and 6 were A1. A-lines from treatments 2 and 3 were 

7019A. The A-lines used in treatments 4 and 5 were produced from foundation seed production 

using A1 as female and 7019B as male to produce female plants with heterozygous at the locus 

of the herbicide resistance gene (A1/7019B). The R-lines used in the treatments 1, 3, and 5 are 

homozygous for herbicide resistance gene (CFR7). The R-lines used in the treatments 2, 4, and 6 

are homozygous for herbicide resistance gene (R7).   

In 2015 and 2016 in El Campo, TX, direct seeding was performed with 30g of seeds / m
2
 

for both female and male plants in the ESP field in normal planting season. There were three 

replications for each ESP plot. Each ESP plot includes the following five treatments that’s 
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randomly assigned for their order in each ESP plot:  treatment 1 includes the female A1 and the 

male CFR7; treatment 2 included female 7019A and male R7; treatment 3 included female 

7019A and male CFR7; treatment 4 included the hemizygous female A1/7019B and male CFR7; 

treatment 5 included the hemizygous female A1/7019B and male R7; treatment 6 included the 

parents of the original hybrid, female A1 and male R7.  

To ensure the genetic purity of each production field, isolation was established by setting 

up a tarp barrier in between treatments. The row ratio of A-lines to R-line was 2:4 with the R-

line on the first two rows and A-line on the next four rows perpendicular to the wind direction.  

ESP field setting is demonstrated as in Figure 3 with pink rows representing A-line and purple 

rows representing R-lines.  Each ESP block contains 13 repeats of same ratios of A-lines and R-

lines. The total length of each ESP block is 19.9 meter and the width is 2.13 meter. 
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Figure 3. Demonstration of the field setup for objective 3 and objective 4.  In objective 3, 
pink rows and purple rows represent A-lines and R-lines respectively.  

 

 

The application of gibberellic acid (GA3) was at 10% heading at a dose of 30 g/acre 

(74.1g/ha) of was applied with a backpack sprayer.  The purpose of applying GA3 is to stimulate 

the cell elongation and promote panicle exertion in female lines. It also has the following effects: 

1) increases the duration of floret opening, thus ensures pollination; 2) increases stigma exertion 

and its receptivity; 3) promotes plant height; 4) widens the flag leaf angle which facilitates entry 

of the pollen grains; 5) influences flowering and thus transplanting in parental lines can be 

adjusted; 6) promotes panicle exertion and growth rate of secondary and tertiary tillers (Suralta 

and Robles, 2002). 
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Besides natural wind, supplementary pollination was carried out using the backpack leaf 

blower to pollen from male plants to adjacent female plants. This process was done five times a 

day starting roughly from 11:00 AM depending on the weather with 30 minutes in between sets 

of blowing. It was continued   for 10 days after the first day of GA3 application.  The leaf blower 

is set at approximately 15 mph (24 km/hour) of wind speed. 

The following observations were taken for each of the treatments on both A-line and R-

line separately in every repeated ESP plot: Plant height (cm) at prior to harvest, tiller number 

(number of tillers per m
2
 in the same area) at prior to harvest, days to 50% flowering (days), 

phenotype rating (1-7, 1: poor, 7: excellent) at prior to harvest, relative moisture (%) of both R-

line and F1 seeds on A-line - at harvesting, and major pest or disease responses (1-5, 5: 

susceptible, 1: tolerant). 

The following observations were taken for each of the treatments on only R-line in every 

repeated ESP plot: anther size (1-5; 1: small, 5: big) and anther exertion (1-5; 1: poor, 5: 

excellent). 

The following observations were taken for each of the treatments on only A-line in every 

repeated ESP plot: stigma size (1-5; 1: small, 5: big), stigma color, number of filled grains per 

panicle (spikelet fertility %),  seed set rate (%), stigma viability (%), and seed set yield at 12% 

relative humidity (kg/ha). 

The mean of seed set rate (%) was calculated from the main panicles from 30 randomly 

picked A-line plants in an ESP block to determine stigma viability.  For one plant, the seed set 

rate was the number of fertilized spikelet divided by total number of spikelets on the same 

panicle, subtracted by the self-pollinated-seeding rate resulting from ratooning, which is 

normally zero for a sterile WA-CMS A-line.  Evaluation of all the traits will be conducted 
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according to the “Standard Evaluation System for rice (SES) manual” provided by International 

Rice Research Institute (IRRI) (IRRI, 2002).  

3.2.4 Objective 4 - Comparison of yields and quality of various treatments 

For the F1 preliminary yield trials as the experiment 2, six hybrids generated from 

experiment 1 were planted with aforementioned controls (Inbred varieties CL151, CL131, CFR7, 

and Hybrid XL745) randomly assigned in adjacent plots as a preliminary yield trial.  In the 

statistical analysis of data, hybrid seeds generated from ESP treatment 1 corresponds to entry 3, 

hybrid seeds generated from ESP treatment 2 corresponds to entry 4, hybrid seeds generated 

from ESP treatment 3 corresponds to entry 5, hybrid seeds generated from ESP treatment 4 

corresponds to entry 1, hybrid seeds generated from ESP treatment 5 corresponds to entry 2, and 

hybrid seeds generated from ESP treatment 6 corresponds to entry 6.  The six hybrids were 

referred to as iso-hybrids. 

CL131 was a conventional inbred variety developed by the LSU AgCenter’s Rice 

Research Station in 2004, and CL151 was another conventional inbred variety developed in 2008.  

Both of them were registered with BASF in 2011. It has a gene resistant to imazethapyr and 

therefore can be used with Clearfield production system.  The rice grain yield of CL151 was 

reported to reach 8.3 Mg ha
−1

 compared with 7.5 Mg ha
−1

 for CL131.  CL151 was also reported 

to have higher seedling vigor than CL131. CL151 has a plant height of 94 cm while CL131 has a 

height of 84 cm, and both of them reached 50% heading around 81 days when grown in 

Louisiana (Blanche et al., 2011).  Hybrid XL745 is a commercial hybrid released by Rice Tec in 

2007 that is tolerant to the imidazolinone class of herbicides. It can be used with Clearfield 

production system. It was reported to possess roughly 739.36 kg yield average over CL151. The 

XL745 hybrid and the seed production method were patent as US 8153870 B2 (Rice Tec, 2012). 
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XL745 reached 50% heading around 71 days and has a height of 115 cm according to data 

collected in Alvin, TX from the patent disclosure. 

A randomized complete block design (RCBD) with three replications and ten entries was 

used for preliminary yield trial.  The field was blocked so that each replication had similar soil 

types, water supply and fertilization.  

Plots were 1.83 m x 4.27 m with six rows. Each trial included hybrid seeds from six 

treatments, a HR commercial hybrid, and three HR commercial inbred varieties as controls. All 

genotypes had similar maturity habits, and were mechanically direct-seeded with a planting 

depth of less than 25 mm to facilitate a uniform stand. For each hybrid entry, 25g of hybrid seeds 

were planted, and 68g of seed for each inbred variety. Trials were managed similarly to 

commercial rice production to optimize production. Production practices included timely water 

management, soil fertilization, and insect and weed control.  

Yield trials were conducted in El Campo and Pierce, Texas, in 2015 and 2016.  Soil at El 

Campo is a sandy clay loam, while soil at Pierce is heavy clay with a dark color and high organic 

matter.  The trials were managed with standard agronomic procedures. Prior to planting, 62 

kg/ha N in the form of ammonium sulfate was applied.   Pre-flood nitrogen fertilizer was applied 

at 62 kg/ha in the form of urea and 17 kg/ha of ammonium sulfate. Fields were flushed twice; the 

first time was immediately after planting where water was applied for 24 hours and then drained. 

The second flush was five days following the first drain.   The first NewPath herbicide 

application was made at the 3-4 leaf stag at a rate of 280.2 g/ha.  Ten days later, the second 

application of NewPath at a rate of 280.2 g/ha was applied respectively on corresponding plots. 

