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ABSTRACT 

Alternative resources play a vital role for water-sensitive infrastructures where 

consistent water supply is a challenge, and freshwater resources are limited. Greywater 

and A/C condensate are potentially new alternatives for increasing urban water supply.  

An advanced physical filtration system for greywater treatment was developed named as 

GAC-MI-ME. It is comprised coarse filtration (CR-F) followed by microfiltration (MF), 

granular activated carbon (GAC), ultrafiltration (UF), ultraviolet (UV), and reverse-

osmosis (RO). GAC-MI-ME effluent-quality was analyzed for greywater from laundry, 

shower, and wash basin. High-grade effluent equivalent to unrestricted water reuse was 

observed at UF and RO units. A subsequent tool (GREY-ANN) was proposed for GAC-

MI-ME effluent quality predictions. Artificial Neural Network (ANN) was applied to 

develop 5 unit models for selected parameters including Biochemical Oxidation 

Demand, pH, Total Dissolved Solids, Turbidity, and Oxidation-Reduction Potential to 

predict effluent quality at each stage of GAC-ME-MI treatment using water quality 

databases (developed from a series of experiments testing greywater of varying 

strength). The 15 days storage potential of GAC-MI-ME treated effluents were also 

analyzed and showed no significant quality depletion in UF and RO effluent quality.   

A hybrid modeling approach was applied to A/C condensate estimation, which 

included a psychrometric based “Air-Conditioner-Condensate” (ACON) model, and 

data-driven “Internal Load Analysis using Neural Network” (ILAN) model. The ACON 

model uses mass and energy balance approach for HVAC systems operating under 

steady state conditions.  It accounts for psychometric states of different air parcels 
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during the cooling and dehumidification process. The ILAN model was developed using 

ANN for the city of Doha to predict Internal Load at a daily time step for variable 

climatic conditions (temperature, relative humidity). The ACON- ILAN models were 

validated for a test building and applied for yearly condensate estimation for Doha.   The 

virtual simulations of the hybrid model showed an annual condensate volume of 1370 

and 3700 l/100 m3 of cooling space for 20% and 100% outdoor-ventilation. The 

condensate quality (for limited water quality parameters) showed values within primary 

and secondary drinking water standards, except for copper, which had marginally higher 

concentrations. Overall, the GREY-ANN and ACON-ILAN may improve greywater and 

A/C condensate reuse potentials. 
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R Specific Gas Constant, 
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RH Relative Humidity Of Air, % 
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SD Standard Deviation 

SHR Sensible Heat Ratio 

SS       Suspended Solids 

SV Conditioned Space Volume, m3 

SW:      Shower Water  

T Dry Bulb Temperature, °C 

TC       Total Coliform 

TCEQ Texas Commission on Environmental Quality 

Tdew Dew Point Temperature. °C 

TDNN     Time Delayed Neural Network   

TDS      Total Dissolved Solids 

TKN Total Kjeldahl Nitrogen 

TLC      Tank Level Controllers   

TLRN     Time Lag Recurrent Network 

TN       Total Nitrogen 

TOC      Total Organic Carbon  

TSS Total Suspended Solids 

TX Texas 

UD Undetectable 

UF Ultrafiltration 
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UNDP United Nation Development Program 

UASB     Upflow Anaerobic Sludge Blanket  

UV Ultra Violet 

V Volume of air, m3 

VBA Visual basic for applications 

VFRB     Vertical Flow Reed Bed 

W Humidity ratio  

Wb Wet Bulb 

WB      Wash-Basin water  

WHO      World Health Organization  

WWTP     Waste Water Treatment Plant  

XOC Xenobiotic Organic Compounds 

Γ Specific volume of air, m3/Kg 

ƞ Volumetric air ratio 

Η Fraction of outside air 

Ώ Volumetric exchange rate, SV/hr 

Ф Relative humidity of air, % 

 

Mixed air supply coefficient, m3/ m3 

 

SUBSCRIPT 

Out Outside air parcel 

In Conditioned space air parcel 
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1    INTRODUCTION 

A 21st-century “paradigm shift” of water demand-supply management considers 

alternative resources as an integral part of it (Gleick et al., 2000). Resource identification 

and evaluation become crucial aspects of decision making while the supply-demand ratio 

is volatile (Okeola et al., 2012).  From an integrated water management perspective, 

more emphasis is given in this study towards exploring new alternatives, which can 

sustainably meet the needs of growing water demand (Vörösmarty et al., 2000).  An 

efficient integrated water management tool aids decision making based on an availability 

of resources by its evaluation and optimal distribution for a particular need and, thereby, 

meeting material, cost, energy, and environmental sustainability (Makropoulos et al., 

2008). 

1.1 Overview 

Alternative resources play a vital role for water-sensitive infrastructures where 

consistent water supply is a challenge and freshwater resources are limited (Lazarova et 

al., 2001). The depletion of fresh water resources keep continuing as the demands for 

irrigation, industrial and municipal water are escalating. The problem gets more complex 

in urban regions, where lucrative economies and high population growth together 

compel for more water demand (Vörösmarty et al., 2000). The limited water availability 

and increasing population pose a threat of a substantial decrease in per capita water 

availability in the near future (Pimentel et al., 2004). 

This study focuses on evaluating the emerging alternative resources, including 

greywater and A/C condensate, regarding their variability in quality and quantity, 
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particularly for urban settings. To address these uncertainties and variabilities in the 

alternative water systems, progressive approaches are needed to improve water use 

potential for greywater and A/C condensate as an integrated solution for increasing 

urban water supply. In this study, the overall goal is to provide micro-tools for 

enhancing greywater and A/C condensate as potential parts of integrated water 

management, with the primary intent of promoting alternative resources and saving the 

pristine water resources.  

1.2 Greywater 

The importance of greywater is in its volume, which directly depends on the 

quantity of domestic water usage. Variability in greywater characteristics is one of the 

challenges for greywater application, primarily because of public health and 

environmental impacts (Gross et al., 2005). It shows a wide range of contamination 

depending on source, residents’ habits, and regional/social trends and different water 

uses (Eriksson et al., 2009).  

 A number of treatment technologies (mostly biological or a combination of 

biological, physical, and chemical) are applied in greywater treatment (Li et al., 2009). 

These treatments are mostly similar to domestic wastewater treatment. With the 

variability in greywater characteristics, a generalized treatment method addressing 

greywater might not be appropriate, which needs to be identified regarding influent 

variability as well as its treatment reliability (Jefferson et al., 2004). Greywater needs an 

improvement in the existing treatment system with multi-grade effluent potential as well 
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as meeting the water reuse regulations. Influent/effluent variability needs to be addressed 

to improve the robustness of a treatment system.  

This study is focused on greywater-characterization, treatment-system 

development for multi-grade effluent, treatment- performance evaluations, and a 

corresponding model development to virtually predict effluent quality with the influent 

variability using Artificial Neural Network (ANN). 

1.3 A/C condensate 

In parallel, the emerging concept of A/C condensate has substantial potential to 

turn the conventionally-drained condensate into a water resource in hot and humid 

climates (Painter et al., 2009).  Although Heating Ventilation and Air Conditioning 

(HVAC) systems are primarily designed to meet human comfort and indoor air quality, 

the condensate is a result of the cooling and dehumidification process and has lately 

drawn attention due to increasing water scarcity issues (Guz et al., 2005). The A/C 

condensate may offset high-grade water uses (Guz et al., 2005). Condensate volume is 

an important parameter for water demand-supply management practices if condensate 

recovery is considered for water supply supplement. However, the condensate 

volumetric potential is dependent on the thermo-hygrometric data for outdoor and indoor 

design conditions (temperature, relative humidity), aside from factors influencing heat 

and moisture gain in the system through the building envelope, or human occupancy, or 

unknown infiltrations. In this scenario, considering the non-linearity in the cooling and 

humidification process with high uncertainties in the load gain information, condensate 

volume determination at sub-daily time steps is a very complex task. 
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A hybrid-modeling approach, which included a psychrometric based “Air-

Conditioner-Condensate” (ACON) model, and data-driven “Internal Load Analysis 

using Neural Network” (ILAN) model were proposed in this study for condensate 

estimation, unlike the current empirical approaches (Bryant et al., 2008; Guz et al., 

2005). Time-step condensate estimation was achieved considering the seasonal and 

operational variability.  

1.4 Research outline 

The thesis is presented in seven Sections. Section 1 is an introduction and 

statement of the problem, and corresponding conclusions and recommendations are in 

Section 7. Sections 2 to 6 are described below.  

 The Section 2 provides an overview of drivers and barriers for alternative water 

resources. It determines the factors affecting current water usage and future trends. Each 

alternative resource is discussed, addressing its quantity, quality, and current adoption 

and impact on the ecosystem. It also discusses the potential reform in the present trends 

of improving alternative resources as part of an integrated water system.  Overall, it 

provides a rationale for use of alternative water resources   for mitigating the problem of 

increasing water scarcity, especially in urban areas.  

