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ABSTRACT 

Energy harvesting is the process of converting ambient available energy into 

usable electrical energy. Multiple types of sources are can be used to harness 

environmental energy: solar cells, kinetic transducers, thermal energy, and 

electromagnetic waves.  

This dissertation proposal focuses on the design of high efficiency, ultra-low 

power, power management units for DC energy harvesting sources. New architectures 

and design techniques are introduced to achieve high efficiency and performance while 

achieving maximum power extraction from the sources. The first part of the dissertation 

focuses on the application of inductive switching regulators and their use in energy 

harvesting applications. The second implements capacitive switching regulators to 

minimize the use of external components and present a minimal footprint solution for 

energy harvesting power management. Analysis and theoretical background for all 

switching regulators and linear regulators are described in detail.  

Both solutions demonstrate how low power, high efficiency design allows for a 

self-sustaining, operational device which can tackle the two main concerns for energy 

harvesting: maximum power extraction and voltage regulation. Furthermore, a practical 

demonstration with an Internet of Things type node is tested and positive results shown 

by a fully powered device from harvested energy. All systems were designed, 

implemented and tested to demonstrate proof-of-concept prototypes.  
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CHAPTER I  

INTRODUCTION 

Energy harvesting 

As power demands continue to grow for integrated solutions, new ways to extend 

device lifetime must be developed to maintain high energy dense solutions plausible. 

And even though battery technology has shown unprecedented growth and application 

[1, 2], compact solutions with limited area real-estate still show lagging power when 

compared to transistor power density [3]. Fig. 1 shows a comparison between battery 

power density improvements over the course of 20 years compared to the processing 

power of integrated solution over the same time frame. 

 

 

Fig. 1. Power density comparison of battery density improvement over time vs. processing power 

density improvement over time. 
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As the figure shows, battery technology deeply lags behind processing power, 

and there is only a 2X improvement shown every 10 years [4].  

This leads to a very real need to enhance battery life for small, portable 

applications in order to allow wireless sensor technologies a real shot of being 

implemented. Among the possible solutions to enhance operational lifetime, or even 

disregard the need for battery technology all-together, of wireless sensors is energy 

harvesting. Energy harvesting is the process of scavenging energy that is readily and 

freely available in the environment, into electrical energy [5, 6]. Similar to large scale 

energy farms seen with photovoltaic solar cells, energy harvesting targets the available 

energy in one form to convert to electrical and utilize it to power small devices/systems.  

The only difference lies in the scale of the targeted power to be harvested. 

Whereas macro-harvesting systems are related to energy conversion in the range of 

kilowatts to Megawatts, energy harvesting is limited to harvesting power in the range of 

nanowatts to milliwatts. Even at these low power levels, much can be accomplished 

through smart, low-power electronic design through the implementation of 

environmental sensors [7], healthcare monitoring nodes [8], and data networking for 

large-scale operations [9]. 

Applications and need for power management 

Applications such as Wireless sensor nodes (WSN) or Internet of Things (IoT) 

[10-12] arrangements allows for a distributed approach to power consumption duties. 

Whereas several nodes in a mesh configuration may perform the sensing operation of the  
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network, only a select few of nodes within the mesh hold the responsibility of 

transmitting the power over long distances to the central processing unit [12]. These 

types of approaches focus more on delegating responsibilities and lightening the load on 

a single node, redistributing it throughout the network. Alternate approaches focus on 

dealing with power limited designs through intelligent package transmission [13-15]. 

These methods limit packet size transmission to minimize the use of the system power 

amplifier (PA), which is the most power hungry and inefficient block in transmitter 

circuits. Efforts on efficiently utilizing power resources can be extended further by 

employing energy harvesting technology. Utilizing energy harvesting technology is not 

without its own caveats: the possible power to be harvested is limited to both amount 

and availability. TABLE 1 shows the power densities per area/volume for commonly 

used energy harvesting sources.  

 

TABLE 1. Energy harvesting estimates in μW per unit of area [16]. 

ENERGY SOURCE HARVESTED POWER 

Kinetic Vibration 

Human 10s of μWs/cm
2 

Industrial setting 100s of μWs/cm
2
 

Temperature Gradient 

Human 10s of μWs/cm
2
 

Industrial setting 10s of mWs/cm
2
 

Light 

Human 10s of μWs/cm
2
 

Industrial setting 10s of mWs/cm
2
 

Radiofrequency 

GSM 100s of nWs/cm
2
 

AM 10s of pWs/cm
2
 

Wi-Fi 1000s of pWs/cm
2
 

Biomass (MFCs) 

240 mL (air) 600 μW 
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All available power densities from EH sources in TABLE 1, go from 10s of mWs 

and below. These power densities would be available for sensor applications if the 

implemented systems in charge of the power conversion were 100% efficient, which is 

never the case. The power converter’s own energy consumption and losses are the main 

limitations in delivering all of the available power to the load. Current research efforts 

are being done on both ends, improved EH transducers and high efficiency power 

converters.  

Due to both the limitation and variability of the power sources in energy 

harvesting, a power management units (PMU) are required to store and utilize the 

harvested energy in the best way possible. As shown in Fig. 2, the PMU extracts power 

from the EH source and delivers an adequate voltage level to the subsequent blocks in 

the wireless sensor node.  
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Fig. 2. Overview of wireless sensor node with power management unit highlighted. 

 

The two main blocks which make up the PMU are shown: the Energy Shaping 

block and the Power Conversion block. The Energy Shaping block is in charge of 

extracting maximum power from the source in order to enhance efficiency and avoid any 

additional strain on the PMU when harvesting from low power scenarios. The Power 

Conversion’s duties are to take the maximum available power and efficiently convert it 

to the required voltage rating required by the system. This can be performed through up-

conversion [17], rectification [18], down-conversion [19] or a combination of several of 

the aforementioned techniques [20]. Fig. 2 highlights the operation of both blocks with 

the colored lines. Red shows the maximum power transfer operation from the Energy 

Shaping block allowing maximum energy to be extracted from the source. Green and 
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Blue show the input and output voltages of the Power Conversion block. An up-

conversion operation takes place increasing the available voltage at the input to 

workable voltage levels for the later sensor nodes (VCO, DSP and TX/RX blocks), as 

well as delivering charging current to the battery on board.  

The remainder of the chapter will focus on the principle of operation of the EH 

sources, as well as the available power converter blocks found in literature and 

application.  

Energy harvesting sources 

Harvesting energy from multiple different natural phenomena, be it thermal, 

solar, kinetic, or electromagnetic waves; require specialized transducers capable of 

harnessing and converting one type of energy to another. This section will delve into the 

fundamental operation of the currently available transducers which are used in EH 

applications.  

Thermoelectric generators 

Heat loss is a common occurrence in mostly all mechanical and electrical 

systems used worldwide. Be it from vehicle waste heat to geothermal underground 

sources, it is one of the most prevalent sources of potential untapped power today. 

Thermoelectric generators focus on converting temperature gradients into electrical 

energy through three different thermoelectric effects: the Seebeck effect, the Peltier 

effect, and the Thomson Effect. Each one of these effects takes advantage of the 

surrounding natural temperature gradient through materials special properties. 
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Fig. 3. Seebeck effect principle between two different metals.  

 

The Seebeck effect is described as the phenomena which occur when two 

dissimilar metals or semiconductors are joined together and a temperate difference 

across their junctions is applied.  

Fig. 3 shows the Seebeck effect principle and the generated voltage (𝑉𝑙𝑜𝑎𝑑) from 

the temperature difference across the junctions of Metal A and Metal B. This leads to a 

voltage dependent on the temperature difference across the junctions given by: 

 𝑉𝑙𝑜𝑎𝑑 = 𝛼𝐴𝐵Δ𝑇 
(1)  

where the variables 𝛼𝐴𝐵 and Δ𝑇 are the Seebeck coefficient and temperature difference 

between hot and cold junctions, respectively. As shown in (1), the Seebeck coefficient 

for a particular pair of metals can be extracted from the voltage difference across the 

junctions over a variety of temperatures the surfaces may be subjected to. The units for 

𝛼𝐴𝐵 are defined as 𝑉 ∙ 𝐾−1, and can achieve both positive or negative coefficient values.  
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Fig. 4. Peltier effect principle through applied voltage source.  

 

Usual ranges can vary in the tens of 𝜇𝑉 ∙ 𝐾−1 for metals and metal alloys, and 

showing values up to 𝑚𝑉 ∙ 𝐾−1 in semiconductors [21]. The Peltier effect is somewhat 

of a reverse Seebeck effect, in that a voltage is applied to the metal junction 

configuration and a heat absorption and heat dissipation phenomena will occur at the 

junctions of the metals. Fig. 4 shows how the junctions dissipate or absorb heat due to 

the applied 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 voltage. The heating and cooling effect depend on the polarity of the 

voltage applied, and may reverse the effects of cooling or heating if 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 were to be 

reconnected in reverse polarity.  

The amount of heat removed by the junctions is given by: 

 𝑄 = 𝜋𝐴𝐵 ∙ 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 
(2)  

where 𝑄 is heat transferred by conduction from the system, 𝜋𝐴𝐵 the Peltier coefficient 

between the two metals A and B, and 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 is the electrical current in the circuit.  
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As with the Seebeck coefficient, the Peltier coefficient (𝜋𝐴𝐵) depends on the 

materials used in the junctions and amount of current flowing through the junctions. The 

unit for the 𝜋𝐴𝐵 is given by 𝑊 ∙ 𝐼−1, equivalent to volts. Thermoelectric generators used 

under the Peltier mode operate as cooling systems.  

Finally, the Thomson Effect takes into account the thermal properties of a single 

metal with no junctions, subjected to varying temperatures across its terminals as well as 

a current established by an external voltage source. This causes the metal to absorb or 

dissipate heat.  Fig. 5 shows the manner in which the Thomson effect causes absorption 

or dissipation of heat over a single type of material.  

The amount of heat which the absorbed or dissipated is given by the following equation: 

 𝑄 = 𝛽 ∙ 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ∙ Δ𝑇 
(3)  

where 𝛽 is the Thomson coefficient  and the units defined for it are 𝑊 ∙ 𝐼−1𝐾−1. Under 

sufficiently high temperatures, thermoelectric generators can begin to see the effects of 

the Thomson coefficient.  

 

 

Fig. 5. Thomson effect showing absorption or dissipation by a single type of material with both 

temperature difference and current passed through it. 
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Fig. 6. Basic TEG building block consisting of n- and p-type semiconductor elements.  

 

Due to the fact that most semiconductor materials are nonconductile crystalline 

solids, thermocouple implementations are difficult to implement. Rather than using 

intrinsic semiconductor materials, doped semiconductors are implemented in order to 

perform the thermocouple structure. Fig. 6 shows the N- and P-type materials connected 

in series through conducting strips (performed through aluminum or copper 

connections), and being subjected to a temperature gradient akin to the structure shown 

in Fig. 3.  

The building block shown in Fig. 6 serves as the foundation over which the 

Thermoelectric generator (TEG) module is constructed. The TEG module is comprised 

of a matrix of unit building blocks to enhance the conversion efficiency and power 

output of the device. Both power output and conversion efficiency are decisive 

parameters in the TEG module performance. In order to correctly assess the capabilities 

of a TEG module, a figure of merit has been developed for device parameters: 
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𝑍 =

𝛼𝑛𝑝
2

𝑅 ∙ 𝐾
 (4)  

where 𝛼𝑛𝑝, 𝑅, and 𝐾 are the material properties coefficient, interface properties value, 

and geometrical influence. If an assumption can be made in which the n- and p- type 

materials both possess similar values for electrical resistivity (𝜌𝑛 = 𝜌𝑝), similar thermal 

conductivity (𝜆𝑛 = 𝜆𝑝), opposite Seebeck coefficients (𝛼𝑛 = −𝛼𝑝), and identical ratio of 

cross-section lengths to area, the TEG figure of merit (Z) can be simplified to:  

 
𝑍 =

𝛼2 ∙ 𝜎

𝜆
 (5)  

where 𝜎 is electrical conductivity (1/𝜌). The unit for Z is 𝐾−1. From (4) and (5) it can 

be seen that in order for large values of Z to be available, two materials with individual 

values of high Z are needed, as well as opposite Seebeck coefficients.  

 Since the value of Z is 𝐾−1, a dimensionless figure of merit would be 𝑍 ∙ 𝑇. The 

plot in Fig. 7 shows the figure of merit for a number of different thermoelectric materials 

currently available. As can be seen, the figure of merit for Bismuth Telluride (Bi2Te3) 

reaches approximately unity at 300 K, making it a suitable material for room 

temperature applications.  
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Fig. 7. Figure of merit (ZT) for current TEG materials (Adapted with permission from Ref. [22]). 

 

 

 

Fig. 8. TEG module’s electrical equivalent.  
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Finally, as the TEG module will interact with electrical circuits there is a need for 

an electrical equivalent with which the design of the power management can be 

performed.  

Fig. 8 shows that the TEG module may be modeled as a battery, where the 

voltage is proportional to the Seebeck voltage of the material (𝑉𝑇𝐸𝐺 = 𝛼𝑛𝑝Δ𝑇), and the 

series resistance, 𝑅𝑇𝐸𝐺 , is given by the total series resistances of the N- and P-type 

materials. Chapter III will delve into the design of power conditioning circuits which 

take both the Seebeck voltage and internal resistance deeply into consideration.  

Photovoltaic cells 

Among the more ubiquitous power sources used in energy harvesting technology 

are the photovoltaic solar cells. The conversion of light energy to electrical energy was 

first developed into silicon through a photovoltaic cell in 1954 in Bell Labs. Ever since 

this breakthrough, more and more development in these cells towards higher conversion 

efficiency has been the key parameter for this technologies push into mainstream 

applications. The photovoltaic cells operating principle comes down to semiconductor 

basics: electron-hole pair generation through light absorption, charge carrier separation 

and extraction of charge carriers through an electrical circuit.  

As photons in sunlight hit the photoconductive material and are absorbed, 

electrons are knocked loose from their respective atoms and flow to produce a current.  
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This phenomenon only momentarily increases the semiconductor’s conductivity, 

but over time the semiconductor returns to its previous state with the electron losing its  

energy recombining into a hole. Single doped type materials are functional 

photodetectors; in order to allow for light to produce electricity in usable quantities, a p-

n junction semiconductor with separate electrons in the conduction band and holes in the 

valence band are required. Due to the structure of the photoconductive material p-n 

junction, comprised of silicon, the minimum amount of energy required for the electrons 

to come loose from the valence band must be greater than that of the bandgap energy 

[21]. This electron jumps to the conduction band allowing free movement in the crystal 

lattice, leaving behind a hole in the valence band. Fig. 9 shows the band-diagram of a p-

n junction shows this occurrence. 

This hole left in the valence band by the energized electron, causes other 

electrons to move into this new hole position; propagating holes throughout the lattice by 

diffusion. 

 

 

Fig. 9. Band diagram of p-n junction showing diffusion directions and electron drift. 
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Due to the power density of the solar light, this process occurs in greatly high 

numbers, allowing for current to be extracted from the p-n junction. As more and more 

electrons are pushed toward the conduction band of the junction, a depletion region 

begins to form and drift of carriers leads to an equilibrium within the junction. The 

depletion region also ends ups forming an electrostatic field and a built-in voltage across 

the junction.  

The building up of charge on either side of the junction creates a diode like 

operation, promoting charge flow. This leads to the generation of the equivalent model 

for the photovoltaic cell [22] as shown in Fig. 10. 

The model describes the light dependent operation by modeling the current 

delivering capability of the cell through photogeneration current source, 𝐼𝑃𝑉, in parallel 

with a diode 𝐷𝑃𝑉. Shunt and series resistances are also added, 𝑅𝑠ℎ and 𝑅𝑠, to take into 

account non-idealities of the cell.  

 

 

Fig. 10. Equivalent circuit of photovoltaic cell.  
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From Fig. 10, we can see that the amount of current available at the output node 

of the cell (𝑉𝑃𝑉), is limited by the diode current and shunt resistors.  

 𝑖𝑆 = 𝑖𝑃𝑉 − 𝑖𝐷𝑃𝑉 − 𝑖𝑅𝑆𝐻 
(6)  

where 𝐼𝑆 is the total output current, 𝐼𝑃𝑉 is the current produced by the illuminated current 

source, 𝐼𝐷𝑃𝑉 the diode current, and 𝐼𝑅𝑆𝐻 the shunt resistor current. Both the diode and 

shut resistor currents may be quantified through: 

 
𝑖𝐷𝑃𝑉 = 𝐼0 (𝑒

𝑞𝑉𝑏𝑒
𝑛𝑘𝑇

−1) 
(7)  

 
𝑖𝑅𝑆𝐻 =

𝑉𝑏𝑒

𝑅𝑆𝐻

 
(8)  

where 𝐼0 is the reverse saturation current, 𝑞 the elementary charge of an electron, 𝑉𝑏𝑒 

voltage across the p-n junction (diode), 𝑛 diode ideality factor, 𝑘 Boltzmann’s constant, 

and 𝑇 the absolute temperature in K. 

 Assuming a small valued series resistor 𝑅𝑠, the overall output current to be 

expressed as: 

 
𝑖𝑠 = 𝑖𝑃𝑉 − 𝐼0 (𝑒

𝑞𝑉𝑏𝑒
𝑛𝑘𝑇

−1) −
𝑉𝑏𝑒

𝑅𝑆𝐻

 
(9)  

All of these variables depend on size, but mostly material. As photovoltaic cells 

have been around for over 50 years, multiple different types of materials and 

configurations have been researched [21]. Configurations ranging from single-junction 

to multiple-junction silicon photovoltaic cells [23] have allowed for increased 

conversion efficiencies and application specific deployment, i.e. space solar harvesting. 
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Silicon in different presentations has been widely explored and has shown multiple 

breakthroughs throughout the years.  

While silicon has been the predominant and cheapest implementation for 

photovoltaic cells, new materials such as Cadmium Telluride and Copper indium 

Gallium Selenide have also shown promise [24, 25]. TABLE 2 shows the overall 

efficiencies of current solar harvesting technologies [26].  

Chapter VI in this dissertation will present a solution to harvesting maximum 

power for small photovoltaic cells aimed at low-power, wireless sensor node 

applications.  

 

 

TABLE 2. Solar efficiency tables for multiple photovoltaic cell materials 

Maximum Conversion Efficiency % for 
multiple Photovoltaic cell technologies 

Mono Crystalline Silicon 26.0% 

Multi Crystalline Silicon 21.1% 

CdTe 18.0% 

Organic Solar Cells 10.0% 

CIGS 20.1% 
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Radiofrequency harvesting 

The capability of transferring power wirelessly has been a goal which has been 

aimed for since the beginning of electrical power. Pioneers such as Nikola Tesla 

envisioned the transmission of electrical power wirelessly as a means for global 

reconciliation [27]. Power transmission through electromagnetic waves would allow a 

near unlimited source of available power from the environment. This would allow for 

applications which could potentially do completely without an on-board battery [28]. 

Applications in various fields can be reached: display technology, biomedical sensors, 

and wireless networks would allow for both complex and compact electronic solutions to 

become commonplace in everyday lives.  

Previous works on near-field magnetic resonance [29] and inductive coupling 

[30] solutions are considered near-field solutions. Far-field power transmission through 

RF/microwave energy transmission presents itself as the viable option to fulfill the 

power transmission challenge; with solutions combining solar harvesting in space and  

then converting harvested power to microwaves beamed down to earth [31, 32] to low 

power radiofrequency ID (RFID) tags working with 𝜇𝑊 of power [33].  

Fig. 11 shows an overall radiofrequency (RF) energy harvesting system. The 

system is made up of a Power Transmitter which generates the power to be transmitted, 

efficiency and power to be transmitted stand out as the main limitations in this block. 

Depending on the application, antennas are chosen which meet directionality and 

polarization. 
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Fig. 11. RF energy harvesting system.  

 

Once the power is transmitted through the medium, the RF energy harvesting 

node takes the available RF power and converts it to stored power. 

As RF harvesting is aimed at far-field applications, power must be extracted from 

the air at increasingly low power densities. This is due to the propagation energy 

dropping off rapidly as distance from the source increase [34]. In free space both electric 

field and power densities drop off at a rate of 1/𝑑2, with 𝑑 being the distance from the 

power transmitting source. This signifies that 6 dBs of power are lost for every doubling 

of the distance from transmitter, causing serious strain on the receiving energy 

harvesting node block.  

The components making up the node are: receiving antenna, matching network, 

AC-DC rectification block, and finally a Storage block [18]. As shown in Fig. 11, the 

antenna picks up the radiated power from the power transmitter, the matching network 

operates to ensure maximum power is transferred to the system, the AC-DC rectification 

converts the incoming RF signal to a DC voltage while performing a DC voltage gain, 
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and finally the Storage block comprised of a storage element such as capacitor or 

battery.  

Implementation of the matching network is usually performed with off-chip 

inductors and capacitors, ensuring high quality factors (Q) and low parasitic resistance 

values. A drawback of having a high valued Q is the limitation in harvested bandwidth 

over which the system may operate as shown: 

 
𝑄 = 𝜔 ∙ (

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑
) → 𝑄 =

𝑓𝑐

Δ𝑓
 

(10)  

where 𝜔 is the tuned frequency of the matching network, 𝑓𝑐 the center frequency of 

operation and Δ𝑓 the system bandwidth.  

Both the antenna impedance matched to the input impedance of the rectifier 

circuit will allow for best operational performance for the system. Matching allows for 

passive amplification of the signal to reduce stress on the AC-DC block.   

Fig. 12 shows an individual AC-DC rectification block. As RF power enters the 

rectifier, it is rectified and delivered to the DC output node during the positive half-

cycle. While at the negative half-cycle, the voltage is clamped through the input 

capacitor 𝐶𝑖𝑛 to the maximum voltage achieved during the positive half-cycle.  Fig. 13 

shows the aforementioned operation of the rectifying block.  
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Fig. 12. AC-DC rectifier.  

 

 

 

Fig. 13. Positive and negative half-cycle performance for RF AC-DC rectifier. 
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As a single stage can theoretically deliver a maximum of 2X the input voltage 

peak, a series of cascaded rectifier blocks can potentially lead to an ever increasing 

output voltage value as shown in (11). 

 
𝑉𝑜𝑢𝑡 = 𝑛𝑠𝑡𝑎𝑔𝑒𝑉𝑖𝑛,𝑝𝑒𝑎𝑘 −

𝑛𝑠𝑡𝑎𝑔𝑒 − 1

𝑓𝑐 ∙ 𝐶𝑜𝑢𝑡
𝐼𝐿𝑜𝑎𝑑 

(11)  

where 𝑛𝑠𝑡𝑎𝑔𝑒  is the number of stages in the rectifier block, 𝑉𝑖𝑛,𝑝𝑒𝑎𝑘 is the peak input 

voltage of the incoming RF signal, 𝑓𝑐 the RF signal frequency, 𝐶𝑜𝑢𝑡 the output capacitor 

at the DC output node,  and 𝐼𝑙𝑜𝑎𝑑 the output load at the DC output node. From (11) we 

see that for a power limited input signal, a finite output voltage can be achieved for a set 

output current 𝐼𝑙𝑜𝑎𝑑. Fig. 14 shows an N-stage AC-DC rectifier block by implementing 

multiple cascaded rectifier blocks.  

 

 

Fig. 14. N-stage AC-DC rectifier block for RF energy harvesting. 
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It should be noted that (11) does not take into account the forward bias voltage 

drops of the diodes in the rectifier. This reduces overall efficiency of the harvester by 

limiting the delivered power at the output node (DC output).  

 Implementing CMOS transistors as diodes helps alleviate the forward bias drop 

issue to an extent [18, 35], but are still a major bottleneck in RF harvesting technology 

and the minimum power needed for scavenging purposes; Fig. 15 shows both 

implementations.  

 

 

 

Fig. 15. Diode and NMOS implementation of AC-DC rectifier block for RF harvesting. 
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Fig. 16. Schematic of three types of electromechanical transducers a) electrostatic b) electromagnetic 

and c) piezoelectric. 

 

Current limits for state-of-the-art harvesting sensitivity are ~ 25 dBm of input 

power for a 1.3 GHz RF frequency [36]. 

Kinetic energy harvesting 

Focusing on the vibration energy available, we can see that vibration sources are 

generally ubiquitous and can be readily found in accessible locations such as air ducts 

and building structures. There are generally three types of electromechanical transducers 

that can convert vibration energy to electrical energy, these are: electrostatic, 

electromagnetic and piezoelectric and are shown in the figure below.  

Out of the three different option for harvesting kinetic energy it is the 

piezoelectric device the one that has been more extensively studied and presents many 

advantages over the other two mechanisms, such as: simple configuration, high 

conversion efficiency and better control.  
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Fig. 17. Piezoelectric effect showing ceramic cation and anion reconfiguration with both external 

polarization voltage and deformation forces applied. 

 

The manner in which piezoelectric materials operate is that they become 

electrically polarized, or undergo a change in polarization in their structure, when 

subjected to mechanical deformation (stress or changes in its original dimensions). This 

results in a variation in bond lengths between cations and anions, this may cause a flow 

of energy to occur if a closed circuit system is implemented [37]. Fig. 17 illustrates the 

aforementioned occurrence.  

This phenomenon was discovered on many crystals, for instance, tourmaline, 

topaz, quartz, Rochelle salt, and cane sugar, by Jacques and Pierre Curie brothers in 

1880, and named as piezoelectricity or piezoelectric effect, which describes a 

relationship between stress and voltage. Conversely, a piezoelectric material will have a 

change in dimension when it is exposed in an electric field. This inverse mechanism is 

called electrostriction (Fig. 17). Those devices utilizing the piezoelectric effect to 
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convert mechanical strain into electricity are called transducers, which can be used in 

sensing applications, such as sensors, microphones, and strain gages.  

While those devices utilizing the inverse piezoelectric effect to generate a 

dimension change by adding an electric field are called actuators and used in actuation 

application, such as positioning control devices, and frequency selective device.  

Among the important parameters to understand for a given piezoelectric material 

are those referring to the electric displacement component (C/m
2
) which is a measure of 

charge storage or polarization at a given electric field. The charge generated is 

proportional to the applied pressure. This proportionality can be expressed in matrix 

notation in terms of dielectric displacement D (charge, Q, per unit area; 

Coulomb/meter
2
-C/m

2
), which is a measure of charge storage or polarization at a given 

electric field: 

 𝐷𝑖 = 𝑑𝑖𝑗𝜎𝑗       (𝑖 = 1 − 3 𝑎𝑛𝑑 𝑗 = 1 − 6) (12)  

where dij are the piezoelectric coefficients (C/N), also called charge coefficients, and 𝜎𝑗 

are the stress (N/m
2
) components. 

Among the commercially available materials used in piezoelectric devices Lead 

Zirconate Titanate (PZT) based ceramics are the most commonly used due to their 

excellent piezoelectric properties and high coefficient variable values. It is important to 

note that the piezoelectric coefficients dictate the energy harvester's performance, the 

main parameter to focus on for energy harvesting applications is the piezoelectric 

voltage coefficient g33, these coefficients relate the electric field to the applied stress by 

the following equation: 
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𝑔33 =

𝑑33

𝜀𝑜 ∙ 𝐾3
 

(13)  

where 𝜀𝑜 is the permittivity of free space and K3 is the relative dielectric constant of the 

material. Higher g33 values yield higher output voltages. This coefficient is low for bulk 

PZT ceramics due to their high K3. However, g33 can be increased by incorporating the 

PZT ceramic as continuous parallel rods in an inactive polymer matrix.  

The application of an external force, 𝜎, to a piezo material creates an Electric 

field, E, proportional to the voltage coefficient, g. This is expressed by the following 

equation: 

 𝐸 = 𝑔 ∙ 𝜎 (14)  

Considering that the electric field is given by 𝐸 =
𝑉

𝐿
 and 𝜎 =

𝐹

𝐴
, we can assume 

that the output voltage due to the applied force on the piezoelectric material is given by: 

 
𝑉 =

𝑔 ∙ 𝐹 ∙ 𝐿

𝐴
 

(15)  

where V is the voltage, F is the applied force, L and A are the length and cross section of 

the device. From this equation we can see that for larger voltage coefficients, force and 

length, along with small cross section gives us the best results in terms of output voltage. 

Accordingly piezoelectric fibers give off higher voltages from high L/A ratios. Hence a 

tradeoff is seen in terms of area and length, but it is the voltage coefficient which is the 

main restriction in terms of good power conversion.   
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A second important factor in piezoelectric converters is the resonant frequency, 

which limits the range of operational frequency the transducer possesses. Depending on 

resonant frequency, a particular application driven design may be achieved.  

 

 

Fig. 18. Piezoelectric energy harvester electrical model. 

 

A first approach to the calculation of the resonant frequency is given by: 
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𝜔

2𝜋
=

1

2𝜋
√

𝐾

𝑚𝑒
 

(16)  

where fr is the resonant frequency; ω is the angular frequency; K is the spring constant at 

the tip of the cantilever, me is the effective mass of the cantilever. It can be easily seen 

that for higher value of masses i.e. area, we can expect a much lower resonant frequency 

for the device.  

 As the piezoelectric transducer bends in both directions during mechanical stress, 

the electrical equivalent model behaves as an AC current source (𝐼𝑃𝑍𝑇) which charges 

and discharges a capacitance across the material surface (𝐶𝑃𝑍𝑇). A leakage resistor is 

also considered, 𝑅𝐿𝑒𝑎𝑘, causing some loss in the delivered charge.  
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 This dissertation does not deal with the power generated from kinetic energy 

harvesting sources.  

Alternative energy harvesting sources 

Alternative approaches to generate power have been continuously researched in 

hopes to reduce the dependency on fossil fuels. As mentioned throughout this chapter, 

many of the energy harvesting technologies have the potential of reducing the carbon 

footprint of humans. Taking an approach which considers biological substances as 

potential sources of power is not entirely new; in the late 1700s, Luigi Galvani noted that 

living beings possessed a capacity to generate electrical charges within the body. This 

would lead researchers to look at microscopic sources for power: bacteria.  

In 1911, the first paper published on the power generation capabilities of bacteria 

were first reported [38]. This would lead to implementing groups of bacteria into cells to 

better harness their power generation capacity. This led to the breakthrough of Microbial 

Fuel Cells (MFC).  

MFCs are a bioelectrochemical technology that converts chemical energy into 

electrical energy by producing electricity directly from biodegradable substrates such as 

wastewater; Fig. 19 shows a simplified schematic of the MFC. In MFCs, exoelectrogenic 

bacteria break down the carbon substrates while producing electrons, which are then 

transferred to the anode [39]; these electrons flow to the cathode through an external 

load, and then combine with protons and oxygen to form water, thus completing a full 

circuit and producing electricity.  
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Fig. 19. Microbial fuel cell two-chamber schematic.  

 

The operating principle with MFCs is through the digestion of sugars by micro-

organisms in aerobic conditions. These conditions allow for sugar to breakdown into 

carbon dioxide and water. Whenever oxygen is not present in the reaction, the 

byproducts of digestion leave carbon dioxide, protons, and electrons.  

 𝐶12𝐻22𝑂11 + 13𝐻2𝑂 → 12𝐶𝑂2 + 48𝐻+ + 48𝑒− (17)  

 MFCs use these byproducts and funnel the protons through the Proton Exchange 

Membrane (PEM) in Fig. 19. Causing a potential difference across the chambers and 

allowing for a built-in potential to develop and manifest at the anode-cathode 

connections set externally.  
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Fig. 20. Output voltage of MFC vs. time. 