Evaluation of the plant stand, plant vigor, and germination were conducted before the herbicide 

application. The response to herbicide was conducted five days after the 2
nd

 herbicide application.   

When individual plots reached maturity at 18-20 % moisture content, they were cut and threshed 
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with a stationary thresher. Grain yields of each plot was adjusted and converted based on the 

moisture content prior to analysis. The harvested seeds were dried with a specialized propane 

heated dryer.  After the seeds reach 10-12 % moisture, a sub-sample from each was for grain 

quality assessment. After harvesting, NewPath herbicide was applied at 3X of the labeled rate 

(840.64 g/ha) on the ratoons of every plot to review the level of resistance and injuries. 

The following observations were recorded from the preliminary yield trial: germination 

(1-5, 1: poor, 5: excellent) at three weeks after planting, plant stand establishment (1-5, 1: poor, 

5: excellent) at three weeks after planting, seedling vigor (1-5, 1: poor, 5: excellent) at three 

weeks after planting, plant height (cm) at prior to harvest, tiller number (number of tillers per 

plant) at prior to harvest, days to 50% flowering (days), lodging (1-5, 1: weak straw, 5: strong 

straw) at prior to harvest, phenotype rating (1-7, 1: poor, 7: excellent) at prior to harvest, 

segregation of any noticeable traits (culm color, stigma color, etc), relative moisture (%)  at 

harvesting, grain yield at 12% relative humidity (kg/ha), 1000 grain weight (g), major pest or 

disease resistance (1-5, 1: susceptible, 5: tolerant), responses to NewPath herbicide (1-5, 1: 

susceptible, 5: resistant) on seedlings at 3-4 leaf stage and ratoon. 

Grain quality of each hybrid combinations were determined by the following evaluations: 

milled rice yield (%), head rice yield (%), chalkiness (%; 0-10%: little chalk; 11-25%: acceptable; 

> 25% chalky), translucency (1-5), color (1-5), length: width ratio (L:W). 

The middle seven rows from each plot were harvested to reduce potential variation 

attributable to border row effects. Grain yield was determined by adjusting the total grain yield 

from each plot to the weights at 12% relative moisture. Milling yields were determined using a 

100g sample of paddy rice dehulled and milled with the standard protocols. Total milled rice was 

weighed, broken kernels removed, and head rice yield was determined. Percent head rice was 

determined by dividing the weight of the whole grain milled rice by the total milled rice.  
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3.3 Statistical analysis  

3.3.1 Yield data adjustment 

All of the harvested weights from ESP and yield trials measured in pounds were 

subjected to adjustment based on the moisture content at harvest to standardize them to the 

adjusted weight as if at 12% moisture content before further analysis. 

Analysis of yields and other measurable traits 

The adjusted yield data, as well as other measurable traits, were then analyzed using 

JMP Pro 12 Software from ESP and yield trials.  JMP Mixed Model was used for ANOVA to 

test for the significance of the effects. Different treatments (genotype entries), locations, and 

years are the three main effects.  The ten treatments are the 10 genotype entries; the two years 

are 2015 and 2016; the two locations are El Campo and Peirce Ranch, TX.  All three factors 

were treated as fixed effects. Blockings within each environment were treated as random effects. 

Pairwise significant differences between different treatments (genotype entries and locations) in 

ESP and yield trials were performed using LSMean Student’s t-test at 95% confidence with JMP 

statistics.  Values indicated by different letters represent significant differences at P<0.05. 

Mid-parent heterosis (MPH) in the A1/7019B was measured based on means for the 

stigma viability from the two A1 and 7019A based on the seed set yield in ESP trial analysis. 

The following formula was used to estimate the MPH: 

MPH (%) = (F1-MP)/MP * 100, while MP is the average means for the stigma viability 

from the two A1 and 7019A. F1 is the stigma viability of the A1/7019B from the ESP seed set 

yield analysis data. 
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Grain quality 

When the whole batches of grain reached moisture content of 10-12%, five sub-samples 

of 1000 grains were taken from each genotype as determined by a mechanical seed counter and 

then weighed to obtain a weight per grain.  Samples were collected from only 2016 Pierce Ranch 

since the length, width, and the ratio of the rice grains is a highly heritable trait, which is 

relatively stable per variety.  Broad sense heritability of L:W of grains in rice was calculated as 

0.89 with an F2 population (Rabiei et al., 2004) and the narrow sense heritability of L:W of 

grains of rice was estimated to be greater than 0.84 with an F2:3 population (Fahliani et al., 

2011).  Twenty grains were randomly sampled from each entry genotype to measure the length 

and the width of the caryopsis, and the ratio of the L:W.  

CV% and combined analysis 

A coefficient of variation (CV%) was calculated for each test.   Lower CV% values 

indicate greater lesser inter-plot variation and often times a measure of the quality of the test.  

For varietal yield trials, CV% values < 10% are generally considered to be extremely reliable 

due to little variance in the environment and CV% values between 10% and 30% are considered 

acceptable (Taylor et al., 2008).  The LSD and CV% values for yield in these tests are reported 

in the footnotes of each test. CV% for each individual trial in each year of each location was 

calculated individually before any data combination from different years or locations.   Two 

outlier data points from 2015 El Campo and two outlier points from 2016 Pierce Ranch were 

deleted because of either animal damages or severe lodging, which would have resulted in a high 

standard deviation before further combining analysis. 
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GxE interactions 

Genotype-Environment Interaction (GxE interaction) on yield and other traits 

performances of all genotype entry in different environments (year & location) was determined 

through ANOVA.  In this way, it was ascertained if a genotype had a stable consistency across 

years and locations or was there is some level of GxE interaction.    
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4. RESULTS AND DISCUSSION 

4.1 Objective 1 - Development the isogenic HT A’-line/ B’-line 

The converted HT B’-lines, HT1-BC4, was named 7019B because it has an 87% 

resemblance to the original B1 (molecular data not shown).  A small portion of dissimilarity was 

desired between the B1 and 7019B so that feasibility could be verified for this method of only 

four backcrosses, which allows breeders to save time and labor in developing isogenic lines.  

Some degree of heterosis in the A1/7019B F1 may help with hybrid seed production.   The 

acceptance of the conversion is conditioned only if the resultant 7019A has stable sterility when 

crossed with 7019B, fully restorable by the R7 and CFR7, and with comparable heterosis when 

crossed with R7 and CFR7 as with the original A1. The positive results would suggest the 

conversion of the HT B’-lines through four backcrosses is adequate to keep the same level of 

heterosis in the hybrids and useful in the new hybrid seed production method.    

The pollen staining test with I2-KI solution during the CMS conversion confirmed that 

7019B was a maintainer line for WA-CMS A1 because the hybrid of the resulting F1 from the 

HTC crosses between A1 and 7019B was completely sterile. Therefore, the F1 progenies were 

backcrossed with 7019B to obtain the first generation of backcross (HT1-BC1), which was later 

used as female in the following generation of backcrossing to obtain HT1-BC2, which was again 

repeated until the HT1-BC4 was obtained.   Final selections in the field were performed among 

all the HT1-BC4, and the resulting plant was named 7019A. Evaluation between 7019A and 

7019B showed there was no significant agronomic difference among them other than pollen 

sterility.  

Moreover, both A1 and 7019A have excellent stigma exertions and big stigma size 

(Table 2 and Fig 4). The comparable stigma receptivity was proven from the ESP trials 



97 

 

(objective 3) that showed both of them have similar outcrossing rates and final seed set yields 

under similar field conditions over two years.   

Major differences between A1/B1 and 7019A/7019B include plant height, days to 50% 

heading, and panicle length in the normal growing season (Table 2 and Fig 5). 