The Section 3 emphasizes the flaws of current greywater treatment systems, 

addressing biological and chemical treatments, and provides a rationale for physical 

treatment using UV and RO with coarse filtration, carbon filtration and micro filltration 

treatments as a greywater treatment system. It also presents a preliminary evaluation of 

in-house portable greywater treatment systems for water reuse in urban areas. The 
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system can be described as the Granular Activated Carbon-Membrane Integrated-Multi-

grade Effluent (GAC-MI-ME) treatment. The Section also presents the preliminary 

results of greywater treated though GAC-MI-ME and outlines the treatment performance 

for each of the water quality parameters. 

In the Section 4, a comprehensive analysis of greywater, treatment, and 

subsequent modeling, is presented and a potential decision making tool (GREY-ANN) is 

developed for improving greywater utilization by considering multi-grade effluent 

through an advanced physical filtration system and predicting its quality using Artificial 

Neural Network (ANN). Section 4 also shows the impact of storage time over treated 

and untreated greywater for 15 consecutive days. The data were analyzed for each stage 

of treatment to determine potential storage implications. The parameters used for the 

analysis are BOD, pH, ORP, TDS and turbidity 

Section 5 presents the development of an A/C condensate estimation tool (ACON 

Model) based on psychrometric computations. Two concepts were proposed in this 

Section: 1) Total cooling load categorized as Ventilation Load, and cooling load other 

than ventilation defined as Internal Load; and 2)  Cooling Load Index (ratio of coil-

induced volume to the total supply volume) to determine the intensity of HVAC 

operation with load variability. The ACON model uses an energy-mass balance 

approach for HVAC systems operating under steady state conditions.  It accounts for 

psychometric states of different air parcels during the cooling and dehumidification 

process, and determines the Binary Operational Coefficient and Cooling Load Index 

(ventilation and internal) for condensation at hourly/daily time steps  using thermo-
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hygrometric data and HVAC controls (outdoor ventilation, room volume air exchange 

rate, cooling coil temperature and its bypass factor). The model determines the 

Ventilation Load and uses Internal Load as input. 

In the Section 6, data-driven Internal Load Analysis Using Neural-Network 

ILAN model was developed. A hybrid modeling approach, using psychrometric-based 

ACON, and ILAN, was applied semi-empirically for condensate volume estimation for 

the city of Doha. The ILAN model was developed using ANN for the city of Doha 

(Qatar) to predict Internal Load at a daily time step for variable climatic conditions 

(temperature, relative humidity). The input-output database for ILAN include; 1) 

temperature, 2) relative humidity, 3) air enthalpy for outdoor and indoor condition and 4) 

Ventilation Load Index at 20 % as an independent parameter and 5) Internal Load Index 

as desired output. The ACON- ILAN models were validated for a test building with 

satisfactory model performance indicators and applied for yearly condensate estimation 

for Doha City.    
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 ALTERNATIVE URBAN WATER RESOURCES: A REVIEW TO 21ST 

CENTURY URBAN WATER MANAGEMENT SOLUTIONS 

2.1 Introduction 

Freshwater scarcity with degrading water quality and growing water demand are 

critical concerns for future water availability.  The municipal and industrial sectors are 

becoming more water demand intensive with improved economies, demographic 

migrations, and changing lifestyles (UN, 2014).  In these conditions, conventional water 

supply systems, along with contemporary water management strategies, cannot meet 

future water demand.  Improving water infrastructure may not help to completely 

subside the problem of increasing water stress (Gleick et al., 2000).  Alternatively, 

management strategies are shifting either towards exploring new resources or on 

conserving existing resources by maximizing water utility.  

Alternative water resources imply new resource exploration rather than making 

structural changes in conserving, storing, or diverting existing water resources (Greenlee 

et al., 2009). The primary alternative water resources include 1) rainwater harvesting; 2) 

wastewater reuse; and 3) desalination of brackish groundwater or seawater, depending 

on the feasibility. Other emerging alternative water resources include air conditioning 

(A/C) condensate and greywater, which together can substantially offset the urban water 

demand, especially in water deficient zones (Loveless et al., 2013; Madungwe et al., 

2007). 
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2.2 Drivers of alternative water sources   

The major drivers for the use of alternative water resources include: 1) uneven 

distribution of freshwater: 2) growing population; 3) increasing urbanization; and 4) 

anthropogenic factors impacting water quality and quantity (Scanlon et al., 2007).  

 

  

Figure 2.1 Global water availability worldwide (Adapted from Shiklomanov et al., 2000) 
 

 

Freshwater availability is unevenly distributed over the globe (Al-Weshah et al., 

2003). The world’s annual, average, and available renewable freshwater accounts for 

42,780 k m3/year (Shiklomanov et al., 2000).  The majority of surface runoff (40%) is 

limited to water-rich countries, including India, Canada, and the United States (US). At 

the same time, some regions like “Arabian Peninsula, southern Europe, northern Africa, 
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Australia, and some parts of the southwestern United States”, suffer from acute water 

scarcity (Shiklomanov et al., 1998). Global freshwater availability for different regions 

of the world is shown in Figure 2.1.  

 

 

Figure 2.2 Increasing water stress with growing population and declining freshwater 

resources in between 1985-2025 (adapted from Vorosmarty et al., 2000) 

 

Rapidly growing population is another major cause of water stress (Vorosmarty 

et al., 2000).  Figure 2.2 shows the current and predicted sustainable freshwater 

resources and growing population between the years 1985 to 2025.  It clearly shows a 

global population increase of 65 % between years 1985 to 2025, with declining water 

resource of about 5.6 % for the same period. Developing countries will be the worst 
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affected. Primary possible reasons for this could be less awareness of the problem and 

lack actions plans. 

Anthropogenic factors are a major cause of water quality degradation of existing 

resources beyond the capability of natural resurrection by either point or non-point 

source pollution (Peters et al., 2000). Industrial effluent, domestic sewage with/without 

treatment, agricultural and urban drainage with high levels of pesticides and fertilizers, 

underground pipe leaking, mining and mineral exploration, and many more 

anthropogenic activities have adversely affected the physical, chemical, and microbial 

characteristics of surface and sub-surface water quality (Vitousek et al., 1997).  These 

factors result in ecological imbalances, changes in hydrological regimes, and overall 

global climate change (Arnell et al., 1999). 

The 21st-century water demand situation is also changing concerning the type of 

water use. In the current trend, agriculture accounts for a maximum water use of 66 %, 

followed by industrial water use for 20 %, and merely 7 % for municipal water supply 

(Duarte et al., 2014). However, the distribution of water use is changing with time, and 

the projected water demand for 2025 compared to 1995 is shown in Figure 2.3. It shows 

a marginal increase in irrigation water demand, whereas the trend for urban water 

demand (municipal and industrial) is escalating, particularly in developing countries.  

The non-irrigational water demand is expected to grow by 62% as compared to only 9% 

for irrigation by the year 2025 compared to 1995 (Rosegrant et al., 2002).   
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Figure 2.3  Increasing water stress with growing population and declining freshwater 

resources in between 1995-2025. (Adapted from Rosegrant et al., 2002) 

 

The problem is more complex in urban regions where lucrative economies and 

high population growth together increase water demand (Cohen et al., 2006).   Also, 

most new cities in the developing world will adopt a centralized water supply system, 

which also accounts for higher water consumption (Shiklomanov et al., 2000). For the 

above-mentioned reasons, the environmental sustainability concept of alternative water 

resources is becoming increasingly important in urban areas lacking freshwater supply 

(Lawrence et al., 2003). 
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2.3 Primary alternative water resources and their limitations 

2.3.1 Desalination 

Desalination is the most widely applied alternative water resource in those 

regions lacking freshwater supply, which are either surrounded by seawater or prevalent 

brackish groundwater (Einav et al., 2003).  Approximately 24.5 million m3/day water is 

produced worldwide using seawater desalination (Lattemann et al., 2008) and is mostly 

used for augmenting urban water demand. Fifty % of water desalination occurs in the 

Gulf Cooperation Council (GCC) States, followed by North and South America, Europe, 

other Asian countries, and Africa, as shown in Figure 2.4 (Tsiourtis et al., 2001).  

 

 

 

Figure 2.4 Global use of desalinized water adopted from (adapted from Tsiourtis et al., 

2001) 
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Tsiourtis et al., (2001) also note that although desalination produces high-quality potable 

water, it is energy and capital intensive at the same time. With increasing water demand, 

the expanding desalination plants are a primary concern. According to the United 

Nations Development Program (UNDP, 2009), in Qatar, desalinated water increased 

three-fold between the years 1995 and 2008 but per capita water availability decreased 

during the same time-span, which shows that the increasing water demand cannot be 

merely met by expanding desalination plants. 