 

The device must also possess the ability to oxidize the substrate being injected 

into the chamber, through either an intermittent or continuous mechanism; otherwise the 

system falls into the biobattery category. The defining characteristic of the MFC lies in 

the catalyzed electron liberation at the anode and subsequent electron consumption at the 

cathode, in a sustainable fashion.  

Since the MFC technology is dependent on biological variables, non-linearity is 

to be expected. As the substrate is completely consumed by the bacteria within the anode 

chamber of the MFC, the exoelectrogenic activity within the chamber reduces. This 

causes an output power degradation; thus, both the measured voltage and current are 

reduced. Fig. 20 shows the tested performance for a two chamber MFC, with 240 mL 

volume. It can be seen from this plot that on the 81
st
 day, the output voltage abruptly 

drops, until substrate replenishment is performed.  
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Fig. 21. Microbial fuel cell simplified electrical equivalent model. 

 

This sets a limit to the applications in which the MFC technology can aid, a 

common thread in all energy harvesting technology. Nevertheless, given the right 

conditions and constant substrate replenishment application (water treatment plants), 

MFCs can potentially lead to helpful power generation to reduce overall power demand 

and load of a system.  

A simplified electrical equivalent model of the MFCs is constructed in Fig. 21. 

This first order model possesses a dynamic and steady-state power component. By 

implementing the series resistor, 𝑅𝑀𝐹𝐶 , a maximum power capability is determined in 

the MFC model. While the parasitic capacitor, 𝐶𝑀𝐹𝐶 , is used to model the dynamic 

behavior of the MFC whenever a charging/discharging scenario is presented.  

More complete electrical equivalent models consider multiple variables [40], i.e. 

pH, temperature, and concentration. Nonetheless, for first order approximation electrical 

model, from Fig. 21, offers sufficient information for proper PMU design. Chapters IV, 

VsVMFC

RMFC
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V and VI in this dissertation will present a solution to harvesting maximum power for 

MFCs aimed at low-power, wireless sensor node applications.  

Voltage regulators 

As the energy harvesting transducers offer unregulated voltage, the need for 

regulators is a must. Since the power produced by the transducers is non-continuous and 

at times extremely sparse. The need for power conditioners capable of storing and later 

delivering the stored energy to electrical loads on demand becomes apparent.  

The implemented regulators must be highly efficient, as well as low-power in 

order to deliver the vast majority of the harvested power to the load. This is shown as: 

 
𝜂𝑒𝑓𝑓 =

𝑃𝐿𝑜𝑎𝑑 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 − 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑃𝑖𝑛𝑝𝑢𝑡
 

(18)  

 From (18) we see that the overall efficiency depends on both losses and 

consumed regulator power, this becomes a major issue when the input power, 𝑃𝑖𝑛 is 

extremely small to begin with. Two major topologies of power converters will be briefly 

described and overviewed to better understand the major benefits and drawbacks with 

each topology: switching regulators and linear regulators.  

Inductive switching regulators 

Switching regulators are a category of regulator that implement magnetic-based 

components (inductor) to draw, store, and then release charge to an electronic load. This 

is achieved by temporarily energizing and de-energizing inductors in alternating cycles.  
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As see in Fig. 22, the input inductor, 𝐿𝑖𝑛, draws current from the input source by 

connecting 𝐿𝑖𝑛 to the input source, 𝑉𝑖𝑛, to one terminal and the second terminal to a 

lower potential. This causes the inductor current, 𝑖𝐿𝑖𝑛, to increase in a proportional 

manner as the waveform in Fig. 22b shows (blue). The almost linear current increase is 

due to the inductor voltage is determined by: 

 
𝑉𝐿𝑖𝑛 = 𝐿𝑖𝑛

𝑑𝑖𝐿𝑖𝑛

𝑑𝑡
= 𝑉𝑖𝑛  

(19)  

 

 

Fig. 22. A) Switching phases and B) inductor current waveform of an inductive switching regulator. 

 

During the complementary cycle 𝑉𝐿𝑖𝑛 is subjected to the output voltage, 𝑉𝑜𝑢𝑡, 

which effectively causes a reverse polarity across 𝐿𝑖𝑛. This causes the inductor to release 

energy which was received in the first cycle (Fig. 22B).  

Since 𝑉𝑜𝑢𝑡 is usually regulated to a set level, the output voltage is usually 

constant and well defined. This causes 𝐿𝑖𝑛 to discharge at a rate of −𝑉𝑜𝑢𝑡/𝐿𝑖𝑛. Both the 
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input and output voltage define the inductor current ripple and amount of energy 

delivered to the load.  

Since the output current to be delivered should be continuous, the inductor ripple 

current sits above a steady-state averaged DC current value given by 𝑖𝐿𝑖𝑛<𝑎𝑣𝑔>. 

Depending on the load demands, the inductor ripple current may ride on a high valued 

steady-state value, or the current ripple may reach zero amps during the discharging 

cycle, before the next charging cycle. The value of the inductor ripple current prior to the 

next charging cycle defines whether the switching converter operates in Continuous 

Conduction Mode (CCM) or Discontinuous Conduction Mode (DCM). Both of these 

modes of operation are further discussed in Chapter II.  

A second feature which is integral to inductive switching converters is the ability 

to produce a higher (boost) or lower (buck) voltages. These higher or lower voltages can 

be achieved as long as the charging and discharging cycles of 𝐿𝑖𝑛 remain positive and 

negative, respectively. This since in order for 𝐿𝑖𝑛 to release the stored charge to the load, 

requires the differences across its terminals for correct charging/discharging.  

The inductors used in switching regulators allow for continuous current by 

instantly varying its voltage until an adequate supply or load is found for its stored 

charge. Any switch resistance or inductor DC resistance, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠, exhibited in the 

converter will drop a root-mean-square voltage, dissipating the following expression: 

 𝑃𝑅 = 𝐼𝐿𝑖𝑛(𝑟𝑚𝑠)
2 ∙ 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 

(20)  
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Since the associated DC resistances are usually low, inductive switching 

converter offer high values of efficiency. The conduction losses (𝑃𝑅) while low are not 

zero, and are proportional to the input current squared. Increasing this current will also 

increase the amount of power burnt on these resistors, increasing conduction losses.  

Capacitive switching regulators 

The capacitive switching regulator, or more commonly known Charge Pump, 

implements the same principle as the inductive switching regulator but instead of using a 

magnetic component for charge storage, a capacitor is used. Both buck and boost 

operations are possible with charge pumps.  

 

 

Fig. 23. Operation and switching waveforms for a simple voltage doubler.  
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Compared with inductive switching regulators, charge pumps offer an alternative 

to designs where the use of magnetic components is not desired. Offering a fully 

integrated approach is also an added bonus to using charge pumps as voltage regulators 

for applications. Fig. 23 shows the operation and waveform of the intermediate node in a 

simple voltage doubler topology.  

During 𝜙1 the “flying” capacitor 𝐶1 is charged up to 𝑉𝑖𝑛, while the output voltage 

𝑉𝑜𝑢𝑡 in capacitor 𝐶𝑜𝑢𝑡 remains static.  

 𝑄𝐶1 = 𝑉𝑖𝑛 ∙ 𝐶1 
(21)  

During 𝜙2, the flying capacitor is placed in series with 𝑉𝑖𝑛, and the addition of 

both these voltages delivers a 2X increment to 𝑉𝑜𝑢𝑡 (now in parallel with the series 𝐶1 

and 𝑉𝑖𝑛).  

 𝑄𝐶1 = (𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛) ∙ 𝐶1 = 𝑉𝑖𝑛 ∙ 𝐶1 → 𝑉𝑜𝑢𝑡 = 2 ∙ 𝑉𝑖𝑛 
(22)  

Multiple topologies can be implemented with the flying capacitor topologies 

[41], going from parallel-series (Fig. 23) for step-up operations, as well as series-parallel 

for step-down voltages.   

Nonetheless, the main limitations of charge pumps are the required area for the 

desired application, capacitor density areas in integrated CMOS processes are low and 

lossy (high ESR and leakage) compared to discrete components, output noise due to 

constant switching of capacitors, and output current delivering capability [41]. For 

higher current delivering densities (low output resistance of charge pump) a higher 

capacitance value is required [42]:  
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𝑅𝑜𝑢𝑡 =

𝑁

𝐶𝑠𝑡𝑎𝑔𝑒 ∙ 𝑓
𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

 
(23)  

where 𝑁 is the number of stages in the charge pump topology, 𝐶𝑠𝑡𝑎𝑔𝑒 is the flying 

capacitance value, and 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 is the switching frequency of the charge pump. Due to 

these limitations, charge pumps are widely used in internal CPU memories and solid-

state drives which require high-voltage pulses to program and erase data. Other 

applications for charge pumps are found in LED drivers, where high voltages are 

required while sacrificing minimum area.  

Linear regulators 

 

 

Fig. 24. Linear regulator simplified schematic.  
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The linear regulator is, at its name dictates, a linearly dependent variable that 

delivers a constant output voltage from a higher input voltage. Fig. 24 shows a 

simplified representation of the operational principle of linear regulators. As 𝑉𝑖𝑛 or 

𝑅𝐿𝑜𝑎𝑑 change, the variable resistor 𝑅𝑙𝑖𝑛𝑒𝑎𝑟 varies its value in order to maintain 𝑉𝑜𝑢𝑡 

constant.  

The implementation of 𝑅𝑙𝑖𝑛𝑒𝑎𝑟 is usually implemented through a semiconductor 

transistor, who’s conductance is modulated through a control loop to maintain 𝑉𝑜𝑢𝑡 

constant. Due to the low number of transistors in the overall implementation of the 

regulator, it is able to react quickly to load demands as well as having limited quiescent 

power consumption. This circuit generates minimum noise to the output load (not 

counting thermal noise) since it is not periodically switching between fully on and off 

stages [43].  

The main limitation in this type of approach to regulation is voltage flexibility. 

For a linear regulator 𝑉𝑖𝑛 will always be greater than 𝑉𝑜𝑢𝑡, a case which is not so in 

inductive or capacitive switching regulators. Also, the energy harvesting transducer and 

output storage (capacitor) set the voltage across 𝑅𝑖𝑛, which means that the power lost in 

the linearly variable resistor rises linearly with input current. This sets maximum 

efficiency of the regulator as a function of the dropout voltage (voltage drop across 𝑅𝑖𝑛).  

 
𝜂𝐿𝐷𝑂 =

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑃𝑜𝑢𝑡

𝑃𝑜𝑢𝑡 + 𝑃𝐿𝑜𝑠𝑠

=
𝑉𝑜𝑢𝑡 ∙ 𝐼𝑜𝑢𝑡

𝑉𝑜𝑢𝑡 ∙ 𝐼𝑜𝑢𝑡 + (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) ∙ 𝐼𝑜𝑢𝑡
=

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 

(24)  
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From (24), if the input voltage were to be 15 V and the output 2.5 V, the overall 

regulator efficiency would fall to ~17%. This would mean that approximately 83% of the 

input power is spent on 𝑅𝑖𝑛. This also signifies that the linear regulator is extremely 

highly efficient for 𝑉𝑜𝑢𝑡 values close to 𝑉𝑖𝑛. Also, linear regulators possess superior 

noise rejection, mainly due to the lack of switching components when compared to the 

switching regulator counterparts.  

Energy storage elements 

 Having a place to store the harvested power from the energy harvesting sources 

is a critical component in any power management solution. Solutions range from 

batteries, to temporary storage units such as capacitors.  

Breakthroughs are performed at a rapid rate in both battery technology [44, 45] 

and capacitor technology in the form of supercapacitors/ultracapacitors [46, 47]. 

Although both components offer their respective benefits to temporary storage, the main 

difference between both technologies is the power/energy density availability. Whereas 

capacitor technologies possess a much higher power delivery density, delivering high 

current values in an instantaneous fashion; battery technology offers a more energy 

dense solutions, capable of delivering steady amounts of energy over longer periods of 

time. Fig. 25 shows a conceptual comparison between both power and energy densities.  
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Fig. 25. Comparison of power density vs. energy density in batteries and super/ultra-capacitors. 

Power management’s significance on energy harvesting technology 

Due to the non-continuous nature of energy harvesting power sources, a smart 

and efficient power management block is needed to shape the available power and 

deliver it to a storage/electronic load.  

New applications in the field of wireless sensor network require multiple sensor 

networks, which can number in the hundreds [48-50], require a power source capable of 

operating over long periods of time. And even with longer lasting power sources on-

board, whenever these sources were to run out, the operation of changing batteries on 

hundreds of sensors nodes becomes a tedious and impractical task.  

Energy harvesting technology would potentially increase the power availability 

with sensor networks ad infinitum. By continuously extracting power from the 

environment and maintaining an ultra-low-power operation, overall operational lifetime 

would increase immensely.   

P
o

w
e

r 
D

e
n

s
it

y
 (

W
/k

g
)

Energy Density (Wh/kg)

MLCC capacitors

Batteries

1

10

100

1000

1 10 100 1000 10000



 

42 

 

Proposed solution 

This dissertation presents four unique power management solutions Energy 

Harvesting sources. Implementing inductive, capacitive and linear regulator approaches; 

the focus of extracting maximum power as well as delivering a regulated load are 

tackled in the proposed approaches. 

The first part of the dissertation focuses on the application of inductive switching 

regulators and their use in energy harvesting applications. In the first work, a built-in 

input matching technique capable of handling a wide variation of multi-array TEG 

impedances ranging two decades, from 10s to 1000s of ohms is presented. Maximum 

power point tracking (MPPT) control for a boost converter (BC) are performed to assure 

maximum power transfer. A prototype was fabricated in 0.5 μm CMOS with the 

achieved goal of maximum measured efficiency of over 60% for an RTEG=33.33Ω, and 

quiescent power consumption under 1µW. Fig. 26 shows the conceptual solution of the 

harvesting unit.  

 



 

43 

 

 

Fig. 26. Proposed solution for TEG array impedance matching and energy harvesting.  

 

The second work focuses on extracting maximum power from MFCs. Due to the 

MFC’s low power and voltage production, a power management system (PMS) is 

required to process the MFC power to a more readily usable level. For this application a 

monolithic PMS with an integrated maximum power extraction algorithm (MPEA) is 

presented. The MPEA will allow for quick and accurate pin-pointing of the matching 

conditions for maximum power transfer from the MFC to the PMS. The PMS was 

fabricated and tested in 0.5 μm CMOS technology. The maximum dynamic efficiency 

was measured at ~58%. Fig. 27 shows the conceptual solution of the harvesting unit.  
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Fig. 27. Proposed solution for MFC source impedance matching and energy harvesting.  

 

The second part of the proposal focuses on a more fully integrated approach by 

implementing switched capacitor regulators. A second solution targeted for MFC 

applications is presented via an inductorless DC-DC (I-DCDC) converter for an energy-

aware power management unit (EA-PMU). The system is capable of performing a DC 

step-up gain of up to 10X and achieving MPPT efficiently. The converter is a key 

building block for an EA-PMU capable of identifying the best candidate for energy 

harvesting from an array of MFCs.  
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Due to the MFC’s varying power profile over time, identifying and selecting the 

best MFC from an array enhances efficiency and overall power delivery. MPPT is 

achieved through wide variety of impedance scenarios from the MFC array while 

maintaining low power consumption. The converter was designed, fabricated, and tested 

in 0.18 μm CMOS process and achieved a maximum efficiency of 65%. Fig. 28 shows 

the conceptual solution of the harvesting unit.  

 

 

Fig. 28. Proposed solution for MFC array impedance matching and energy harvesting.  

 

Finally an autonomous, fully integrated, Energy Harvesting power management 

unit (PMU) with digital regulation for Internet of Things (IoT) applications is presented.  
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The main focus of this work is targeted for wireless sensor node applications, and 

focus on performing maximum power extraction and storing harvested power. Efforts on 

delivering a regulated supply to noise sensitive blocks have yet to be fully achieved with 

current solutions. The presented PMU achieves full autonomous operation able to 

perform maximum power point tracking (MPPT) for DC type energy harvesting sources 

(solar, thermal, biomass), startup operation with the available power from the harvesting 

source, and deliver a regulated output voltage through a digital Low dropout (LDO) 

regulator. The system was fabricated in 0.18 μm CMOS process and maximum end-to-

end efficiency was measured to be at 57 % with 1.75 mW of input power. Fig. 29 shows 

the conceptual solution of the autonomous power management unit.  

 

 

 

Fig. 29. Proposed solution for DC energy harvesting autonomous power management unit.  
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CHAPTER II  

FUNDAMENTALS OF POWER MANAGEMENT SYSTEMS FOR ENERGY 

HARVESTING 

Introduction 

Nowadays, commercially available consumer electronics possess a wide variety 

of voltage/current level requirements that cannot be met with a single battery. 

Implementing each and every one of the voltage domains would require the same 

number of batteries, making the solution impractical. The answer lies in power 

processing circuits capable of delivering multiple voltage/current domains with a single 

source. As can be seen in Fig. 30, the main focus of these power processing circuits is to 

convert one power domain, usually input voltage/current levels incompatible with the 

required levels, to other more compatible voltage/current levels for the required 

application.  

 

 

Fig. 30. Switching converter power conversion illustration.  
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A key component in these types of conversions is the switching converter. The 

switching converter operates by storing the input energy temporarily in magnetic field 

storage components (inductive, transformers) or electric field storage components 

(capacitors), then delivering the stored energy to the output load of the converter. This 

stored/deliver cycle is repeated multiple times to achieve the required output voltage 

level.  

Akin to the switching converter, an alternative exists in the linear regulator. The 

linear regulator operates as a variable resistor, as shown in Fig. 31; the resistor varies its 

value in order to maintain a constant output voltage at 𝑉𝑜𝑢𝑡 when load demands vary. 

Whereas the switching converter possesses a great flexibility in terms of load power 

delivery, the linear regulator is a more limited topology since it can only deliver output 

voltages below that of the input. Nonetheless, while the switching converter does 

possess a high degree of freedom in terms of output power delivery the required 

controller is higher in complexity when compared to the linear regulator.  

When the variable resistor is implemented via an active device, i.e. a transistor, a 

special type of linear regulator is implemented, named a Low Dropout Regulator due to 

the low voltage drop across the Drain-Source (Collector-Emitter) terminals of the 

device.  
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Fig. 31. Illustrative example of linear regulator. 

 

In energy harvesting applications, due to the low power nature of the transducer 

sources, switching converters are implemented to step-up the delivered voltage levels of 

the transducers to usable voltage/current levels for the system. The present chapter of 

this dissertation will delve into the fundamentals of two main switching converter 

topologies: the boost converter and the charge pump (also known as switched capacitor 

regulator).  The boost converter stores the input energy into a magnetic field storage 

component, an inductor; while the charge pump performs the energy storage through an 

electric field storage component, the capacitor. Linear regulators will also be described, 

mainly focusing on Low dropout regulators.  
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Switching converter fundamentals 

Step-up (boost converter) 

As mentioned previously, the switching converter categorized as a boost 

converter performs a step-up operation of the input voltage by storing energy through a 

magnetic element (an inductor) in one phase, then delivering the stored energy to the 

output in a complementary phase. Fig. 32 shows an illustrative boost converter 

schematic, where the input inductor, 𝐿𝑖𝑛, performs the energy storage, the power stage 

made up of two main switches S1 and S2, an output capacitor to stabilize and filter the 

output voltage, 𝐶𝑜𝑢𝑡, and finally the input and output voltages 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡.  

As shown in Fig. 33, the inductor stores energy during one phase of the 

switching period, 𝐷1 = 𝐷 ∙ 𝑇𝑠𝑤, with D being the duty cycle (percentage of the period) 

the switch S1 operates during this first phase to charge 𝐿𝑖𝑛.  

 

 

Fig. 32. Boost converter schematic. 
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Once the phase duration ends, S1 shuts off and S2 switches on, causing 𝐿𝑖𝑛 to 

deliver the stored energy from the first phase to load. This secondary phase, 𝐷2 =

(1 − 𝐷) ∙ 𝑇𝑠𝑤, sees the delivered energy to the output load and once 𝐷2 is over, 𝐷1 

begins anew and the cycle repeats.   

Both switches S1 and S2 are implemented through active components. Shown in 

Fig. 34 is a simplified schematic of the boost converter power stage with two different 

switch implementations: Asynchronous and Synchronous. For the asynchronous case, 

Fig. 34A, the switch network implemented via a transistor and diode: an NMOS 

transistor for S1, and an output diode 𝑆𝐷 for S2. For the synchronous case, Fig. 34B, 

both switches are implemented via transistors: an NMOS transistor for S1, and a PMOS 

transistor for S2.  

 

 

Fig. 33. Boost converter complementary phase operation. 
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Fig. 34. A) Asynchronous boost converter schematic and B) synchronous boost converter schematic.  

 

As asynchronous converters suffer from the forward bias drop of the diode, 𝑆𝐷, 

they have an inherent reduced overall efficiency. The synchronous converters possess a 

much higher efficiency due to the transistor voltage drop being much less than that of the 

diode, but require a much more complex control in order to avoid having the S2 switch 

on for too long, causing a backflow of current to the input.  

Depending on load demands, the boost converter is able to operate under two 

different modes: Continuous Conduction Mode (CCM) or Discontinuous Conduction 

Mode (DCM). CCM applications are usually implemented for heavy-load currents at the 

output voltage, whereas DCM applications are intended for more light-load applications.  
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Due to the load demand at the output, each operating mode has a distinctive current 

shape passing through 𝐿𝑖𝑛. While as in CCM mode the inductor current never reaches 0 

A due to the high demand at the output, in DCM mode the inductor current falls to 0 A 

before or at the end of each period.  Fig. 35 highlights both operating modes and the 

voltage nodes associated to the boost converter.  A more detailed description of each 

operating mode will follow.  

Independent of the type of power stage implemented (asynchronous or 

synchronous), or operation mode (CCM or DCM) design insights for steady state 

dynamics are needed for correct modeling of the converter for voltage regulation 

applications. The following section presents the modeling method for the converter 

based on the Pulse Width Modulation (PWM) switch design. 

 

 

Fig. 35. Boost converter CCM and DCM inductor current waveforms.  
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Fig. 36. DC and small signal models for CCM and DCM PWM switch implementations. 

 

 

 

Fig. 37.DCM operating mode view of switch activation and behavior during each cycle.  
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Operating modes 

A Pulse Width Modulation (PWM) switch model for each operating mode [51] 

allows for a simplified design approach while maintaining the system’s characteristics. 

Fig. 36 shows the PWM equivalent model for both CCM (Fig. 36A) and DCM (Fig. 

36B) operating modes for the boost converter. Both S1 and S2 switches from Fig. 32 are 

encompassed within the Power Stage dashed-line box and are replaced by a three 

terminal block. The terminals are labeled as a (active) connects to the S1 switch, p 

(passive) connects to the S2 switch, and c (common) is common node to both switches.  

For the CCM operating mode variable D represents the steady-state duty cycle, 𝑑̂ 

represents small AC variations of the duty cycle, and 𝑑̂ represents the complete duty 

cycle including any DC component and AC variations. For the DCM operating mode the 

averaged switch waveforms (Fig. 37) obey Ohm’s law, and are modeled by an effective 

resistance Re and a power source p(t) delivering the dissipated power through Re to the 

output. The averaged waveforms for S2 follow a power source characteristic, equal to 

the power effectively dissipated in Re: 

 
𝑅𝑒 =

𝑉𝑖𝑛

𝐼𝑖𝑛
=

𝑉𝑖𝑛

𝐼𝑝𝑒𝑎𝑘

2 𝐷1 ∙ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

=
2 ∙ 𝑉𝑖𝑛 

𝐼𝑝𝑒𝑎𝑘 ∙ 𝐷1 ∙ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

=
2 ∙ 𝐿𝑖𝑛

𝐷1
2 ∙ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

 

(25)  

Both operating mode models are inserted into the converter’s power stage in 

order to model the converter dynamics and interaction with a control loop. Fig. 38 shows 
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the connection scheme with which the PWM model would be connected in a boost 

converter configuration independently of CCM or DCM operation.  

 

 

Fig. 38. Boost power stage with connection structure for PWM model. 

 

Implementing The PWM model allows for simple DC and AC analysis of the 

converter. Due to the dependency of the AC analysis on DC parameters, the DC analysis 

should be performed prior to small-signal AC analysis.  

For the CCM steady-state DC analysis the small-signal variables 𝑑̂ is assumed 

zero, Lin is shorted, and Cout behaves as an open circuit.  

 −𝑉𝑖𝑛 + 𝑉𝑐𝑝 + 𝑉𝑜𝑢𝑡 = 0 
(26)  

 
𝑖𝑐 =

𝑉𝑜𝑢𝑡

𝑅𝑜𝑢𝑡

∙
1

1 − 𝐷
 

(27)  

 𝑉𝑐𝑝 = 𝑉𝑎𝑝 ∙ 𝐷 = −𝑉𝑜𝑢𝑡 ∙ 𝐷 
(28)  
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Substituting the relationship between 𝑉𝐶𝑃 and 𝑖𝑐 from (27) and (28) leads to the 

DC voltage gain expression in CCM: 

 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝑀 =

1

1 − 𝐷
 

(29)  

Once all DC voltages are determined, the control-to-output transfer function can 

be determined. Since the analysis has been performed utilizing the PWM switch model, 

the control-to-input transfer function will contemplate duty cycle to output voltage 

control.  

The control-to-output transfer function, given by 𝐺𝑣𝑑(𝑠) = 𝑣𝑜𝑢𝑡(𝑠)/𝑑̂(𝑠), is 

found by assuming a clean input voltage source (causing AC ground at this node), and 

then solving the equivalent circuit model for 𝑣𝑜𝑢𝑡(𝑠) as a function of 𝑑̂: 

 

𝐺𝑣𝑑(𝑠) =
𝑣𝑜𝑢𝑡(𝑠)

𝑑̂(𝑠)
|

𝑣̂𝑖𝑛(𝑠)=0

=
𝐾𝑑𝑐 (1 −

𝑠
𝜔𝑅𝐻𝑃

)

1 +
𝑠

𝑄𝜔𝑜
+

𝑠2

𝜔𝑜
2

 
(30)  

where 𝐾𝑑𝑐 is the DC gain of the converter and is given by: 

 
𝐾𝑑𝑐 =

𝑉𝑜𝑢𝑡

(1 − 𝐷)2
 

(31)  

The system zero is set by: 

 
𝜔𝑅𝐻𝑃 =

(1 − 𝐷)2𝑅𝑜𝑢𝑡

𝐿𝑖𝑛

 
(32)  
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And the resonant frequency and system Q are given by: 

 
𝜔𝑜 =

1

√𝐿𝑖𝑛𝐶𝑜𝑢𝑡

∙ √(1 − 𝐷)2 
(33)  

 𝑄 = 𝐶𝑜𝑢𝑡𝑅𝑜𝑢𝑡 ∙ 𝜔𝑜 (34)  

The main problem with the CCM operation, is presented in its RHP zero (32). 

This will cause a phase shift of -90º while having the traditional effect of a zero on the 

magnitude (increase in magnitude). This is the cause of instability in the system and is 

reason why a control loop design that is capable of dealing with this system must not be 

taken lightly. It should be noted no inductance DCR or capacitor ESR are assumed in 

this model analysis.  

In order to illustrate the DCM operating mode’s steady-state analysis using the 

PWM switch model Fig. 36B, the DC steady-state operation will be detailed first. As 

with the CCM mode, the switch model is substituted into the power stage. The inductor 

is treated as a short circuit and the capacitor is treated as an open circuit. To obtain the 

DC operating voltages in steady-state two calculations are required: determine the power 

dissipated by the dependent power source, p(t) and match this value to the power 

consumed by 𝑅𝑒: 

 

𝑃𝑝𝑡 = 𝑃𝑅𝑒 =
𝑉𝑖𝑛

2

𝑅𝑒
= (𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛) ∙ 𝐼𝑜𝑢𝑡 =

(𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛 )(𝑉𝑜𝑢𝑡)

𝑅𝑜𝑢𝑡
 

(35)  

Rearranging for the conversion gain, 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛, and solving the quadratic equation 

yields: 
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𝑀 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
≈

1 + √1 +
2 ∙ 𝐷1

2 ∙ 𝑅𝑜𝑢𝑡

𝐿𝑖𝑛 ∙ 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

2
 

(36)  

The obtained sets the DC operating point with which the AC small-signal 

control-to-output transfer function can be acquired.   

From the large-signal averaged model in DCM (Fig. 36B), a small signal 

perturbation is introduced. The perturbation is implemented to linearize the operation of 

the converter at a particular operating point (found with the DC steady-state equations) 

[52]. Each large-signal and small-signal perturbations are added into a single variables 

given by (37). From (37), the small signal perturbations variables are used to determine 

the input and output currents going into the power stage ports.   

 𝑑(𝑡) = 𝐷 + 𝑑̂ 

〈𝑣𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑉𝑖𝑛 + 𝑣𝑖𝑛  

〈𝑖𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝐼𝑖𝑛 + 𝑖̂𝑖𝑛 

〈𝑣𝑜𝑢𝑡(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡 

〈𝑖𝑜𝑢𝑡(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝐼𝑜𝑢𝑡 + 𝑖̂𝑜𝑢𝑡 

(37)  

From the perturbation variables, the input and output current are determined to 

be: 

 
〈𝑖𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =

𝑑1
2(𝑡) ∙ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

2 ∙ 𝐿𝑖𝑛

〈𝑣𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 
(38)  

 

〈𝑖𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =
𝑑1

2(𝑡) ∙ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

2 ∙ 𝐿𝑖𝑛

〈𝑣𝑖𝑛(𝑡)〉2
𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

〈𝑣𝑜𝑢𝑡(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔
  

(39)  
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With the non-linear equations (38) and (39), the current expressions are 

expanded in three-dimensional Taylor series over the quiescent point (DC steady-state), 

and obtain the following expression: 

 
〈𝑖𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =

〈𝑣𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

𝑅𝑒(𝑑(𝑡))

= 𝑓1(〈𝑣𝑖𝑛(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔, 〈𝑣𝑜𝑢𝑡(𝑡)〉𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔, 𝑑(𝑡)) 

(40)  

 
𝐼𝑖𝑛 + 𝑖̂𝑖𝑛 = 𝑓1(𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡, 𝐷1) + 𝑣𝑖𝑛 ∙

𝑑𝑓1(𝑣𝑖𝑛, 𝑉𝑜𝑢𝑡, 𝐷1)

𝑑𝑣𝑖𝑛
|

𝑣̂𝑖𝑛=𝑉𝑖𝑛

+ 𝑣𝑜𝑢𝑡

𝑑𝑓1(𝑉𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝐷1)

𝑑𝑣𝑜𝑢𝑡
|

𝑣̂𝑜𝑢𝑡=𝑉𝑜𝑢𝑡

+ 𝑑̂
𝑑𝑓1(𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡, 𝑑̂)

𝑑𝑑̂
|

𝑑̂=𝐷1

 

(41)  

 From (41), the higher-order nonlinear terms are eliminated under the assumption 

that the small-signal perturbations are extremely small compared to the large-signal DC 

steady-state values [52].  