 

 

Figure 4. Panicles of three females, A1, 7019A, and A1/7019B 

 

 

Other than the traits listed in the table 2, the A1/B1 and HT 7019A/7019B lines differ in 

regards to stigma color (Fig 5), apiculus, and the culm bases. The original A1/B1-lines possess 

purple culm bases, stigma and apiculus due to the anthocyanin pigmentations accumulation at 

those plant parts, while the 7019A/7019B lack anthocyanin pigmentations and therefore have a 

green culm, white stigma, and apiculus.  The anthocyanin pigmentation pattern received 

relatively less attention since they are not considered as critical factors to grain yield or any other 
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important characters of the rice plants. Anthocyanins are water-soluble vacuolar pigments that 

may appear red, purple, or blue depending on the pH inside the cells. They belong to a parent 

class of molecules called flavonoids synthesized via the phenylpropanoid pathway. Localization 

of the anthocyanin pigments can be used a variety as unique; however, the color is often weakly 

expressed at young stages or if the plant part is shaded. The expression of anthocyanin color in 

the stigma is observed only when the apiculus is colored. The coloration of the culm base was 

also found to be related to the anthocyanin pigmentation pattern of the stigma and apiculus.  

Although colors are an easily visualized difference between A1/B1 and 7019A/7019B, there is 

no evidence to indicate that this is a trait is critical to the stigma receptivity.  Furthermore, there 

are published studies that suggest a relationship between color and the stigma receptivity. 

 

 

 

Figure 5. Florets of three females, A1, 7019A, and A1/7019B. 
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Genotype Description 

Plant 

Height 

50% 

Heading 

Panicle 

Length 

Tiller 

Number 

Stigma 

Viability 

Grain 

Shape 

Stigm

a Size 

cm days cm 
No./plan

t 
% S,M,L 

1-5 

A1 CMS donor  74.10 c 64.15 b 15.47 b 16.00 a 45.69 b L 5 

7019A 

HT donor 

A'-line 84.85 a 82.65 a 21.44 a 15.90 a 44.08 c L 5 

A1/7019B 

HT 

Hemizygous 

78.65 

b 73.15 b 22.20 a 16.30 a 53.16 a L 5 

 
Table 2. The phenotypes, floret characteristics, and grain types descriptions of female 
plants, A1, 7019A, and A1/7019B. Different letters represent significant differences at 
P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics. 

 

Plant height, days to 50% heading, panicle length, number of tillers, stigma viability and 

size were measured on 30 randomly selected plants for each genotype.  Plant height was 

measured from the ground up to the tip of tallest panicle just prior to harvest. Plant height is 

generally an additive trait, so with A1/7019B being about halfway between A1 and 7019A fits 

that model (Table 2). Days to 50% heading was similar to plant height, in that this trait is 

supposedly controlled by additive gene action. Therefore with A1/7019B being in between the 

early maturing A1 and later maturing 7019A, fits that model. There were no significant 

differences among the genotypes for number of tillers, but for panicle length 7019A and 

A1/7019B had longer panicles than A1. Although some researchers have reported that panicle 

length is predominantly controlled by additive gene action, the estimate of inheritance of the 

panicle length in rice can vary according to experimental designs, materials, and the approaches 

to measure. Babar et al., (2007) estimated the broad sense heritability of 0.74, while others had a 
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0.04 broad sense heritability of panicle length (Sabu et al., 2009). An estimate of narrow sense 

heritability of 0.19 was estimated for panicle length by different population of rice (Fahliani et 

al., 2010). Results of this study support the notion that dominant action of the genes is 

controlling panicle length since the A1/7019B was not significantly different than 7019A. 

Once the 7019B was developed, the herbicide tolerance trait was introduced into the 

female line at the last stage of basic seed production (A-line x HT B’-line) to generate female 

seeds (A1/7019B) for the AxR hybrid seed production in ESP. Therefore, the best use of this 

proposed 3wayF1 hybrid production method is to use the herbicide tolerance that is controlled by 

a single locus dominant gene encoding tolerance at both homozygous and heterozygous states.  

The majority of the known herbicide tolerance traits are controlled by a single locus dominant 

gene. 

The most critical and challenging part of the 3-line hybrid breeding program is 

identification of a female line that possess good general combining ability (GCA) with other 

desirable traits such as pollen acceptance which allows it to serve as a tester in a breeding 

program.  Other than the necessity of being mostly sterile as a requirement that has to be met by 

an A-line candidate; according to Hallauer (1975), an ideal tester should maximize the genetic 

gain when crossed with the R-lines. More detailed criteria of a good tester in hybrid breeding 

programs was further suggested by Hallauer (1975), including the ease of use, ability to generate 

information that classifies the potential for the crossings correctly, maximum genetic gain, and 

elimination of lines with unsatisfactory performance from evaluation of the F1 combinations 

(Duarte et al. 2003; Elias et al. 2000). Breeders have reported that by using good testers, they can 

also serve as means of classifying genotypes into different heterotic groups, which critical 

information in a hybrid breeding program (Nestares et al. 1999). Therefore, the development and 

identification of an elite A-line is the most important step in a hybrid breeding program that can 
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be labor-intensive and time-consuming. The A-line is the most valuable germplasm asset that 

breeders create because that can substantially impact F1 combinations with a wider range of R-

lines. 

Unlike A-lines, thousands of R-lines can be selected each year from the RxR populations 

of advanced generations R-lines in a moderate hybrid rice breeding program. The last step of the 

R-lines selection needs to be test crossed with the existing A-line to evaluate the performance of 

the respective F1 combinations of their heterosis and the existence of specific combining ability 

(SCA). SCA is used as the parameter used to assess the value of unique combinations between 

an A-line and an R-line. This parameter is obtained by the difference between the mean of a 

specific cross in relation to the overall mean of crosses with a particular tester. GCA is a 

parameter that describes the value of parents over a large number of progeny combinations. SCA 

can be interpreted as deviations of hybrid combinations from the expected in the GCA of the 

parents (Marin et al. 2006). These deviations are usually due to the action of dominance or 

epistatic effects. 

Hence, one of the biggest advantages of this 3wayF1 hybrid production method is that it 

allows plant breeders to make the most effective use of an elite A-line known for its potential to 

create heterotic F1 progeny with different herbicide tolerance traits into the female lines prior to 

production of the hybrid instead of breeding and maintenance for individual AxB pairs with 

different traits of interest (herein tolerance to different herbicides) separately, which can be 

expensive in terms of time and money. During the same time of selecting for different R-lines to 

be tested with the A-line, development of isogenic B’-lines can be individually developed by 

repeatedly backcrossing, which can even be faster with the aid of marker assisted selection. This 

should increase the versatility to produce unique isogenic B’-lines carrying different traits of 
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interest. A pool of isogenic B’-lines with different traits of interest could be specifically designed 

and developed to meet any potential markets can be created and ready to be used. 

There can be possible obstacles with this method when the chosen donor of the gene of 

interest is not a maintainer by itself, but a restorer with Rf3 or Rf4 genes. If the gene of interest is 

closely linked with restorer genes on the same chromosome, it may be difficult to remove by 

repeatedly backcrossing without the use of molecular markers to assist in breaking genetic 

linkages. The female seeds A’-line will be partially fertile in its own maintenance breeding 

process. The number of plants with partially fertile seed set will increase in each step of the basic 

seed production that causes impurity and requires more labor at rogueing. Moreover, the A-

line/B’-line produced from this converted B’-line at the last step of the basic seed production 

will be partially fertile. This can cause further impurities in hybrid seed production.  It is worth 

noting that some level of partial fertility may be acceptable by the growers if the F1 seeds 

produced in the AxR hybrid seed fields meet seed purity standards.    