Adverse environmental impacts of desalination are primary limitations in its 

further expansion, other than the associated capital cost of energy demand. The impacts 

include soil, water, air, and noise pollution (Einav et al., 2003).  The reject stream makes 

up 30 to 40 % of feed water (Mohamed et al., 2005), which is dumped back to the sea or 

the environment surrounding inland desalination facilities as, for example, in El Paso, 

Texas. The reject stream contains concentrated brine with added toxic chemicals used in 

pre-processing and system maintenance, including 1) biofouling chemical (chlorine and 

other halogenated chemicals); 2) anti-scaling agents (polycarbonic acids, 

polyphosphates); 3) oxygen scavengers (sodium sulfite); and 4) anti-foaming agents 

(Lattemann et al., 2008; Höpner et al., 1997).  Also, due to the high specific weight of 

the reject stream, it settles in the bottom of the sea, creating an imbalance in marine 

ecosystems (Einav et al., 2002). Table 2.1 shows a typical salt ion concentration 

comparison between feed and reject streams of three different desalination plants in 

Oman (Mohamed et al., 2005).  According to the data, an almost three-fold higher 

concentrations of salt exists in the reject stream as compared to the feed stream. The 
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other environmental adversities also include groundwater contamination and associated 

greenhouse gas emission in multi-stage flash distillation (MSF) distillation processes, 

which are widely adopted in energy-rich countries as, for example, Qatar (UNDP, 2009). 

Table 2.1 Changing salt concentration from feed to reject stream in designation plants  

Desalination 

Unit s Feed/Reject Na (mg/l) Ca(mg/l) Mg(mg/l) K(mg/l) EC(dS/m) 

1. Al 

Wagan Feed water 741.6 146.3 112.4 28.4 5.1 

 

Reject 

water 2248.0 370.0 282.0 66.5 12.9 

       
2. Al Qua Feed water 451.1 162.4 103.6 27.2 4.6 

 

Reject 

water 2880.0 518.9 337.3 94.6 16.9 

       
3. Um Al 

Zumool Feed water 2481.0 456.4 194.5 110.3 14.7 

  

Reject 

water 6206.0 846.8 361.7 264.1 30.3 

Source: (Mohamed et al., 2005) 

 

2.3.2  Rainwater harvesting 

The concept of rainwater harvesting consists of harnessing rainwater from the 

roof of a building or other impervious areas to meet local water needs (Boers et al., 

1982).  This is not an emerging concept and has been used since 2000 BC (Fewtrell et 

al., 2007).  However, rainwater harvesting is being gradually considered as an alternative 

resource due to rising urban water demand, thus offsetting municipal demand and 

reducing storm-water volume in urban areas with increasing impervious land cover (Yu 

et al., 2014). Primarily, it has been applied to meet non-potable water use, including 
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lawn irrigation, washing clothes, and toilet flushing (Lye et al., 2009) and sometimes 

directly used for potable water supply (Fewtrell et al., 2007).  

The major limitation in rainwater harvesting use includes both the variability in 

water quantity and water quality. The harvested rainwater quantity varies with time and 

geographical regions as wells as frequency and intensity of precipitation (Boers et al., 

1982). The type of roof and location of the facility (near industries, or densely populated 

urban area) and prevalent air quality significantly affect the quality of harvested 

rainwater. According to Förster et al., (1999), varying roof types, including zinc sheet, 

tar felt, pantiles, asbestos, cement, and gravel could be major sources of heavy metals 

like Zn, Cu, Pb, As, and Cd. Yu et al., (2014) reported the presence of fecal coliform in 

collected rainwater. Degrading water quality of harvested rainwater with storage time 

adds vulnerability to public safety and limitations to reuse (Evans et al., 2006).   

An optional treatment system for the rainwater prior to its reuse may help to 

solve the problems of water quality, but the unreliability in water quantity during low 

precipitation seasons is a barrier for broadly adopting the technology. The concept may 

not be feasible and efficient in regions with low rainfall and high evaporation rates, 

primarily in arid regions of the world. 

2.3.3 Domestic wastewater reuse and it limitations   

The increasing volume of municipal wastewater in urban areas, especially with 

centralized systems (Nhapi et al., 2004), will potentially impact energy consumption, 

conveyance infrastructure, and treatment capacity of the wastewater treatment plant 

(WWTP).  It will also affect the water quality of surface/sub-surface water-bodies and 
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therefore affect the environmental sustainability. Alternatively, the volumetric load of 

the wastewater can be considered as the primary postulate for water reuse perspectives; 

the treated wastewater can provide consistent means of supply in water-scarce regions 

unlike rainwater harvesting, which is season-dependent.  

Treated municipal wastewater has been widely applied for irrigation, industrial 

applications, aquifer recharge, and other uses (Schäfer et al., 2005). The major 

limitations associated with treated wastewater reuse include 1) water quality; 2) capital 

cost associated with conveyance and treatment; 3) social acceptability, and 4) stringent 

water reuse regulations for treated wastewater reuse. Most of the applications are limited 

to low-grade non-potable uses, mainly in the irrigation sector, which is either limited to 

sub-surface and restricted irrigation use (Wang et al., 2006).  

Tertiary treated wastewater provides a better opportunity for high-grade water 

quality applications but with additional energy and cost. A case study by (Fane et al., 

2002) showed that secondary treated municipal effluent if followed by UV disinfection, 

results in 4.5 log virus removal and 2.5 log of protozoa removal. Additionally, if 

augmented with microfiltration, the removal rate improves to 6.5 log virus removal and 

4.5 log protozoa removal.  Studies also showed that for irrigation applications, the use of 

tertiary treated municipal wastewater compared to conventional groundwater has no 

additional impact on soil integrity as well as microbial contamination to plants (Pollice 

et al., 2004) 

The added cost of treatment and rerouting the wastewater effluent sometimes 

conflicts with concurrent water costs and make it less effective in its implementation 
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(Molinos et al., 2010). Decentralized treatment units have sometimes been given priority 

over centralized treatment to improve the cost of wastewater reuse by minimizing piping 

and plumbing costs (Lens et al., 2005), but it broadens the gap of water quality and reuse 

limitations (Schaefer et al., 2004) in urban settings related to urban space availability, 

sludge disposal, and aesthetics.  

Also, public perception on wastewater is not consistently favorable towards 

wastewater reuse. Advanced treatments using membrane filtration and RO systems 

applied for treating municipal wastewater is at par with drinking water regulations at a 

cost 40 % cheaper than desalinated water; however, there is very low public willingness 

to accept it for unrestricted use (Hunter et al., 2007).  A public survey for a wastewater 

reuse case study by Kantanoleon et al., (2007) indicated that more than 80% of people 

do not intend to reuse wastewater in food-related water uses. However, the majority of 

people accept wastewater reuse for industrial applications (76%). 

2.4 Emerging alternative water resources and their limitations 

2.4.1 Greywater reuse and limitations  

The concept of greywater is parallel to domestic wastewater reuse as it accounts 

up to 60-70 % of the total domestic sewage (Friedler et al., 2005), which mainly includes 

showers, washbasins, and laundry water (Jeppesen et al., 1996) and sometimes kitchen 

sinks (Birks et al., 2007). Therefore, it contains lower fecal contamination, lower BOD, 

less nitrogen, and lower sludge than conventional wastewater (Li et al., 2008).  

 



18 
 

Table 2.2 Characteristics of Greywater  

Parameter  Source  Range   Units 

Temperature   18 38 °C 

Turbidly Wash Cycle 39 296 NTU 

 Rinse Cycle  14 29 NTU 

 Greywater(mixed) 15.3 240 NTU 

Suspended Solids Greywater 17 330 mg/l 

     

 

conventional waste 

water 120 450 mg/l 

Total Solids  113 2410 mg/l 

     
(pH)  5 10  

     
COD  13 8000 mg/l 

BOD  5 1460 mg/l 

DO  0.4 5.8 mg/l 

TKN Greywater 0.6 74 mg/l 

Total Phosphate 

Phosphate not 

banned 6 24 mg/l 

 Phosphate  banned  4 14 mg/l 

     
Zn Laundry  0.09 0.34 mg/l 

 Bathroom 0.2 6.3 mg/l 

 others   0.01 1.8 mg/l 

     
Ca  3.5 7.9 mg/l 

K  1.5 5.2 mg/l 

Mg  1.4 2.3 mg/l 

Na  7.4 18 mg/l 

XOC (Xenobiotic 

Organic Compounds)  

Up to 900 

compounds  mg/l 

fecal coliforms Bathroom 3 *10^3 

per 100 

ml per 100 ml 

 Laundry 9* 10^4 1.6 * 10^4 per 100 ml 

Total Coliform Bathroom 2.4 * 10^7  per 100 ml 

 Laundry 56 * 10^5 8.9 * 10^5 per 100 ml 

Fecal streptococci Bathroom 7* 10 ^4  per 100 ml 

  Laundry 1*10^6 1.31*10^6 per 100 ml 
Source: (Adapted from Erikson et al., 2002) 
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The World Health Organization (WHO, 2006) states that “Ten % of the total 

food production of the world relies on treated or untreated greywater”. Lawn irrigation 

and toilet flushing are major applications of greywater (Neal et al., 1996) compared to 

conventional wastewater, which is mostly limited to irrigation use. Toilet flushing and 

lawn irrigation with greywater could potentially alleviate 50 % of portable water demand 

(Maimon et al., 2010). 