 
𝑖̂𝑖𝑛 = 𝑣𝑖𝑛 ∙

𝑑𝑓1(𝑣̂𝑖𝑛, 𝑉𝑜𝑢𝑡, 𝐷1)

𝑑𝑣𝑖𝑛
|

𝑣̂𝑖𝑛=𝑉𝑖𝑛

+ 𝑣𝑜𝑢𝑡

𝑑𝑓1(𝑉𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝐷1)

𝑑𝑣𝑜𝑢𝑡
|

𝑣̂𝑜𝑢𝑡=𝑉𝑜𝑢𝑡

+ 𝑑̂
𝑑𝑓1(𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡, 𝑑̂)

𝑑𝑑̂
|

𝑑̂=𝐷1

 

(42)  

 
𝑖̂𝑖𝑛 = 𝑣𝑖𝑛 ∙

1

𝑟1
+ 𝑣𝑜𝑢𝑡 ∙ 𝑔1 + 𝑑̂ ∙ 𝑗1 

(43)  
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𝑖̂𝑜𝑢𝑡 = 𝑣𝑜𝑢𝑡 ∙ −

1

𝑟1
+ 𝑣𝑖𝑛 ∙ 𝑔2 + 𝑑̂ ∙ 𝑗2 

(44)  

By separating the small-signal values, an averaged switch model in DCM can be 

constructed as seen in (43) and (44). Fig. 39 shows the constructed model with the AC 

small-signal parameters. The Taylor series values are shown in TABLE 3.  

 

 

Fig. 39. AC small-signal averaged switch network model in DCM. 

 

TABLE 3. Small-signal DCM switch model parameters 

𝒈𝟏 𝒋𝟏 𝒓𝟏 𝒈𝟐 𝒋𝟐 𝒓𝟐 

1

(𝑀 − 1)2𝑅𝑒
 

2𝑀𝑉𝑖𝑛

𝐷1(𝑀 − 1)𝑅𝑒
 

(𝑀 − 1)2

𝑀2
𝑅𝑒 

2(𝑀 − 1)

(𝑀 − 1)2𝑅𝑒
 

2𝑉𝑖𝑛

𝐷1(𝑀 − 1)𝑅𝑒
 (𝑀 − 1)2𝑅𝑒 

 

 

This allows for the control-to-output transfer function to be evaluated for the 

converter; the transfer function is yields: 

 
𝐺𝑣𝑑(𝑠) =

𝑣𝑜𝑢𝑡(𝑠)

𝑑̂(𝑠)
|

𝑣̂𝑖𝑛=0

=
𝐾𝑑𝑐

1 +
𝑠

𝜔𝑝

 
(45)  
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where 𝐾𝑑𝑐 is the DC gain of the converter and is given by: 

 
𝐾𝑑𝑐 =

2𝑉𝑖𝑛

𝐷1(𝑀 − 1)𝑅𝑒
∙

(𝑅𝑜𝑢𝑡 ∙ [(𝑀 − 1)2𝑅𝑒])

𝑅𝑜𝑢𝑡 + [(𝑀 − 1)2𝑅𝑒]
 

(46)  

The system pole is set by: 

 
𝜔𝑝 =

𝑅𝑜𝑢𝑡+(𝑀 − 1)2𝑅𝑒

(𝑅𝑜𝑢𝑡 ∙ (𝑀 − 1)2𝑅𝑒) ∙ 𝐶𝑜𝑢𝑡

 
(47)  

The transfer function of boost converter operating in DCM exhibits a single 

dominant low-frequency pole. As inductor dynamics in this operating mode push an 

additional pole, and possibly a zero, to high frequencies, stability issues are not a main 

concern in DCM operating boost converters.    

Fig. 40 shows the complete control loop for the inductive switching regulator 

scheme. It is comprised of the switching converter block (boost converter), along with a 

feedback factor, summation node, compensation block, and modulation block. The 

implementation of the feedback factor is usually performed through resistor dividers 

[53]. Whereas the summation and compensation blocks are implemented through a 

opamp-feedback arrangement [53]. Finally, the modulation block converts the 

compensated error signal to the driving signals needed by the converter.  
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Fig. 40. Complete control loop for switching converter regulator with two different modulation 

implementation options: PWM and PFM.  

 

Two major modulation schemes are shown within the modulation block: Pulse 

Width Modulation (PWM) and Pulse Frequency Modulation (PFM). Each will be 

described in the following sections.  

Boost converter control loop for pulse width modulation 

The main function of the PWM block is to produce a digital set of signals which 

are proportional to the analog output from the compensation block. The PWM block 

performs this conversion by delivering a constant frequency, variable duty cycle signal 

which drives the S1 and S2 switches for the switching converter (Fig. 32).  
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Fig. 41 shows a simplified schematic for a PWM implementation. A saw-tooth 

waveform generator delivers the 𝑉𝑅𝑎𝑚𝑝 voltage, with amplitude given by 𝑉𝑝𝑝. The 

switching converter’s switching frequency is determined by the 𝑉𝑅𝑎𝑚𝑝 signal, since this 

signal when compared to the compensation (𝑣𝑐), sets the switching period for the driving 

signal 𝐷. The comparator produces a logical high level output when 𝑣𝑐 is greater than 

𝑉𝑅𝑎𝑚𝑝, otherwise it is a low level output signal.  

 

 

Fig. 41. Implementation of PWM scheme.  

 

If over a switching period, 𝑉𝑅𝑎𝑚𝑝 varies linearly over time, and if 𝑣𝑐 falls within 

the values of 𝑉𝑝𝑝, the duty cycle signal 𝑑 will be a linear function of 𝑣𝑐 given by: 

 
𝑑(𝑡) =

𝑣𝐶

𝑉𝑝𝑝
→ 𝑓𝑜𝑟 0 ≤ 𝑣𝑐 ≤ 𝑉𝑝𝑝 

(48)  

Boost converter control loop for pulse frequency modulation 

The implementation of PFM utilizes the same analog signal, 𝑣𝑐, from the 

compensation block but then uses this signal as a control voltage for a Voltage 

vC

VRamp

Comparator

Vpp
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Controlled Oscillator (VCO). The VCO’s delivered frequency varies with the input 𝑣𝑐 

voltage [54]. The VCO, for small-signal analysis, can assume a relatively small 

frequency variation to 𝑣𝑐, so a linear gain can be safely presumed. This allows for a 

linear VCO model dependent on control voltage: 

 
𝐾𝑉𝐶𝑂 =

𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

𝑣𝑐
 

(49)  

 

 

Fig. 42. Implementation of PFM scheme.  

 

This modifies the switching converter dynamics to depend solely on 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 

instead of duty cycle, 𝑑 [55]. Due to the increased noise profile at the output voltage 

from the varying switching frequency, PFM is usually left for light-load applications 

(DCM implementations [56]). Taking into account the VCO’s small-signal linear gain, 

new small-signal parameters are also needed to correctly model the converter with its 

dependency on 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔, the variable definitions are shown in Fig. 43 and TABLE 4.
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Fig. 43. AC small-signal averaged switch network model in DCM un PFM.  

 

 

TABLE 4. Small-signal model parameters for boost converter in DCM under PFM.  

𝒈𝟏 𝒋𝟏 𝒓𝟏 𝒈𝟐 𝒋𝟐 𝒓𝟐 

1

(𝑀 − 1)2𝑅𝑒
 

𝑀𝑉𝑖𝑛 𝐾𝑉𝐶𝑂

𝑓𝑠𝑤(𝑀 − 1)𝑅𝑒
 

(𝑀 − 1)2

𝑀2
𝑅𝑒 

2(𝑀 − 1)

(𝑀 − 1)2𝑅𝑒
 

𝐾𝑉𝐶𝑂𝑉𝑖𝑛

𝑓𝑠𝑤(𝑀 − 1)𝑅𝑒
 (𝑀 − 1)2𝑅𝑒 

𝑓𝑠𝑤 = 𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 

 

 

From TABLE 4, a control-to-output transfer function is elaborated: 

 
𝐺𝑣𝑐(𝑠) =

𝑣𝑜𝑢𝑡(𝑠)

𝑣𝑐(𝑠)
|

𝑣̂𝑖𝑛=0

=
𝐾𝑓𝑐

1 +
𝑠

𝜔𝑝

 
(50)  

where 𝐾𝑑𝑐 is the DC gain of the converter and is given by: 

 
𝐾𝑓𝑐 =

𝑉𝑜𝑢𝑡𝐾𝑉𝑐𝑜

𝑓𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔
∙

(𝑀 − 1)

(2𝑀 − 1)
 

(51)  
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The system pole is set by: 

 
𝜔𝑝 =

(2𝑀 − 1)

𝑅𝑜𝑢𝑡𝐶𝑜𝑢𝑡(𝑀 − 1)
 

(52)  

Step-up (switched capacitor) 

Due to their compact size and full integration, capacitive switching regulators 

(charge pumps) have found widespread application in areas such as smart phones, 

memories, operational amplifiers, regulators, and LCD drivers [41].  

As mentioned in Chapter I, the charge pump regulator can perform step-up or 

step-down operation without the use of inductors to do so. Due to their implementation, 

charge pump applications range from fully capacitive loads to electronic loads 

demanding high current densities.  

As shown in Fig. 23, the regulator operates in two cycles: 𝜙1 (charging of series-

parallel flying capacitors) and 𝜙2 (discharging stored capacitor to output load). In order 

to maintain a regulated voltage at the output of the charge pump a modulation of the 

amount of charge being pumped from the input source is needed.  

For a single stage (only 1 flying capacitor) Fig. 44 shows the dynamic behavior 

of the charge pump after the initial voltage step-up operation (Fig. 23) and a 50% duty 

cycle between 𝜙1 and 𝜙2 is assumed for the converter. During the first period, 𝜙1, the 

flying capacitor 𝐶1 is connected in parallel to 𝑉𝑖𝑛. This causes 𝐶1 to charge up to 𝑉𝑖𝑛, 

while the output capacitor 𝐶𝑜𝑢𝑡 is discharged at a rate of 𝐼𝑜𝑢𝑡 ∙ 𝑇/2, where 𝑇 is the 

switching period for the converter.  
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 Δ𝑄1 = 𝐶1(𝑉𝑖𝑛 − 𝑉1) 
(53)  

During 𝜙2 the switches change states and now 𝑉𝑖𝑛 is connected in series to the 

flying capacitor, allowing for part of the charge stored in 𝐶1 to be transferred to the 

output load (𝐶𝑜𝑢𝑡 and 𝐼𝑜𝑢𝑡). Depending on the demand of output current (𝐼𝑜𝑢𝑡), the 

output voltage will rise sequentially through a series of charge steps until a steady-state 

operational value is achieved [41] yielding: 

 Δ𝑄2 = 𝐼𝑜𝑢𝑡𝑇 (54)  

or: 

 
𝑉𝑜𝑢𝑡,𝑠𝑡−𝑠𝑡 = 2𝑉𝑖𝑛 −

𝐼𝑜𝑢𝑡𝑇

𝐶1
 

(55)  

The expression in (55) can be further extended to N number of stages in the 

charge pump.  

 
𝑉𝑜𝑢𝑡,𝑠𝑡−𝑠𝑡 = (𝑁 + 1)𝑉𝑖𝑛 − 𝑁

𝐼𝑜𝑢𝑡𝑇

𝐶1
 

(56)  

As the charge pump must deliver the same packet of charge throughout the entire 

charge chain to maintain an average DC output voltage, the same amount of charge 

consumed at the output (𝐼𝑜𝑢𝑡𝑇) during one phase must be supplied by the 

complementary phase. Due to this output voltage increase and decrease due to 𝐼𝑜𝑢𝑡, an 

output voltage ripple 𝑉𝑟 is seen.  

 
𝑉𝑟 =

𝐼𝑜𝑢𝑡𝑇

𝐶𝑜𝑢𝑡
 

(57)  
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Fig. 44. Dynamic behavior of charge pump.  

 

Switch implementation have ranged from diodes to MOSFETs connected as 

diode fashion [57, 58] as technology processes have matured. Nonetheless, these 

approaches were limited to the forward bias drop of the diode and voltage drop in the 

diode connected MOSFET; increasing the required charge to be transferred to the output 

load with each cycle. Bootstrap switch implementations can also be implemented in 

order to minimize the voltage drop across the switches [59], improving overall 

efficiency. Fig. 45 shows both implementations with diodes, MOSFETS, and 

bootstrapped switches in the capacitive switching regulator.  
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Fig. 45. Diode, MOSFET, and bootstrap switch schemes for charge pump implementations. 
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Small-signal AC transfer functions for the charge pumps are required for proper 

regulation. Both duty cycle and switching frequency dependent control variable analysis 

can be performed. Although the analysis presented in [60] is for a LC based switching 

converter, its application to other topologies is equally valid as it is a derivation of the 

classical approach of state-space averaging [61]. From Fig. 46, the transfer function is 

obtained by solving for the time domain transient response in both the charging and 

discharging phases taking into account the on-resistances of the switches. From both 

charging and discharging equations, an averaged model is obtained: 

 
𝐶𝑜𝑢𝑡

𝑑Vout

𝑑𝑡
= (−

𝑉𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (Ton Fsw)

+ (
𝑉𝑖𝑛 + 𝑉1 − 𝑉𝑜𝑢𝑡

𝑅𝑜𝑛
−

𝑉𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (Toff Fsw) 

(58)  

For duty cycle control, (58) can be made to match 𝑑̂ as the control variable: 

 
𝐶𝑜𝑢𝑡

𝑑Vout

𝑑𝑡
= (−

𝑉𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝐷1)

+ (
𝑉𝑖𝑛 + 𝑉1 − 𝑉𝑜𝑢𝑡

𝑅𝑜𝑛
−

𝑉𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝐷2) 

(59)  

 

 

Fig. 46. Single stage switched capacitor converter with associated capacitor voltages. 
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By assuming a 50% duty cycle, i.e. 𝜙1 = 𝜙2 (𝐷1 = 𝐷2), the DC solution is 

obtained from the steady-state DC equations for frequency modulation: 

 
𝐶𝑜𝑢𝑡

𝑑(𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡)

𝑑𝑡
= 0

= (−
𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝑇𝑜𝑛(𝐹𝑠𝑤 + 𝑓𝑠𝑤))

+ (
𝑉𝑖𝑛 + (𝑉1 + 𝑣1) − (𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡)

𝑅𝑜𝑛

−
𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝑇𝑜𝑓𝑓 (𝐹𝑠𝑤 + 𝑓𝑠𝑤)) 

(60)  

As well as duty cycle modulation: 

 
𝐶𝑜𝑢𝑡

𝑑(𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡)

𝑑𝑡
= 0

= (−
𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝐷 + 𝑑̂)

+ (
𝑉𝑖𝑛 + (𝑉1 + 𝑣1) − (𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡)

𝑅𝑜𝑛

−
𝑉𝑜𝑢𝑡 + 𝑣𝑜𝑢𝑡

𝑅𝑜𝑢𝑡
) (𝐷 + 𝑑̂) 

(61)  

Eliminating both DC and nonlinear terms (second order effects), as well as 

setting the input voltage to AC ground greatly simplifies analysis and the acquisition of 

the effect of both the switching frequency and duty cycle on the control-to-output 

voltage transfer function after including the effect of the oscillator linear gain. 
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𝐺𝑣𝑑(𝑠) =

𝑣𝑜𝑢𝑡(𝑠)

𝑑(𝑠)
|

𝑣̂𝑖𝑛=0

=
−2𝑉𝑜𝑢𝑡𝑅𝑜𝑛

𝑠(𝐶𝑜𝑢𝑡𝑅𝑜𝑢𝑡𝑅𝑜𝑛) + 𝐷(𝑅𝑜𝑢𝑡)
 

(62)  

 

 

 

𝐺𝑣𝑐(𝑠) =
𝑣𝑜𝑢𝑡(𝑠)

𝑣𝑐(𝑠)
|

𝑣̂𝑖𝑛=0

=
−𝑉𝑜𝑢𝑡𝑅𝑜𝑛 ∙ 𝐾𝑉𝐶𝑂

𝑠(𝐶𝑜𝑢𝑡𝑅𝑜𝑢𝑡𝑅𝑜𝑛) + (𝑅𝑜𝑢𝑡)
 

(63)  

Switched capacitor control loop for pulse width modulation 

 Following the same control loop shown in Fig. 40, the same modulation methods 

are available for the switched capacitor regulator. In order for the implementation of a 

PWM control scheme a charging profile is implemented by varying the duty cycle of one 

of the phase switches 𝜙1,2. Fig. 47 shows how the secondary switch for the 𝜙1 cycle 

modulates the amount of current being pulled from the input source; hence, limiting the 

charge being transferred from the input source to the output load.  

 While modifying the duty cycle of the charge being dumped into 𝐶1 allows for a 

degree of control, it is limited to a maximum duty cycle of 50% [62]. Any increase in 

duty cycle for 𝜙1 beyond 50% negatively affects the charge delivering capability of the 

system as not unbalanced charge transfer takes place in the converter, further 

complicating linearizing dynamics.  
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Fig. 47. Charge pump PWM implementation. 
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If the requirements of the load fall within the regulators capabilities with duty 

cycle modulation, the PWM control loop can improve both speed (bandwidth) and 

accuracy through the compensation block implemented (Fig. 40). The implementation of 

the variable duty cycle block is the same as the one implemented for the inductive 

switching regulator (boost converter).  

Switched capacitor control loop for pulse frequency modulation 

 The implementation of variable control frequency in PFM is a commonly used 

method in switched capacitive regulators [63-65]. The variable switching frequency 

allows for a rapid and accurate voltage regulation mechanism, within the limits of the 

output resistance of the regulator, expressed in (23) in Chapter I. 

 

 

Fig. 48. PFM behavioral model for step-up operation. 
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Fig. 48 represents the PFM behavioral model of the charge pump. 

Implementations utilizing bootstrapped switches usually require and additional number 

of phases (4 phase non-overlapping clock) to synchronize the turning on-off of the 

bootstrap switches prior to the main switches.  

Fig. 49 shows the output resistance variations with both number of stages and 

switching frequency of the regulator. The output capacitor, 𝐶𝑜𝑢𝑡, is set to 1 μF. As the 

plot shows, as the number of stages increases (N) the range over which the output 

resistance can vary is reduced. Causing load current variations to be limited to number of 

stages if any one particular frequency is to be set.  

 

 

 

Fig. 49. Output resistance with variable switching frequency and number of stages.  
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Performance comparison 

As both topologies offer their own benefits and disadvantages, a comparison 

between both regulator types is presented.  

Voltage gain ratio 

 As presented in both Chapters I and II, the voltage gain capabilities for inductive 

and capacitive are performed via the storing and delivering of energy through 

complementary cycles. The stored energy is kept in reactive components, allowing for 

variable amounts of charge to be deposited.  

As the capacitive switching regulator is limited by both frequency and number of 

stages, and the applications for which both regulators will be applied for are in energy 

harvesting approaches, light-load conditions for both converters will be assumed.  

For the inductive regulator the DCM operation is assumed, setting the voltage 

gain to be given by (36). And for the capacitive regulator, since the voltage gain is 

mainly limited by both load current and number of stages, the ratio is determined by 

(56).  

Fig. 50 shows how both converters’ voltage gain is varied with duty cycle and 

number of stages for the boost converter and charge pump, respectively. Both converters 

were set to a switching frequency of 1 MHz, and an input voltage of 1 V. The boost 

converter was also set with an input inductance of 100 μH, whereas the charge pump 

was set to have 200 pF capacitors per stage.  
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Fig. 50. Voltage conversion ratio for both regulators under light-load conditions. 

 

As can be seen, the main limitation in terms of voltage gain for both topologies 

lies in output current demands. As increases in load current will cause the boost 

converter to begin operating in CCM/DCM boundary, and the voltage gain drops, the 

same occurs with the charge pump as the output current demand increases.  

 In order to increase M for both regulators with high 𝐼𝑜𝑢𝑡 demands, the boost 

converter will need to a lower valued inductor and the charge pump a higher valued 

flying capacitor per stage.  

Power efficiency 

Both regulators possess competitive efficiencies under the light-load regime. The 

boost converter’s efficiency is mainly limited to the conduction losses present in the on-

resistance of both switches and input inductor as the light-load specification allows for 

smaller MOSFET switches to be implemented, reducing the overall switching losses 

(1
2⁄ ∙ 𝐶𝑔𝑎𝑡𝑒 ∙ 𝑉𝑑𝑟𝑖𝑣𝑒

2 ∙ 𝑓𝑠𝑤).  

Boost Converter 

in DCM
Charge Pump 
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The efficiency expression is then given by: 
 

𝜂𝐵𝑜𝑜𝑠𝑡 =
𝑃𝑖𝑛𝑝𝑢𝑡 − (𝑃𝑁𝑀𝑂𝑆 + 𝑃𝑃𝑀𝑂𝑆 + 𝑃𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟)

𝑃𝑖𝑛𝑝𝑢𝑡
 

(64)  

where  

 

𝑃𝑁𝑀𝑂𝑆 = 𝑅𝑁𝑀𝑂𝑆 ∙ 𝐷1 ∙ (
𝐼𝑜𝑢𝑡

1 − 𝐷1
)

2

 
(65)  

 

𝑃𝑃𝑀𝑂𝑆 = 𝑅𝑃𝑀𝑂𝑆 ∙ 𝐷2 ∙ (
𝐼𝑜𝑢𝑡

1 − 𝐷2
)

2

 
(66)  

 

𝑃𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 𝑅𝐿𝑖𝑛 ∙ (
𝐼𝑜𝑢𝑡

1 − 𝐷1
)

2

 
(67)  

Assuming low valued DC resistance for the inductor, the switches become the 

main efficiency limitation for DCM boost converter topologies.  

 

 

Fig. 51. Power efficiency for boost converter with variable duty cycle and increasing output load 

current in DCM.  
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For the charge pump’s efficiency several assumptions can be made. Whenever 

diodes or MOSFET connected diodes are replaced by active switching, the main loss 

factor in charge pumps become the parasitic capacitance of the used flying capacitors 

[66]. This leaves the following expression for overall efficiency of the converter: 

 

𝜂𝑐ℎ𝑎𝑟𝑔𝑒 =

𝑉𝑖𝑛 ∙ 𝐼𝑜𝑢𝑡 ∙ (𝑁 + 1) −
𝑁 𝐼𝑜𝑢𝑡

2

𝑓𝑠𝑤 ∙ 𝐶𝑠𝑡𝑎𝑔𝑒

𝑉𝑖𝑛 ∙ 𝐼𝑜𝑢𝑡 ∙ (𝑁 + 1) + 𝛼 ∙ 𝐶𝑠𝑡𝑎𝑔𝑒 ∙ 𝑓𝑠𝑤 ∙ 𝑉𝑖𝑛
2  (68)  

where 𝛼 is the parasitic to main capacitance value ratio for each stage flying capacitors 

[67].  

 

 

 

Fig. 52. Power efficiency for charge pump with variable load current and increasing number of 

stages. 
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Both regulator topologies offer benefits at low and high current load demands 

and integration capability; where the boost converter displays overall better efficiency, 

but limited integration options.  

Integration 

It is in this aspect where the capacitive switching regulator allows for a fully 

monolithic approach. Current technology processes allow for high capacitance density 

per area (F/μm
2
) where flying capacitors above 150 pF are achievable [42, 68]. 

Nonetheless, as expressed in (68), the efficiency is affected by the capacitance ratio of 

the parasitic capacitance to implemented capacitor (𝛼 = 𝐶𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐/𝐶𝑠𝑡𝑎𝑔𝑒). Fig. 53 

shows a cross section of the implementation of Metal-Insulator-Metal (MIM) capacitor. 

 

 

 

Fig. 53. Parasitic capacitance for on-chip capacitors implemented for charge pumps.  
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The main capacitor is formed with metals Y and X for 𝐶𝑠𝑡𝑎𝑔𝑒; the issue arises 

with the 𝐶𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 element from Metal X to the substrate. The more distance between 

the bottom plates (Metal X) to the substrate the lower the value for parasitic 

capacitances.  

Other capacitor creation methods for on-chip processes have also been explored: 

on-chip trench capacitors [69] or metal finger capacitors [70]. These implementations 

are limited to special process technologies which are able to offer such types of 

capacitors.  

For the boost converter the main focus is to minimize the off-chip inductance by 

integrating the magnetic component on-chip. Although efforts to present integrated 

inductors through top metal coils on-chip of use of bond-wire for inductor purposes [71-

74], they are limited to low quality factor designs for light-load demands and require 

high switching frequencies to take full advantage of the storing capabilities of the 

inductor.  

Trade-offs 

As has been shown throughout this chapter, both regulator topologies offer a 

voltage regulation capability to the output. Where the switched capacitor regulator offers 

higher integration capability, the switched inductive regulator possesses inherently 

higher efficiency and higher power delivery capabilities. TABLE 5 shows a comparative 

view of both regulator topologies.  

  



 

83 

 

TABLE 5. Comparison table for both regulator topologies presented.  

  

Switched 
Capacitive 
Regulator 

Switched 
Inductive 
Regulator 

Topology 
Complexity 

High (for multistage 
regulators) 

Low 

Control 
Implementation Medium Medium 

Footprint 
Small 

Large (due to off 
chip inductor) 

Efficiency Low (At high current 
demands) 

High 

Output current  Low   High 

 

 

 

 

 

Fig. 54. Input-output voltage characteristic of Linear regulator.  
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Linear regulators 

As mentioned in Chapter I, linear regulators achieve DC-DC voltage conversion 

by dissipating excess power into a resistive element; essentially making these regulators 

resistive dividers. Utilizing active devices as the dissipating element, the output voltage 

is set through a control loop which varies the active devices on resistance.  A linear 

regulator has three operational regions: off, dropout region, and linear operation, Fig. 54 

illustrates presents the regions and their typical characteristics.  

It is during the linear region where the regulator operates and fixes the output 

voltage with a finite and non-zero loop gain. Decreasing 𝑉𝑖𝑛 causes the pass device to 

enter its linear (MOSFET) or saturation (BJT) region in which the gain of the active pass 

device is low. The regulator still operates, although with minimum loop gain, causing 

DC errors in the regulated value of 𝑉𝑜𝑢𝑡. 

Decreasing 𝑉𝑖𝑛 even further causes the system to enter the dropout region, which 

is where the regulator operates at its driving limit. The pass device still supplies as much 

current in order to keep 𝑉𝑜𝑢𝑡 regulated. Additional decreases in 𝑉𝑖𝑛 forces the regulator 

to be unable to maintain regulation at all.  

Low dropout regulators 

 Low dropout regulators (LDO) are made up of a control loop which senses the 

output voltage in order to maintain the output voltage constant, within a specific 

tolerance level. They appear in two different topologies: source-follower/common-

collector and common-source/common-emitter.  
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Fig. 55. Common-collector LDO topology with NPN active device.  

  

Fig. 55 illustrated a block level composition of a common-collector LDO 

topology with NPN transistor as the pass device. This type of regulator requires base 

driving voltages in excess of the input voltage in order to fully drive the device for high 

current demands. The common-collector topologies are present in low-voltage 

applications [75], but require the implementation of charge pump converters to deliver 

the appropriate base driver levels. The main common-collector topology efficiency 

under ideal conditions yields: 

 
𝜂𝐿𝐷𝑂 =

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑉𝑑𝑟𝑜𝑝𝑜𝑢𝑡

𝑉𝑖𝑛
= 1 −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 

(69)  

It is the common-source/common-emitter voltage regulator topology that 

overcomes the high gate voltage requirements from the source-follower regulator; by 

setting the 𝑉𝐷𝑆/𝑉𝐶𝐸 voltage of the active device as the main parameter that limits the 
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regulator operation. In the MOSFET instance, it is the dropout voltage (𝑉𝐷𝑆𝐴𝑇) which 

limits the output current and size of the pass device.  

 

 

Fig. 56. Common-source LDO topology with NMOS active device.  

 

 Fig. 56 shows the common-source topology of the LDO. The main difference 

between the PNP and PMOS implementation of this topology is the use of much reduced 

quiescent current by the PMOS, which in turn increases the drive portability, battery 

operation, and overall reduced power consumption [76].  

Principles 

The LDO is fully comprised of a voltage reference, error amplifier, a pass 

transistor, and a feedback network (Fig. 55 and Fig. 56). The feedback network senses 

the output voltage, delivering a fraction of the output voltage the error amplifier. The 

RLoad

Vout

Pass Transistor

Vin

RL1

RL2

Vref



 

87 

 

error amplifier then compares and generates an error signal that drives the pass device 

and regulates the output voltage.  

The output voltage of the regulator is set through both the reference voltage and 

ratio of feedback resistors. This is determined for an ideal error amplifier as: 

 
𝑉𝑜𝑢𝑡 = (1 +

𝑅𝐿1

𝑅𝐿2
) 𝑉𝑟𝑒𝑓 

(70)  

 A second critical aspect in the regulator design is the pass device dimensions. 

The dimensions set the maximum amount of current the regulator can deliver to the load. 

The pass device dimensions are usually large in order to deliver enough current for the 

application: 

 𝑊

𝐿 𝑃𝐴𝑆𝑆
=

2 ∙ 𝐼𝑃𝑎𝑠𝑠

𝜇𝑋𝐶𝑂𝑋(𝑉𝐺𝑆 − 𝑉𝑇)2
 

(71)  

where 𝐼𝑃𝑎𝑠𝑠 is the current through the pass device, 𝜇𝑥 the mobility  of electrons/holes, 

𝐶𝑂𝑋 the oxide capacitance, 𝑉𝐺𝑆 the gate to source voltage difference and 𝑉𝑇 the threshold 

voltage.  

 The main downside of having a large pass device is the associated parasitic 

capacitances. These parasitic capacitances cause an unwanted time delay whenever load 

event occurs, charging-discharging these capacitances requires additional charge to fully 

enhance the depletion channel generated by the pass device. 

  



 

88 

 

Each pass device topology has their associated stability requirements. While the 

source-follower/common-collector topology possesses an inherently stable response, due 

to its low output impedance; only two poles are within the bandwidth of interest: the 

dominant 𝑃1 generated by the error amplifier driving stage’s output impedance (𝜔𝑝1 =

1/(𝑅𝑜𝑢𝑡𝐶𝑝𝑎𝑠𝑠) ), and the secondary pole 𝑃2 generated with the load impedance and 

emitter/source impedance. Fig. 57 shows the typical small-signal response for this 

topology.  

 

 

Fig. 57. Small-signal pole locations for source-follower topology. 

 

For the common-source/collector topology stability is a prime concern as the output 

capacitor and high output impedance of the pass device set the dominant pole of the 

regulator at the output node.  
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This causes the dominant pole 𝑃1 (𝜔𝑝1 = 1/(𝑅𝑜𝑢𝑡𝐶𝑝𝑎𝑠𝑠)) to come in close 

proximity to the pole located at the output of the error amplifier 𝑃2 (𝜔𝑝2 = 1/

( 𝑅𝐿𝑜𝑎𝑑𝐶𝐿𝑜𝑎𝑑)). This requires external or internal compensation of the regulator in order 

to correctly operate. Fig. 58 shows the typical small-signal response for this topology.  

Different approaches have been sought out to stabilize this topology ranging 

from taking advantage of the load capacitor’s ESR, external or internal creation of small-

signal zero responses, or eliminating the external capacitor altogether through multiple 

loop configuration to ensure stability over wide current and capacitance loads [77, 78]. 

 

 

Fig. 58. Small-signal pole locations for common-source topology. 