4.2 Objective 2- Development the isogenic HT R’-line 

One of the other solutions incorporating the herbicide resistance or other trait of interest 

into the hybrid with a relatively quicker and easier way is by introducing the trait into the hybrid 

via the R’-line developed from the original R’-line. Development of isogenic R’-lines would be 

similar to the process of developing isogenic B’-lines through repeated backcrossing since both 

are male fertile. By producing different isogenic R’-lines carrying different traits of interest, a 

pool of isogenic R’-lines with various traits of interest can be specifically developed to meet 

anticipated demands in the marketplace.   This results in a hemizygous state for the genes or 

alleles determining the trait of interest in the F1 hybrid plants. 
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Geno

type 
Description 

Plant 

Height 

50% 

Heading 

Panicle 

Length 

Tiller 

number 

Anther 

size 

Grain 

Shape 

cm days cm No./plant 1-5 S,M,L 

R7 R-line 75.72 a 72.00 a 30.82 a 18.82 a 5 L 

CF 

R7 

HT donor 

R’-line 75.60 a 71.15 a 29.73 a 18.53 a 5 L 

 
Table 3. The phenotypes, floret characteristics, and grain types descriptions of male plants, 
R7 and CFR7. Different letters represent significant differences at P<0.05 with LSMean 
Student’s t-test at 95% confidence with JMP statistics.   
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Figure 6. Panicles, florets, and plant types of the two male plants, R7 and CF R7.  

 

 

R7 and CF R7 had no significant differences in the plant height, days to 50% heading, 

panicle length, the number of tillers, and florets (Table 3 and Fig 6). In addition, the appearances 

of plant types and grain shapes are similar. Both had anther sizes with the rating of five, similar 

floret opening time during anthesis, and high restore ability of the A1 making them ideal 

pollinators in the ESP. 

4.3 Objective 3- Seed produce ability of various treatments in ESP 

There is considerable time saved from not having to fully convert the HT B’-line and HT 

R’-line with the only minor differences, including the HT gene itself, is conditional. It is 

acceptable only when the resulting the 3wayF1 (A/B, A’/B’, and R’) hybrid does not possess 

obvious segregation in regards to some critical traits. The most important traits are related to 
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grain yield that could affect heterosis if they segregate. The second important trait, which is less 

obvious during segregation, is heading dates and maturity lengths of the 3wayF1 hybrid. 

Uniformity of heading dates and maturity lengths is a critical factor for growers attempting to 

harvest the crop at a stage with optimal grain moisture across the whole field, which in turn 

maximizes yield and grain quality. The third important trait is plant height because a field with 

heterogeneous heights causes difficulties during harvest, and shorter plants can be shaded by 

taller plants, which results in lost grain yield.  Other traits that could possibly segregate and can 

be readily seen by growers but have no effects on the heading durations and yield are considered 

to be inconsequential.   

The original A1/B1 lines and converted HT 7019A/7019B lines differ in the stigma 

color and a few of the traits as mentioned in objective 1. Whether this level of conversion is 

acceptable depends upon the ESP’s ability to produce seed and yield performance compared to 

the original hybrid and corresponding iso-hybrids. 
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   Seed Set Yield 

ESP Combination (kg/ha) 

Entry Female Male 2015 & 2016 Combined  2015 2016 

1 A1/7019B CFR7 1045.04 a 725.11 a 1284.99 a 

2 A1/7019B R7 945.92 a 600.59 b 1291.25 a 

3 A1 CFR7 430.17 b 510.12 bc 370.21 c 

4 7019A R7 559.51 b 389.35 d 729.68 b 

5 7019A CFR7 542.75 b 395.16 d 690.34 b 

6 A1 R7 417.40 b 430.61 cd 404.19 c 

 
Table 4. Seed set yield (kg/ha) for the six entries analyzed separately in 2015, 2016, and 
combined analysis from the two years ESP.  

 

Interaction of year*entry, entry, and year are all significant from the ANOVA F-test 

(Appendix 1). There are environmental and genetic factors that can influence grain yields in the 

ESP. Temperature, humidity, wind speed, and precipitation can affect both pollen dispersal and 

stigma receptivity during pollination. In general, temperature at 24-28
 o
C, a relative humidity 70-

80%, a clear sky, and a wind speed at least 19 km/hour during anthesis everyday in the course of 

heading has been identified as the most favorable environment for efficient pollination in rice 

(Xu and Li, 1988). The ESP seeds were planted in May in 2015 and 2016 in the same ratios and 

managed with the same protocol. The temperatures (Max, min, and mean) and the amount of 

precipitation during the flowering time in August in both years were similar. The most critical 

environmental difference between years was wind speed, which is the most important pollination 

supplement after the application of GA3 to achieve a higher seed set yield in a hybrid seed 

production field. In August of 2015, the maximum and average wind speeds were 24 km/hour 

and 8 km/hour respectively. In August 2016, the maximum and average wind speeds were 42 
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km/hour and 16 km/hour respectively.  Although artificial pollination was facilitated using leaf 

blowers every 30 minutes during the floret opening time in both years, natural and continuous 

blowing wind is more effective than intermittent artificial pollination.  Differences in wind might 

be the primary cause of higher averaged seed set yields in 2016 compared to 2015. 

It is desirable for male parent plants to tiller abundantly since it directly results in more 

panicles. Floret characteristics of the male plants, including anther size and pollen exertions are 

also important in determining the efficiency of pollination. Recall that R7 and CFR7 had no 

significant differences among most traits related to plant type or floret characteristics.  For the 

female plant, the amount of tillering determines the number of effective panicles, which is as 

important as the number of tillers in the male plants in the ESP system. Recall that the females 

A1, 7019A, and A1/7019B had no significant differences in the number of tillers.  Physical 

differences among florets in female parents and differences of how female plants respond to the 

environments or GA3 application become the most critical  factors determining final seed set on 

the female plants when grown with the same  pollinators (R7 and CFR7).    Other genetic factors 

of female parents that influence seed set yield on each panicle, which is used to calculate seed set 

rate (%) and overall stigma viability of a specific female variety, includes stigma size, stigma 

longevity, floret opening time, floret opening angle, and stigma exertion rate. Together these 

traits determine stigma viability of a specific variety as a female parent.  

Synchronization of heading time between male and female plants in the ESP is an 

important factor affecting pollination efficiency. 7019A and A1/7019B had days to 50% heading 

closer to R7 and CFR7 than to A1.   This inherently gives 7019A and A1/7019B an advantage in 

setting seed during hybrid seed production. 

Because of the different pollination environments that resulted in significant year*entry 

interaction and year effects as elucidated by the  ANOVA F-test, an analysis of seed set yield by 
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years along with  the combined analysis was conducted to more fully explain how female  and 

male plants responded to environmental conditions.  

Although the average seed set yields between years are different according to the 2-

factorial analysis, the two 3way ESP blocks, entry 1 (A1/7019B//CFR7) and entry 2 

(A1/7019B//R7) with A1/7019B as female parents, consistently had the highest seed set yields 

among the six entries in each of the two years.  This seed set advantage of A1/7019B was even 

more profound in 2016 with environmental conditions that were favorable to pollination, which 

were almost double the amount of seed set yields from the same ESP in 2015.  A similar trend of 

seed set from the two ESP with 7019A as female parents entry 4 (7019A/R7) and entry 5 

(7019A/CFR7) was observed.  Seed set yield of the two ESP in 2016 was nearly double the seed 

set yield in 2015 most likely due to stronger wind speed that favored pollination. The two ESP 

with A1 as female parents, entry 3 (A1/CFR7) and entry 6 (A1/R7), had similar performances in 

the two years with different pollination environments.  The seed set yield difference between the 

blocks with A1 and blocks with the other two females may be due to the fact that the A1 reached 

50% heading eight days earlier than the other female parents, which was less synchronized with 

the R-lines.  A1, however, had longer stigma longevity and reception ability than 7019A in 2015, 

which was an environment that was less favorable for cross-pollination.   A1 was poorly 

synchronized with the two R-lines. Nevertheless, entry 3 (A1/CFR7) had a comparable seed set 

yield with entry 5 (7019A).  In 2016, with favorable pollination conditions, A1 still had 

relatively stable performance in the seed set yield, while the seed set yields on 7019A was lower 

than seed set yields on A1 in 2015.   