  In general, greywater offers a better alternative to conventional wastewater 

reuse primarily as it has: 1) higher influent water quality; 2) lower cost of treatment; 3) 

lower conveyance cost if applied locally at household or community level; and 4) 

potentially better social acceptability as it does not include toilet/urinal flushes. 

2.4.2 Technological limitations in grey water treatment 

The wide variation in greywater quality is one the most challenging aspects of 

selecting a robust treatment system and desired goal quality. Greywater characteristics 

have been listed in Table 2.2 and attributed to source, type, location, regional habits, 

type of soap or cosmetics used, and other household activities (Erikson et al., 2002).  

Different types of treatments systems have been used to treat greywater for varying 

pollutant load and desired effluent quality, including chemical, physical, biological, or in 

combinations (Li et al., 2008).  Coarse filtration followed by disinfection is one of the 

most commonly applied treatments because of its simplicity; however, high turbidity and 

suspended solids in the effluent deter the disinfection potential of the system (Al-

Jayyousi et al., 2003; Kariuki et al., 2011).  Constructed wetlands (CW) are another 
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option for low-cost treatment, but it may not be viable in urban areas due to lack of 

space, aesthetics, and variable effluent quality. Horizontal Flow Reed Beds (HFRB) and 

Vertical Flow Reed Beds (VFRD) (Scheumann et al., 2009) are more common in 

greywater treatment compared to conventional wetlands.  

Different types of biological treatments can be applied for greywater treatment.  

However, the low nutrient content compared to carbon and nitrogen makes it unsuitable 

for biological treatment (Chaillou et al., 2011) unless additional nutrients are supplied to 

the system. At the same time, the biological treatments of greywater provide better 

opportunities than the basic coarse filtration regarding microbial as well as chemical 

contaminant removal. The Upflow Anaerobic Sludge Blanket (USAB) is a common 

application for biological treatment where energy cost matters, but not an attractive 

means to obtain high water quality (Elmitwalli et al., 2007). The Membrane Bioreactor 

(MBR) is being applied in most of the high-quality effluent target (Gonzalez et al., 

2007). Microbial risk is still associated with MBR-treated water, which limits its 

applications other than being energy and cost-intensive processes; however, it is a better 

option at the community level or for commercial buildings with limited urban space 

availability (Scheumann et al., 2009). 

Membrane applications for greywater treatment can provide the quality intended 

for unrestricted water reuse (Oron et al., 2014). Ultrafiltration can provide low turbid 

water with lower microbial contamination compared to MBR; however, soluble 

nutrients, including ammonia and phosphorus, are prevalent in the effluent (Li et al., 

2008). Such effluent can be applied as high-quality irrigation water if the nutrient limits 
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exceed the unrestricted water reuse. At the same time, pretreated greywater augmented 

with an RO system provides high effluent quality water at par with drinking water 

standards (Onkal et al., 2011). The major limitations with membrane use are the cost, 

high energy consumption, and residence time of greywater in the system, which induces 

anaerobic decay as well as affecting membrane fouling (Ghunmi et al., 2011).  

Though scientifically, greywater has been treated using advanced treatment 

systems, existing commercially available greywater treatment options fail to provide 

consistent reliability for varying load conditions, resulting in lower consumer confidence 

in these systems (Allen et al., 2010). Dual plumbing requirement of greywater treatment 

is another limitation (Prathapar et al., 2006) due to retrofitting older buildings and 

potentially added cost to water. 

2.4.2.1  Water reuses standards for greywater 

 Greywater reuse has a primary limitation in the fact that reuse standards are 

different for different locations (Prathapar et al., 2005) and therefore in the versatility of 

its applications. Greywater reuse standards are limited to very few states in the U.S. 

(Allen et al., 2010) and lie in the same arena of wastewater reuse regulations, although 

their influent quality varies; nevertheless, regulations do not distinguish them differently 

(Maimon et al., 2010).  

However, in some of the states like Texas, new regulations are being made and 

constantly amended to improve potential use of alternative resources. The Texas 

greywater reuse regulations allow influent from the source including washbasin (not 

used for toxic chemical disposal or food preparation), laundry water (without diaper 
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washing), and shower water primarily (Use of Reclaimed Water §§210.81 - 210.85- 

effective January 6, 2005) (TCEQ, 2005). “House Bill (HB or bill) 1902, 84th Texas 

Legislature (2015), amended which aims at improving greywater reuse particularly for 

toilet and urinal flushing (TCEQ, 2015). 

2.4.2.2 Storage of greywater and public health 

The public health risk is one of the major limitations to greywater reuse due to 

restrictions on its storage duration. Greywater quality goes under significant change with 

storage, especially with regard to its microbial concentrations. Robison et al., (1996) 

reported that the microbial count of total coliform changes significantly over a 48 hours 

of storage time (from 100- 105 to  > 105 per 100ml of samples). Very limited research is, 

however, available on the impact of storage duration on the biological and chemical 

quality of greywater (Liu et al., 2010). 

2.4.3 Air-conditioning (A/C) condensate  

A/C condensate as an alternative resource has not gained full recognition yet.  

This is despite hot and humid urban areas of the world relying on HVAC systems for 

maintaining indoor comfort; they have thereby reported significant yields /volumes of 

condensate.  Conventionally, the A/C condensate is drained to the sewer system (Painter 

et al., 2009).  Accordingly, the onsite collection and reuse of A/C condensate could help 

in partially offsetting municipal water demand, which potentially will promote green 

infrastructure for water-scarce regions (Wilson et al., 2008). 

Determining the water quality and quantity of A/C condensate are critical steps 

for water management as well as public health issues.  Low contamination in A/C  
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Table 2.3 A/C condensate water quality analysis in different part of world 

 

 

 

condensate can be expected as it is a result of the air-moisture dehumidification process 

and is also “noncorrosive and non-erosive in nature” (EPA, 2007).  According to Guz et 

al., (2005), condensate water quality can be considered better than tap water, although, 

the condensate quality varies with the type of air conditioners (Loveless et al., 2013) and 

their surrounding ambient quality. The limited studies on water quality variability do not 

Parameters   Cook et 

al., 

(2014) 

Bryant 

et al., 

(2008) 

  

Loveless et al., (2013) 

     Brisbane  Doha Cas, 

Kasut 

Jeddah Makkah Riyadh 

pH   6.9 6.5 4.37-

6.87 

5.93-

7.35 

3.05-

6.77 

3.63-

7.45 

TDS (mg/L) - - - - - - 

DO (mg/L) - 7.15 - - - - 

Turbidity (NTU) - 0.7 0.041-

0.15 

1.62-

5.5 

1.63-

2.47 

0.89-

7.89 

Conductivity µS/cm 12 86 18-27 30.3-

214 

32.5-

73.4 

32.6-

95.6 

Chlorides (mg/L) - 1.2 - - - - 

Nitrates (mg/L) - 0.6 - - - - 

Total 

Nitrogen 

(mg/L) 0.67 - - - - - 

E.coli (Count/100 

ml) 

1 - - - - - 
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show a limitation towards its reuse as shown in Table 2.3.  It can be directly applied for 

non-potable water use application, including landscape irrigation, recreation, and cooling 

tower toilet flushing (Painter et al., 2009), and possibly can be used as unrestricted water 

with a low cost of treatment (Lawrence et al., 2010; Loveless et al., 2013).   

Most of the studies in condensate volumetric estimation are site and system 

specific (Bryant et al., 2008; Guz et al., 2005) and models are empirical in nature. The 

volumetric flow rate has been considered as a more conventional way to compute 

condensate volume. However, measuring volumetric flow rate is in itself a challenge, not 

only practically, but it also results in a significant error as shown in the condensate 

estimation (Lawrence et al., 2010). 

When planning to use A/C condensate in a building, it is critical to be able to 

estimate condensate volume with varying load conditions, especially with seasonal 

variability (Cook et al., 2014). In fact, the uncertainty in condensate volume is a major 

barrier for its use as an alternate water resource. It can lead to two major limitations: 

financial obligations and water supply strategies during low production periods.  The 

volumetric figures become important regarding determining the financial payback for 

the associated costs incurred on installation of condensate recovery systems, either retro- 

fitting with existing building or with new buildings (Lawrence et al., 2009). It may not 

be feasible in circumstances where installation and maintenance costs exceed the 

financial return. 
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2.5 Summary & conclusion 

Overall, alternative water resource adoption may vary based on 1) water 

quantity; 2) water quality; 3) technical feasibility in treatment and reuse; 4) capital costs 

and payback on piping, plumbing, storage, and type of reuse; 5) environmental 

sustainability, risk factors, and resilience of the system and long-term impact; 6) social 

acceptance; and 7) local regulatory agencies. Increasing population, diminishing water 

resources, changing water use patterns, adverse anthropogenic activities, and overall 

increasing water stress is a major driver for the reemergence of alternative water 

resources, which can substantially offset the escalating municipal, industrial, and 

agricultural water demand (Rosegrant et al., 2002). Among alternative methods, 

decentralized greywater and A/C condensate systems are the most promising if 

greywater quality can be treated to the necessary level based on potential use and if A/C 

condensate volume can be quantified. 
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 EVALUATION OF PORTABLE IN-HOUSE GREYWATER TREATMENT 

SYSTEM FOR POTENTIAL WATER-REUSE IN URBAN AREAS 

3.1 Introduction  

Out of the total municipal water supply for household activities, 60-70% % 

contributes to greywater (Friedler et al., 2005). The separation and reuse of on-site 

greywater can reduce its volume and water treatment requirements, and thus, result in 

reduction in capital cost required for pipe network and pumping (Chen et al., 2009). 