 

Digital LDO approach 

So far the presented solutions have shown the behavior of LDO regulators with 

analog approaches. The same implementation can be taken into the digital domain and 

perform the regulation qualities through fully digital means.  
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Going back to the principle of operation of a linear regulator, we can see that the 

main purpose of the system is akin to a resistive divider. In an analog LDO, this is 

performed by modifying an active device’s transconductance to achieve the required 

output voltage over load current demands. Stability, power consumption, and speed are a 

major set of concerns for analog LDOs. The same regulating properties can be achieved 

by digital means as well. As the dropout voltage for a device is dependent on pass device 

dimensions, a fragmented pass device into multiple single units can also mimic the effect 

of an analog voltage driving a single large device, this is better shown as follows: 

 
𝐼𝐷𝑖 =

𝜇𝐶𝑜𝑥

2
(

𝑊

𝐿
)

𝑖
(𝑉𝑔𝑠 − 𝑉𝑡ℎ)

2
 

(72)  

It is through the  (
𝑊

𝐿
)

𝑖
 ratio that the current load demand is met and voltage 

regulation achieved. Fig. 59 shows an overall view of a Digital LDO implementation 

with multiple pass devices making up the single pass device from the analog LDO 

approach.  

 



 

91 

 

 

Fig. 59. Digital LDO implementation with PMOS array for pass devices.  

 

The means by which the digital LDO approach is achieved is through a digital 

control loop implemented in the voltage domain. Fig. 60 shows a simple implementation 

for a digital LDO controller in voltage domain. The controller is comprised of a 

comparator, up/down counter, and N-bit decoder [79]. The decoder number of bits is 

dependent on the number of fragmented pass device units. As a load current demand 

occurs, the output voltage would fall due to the insufficient driving current from the pass 

device. This would make the comparator trigger the event and increase the number of 

pass devices turned on, increasing the driving current to the load. The opposite effect 

would occur (decrease number of units in pass device) whenever less current is required. 
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Fig. 60. Voltage domain controller for digital LDO implementation.  

 

This topology also has an additional clocked signal to synchronize the entire 

operation between the counter and decoder. This makes the clock frequency, 𝑓𝑐𝑙𝑘, the 

main performance variable to optimize the system performance. Low 𝑓𝑐𝑙𝑘 allows for a 

much improved efficiency, reducing dynamic power consumption, but causing higher 

load regulation errors. This is caused by the reaction time between the comparator and 

counter to load current events. Higher 𝑓𝑐𝑙𝑘 reduces the load regulation error, but 

increases the amount of power consumed by the system. A careful trade-off between 

load error and system efficiency exist in digital LDO implementations.  
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Performance comparison and state-of-the-art 

 Digital LDO implementations were sought after as a solution to power 

management in deep submicron technology; processes where dynamic power 

consumption were minimal due to small size devices. Although not as robust as an 

analog LDO implementation, the digital counterpart offers lower power consumption, 

and almost synthesizable approach to design.  

 TABLE 6 presents current state-of-the-art design implementing digital LDO 

systems for voltage regulation. Due to the switching nature of the digital LDO (adding 

and subtracting pass device units), Power Supply Rejection (PSR) is not a parameter 

included in most designs.  
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TABLE 6. Comparison table with state-of-the-art digital LDO implementations. 

   [79]  [80]  [81]  [82] 

Technology 40 nm 90 nm 65 nm 40 nm 

Minimum Vin 0.9 V 2.4 V 0.5 V 1.34 V 

Vout 1 V 1.2 V 0.45 V 1.2 V 

Minimum Dropout 

voltage 100 mV 1.2 V 50 mV 1.4 V 

Output Capacitor None None None None 

Current 

Consumption 50 nA 25.7 mA 2.7 μA 130-100 nA 

Active area 0.08 mm
2
 0.03 mm

2
 0.042 mm

2
 0.057 mm

2
 

Efficiency 99.90% 97.50% 98.70% 96-99.9 % 

 

 

As technology continues to decrease in size and multiple voltage domains will be 

required on-chip, smaller and more power efficient voltage regulators will be required. 

Digital LDOs offer a solution for this dilemma by offering a quick and robust regulator 

with minimum variable components. Combinations of types of converters can be used to 

operate together and deliver multiple voltage domains for a full System on Chip (SoC) 

operation.  
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CHAPTER III  

A BOOST CONVERTER WITH DYNAMIC INPUT IMPEDANCE MATCHING FOR 

DC ENERGY HARVESTING SOURCES
*
 

Introduction 

One of the most critical aspects in wireless sensor nodes is the limited available 

energy on the system from onboard batteries. As systems continue to increase in power 

density, battery life lags behind these needs. One possible solution lies in energy 

harvesting (EH), which presents itself as a means of increasing battery life and 

sustaining up-time for the wireless sensor node to a theoretical never-ending power 

supply [18, 83-87]. Energy processing circuits designed to work at ultra-low power 

levels have been developed for a variety of energy sources such as vibrational, solar, 

radio frequency, and thermal. A thermoelectric generator (TEG) delivers a voltage, VTEG, 

that is proportional to the difference of the temperatures applied to each side of the 

device. The resulting voltage output magnitude varies over a wide range as a function of 

the temperature gradients applied. 

Previous reports on EH power management units (PMU) for TEGs [17, 20, 88-

90] have focused on harvesting energy from single TEG units utilizing boost converters 

(BC). Although these reported systems have shown good efficiency for single units, no 

efforts have been made to utilize TEGs placed in a multiple array fashion. A recent  

                                                 
* Reprinted with permission from “A Boost Converter With Dynamic Input Impedance Matching For DC 

Energy Harvesting Sources” by S. Carreon-Bautista, A. Eladawy, A. Mohieldin, and E. Sanchez-Sinencio, 

2014. IEEE Trans. On Industrial Electronics, vol. 61, no. 10, pp. 5345-5353, Oct. 2014, © 2014 IEEE 
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Fig. 61. Multi-array TEG grid parallel (top), series (bottom) configuration. 

 

publication [86] has also shown how sub-micron technologies allow for lower startup 

voltages and improved efficiency; however, it does not deal with on-chip built-in 

impedance matching schemes.  

If multiple TEG units are placed in an array fashion, a higher power density 

becomes available to the load system. The control scheme required to handle the 

dynamic connection for the TEG array, implemented through a state machine, would be 

capable of changing the manner in which individual TEG units are connected within the 

array. This reconfiguration would be based on the available temperature gradients. The 

state-machine implementation is not within the scope of the present work. Fig. 61 
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illustrates two possible ways in which the TEG units would be interconnecting their 

terminals to maximize temperature gradients power. For example, for low temperature 

gradients, the TEG units would be placed in series as shown in the bottom configuration 

of Fig. 61. Resulting in an equivalent 𝑉𝑇𝐸𝐺 with an internal resistance 𝑅𝑇𝐸𝐺 = 𝑅 ∙ 𝑛, 

where R is the internal resistance of one TEG unit, and 𝑛 is the number of units. To 

maximize efficiency, the input impedance of the PMU used for thermal EH of such a 

multi-array TEG must change dynamically along with the array. This internal resistance 

𝑅𝑇𝐸𝐺  will vary dynamically depending on the temperature gradient. If the internal 

resistance is not matched by the PMU, maximum power transfer will not occur. Wide 

varying impedance variations, due to TEG grid reconfiguration, are a key issue not 

addressed by previous EH solutions in literature.  

The PMU presented in this dissertation is a step-up switching converter system, 

capable of tracking these impedance matching changes and delivering maximum power 

at all times. The maximum power point tracking (MPPT) system is proposed and applied 

to a BC operating in a discontinuous conduction mode (DCM) with pulse frequency 

modulation (PFM). Furthermore, a pseudo-zero current switching (P-ZCS) scheme is 

also implemented to achieve a high efficiency. Fig. 62 illustrates the topology of a BC 

implementing independent controls for the NMOS and PMOS switch controls (𝑉𝐶𝑁 and 

𝑉𝐶𝑃) through their respective duty cycles (𝐷𝑁𝑀𝑂𝑆 and 𝐷𝑃𝑀𝑂𝑆). Based on this topology, a 

MPPT scheme is proposed having independent control over the two MOS switches.  
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Fig. 62. Schematic of BC with synchronous rectification. 

 

Maximum power point tracking 

The critical factor for achieving maximum power transfer from a TEG EH source 

is to match the TEG array impedance (𝑹𝑻𝑬𝑮) with the input impedance (𝒁𝒊𝒏) of BC. 

Once both impedances are matched the voltage at the input of the BC becomes the TEG 

source (𝑽𝑻𝑬𝑮) divided by two. To achieve maximum power point (MPP) state, it is 

critical to determine the internal impedance range of the TEG array to know the input 

impedance range. For commercially available TEG sources [91-94], it is known that the 

internal impedances can range from Ωs to kΩs. From [94], the fixed output electrical 

impedance for a single 10 mm
2
 unit is approximately 300 Ω. Depending on the 

connection type for the individual TEG units (parallel, series, or a combination), 𝑹𝑻𝑬𝑮 

would not be fixed and would require tuning the input impedance of the switching 

converter to fully reach MPP operation.  

In [20], 𝒁𝒊𝒏 is approximated as a function of the inductor current charge and 

discharge, yielding: 
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𝑍𝑖𝑛 =

𝑉𝑖𝑛

𝐼𝑖𝑛𝑝𝑢𝑡
=

2 ∙ 𝐿𝑖𝑛

𝑡𝑁𝑀𝑂𝑆
2 ∙ 𝑓𝑠

(1 +
𝑡𝑃𝑀𝑂𝑆

𝑡𝑁𝑀𝑂𝑆
)

−1

 
(73)  

where 𝑉𝑖𝑛 is the input voltage of the BC, 𝐼𝑖𝑛𝑝𝑢𝑡 is the input current going through the 

inductor, 𝐿𝑖𝑛 is the storage inductor for the BC, 𝑓𝑠 is the switching frequency, 𝑡𝑁𝑀𝑂𝑆 and 

𝑡𝑃𝑀𝑂𝑆 are the NMOS and PMOS on times, respectively. Both 𝑡𝑁𝑀𝑂𝑆 and 𝑡𝑃𝑀𝑂𝑆 are 

related to the duty cycle by 𝑡𝑁𝑀𝑂𝑆,𝑃𝑀𝑂𝑆 = 𝐷𝑁𝑀𝑂𝑆,𝑃𝑀𝑂𝑆 ∙ 𝑇𝑠, where 𝐷𝑁𝑀𝑂𝑆,𝑃𝑀𝑂𝑆 is the 

duty cycle for the NMOS and PMOS switches, respectively, and 𝑇𝑠 is the period.  

This research’s design was structured to directly work with a small grid application to 

prove the capabilities of matching variable impedances. The proof of concept prototype 

involves the system design for a 3x3 TEG grid composed of units with variable 

connections in parallel and series. 

One of many possible applications for the system lies in wearable medical 

applications where a minimum temperature difference is obtained from the skin-

environment interface. With temperature differences ranging from 0.4° C to 2° C, the 

TEG grid would be reconfigured to deliver the highest amount of power directly into the 

BC. TABLE 7 shows the design specifications for the converter presented in this 

dissertation. From the reconfigurable TEG grid design, the design presents two different 

impedance extreme scenarios: a 2.7 kΩ 𝑅𝑇𝐸𝐺  from the TEG grid where the units are all 

connected in series and a 33.33 Ω 𝑅𝑇𝐸𝐺  where the units are all connected in parallel.  
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TABLE 7. Design specification for converter. 

SPECIFICATION VALUE 

𝑽𝒊𝒏 20 mV→150 mV 

𝑽𝒐𝒖𝒕 1.8 V→2.5 V 

Maximum efficiency >60% 

Impedance Matching 

Range 
33.33Ω→2.7kΩ 

Quiescent Power 

Consumption 
<1 𝜇𝑊 

 

Proposed dynamic matching for boost converter 

For the present design the DCM mode of operation was selected for the system 

design in order to keep power consumption to a minimum due to the low power density 

of EH sources. PFM modulation was also implemented in order to reduce losses at light 

loads and improve efficiency [55]. 

A relationship between (73) and [55] can be made and (73) is rewritten as 

follows: 

 
𝑍𝑖𝑛 ≈

𝑅𝑒 ∙ (𝑀 − 1)

𝑀
 

(74)  

where 𝑅𝑒 is defined as the effective impedance seen through the input port of the BC 

(𝑉𝑖𝑛) in Fig. 62, and 𝑀 is the conversion gain of the BC. 

 
𝑅𝑒 =

2 ∙ 𝐿𝑖𝑛 ∙ 𝑓𝑠

𝐷𝑁𝑀𝑂𝑆
2  

(75)  

 
𝑀 ≈ 1 +

𝑡𝑁𝑀𝑂𝑆

𝑡𝑃𝑀𝑂𝑆
= 1 +

𝐷𝑁𝑀𝑂𝑆

𝐷𝑃𝑀𝑂𝑆
 

(76)  
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Assuming that 𝑡𝑁𝑀𝑂𝑆 ≫ 𝑡𝑃𝑀𝑂𝑆, (74) effectively becomes equal to (75). For the 

PFM scheme used in the proposed system, a constant duty cycle of 50% is established 

for the NMOS switch. This decision to keep 𝐷𝑁𝑀𝑂𝑆 fixed was due to the quadratic nature 

of the relationship between input impedance and the NMOS duty cycle (75). The value 

of (75) would change at a much faster rate than when varying the switching frequency. 

The issues that arise by this possible implementation are the available resolution with 

which the duty cycle of the NMOS would be controlled. Implementing a traditional 

PWM scheme would hinder the overall system efficiency, and implementing a digital 

PWM would require additional system blocks which could also limit the efficiency of 

the converter. Hence, this leaves the values for (75) dependent on 𝑓𝑠 and 𝐿𝑖𝑛 of the 

converter.  Fig. 63shows the effect of varying 𝑓𝑠 along with 𝐿𝑖𝑛 for 𝑍𝑖𝑛.  

 

 

Fig. 63. Contour plots of input resistance variation with Lin and fs. 
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Selecting an inductor value that is too small may cause a much more stringent 

requirement on the system’s 𝑓𝑠   to effectively cover the entire 𝑍𝑖𝑛 variation. Likewise, 

setting an inductor value that is too large becomes impractical due to the amount of 

inductor resistance (DCR) included as well as size. For the presented design, a fixed on-

time PFM with 50% duty cycle was implemented using a 1mH inductor with a low DCR 

of 370 mΩ and small footprint (5.6 mm x 7.1 mm). 

From Fig. 63, selecting 𝐿𝑖𝑛 to 1 mH bounds the control range for 𝑓𝑠 for nearly a 

decade that is between 4.2 kHz and 337.5 kHz. This frequency range allows for the 

implementation of a low power VCO. Depending on the technology, the target 

application and range of impedances to match, smaller values for the inductor can be 

selected to optimize the design.  

Fig. 64 presents the overall block diagram of the proposed MPPT system. The 

matching is achieved through the MPPT control via a PFM modulator. By varying 𝑓𝑠 of 

the BC through a voltage control oscillator (VCO), 𝑍𝑖𝑛 is varied by 𝑓𝑠 to adjust the input 

voltage of the BC and achieve MPPT.  

Block diagram for dynamic MPPT 

Analogous to a Phase Locked Loop (PLL) which possesses a capture range, the 

MPPT scheme possesses a matching range for which it can achieve maximum power 

point with a harvesting transducer. The system implemented in Fig. 64 allows the design 

to lock and match for abrupt impedance changes because of the ample bandwidth.  
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Fig. 64. Block diagram of proposed MPPT system.  

 

This is performed in a similar fashion in which a PLL locks on to different 

channels in a short period.  Note that the system present in [90], assuming a single 

capacitor filter (with limited bandwidth), would not be able to “lock” to the sudden and 

large impedance variations under a rapid conditions that would appear due to the TEG 

rearrangement process due to its limited stability parameters for the matching loop.  

For the linear model of the MPPT system, the open circuit voltage (Voc), that 

arises from the open circuit voltage of the TEG grid, will be used as the input variable. 

The block diagram in Fig. 65 shows the components of the MPPT system implemented 

and Fig. 66 shows the small signal linearized equivalency used to track its dynamic 

behavior.  

The source 𝑉𝑜𝑐 is divided by 2 and compared to the input voltage (𝑉𝑖𝑛) seen by 

the BC. From the linearized model of the MPPT implementation in Fig. 66, the open 

loop transfer function becomes: 
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 𝑇𝐹𝑂𝐿 = 𝐾𝑃 ∙ 𝐾𝐶𝑃 ∙ 𝐹(𝑠) ∙ 𝐻𝑐−𝑖𝑛(𝑠) (77)  

where 𝐾𝑝 is the comparator gain, 𝐾𝐶𝑃 is the gain due to the charge pump, 𝐹(𝑠) is the 

transfer function for the filter, and 𝐻𝑐−𝑖𝑛(𝑠) is the BC control-to-input voltage transfer 

function.   

 

 

 

Fig. 65. Block diagram for MPPT implementation. 

 

To minimize power consumption, the charge pump quiescent power is reduced 

by limiting the bias current; this leaves the filter as the one factor in the design with 

allowance for performance improvement. 
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The filter allows for an improved phase margin as well as extended bandwidth 

for the system. Depending on the implementation, this can permit faster locking time and 

minimize ringing due to sudden impedance changes. It is the implementation of the filter 

within the MPPT control loop which allows for the broad impedance matching.  

To obtain the effect that the input voltage has in relation to the control signal 𝑉𝐶, 

the system behavior is approximated by linearizing the BC around an operating point. 

 

 

 

Fig. 66. Small-signal linear model of MPPT block. 

 

 

∑ 
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Fig. 67. Control-to-input voltage transfer function model of boost converter. 

 

Assuming the output voltage reaches a steady state DC voltage via the regulating 

mechanisms (P-ZCS and comparator); both the output and input voltage sources are 

assumed to behave as AC grounds in small signal as shown in Fig. 7. In [55], a small 

signal model for the BC operating under a PFM scheme was presented. Fig. 67 

represents the aforementioned small signal model, where the parameters 𝑗𝑥, 𝑟𝑥, and 𝑔𝑥 

are obtained via three dimensional Taylor series expansions of the average input and 

output voltages and duty cycle [95]. The variable 𝑉𝑐(𝑠), seen in Fig. 67, is the VCO 

control voltage coming in from the filter block (Fig. 65). 

Thus the control-to-input voltage transfer function 𝐻𝑐−𝑖𝑛(𝑠) can be obtained. 

Following the small signal model from [55], the PFM control-to-input voltage transfer 
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function is acquired, which includes the effects of 𝑓𝑠 as well as the gain of the VCO 

block.  

 

𝐻𝑐−𝑖𝑛(𝑠) =
𝑉𝑖𝑛(𝑠)

𝑉𝑐(𝑠)
=

𝑗1𝑟1

𝐿𝑖𝑛𝐶𝑖𝑛

𝑠2 + 2𝜉𝜔𝑜𝑠 + 𝜔𝑜
2

 (78)  

where 

𝜔𝑜 = √
𝑅𝑇𝐸𝐺 + 𝑟1

𝐿𝑖𝑛𝐶𝑖𝑛𝑅𝑇𝐸𝐺
 

𝜉 =
(𝐿𝑖𝑛 + 𝐶𝑖𝑛𝑅𝑇𝐸𝐺𝑟1)

2√(𝐶𝑖𝑛𝐿𝑖𝑛𝑅𝑇𝐸𝐺)(𝑅𝑇𝐸𝐺 + 𝑟1)
 

As can be seen from (78), the analytical transfer function for the control-to-input 

voltage in PFM would closely resemble its Pulse Width Modulation (PWM) counterpart 

[95]. The disparity lies in the magnitude of the transfer function due to the addition of 

the VCO gain (𝐾𝑣𝑐𝑜) and 𝑓𝑠 terms in the 𝑗1 small signal parameter.  

For the presented design, a VCO with 𝐾𝑉𝐶𝑂 of 550 𝑘𝐻𝑧/𝑉 was used; this VCO 

gain selection is justified in Section IV. Fig. 68 shows the Bode plot comparison 

between (78) and the simulated one when 𝑓𝑠 is set at 100 kHz. Agreement between both 

analytical and simulated results is shown with 9% error in magnitude at DC; the gain 

mismatch for the magnitude is from the VCO gain and nonlinearity of the block.  

As in PLLs, different compensation schemes can be implemented to extend 

bandwidth and minimize ringing. Using the initial assumption that the filter 𝐹(𝑠) is 

comprised only of a single storage capacitor given by 𝐶𝑓 [90], taking (78) and expanding 

from (77) yields the open loop transfer function: 
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𝑇𝐹𝑂𝐿 =

𝐾𝑝 ∙ 𝐾𝐶𝑃

𝑠𝐶𝑓
∙ 𝐻𝑐−𝑖𝑛(𝑠)𝑃𝐹𝑀 

(79)  

This open loop transfer function allows for an insight on the parameters affecting 

fast changing series impedances and the requirements to achieve MPPT. Assuming a 

value of 𝑉𝑖𝑛,𝐷𝐶 of 100 mV, 1 μF for 𝐶𝑓, a 𝐾𝑃 ≈ 90dB, and 𝐾𝐶𝑃 can be approximated as 

the static current consumed by the charge pump [96] or 0.5 μA in Fig. 65.  

The frequency response for the entire open loop system for the mid-range value 

of 𝑅𝑇𝐸𝐺 = 1.366 𝑘Ω; results in a phase margin (PM) of 16° and unity gain frequency of 

82.4 Hz. This presents a conditionally stable system but with an ample amount of 

ringing and a limited bandwidth that will react slowly to drastic impedance changes from 

the TEG grid.  

 

 

Fig. 68. Analytical (5) vs. simulated results: (left) magnitude, (right) phase. 
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This limited range approach would not be able to cope with the sharp impedance 

variations which would take place with the TEG array reconfiguration. Implementing a 

different filter configuration would allow for a much faster, and overall stable response 

from the system (increased bandwidth), while maintaining good PM. 

A type II filter [54], illustrated as 𝐹(𝑠) in Fig. 65, was implemented to obtain a 

unity gain frequency was driven to 2.24 kHz and a PM of 89.2°. This implemented filter 

allows for the system to be stable under the abrupt impedance changes presented by the 

TEG grid. Section IV further elaborates on the implementation. 

 

 

 

Fig. 69. Inductor current behavior for P-ZCS scheme.  
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Algorithm for pseudo zero current switching 

In order to minimize component stress and increase efficiency, a zero current 

switching (ZCS) technique is employed. The P-ZCS is implemented to minimize the 

inductor current losses through the PMOS switch. The P-ZCS is performed via a skewed 

voltage peak detector in the 𝑉𝑆𝑊 node (Fig. 62). 

Fig. 69 shows the overall current and voltages associated with the P-ZCS 

algorithm. At time interval t1-t2, considering the inductor is completely discharged when 

the PMOS switch is turned off, no voltage peaking should be discernible at the VSW node 

since the inductor current reverses direction. As noted by [88], this drains the parasitic 

capacitors associated with the VSW node before turning on the drain-bulk diode of the 

NMOS switch. 

 

 

 

Fig. 70. Pseudo-ZCS control algorithm. 
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During time interval t3-t4, the current in the inductor has not completely been 

discharged; this causes the parasitic diode across the PMOS switch to turn on and is 

associated with a voltage surge at 𝑉𝑆𝑊.    

By sampling the high/low state of 𝑉𝑆𝑊 shortly after the PMOS is switched off, it 

can be determined whether the PMOS switch was turned off before or after the current 

falls to zero. From Fig. 4 the implementation of the P-ZCS in Fig. 70 shows the PMOS 

ON-OFF selection scheme implementation.  

The ON-OFF time for the PMOS is selected via an UP-DOWN Counter that 

detects the voltage levels at the VSW node and signals a MUX to choose the PMOS ON 

time from a set of delay signals. In steady-state operation, the system toggles between 

two different 𝐷𝑃𝑀𝑂𝑆 values: one where the inductor current falls below zero and one 

where the inductor current does not reach the zero value.   

Output voltage setting 

In order to achieve the set output voltage for the system, from (79) the values of 

𝐷𝑃𝑀𝑂𝑆 are set to be much smaller than 𝐷𝑁𝑀𝑂𝑆. This sets the system’s conversion gain 

high and achieves the required output voltage.  

The output voltage setting block, illustrated in Fig. 64, is employed to set 𝑉𝑜𝑢𝑡 to 

a predefined value. A clocked comparator driven by a dedicated oscillator VCO2 verifies 

that 𝑉𝑜𝑢𝑡 does not exceed a set external voltage reference (VREF). If Vout exceeds VREF, 

the primary VCO within the PFM block is disabled and the BC ends operation.  
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Once the system reaches an operational steady state, 𝑉𝑜𝑢𝑡 can be set as the internal 

supply source for the system (𝑉𝐷𝐷). It should be noted that VCO2’s clock signal, for the 

comparators in the system, is never disengaged. This allows continuous monitoring of 

input and output voltages. As VCO2 maintains operation even when 𝑉𝑜𝑢𝑡 exceeds 𝑉𝑅𝐸𝐹, 

on average 𝑉𝑜𝑢𝑡 is never more than a few cycles of VCO2 over 𝑉𝑅𝐸𝐹. Furthermore, 𝐶𝑖𝑛 

and 𝐶𝑜𝑢𝑡 are both fairly large valued (10μF); these capacitors maintain both the input 

and output voltage comparatively constant when compared to both the switching 

frequencies of VCO and VCO2.  

Typically EH power management systems disengage the source after the desired 

output voltage is reached [17, 86, 89, 97]. However, different configurations can be 

implemented with the BC in order to minimize the time the system is disabled: i) A more 

demanding variable load at the output; ii) multiple BC units could potentially be placed 

in an array fashion in order to continuously harvest energy from the TEG array, and 

finally iii) multiple storage capacitors could also be considered in order to allow the BC 

to continuously charge up. 

Building block circuit implementation 

Divider (extraction of Voc/2) 

The implemented capacitive divider [89], samples the input voltage and divides it 

by two by saving the open circuit voltage in storage capacitors 𝐶1 and 𝐶2, as shown in 

Fig. 71. The dual phase nature of the block samples the open circuit voltage, 𝑉𝑜𝑐, and 

effectively obtains the open circuit voltage of the TEG divided by two (i.e. 𝑉𝑜𝑐/2) by 



 

113 

 

channeling the stored charge into two storage capacitors (𝐶1,2). Once the desired voltage 

is stored, it is compared with the input voltage (𝑉𝑖𝑛) of the BC (Fig. 65).  

 

 

Fig. 71. Divider circuit implemented [89] 

 

Comparators (KP) and charge pump (KCP) 

Two clocked comparators [96] were implemented for the system. The first 

clocked comparator evaluates the difference between the input voltage of the BC (𝑉𝑖𝑛) 

and the targeted value of 𝑉𝑜𝑐/2. The second comparator is used to set the level of 𝑉𝑜𝑢𝑡. 

Both comparators operate utilizing a dedicated VCO, designated as VCO2, operating at 

approximately 200 kHz.  

For the 𝐾𝑃 gain used in (5), the comparator was assumed to operate quasi-

linearly since the rate at which the nodes 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 change is much lower than the 
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switching speed of the comparator [98]. For the charge pump, a conventional current 

steering design [54] was implemented consuming a static current of 0.5μA. 

 
Voltage controlled oscillator 

The VCOs implemented in the PFM block are based on [99]. A low-frequency 

full-swing ring oscillator topology was employed through the use of controllable 

resistances (𝑅𝐺) between each inverting stage of the VCO implemented with 

transmission gates. This allowed for a controlled delay and full swing oscillations. The 

switching frequency becomes: 

 
𝑓𝑠 =

𝑔𝑚

2𝑁𝑠𝑡𝑎𝑔𝑒𝑠𝐶𝑔𝑎𝑡𝑒(1 + 𝑔𝑚𝑅𝐺)
 

(80)  

where the frequency is dependent on the transconductance (𝑔𝑚) of the transistors in the 

inverter device, the parasitic capacitances at the input of the next stages (𝐶𝑔𝑎𝑡𝑒), and the 

number of inverter stages in the VCO (𝑁𝑠𝑡𝑎𝑔𝑒𝑠). The VCO varies its frequency only by 

varying 𝑅𝐺 . Implementing the VCO with a low 𝐾𝑣𝑐𝑜 was done in order to maintain 

power at a minimum while setting the required 𝑓𝑠 to achieve MPPT.  

For the secondary oscillator VCO2, an externally controlled ring oscillator was 

implemented running at approximately 200 kHz.   

Filter 

Due to the nature of EH systems, low power is a major design factor; a passive 

filter is the most appropriate. As discussed previously, implementing a filter with only a 
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capacitor will not achieve stable MPPT with the unavoidable sudden TEG grid 

impedance variations.  

Through a type II filter [54], it is possible to achieve a high gain at low 

frequencies as well as controlled bandwidth increase and improved phase margin 

through the zero and high frequency pole given by the series resistance 𝑅𝑓1 and 

capacitor 𝐶𝑓1 (Fig. 65). Bandwidth increase would enhance the speed at which the loop 

would respond to impedance changes, and increased phase margin would allow for a 

stable response from the system when facing rapid impedance changes from the TEG 

grid. This approach would assure stability within the design parameters of the TEG 

array. The transfer function for the implemented filter in Fig. 65 yields. 

 

𝐹(𝑠) =
𝐾𝐷𝐶(𝑠𝑅𝑓1𝐶𝑓1 + 1)

𝑠 (𝑠
𝑅𝑓1𝐶𝑓1𝐶𝑓2

𝐶𝑓1 + 𝐶𝑓2
+ 1)

 
(81)  

where 

𝐾𝐷𝐶 =
𝑅𝑓1𝐶𝑓1𝐶𝑓2

𝐶𝑓2(𝐶𝑓1 + 𝐶𝑓2)(𝑅𝑓1𝐶𝑓1)
 

The obtained unity gain frequency was 2.24 kHz and the phase margin was 

89.2°. The values of the used components were: 𝐶𝑓1 = 0.1𝜇𝐹, 𝐶𝑓2 = 10𝑝𝐹, and 

𝑅𝑓1 = 500Ω. The filter was implemented with off-chip components for this proof of 

concept; further implementations can potentially integrate most, if not all, of the filter 

components. 
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Due to the low power requirements for an EH PMU system, the P-ZCS algorithm 

is implemented with minimal components. By following a similar topology as [100], but 

by directly sensing the 𝑉𝑆𝑊 node, the inductor current is closely inspected to avoid its 

value from becoming negative. After the detection of the 𝑉𝑆𝑊 voltage by a skewed 

inverter (Fig. 62), a flip-flop samples the binary state of the 𝑉𝑆𝑊 node shortly after the 

rising edge of the 𝐷𝑃𝑀𝑂𝑆 signal.  

The sampled state then informs a counter to either count up (decrease the delay 

period) or count down (increase the delay period). Thus, the counter acts as an integrator 

in a feedback loop; if the sampled state is high, then the counter increments and 𝐷𝑃𝑀𝑂𝑆 

increases for the next switching cycle. If the 𝑉𝑆𝑊 state is low, then the counter 

decrements, causing 𝐷𝑃𝑀𝑂𝑆 to decrease for the next cycle. As a result, in steady state, the 

current will toggle above and below the target value. This allows implementing a 

programmable delay that will be controlled by the residual inductor current after turning 

OFF the PMOS switch.  

 

Pseudo zero current switching 
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Fig. 72. Implementation of delay array for PMOS on/off time.  

 

The implementation of the P-ZCS scheme was realized by establishing a set of 

values for 𝐷𝑃𝑀𝑂𝑆 that assures a sufficiently high conversion ratio (75). By duplicating 
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𝐷𝑃𝑀𝑂𝑆 is obtained to quickly turn on/off the PMOS transistor to transfer charge to the 
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PMOS control signal. 
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capacitor to begin operation. A precharge voltage of 900 mV at the output capacitor is 

required for the boost converter to begin operation. 