To determine the performance of A1/7019B as a female in the ESP, it is more 

appropriate to compare A1/7019B with 7019A as females since both headed around the same 

time as the two male parents in both years (Table 4).   7019A as a female was more susceptible 
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to poor weather in 2015, which resulted in the lowest seed set among the six entries. A1/7019B 

was consistently the female parent with the highest seed set yields compared to 7019A with 

either R7 or CFR7 as the pollinators. 

Lastly, from both of the combined analysis and the analysis by year, in the same ESP 

trial, the same females were not significantly different in terms of seed set from the male parents, 

suggesting there is no significant negative effect on pollination attributed to the incorporation of 

HT gene in R-lines. 
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Figure 7. Main panicles from three female plants from three different ESP blocks with R7. 
Brown spikelets are the fully developed seeds, and the green spikelets are the spikelets that 
were not fertilized by pollens from the R-lines, and therefore didn’t develop into seeds. 

 

 

The seed set rate of a single female plant was determined based upon the number of fully 

developed seeds per number of total spikelets on the main panicle due to outcrossing prior to 

harvest (Fig 7).   The seed set rate of the female line in a a particular ESP was determined by 

averaging the seed set rate of the main panicles from 30 randomly selected female plants from 

the same ESP plots.   The data indicates A1 had comparable seed set rates with 7019A despite 
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being less synchronized with the R-lines, which is consistent with the hypothesis that A1 had 

more stigma longevity. The significantly longer panicle length of 7019A and the better 

synchronization with the R-lines could be the main factors contributing to the higher seed set 

yields of the ESP with 7019A as female compared to A1.  The seed set rates on A1/7019B were 

significantly higher than 7019A and A1, which is consistent with the results from the seed set 

yield analysis.  The seed set rates of the ESP blocks consisting the same female variety were 

averaged to determine the stigma viability of that female variety.  A1/7019B had significantly 

higher stigma viability than 7019A and A1, while A1 had significantly higher stigma viability 

than 7019A. 

Based on the stigma viability of A1, 7019A, and the A1/7019B from the ESP trials, mid-

parent heterosis (MPF) was calculated using the formula:, MPH (%) = (F1-MP)/MP * 100 = 

(0.532 – 0.449) /0.449 * 100 = 18.49%   

MP is the average of the calculated stigma viabilities from the A1 (0.457) and 7019A 

(0.441).  F1 is the calculated stigma viability of the A1/7019B (0.532).  

These results suggest a 18.49% advantage of the stigma in A1/7019B over the mean of 

the stigma viability of A1 and 7019A. 
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Figure 8. Combined analysis from 2015 and 2016 of the stigma viability calculated from the 
average the seed set rates (%) of the main panicles of 30 randomly picked female plants in 
a same ESP block. Different letters represent significant differences at P<0.05 with 
LSMean Student’s t-test at 95% confidence with JMP statistics.  Each error bar is 
constructed using 1 standard error from the mean.  

 

 

This new seed production method appears to be feasible with  the possible advantage of 

this method generating a positive heterosis effect in the A1/7019B F1 which may have 

contributed to higher stigma viability in florets compared to the corresponding  parents 7019A 

and A1, since 7019B is not fully converted to A1. The higher stigma viability could further result 

in a better response to the GA3 application and thus significantly improve pollen receptivity in 

favorable and unfavorable climate conditions (Fig 8).    
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4.4 Objective 4- Comparison of yields and quality of various treatments 

Adequate numbers of backcrosses when developing B’-line is not only necessary to 

preserve heterosis in the final 3wayF1 hybrid plants, but also to make sure  segregation of  genes 

not fully converted resemble the  B-line will not significantly affect important traits in the 

3wayF1 hybrid, such as plant height, growth durations, grain yield and qualities, etc. Other traits 

that may not be directly related to yield, but can affect the uniformity of a population, are needed 

to be assessed. In the end, the most important evaluations of the feasibility of 3wayF1 hybrid 

production system is to compare yield with iso-hybrid lines.   

For traits of interest in B’-lines that are not fully converted to the status of the original 

B-lines, they will segregate as if they were an F2 population.  For instance, the 

pubescent/glabrous characteristics on leaves and hulls, controlled by a single dominant gene, will 

fit the expected 3:1 segregation ratio. The 3wayF1 hybrid plants generated from treatment 5 

(entry 2) are supposed to be segregating for herbicide tolerance with the ratio of 1:1.  The 

3wayF1 hybrid plants generated from treatment 4 (entry 1) are all supposed to be tolerant to the 

herbicide with the homozygous or heterozygous of dominance HT genes.   

Plantings were done by direct mechanical seeding both years.  The planting at Pierce 

Ranch was almost 2 months later than the planting in El Campo both years.  At both locations, 

the field was flushed twice, once was immediately after planting and the second flushing was 

five days after the first flush was drained.  It was followed by fertilization of ammonium 

sulphate. The first application of NewPath herbicide was applied on the plots with the herbicide 

tolerance gene (homozygous or heterozygous) as well as herbicide resistant controls at the 3-4 

leaf stage to verify the effectiveness of the tolerance gene at the rate of 280.2 g/ha  using a CO2 

pressured backpack. This helped to eliminate possible weeds or contamination of any foreign 
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seeds. Responses to the herbicide of the applied plots were reviewed fivedays later, and no 

obvious symptoms were observed between the plots treated with a herbicide and untreated plots.  

The second application of NewPath was applied ten days after the first application at a 

concentration of 280.2 g/ha. Responses to the second application of the NewPath herbicide were 

reviewed and scored. No obvious differences were observed between treated and untreated plots. 

An extra plot adjacent to the trials with (A1/R7) hybrids were sprayed with same dosage of 

NewPath were killed ten days after the 2
nd

 application, while the plots that were not sprayed  

show no symptoms of herbicide damage.  This evidence suggested the dosage was sufficient to 

kill susceptible plants without HT genes (Fig 9). No obvious differences were observed between 

trials possessing HT genes in the homozygous or heterozygous state, suggesting the zygosity of 

HT genes are completely dominant and do not affect the level of tolerance to the NewPath 

herbicides. 

 

 

Figure 9. Responses to NewPath herbicide 10 days after the 1st and the 2nd applications of 
A1/R7 and A1/7019B//CFR7 plots. 
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A key point to the successful use of this 3way hybrid production system is to have a 

uniform 3wayF1 hybrid field. Traits could segregate as if they were an F2 population because of 

only a partial conversion to the HT-B lines from the original A-line.  In our yield trials, the color 

of culm bases, stigma, and apiculus segregated within hybrids as expected since the original 

A1/B1 has purple culm bases, stigma, and apiculus, and the converted 7019A/7019B has white 

culm bases, stigma, and apiculus, similar to the HT donor, Puita-Inta-CL.  The color differences 

of culm bases, stigma, and apiculus are due to the anthocyanin pigmentation patterns of different 

plant parts. No other obvious segregation related to the yield component can be observed in both 

of the 3wayF1 hybrid plots. 

Germination rates, plant stand rating, and seedling vigor was recorded at the 3-4 leaf 

stage in each plot as responses of plants to the NewPath herbicide were recorded.  There were no 

significant differences among the ten entries for germination and plant stand ratings.  However, 

the two 3wayF1 hybrids (entry 1 and entry 2) and the other three out of the iso-hybrids (entry 3, 

entry 4, and entry 6) had higher seedling vigor than the rest of the controls, inbred or hybrid (Fig 

10). 
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Figure 10. Combined analysis of the germination, plant stand, and seedling vigor of the ten 
genotype entries from the yield trials from two years and two locations. Different letters 
represent significant differences at P<0.05 with LSMean Student’s t-test at 95% confidence 
with JMP statistics.  Each error bar is constructed using 1 standard error from the mean. 