 Treated greywater can be the best alternative for a consistent water supply in the 

region, where freshwater resources are limited.  The physio-chemical and biological 

characteristics of greywater need to be evaluated before reuse for its potential impact on 

human health and safety (Winward et al., 2008).  Uncertainty in greywater quality 

depends on the region and type of domestic use (Eriksson et al., 2002).  

A number of attempts were made to characterize the wastewater in different parts 

of the world (Surendran et al., 1998, Al-Jayyousi et al., 2003, Rose et al., 1991, and 

Christova et al., 1996). Greywater characteristics vary with domestic uses including 

laundry, washbasin, shower and kitchen (Jamrah et al., 2008).  Variations in water 

quality parameters and stringent water reuse regulations are major challenges in 

selecting an appropriate treatment system.  

Several system design approaches have been developed to treat greywater in 

specific conditions (Li et al., 2008). Different types of biological reactors were also 

applied for treating greywater, including up-flow sludge blanket (USAB)) (Leal et al., 

2007), a rotatory biological reactor (RBC) (Nolde et al., 2000) and constructed wetlands 
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(Gross et al., 2007). ‘Membrane Bio Reactor’ (MBR) is one of the most adopted means 

of greywater treatment at the community level because of high and stable performances 

(Lesjean 2006).   Liu et al., (2005) used submerged MBR to treat shower water and 

observed greater removal of COD, BOD5, NH4-N, SS removal from 132-322 mg/l, 99-

212 mg/l , 0.6-1 mg/l, 15-55 mg/l in influent to  <40mg/l, <5 mg/l, <0.2 mg/l, ND in 

effluent, respectively. The MBR may provide high-efficiency treatment of greywater. 

However, the biological treatments are not effective in treating low nutrient (COD: N: P) 

greywater, especially those that originate from laundry and shower water, and need 

additional nutrients added to the system (Li et al., 2009).   

Membrane filtration can be an attractive means of treating greywater in terms 

aesthetics, compatibility as decentralized water treatment system (Ramona et al., 2004). 

The major contamination removal through membrane filtration includes suspended 

solids and the associated microorganism including cyst, giardia and other bacteria 

(Madaeni et al., 1999). Ultrafiltration (UF) has better retention capability than 

microfiltration (MF), which can substantially remove viruses and organic and inorganic 

macromolecules (Guo et al., 1996). Nanofiltration (NF) membranes are particularly used 

for divalent ion removal (Crittenden et al., 2012). A ‘Reverse Osmosis’ (RO) system 

works against the osmotic potential between feed (high concentration) and permeates 

(low concentration) and is primarily applied for monovalent salts removal (Greenlee et 

al., 2009). Very few studies addressed the use of direct membrane filtration for 

greywater treatment (Ramona et al., 2004). Van et al., (2005) used NF to treat laundry 

water directly without pretreatment.   
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The critical limitation of membrane systems is the frequent clogging and 

residence time of greywater in closed conduit (Ghunmi et al., 2011) in addition to energy 

expenditure. This may cause a declining effluent flux over time and increase in 

anaerobic decay of substrate with biofilm formation over their membrane surface. The 

result would be an addition to the contamination level in the system, and therefore, 

would reduce the operational efficiency of the system (Nghiem et al., 2006).   

Pre-filtration of feed for membrane RO plays a vital role in its function, which 

may increase the membrane life, reduce energy requirement as well as yield better 

effluent quality (Shannon et al., 2008). The conventional pretreatments include 

sedimentation flocculation, and coagulation processes (Ghunmi et al., 2011). However, 

activated carbon can also be applied as the pre-filtration, and it can significantly remove 

total organic carbon (TOC) from wastewater (Crittenden et al., 1993).   

Establishing a greywater treatment system at household scale is challenging with 

constraints such as, (1) ease of operation with chemical free treatment either as 

coagulant or disinfectant, (2) portability, (3) aesthetics, (4) flexibility in doing optimal 

treatment based on desired goal, (5) uncertainty in greywater influent quality and (6) 

robustness in treatment to meet stringent water reuse standards.  

This study focused on greywater characterization, treatment and reuse. The 

typical sources including shower, laundry and washbasins greywater were considered for 

analysis. The greywater treatment system was applied in the case study to provide water 

a reuse scheme with multi-grade effluent uses. The system was named as Granular 

Activated Carbon-Membrane Integrated-Multi Effluent (GAC-MI-ME), which is based 
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on serial filtrations conventionally applied for advanced physical filtration components, 

where each preceding unit works as pretreatment for the next successive level.  The 

specific objectives of the study are as following: 

I. Characterize greywater from shower, wash basin, and laundry. 

II. Assess various commercially available water treatment components and reuse 

systems (GAC-MI-ME). 

III. Evaluate treatment performance of GAC-MI-ME system particularly as pre-

filtration for UF and RO effluents. 

3.2 Material & methods 

3.2.1 Greywater collection 

Greywater samples were collected from the typical sources namely, laundry, 

bathtub, and washbasin in College Station Texas from student housing.  The laundry 

water was collected as an equal proportion of wash and rinse cycle of a washing 

machine, and also considered different types of clothes from delicate to casual. The 

greywater from the washbasin represented 24 hours of faucet use from student housing.   

The shower water was collected from bathtubs using a sump pump. At least 5 to 8 

gallons of the greywater were collected in each collection-event.  The collection scheme 

for the greywater is shown in Appendix B1. 

3.2.2 GAC-MI-ME greywater treatment system description 

The GAC-MI-ME treatment system is built from the components of advanced 

physical filtration systems connected serially. It includes coarse filtration (CR-F), 

microfiltration (MF), granular activated carbon filtration (C-F), ultrafiltration (UF), ultra 
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violet (UV), and reverse osmosis (RO).  The system was fabricated by considering its 

compactness and potential deployment in urban settings. The GAC-MI-ME greywater 

treatment system is shown in Appendix B2. The system emphasizes a potential 

alternative solution to conventional biological and chemical processes for greywater 

treatment.  The GAC-MI-ME system components including CR-F, MF, and GAC 

provide pre-filtration for UF and RO units, as well as it  shields the units from shock 

loading and fouling. The GAC was applied with intent of organics removal (Gur-Reznik 

et al., 2008) which are common cause of membrane fouling (Vogel et al., 2010).  

The CR-F module of GAC-MI-ME system includes serially connected polyester 

and polypropylene membranes with normal diameters of 50, 20, 10, and 5 𝜇𝑚 . The MF 

comprises of   serially connected 1, and 0.35 𝜇𝑚 membrane modules. The customized 

GAC module included parallel-connected three individual GAC filter modules to 

increase the residence time of the water. The UF module comprises of hollow-fiber 

membrane with/without backwash capability. The absolute pore diameter of the UF 

system are 0.02 and .025 m. The UV reactor was installed prior to RO and after UF to 

ensure efficient microbial disinfection.   The components’ details are provided in 

Appendix B3. 

The GAC-MI-ME greywater treatment system includes two major pumps. The 

primary delivery pump was installed at the inlet of the system and approximately 

provides 1.5 gpm without head loss. The other one was a booster pump, which was 

installed prior to RO system for maintaining optimum pressure to efficiently utilize the 



31 
 

RO system. A typical flow rate observed at MF, UF and RO filtration modules were 1.2, 

0.4, and 0.07 to 0.01 gpm respectively.  

 

 

Figure 3.1 Fabricated greywater filtration system with multi-stage effluent collection and 

pressure gauges 

 

The system was also installed with ‘Tank Level Controllers’ (TLC) and 

‘Electronic Shutoff Valve’ (ESO series) in order to stop the system when pressure 

reaches 60 psi.  The ESO functions to avoid membrane disruption at high contaminant 

load or in case of membrane clogging. The TLC shuts off the system when the storage 

tank is full (in case of continuous operation). Pressure gauges were installed across the 
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system to depict the trans-membrane pressure, and therefore an indication of membrane 

replacement or clogging.  