Experimental results 

The proposed system was fabricated in 0.5 μm CMOS process. Fig. 73 shows the 

die microphotograph of the design. The active area occupied by the chip was 

approximately 0.735 mm
2
. The values for 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 (see Fig. 62) were both 10 μF, 

and the inductor used was a 1 mH inductor with a DCR of 370 mΩ and a footprint of 5.6 

mm x 7.1 mm. 

The design was tested simulating the 3x3 Micropelt TEG via a power supply 

with an impedance array. The impedance array connected all of its elements in series or 

parallel through discrete MOS switches controlled by an external clock.  

 

 

Fig. 73. Die microphotograph 
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MPPT impedance tracking 

In Fig. 74, the 𝑉𝑖𝑛 node is operating with a TEG voltage of 200 mV and applied 

variations in the TEG. The node shows locking at 100 mV, which is the maximum 

power point, 𝑅𝑇𝐸𝐺  is initially set at 2.7 kΩ. An abrupt change in 𝑅𝑇𝐸𝐺  to 33.33 Ω is 

applied. The MPPT system follows the change in TEG impedance and maintains the 

𝑉𝑜𝑐/2 condition at the input. A voltage dip of 60 mV is present when going from 33.33 

Ω to 2.7k Ω due to the time response the system takes to increase 𝑓𝑠 to match the new 

impedance.  

 

 

Fig. 74. Input voltage regulation maintaining MPPT under large variations of RTEG (VOC=200 mV). 
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Fig. 75. P-ZCS scheme implementing variable DPMOS duty cycles to minimize inductor losses. 

 

For the negative step of 2.7kΩ to 33.33Ω, a voltage surge of 60 mV takes place 

due to the time the system requires to stabilize back to the maximum power point. 

P-ZCS waveforms 

As mentioned in Section IV, the P-ZCS varies the 𝐷𝑃𝑀𝑂𝑆 signal to minimize the 

amount of losses due to inductor current flowing negative. Fig. 75 shows the waveforms 

of node 𝑉𝑆𝑊 for the two varying 𝐷𝑃𝑀𝑂𝑆 lengths that are toggled once the system reaches 

a steady state. These two states for 𝐷𝑃𝑀𝑂𝑆 are the ones with which the system achieves 

the minimum amount of losses for the inductor current. For 𝑡1 the 𝐷𝑃𝑀𝑂𝑆 on time is too 

short; hence, a voltage surge at 𝑉𝑆𝑊 is detected. For 𝑡2 the voltage spike is not present 

and causes 𝐷𝑃𝑀𝑂𝑆 to revert back to the duration of 𝑡1. The waveforms in Fig. 14 were 
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obtained for 𝑉𝑖𝑛 = 150 𝑚𝑉 and 𝑅𝑇𝐸𝐺 = 300 Ω  and show expected behavior for 𝑉𝑆𝑊 

node.   

Efficiency measurements 

Fig. 76 shows the measured efficiencies for the system. Measurements were 

performed using 𝑉𝑜𝑢𝑡 as the internal supply for the system. Output node 𝑉𝑜𝑢𝑡 is set to 2.5 

V for 𝑅𝑇𝐸𝐺  values of 33.33Ω to 300Ω, while it is set to 1.8 V for 𝑅𝑇𝐸𝐺  values of 600 Ω 

to 2.7 kΩ. Each 𝑅𝑇𝐸𝐺  efficiency value was measured with a constant resistor load at the 

output.  

 

 

 

Fig. 76. Measured efficiency for system under varying RTEG values for RTEG =[33.33Ω to 300Ω]  

Iload≈14μA,for RTEG =[600Ω to 2.7kΩ] Iload =1μA. 
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Maximum efficiency measured was 61.15% at 140 mV input voltage and 𝑅𝑇𝐸𝐺  

of 33.33Ω; delivering an output power of ~359 𝜇𝑊. It should be noted that improved 

efficiency could be achieved by reducing the value of 𝑅𝑇𝐸𝐺  from the TEG. TABLE 8 

summarizes the performance of this work and compares it with previously reported 

state-of-the-art works. Notice that the work presented possesses a much broader 

matching range than any of the previous reported solutions while having a large output 

range. 

Conclusions 

This chapter presents a solution for the impedance matching between a low 

power boost converter and a wide varying impedance range from a TEG array using a 

practical and novel MPPT technique. Design methodology and trade-offs are provided to 

solve general arbitrary EH sources where a varying resistance range is to be matched to a 

boost converter.  
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TABLE 8. Performance summary 

SPECIFICATION [86] † [17] [89] [20]‡ [90] [97]† [101]† THIS WORK 

Input Voltage 

Range 

30mV-

200mV 

20mV-

250mV 

40mV-

300mV 

20mV-

160mV 

70mV-

600mV 
120mV 

12mv 

(380mV 

for self-

startup) 

20mV-

150mV 

Output Voltage 1.2V 1V 2V 1.88V 3V-5.8V 1.2V 
0.66V-

3.3V 
1.8V-2.5V 

Quiescent 

Power 

Consumption 

- 1.1μW - - - - - <1μW 

MPPT No No Yes Yes Yes No No Yes 

Impedance 

Matching 

Range 

- - 5Ω 4.1Ω-13Ω 

8Ω  

(with 10% 

variation 

tolerance) 

- - 
33.33Ω-

2.7kΩ 

Max. Efficiency 73% 75% 
1
61% 

2
64% 

3
72.2% 30% 

5
82% 

4
61.15% 

Technology 65nm 0.13μm 0.13μm 0.35μm 0.35μm 0.18μm 0.13μm 0.5μm 

‡ Values given only for thermoelectric input 

† Design requires no external voltages to startup system 

1.𝑅𝑇𝐸𝐺 = 5Ω 

2.𝑅𝑇𝐸𝐺 = 10Ω 

3.𝑅𝑇𝐸𝐺 = 8Ω 

4.𝑅𝑇𝐸𝐺 = 33.33Ω 

5.Output Power of 12mW (Input power ≈14.6mW) 
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CHAPTER IV  

POWER MANAGEMENT SYSTEM WITH INTEGRATED MAXIMUM POWER 

EXTRACTION ALGORITHM FOR MICROBIAL FUEL CELLS
*
 

Introduction 

Microbial fuel cells (MFCs) are an emerging bioelectrochemical technology that 

converts chemical energy into electrical energy by producing electricity directly from 

biodegradable substrates such as wastewater. In MFCs, exoelectrogenic bacteria break 

down the carbon substrates such as glucose and acetate while producing electrons, which 

are then transferred to the anode. These electrons flow to the cathode through an external 

load, and then combine with protons and oxygen to form water, thus completing a full 

circuit and producing electricity [39]. 

However due to the low power production of the current MFC technology [6, 

102-110], significant improvement in overall system performance is needed for MFC 

technology to become a viable renewable energy technology. Developments in the MFC 

field have mainly focused on development of new electrode materials, improvement of 

the design, and development of efficient membranes, all to improve the power 

production from MFCs. However, there has been limited focus in methods to extract 

maximum power from the MFCs in an efficient way as well as to up-convert the low 

voltages and power to a usable level [111].  

                                                 
*
 Reprinted with permission from “Power Management System With Integrated Maximum Power 

Extraction Algorithm for Microbial Fuel Cells” by S. Carreon-Bautista, C. Erbay, A. Han, and E. Sanchez-

Sinencio, 2014. IEEE Trans. On Energy Conversion, vol. 30, no. 1, pp. 262-272, March 2015 © 2015 

IEEE 
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Current power management systems (PMSs) for MFCs typically utilize discrete 

component implementations of DC-DC converters emphasizing efficiency[106], with 

some method implemented for maximum power point tracking [105]. The main 

drawback of these implementations are the quiescent power consumption of the DC-DC 

converter’s controller itself and lack of integrated impedance matching schemes 

dedicated for MFCs to run at maximum power point. Improved methods of harvesting 

power from MFCs are needed to address both of these issues for MFCs to be used in 

practice.  

Specific dedicated PMS solutions [112] for other harvesting sources would not 

offer a solution to the MFC characteristics due to the reactive behavior within the MFC. 

The previous implemented maximum power point (MPP) acquisition technique would 

not allow the system enough time to reach MPP, thus extracting significantly less power. 

Due to the lower power extraction, a larger error on the Pseudo-Zero Current Switching 

scheme will occur due to the toggling nature of the digital control. The aforementioned 

PMS [8], if applied to the MFC power conditions, would suffer from at least a 15% 

overall efficiency decrease from faulty MPP and severe inductor current losses. Hence, 

this solution would not meet the MFC requirements for maximum power extraction.  

The project presented in this dissertation is a suitable PMS solution to handle the 

MFC power profile optimally. This proposed PMS has two unique characteristics:  i) an 

accurate maximum power extraction algorithm (MPEA) capable of dealing efficiently 

with the MFC time constant, and ii) A Zero Current Switching Tracking (ZCST) loop, to 

maximize efficiency power conversion by reducing losses from the inductor current. 
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This proposed PMS offers a tailored solution for the MFC power profile. The MPEA 

scheme was integrated into the PMS to harvest maximum power from the MFC under all 

conditions. MPEA is a key block in the operation of the PMS as the power from the 

MFC is very low. The MPEA also continuously monitor and adapts to power variations 

from the MFC. Note that the ZCST loop is performed in order to minimize losses from 

inductor current by modulating the PMOS on/off time (𝑇𝑝). This reduces negative 

inductor current and improves efficiency. Thus, the overall system efficiency of the PMS 

and charging time to operate electronic applications can be improved with the proposed 

MPEA and ZCST scheme presented here. 

MFC and power management system specifications 

The design presented is composed of an MFC controlled through the developed 

PMS to deliver sufficient power to a resistive load as a demonstration of the PMS. This 

section describes the design and characterization of the MFC, as well as the system 

specifications of the PMS.  

 

 

Fig. 77. Schematic of conventional two-chamber MFC. 
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MFC construction and characterization 

A two-chamber MFC was constructed from plastic (acrylic) anode and cathode 

chambers (total volume: 240mL). The anode was made from a3 cm x 4 cm carbon felt 

(Morgan, UK) and the cathode was made from a 3cm x 4cm carbon cloth containing 0.5 

mg/cm
2
 of Pt catalyst on one side (ElectroChem, Inc). Proton exchange membrane 

(PEM) (Nafion 117
TM

, Ion Power Inc.) was used to separate the anode and cathode 

compartments from each other, while selectively allowing proton generated in the anode 

chamber to cross over to the cathode chamber. Both anode and cathode were connected 

to titanium wire and a 1kΩ load resistor was placed between the electrodes.  

 

 

Fig. 78. The 240 mL two-chamber MFC constructed and used for the PMS characterization, 

connections follow Fig. 77. 

 

Fig. 77 shows the overall schematic diagram of the MFC. The MFC was 

inoculated with anaerobic activated sludge collected from the Austin Wastewater 

Treatment Plant. The anode chamber was refilled with fresh wastewater daily for the 
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first 3 days of startup. As anode growth medium, acetate (1.0g/L) in 

nutrient/mineral/buffer (NMB) solution was used (10mL/L mineral base 1, 10mL/L 

mineral base 2 and 1mL/L nutrient base) [113]. The anode chamber was refilled each 

time with the NMB solution with acetate when the voltage across the load resistor 

dropped below50mV (batch mode feeding). The constructed two-chamber MFC is 

shown in Fig. 78 (overall dimension: 5 cm x 5 cm x 12 cm, W x H x L).  

The MFC voltage was recorded by using a digital multimeter through a 

multiplexer (National Instruments) and monitored via LabView
TM

 (National 

Instruments) [114-116]. Once the voltage was stabilized, maximum power and voltage 

curves were obtained by varying the load resistor value between the electrodes (Fig. 79).  

 

 

 

 

Fig. 79. Power-resistance and voltage-resistance characteristics of the MFC. 
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MFC electrical equivalent modeling 

The MFC is modeled, in a first-order approximation, as a voltage source with a 

high series resistance, which limits the amount of available current to be delivered. Fig. 

80 shows both the steady state and dynamic simplified electrical equivalent models of an 

MFC. 𝑉𝑑𝑐 represents steady-state (DC) voltage delivered by the MFC and 𝑉𝑠 represents 

the dynamic voltage that takes into account the time constant (𝜏𝑀𝐹𝐶) due to the parasitic 

capacitance 𝐶𝑀𝐹𝐶  inherent in an MFC.  

The value of 𝑅𝑀𝐹𝐶  is considered to be the internal resistance made up of several 

different components (anodic resistance, cathodic resistance, membrane resistance, and 

electrolyte resistance) [117]. The value 𝑉𝑀𝐹𝐶 is the MFC’s thermodynamic voltage 

which varies nonlinearly depending on multiple variables, such as solution pH, 

temperature, and substrate concentration in the anode chamber [118]. 

 

 

Fig. 80. A) Stead-state electrical mode (Vdc) and B) dynamic model (Vs) of the MFC. 
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Several different electrical models of an MFC have been presented throughout 

literature [6, 104-107], and most use a simple voltage-resistor model (Fig. 4A). Based on 

the maximum power transfer theorem, in order to obtain the maximum power from the 

MFC, the impedance seen at 𝑉𝑑𝑐 (𝑉𝑠), for a DC source would have to be equal to𝑅𝑀𝐹𝐶 . 

This steady state equivalent (𝑉𝑑𝑐) circuit (Fig. 80A) however does not take into account 

the effective parasitic capacitor, since at DC this would not appear. Fig. 80B presents a 

more realistic model that includes the parasitic capacitance, similar to that presented by 

[106], and was the base with which the MPEA was designed. Note that from Fig. 79, the 

value of 𝑅𝑀𝐹𝐶 = 400 Ω is obtained.  

 The design of the MPEA implemented for the PMS takes into account 𝐶𝑀𝐹𝐶  and 

its effect under dynamic conditions (𝑉𝑠). The time constant (𝜏𝑀𝐹𝐶) was obtained by 

shorting the output then opening the MFC connection and measuring the time the output 

voltage requires to reach nominal 𝑉𝑀𝐹𝐶.This method allowed for estimation of 𝐶𝑀𝐹𝐶  

from the characterized device. The PMS requires only range of 𝜏𝑀𝐹𝐶  and associated 

𝑅𝑀𝐹𝐶in order to operate due to the adaptive MPEA scheme. The use of the time constant 

variable employed in the MPEA system will be further discussed in the following 

section III-C.   

System specifications 

MFCs typically generate voltages below 1 V, at which even low-power devices 

and systems cannot be directly powered.  
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The PMS implemented for the MFC was designed to deliver a higher and 

regulated voltage supply to be able to directly power low-power applications. Two key 

features required for a PMS for low-power energy harvesting systems are low power 

consumption by the PMS itself and maximum efficiency. Since efficiency is a critical 

factor in the design, a boost converter was selected due to its inherent higher efficiency 

at lower power profiles [119]. The specifications for the design are presented in TABLE 

9. Due to the low-power nature of the application, an efficient boost converter was set to 

discontinuous conduction mode (DCM) to minimize losses and reduce power 

consumption by the controller.  

 

TABLE 9. MFC PMS system specifications. 

SPECIFICATION VALUE 

𝑽𝒊𝒏 360mV (MPP) 

𝑽𝒐𝒖𝒕 2.5V 

Max efficiency >55% 

Impedance to match 𝑅𝑀𝐹𝐶  = 400Ω 

 

Adaptable maximum power extraction algorithm 

Current state-of-the-art 

The usual manner in which MPP is obtained in reported MFC power 

management units is through prior testing to find the maximum operating point by using 

multiple load resistor values [102, 103, 106, 107]. This is usually a very time consuming 
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approach, since each operating point is obtained by varying different load resistances 

connected directly to the MFC. A valuable tool for the MFC field would lie in the 

automatic detection of the MPP, reducing overall testing time to detect the MPP.  

The approach to reach MPP automatically has only been explored in [6] 

implementing a hysteretic controller to reach MPP. However the main drawback in 

aforementioned approach is the requirement for multiple external and discrete 

components to locate the optimal operating point, resulting in a high power consuming 

solution and poor efficiency. This type of solution is not practical, nor accurate, for low 

power energy harvesting systems such as MFCs since the power required to drive the 

PMS is comparable or even higher than the actual power that can be extracted. Another 

solution obtains automatic maximum power extraction for thermoelectric generator 

arrays [8], but this solution does not take into account the MFC complex impedance 

source behavior. This complex MFC impedance would result in faulty MPP due to the 

𝜏𝑀𝐹𝐶  associated with the fuel cell. This would effectively reduce overall power 

extraction and system efficiency.  

The approach presented in this chapter allows for dynamic tracking of the MPP 

while consuming low power through a custom monolithic integrated circuit.  
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Overview of the proposed MPEA system 

 

 

Fig. 81. Conceptual representation of the proposed power management system. 

 

For the adaptable MPEA scheme proposed here, two complementing operations 

should take place: 1) locating the required operating point to achieve MPP and 2) setting 

the input impedance for the boost converter to match that of 𝑅𝑀𝐹𝐶 . Fig. 81 highlights the 

top level structure of the PMS, with both resistance matching through the MPEA and 

voltage regulation through the boost converter and ZCST. It should be noted that the 

PMS in [8] cannot implement the above two operations for an MFC.  

A quick mechanism is employed that samples the open circuit voltage of the 

MFC (𝑉𝑀𝐹𝐶) and divides this value by two to locate the required operating point to 

achieve MPP. This operating point becomes the reference voltage, which would appear 

at the input node, (𝑉𝑑𝑐), if the input impedance of the boost converter is equal 

to 𝑅𝑀𝐹𝐶 .Since the MFC behaves as a DC voltage source, where variations occurring on 

the DC voltage of the MFC can be considered negligible i.e. low frequency, the 

maximum power transfer theorem states [120] that maximum power is transferred when 
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a DC source (𝑉𝑀𝐹𝐶) with fixed source resistance (𝑅𝑀𝐹𝐶) is connected to a load resistance 

(ZVR) of equal value to the source resistance. This is justified next. 

 

𝑃𝑙𝑜𝑎𝑑 = 𝐼𝑙𝑜𝑎𝑑
2 𝑍𝑉𝑅 = (

𝑉𝑀𝐹𝐶

𝑅𝑀𝐹𝐶 + 𝑍𝑉𝑅
)

2

𝑍𝑉𝑅 
(82)  

In order to obtain the maximum power condition, the derivative of 𝑃𝐿𝑂𝐴𝐷with respect to 

𝑅𝑀𝐹𝐶is taken (i.e. 
𝑑𝑃𝑙𝑜𝑎𝑑

𝑑𝑅𝑀𝐹𝐶
= 0) yielding 𝑍𝑉𝑅 = 𝑅𝑀𝐹𝐶 , this result implies: 

 
𝑚𝑎𝑥 𝑃𝑙𝑜𝑎𝑑 = 𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥 =

𝑉𝑀𝐹𝐶

2
∙

𝑉𝑀𝐹𝐶

2𝑅𝑀𝐹𝐶
 

(83)  

Once the operating point is found, the PMS input impedance matching is 

modulated by means of varying the switching frequency. The relationship between 

switching frequency and input impedance will be further detailed in section IV-A. 

Operating point for impedance tracking 

The manner in which the MPP is extracted from the MFC is through a rapid 

sampling of the open circuit voltage (OCV), followed by a halving process [121]. This 

halving of OCV sets the target value the input voltage of the PMS (𝑉𝑑𝑐) must reach to 

assure maximum power transfer. This method presents limitations when applying to a 

source with associated capacitance as the MFC possesses; this causes the OCV 

additional time to correctly reach nominal 𝑉𝑀𝐹𝐶. This additional time is directly related 

to the time constant associated to the MFC sources,  𝜏𝑀𝐹𝐶 . Solutions not considering this 

time constant would potentially miss reaching correct nominal 𝑉𝑀𝐹𝐶 [8] due to the small 

amount of time allowed for the MFC to reach nominal 𝑉𝑀𝐹𝐶.  
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Fig. 82. Obtaining MPP voltage (Vcomp) from the MFC through MPEA. 

 

From the equivalent model (Fig. 80B),experimental time constant (𝜏𝑀𝐹𝐶 =

𝑅𝑀𝐹𝐶 ∙ 𝐶𝑀𝐹𝐶) can be obtained. Variable 𝜏𝑀𝐹𝐶  provides information on the power 

delivering capabilities of the MFC. By acquiring the time constant value two different 

operational methods for maximum power extraction are obtained: a dynamic range and 

manual range of MPEA operation.   

Fig. 82 shows the threshold boundary set by 𝜏𝑀𝐹𝐶  between manual and dynamic 

range. The dynamic range is defined by high power delivering capabilities (small 

product of 𝑅𝑀𝐹𝐶  and 𝐶𝑀𝐹𝐶), allowing for the system to correctly reach MPP quickly and 

accurate through the OCV sampling method. The manual range is determined through 

large values of 𝜏𝑀𝐹𝐶  requiring larger sampling periods of the OCV to correctly reach 

nominal 𝑉𝑀𝐹𝐶. The threshold, 𝜏𝑀𝐹𝐶 , is set by design as the appropriate time required for 
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the MFC to reach nominal 𝑉𝑀𝐹𝐶 from MPP (𝑉𝑀𝐹𝐶/2). For this IC implementation the 

threshold 𝜏𝑀𝐹𝐶  is set between 25-50 ms. Large values of the 𝜏𝑀𝐹𝐶  threshold become 

impractical to implement in a fully integrated approach; thus manual range of operation 

is set. This is the reasoning of implementing the pre-charging scheme from the output 

voltage. 

For the proposed PMS, the characterized MFC possesses large values for 𝜏𝑀𝐹𝐶 , 

above the determined range for integration; pushing the system into the manual range of 

operation. Both 𝑅𝑀𝐹𝐶  and 𝜏𝑀𝐹𝐶  need not be determined with high accuracy since the 

PMS is capable of achieving both matching and correct MPP acquisition through correct 

range setting (dynamic or manual).   

Since the sampling method requires disconnection of the source to the PMS in 

order to measure the OCV, power delivery to the output is disrupted. To avoid this 

disruption in power delivery, a pre-charging scheme is employed in order for the system 

to accurately capture the correct OCV.   

MPEA and ZCST loops 

Fig. 83 shows the overall block diagram of the PMS with both MPEA and ZCST 

loops. Once the correct value of OCV is sampled, then halved, the reference for the 

MPEA Impedance Tracking loop is defined (𝑉𝑐𝑜𝑚𝑝). This defined reference serves as the 

target 𝑉𝑑𝑐 is to be settled at through frequency modulation. As 𝑉𝑑𝑐is continuously 

compared with 𝑉𝑐𝑜𝑚𝑝, high/low signals are sent to a current-steering charge pump that 
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generates a control voltage. This control voltage modulates a voltage controlled 

oscillator (VCO) in order to have 𝑉𝑑𝑐reach 𝑉𝑐𝑜𝑚𝑝, assuring MPP. 

The ZCST loop is implemented by monitoring the switching node 𝑉𝑠𝑤 in order to 

minimize losses from inductor current by modulating 𝑇𝑃. As the PMOS switch goes off, 

and the inductor current has not reached zero, an associated voltage surge is perceived at 

the switching node; an external reference sets the threshold for which 𝑉𝑠𝑤 can increase. 

The goal of this loop is to minimize the residual inductor current and move as much 

stored charge to the output node.    

 

 

Fig. 83. Overview of the proposed PMS with the MPEA section highlighted. 
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Fig. 84. Fundamental schematic of the boost converter used here as part of the PMS circuit. 

 

The Experimental Results and Discussion section in this chapter present circuit 

details and voltage references on both MPEA and ZCST loop implementations. 

Circuit implementation for PMS 

The boost converter in Fig. 84 is a voltage step-up converter capable of 

increasing a DC voltage from the input (𝑉𝑑𝑐) to a higher DC output voltage value (𝑉𝑜𝑢𝑡). 

Output current load and input power are the main limitations in terms of how much gain 

(𝑉𝑜𝑢𝑡/𝑉𝑑𝑐) the converter can achieve.  

The parameter utilized to modify the input impedance of the boost converter is 

the switching frequency (1/𝑇𝑠). As the converter operates in DCM, the input impedance 

is derived from the averaged inductor current [8]. The expression of the input impedance 

can be approximated as: 
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𝑍𝑉𝑅 ≈

2 ∙ 𝐿𝑉𝑅 ∙ 𝑇𝑠

𝑇𝑁
2 =

2 𝐿𝑉𝑅

𝐷𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒
2 𝑇𝑠

 
(84)  

where 𝐿𝑉𝑅 is the converter inductor, 𝑇𝑁is the on-time for the NMOS switch, and 

𝐷𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒 is the NMOS switch duty cycle. By defining the duty cycle for the NMOS 

switch to be 50% of the period (𝑇𝑆), (84) yields: 

 𝑇𝑁 = 𝐷𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒 ∙ 𝑇𝑠 = 0.5 ∙ 𝑇𝑠 
(85)  

 
𝑍𝑉𝑅 ≈

2 𝐿𝑉𝑅

0.52𝑇𝑠
= 8 𝐿𝑉𝑅  𝑓𝑠 

(86)  

This allows the input resistance of the boost converter to vary in a linear fashion 

to fulfill the needs of MPP for the MFC. This permitted the implementation of a 

frequency-controlled input resistance of the PMS. From the system characterization and 

specifications in the previous section (Adaptable Maximum Power Extraction 

Algorithm), the input resistance to match is 𝑅𝑀𝐹𝐶 =400Ω. Thus,𝐿𝑉𝑅 was selected to be 

1.5 mH, setting the switching frequency to 66kHz.Broad resistance matching ranges can 

be obtained through different inductor and switching frequency values.  

The PMS also possesses the capabilities of extracting power from much lower 

producing MFCs. This lower power production is translated as an electrical equivalent 

MFC source with larger 𝑅𝑀𝐹𝐶 . As shown in (4), the input resistance would modulate to 

extract maximum power matching 𝑍𝑉𝑅 and 𝑅𝑀𝐹𝐶 . 
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Operating point for impedance tracking implementation 

 

 

Fig. 85. (Left) Measured RC time constant (τMFC) of the MFC device and (right) illustration of time 

needed to charge the capacitor C1 to read the open circuit voltage VMFC. 

 

As mentioned in the previous Section (Adaptable Maximum Power Extraction 

Algorithm), variable 𝜏𝑀𝐹𝐶  is measured and shown in Fig. 85. As with any RC circuit, 

𝜏𝑀𝐹𝐶  is the time required to charge 𝐶𝑀𝐹𝐶  through resistor 𝑅𝑀𝐹𝐶  to ~63% of its final 

value. It can be seen that the time it takes for the RC system to reach approximately 99% 

of its final value is 40 seconds. This information, along with the characterized value of 

𝑅𝑀𝐹𝐶  allows an estimation of 𝐶𝑀𝐹𝐶: 

 𝜏𝑀𝐹𝐶 = 𝐶𝑀𝐹𝐶𝑅𝑀𝐹𝐶 = 10 𝑠 (87)  

From (87), for an 𝑅𝑀𝐹𝐶 = 400Ω, 𝐶𝑀𝐹𝐶 is approximately 25 mF. Note that under 

circumstances where no 𝑅𝑀𝐹𝐶  is known through characterization, 𝜏𝑀𝐹𝐶from testing 

alone can function as an indicator of MFC health, i.e. 𝜏𝑀𝐹𝐶 ≫ 10𝑠 is an indication of 



 

141 

 

weak MFC power production. The 𝜏𝑀𝐹𝐶  parameter serves as a strong indicator on the 

MFC power delivery capabilities and PMS MPP method (Manual or Dynamic) needed 

in order to achieve maximum power extraction. In summary, the MFCs time constant 

sets the operation range of the PMS’s MPP method (Manual or Dynamic).   

 

 

Fig. 86. Relationship between ϕ2 and ϕ1. 

 

Fig. 86 illustrates the comparison between both clock phases 𝜙2 and 𝜙1. For the 

characterized MFC and measurements the required time for the MFC to reach nominal 

𝑉𝑀𝐹𝐶 is too large to be implemented practically in an integrated solution. For the 

proposed PMS, a good rule of design is to minimize the sampling window (𝑇𝑠𝑎𝑚𝑝) 

compared to the refresh rate (𝑇𝑅), since 𝑇𝑠𝑎𝑚𝑝 effectively disengages the MFC from the 

PMS disrupting power delivery. Non-integrated solutions could potentially allow longer 

𝑇𝑠𝑎𝑚𝑝 avoiding manual range operation. 
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The OCV sampling window is performed by phase 𝜙2 with duration 𝑇𝑠, and the 

refresh rate is performed by phase 𝜙1 with duration 𝑇𝑅. A 1/8
th

 maximum 𝑇𝑠 value with 

respect to 𝑇𝑅  for the PMS is suggested to minimize power disruption. For larger values 

of 𝜏𝑀𝐹𝐶 , longer 𝑇𝑠𝑎𝑚𝑝is required; hence longer values for𝑇𝑅. This requires high capacity 

sampling capacitors (𝐶1and 𝐶2) with low ESR to minimize leakage between each 

sampling window in order to minimize MPP error. This assures limited power disruption 

to the PMS, while correct MPP.  

With the implemented approach of 1/8 ratio limit between sampling window to 

sampling period careful considerations should be taken when sizing 𝐶1and 𝐶2. As 𝐶1 is 

placed in parallel to the MFC, this would effectively increase the associated capacitance 

with 𝜏𝑀𝐹𝐶  to be 𝐶𝑀𝐹𝐶+ 𝐶1. Therefore, 𝐶1should always be sized much smaller than CMFC 

to avoid increasing 𝜏𝑀𝐹𝐶  beyond the 1/8 limit for fully monolithic approaches. 

In Fig. 82, for values of 𝜏𝑀𝐹𝐶  lower than the time constant threshold, the 

dynamic range is externally set. Fig. 87 shows the sampling structure for this mode of 

operation; which allows for quick and dynamic OCV monitoring through two non-

overlapping control signals (Fig. 86) for the sampling switches.  
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Fig. 87. Operating point tracking for dynamic range, phase ϕ2 sampling of VMFC and phase ϕ2 

dividing VMFC by two. 

 

During 𝜙2 the open circuit voltage 𝑉𝑀𝐹𝐶 is stored in 𝐶1 (Fig. 87). During 𝜙1, the 

charge stored in 𝐶1 is shared with 𝐶2 through the associated controlled switches. Since 

both capacitors have the same value, the voltage at node 𝑉𝑐𝑜𝑚𝑝 becomes equal to 𝑉𝑀𝐹𝐶/2 

due to charge redistribution between the two capacitors. Phase𝜙2 pulse duration, 𝑇𝑠𝑎𝑚𝑝, 

needs to be at least equal to 4𝜏𝑀𝐹𝐶  (Fig. 85) in order for 𝐶1 to be charged to a value close 

to 𝑉𝑀𝐹𝐶. The timing is achieved through a dedicated one-shot circuit with external tuning 

to achieve the required sampling window for 𝜙2. Fig. 88 shows experimental correct 

MPP being achieved under electrical equivalent circuit for a high powered MFC 

(𝜏𝑀𝐹𝐶 = 5 ms). 
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Fig. 88. Dynamic range showing correct MPP. 

 

For the measured MFC, with large value 𝜏𝑀𝐹𝐶 , the manual range is externally set. 