 

Height is one of the most important factors for a uniform field.  As expected, the inbred 

varieties (entries 7, 8, 9) were significantly shorter than the hybrids. XL745 is significantly taller 

than all others.  Entries 1, 2, 4, and 5 were not significantly different from one another. Entries 3 

and 6 were not significantly different from each other, and slightly shorter than other hybrids, 

entries 1, 2, 4, and 5. This might be due to the height of A1 being shorter than the other two 

females, 7019A and A1/7019B.  However, differences among these lines were not easily 

visualized in the field (Fig 11).  
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Figure 11. Combined analysis of the height of the ten genotype entries from the yield trial 
from two years and two locations. Different letters represent significant differences at 
P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  Each error 
bar is constructed using 1 standard error from the mean. 

 

Heading and maturity are other important factors determining uniformity and ease of 

harvesting. Heading and maturity can be affected by planting methods and soil fertilization. 

Direct seeded rice plants usually flower and mature a few days earlier than transplanted 

seedlings. Deficiency in nitrogen often stresses rice plants and hastens maturity, whereas heavy 

fertilization can delay crop maturity. Maturity is also known to be strongly affected by air 

temperature, and to a lesser extent, water temperature, especially when the crop is direct seeded.  

In this study, all treatments received the same management from seeding to harvesting except for 

the herbicide treatment on HT genotypes, which should have had no effect on plant performance.  

The maturity period is known to be regulated by polygenes, therefore selections for a similar 
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maturity during the backcrossing process of the converted B’-line is important so that 

transgressive segregation of the maturity habit in the 3wayF1 hybrids (Fig 12).   

Recording the date of 50% heading of a population in a yield trial is a standard method 

to represent crop maturity. The time between flowering, ripening to grain maturity is relatively 

constant among lines, which is roughly 30-35 days in normal growing season (Vergara and 

Chang, 1985).  

 

  

Figure 12. Combined analysis of the days to 50% heading of the ten genotype entries from 
the yield trial from two years and two locations. Different letters represent significant 
differences at P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  
Each error bar is constructed using 1 standard error from the mean. 
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Figure 13. Combined analysis of the days to 50% heading of the ten genotype entries from 
the yield trial by locations, combining two years.   Each error bar is constructed using 1 
standard error from the mean. Entry numbers represents the same genotype as in the Fig 
20. 
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Among all the effects in ANOVA for days to of 50% heading, only the effects of year 

and year*location were not significant (Appendix 2).  There are significant differences between 

locations, most likely due to the trials at Pierce Ranch being planted almost three months later 

than the trials at El Campo.  Due to the significant interaction, the day to 50% heading was 

analyzed by location (Fig 13).  Rice at Pierce Ranch had a relatively longer growing period until 

they reached 50% heading compared to trials at El Campo in both years.  Differences among 

genotypes for days to 50% heading were relatively smaller at Pierce Ranch than in the trials at El 

Campo.  Given that planting at Pierce Ranch was almost three months later than the planting in 

El Campo, day lengths, air termperature differnces, water termperature differnces, and day/night 

temperature difference are assumed to have combined influenced the duration of plants of all 

genotypes. However, the degree of reaction to changes in day length was unique to each 

genotype. There was no consistent pattern of how 3wayF1 hybrids responded compared with the 

corresponding iso-hybrids. Variation in response to day length resulted in differences in the 

three-way interaction, year*entry, and location*entry of days to 50% heading.   
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  Yield Milled Rice yield 

1000 

Grain 

Weight 

L : W 

ratio 

Chalkin

ess 

Transl

ucency Color 

Entry Pedigree (kg/ha) 

Milled 

(%) 

Head 

(%) (g)   (%)  (1-5)  (1-5)  

1 A1/7019B//CFR7 

7273 b 

65.8 

cd 54.3 e 27.26 a 3.33 2.33 cd 5 1 

2 A1/7019B//R7 

6753 c 

66.1 

bcd 56.3 de 26.2 ab 3.33 3.00 bc 5 1 

3 A1/CFR7 

6787 c 

65.8 

cd 58.5 bcd 25.34 b 3.00 4.33 b 5 1 

4 7019A/R7 

6844 bc 

66.2 

bcd 56.9 cde 25.00 b 3.33 2.13 bc 5 1 

5 7019A/CFR7 

6746 c 

65.8 

cd 

59.1 

abcd 26.3 ab 3.33 2.33 cd 5 1 

6 A1/R7 

6012 d 

67.4 

ab 61.9 ab 25.64 b 3.00  2.23 bcd 5 1 

7 CL 131 

4962 e 

67.6 

ab 62.1 ab 22.60 c 2.50 3.67 bc 5 1 

8 CL 151 4945 e 68.4 a 62.8 a 22.84 c 2.50 11.00 a 5 1 

9 CFR7 

3684  f 

66.7 

bc 60.6 abc 22.40 c 4.00 1.00 d 5 1 

10 XL745 

8348 a 

66.7 

bc 60.6 abc 26.18 ab 3.33 10.20 a 5 1 

Table 5. Combined analysis of the grain yields (kg/ha) and grain quality data of the 
ten genotype entries from the yield trial.   Different letters represent significant differences 
at P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.   
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There were no significant interactions among years, locations, and entries for grain 

yields (Table 5).  Among the two way interactions, only entry*location was significant, 

suggesting genotypes performed differently in reaction to the location.    For both locations in 

both years, XL745 was consistently the highest yielding hybrid among entries.  CL131, CL151, 

and CFR7 were consistently the lowest yielding inbred varieties at both locations in both years.  

Stability in the yield performance of these controls in all environments suggested that these lines 

were good candidates to be included in yield trials to test against other genotypes.  The inbred 

control, CFR7, was the lowest yielding entry at both locations.  Yield performance of the other 

hybrids, both 3wayF1s and 2wayF1s, did not considerably vary across locations.  CL131 and 

CL151 were lines that had the most extreme differences in performance by location.  These lines 

contributed most of the mean squares to the entry*location and location effects in the combined 

analysis.  Grain yields in both years were not significantly different.  Yields among entries were 

different. 

Although 7019A and CFR7 were supposedly closely related to the original parents A1 

and R7, they are classified as different lines with minor differences, including the trait of interest. 

These minor differences in the genetic backgrounds might contribute to levels of heterosis which 

affected grain yield or other traits in hybrids as a result of genetic linkage. This might be the 

reason the three iso-hybrids, entry 3 (A1/CFR7), entry 4 (7019A/R7), and entry 5 (7019A/CFR7) 

had higher yields than the original hybrid, entry 6 (A1/R7). Another possible reason is that the 

three iso-hybrid plots were treated with NewPath herbicide which confirmed tolerance to the 

corresponding herbicide and to control the weeds at the early stages of crop development, which 

is usually the most critical stage for the weed control in rice. Entry 6 might have suffered some 

degree of biological stress from weed competition compared to the other entries.   
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Entry 2 (A/7019B//R7) had a lower grain yield compared to its iso-hybrid, entry 1 

(A/7019B//CFR7). The differences could be the result of varying degrees of heterosis from the 

combination of 7019B with CFR7 or from the combination of A1 with CFR7 because that 

female is hemizygous as a result of the hybridization between A1 and 7019B.  Entry 1 

(A1/7019B//CFR7) may have encountered little biological stress due to weed competition, which 

could have provided an advantage for grain yielding compared to entry 2 (A1/7019B//R7) 

because entry 2 did not receive any NewPath herbicide treatment at the seedling stage since half 

of the population would be killed by the herbicide since the male parent, R7, was not tolerant to 

the herbicide. 

To assess the possibility of higher heterosis from acquiring the 3
rd

 parent in the 3wayF1 

compared with its iso-hybrids with only two parents in the F1, yield performance of the 3wayF1 

was compared to the other entries having the same male parent in the hybrid combination.   It is 

more appropriate to compare entry 1 (A/7019B//CFR7) to entry 3 (A1/CFR7) and 5 

(7019A/CFR7) than to compare entry 2 (A1/7019B//R7) to entry 4 (7019A/R7) and 6 (A1/R7). 

Because entries 1, 3, and 5 had all been treated with a herbicide, and entries 2 and 6 were not 

treated with herbicide, while entry 4 was treated.  The yield of entry 1 (A/7019B//CFR7) is 

higher than both entries 3 (A1/CFR7) and 5 (7019A/CFR7), suggesting there is a chance of more 

heterosis in the 3wayF1 because it has three parents in the hybrid. 