The idle volume of the system was observed to be about 2.9 gallons; which 

means that the samples needed to be taken at least after 3 gallons of volumetric flow 

through the entire GAC-MI-ME system. The effluent samples were collected at each test 

port after CR-F, MF, GAC, UF, UV, and RO as shown in Figure 3.1.  

3.2.3 Physical, chemical, and microbial evaluation of greywater  

The major parameters addressed during this study were BOD5 (Biochemical 

Oxidation Demand), turbidity, total dissolved solids (TDS), total coliform (TC), 

electrical conductivity (EC), pH, Ca, Mg, Na, K, B, HCO3, CO3, SO4,Cl, NO3-N, P, 

conductivity, sodium adsorption ratio (SAR), hardness, cations/anions, alkalinity, P, and 

Nitrate-N. The water quality analysis were conducted at Texas A&M University campus 

(College Station, TX).  proOBOD sensor (YSI, Inc., Yellow Springs, OH) was used for 

BOD5 measurement.  Petri-films (3M, Sr. Paul, MN) were used for total coliform count. 

The samples were incubated on the petri-films for 24 hours at 35°C.  YSI 6800XLM 

sonde was used for pH assessment. Hanna Instruments H3014 turbidity meter (Hanna 

Instruments, Inc., Ann Arbor, MI) was used to measure turbidity (NTU) of water 

samples. TDS probe was used to determine total dissolved solids in the samples. 

Concentration of ionic species was measured by inductively coupled plasma mass 

spectrometry (ICP-MS).  The measurements accuracy for the turbidity meter, pH/ORP 

probe, dissolved oxygen (DO) probe and TDS-meter are shown in Appendix B4.  
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3.3 Results & discussions 

3.3.1 Greywater characteristics 

The water quality parameters for six different samples from each source of 

greywater are shown in Table 3.1. Physio-chemical, and microbial characteristics of the 

greywater showed wide variation. The primary factors that affects the quality of 

greywater are source of water, the type of household use, the different levels of physical, 

chemical, microbial addition including sanitary products, soap, detergent, bleach, food 

material, fibers, hairs and human contact.  

Laundry water with equal proportion of wash and rinse cycle showed the highest 

turbidity level ranging from 277 to 432 NTU. This was a higher turbidity range as 

compared to a similar study (15.3-240 NTU) (Chritova-Boal et al., 1996).  Lower 

turbidity was observed in wash-basin water (42-48 NTU) and shower water (105-126 

NTU), which implied that more suspensions and colloids are associated with laundry 

water than the others. This implies that higher risk of clogging is associated while 

treating laundry water.  

High variation in pH, and alkalinity were also observed in all the greywater. 

Laundry water showed pH values (5.09-7.5) with corresponding alkalinity (55-270) mg/l 

of CaCO3. The trend was similar for shower, and wash-basin water with pH, and 

alkalinity values for (5.57-6.88), (162-363) mg/l of CaCO3 and (6-6.92), (133-280) mg/l 

of CaCO3 respectively. Typically, alkalinity and pH are low in shower and wash-basin 

water compared to laundry water (Eriksson et al., 2002).  
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Very low BOD5 was observed for all three types of greywater compared to other 

studies (Li et al., 2009, Halalsheh et al., 2008, Eriksson et al., 2002) The maximum 

BOD5 were observed as 50.4 mg/l in laundry water and lowest in wash-basin water as 

8.4 mg/l.  

 

Table 3.1 Physio-chemical and microbial characteristics of greywater measured in 

College Station, TX 

 

WB: Wash-Basin water SW: Shower water LW: laundry water S: Sample number 

 

The ionic species (cations/ anions) also varied for different types of greywater.  

The bivalent salts (Ca, Mg) were present in lower concentration than the monovalent 

Water Quality Parameter

Parameter S1 S2 S3 S4 S5 S6

Ca-(mg/l) 9 3 6 6 2 27

Mg-(mg/l) 1 1 2 2 <1 6

Na-(mg/l) 89 159 120 183 138 298

K-(mg/l) 7 3 19 8 6 16

B-(mg/l) 0.26 0.24 15.55 0.18 0.36 1.97

(HCO3) 162 341 197 443 329 67

SO4
-
 -(mg/l) 33 21 216 40 10 309

Cl
-
-(mg/l) 37 60 1 93 40 501

NO3-N(mg/l) 0.01 0.01 <0.01 0.01 <0.01 0.57

P(mg/l) 2.43 0.57 1.41 0.25 0.19 0.52

pH 6 6.92 5.57 6.88 7.5 5.09

Conductivity (µmhos/cm) 369 612 623 758 544 2110

Hardness (mg/l CaCO3) 27 12 22 23 8 92

ALKALINITY(mg/l CaCO3) 133 280 162 363 270 55

TDS -(mg/l) 341 589 578 775 526 1227

SAR -(mg/l) 7.4 19.8 11.2 16.5 21.3 13.5

BOD-(mg/l) 11.7 9.6 8.4 22.6 35.7 50.4

Turbidity -(NTU) 42 48 126 105 277 432

Total Coliform -(cfu/ml) 2.20E+03 9.25E+02 3.20E+03 3.90E+03 4.60E+03 1.00E+04

WB SW LW
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species (Na, K). The highest TDS value of 1227 mg/l was observed in laundry water.  

High level of Na, and K can be attributed to the abundance of their salts present in 

surfactants/foaming agents.  Significant HCO3 was also detected in all the samples of 

greywater.  Traces of NO3-N and P were found in all the samples, which are much lower 

than the typical values observed (Eriksson et al., 2002). Significant Boron (B) 

concentration was also observed in some of the samples up to 15 mg/l.  

Total coliform counts were determined to analyze the extent of microbial 

contamination. The laundry water showed the highest microbial contamination up to 

1.0E+04 (cfu/ml) compared to   wash-basin water (9.25E+02 to 2.2E+03) cfu/ml.  

Although the range of contamination varied, the observed values were in close proximity 

with other studies (Li et al., 2009, Eriksson et al., 2002).  The wash-basin water was 

found to be the least biologically contaminated compared to laundry and shower water.   

The presence of turbidity, ionic species, coliform count, and other contaminants 

were observed to be the highest in laundry water and the least in wash-basin water. 

Similar trends were reported for greywater characterization in Oman (Halalsheh et al., 

2008). This implies that the treatment of laundry water is more challenging than the 

treatment of shower and wash-basin water. While results may vary with the personal 

habits, type of soap or the cosmetics, the overall characteristics of   greywater will 

depend on the ratio contribution of laundry, shower, and wash-basin. The results 

characterizing greywater may play a significant role in selection of an appropriate 

greywater treatment system, specific to the type of greywater.   



36 
 

3.3.2 Permeate quality for multi-stage greywater treatment system  

Wide variability in GAC-MI-ME effluent quality were observed along multiple 

treatment trains, representing CR-F , M-F, C-F, UF,UV and RO. Effluent quality were 

monitored at all five stages of treatment. BOD and total coliform were considered for 

additional UV treatment. Comparative results of the treatments are presented in Table 

3.2. 

 

Table 3.2 Treated effluent characteristics variation along the fabricated treatment system 

 

 

High turbidity reduction was observed along the treatment-train. Microfiltration 

showed average reduction from 171.7 NTU in raw greywater to 105.8 NTU.  Although, it 

was significant removal, but potentially, could cause clogging at successive level of UF 

and RO.  The GAC filtration (C-F) played vital role in filling the gap between nominal 

pore of 0.35 𝜇𝑚 of MF to absolute pore of 0.025 𝜇𝑚. UF.  Figure 3.2 depicts the effluent 

Ca(mg/l)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Raw 9.3 10.0 2.2 1.9 164.5 72.9 9.8 6.2 3.1 6.1 256.5 138.2 104.8 126.0

CR-F 8.5 9.4 2.2 1.9 157.3 75.8 9.7 6.5 3.1 6.1 245.7 132.7 103.8 126.9

M-F 5.8 4.3 1.3 0.5 119.5 37.8 8.2 5.7 2.8 6.3 243.7 134.3 56.0 79.2

C-F 2.8 3.0 1.0 0.0 107.2 28.2 5.8 2.0 1.0 2.0 225.0 105.9 19.8 8.2

UF 2.2 2.9 1.0 0.0 104.0 28.7 4.3 2.1 0.6 1.0 224.7 105.5 19.5 8.3

RO 1.0 0.0 1.0 0.0 9.6 4.4 0.8 0.4 0.3 0.4 21.8 23.5 3.8 3.9

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Raw 122.0 188.1 0.10 0.23 0.90 0.87 6.5 0.9 836.0 636.9 30.7 30.9 210.5 113.3

CR-F 119.2 189.4 0.10 0.23 0.80 0.89 6.4 1.1 809.0 651.8 30.3 31.1 201.5 108.7

M-F 41.0 29.8 0.01 0.00 0.54 0.52 6.7 0.9 523.8 149.3 19.8 10.8 199.8 110.0

C-F 31.0 17.0 0.01 0.00 0.48 0.43 7.2 1.0 450.3 108.3 11.7 7.9 184.5 86.7

UF 29.5 17.1 0.01 0.00 0.25 0.18 7.6 1.3 445.5 112.5 11.5 7.5 184.5 86.7

RO 6.3 10.4 0.01 0.00 0.02 0.01 6.3 1.1 42.0 25.6 5.0 3.2 28.8 11.6
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turbidity range removal along the treatment train. The turbidity range of 0.1 to 1 NTU was 

mostly observed between UF and RO and a range 1-10 NTU was mostly observed between 

carbon and ultra-filtration.   