In order for the MPP be achieved without large power disruption to the PMS, a pre-

charging scheme for the sampling capacitors (𝐶1and 𝐶2) is employed. This eliminates the 

need to disengage the PMS from the MFC required to sample the open circuit voltage 

(𝑉𝑀𝐹𝐶 = 𝑉𝑠). Fig. 89 shows the manner in which the manual range achieves the 

characterized 720 mV of the MFC. The pre-charging scheme is implemented through a 

similar sampling approach as the dynamic range, but without sensing the MFC’s OCV, 

through a resistor divider from 𝑉𝑜𝑢𝑡. Since the output voltage node is set to a fixed value 

(2.5 V), the MPP can be obtained via a divider network. The same sampling phases, 

𝜙2and 𝜙1, are used to obtain 𝑉𝑐𝑜𝑚𝑝.  
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The threshold, 𝜏𝑀𝐹𝐶 , for the dynamic/manual range is set to 25 ms. This allows a 

sampling window of 100 ms (4 𝜏𝑀𝐹𝐶) to be applied with a 800ms value for 𝑇. From (88), 

solving for 𝑅𝑡𝑢𝑛𝑒 sets this resistor value to 404 kΩ, with a 1 MΩ value for 𝑅𝑥, to achieve 

720 mV from the 2.5 V at the output node.  

 
𝑉𝑐𝑜𝑚𝑝 = 𝑉𝑜𝑢𝑡

𝑅𝑡𝑢𝑛𝑒

𝑅𝑥 + 𝑅𝑡𝑢𝑛𝑒
 

(88)  

Fig. 90 shows the correct MPP being achieved for the system tested in Fig. 85 

through the pre-charging scheme proposed for the PMS. A note of importance is to 

consider capacitance values capable of maintaining correct charged voltage over the 

entirety of 𝑇𝑅. Issues such as leakage must be carefully accounted for otherwise voltage 

𝑉𝑐𝑜𝑚𝑝 will negatively affect the MPEA loop.  

 

 

Fig. 89. Operating point tracking for manual range, (ϕ2) sampling of Vout and (ϕ1) dividing Vcomp by 

two. 
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The proposed MPP acquisition effectively reduces the required time for the PMS 

to locate and operate at MPP compared to conventional polarization curve approaches 

[39]. 

 

 

Fig. 90. Manual range showing correct MPP. 

 

It should be noted that if the OCV were to drastically change from the set MPP 

voltage through the resistive divider, maximum power extraction would not be achieved. 

A possibility would be to reset the resistive divider to recalibrate to MPP. Nonetheless, it 

is well documented [122, 123] that MFC OCV does not vary significantly over long 

periods of time. 
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MPEA implementation 

Fig. 91 present the main blocks which make up the dynamic MPEA. Once the 

desired operating point is stored in 𝐶1 (𝑉𝑐𝑜𝑚𝑝 from Fig. 87, Fig. 89), this is compared to 

the value at the input of the boost converter (𝑉𝑑𝑐).  

 

 

Fig. 91. Impedance tracking scheme for MPEA. 

 

Depending on the voltage level of 𝑉𝑑𝑐, a comparator sets a control voltage for a 

VCO, implemented by a ring-oscillator, in order to modify the input impedance of the 

boost converter and match 𝑅𝑀𝐹𝐶 . 

The implemented charge pump injects packets of charge into the control voltage 

node (𝑉𝐶1) through externally biased switched current sources. 
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Zero current switching tracking loop 

A critical component regarding efficiency is the duration of 𝑇𝑃 (PMOS on-time 

duration). Previous methods have proposed setting a fixed period [17] or toggling values 

to reduce reverse inductor current losses [8]. While these efforts improve on 

synchronous switching they still lack fine tuning capabilities to minimize losses due to 

inductor current achieving negative values.  

As previously explored in [8, 17], when the PMOS switch switches off, and the 

inductor current has not reached zero, an associated voltage surge is perceived at the 

switching node (𝑉𝑠𝑤 Fig. 83) of a boost converter. This voltage surge, shown in Fig. 92, 

is proportional to the rate of change of the remaining current in the inductor when the 

PMOS switches off. Ideally the inductor current would fall to zero before the PMOS is 

switched off, thus, reducing any losses associated with this switch (Fig. 92). The 

proposed solution to minimizing these potential losses associated with negative inductor 

current is through a dynamic Zero Current Switching Tracking (ZCST) loop. 

Fig. 93 shows how the tuning of the 𝑇𝑃 parameter is tuned via the ZCST loop. 

The process behaves in the reverse manner when the inductor current falls below zero.  

As with the Impedance Tracking loop, the ZCST loop requires externally biased 

current sources in order to deliver a 𝑉𝑐2 to the inverter delay cells. The 𝑉𝑠𝑤 node surge 

upper limit is determined through an external reference,𝑉𝑧𝑟𝑒𝑓, tuned to minimize 

inductor current losses.  
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Fig. 92. Inductor current and ZCST parameters. 

 

 

 

Fig. 93. Zero current switching tracking loop for Tp time control. 
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The ZCST loop minimizes the losses from the inductor current by setting 𝑇𝑃 time 

through an adaptive inverter delay cell controlled by the comparison of the voltage surge 

from 𝑉𝑠𝑤 and 𝑉𝑧𝑟𝑒𝑓. Whenever the voltage surge exceeds 𝑉𝑧𝑟𝑒𝑓, the control voltage 𝑉𝑐2 

starves the delay cell of available current, effectively slowing down the signal 𝑉𝑁,𝐷𝑒𝑙𝑎𝑦 

used to generate the PMOS signal (𝑇𝑃) [8]. VP determination is next discussed. 

Output voltage setting 

The output node voltage, 𝑉𝑜𝑢𝑡, is constantly monitored by a secondary comparator that 

turns the entire PMS on or off depending on the reference voltage level, 𝑉𝑅𝐸𝐹; if 𝑉𝑜𝑢𝑡 

exceeds the set reference voltage, the system automatically stops operating and waits 

until 𝑉𝑜𝑢𝑡drops below the reference level. This is common practice in energy harvesting 

power management systems [17, 86, 97, 121]. To assure that enough conversion gain is 

achieved by the boost converter, 𝑇𝑃 is set much smaller than the 𝑇𝑁. Fig. 77 shows how 

the 𝑇𝑃 (VP) signal is obtained from the 𝑉𝑁,𝐷𝑒𝑙𝑎𝑦 signal (ZCST) and logic gate approach 

(Fig. 94).  

 

 

Fig. 94. VP generation for TP signal. 
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The small value of 𝑇𝑃assures enough conversion gain as stated by the conversion 

gain equation [20]: 

 
𝑉𝑜𝑢𝑡 ≈ (1 +

𝑇𝑁

𝑇𝑃
) ∙ 𝑉𝑖𝑛 

(89)  

Setting a high value for (1 +
𝑇𝑁

𝑇𝑃
) always assures to be enough to achieve 2.5 V at 

the output. The conversion gain (𝑉𝑜𝑢𝑡/𝑉𝑖𝑛) is always maximized through the ZCST loop, 

minimizing inductor current losses.  

Fig. 95 shows how the output voltage setting is performed. In order to fix the 

output voltage, a global enable is employed through a division of 𝑉𝑜𝑢𝑡 and comparing it 

to a 1.25 V reference.  

 

 

 

Fig. 95. Internal voltage supply for controller and driver acquisition fromVout. 
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Power management system startup 

As the output voltage level of the MFC is not high enough to allow for self-

starting operation from the PMS. An external one-time pre-charging of the output 

capacitor to 900 mV is required to begin controller operation. Multiple different 

approaches may be taken to startup the system [88, 124].   

Once the system begins extracting energy from the MFC, there is no longer need 

for an external power source to power the PMS.  

Experimental results and discussion 

Fig. 96 showcases the testing setup for the complete PMS. The complete PMS was 

fabricated in 0.5 μm CMOS technology with an active area of 0.8mm
2
, die photograph is 

shown in Fig. 97. The measurements were performed with a storage capacitor 𝐶𝑖𝑛 of 

10mF, a super-capacitor 𝐶𝑠𝑢𝑝𝑒𝑟 of 0.1 F, and external biasing and references. 

 

 

Fig. 96. Overall testing setup to characterize the PMS controlling the MFC. 
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Fig. 97. Die microphotograph. 

To begin testing the steps taken are the following: i) biases for both MPEA and 

ZCST are set externally through off-chip supplies, ii) the output voltage reference of 

1.25 V is set for the Output Voltage Setting block, iii) Reference 𝑉𝑧𝑟𝑒𝑓 set to 625 mV for 

the ZCST block, iv) the manual range is set, for the presented MFC, through an external 

pin set to the lowest potential (not shown in Fig. 20), and finally v) testing is performed 

by an external initial pre-charge on 𝐶𝑠𝑢𝑝𝑒𝑟 to 900 mV. The pre-charge allows the control 

circuit to being switching operation and extraction from the MFC follows.  

Maximum power extraction algorithm 

Fig. 98 showcases the MPEA correctly achieving MPP at 360 mV with a 

switching frequency of approximately 65 kHz. Measurements were performed by  pre-

charging the output capacitor, 𝐶𝑜𝑢𝑡, to 900 mV to allow the system to begin operating.  
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Fig. 98. Input and output voltage profiles at steady state with ~75μA load. 

 

The manual range was externally set with 𝑅𝑡𝑢𝑛𝑒 sets to 404 kΩ, with a 1 MΩ 

value for 𝑅𝑥, to achieve 720 mV from the 2.5 V at the output node 

It should be noted that frequency variations are to be expected due to the 

continuous comparison between 𝑉𝑠 and 𝑉𝑐𝑜𝑚𝑝 that results in dynamic toggling of the 

control voltage 𝑉𝑐1 (Fig. 93) to vary slightly around the correct operating point. The 

output voltage value of approximately 2.5 V was successfully achieved with a load of 

~75 μA.  

Zero current switching tracking  

Fig. 99 shows the ZCST loop minimizing the voltage surge from the early PMOS 

off time. 𝑉𝑧𝑟𝑒𝑓limits the voltage surge related to 𝑉𝑠𝑤 (Fig. 83).  
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Fig. 99. ZCST loop minimizing losses from inductor current switching. 

 

The external reference 𝑉𝑧𝑟𝑒𝑓 was set to 625 mV as the threshold for the voltage 

surge detection at node 𝑉𝑠𝑤. Voltage surges detected at 𝑉𝑠𝑤can be seen effectively 

decrease as the ZCST loop increases 𝑇𝑃 to minimize residual inductor current.   

Total power consumption and efficiency 

Fig. 100 shows overall power consumption for both static (quiescent) and 

dynamic; total power consumed is 13.16μW. 
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Fig. 100. Overall PMS power consumption breakdown. 

 

Fig. 101 shows the efficiency profile. The efficiency of the PMS was measured 

for varying loads. Maximum efficiency was recorded at ~58% with a load of ~250 μW. 

TABLE 10 summarizes and compares the presented solution to previously reported 

systems. It should be noted that the proposed solution is the only system possessing 

quiescent power consumption below 1 μW, as well as taking circuit dynamic power 

consumption into account in the efficiency measurements. Efficiency is considered 

dynamic as it does not take into account the effects of the 1 μW quiescent; this is 

performed in the same fashion as references in TABLE 10.  Thus, the presented PMS 

achieves a significantly higher efficiency compared to previously reported PMSs for 

MFCs. 
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 TABLE 10. Comparison of MFC power management units. 

SPECIFICATION [102] [125] [6] [126] [107] THIS WORK 

Input Voltage 

Range 
300mV 

300mV* 

180mV** 
300mV 

300mV 

(startup at 

140mV) 

300mV 300mV-720mV 

Output Voltage 1.8V 3.3V 2.5V 1V 3.3V 2.5V 

Inductor 2μH 

7.5μH** 

(primary winding 

transformer) 

110mH 

326.7μH 

(primary 

winding) 

1:20 transformer 1.5mH 

Output 

Capacitor 
47μF 

0.25F* 

1.5F** 

(supercapacitors) 

1F 

(supercapacitors) 
8μF 

680μF 

0.4F 

(supercapacitor) 

0.1 F 

(supercapacitor) 

Maximum 

Power 

Extraction 

- - 
Hysteresis 

Control 
- - 

Adaptable 

MPEA tracking 

Max. Efficiency - 
5.33%* 

4.29%** 
- 73%† 53%† 58%‡ 

Implementation 

Approach 

Discrete 

Components 

Discrete 

Components 

Discrete 

Components 

Discrete 

Components 

Discrete 

Components 
Custom IC 

*Charge Pump + Boost converter topology 

**Transformer + Boost converter topology 

†Does not take into account system power consumption 

‡ PMS operates with <1μW of quiescent power consumption 
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Comparison between similar CMOS implementations focused on extracting 

maximum power from energy harvesting sources, other than MFCs, would require 

higher power for the MPP control) [20, 127-129] compared to the proposed MPEA 

presented (~600 nW for only the MPEA control). It should be noted that switching 

losses, comprising the majority of the circuits’ power consumption, can potentially be 

reduced if the system were to be implemented in a smaller technology, i.e. 180 nm 

CMOS process or smaller.   

Discussion 

While the use of the pre-charging scheme for the proposed PMS is implemented, 

an alternative approach would be to directly power from a battery at 𝑉𝑏𝑎𝑡𝑡, as seen in 

Fig. 102. While the battery is needed to start the system and deliver the appropriate 

biases and references at startup, once the system begins extracting power from the MFC, 

it can then store the extracted energy back into the battery.  

 

 

Fig. 101. Measured efficiency vs. delivered power. 
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Both references and biases, used in the ZCST and MPEA, would potentially be 

generated internally through low-power integrated temperature stable reference 

consuming sub-µWs of power [130, 131] (bandgap voltage references). Due to the low 

power extracted from the MFC (~320 µW) a rechargeable battery can be directly 

charged from the PMS output with the assurance no damage to the chemistry will occur.  

This scenario would be plausible with MFCs delivering power over 13.6 µW 

(dynamic power of 12.25 µW +static power of 0.85 µW) plus the additional reference 

power requirements from the temperature stable references. This possible scheme would 

enable a much longer up-time operation for the wireless sensor. A small amount of 

invested power to increase the system’s operational lifetime would be the requirement. 

 

 

Fig. 102. Possible implementation with presented PMS for battery extending operation. 

  

VbattVdc
MFC

Step-up + 

ZCST

Boost 
Converter

MPEA

Impedance 

Tracking

RMFC

ICharge

Cin

ZVR

Battery

Biases + References



 

160 

 

Conclusions 

MFCs can generate renewable energy from waste organic substrates such as 

wastewater and other biomass by using the metabolic process of electrochemically active 

bacteria. Due to their inherently low power and voltage profiles however, power 

management systems are required to process the MFC power to a usable voltage levels 

such as CMOS compatible voltage. This chapter presents a singular dynamic MPEA 

DC-DC converter IC chip for efficiently managing power outputs of MFCs. 

The presented monolithic boost converter is capable of sampling and locating the 

MPP and setting the input resistance to match that of the internal MFC resistance, hence 

continuously operating the system at MPP. Previous works cannot accomplish this with 

the MFC’s complex impedance. This proposed solution presents a quicker approach to 

MPP compared to conventional MFC characterization through polarization curve 

approaches. The MPEA is capable of dynamically matching the impedances of the MFC 

that continuously changes over time. The MPEA also continuously extracts maximum 

power from the MFC even when its power level changes over time. In order to reduce 

inductor current losses by modulating 𝑇𝑃 time duration a ZCST loop is introduced. The 

PMS was fabricated using a 0.5μm CMOS technology and demonstrated a maximum 

dynamic efficiency of ~58% for a load of ~250μW. 
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CHAPTER V  

AN INDUCTORLESS DC-DC CONVERTER FOR AN ENERGY AWARE POWER 

MANAGEMENT UNIT FOR MICROBIAL FUEL CELLS
*
 

Introduction 

The research behind novel renewable energy sources has always been a critical 

and major driving force in technological innovation. One of the breakthroughs in 

renewable energy technologies has been the development of new and highly efficient 

power management units (PMU) for energy harvesting (EH) systems. EH-PMUs are 

focused on two major tasks: 1) extract maximum power from the renewable source, and 

2) offer an acceptable and well-regulated voltage/current profile for the power delivery 

chain.  

Major results have been accomplished for several different EH sources, i.e., 

solar, kinetic, RF, and thermoelectric [132-135]. However, fully integrated solutions 

where biomass is used as a source are still few, and PMU solutions have yet to tackle 

extreme low power producing systems such as microbial fuel cells (MFC) [136]. Due to 

their inherent low power production, power extraction from MFCs requires extremely 

efficient and low power PMUs.  

The power profile of an MFC varies with pH level, temperature, and amount/type 

of substrate in the anode chamber [118, 137]. Over time, these aforementioned effects 

                                                 
*
 Reprinted with permission from “An Inductorless DC-DC Converter for an Energy Aware Power 

Management Unit Aimed at Microbial Fuel Cell Arrays” by S. Carreon-Bautista, C. Erbay, A. Han, and E. 

Sanchez-Sinencio, 2015. IEEE J. of Emerging and Selected Topics in Power Electronics, Early Access 

Article, 2015, © 2015 IEEE 
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compound and reduce the maximum power delivered by the MFC. This overall power 

degradation or fluctuation limits the potential of applying a single MFC for a continuous 

load demanding system for any long up-time operation, and an MFC system would 

require careful monitoring of the MFC health. A possible solution lies in implementing a 

large volume MFC in order to maintain up-time for as long as possible [102] or 

intermittent operation of PMUs [138].   Efforts of placing multiple devices in series or 

parallel configuration are possible in order to improve either output voltage (series 

connection increases equivalent output voltage), or reduce internal equivalent resistance 

(parallel connection increases current delivering capability). However, due to the 

nonlinear effects of the bacteria in MFC, variations in power production between devices 

leads to unequal voltage drop when placed in an array fashion and hence, limiting the 

overall power delivered by the array [139]. In fact, no current solution truly tackles the 

low power density and wide range MFC parameters over time. 

The proposed solution is to perform a time multiplexing harvesting approach, 

where MFCs are harvested individually at MPP to avoid the issue of voltage reversal, yet 

benefiting from an a higher power density achieved from an array configuration. The 

present chapter presents an inductorless DC-DC converter (I-DCDC) which allows for 

dynamic tracking of the optimum point for maximum power extraction from an MFC 

array. The I-DCDC is part of an Energy Aware Power Management Unit (EA-PMU), 

comprised of a power sensing and aforementioned I-DCDC converter. The I-DCDC is 

implemented with a Charge Pump Dickson topology [57]. The EA-PMU performs a 

power detection (PD) algorithm that locates the optimum MFC within the MFC array for 
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power extraction. Once the best MFC is located, the I-DCDC begins harvesting from the 

selected MFC through a rewiring process, achieving maximum power point tracking 

(MPPT) via a frequency modulation scheme (FMS).  The proposed system is a novel 

approach towards tackling MFC power profile degradation due to MFC internal 

variations and towards effectively increasing power extraction by implementing a 

multiplexing harvesting of MFC arrays.  

MFC array and power extraction methodology 

An MFC possesses nonlinear behavior when mapped to an equivalent electrical 

circuit with initial approximations showing the effects of non-idealities [117, 118]. As 

power is being extracted from an MFC, its performance degrades over time and delivers 

less power if not replenished with a feeding solution. Another set of factors affecting 

power performance of an MFC are: size, pH, temperature, and substrate concentration in 

the anode chamber [118]. This causes challenges in maintaining a certain level of power 

and voltage for the load.  

For the proposed application, an MFC array is established from which maximum 

power can be extracted from individual cells, maximizing the overall system efficiency. 

Under this scheme, power from an individual MFC is harvested without the need of 

previously knowing the optimum point of power extraction, contrary to previous 

solutions implementing [140] multiple MFCs, the proposed converter can achieve MPP 

power extraction at all times. The MPPT scheme locates and dynamically adjusts the 

system parameters for the power converter to achieve a maximum power extraction.  
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The power detection of MFCs is performed in order to quickly switch between 

the healthiest cells within the array. Once the healthiest MFC is selected, the PD 

algorithm continues monitoring the rest of the array for a set period of time and selects 

the best available candidate. The PD algorithm can be implemented in a variety of ways 

such as: a microcontroller or a fully-integrated Finite-State-Machine (FSM).   

State-of-the-art 

Current power management solutions implementing MFCs as their power source 

are limited in application and require large external components (inductor) [102, 136, 

141], or suffer from complex implementation [142]. The issue of power degradation and 

functional array implementation of MFCs has yet to be tackled in an efficient and 

automated manner.  

Previous efforts aimed at placing harvesting sources in an array fashion [112] 

consider only resistive components when achieving MPP. Since the impedance the MFC 

yields both resistive and reactive components, any array type approach where rapid 

reconnection occurs between the DC-DC converter and the MFCs must tackle stability 

issues in a more stringent fashion. Another multi-source approach with an LC switching 

converter, which differs from the dynamics of a fully integrated capacitive DC-DC 

converter, has also been presented [112]. The proposed implementation via a fully 

capacitive DC-DC converter alone requires new understanding on the I-DCDC’s 

particular interaction with the MPPT control loop.  
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Thus, this type of approach requires a sound implementation in order to tackle 

the different MFC power profiles, and to show how energy harvesting MPPT control 

loop dynamics are affected by it.     

MFC construction and operation 

 

 

Fig. 103. a) Schematic of a two chamber microbial fuel cell. b) The small (MFC-L) and large (MFC-

H) devices used with I-DCDC. 

 

MFCs are bio-electrochemical, energy-producing devices that convert chemical 

energy into electrical power by the catalytic activity of living bacteria. MFCs are similar 

to other fuel cells, consisting of anode and cathode chambers separated by a proton 

exchange membrane (PEM) as shown in Fig. 103a. In the anode chamber, fuel is 

oxidized by the bacteria, generating CO2, electrons and hydrogen atoms. The electrodes 

in each chamber connected through a resistor load and generated electrons are 
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transferred to the cathode electrodes, while protons are moved to the cathode chamber 

through the membrane.   

The MFCs were assembled by connecting two acrylic chambers separated with a 

PEM (Nafion 117
TM

, Ion Power Inc.). Carbon felt (Morgan, UK) was used as the anode 

and carbon cloth with Pt catalyst on one side (10wt% Pt/C, 0.5 mg Pt/cm
2
, ElectroChem, 

Inc.) was used as the cathode. Anaerobic activated sludge (Austin Wastewater Plant) 

was used as the inoculum. The anode chamber was filled with wastewater, containing 1 

g/L acetate and autoclaved anaerobic nutrient mineral buffer (NMB, pH 7.0) solution 

[113]. Two different size MFC configurations were used to test the EA-PMU. The larger 

MFC (MFC-H) had 1 L total volume with 100 cm
2
 anode and 50 cm

2
 cathode electrode 

areas. The smaller MFC (MFC-L) had 20 mL total volume with 2 cm
2
 anode and 1 cm

2
 

cathode electrode areas, both MFC devices can be seen in Fig. 103b. The cathode 

chambers were filled with potassium ferricyanide (100 mM). During the startup phase, 

the MFC was connected with an external resistor (1 kΩ), and the voltage across the 

resistor was monitored through a multiplexer (National Instruments) for continuous 

voltage measurements via a LabVIEW
TM

 (National Instruments) interface [114, 115, 

143] and additional acetate was fed intermittently when the voltage generation was 

lower than 50 mV. A polarization curve was obtained by varying the load resistances (10 

Ω-50 kΩ). 
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MFC electrical equivalent circuit 

Power profile tests were performed on multiple MFCs, showing that ranges for 

series resistances (𝑅𝑀𝐹𝐶) varied from 100 Ω to 8 kΩs, with open circuit voltages ranging 

from 600 mV to 800 mV. A second critical issue regarding the electrical equivalent 

circuit for an MFC is the parasitic capacitance associated with the MFC (𝐶𝑀𝐹𝐶) ranging 

from 6.5 μF to 2.5 mF.  Both associated components (RMFC and CMFC) seen in Fig. 104 

affect the maximum power extraction parameters for a power conversion system.  

 

 

Fig. 104. Simplified electrical equivalent circuit for an MFC device. 

 

Multiple characterization trials were performed on the MFC devices within the 

array in order to quantify both associated components. TABLE 11 summarizes upper 

and lower values obtained through the characterization process for the 20 mL MFC 

(MFC-L) and 1 L MFC (MFC-H).  
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Obtaining these parameters for high/low power MFCs is critical in the design of 

the I-DCDC converter in order to assure MPPT stability ranges after reconnection 

between cells.  

 

TABLE 11. Microbial fuel cell parameters 

SPECIFICATION VALUE RANGE 

𝑹𝑴𝑭𝑪  0.1 𝑘Ω − 8 𝑘Ω 

𝑪𝑴𝑭𝑪   6.5𝜇𝐹 − 2.5𝑚𝐹 

𝑽𝑴𝑭𝑪  600𝑚𝑉 − 800𝑚𝑉 

 

Inductorless DC-DC converter  

Fig. 105 presents the proposed overall structure of the EA-PMU with the I-

DCDC block being featured in this article. Section IV-C further elaborates on the design 

and specifications of the converter.  The I-DCDC converter is comprised of a variable 

stage, 10X Dickson charge pump (CP) capable of dynamically achieving MPPT over a 

wide range of MFC impedance scenarios. The number of stages in the CP is 

automatically set depending on input voltage and load current conditions of the 

converter through a stage control loop monitoring the output voltage node. Likewise, a 

frequency modulation scheme (FMS) is also implemented in order to achieve automatic 

input resistance matching through an MPPT loop, between the converter and the MFC 

input resistance (𝑅𝑀𝐹𝐶). MFCs behave as DC voltage sources, where variations 

occurring on the DC voltage of the MFC can be considered negligible i.e. low frequency, 
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the maximum power transfer theorem states [120] that maximum power is transferred 

when a DC source (𝑉𝑀𝐹𝐶) with fixed source resistance (𝑅𝑀𝐹𝐶) is connected to a load 

resistance (𝑅𝑖𝑛) of equal value to the source resistance, causing the input voltage to be 

𝑉𝑀𝐹𝐶/2 (𝑉𝑀𝑃𝑃 in Fig. 105). A capacitive divider is implemented to obtain the correct 

reference of 𝑉𝑀𝑃𝑃. As the PD algorithm switches within the MFC array, the MPPT 

control loop must assure that the I-DCDC converter reaches MPP in a fast and stable 

manner. Since MFCs are selected based on their power availability, it is possible that 

this can result in switching between a low-power (high valued 𝑅𝑀𝐹𝐶  and 𝐶𝑀𝐹𝐶) cell to a 

high-power (low valued 𝑅𝑀𝐹𝐶  and 𝐶𝑀𝐹𝐶) cell. 

 

 

Fig. 105. Proposed structure of the energy aware-power management unit.  
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Since the process of extracting power from the MFCs follows a time interleaved 

approach, the reconnection scenario can potentially result in a faulty and unstable MPP 

acquisition due to the strong effect of switching between low- and high-power producing 

MFCs (small and large values of 𝑅𝑀𝐹𝐶  and 𝐶𝑀𝐹𝐶). Stability considerations will be 

further discussed in the following section titled: Maximum Power Extraction for MFC 

Arrays.  

Maximum power extraction for MFC array 

The main goal of the MPPT control loop is to achieve resistive matching, 

between 𝑅𝑀𝐹𝐶  and 𝑅𝑖𝑛, in order to ensure maximum power transfer from any individual 

MFCs within the MFC array by modulating the switching frequency. Frequency 

modulation is commonly used in low-power applications where efficiency at light loads 

and low power consumption of control circuitry are critical [55]. FMS was selected for 

the control method since traditional approaches, which have variable duty cycles have a 

limited effective control range over which regulation may be applied on capacitive DC-

DC converters [62, 144]. The downside of the FMS approach is that the noise spectrum 

and EMI for successive blocks in the power chain is increased. Since the proposed EA-

PMU application is intended for intermittently operating sensor nodes, a large storage 

capacitor at the output of the converter offers significant noise suppression.  

As with most energy harvesting applications, the main focus of the EA-PMU is 

to deliver as much power from the harvesting source to the load at the appropriate 

voltage levels.  
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Once the voltage levels are attained, the controller is disengaged to minimize 

power consumption. Two main operating conditions are determined: storage efficiency 

and current demanding load scenario. For the first condition, multiple storage capacitors 

can be sequentially charged in order to keep the PMU operating for long periods of time. 

For the second condition, a load demand proportional to the input power from the MFC 

requires the system to maintain operation in order to achieve the required output voltage.  

The output voltage regulation aspect of the converter is achieved by fixing the output 

voltage to a predefined level by always extracting maximum power from the input 

source. Any load demand beyond the available input power (operating at MPP), would 

result in a voltage drop at the output of the any converter.  

Input resistance for I-DC DC 

As mentioned in the previous section, the source resistance range of the MFCs 

characterized were between 100 Ω to 8 kΩs. This indicates that the proposed converter 

must be capable of matching these values to its own input resistance. In order to 

calculate for the input resistance of the converter, the procedure established in [145, 146] 

allows for quantification of the input resistance with averaged values for input and 

output voltages. For the step-up Dickson CP topology, assuming ideal charge transfer 

switches, the expression for the input resistance is: 

 
𝑅𝑖𝑛 =

𝑉𝑖𝑛

𝐼𝑖𝑛
=

𝑁

𝐴𝐼𝑑𝑒𝑎𝑙  𝐶𝑖 𝑓𝑠𝑤 𝛥𝐴𝑔𝑎𝑖𝑛  
 

(90)  
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where the components in 𝑁, 𝐶𝑖, 𝑓𝑠𝑤, 𝐴𝐼𝑑𝑒𝑎𝑙, and Δ𝐴𝑔𝑎𝑖𝑛 are the number of stages, 

capacitance per stage, switching frequency of the converter, ideal voltage gain 

expression (𝐴𝐼𝑑𝑒𝑎𝑙 = 𝑁 + 1), and difference between actual voltage gain expression 

(𝐴𝑉 = 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛) and the ideal gain (Δ𝐴𝑔𝑎𝑖𝑛 = 𝐴𝑖𝑑𝑒𝑎𝑙 − 𝐴𝑉). AV calculated assuming 

ideal charge transfer switches yields: 

 

𝐴𝑉 = (𝑁 + 1) ∙ (
1

1 +
𝑁

𝐶𝑖 𝑓𝑠𝑤  𝑅𝐿𝑜𝑎𝑑

) 
(91)  

 
Δ𝐴𝑔𝑎𝑖𝑛 =

𝑁 + 1

1 +
𝐶𝑖 𝑓𝑠𝑤 𝑅𝐿𝑜𝑎𝑑

𝑁

 

(92)  

The first term of 𝐴𝑉, (N + 1), is the ideal voltage gain of the converter and the 

second term makes up the efficiency of the system and how it is affected by number of 

stages (N), frequency, and load. A more elaborate efficiency expression, including effect 

of parasitic capacitances, is found in [67]. As stages increase, both input resistance and 

overall efficiency decrease.  

Fig. 106 presents the variable input resistance range of the I-DCDC for an 

increasing number of stages (𝑁) [42], and switching frequencies for the converter. As 

the number of stages is reduced the equivalent input resistance range for a given 

switching frequency is also decreased, requiring higher switching frequencies to match 

low 𝑅𝑀𝐹𝐶  values. 
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Fig. 106. Input resistance variation for inductorless DC-DC converter. 