Although entry 1 (A1/7019B//CFR7) had a higher yield than entry 2 (A/7019B//R7), 3 

(A1/CFR7), and 5 (7019A/CFR7), the differences were economically inconsequential.  To assess 

the effects of copy number of HT genes in hybrids, entry 3 (A1/CFR7) was compared to entry 4 

(7019A/R7), which had only one copy of the HT gene from the male parent and female parent 

respectively with entry 5 (7019A/CFR7), having two copies of the HT genes from both parents.  

Entry 5 (7019A/CFR7) was not different than entry 3 (A1/CFR7) and 4 (7019A/R7), suggesting 
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that the copy number of the HT gene in the hybrid did not have any significant effects on yield. 

This is consistent with the observation that all entries with HT gene, homozygous or 

heterozygous, did not have any injuries from the herbicide application.  

Yield performance of the 3wayF1 hybrid and its stability across environments was the 

most important determining factor of its viability as a useful process of creating hybrid seed. 

These results showed that yield is not negatively affected by introducing the 3
rd

 parent into the 

3wayF1 hybrids. There is even possible existence of additional heterosis from incorporating the 

3
rd

 parent into the 3wayF1 hybrid compared to a more traditional two-parent hybrid system.  

 

 

 

 



125 

 

 

Figure 14. Combined analysis of the phenotype rating of the ten genotype entries from the 
yield trial from 2 years and 2 locations. Different letters represent significant differences at 
P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  Each error 
bar is constructed using 1 standard error from the mean. 

 

The phenotype rating is an overall evaluation of the plant type. XL745 has a 

significantly higher rating of phenotype, which is consistent with its consistent highest yield and 

its general appeal of the plant type across years and locations (Fig 14).   



126 

 

 

Figure 15. Combined analysis of the lodging rating of the ten genotype entries from the 
yield trial from 2 years and 2 locations. Different letters represent significant differences at 
P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  Each error 
bar is constructed using 1 standard error from the mean. 

 

Lodging was rated on a scale of 0 to 5, with 0 equal to all plants being completely 

upright and five being all plants lying on the ground.  CL131, CL151, and XL745 were 

consistently the least lodged entries across years and locations (Fig 15). CL131 and CL151 had 

shorter plant stature and smaller panicles, while XL745 had stronger straw which primary 

contributor to lodging resistance.   The original hybrid entry 6 (A1/R7) had the most severe 

lodging issue across locations and years, which could have resulted in the loss of yield.  Entries 2, 

3, 4, and 5 were not different in lodging tendency among each other, but entry 1 

(A1/7019B//CFR7) was less likely to lodge. There were not differences in plant height among 
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the six iso-hybrids, so this does not explain the differences in lodging scores within entry 6 

(A1/R7). Other genetic factors related to lodging resistance include the accumulation of the 

carbohydrates in the culm at fully ripe stage, culm components (lignin content), and length and 

diameter of the internodes. There have been studies on the inheritance of straw strength, and it 

has been generally agreed upon that hybrids show more resistance to lodging although they are 

often 5-10 cm taller than the inbred parents. More studies are still needed to answer whether the 

observations within this study are the result of significant improvement of straw strength 

attributable to heterosis in the iso-hybrids compared to the original hybrid entry 6 (A1/R7). 

However, if heterosis could be a contributor to decreased lodging, it is consistent with this 

study’s hypothesis that the 3wayF1 results in progeny with greater heterosis from having three 

parents. 
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Figure 16. Combined analysis of the disease responses rating to sheath blight of the ten 
genotype entries from the yield trial from two years and two locations. Different letters 
represent significant differences at P<0.05 with LSMean Student’s t-test at 95% confidence 
with JMP statistics.  Each error bar is constructed using 1 standard error from the mean. 
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Figure 17. Analysis of the disease responses rating to sheath blight of the ten genotype 
entries from the yield trial by years and locations. Different letters represent significant 
differences at P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  
Each error bar is constructed using 1 standard error from the mean. Entry numbers 
represents the same genotype as in the Fig 16. 

 

 

Rating plants for infestation severity to sheath blight, a fungal disease caused 

by Rhizoctonia solani, is critical because damage could result in leaf area or tiller senescence and 

eventual yield reduction (Fig 16). Sheath blight is most severe in areas with high temperatures, 

high relative crop canopy humidity, and high levels of nitrogen fertilizer.   Plants can be most 

vulnerable during the seed maturation period after heading during heavy rainfall.  At El Campo 

and Peirce Ranch, 2016 had a higher rate of precipitation, and a higher max/min temperature 

compared to 2015.  The Pierce Ranch was planted almost three months later than El Campo, and 

therefore the temperature was lower at Pierce Ranch during the grain maturation stage.  
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Therefore, it is more appropriate to analyze responses to sheath blight disease by year and 

location separately instead of doing the three-way factorial combining analysis (Fig 17). In 2015 

that had moderate rainfall at both locations, there were no differences among hybrid entries and 

control varieties.  However, in 2016, especially at El Campo, all the iso-hybrids were more 

severely infected than the conventional inbred control lines, CL131 and CL151, most likely 

because there were no major QTLs for resistance in the pedigrees. Moreover, the hybrids had a 

higher number of tillers compared to the inbred varieties, which may have resulted in a denser 

canopy which is a favorable environment for the fungal disease to develop.  Whereas in the rest 

of the three less favorable environments for the disease to develop, there is no significant 

differences in response to sheath blight disease between the hybrids and the inbred varieties. 
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Figure 18. Analysis of the percentages of milled rice and head rice of the ten genotype 
entries from the yield trial from two years and two locations. Different letters represent 
significant differences at P<0.05 with LSMean Student’s t-test at 95% confidence with 
JMP statistics.  Each error bar is constructed using 1 standard error from the mean.  

 

In general, the inbred varieties had a slightly higher percentage of milled rice and head 

rice compared to the hybrids. However, there were no differences among the hybrid entries, nor 

among inbred lines. 
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Figure 19. Analysis of the 1000 grain weight measured in grams of the ten genotype entries 
from the yield trial from two years and two locations. Different letters represent significant 
differences at P<0.05 with LSMean Student’s t-test at 95% confidence with JMP statistics.  
Each error bar is constructed using 1 standard error from the mean.  
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Fig 20. Analysis of the percentages of the chalkiness and length : width (L:W) ratios of the 
ten genotype entries from the yield from two years and two locations. Different letters 
represent significant differences at P<0.05 with LSMean Student’s t-test at 95% confidence 
with JMP statistics.  Each error bar is constructed using 1 standard error from the mean.   

 

The grain quality of the ratio of the length and width of the grains is used internationally 

to classify varieties into long, medium, or short grains. The consistency of the ratio also serves as 

a criterion to describe the uniformity and purity of the grains. 1000 grain weight gives more 

information about the density of the grains when the grains are standardized for moisture (Fig 

19).  Means and standard errors were calculated from the five sub-samples of randomly selected 

1000 grain weights. Five out of the six iso-hybrids did not have differences for grain weight. 

Only the 3wayF1 entry 1 (A1/7019B//CFR7) was heavier than entries 3 (A1/CFR7), 4 

(7019A/R7), and 6 (A1/R7).   CL131 and CL151 had the lightest grain weight, which was 

consistent with its L:W ratio.  It was smaller than all other entries (Fig. 20). 
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Chalkiness is one of the most important ratings when evaluating the quality of rice 

grains.  The chalk refers to the opaque area in the rice grain and is an undesirable trait in rice.  