 

 

Figure 3.2   Turbidity removal along GAC-MI-ME system for different greywater 

samples(S) 

 

Total coliform exhibited high level of variability in treated water. Figure 3.3 shows 

total coliform reduction for varying strength greywater over the treatment–train.  Coarse 

filtration (CR-F), Microfiltration (M-F), and GAC filtration showed marginal total 

coliform removal over significant removal by UF, UV, and RO as 2.2, 3.2, and 3.4 (log 

removal) respectively.  There might be possible cross-contaminations as complete 

removal was not achieved both at UF and UV. One reason might be short circuiting as 

well as mixing of water or pre-existing bacterial colonies in the system.  
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Figure 3.3 Total coliform removal by GAC-MI-ME system for different in greywater 

samples (S) 

 

The BOD5 removal for the system is shown in in Figure 3.4. It shows average 

reduction in BOD5 for coarse (CR-F) and microfiltration (M-F) unit from 6 to 24.3 %. 

However, significant reduction (53.2%) was achieved at the GAC filtration (C-F) unit. 

UF and UV showed slight improvement for another 6.4 % compared to C-F. Reverse 

osmosis played a vital role for achieving BOD reduction up to an average of 84.8 %. The 

100% BOD5 removal was not attained by the system.  

 

 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

Raw CR-F M-F C-F UF UV RO

To
ta

l c
o

lif
o

rm
 (

C
FU

/m
l)

S5

S4

S2

S1

S3

S6



39 
 

 

Figure 3.4 BOD removal along GAC-MI-ME system for different greywater samples(s) 

 

Figure 3.5 can be visualized as pretreatment (CR-F, M-F, and C-F) for 

ultrafiltration and reverse osmosis (UF, and RO). CR-F, MF, and C-F played a vital role 

as pre-filtration. Significant reduction was obtained for the parameters Ca, Mg, Na, K, B, 

SO4, Cl, P, and TDS by 54.5, 30.6, 24.5, 28.9, 27.7, 46.8, 34.2, 39.2 and 25.7 % 

respectively. C-F, and M-F showed major contribution in pre- filtration. The parameter 

that had low removal rates below 35% such as Mg, and NO3-N were initially low in 

concentration in the influent greywater (Mg: 2.2±1.9, NO3-N: 0.1±0.23) mg/l. 
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Figure 3.5 Contaminant load reduction (%) along GAC-M-MI-ME system 

 

3.3.3 Water reuse potential as unrestricted water reuse 

Multi-grade effluent can be obtained through the fabricated treatment system. 

There is no exhaustive list of parameters standards developed for greywater reuse but 

there are some restrictions on few water quality parameters. The most common are 

turbidity, BOD5, total coliform count, fecal coliform count, total suspended solids, and 

pH depending on the environmental regulations of specific country or region. Water 

quality requirements or treatment goal can be attributed to such enforced standards for 

water reuse to determine an optimal treatment-train.  
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The effluents characteristics of ultrafiltration and RO are in close proximity with 

the unrestricted water reuse (Li et al., 2009). Standards for unrestricted water reuse (not 

for drinking) addresses water quality with turbidity level < 2 NTU, BOD < 100mg/l, 

pH(6-9) TC form < 100 cfu/ml and fecal coliform UD  (Li et al., 2009).  Fecal coliform 

and TSS were not measured in the study. However, the observations of UF comply with 

turbidity level (1.4 ± 0.4 NTU) and TC count (4.2E+ 01 ±5.2+01), and in close 

proximity for BOD (9.3±6.3 mg/l).  At the same time RO water show much better 

quality than the desired standards for unrestricted water reuse.   

3.4 Conclusion 

Three different types of greywater were considered in this study including laundry, 

shower, and wash- basin water for evaluation of GAC-MI-ME greywater treatment 

system. Wash-basin water was found to be the least contaminated compared to laundry 

and shower water. As greywater is a mix of the all three types of water, the water quality 

characterization may help user in selecting influent load for the treatment system.  

The treatment-train of coarse (50- 5 𝜇𝑚), micro and GAC filtration substantially 

reduced the contaminant load for UF and RO module. The effluent quality obtained at UF 

is in close proximity with unrestricted water standards. RO water can be categorized as 

extremely pure water. However, the multi-grade effluent characteristics of GAC-MI-ME 

system are based on limited number experiments. Further sampling and analysis is needed 

for potential evaluation of the GAC-MI-ME effluents with different water-reuse 

perspectives.  
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 MACHINE LEARNING (USING ANN) FOR GREYWATER REUSE: 

COMPREHENSIVE APPROACH USING EFFLUENT PREDICTION 

MODELING AND EFFLUENT STORAGE IMPACT ON WATER 

QUALITY 

4.1 Introduction 

4.1.1 Background 

The advents of alternative water resources have shown inherent possibilities in 

meeting world's increasing water demand (Gleick et al., 2000). Particularly greywater, 

which accounts for majority of domestic water usage, and therefore its acceptability as 

an alternative resource is increasing in urban settings (Karpiscak et al., 1990). From 

integrated water management perspectives, it needs information not only on quantity, 

depending on the need, but also on water quality for appropriately redirecting the 

raw/treated water for a particular reuse (Lazarova et al., 2001).   

4.1.2 Contemporary flaws and barriers in greywater reuse  

In the current trend, greywater is applied mostly for low-grade applications 

including restricted or unrestricted irrigation and toilet flushing (Li et al., 2009).  Or 

sometimes it is contemplated for low-grade applications only (Eriksson et al., 2002), 

because of increasing concerns over public health and environmental safety with 

greywater reuse (Gulyas et al., 2007).   

The primary barriers associated in greywater water reuse are the uncertainty in 

influent/effluent quality and the selection of an appropriate robust treatment system to 

meet stringent water reuse regulations (Al-Jayyousi et al., 2003).  The greywater varies 
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in its composition with the type of households’ uses, time of the day, cosmetic and 

toiletry products use, along with personal habits of residents (Eriksson et al., 2002; Al-

Jayyousi et al., 2003). Though it is referred to either bathroom, shower, laundry, kitchen 

or combination of them, the individual source characteristics vary significantly 

(Jefferson et al., 2004).  For example, the water originating from laundry, shower or 

wash basin have high COD: BOD ratio than the kitchen greywater (Eriksson et al., 

2009).  The complexity in identifying the influent variability and selection of treatment 

system increases, where in some cases the kitchen water is considered as greywater 

(Gulyas et al., 2007), whereas   others include only laundry, shower and wash basin as 

greywater (Nolde et al, 2007). 

In fact, determining the greywater treatments and reuse strategies are challenging 

tasks (Jefferson et al., 2000) with variability in treatment as well as reuse standards. 

Many treatment technologies were applied in greywater treatment (Ghunmi et al., 2011) 

from a rudimentary low-cost (coarse filtration and chlorination) to an amalgamated 

membrane bioreactor.  The most of the applied treatments and reuses are analogous to 

the domestic wastewater (Al-Jayyousi et al., 2003). It may be a probable reason for the 

greywater reuse standards being equivalent to conventional wastewater reuse scheme, 

which again intermittently vary with and within political boundaries (Gulyas et al., 2007; 

Pidou et al., 2007). Therefore, opting a generalized treatment plan may not be a feasible 

approach for greywater reuse.   

There is a need to identify and opt for a treatment system unique to the influent 

type, which also needs to be guaranteed for its robustness in effluent quality. 
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Determining the robustness in treatment would play vital role, which should be 

addressed to direct the reclaimed water for a specific applications (Butler et al., 2005). It 

may further bridge the gap between the stringency of regulatory standards and greywater 

reuse with the overall impact on increasing acceptability in greywater reuse.  

4.1.3 Improving potentials in greywater reuse  

4.1.3.1 Greywater treatment system improvement  

The fate of reclaimed water either as restricted or unrestricted uses depend on its 

characteristics (Jefferson et al., 2004). With technological and scientific advancements in 

water treatment processes, water quality can be enhanced to the desired quality.  An 

advanced physical filtration system has high-quality effluent attainability (Ghunmi, et 

al., 2011), and therefore it may help in resolving the current limitations of greywater 

reuse. At the same time, multi-grade effluents are attainable by varying the extent of 

treatment for the same influent (De Koning, et al., 2008). So, the concept of multi-grade 

water reuse can be applied in meeting different type of water demands depending on 

user intention, which is either governed by the cost-quality optimizations, water reuse 

regulations or aesthetics.  