 

 From (90) the input resistance is inversely proportional to capacitance per stage 

(𝐶𝑖) and switching frequency (𝑓𝑠𝑤) as would be expected from a switched capacitor 

circuit. A value of ~200 pF for each stage capacitance was selected in order to maintain 

switching frequency to a minimum range allowing for system-wide low power 

consumption. The main tradeoff with this approach is area cost due to the capacitance 

density offered by the process used (4.1 fF/μm
2
 in 0.18 μm CMOS process) and the high 

switching frequency required for high power MFCs (low 𝑅𝑀𝐹𝐶  values). 

 Previous efforts [42] implementing stage addition/subtraction as the main 

mechanism for maximum power extraction show a limited range over which matching 
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can be performed when compared to the wider matching range offered by sweeping the 

switching frequency and stage management offered by the proposed solution. Fig. 3 

highlights the flexibility offered by the EA-PMU compared to the approach proposed by 

[42].  

For maximum power transfer to occur, the I-DCDC’s input resistance must equal 

𝑅𝑀𝐹𝐶 . Once the input voltage of the converter equals to half of the MFC’s open circuit 

voltage, the maximum power transfer [120] condition occurs. Since MPP is achieved 

through a control loop dependent on input impedance, stability issues are vital to the 

correct operation of the system once reconnection between MFCs occurs. Switching 

between different MFCs will cause impedance variations at 𝑉𝑖𝑛 of the I-DCDC, 

requiring the system to modulate its input resistance to correctly achieve MPP. Fig. 107 

shows the small-signal model of the MPPT system. With each reconnection of an MFC, 

a new impedance profile is presented to the PMU, requiring quick and accurate matching 

  

 

Fig. 107. Small-signal equivalent MFC source impedance for control-to-input transfer function. 
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within as short amount of time as possible. The proposed PMU is unique in this aspect, 

since modification of the input source modifies the control loop parameters demanding 

the PMU’s MPPT loop to possess a stable response under all conditions it may face from 

the MFCs within the array.  

I-DCDC stability with reconnection 

In order to take frequency behavior into consideration for stability concerns of 

the MPPT loop, a small-signal model for the switching converter is elaborated. Contrary 

to the work presented in [112], the switching frequency is inversely proportional to the 

input resistance of the I-DCDC converter, nor is there an associated internal parasitic 

capacitance found in TEG sources. State-space averaging following [60]  was performed 

to obtain the control-to-input (C-to-I) transfer function, where individual variables for 

the on and off (Ton and Toff) time for a switching converter are implemented. Through 

analysis, the C-to-I transfer function for the converter yields: 

 𝑉𝑖𝑛(𝑠)

𝑉𝑐(𝑠)
=

𝐺𝑑𝑜

𝑠 + 𝜔𝑝
𝐾𝑐𝑐𝑜

≈

𝑇𝑜𝑛

𝑅𝑜𝑛 𝐶𝑀𝐹𝐶
(Vout,DC − (𝑁 + 1)Vin,DC)

𝑠 + (
1

𝑅𝑀𝐹𝐶  𝐶𝑀𝐹𝐶
+

((𝑁 + 1)𝑇𝑜𝑛𝐹𝑠𝑤)
𝑅𝑜𝑛 𝐶𝑀𝐹𝐶

)

𝐾𝑐𝑐𝑜 

(93)  

 
𝜔𝑝 ≈

𝑅𝑜𝑛 + 𝑅𝑀𝐹𝐶((𝑁 + 1) ∙ 𝑇𝑜𝑛𝐹𝑠𝑤)

𝐶𝑀𝐹𝐶 ∙ 𝑅𝑀𝐹𝐶𝑅𝑜𝑛
 

(94)  
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where 𝑁,  𝐾𝑐𝑐𝑜, 𝑅𝑝𝑎𝑟, and 𝐶𝑀𝐹𝐶  are the number of stages in the converter, the oscillator 

linear gain, the equivalent parallel resistance (𝑅𝑝𝑎𝑟 = 𝑅𝑀𝐹𝐶||𝑅𝑜𝑛) of the MFC’s series 

resistance and switches’ on resistance, and parasitic capacitance, respectively. 𝑇𝑜𝑛 and 

𝑇𝑠𝑤 are the on-time duration of a switching period and switching period times, and 

finally, 𝑉𝑖𝑛,𝐷𝐶 and 𝑉𝑜𝑢𝑡,𝐷𝐶 from (92) are the steady-state DC voltages at the input and 

output of the converter and are obtained from the state-space DC averaging (see 

Appendix). Equation (93) shows the pole location given by the 𝐶𝑀𝐹𝐶  value and 

resistances 𝑅𝑀𝐹𝐶  and 𝑅𝑜𝑛. Equation (92) behaves as a single pole system below the 

switching frequency of the converter. From here, it is clear to see that the pole is 

dominated mainly by the MFC parasitic electrical equivalents, which vary over a large 

range (TABLE 11). Fig. 108 shows both simulated and analytical expressions in good 

agreement between obtained transfer function and its simulated performance. 

 

 

Fig. 108. Control-to-input simulated and analytical comparison. 
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The small signal equivalent model for the MPPT loop (Fig. 105) is shown in Fig. 

109, where the open loop transfer function, 𝑇𝑜𝑙(𝑠), is given by: 

 𝑇𝑜𝑙(𝑠) = 𝐵(𝑠) 𝐾𝑝 𝐾𝑐𝑝 𝐹(𝑠) 
(95)  

where Kp, Kcp, F(s), and B(s) are the comparator gain, current steering charge pump 

gain, filter transfer function, and the C-to-I transfer function of the converter. As was the 

case in [112], loop performance can be enhanced through the implementation of a filter 

block, F(s).  

 

 

Fig. 109. Small-signal stability model for PMU MPPT scheme. 

 

The open loop transfer function without considering an optimized filter (𝐹(𝑠) 

implemented with a 10 nF capacitor), with 𝐾𝑐𝑝 of 100 nA quiescent current and 𝐾𝑝 of 

100 dB provides a gain bandwidth product (GBP) of 9 kHz and 718 Hz, with phase 

margin values of 2.36° and 0° for the high-power (MFC-H) and low-power MFC (MFC-

L) electrical circuit equivalents, respectively.  
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By implementing F(s) as a Type-II filter [54] an improvement in phase margin 

and GBP is performed. GBP is increased to 74 kHz and 47° phase margin for MFC-H 

(MFC-HOpt), and for MFC-L, the GBP and phase margin are 150 Hz with 87° of 

improvement (MFC-LOpt).  

The main limitation for loop dynamics fall directly on the state of the MFC cells, 

as lower power production translates to higher parasitic internal elements (𝑅𝑀𝐹𝐶  and 

𝐶𝑀𝐹𝐶). Previous works [112] implementing dynamic MPPT schemes for large ranges of 

varying source resistances did not consider stability issues in both parasitic components 

or in their analysis. This issue has the potential of de-stabilizing the frequency response 

of the MPPT loop. To the best of the authors’ knowledge, this is the first presented work 

which considers the input source’s power production state into the control dynamics. 

Section IV-B describes the realization of the MPPT control loop in more detail. 

 

 

 

Fig. 110. Implemented MPPT scheme through frequency modulation scheme. 
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I-DCDC implemented circuit blocks 

The MPPT building block, indicated in Fig. 105, is shown in detail in Fig. 110. 

Among the main contributions of the proposed approach differing from [112] are the 

MFC MPP acquisition (𝑉𝑀𝐹𝐶  /2) through a precharging scheme, and the higher linearity 

oscillator which allows for a broader matching range over multiple MFC power profiles. 

These features make the presented solution ideal for low-power time-varying energy 

harvesting sources.    

Maximum power point and comparator blocks 

The MPP acquisition, performed by the capacitive divider block (Fig. 105), can 

be performed by two separate means: through a precharging scheme, which consisted of 

taking the output voltage and using a dynamic resistive divider network; or by the open 

circuit voltage method [19]; thus, the MPP can be obtained. Fig. 111 shows the manner 

in which both the precharging scheme, and open circuit voltage method are performed.  

The precharging scheme is required due to the large parasitic components 

associated with the MFC (RMFC and CMFC). Applying the same approach as [112] would 

produce an incorrect MPP due to the amount of time required for the MFC to reach 

nominal open circuit voltage (OCV) during a single sampling period. However, when  
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Fig. 111. Capacitive divider for MPP acquisition from output voltage (left) and directly from input 

voltage (right). 

small values of associated parasitics can be obtained from the MFC, the open circuit 

voltage method can be used and allows for a stand-alone solution to obtain MPP for the 

MFC devices.   

For the precharging scheme the output voltage is quickly sampled through a pair 

of switches controlled by nonoverlapping clock phases ϕ1 and ϕ2. The resistive divider 

is composed of resistor Rx and a variable resistor implemented with multiple NMOS 

devices in parallel. The PD algorithm selectively turns on the required number of NMOS 

devices in order to correctly achieve nominal OCV from the selected MFC.  

A lookup table, within the PD algorithm controller, would allow the correct 

setting of the required division factor and would give the operator an opportunity to 

sample this value to C1 during phase ϕ2. Afterwards the stored charge in C1 would be 

divided between C1 and C2 to achieve the required MPP.  

The open circuit voltage method briefly disconnects the MFC from the I-DCDC 

converter to sample the open circuit voltage during ϕ2, where capacitor C1 stores the 

open circuit voltage of the MFC (𝑉𝑀𝐹𝐶). During ϕ1, the MFC is reconnected to 
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converter, while the charge stored in C1 is again divided between both C1 and C2, to 

achieve MPP.  

Both methods can achieve accurate MPP for MFC, but the open circuit voltage 

method is limited in the time constant value of the MFC’s 𝑅𝑀𝐹𝐶  and 𝐶𝑀𝐹𝐶  for it to reach 

nominal 𝑉𝑀𝐹𝐶.  

If the time constant is restrictively large, the capacitive divider would need to 

disconnect the MFC from the I-DCDC converter for prohibitively large periods of time, 

making it unsuitable for power harvesting from the MFC.  

Once the MPP acquisition is completed, a comparator evaluates differences 

between the desired reference and the input voltage for the CP (Vin). As the compared 

voltages are DC values and Vin varies at a slower than a single comparator clock period, 

the behavior can be approximated as continuous.  The comparator topology implemented 

[96] operates with a dedicated clock tuned at 100 kHz and characterized with a gain of 

100 dB.  

Charge pump and filter 

The charge pump employed was that of a conventional current steering design 

with a static current consumption of 100 nA. For the filter, a Type-II filter topology 

commonly used in Phase-Locked Loops was realized due to the low power nature of the 

system. The optimization of the control loop was mainly focused on improving 

performance for the worst case MFC-L: RMFC of 8 kΩ and CMFC of 2.5 mF.  
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In order to improve phase margin under the already limited system parameters 

offered by MFC-L, the zero frequency was placed at low frequencies, i.e., ~8 Hz. The 

secondary pole, ωp2, was placed considering stability for the best case MFC (MFC-H). 

Since GBP is much better than MFC-L, the only limitation was adequate phase margin.  

The pole was positioned at ~80 kHz and improved both GBP and PM to 73.6 

kHz and 45.7°, respectively. Values for the filter implemented were: R1= 20 kΩ, C1 = 1 

μF, and C2= 10 pF; the filter was implemented with external components.  

Current controlled oscillator 

The current controlled oscillator (CCO) implemented for the MPPT scheme was 

a wide tuning range and a three-stage ring oscillator topology [147]. The tuning range 

was selected by the required frequency range for the SC input resistance (Fig. 106). The 

implemented topology of the CCO offered a much broader linear range and only one 

control voltage (𝑉𝑐) compared to the approach presented in [112], where control voltage 

for both PMOS and NMOS in the transmission gate resistance had be considered. The 

implemented CCO was designed for a linear tuning range (see (90)) from 10 kHz to 10 

MHz with a gain of 10 MHz/V (𝐾𝑐𝑐𝑜) in order to cover the required values of 𝑓𝑠𝑤 for 

impedance matching purposes.  

10X step-up charge pump 

Fig. 112 shows the DC-DC converter topology, where by monitoring the output 

voltage the number of stages varies on load conditions. The implemented step-up 

converter was composed of a 9-stage, 10X gain, 4-phase Dickson Charge Pump [57]; 
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responsible for stepping up the MFC voltage to usable CMOS levels. This topology was 

selected due to its inherent higher efficiency for lower power profiles [148, 149].  

 

 

Fig. 112. 10X charge pump topology. 

 

The switch design implemented a bootstrapped approach in order to minimize 

Ron values throughout the entire converter. Fig. 113 shows the implemented technique 

where each stage is activated via the Mx control bit. Both ΦA and ΦB were delivered 

from a 4-phase nonoverlapping clock generator; previous and next stage block used the 

remaining two phases for their own clock control. The bootstrapping effect through 

phase 𝜙𝐴 precharges the capacitor 𝐶𝑏𝑡 to the voltage at the Vs node, then during 𝜙𝐵  and 

additional potential is added to the bottom plate of 𝐶𝑏𝑡 of approximately 𝑉𝑜𝑢𝑡. This 

allows for the overall overdrive voltage across the switching transistors to remain 

constant throughout the entire step-up chain.  
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Fig. 113. Bootstrap technique for CP stage. 

 

As shown in Fig. 105, the output voltage was continuously monitored by a 

clocked comparator in charge of reducing the number of stages in the step-up converter 

if the output voltage exceeded the required reference (M1-M7) (Fig. 114). As the output 

voltage exceeded the external reference, stages are bypassed until the output voltage falls 

below the reference voltage.  
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Fig. 114. Stage control block for output voltage monitoring. 

 

Fig. 114 shows the overall structure of the Stage Control block. Only two stages 

are permanently set in the power path due to the maximum voltage delivered by the 

MFC, which is characterized to be 800 mV. If all programmable stages are bypassed and 

the output voltage still exceeds the external voltage reference, the main oscillator clock 

is disengaged, but maintains a secondary oscillator to drive both the MPP acquisition 

block and Stage Control blocks (output and input comparators) of the PMU. The main 

oscillator clock is re-engaged once the output voltage falls below the reference. By 

extracting MPP during all operational up-time, regulation can be achieved as long as the 

load does not demand more power than what is available at the input source; this is the 

main limitation in all energy harvesting systems. Current demands within the system’s 

capabilities will maintain the converter operating at MPP through the MPPT scheme, 

sustaining the required output voltage.  
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I-DCDC system startup 

The voltage delivered by the MFC does not allow for a self-starting operation 

from the converter. An external one-time precharging of the output capacitor to 600 mV 

is required to begin controller operation. Multiple different approaches may be taken to 

start up the system [88, 124].   

Once the system begins extracting energy from the MFC, there is no longer a 

need for an external power source to power the I-DCDC.  

Measurement results 

The PMU system was fabricated in 0.18 μm CMOS process with an active area 

of 1.8 mm
2
. Fig. 115 shows the die microphotograph of the PMU with the value for 

output capacitor, 𝐶𝑜𝑢𝑡, being 100 mF.  

 

 

Fig. 115. Die microphotograph of implemented I-DCDC and test bench. 
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For the MFCs, Fig. 116 shows the polarization curves for the 240 mL (MFC-L) 

device obtained after eight months of operation, showing a maximum power output of 

11.2 µW at a voltage of 300  mV (open circuit voltage of 600 mV). The maximum 

power from the 1 L (MFC-H) device was 1.6 mW at a voltage of 400 mV (open circuit 

voltage of 800 mV) (Fig. 14). This is in line with a typical two-chamber MFC power 

performance when using wastewater inoculum and acetate as the carbon substrate. These 

two MFCs were used to test how the developed I-DCDC performs at two different MFC 

voltage and power levels.  

 

 

 

Fig. 116. Power production of MFC-L (low power) and MFC-H (high power). 
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Maximum power point tracking 

Fig. 117 shows correct MPPT extracted through the PMU by performing rapid 

changes between the best and worst case condition MFC sources; both conditions 

modified the operating point for MPPT (VMFC/2) as well as the pole location (ωp) for 

the control loop. The change between MFCs was performed to simulate the effect of the 

PD algorithm when selecting within the MFC array between ‘best’ and ‘worst’ 

conditions. The aforementioned variables were correctly dealt with by the PMU. As it 

was calculated in section titled I-DCDC Implemented Circuit Blocks-Maximum Power 

Point and Comparator Blocks, the GBP and PM for both cases was so drastically 

different that settling time between MFC-H and MFC-L varied between ~100 ms for 

MFC-H and ~3 s for MFC-L. 

 

 

Fig. 117. The MPPT control loop correctly identifying MPP for extreme condition MFC-H and 

MFC-L. 



 

189 

 

Voltage regulation 

Fig. 118 shows output voltage regulation capabilities for the converter for 1.6 

mW of input power and load current step from 100 μA to 400 μA and back. A 50 mV 

drop at the output voltage is seen at 𝑉𝑜𝑢𝑡 as well as a 150 mV overshoot when load is 

stepped down from 400 μA to 100 μA. The system is able to maintain regulation by 

maintaining MPP throughout varying load current demands (extracting maximum power 

from the source at all times). Whenever load current exceeds the input available power, 

regulation cannot be maintained and the output voltage will drop.  

 

 

 

Fig. 118. Output voltage load regulation test with load current variation for 1.6 mW of input power. 
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Efficiency measurement 

Fig. 119 shows the measured efficiency of the system when operating at the full 

10X gain. Measurements were performed using Vout as the internal control supply, with 

the exception of the current steering charge pump bias in the MPPT control loop. 

Maximum efficiency from MFC-L was measured to be at 46% for an output power of 

3.6 μW and for MFC-H maximum efficiency of 65 % for 1 mW output power. TABLE 

12 summarizes the performance of the EA-PMU and compares with previously reported 

state-of-the-art works.  

 

 

Fig. 119. Efficiency measurements for CP with variable loads. 
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Results from [42] show a higher efficiency due to lower number of stages in the charge 

pump being used. The presented system is the only fully integrated PMU capable of 

achieving both a broad range of matching and improved efficiency for energy harvesting 

solutions operating below 1 V input voltage. Power consumption for the proposed I-

DCDC converter totals approximately 4.7 μW between static and dynamic power 

consumed. It should be noted that higher power consumption was derived from the 

increased number of stages of the I-DCDC.  

 

 

Fig. 120. Power consumption for I-DCDC @ 1 MHz fsw (left) and 10 kHz fsw (right). 

 

Fig. 120 breaks down the power consumed by dynamic and quiescent for 1 MHz 

𝑓𝑠𝑤. Power consumption will automatically set depending on the power availability at 

the input MFC source. With high MFC power profiles, the I-DCDC will require higher 

𝑓𝑠𝑤 to achieve MPP, i.e., at 5 MHz the power consumption is 20 μW, but the power 

extracted from the MFC was much higher.  
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TABLE 12. Summary of performance for MFC power management units.  

SPECIFICATION [150] [42] [104] [136] [102] [151] THIS WORK 

Input Voltage 

Range 
350 mV–480 mV 1V–5 V 315 mV 320 mV ~ 0.66 V > 0.6 V 

300 mV-400 mV 

@ MPP 

Output Voltage 1.4 V  2 V ~ 1.1 V 5 V 

1.8 V Charge 

pump  

3.3 V Boost 

converter 

0.9 V–

1.2 V 
1.6 V–2 V 

Power 

Consumption 
2.62 μW ‡ 

2.11 μW 

@ 60 kHz 

𝑓𝑠𝑤 

NA NA NA 

1 μW @ 

1 MHz 

𝑓𝑠𝑤 

933 nW @ 10 kHz 

𝑓𝑠𝑤 

  36.4 μW @ 10 

MHz 𝑓𝑠𝑤 

MPPT No Yes Yes Yes No No Yes 

Impedance 

Matching Range 
- 100 kΩ NA NA - - 

100 Ω–8 kΩ 

(6.5 μF–2.5mF) 

Input Source 

Photovoltaic or 

Thermoelectric 

generator (TEG) 

TEG MFC MFC MFC MFC MFC or TEG 

Max. Efficiency 65%  58%  

~ 90 % at 0.7 

V output 

voltage 

45.21% 21.6% 

85% at 

0.9 V 

output 

voltage 

64.88% with 

MFC-HIGH at 1.8 

V output voltage 

Topology Charge Pump 
Charge 

Pump 

Boost 

Converter  

Boost 

Converter 

Charge 

Pump and 

Boost 

Converter 

Boost 

Converte

r 

Charge Pump 

Technology 0.13 μm 0.35 μm Discrete Discrete Discrete 0.18 μm 0.18 μm 

‡𝑓𝑠𝑤 for this power not reported 
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Conclusions 

This chapter presents a fully integrated, I-DCDC converter for an EA-PMU 

aimed at managing power of MFC arrays, through a time multiplexing harvesting 

approach in order to overcome the voltage reversal issue in MFC arrays power 

harvesting. MPPT and efficient DC step-up gain were performed through a FMS and 

dynamic stage selection. It also showcases a novel MPPT design procedure, for 

capacitive DC-DC converters and the stability considerations to be taken to achieve 

MPP. The converter can achieve MPPT for a broad range of MFC power profiles, 

ranging from 7.8 μW (𝑅𝑀𝐹𝐶 = 8𝑘Ω) to 1.6 mW (𝑅𝑀𝐹𝐶 = 100 Ω) as well as taking into 

account parasitic capacitances from the MFCs (6 μF to 2.5 mF). The maximum 

measured efficiency was of 65 % for 1.6 mW of input power and a 1 mA load current.  
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CHAPTER VI  

AN AUTONOMOUS FULLY INTEGRATED ENERGY HARVESTING POWER 

MANAGEMENT UNIT WITH DIGITAL REGULATION FOR IOT APPLICATIONS 

Introduction 

The research behind novel renewable energy sources has always been a critical 

and major driving force in technological innovation. One of the breakthroughs in 

renewable energy technologies has been the development of new and highly efficient 

power management units (PMU) for energy harvesting (EH) systems. EH-PMUs are 

focused on two major tasks: 1) Extract maximum power from the source, and 2) provide 

a regulated output voltage. Major results have been accomplished for solar, kinetic, RF, 

and thermoelectric sources [124, 152]. Advances in Internet of Things (IoT) devices 

have allowed for complex and task specific solutions to become the new norm. 

Complete PMUs are becoming a standard and the same can be seen in energy harvesting 

[124, 152, 153]. The main challenges behind the design and implementation are the 

stringent power constraints inherent in EH technology; for which dedicated PMU design 

must overcome by becoming both low power, and high efficiency.  

Providing both maximum power point tracking (MPPT), as well as output 

voltage regulation is still an issue to be fully resolved. State-of-the-art solutions are 

capable of performing maximum power point tracking and/or charging capabilities with 

DC EH sources [154-156].  
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Nonetheless, delivering a regulated supply to a noise sensitive load (e.g. voltage 

controlled oscillator) can potentially be an issue for current solutions. The need for a 

PMU capable of performing both charging function, as well as load regulation, will 

allow for a new set of functions for PMU with EH sources. These solutions can lead to 

more robust IoTs and wireless sensor applications where efficiency and power storage 

are critical for practical employment.   

This chapter proposes an ultra-low power, fully integrated, autonomous PMU 

capable of performing MPPT for dc EH sources, as well as performing both a charging 

operation and output voltage regulation for noise sensitive blocks. The PMU is 

comprised of a 10X step up charge pump with two-dimensional articulation for MPPT, 

and a digital Low Dropout (LDO) regulator with input power sense capabilities. The 

PMU does not require any additional external biasing or references, and can startup 

autonomously with a minimum of 350 mV at the input of the converter. The proposed 

PMU presents a solution for both the maximum power extraction from EH dc sources, as 

well as offering both storage and regulation capabilities to different types of loads.  

The chapter is divided up in the following sections: Section II presents the 

overall proposed PMU with an overview of the main blocks comprising it, Section III 

describes the building block implementation of the PMU, and Section IV discusses the 

obtained measurements from a PMU prototype. Finally, Section V concludes the paper.  
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Fig. 121. Proposed block diagram of the power management unit. 

 

Proposed power management unit 

Fig. 121 shows the full system proposed for the PMU. The presented system is 

comprised of 4 main blocks: 1) the startup block (system jump-start), 2) digital MPPT, 

3) main converter (charge pump), and 4) the digital LDO. Each block of the PMU 

requires no external references or external biasing in order for operation of the system. 

With a fully enclosed operational capability, the proposed PMU can augment battery life 

of wireless sensor systems; as well as deliver a regulated supply to sensitive systems, 

e.g. voltage controlled oscillators. The system begins operation by sequentially enabling 

each block depending on the availability of EH transducer power. A minimum of 350 

mV is required to jump-start the system and begin preliminary power extraction through 

the startup scheme.  
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A preset delay timer is designed into the startup scheme in order to assure 

enough power is delivered to the storage capacitor. Once the timer runs out, the main 

converter is engaged and startup disengaged. The main converter then begins the 

harvesting operation along with step-up and maximum power extraction process. The 

main converter steps up the dc EH transducer voltage to 2 V (𝑉𝑐ℎ𝑎𝑟𝑔𝑒), allowing for a 

charging/storage operation at the output of the converter through 𝐶𝑐ℎ𝑎𝑟𝑔𝑒  . Once the 2 V 

are achieved at the output of the converter, the digital LDO is activated to deliver a 

regulated output voltage of 1.8 V through a secondary output node, 𝑉𝑜𝑢𝑡.  

Startup block 

The startup scheme is employed whenever there is no usable stored charge at the 

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node.  This would require the converter to begin operation from whatever power 

the harvesting source can deliver, which can vary significantly over a wide range of 

values. To circumvent the low voltage nature of the energy harvesting sources used, and 

enable autonomous operation of the PMU, the startup block shown in Fig. 122 is 

included to jump-start the PMU to being operation. The startup block is composed of a 

Dickson-based charge pump with a 3X voltage gain and a dedicated low frequency 

voltage controlled ring oscillator (VCO), as well as an Enable timer block which enables 

the main converter + digital LDO blocks while disengaging the startup block.  
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Fig. 122. Startup scheme generating a supply rail for the main converter to begin operation. 

 

Main converter charge pump 

Once the hand-off between the startup block and main converter is enabled, the 

main converter takes over and begins the primary harvesting effort for the PMU. 

Powered from the 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node, the main DC-DC converter in the PMU begins 

maximum power extraction from the EH source. The main converter topology is a 9-

stage, step-up converter, based on a Dickson charge pump topology [41]. The converter 

manages maximum power extraction for the system by implementing a digital maximum 

power point tracking (DMPPT) scheme via a frequency modulation (FM) through a 

digitally controlled oscillator (DCO).  
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Fig. 123. Digital maximum power point tracking with maximum power point acquisition block for 

main converter. 

 

The DMPPT, Fig. 123, scheme allows the converter to harvest the highest energy 

from dc EH sources, by modulating the current being drawn by the PMU to reach 

maximum power extraction conditions through varying the switching frequency, 𝑓𝑠𝑤, of 

the main converter. The converter also possesses individual control over the 9-stages 

involved in the step-up process (Fig. 124); this control permits the system to bypass any 

unnecessary step-up stages to reach the goal voltage. Thus, the two functions of the main 

converter are summarized as: extract maximum power from the EH source, and to step-

up the input voltage from the EH source to 2 V. The main converter has an internal 

voltage reference powered directly from 𝑉𝑐ℎ𝑎𝑟𝑔𝑒, permitting the system to operate 

autonomously. Section III-B and C further describe the system implementation.  



 

200 

 

 

Fig. 124. Main converter (10x) showing bypassing capabilities through stage control block. 

 

Low power digital LDO 

Among the chief concerns with power converters focused on EH technology, are 

the regulation capabilities of a harvesting system. Efforts have been mainly focused on 

maximum power extraction for storage/charging applications [150, 157, 158], and while 

there are a few solutions that offer voltage regulation [8, 42, 159], they still require 

external references and/or external inductors to implement. The proposed approach with 

the PMU implements the regulation block through a digital LDO, shown in Fig. 125, 

capable of adapting the pass-device through two main control means: a coarse tuning 

method that selects the pass-device array to maximize efficiency, and a fine tuning 

method to regulate the output voltage to the required reference.  
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The pass-device fragmentation (fine tuning) is a common practice and has shown 

positive results for sub-micron processes [79, 160], but for EH solutions the variability 

of the input sources power may limit delivered power to the output load. By utilizing the 

power density information from the main converter and DMPPT blocks a coarse tuning 

approach is implemented, which selects a pass-device array from a device bank, 

according to the available power from the EH source. Three main array banks were 

implemented which can handle 10s of μWs to 10s of mWs in power range to maximize 

efficiency by reducing switching losses inherent in larger device geometries. The digital 

LDO requires no additional external references or biases; it directly draws power from 

the 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node for all of the block’s needs. This allows for a fully autonomous 

operation from the digital LDO. The next section describes the design implementation in 

further detail.  
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Fig. 125. Digital LDO regulation scheme.  

 

Circuit block implementation 

The proposed PMU presents a dc energy harvester with the capability for full 

autonomous operation. The system has the potential of being deployed along with 

remote sensor nodes to enhance and extend battery lifetime of the device. The present 

section elaborates on the PMU block implementations.  

Startup block 

The startup block enables operation from voltages down to 350 mV, Fig. 126. 

The entire startup scheme is powered directly from the harvesting source’s open circuit 

voltage, and once the VCO starts, it drives a 4-phase non-overlapping clock for the 3X 
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charge pump. A dedicated counter sets a time limit on the startup by dividing the VCO 

startup switching frequency (fsw) by 2
22

 (fsw/2
22

). Operating at 350 mV, the startup VCO 

delivers a fsw of ~75 kHz, for a roughly 1 minute-long starting-up time. This ensures that 

the startup build up a high enough voltage for the main DC-DC converter for proper 

operation. The startup block ends up delivering ~650 mV for the main DC-DC 

converter, at the 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node.  

Once the main converter begins harvesting energy from the dc source, the startup 

circuit is disengaged and does not become operational again until the entire system is 

shut down and reset through complete power deprivation. A set timer of ~ 1 minute was 

set as variable conditions on EH sources may allow the system to operate under non-

optimal conditions, i.e. extreme low power availability. Although the startup block is set 

to a 1 minute hold period for the PMU to hand-off to the main converter, this can 

potentially be modified to a lower hold period through bypassing several clock dividers  

 

 

Fig. 126. Startup scheme clock generation and enable timer block.  
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depending on availability of power from the EH source. Furthermore, since the startup 

scheme is only operational during initial system settling it is a one-time operational 

block, and does not negatively impact the overall performance if a steady EH source is 

present.  

Digital maximum power point tracking 

In order to extract maximum power from the EH source a MPPT scheme must be 

set to guarantee this. Depending on the type of EH source, maximum power can be 

achieved through a resistive matching or/and through power detection algorithms [161, 

162]. Both schemes can be implemented in a variety of ways ranging in complexity and 

power consumption [8, 163, 164]. The DMPPT is implemented to assure the converter 

extract maximum power, Fig. 123 presents the components comprising the DMPPT: 

dynamic comparator, up/down counter, decoder, and DCO. Fig. 127 also shows the MPP 

acquisition block used to obtain the reference for the DMPPT, 𝑉𝑀𝑃𝑃 .  

The overall function of the DMPPT is to drive the 𝑉𝑖𝑛 node to match the 𝑉𝑀𝑃𝑃 

reference by increasing/decreasing the switching frequency of the main converter 

through the use of the up/down counter and decoder to set the switching frequency of the 

DCO. The 𝑉𝑀𝑃𝑃 reference sets the MPP for the EH sources and is divided into 3 

different operating modes: for thermoelectric generators (TEG), for solar cells (SC), and 

for microbial fuel cell (MFC) sources.  
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Fig. 127. Maximum power point acquisition scheme for difference dc EH sources a) thermoelectric 

generators, b) PV solar cells, c) Microbial fuel cells (MFCs), and d) the timing diagrams for both 

switching phases. 