Chalk occurs most commonly when high night time temperatures occur during grain 

development.  Chalky grains tend to break during the milling process more frequently than 

translucent grains, which result in lower percentages of whole grains and devaluation of the head 

rice. A percentage of chalkiness of < 10% is generally considered to be high quality and 10-25% 

is acceptable, but the selling price might be affected by this (IRRI, 

http://www.knowledgebank.irri.org/).  Data suggests that the six iso-hybrids and the inbred male 

parents of the three hybrids did not differ in the amount of chalkiness, which all could be 

classified into the high quality category. XL151 and XL745 had a relatively higher percentage of 

chalkiness, but was still acceptable.   The ratings of translucency (1-5) and the color (1-5) of the 

head rice are the other two general grain appearance evaluation of a variety, which did not differ 

among entries (Fig 20). 

4.5 Objective 5- Patent application 

We have successfully obtained the patent through World Intellectual Property 

Organization (WIPO) (Frank et al., 2014).  
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5. CONCLUSION 

This new production method is a viable option for the following reasons:  

1. There were no seed set yield differences among iso-hybrids from the EPS fields suggesting the 

introduction of a third line carrying a gene of interest into the original three line hybrid 

production system did not negatively affects pollen receptivity of female plants.  

2. Introducing the HT gene into the R-line did not have negative effects upon the pollination and 

fertility restoration ability   of female plants. 

3. Utilization of the heterosis, if it exists, in the A1/7019B as female resulted in a higher stigma 

viability, which leads to a higher seed set yield in hybrid seed production. 

4. There were no grain yield differences among the six iso-hybrids from the yield trials, 

suggesting the introduction of a third line carrying a gene of interest into the original three line 

hybrid production system does not cause any negatively impact the heterosis influence on yield 

performance. 

5. There were no differences in the response to diseases, especially sheath blight, among the iso-

hybrids. 

6. There were no negative effects on germination, plant stand, seedling vigor, and straw strength 

from the 3wayF1 system compared to other iso-hybrids. 

7. There were no differences in the milled rice (%), head rice (%), and other grain quality ratings 

among the iso-hybrids. 

8. There was no segregation of traits related to yield or yield components in the 3wayF1 hybrids. 
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9. This method allows  testing of a new herbicide system earlier than using the current hybrid 

combination and enables breeders to make decisions later in the process on whether to do a 

conversion to A’-line. Thisit adds flexibility and diversity in herbicide usage. 

10. Makes the most use of the current elite A-line. 

11. Since B-lines are male fertile like R-lines, conversion of such lines into isogenic B’-lines 

containing one gene of interest can be conveniently achieved by repeated backcrossing. Breeders 

can develop various isogenic B-’lines to the same A-line that is used in a promising hybrid 

combination with few differences including the gene of interest responsible for resistance to 

different herbicides. The promising hybrid can thus be modified by incorporating different 

converted B’-lines that result in hybrids with known heterosis, but possessing resistance to 

different herbicides. The types of herbicide resistance B lines can be developed based upon 

market needs.  

12. The converted B’-lines do not need to be fully converted to the corresponding A’-line, which 

would take more time and labor due to possible linkage genes causing partial fertility. This 

would take more generations to backcross to make sure it meets the requirements for a stable 

male sterility and hence be classified as a female line. 

13. Incorporation of herbicide tolerance into the A-line only needs to take place at the last step of 

producing female seeds for the hybrid seed production. By crossing A x B’ to generate the A-

line seeds with hemizygous state at that specific locus increases the versatility of the commercial 

hybrid containing the specific gene of interest that confers a specific trait. 

14. There is no need to multiply A-lines with each of the different HT B’-lines to maintain the 

different B’-lines. The B’-lines are multiplied by simply self-pollinating plants, which requires 
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minimal labor and time. The amount of each B’-line to be produced can be based upon the 

market demands. Although glyphosate and glufosinate are the most popular HT traits, market 

demand for different herbicides will increase over time due to evolving weed spectrums in 

different countries and the needs for rotating different HT systems to combat HT weeds, 

especially glyphosate-resistant weeds.   

15. In the ESP production field, treatment 5 was a restorer line that was a non-HT R-line, 

therefore the producers can mix planting  the hemizygous A/B’ seeds and the R-line seeds 

instead of strip planting to increase the outcrossing rate. The pollinator R-lines can be removed 

by spraying the corresponding herbicide after pollination. Seeds set can thus be harvested from 

all the remaining plants as pure hybrid seeds without possible contamination from the R-line 

seed mixture. 

16. All of the non-herbicide tolerance plants, including genetic variants, volunteers, or red rice, 

will be removed by herbicide application in the hybrid seed production field and therefore 

increase the purity of the hybrid seeds produced and allows for better profits. 

17. Herbicide rogueing greatly reduced the cost for labor.  

18. The CMS line is generally believed to be more important than two other lines (maintainer 

and restorer lines) in the three-line hybrid system, because it takes more effort to develop and 

crossed with two other lines resulting in a greater genetic contribution to the hybrid. The 

intellectual property protection can be ensured with this proposed method because the original 

female and it’s maintainer lines (A1/B1) used in the promising hybrid are the most valuable 

genotypes in this combination, whereas the chances of unintentionally mixing A1 and B1 seeds 

in the hybrid seeds for sale will be minimized in the step of producing hybrid seeds where 

growers can spray herbicides and kill any B1 carried over from the previous steps.  The A1xB1 
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small acreage increase will receive the highest level of protection among all the foundation seed 

production. 

19. There is a possibility of improving synchronization between A-lines and R-lines in the ESP.  

However, this applies only when the female parent and the male parent of the original hybrid are 

more than seven days apart in days to 50% of heading.  Breeding and selection for the isogenic 

A’-line that is closer to the anthesis of the R-lines will result in a hemizygous A/B’ line closer to 

the R-line or R’-line in terms of maturity, which facilitates pollination and thus seed set yield on 

the female plants in the ESP. 

This proposed technology incorporating herbicide tolerance gene in the hybrid seed 

production can be extended to the resistance to other herbicides resistance allele, including 

sulfonylurea, glyphosate, glufosinate, benzonitrile, cyclohexanedione, phenoxy proprionic acid 

and L-phosphinothricin.  Other genes of interest, such as cold tolerance, insect resistance, fungus 

tolerance, disease tolerance, drought tolerance, salinity tolerance, submergence tolerance, or 

even some quality traits can also be considered as future application as long as it is nuclear-

inherited and acting in a dominant expression pattern, monogenic resistance.   

The herein method are not limited to the use or hybrid rice, but can be extended to other 

hybrid crops utilizing three-line production systems, including wheat (Triticum aestivum), corn 

(Zea mays), cotton (Gosssypium hirsutum or Gosssypium barbadense), soybean (Glycine max), 

sorghum (Sorghum bicolor), rapeseed (Brassica napus), mustard seed (Brassica juncea), barley 

(Hordeum vulgare), oat (Avena sativa), rye (Secale cereale), pearl millet (Pennisetum typhoides), 

alfafa (Medicago sativa), tomato (Lycopersicon esculentum), sugar beet (Beta vulgaris), 

sunflower (Helianthus annuus), onion (Allium cepa), petunia (Petunia hybrid), or carrot (Daucus 

carota). 
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                     APPENDIX 

                       TABLES 

SOV DF F ratio Prob > F 

Year 1 36.5660  0.0038 * 

Entry 5 28.8427 <0.0001 * 

Year*Entry 5 11.3940 <0.0001 * 

Table A.1. F-test of Entry, Year and Entry*Year interaction effects for seed set yield from 
ESP. ns indicates non-significant factor and * indicates significant at 99% confidence with 
JMP statistics. 

SOV DF F ratio Prob > F 

Year 1 0.5122  0.4946 
ns

 

Location 1 196.7529 <0.0001 * 

Year*Location 1 0.0205  0.8897 
ns

 

Entry 9 20.7060 <0.0001 * 

Year*Entry 9 4.2381  0.0002 * 

Location*Entry 9 7.6737 <0.0001 * 

Year*Location*Entry 9 4.1683  0.0002 * 

Table A.2. F-test of Entry, Year, Location, and all possible interactions effects for 50% 
heading from yield trial. ns indicates non-significant factor and * indicates significant at 
99% confidence with JMP statistics. 