 

Fig. 127 presents the 3 varying methods with which the 𝑉𝑀𝑃𝑃 for the needed EH 

source is achieved. Fig. 127a illustrates the manner in which harvesting efforts with 

TEGs the DMPPT samples the open circuit voltage and divides it by two using a 

capacitive voltage divider to set the maximum power point (MPP) condition for the 

PMU:  

 
𝑉𝑀𝑃𝑃  =  𝑉𝑂𝐶𝑉 (

𝑅𝑇𝐸𝐺

𝑅𝑇𝐸𝐺 + 𝑅𝑖𝑛
) =

𝑉𝑂𝐶𝑉

2
 

(96)  

Once the 𝑉𝑀𝑃𝑃 value is correctly obtained, the input voltage of the converter, 𝑉𝑖𝑛, 

is driven to match the MPP condition.  
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For the SCs, an additional capacitor, 𝐶𝑃𝑉, is placed next to 𝐶1 (Fig. 127b) to 

increase the effective value of 𝐶1 and set the maximum power condition to 70-80% of 

the open circuit voltage (OCV) (VMPP = 70-80% VOCV) [163, 164], approximate MPP 

condition for SCs. The capacitive divider approach, while not as accurate as other MPP 

algorithms, is a straightforward implementation and is lower in power consumption. This 

lends itself for small solar cell dimensions for which the MPP algorithm is accurate (no 

partial shading conditions). For the MFCs, a biomass power generation systems [165] 

(Fig. 127c), a resistor ratio is placed on 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 and the value of 𝑉𝑀𝑃𝑃 is set to OCV 

divided by two: 

 
𝑉𝑀𝑃𝑃  =  𝑉𝐶ℎ𝑎𝑟𝑔𝑒 (

𝑅𝑇𝑢𝑛𝑒

𝑅𝑋 + 𝑅𝑇𝑢𝑛𝑒
) =

𝑉𝑂𝐶𝑉

2
  

(97)  

The same method used by the TEG sources would not properly achieve MPP due 

to the internal parasitic capacitance of the source, requiring long times (Φ2 >> Φ1) of 

sampling to correctly reach OCV [165] (Fig. 127d), making both sampling capacitors 

and input capacitor connected at Vin prohibitively large. The clock periods shown in Fig. 

127d are set by a dedicated oscillator, 𝑓𝑐𝑜𝑚𝑝, free running at ~100 kHz, this sets the 

sampling times for 𝜙1 and 𝜙2 to 𝑇𝑐𝑜𝑚𝑝/10 and 𝑇𝑐𝑜𝑚𝑝 respectively. The low frequency 

sampling of the OCV voltage (~ 1μs), assures that the EH source is only briefly 

disconnected from the PMU and the sampled OCV voltage value is refreshed in the 

sampling capacitors.  

Once the reference, 𝑉𝑀𝑃𝑃, is correctly obtained, the dynamic comparator speeds 

up or slows down the DCO through an up/down counter with decoded thermometric 
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output to modulate the input resistance of the main converter to achieve maximum 

power transfer. The input resistance of the capacitive DC-DC converter is approximated 

as: 

 
𝑅𝑖𝑛 =

𝑉𝑖𝑛

𝐼𝑖𝑛
=

𝛼 𝐶𝑖 𝑓𝑠𝑤  𝑁 𝑅𝑐ℎ𝑎𝑟𝑔𝑒 + (𝑁 + 1) 𝐴𝑉  

𝛼 𝐶𝑖 𝑓𝑠𝑤  𝑁 (𝑁 + 1) 𝐴𝑉
 

(98)  

where the variables in 𝛼, 𝑅𝑐ℎ𝑎𝑟𝑔𝑒, 𝑁, 𝐶𝑖, 𝑓𝑠𝑤, and 𝐴𝑉 are the ratio of parasitic 

capacitance to stage capacitance, charging equivalent resistance (𝑉𝑐ℎ𝑎𝑟𝑔𝑒/𝐼𝑐ℎ𝑎𝑟𝑔𝑒) seen 

at 𝐶𝑐ℎ𝑎𝑟𝑔𝑒, number of stages, capacitance per stage, switching frequency of the 

converter, and the voltage gain for the charge pump given by: 

 

𝐴𝑉 = (𝑁 + 1) ∙ (
1

1 +
𝑁

𝐶𝑖 𝑓𝑠𝑤  𝑅𝐿𝑜𝑎𝑑

) 
(99)  

The expression (98) sets the limits for which input resistance can be varied 

through both number of stages in the converter, voltage gain, and switching frequency. 

For the main converter design, emphasis was placed on switching frequency as main 

control method to accurately achieve a wide range of MPPs. The FMS implements a 

DCO with wide operating range to correctly extract maximum power from most EH 

sources. The DCO provides rail to rail oscillation and uses a coarse (capacitive) and fine 

(resistor) tuning schemes to vary switching frequency through a CMOS inverter delay 

cell configuration, Fig. 128. A digital word of 8 bits (FF in hexadecimal) is used to tune 

both capacitor and resistor banks to achieve the correct value for 𝑓𝑠𝑤 at MPP. The 

capacitor bank unit cell value for 𝐶𝐷 is ~2 pF, and the resistor bank unit cell value for 
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𝑅𝐷 is ~ 10 kΩ. Careful attention is spent on layout efforts to minimize mismatch 

between resistor and capacitors within their respective bank values.  

Fig. 129 the varying switching frequency achieved with different DCO code 

values in hexadecimal format, XY h, with X values signifying the capacitor bank code, 

and Y the resistor bank code. The output of the DCO is then sent to the 4-phase non-

overlapping clock generator to later transmit to the main converter switches.  

 

 

Fig. 128. Digital controlled oscillator implementation for DMPPT. 

 

With the varying frequency and variable number of stages of the main converter, 

the input resistance, 𝑅𝑖𝑛, of the PMU can effectively be adapted to achieve the required 

input voltage condition (𝑉𝑖𝑛) to meet MPP (𝑉𝑖𝑛 = 𝑉𝑀𝑃𝑃).  Fig. 130a shows the range 

over which the 𝑅𝑖𝑛 of the PMU is tuned over switching frequency and charge pump 

number of stages to meet the MPP condition.  
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Notice how 𝑅𝑖𝑛 is inversely proportional to high values of 𝑓𝑠𝑤 and number of 

stages. This sets the limit over which the MPP condition can be met by the PMU; for 

high values of dc gain from the PMU (low input voltage EH source) more stages will be 

required to achieve the goal output voltage of 2 V, limiting the resistance range over 

which MPP can be met.  

 

 

Fig. 129. Digitally controlled oscillator frequency range and code word in hexadecimal format. 

 

For lower values of dc gain (high input voltage EH source), the number of stages 

can be decreased and the range over which the 𝑅𝑖𝑛 of the PMU can change increases at 

the cost of higher valued 𝑓𝑠𝑤 to meet lower resistance values. A second variable to 

consider is the output voltage value, 𝑉𝑐ℎ𝑎𝑟𝑔𝑒, Fig. 130b shows how output voltage values 

also affect 𝑅𝑖𝑛. Differences between 1 stage and 9 stage implementations show the 
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limitation of values for 𝑅𝑖𝑛 for which the PMU can achieve. All three variables, 𝑓𝑠𝑤, 

output voltage, and number of stages, must be considered when designing a MPPT 

scheme for a charge pump, these variables are the inherent limitation on the topology 

over which 𝑅𝑖𝑛 values can be accomplished.  

 

 

Fig. 130. Input resistance range capabilities for proposed PMU with a) varying charge pumps stages 

v. fsw and b) varying output voltages v. fsw. 

 

 

Fig. 131. Full schematic of 10X main converter with variable stage selection. 
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Main converter charge pump 

The main converter charge pump is comprised of 9 step-up stages to achieve the 

required output voltage at the output of the converter. The number of stages are not fixed 

and allow for increasing/decreasing depending on the voltage delivered by the EH 

source. Fig. 131 shows the full schematic of the step-up main converter. Each individual 

stage, +1 Step-up Stage, receives both its clock signals from the DCO and stage 

enabling/disabling signals from the Stage Control block.  

The switch design implemented a bootstrapped approach in order to minimize 

𝑅𝑜𝑛 values throughout the entire converter, where each stage is activated via the 𝑇1−8 

control bits. Both 𝜙1𝐴,𝐵 and 𝜙2𝐴,𝐵 (Fig. 131) are delivered from the 4-phase non-

overlapping clock generator. The bootstrapping effect through phase 𝜙2𝐴,𝐵 precharges 

the capacitor 𝐶𝑏𝑡 to the voltage stored in capacitors 𝐶𝑖, then during 𝜙1𝐴,𝐵 and additional 

potential is added to the bottom plate of 𝐶𝑏𝑡 of approximately 𝑉𝑐ℎ𝑎𝑟𝑔𝑒. This allows for 

the overdrive voltage across the switching transistors to remain constant throughout the 

entire step-up chain.  

As mentioned previously, the main converter has a variable stage control in order 

to reduce the number of stages 𝑇1−8  when high enough voltage is available from the 

harvesting sources. Stages can potentially be reduced to a minimum of one when the 

input voltage provided from the EH source is 1V. The Stage Control block is shown in 

Fig. 132 comprised of a CMOS reference, capacitive divider, comparator, counter, and 

decoder. The reference implemented is a CMOS subthreshold reference [166], powered 

directly from 𝑉𝐶ℎ𝑎𝑟𝑔𝑒 node delivering a voltage of approximately 200 mV with a power 
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consumption of ~7 μWs for 2 V at the 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node. The capacitive divider performs a 

series-parallel step-down operation, with the same clock phases used in the MPP 

acquisition block, to obtain the 𝑉𝐷𝑖𝑣/10 voltage (𝑉𝐷𝑖𝑣/10 = 𝑉𝑐ℎ𝑎𝑟𝑔𝑒/10); this voltage is 

used in the Stage Control loop to add or reduce stages in the main converter by 

triggering the comparator high or low, thus increasing or reducing the up/down counter. 

The counter output is then sent to the decoder block, which performs the 

enabling/disabling operation of the main converter (Fig. 124).  

 

 

Fig. 132. Stage control block with low power reference schematic. 

 

With each additional stage added to the main converter, efficiency decays. So the 

addition of more stages to the main converter comes at a price on overall system 

efficiency. From [167] the efficiency expression (5) shows the relationship between 

number of stages (N), switching frequency, (𝑓𝑠𝑤  ), ideal voltage gain (𝐴𝐼𝑑𝑒𝑎𝑙 = 𝑁 + 1), 

and ratio of stage and parasitic capacitances (𝛼):  
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𝜂 =

𝐴𝑉

(𝐴𝐼𝑑𝑒𝑎𝑙) + 𝛼 
𝑁2

(𝐴𝐼𝑑𝑒𝑎𝑙) − 𝐴𝑉
 
 

(100)  

From (100) each additional stage increase (N), increases the value of the second 

term in the denominator and reduces the overall efficiency of the system. As stated in 

[42], efficiency limitations on capacitive DC-DC converter are heavily driven by 𝛼 ratio 

inherent in the process. This shows the intrinsic limitations with any capacitive DC-DC 

converter and viability of implementation with each process.  

Digital low dropout regulator 

Regulation is among the key building block for any system which requires a 

regulated supply voltage to supply noise-sensitive blocks [168]. The implemented digital 

LDO allows for a regulated output voltage through an energy aware scheme which 

emphasizes overall efficiency by minimizing switching losses in the switched pass 

device. As previously mentioned in Section II, there are two main variables that allow 

for efficient regulation in the PMU: the power array selector loop, and the load feedback 

loop information.  

Since with any EH system power is limited to what is available from the source, 

so having a one-size fits all solution can limit the range of applications over which the 

system can be applied to. The implemented digital LDO takes power level information 

from the DMPPT block and Stage Control Block, Fig. 133, and selects the best suited 

PMOS pass device to deal with load demand, while minimizing power consumption 

required in driving the device.  
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The load feedback loop performs the required fine tuning of the pass device once 

the best suited array is selected. Each array is broken up into multiple individually driven 

pass devices which comprise the equivalent full pass device. It is this load feedback loop 

which performs the required control for load regulation.  

 

 

Fig. 133. LDO pass device array selector.  

 

Fig. 134 presents the digital LDO structure; comprised of a resistive divider, 

comparator, counter, decoder, and 3 banks of pass device arrays. The decision to 

implement a resistive divider for the LDO instead of a capacitive divider is due to the 

need for a steady and ripple-free supply. This produces a quiescent current being 

consumed (~80 nA), but allows the generation of the LDO voltage reference, 𝑉𝑟𝑒𝑓. 

TABLE 13 shows the combination, of both DCO code and number of stages from the 

main converter (N), which enable the LDO pass device arrays as well as the equivalent 

input power coming in from the EH source.  
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It should be noted that for high values of 𝑓𝑠𝑤, the number of stages are irrelevant 

due to the high detected power profile from the DMPPT (low 𝑅𝐼𝑁).  

The voltage regulation loop continuously compares the output voltage, 𝑉𝑜𝑢𝑡, with 

𝑉𝑟𝑒𝑓, depending on load current demand 𝑉𝑜𝑢𝑡 may exceed or go below 𝑉𝑟𝑒𝑓, this triggers 

the comparator high or low which in turn increases/decreases the 5-bit counter, leading 

to an increase or decrease in the number of individually driven  

 

 

Fig. 134. Digital LDO implementation.  

 

devices by the decoder. The digital LDO structure possesses a dedicated clock free 

running at ~ 1 MHz, 𝑓𝐿𝐷𝑂. Each array is divided up into 32 separate transistor fingers 

which are individually enabled through a load feedback loop.   
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Where 

 
𝑉𝑟𝑒𝑓 =

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 𝑅𝐵2

𝑅𝐵2 + 𝑅𝐵1
 

(101)  

Thus; 

 
𝑉𝑜𝑢𝑡 =

𝑉𝑐ℎ𝑎𝑟𝑔𝑒

1 +
𝑅𝐵1

𝑅𝐵2

 
(102)  

 

 
TABLE 13. Power detection logic parameters for LDO array selector.  

POWER 

SPECIFICATION 

DCO CODE 

NUMBER OF STAGES 

(MAIN CONVERTER) 

INPUT POWER LEVEL 

High Power Array 0H-FH ALL STAGES From 250 μW to 2 mW 

Mid Power Array 

30H-3FH 

10H-1FH 

3-5 STAGES From 50 μW to 249 μW 

Low Power Array 

F0H-FFH 

70H-7FH 

6-9 STAGES From 12 μW to 49 μW 

 

As with any regulator, efficiency is crucial in the design of the PMU. This 

becomes even more so in EH systems. Due to the switching nature of the digital LDO, 

efficiency calculations were performed to set the ideal size for the pass device of the 

regulator, for the power levels expected at the input of the PMU. Fig. 134 shows the 

equivalent model of the digital LDO.  
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As shown in (2), each transistor array is sized to handle a particular power 

domain (Low, Mid, and High), that is available from the EH source.  

 𝑊

𝐿 𝐴𝑟𝑟𝑎𝑦
=

2𝐼𝑙𝑜𝑎𝑑

𝑉𝑑𝑟𝑜𝑝𝐾𝑝(𝑉𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑉𝑡)
    

(103)  

Following the power ranges from TABLE 13, transistor array sizes were 

determined to maintain the 200 mV drop (𝑉𝑑𝑟𝑜𝑝) and expected load current for said 

power domain. Finally the arrays were divided up into the 32 segments for each array to 

be individually controlled by a 5 bit decoder.  The sizing allows a reduction in switching 

losses associated with the transistor capacitances, thus improving efficiency for a power 

limited system without the need of a more complex digital controller.   

Measurement results 

The PMU was design and implemented in 180 nm CMOS process. Fig. 135 

shows the prototype converter PCB and die photo. The PCB dimensions are 3cm x 3cm, 

and die has 2 mm x 2mm dimensions. The PMU works for input voltages (once startup 

sequence has run its course) ranging from 250 mV to 1.1 V for the main converter. The 

storage capacitor 𝐶𝑐ℎ𝑎𝑟𝑔𝑒, was set at 1 mF, and output capacitor (output of digital LDO) 

set at 10 μF. The external capacitors used for MPP acquisition are set at 100 pF, 100 pF 

and 33 nF for 𝐶1, 𝐶2, and 𝐶𝑃𝑉 respectively. The capacitive divider for the Stage Control 

block was performed with 10 μF external capacitors. Finally, the resistive divider for the 

digital LDO control loop was implemented with 2 external resistors of 2.2 MΩ and 22 

MΩ to set the reference. 𝑉𝑅𝐸𝐹, at 1.8 V. 

 



 

218 

 

 

Fig. 135. a) Die microphotograph and b) PCB footprint comparison to US quarter.  

 

 

Fig. 136. Startup scheme with handoff operation to main converter. 

 

Startup scheme 

Fig. 136 shows the startup operation as well as the handoff to the main converter. 

The input voltage is set to 350 mV, which deliver ~650 mV at 𝑉𝑐ℎ𝑎𝑟𝑔𝑒. The main DCO 

operating frequency is also shown and how it begins operating only once handoff has 

occurred. The 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 node increases from 650 mV at startup to 2 V after handoff. Stage 
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control is also shown in Fig. 136, highlighting the stage decrease to meet the required 

output voltage, no load conditions were set for this test.  

Digital maximum power point tracking 

Multiple tests were performed on the PMU to surmise MPPT efficiency with the 

different EH sources. Fig. 137 shows the MPPT efficiency of the presented PMU. As 

expected, the OCV method proves reliable for both MFC and TEG sources, with >95 % 

tracking efficiency for input powers < 100 μWs. The error at higher input powers 

translates to lower internal resistances from the MFC and TEG sources; hence, higher 

switching frequencies are required from the DCO. As can be seen from Fig. 137, the 

resolution for switching frequencies is diminished at higher frequencies, causing the 

error in MPPT tracking efficiency.  

The results for the SC source show a lower MPPT efficiency, maximum at 87%; 

this is due to the nonlinear nature of the SC source, and the implementation of the OCV 

method. Although the MPPT efficiency is lower than previously reported literature, the 

overall control power consumption + capacitive divider is minimal when compared 

(~580 nW) to other reported works [159, 169].   
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Fig. 137. Digital maximum power point tracking efficiency for MFC, TEG, and PV solar cells.  

 

 

 

 

Fig. 138. Digital low-dropout regulator load regulation test for 1.75 mW of input power and a 900 

μA step load current.  
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Voltage regulation (digital LDO) 

Fig. 138 shows the load test response of the system for a step of ~900 μA.  

Output voltage (𝑉𝑜𝑢𝑡) is regulated at 1.8 V from the 2 V stored at 𝑉𝑐ℎ𝑎𝑟𝑔𝑒. A maximum 

voltage overshoot of 55 mV can be seen, with a settling time of ~ 1 ms for both step 

cases.   

Wireless sensor node temperature sensor testing 

Additional tests of the PMU powering a wireless sensor were also performed to 

showcase the PMU’s power delivering capabilities. The PMU was powered by Laird 

Technologies thermoelectric module, showing a 550 mV OCV and equivalent internal 

resistance of ~10 Ω (𝑃𝑖𝑛 = 30 𝑚𝑊).  

 

 

 

Fig. 139. Internet of Things (IoT) testing configuration A) illustration of power management unit 

with temperature sensor and B) unfolded implementation for IoT configuration with thermoelectric 

generator unit. 
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Fig. 140. Wireless sensor node testing voltage profile A) with 1F supercapacitor at Cstore and B) 

temperature sensor transmitted results. 

 

A 1 F supercapacitor was placed as 𝐶𝑠𝑡𝑜𝑟𝑒 for the testing procedures, and the 

wireless sensor used was a Monnit Wireless Temperature Sensor [170]. Fig. 139A shows 

an illustration of the implemented PMU with sensor node, and Fig. 139B shows the 

implemented sensor with PMU in an unfolded configuration as well as the utilized TEG 

unit. 

The sensor was powered with an operating voltage of ~2 V at 𝑉𝑐ℎ𝑎𝑟𝑔𝑒 (900 MHz 

operating frequency for wireless transmission). Power of 85 mW is consumed during 

each sense and transmit event. Fig. 140 shows A) the voltage charging profile at 𝑉𝑐ℎ𝑎𝑟𝑔𝑒, 

as well as the input voltage through the startup, MPPT, and 2 V output voltage setting; 

B) shows the registered temperature transmitted by the sensor.  
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Power consumption and efficiency 

Fig. 141 breaks down the power consumed by both 500 kHz and 5 MHz 𝑓𝑠𝑤. 

Power consumption will automatically set depending on the power availability at the 

input MFC source, i.e. higher input power requires higher 𝑓𝑠𝑤 to decrease 𝑅𝑖𝑛 and 

increase input extracted current, while lower input power requires lower 𝑓𝑠𝑤 to increase 

𝑅𝑖𝑛 and decrease input extracted current.   

 

 

Fig. 141. Power consumption by block for PMU at a) 500 kHz fsw and b) 5 MHz fsw. 

 

Maximum end-to-end efficiency was measured to be at 57 % with 1.75 mW of 

input power, Fig. 142 shows efficiency results for different input power profiles. 

Minimal bias current is consumed from the system (from reference for Stage Control and 

resistive divider in LDO) and the presented design is capable of delivering both MPP 

tracking and output voltage regulation with minimal power consumption. TABLE 14 

summarizes results and compares to previously reported solutions. 
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Fig. 142. End-to-end efficiency for 9 stage enabled (10X gain) main converter and digital LDO. 
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TABLE 14. Performance summary 

SPECIFICATION [150] [42] [171] THIS WORK 

Input Voltage 

Range  
350 mV– 480 mV 1 V – 5 V 320 mV – 600 mV 

250 mV – 1.1 V  

(for main converter) 

Output Voltage 1.4 V (regulated) 
2 V (un-regulated) 

1.508 V (regulated) 

2.04 V – 3.7 V  

(un-regulated) 

2 V (un-regulated) 

1.8 V (regulated) 

Power 

Consumption 
3 µW (Quiescent only) 

2.11 μW (Controller only 

Driver power not included) 

Not reported (startup scheme 

only) 

1.18 μW controller @ 500 kHz 𝑓𝑠𝑤 

11 μW with driver power consumption @ 

500 kHz 𝑓𝑠𝑤 

Startup 

270 mV (unregulated output 

voltage)  

400 mV (regulated output 

voltage) 

- 320 mV  
350 mV  

(regulated output voltage)  

MPPT No Yes No Yes 

Autonomous Yes No Yes Yes 

Impedance 

Matching Range 
NA 100 kΩ NA 

>300 kΩ to <10 Ω 

 (discrete steps) 

Regulation No Yes (external reference) No Yes @ 1.8 V 

Input Source 
Solar Cell/ Thermoelectric 

generator (TEG) 
TEG 

Microbial Fuel Cells 

(MFC)/TEG/Solar Cells 
MFC/TEG/Solar Cells 

Max. Efficiency 
65%  

(for 4 stage CP) 

82%  

(For 1 stage charge pump) 

89% (capacitive load, no 

current demand) 

90% w/o regulation  

(1 Stage for Charge Pump) 

81% w/D-LDO  

(1 Stage for Charge Pump) 

Technology 0.13 μm 0.35 μm 0.18 μm 0.18 μm 
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Conclusions 

This chapter presents a PMU able to perform startup operation, maximum power 

extraction for DC type EH sources (solar, thermal, biomass), and deliver a regulated 

output voltage through a digital LDO regulator, presenting a solution to the regulation 

and maximum power extraction dilemma present in current PMU solutions aimed at EH 

sources. The PMU operates in a complete autonomous fashion, with charging/regulation 

capabilities with minimum power consumption, and allows operation from voltages as 

low as 350 mV through the startup block. Maximum power extraction is performed 

through a fully digital MPPT scheme, allowing for minimal quiescent consumption with 

minimum power overhead cost. Information about the source-power density availability 

from the DMPPT and number of stages implemented from the Stage Control is passed 

on to the digital LDO, which uses this information to increase or decrease the pass 

transistor size. This allows for an overall power consumption decrease by reducing the 

gate driving losses associated with large pass transistor devices and enhance efficiency 

while delivering a regulated voltage to noise sensitive blocks. The PMU possesses the 

capability of internal reference generation through capacitive, and resistive dividers, as 

well as an internal voltage reference allowing for true autonomous operation. The system 

was fabricated in 180 nm CMOS process and maximum end-to-end efficiency was 

measured to be at 57 % with 1.75 mW of input power 
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CHAPTER VIII  

SUMMARY AND FUTURE WORK  

The design and implementation of inductive, capacitive and linear regulators for 

energy harvesting technology has been presented. Solutions for thermoelectric 

generators, microbial fuel cells, and photovoltaic energy harvesting sources have been 

fabricated and tested. 

Chapter III showed a solution for a thermoelectric generator array intended for 

medical applications. The implemented inductive switching regulator is capable of 

achieving maximum power transfer through a frequency modulation tracking loop, while 

maintaining high efficiency through a Pseudo-Zero Current Switching scheme. Results 

obtained show comparable to state-of-the-art solutions with a wider matching range by 

the presented regulator.   

Chapter IV showed a solution for microbial fuel cells through a self-powered, 

inductive switching regulator. A new maximum power point tracking scheme was 

implemented in order to manage the internal parasitic capacitance of the fuel cell and 

correctly achieve matching between the fuel cell and regulator. A true Zero Current 

Switching scheme is also implemented to enhance overall efficiency of the solution by 

over 40% compared to the results obtained from the proposed PMU in chapter III.  

Chapter V presents a capacitive switching regulator capable of handling arrays of 

microbial fuel cells or thermoelectric generators. The regulator utilizes a frequency 

modulation control in order to match the internal impedance of the fuel cells with its 

own internal impedance to ensure maximum power transfer. The regulator also 
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possesses a programmable stage control to allow for a level of output voltage regulation 

while maintaining minimum power consumption. Overall results show comparable 

results to state-of-the-art solutions, with improved matching and power extraction 

dynamics.  

Finally, chapter VI presents a fully autonomous, capacitive switching regulator 

with a digital Low Dropout regulator for a full power management unit aimed at Internet 

of Things applications. The capacitive regulator is capable of performing maximum 

power transfer from any DC type energy harvesting sources. The power management 

unit also performs a start-up operation without the need of additional power from 

batteries or charged capacitors. Regulation is performed by communication between the 

main regulator and dropout regulator in order to enhance pass device size, thus 

improving power efficiency.  

The common denominator is the need for further research into simultaneous 

multiple input energy harvesting regulators can be potentially explored to present a truly 

stand-alone solution capable of dealing with multiple availability conditions of the 

energy harvesting transducers. This multiple source harvesting implementation is 

recommended if energy harvesting is to be adopted by mainstream applications.  
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APPENDIX 

 

 

Fig. 143. 9 stage I-DCDC converter with associated capacitor voltages. 

 

Small-signal control-to-input transfer function 

The following appendix will demonstrate how the small-signal used in the MPPT 

control loop was obtained. 

The transfer function is obtained by solving for the time domain transient 

response in both charging and discharging phases (Fig. 143). Once the time domain 

behavior equations are acquired, an averaged value solution follows: 

 
𝐶𝑀𝐹𝐶 ∙

𝑑Vin

𝑑𝑡
= (𝐴𝑀𝐹𝐶𝛷1) (Ton (Fsw))

+ (𝐴𝑀𝐹𝐶𝛷2)(Toff(Fsw)) 

(104)  

 

 
𝐶𝑖 ∙

𝑑Vi

𝑑𝑡
= (𝐴𝐶𝑖𝜙1) + 𝐴𝐶𝑖+1𝜙1)(Ton (Fsw))

+ (𝐴𝐶𝑖𝜙2 + 𝐴𝐶𝑖+1𝜙2)(Toff(Fsw)) 

(105)  
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where AMFCΦ1, AMFCΦ2, (ACiϕ1) + (ACi+1ϕ1), and (ACiϕ2) + (ACi+1ϕ2) are the 

associated time capacitor charging currents referred to each particular stage capacitor, 

the term Ton and Toff is the on and off time for each phase (50% of the period for charge-

discharge phases), and Fsw is the steady stage value of the switching frequency. 

 
𝐶𝑀𝐹𝐶 ∙

𝑑(Vin + 𝑣𝑖𝑛)

𝑑𝑡

= (𝐴𝑀𝐹𝐶𝛷1 + 𝑎𝑀𝐹𝐶𝛷1) (Ton (Fsw + 𝑓𝑠𝑤))

+ (𝐴𝑀𝐹𝐶𝛷2 + 𝑎𝑀𝐹𝐶𝛷2)(Toff(Fsw + 𝑓𝑠𝑤)) 

(106)  

 

 
𝐶𝑖 ∙

𝑑(Vi + 𝑣𝑖)

𝑑𝑡
= ((𝐴𝐶𝑖𝜙1 + 𝑎𝐶𝑖𝜙1) + (𝐴𝐶𝑖+1𝜙1

+ 𝑎𝐶𝑖+1𝜙1))(Ton (Fsw + 𝑓𝑠𝑤))

+ ((𝐴𝐶𝑖𝜙2 + 𝑎𝐶𝑖𝜙2) + (𝐴𝐶𝑖+1𝜙2

+ 𝑎𝐶𝑖+1𝜙2))(Toff(Fsw + 𝑓𝑠𝑤)) 

(107)  

 

As shown in Chapter II, a small signal perturbation is introduced to obtain the 

control to input transfer function. Once second order terms (non-linear) and DC terms 

(no perturbation) are discarded, the linearized (steady-state) transfer function is obtained.  

where 𝑎𝑀𝐹𝐶𝛷1, 𝑎𝑀𝐹𝐶𝛷2, 𝑎𝐶𝑖𝜙1 + 𝑎𝐶𝑖+1𝜙1, and 𝑎𝐶𝑖𝜙2 + 𝑎𝐶𝑖+1𝜙2  are the small signal 

perturbation induced to each particular stage capacitor and 𝑓𝑠𝑤 the small signal 

perturbation of the switching frequency. For the following design the postulation is made 

that the output node (𝑉𝑜𝑢𝑡) is under light load with a large valued output capacitor (100 
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mF) causing AC ground at this node [112]. This greatly simplifies analysis and the 

acquisition of the C-to-I transfer function. 

Stability analysis for MPPT loop 

The following appendix section will illustrate how the stability of the MPPT 

affects correct MPP attainment. The stability parameters for the complete MPPT are 

enhanced through the implementation of the Type II filter. Fig. 2 below shows the open 

loop bode plots for both MFC-H and MFC-L input, with GBP is increased to 74 kHz and 

47° phase margin for MFC-H (MFC-HOpt), and for MFC-L, the GBP and phase margin 

are 150 Hz with 87° of improvement (MFC-LOpt).   

 

 

Fig. 144. Open loop gain and phase margin with optimized filter design. 
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By not optimizing loop stability parameters in the full MPPT open loop, 

whenever a switch between sources occurs, a faulty MPP will occur. The simulation in 

Fig. 145 shows this behavior when implementing a 1 nF capacitor as the filter, F(s), for 

the MPPT control loop.  

 

 

Fig. 145. Effect of stability in MPPT when switching between MFCs (MFC-H to MFC-L) and 

unstable response. 

 

 