4.1.3.2 Improvement in reliability of greywater treatment system 

The major thrust to improve greywater reuse potential is to ensure that the water 

quality parameters of   treated effluents are within an acceptable range. Water quality 

modeling is one of the widely applied approaches in virtual assessment of real-time 

process using deterministic, stochastic or data-driven approaches. However, the system 

evaluation becomes complex with conventional methods like deterministic or stochastic 
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approaches (Jain et al., 2007) due to non-linearity in water treatment processes (Lee et 

al., 2002).  Also, consistent operational data acquisition for system evaluation is an 

expensive and time-consuming process.  

Alternatively, a black box modeling approach like Artificial Neural Network 

(ANN) requires no description of the governing processes (Lewin et al., 2004). ANNs 

are adaptive, and non-linear programs (Obaidat et al, 1998). It relies on the pattern 

recognition from a set of the input and output data (Rodriguez et al, 1999). This is why, 

a data driven machine learning approach, like ANN, is widely applied in wastewater 

engineering  to analyze  the complex system behavior by  prediction , forecasting,  and 

process control (Gontarski et al., 2000). Hamed et al., (2004) developed ANN-based 

models for predicting Biochemical Oxidation Demand (BOD) and Suspended Solids 

(SS) for treated wastewater at Cairo, Egypt.  Lee et al., (2011) also applied ANN models 

in predicting Biochemical Oxidation Demand (BOD), Chemical Oxygen Demand 

(COD), Total Nitrogen (TN), and Suspended Solids (SS) from a wastewater treatment 

plant effluent.  

4.1.3.3 Addressing degradability of raw and treated greywater 

Along with the mentioned barriers in greywater reuse, there is information lag on 

greywater quality transitions with storage time (Dixon et al., 2000) Though the storage is 

a critical aspect with changing demand/supply, most of the studies are limited to storage 

of raw greywater only (Liu et al., 2010). The degradability of treated water remains 

unidentified, and therefore an informative study on treated greywater-storage-potentials 

may provide its wider reuse possibilities. 
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4.2 Objectives 

The case study demonstrates a comprehensive approach in improving greywater 

potential using a case study of an advanced greywater filtration system (GAC-MIME). 

The system is comprised of a continuous matrix of treatment units based on serial 

filtration. Water quality analysis for raw and GAC-MI-ME treated greywater and a 

subsequent water quality prediction modeling tool are presented in this study. A decision 

support tool (GREY-ANN) was also proposed for optimal treatment selection by 

providing robustness and reliability in greywater treatment. It also addressed fate of 

raw/treated greywater with storage time.  The water quality parameters including 

turbidity, pH, BOD, and TDS considered as treatment performance indicators. The 

specific objectives of this Section are: 

I. Water quality evaluations for “GAC-MI-ME” effluents for the parameters 

including BOD, pH, ORP, TDS and turbidity.  

II. Develop modules for  “GREY-ANN”,   a tool for determining appropriate 

“GAC-MI-ME” treatment train  for effluent quality parameters including; pH, 

ORP, TDS, turbidity, and  BOD. 

III. Develop BOD5 prediction model (BOD-ANN) using ANN for raw and GAC-MI-

ME treated effluent from known water quality parameters including pH, ORP, 

TDS, and Turbidity on BOD. 

IV. Sensitivity analysis for GREY-ANN for potential improvement of GAC-MI-ME 

treatment system. 
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V. Sensitivity analysis for BOD-MP model for the understanding of the parameters 

affecting BOD in raw and GAC-MI-ME treated greywater. 

VI. Analyze the impact of storage on raw and GAC-MI-ME treated greywater for 

water quality parameters including TDS, turbidity, pH, and DO.  

4.3 Material and methods  

4.3.1 Greywater treatment system description 

The GAC-MI-ME, a greywater treatment system produces multi-grade effluent. 

The five different treatment stages of the GAC-MI-ME were considered for the system 

analysis including effluents at coarse filtration (CR-F), microfiltration (M-F), granular 

activated carbon (CF), ultrafiltration (UF), and at reverse osmosis (RO) as shown in 

Figure 4.1.  The influent greywater was referred as RAW.   

The matrix of treatments in GAC-MI-ME were subdivided in five different units 

corresponding to the effluent, where each stage of treatment considered as an 

independent unit. The Treatment-Train A represents CR-F effluent, which follows the 

filtration modules of 50, 20, 10, and five 𝜇𝑚. The Treatment Train B represents M-F 

effluent, which includes filtration modules of 50, 20, 10, 5, 1, and 035  𝜇𝑚. The 

Treatment Train C represents CF effluent, which includes filtration modules of 50, 20, 

10, 5, 1, 0.35  𝜇𝑚, and GAC. The Treatment Train D represents UF effluent, which 

includes filtration modules of 50, 20, 10, 5, 1, 0.35 𝜇𝑚, GAC, and UF (0.025𝜇𝑚).   The 

Treatment Train E represents RO effluent, which includes filtration modules of 50, 20, 

10, 5, 1, 0.35 𝜇𝑚, GAC, and UF (0.025𝜇𝑚) and RO unit.  



48 
 

4.3.2 Experimental setup 

4.3.2.1 Greywater formulation, and GAC-MI-ME effluent sampling  

Varying strength greywater was considered during the experiment with turbidity 

as a benchmark for strength determination. Over 130 batches of influent greywater were 

formulated using laundry shower wash basin and in some instance a synthetic greywater. 

The synthetic greywater was formulated to be similar to the chemical combination 

excluding the septic content as proposed by Hourlier et al., (2010), and is shown in  

 

 

RAW
(Influent)

CR-F M-F CF UF RO

MULTI-GRADE
 EFFLUENT

 

Figure 4.1 Effluent collection scheme from the GAC-MI-ME greywater treatment 

system where it shows five different effluents from the raw greywater 

 

Appendix A.1.  A random combination of the listed sources was used to create the 

multiple strength greywater with turbidity approximately ranging from 9 to 432 NTU.  

Table 4.1 shows water quality variability measured in the experiments. 
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Batch experiments were conducted for each individually formulated greywater 

samples, and the corresponding effluent was collected at the five stages of GAC-MI-ME 

system (the concept proposed as the multi-grade effluent system).  Figure 4.1 shows the 

sampling scheme for raw and GAC-MI-ME effluents. 

4.3.3 Water quality analysis 

The parameters addressed during the study for effluent quality characterization and 

system performance indicators were BOD5 (Biochemical Oxidation Demand), turbidity, 

total dissolved solids (TDS), pH, and ORP, and dissolved oxygen (DO). YSI proOBOD 

sensor was used for DO and BOD5 measurement.  YSI 6800XLM sonde was used for pH 

assessment. Hanna Instruments H3014 turbidity meter was used to measure turbidity 

(NTU) of the water samples. TDS probe (HM Digital SP2) was used to determine total 

dissolved solids in the samples. The experiments were conducted, and water quality data 

were analyzed at the Texas A&M University campus. The measurements accuracy for 

each of the instruments including turbidity-meter, pH/ORP probe, dissolved oxygen (DO) 

probe and TDS-meter are shown in Appendix B4. 

The water quality database was developed for GAC-MI-ME effluents using the 

experimental results. All the data were set with outliners to avoid excessively high sample 

reading and to minimize over-fitting and erroneous prediction. The data outliners for pH, 

TDS, turbidity, ORP, DO, and BOD were   (5-11), (1500) mg/l, (1500) NTU, (-500 TO + 

500) mV, (15) mg/l, and (1500) mg/l respectively. 
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Table 4.1 Range of water quality parameters used in GREY-ANN model development 

  

Range of raw and GAC-ME-MI treated effluent used for 

GREY-ANN modeling   

Parameters RAW CR-F MF CF UF RO 

Turbidity 

(NTU) 9.1 - 423 3 - 409 2.6 - 369 0.3-204 0.1 -5.3 0.1 -1.3 

BIOD (mg/l) 8.4-259 5.1 - 236 1.4-185 0 -87 0 -34.2 0 -3.6 

ORP (mV) 

(-484) -

(298) 

(-407.2) -

256.5 

(-414.85) - 

315.3 

(-381) - 

312.7 

(-290) - 

355.2 

(-

151.2) 

-363.3 

pH 5.9 - 9.2 5.92-9.93 6.05 -8.95 

6.31-

9.17 

6.53 - 

9.02 

6.37 -

8.74 

TDS (mg/l) 112 - 995 78 -902 71 -878 65 -800 65-707 10 -112 

 

 

4.3.3.1 Experiments on storage impact on raw and treated greywater  

The storage tests were conducted for eight sets of GAC-MI-ME effluents, where 

each set represented the different stages as Raw, CR-F, MF, C-F, UF, and RO water.   

All the samples were stored in clean plastic bottles and kept at room temperature (21 to 

23° C). The impact on storage was determined for the following water quality 

parameters:  turbidity, pH, DO, and TDS. The water quality transitions in raw and 
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treated greywater samples were logged at intervals of 1st, 2nd, 4th, 9th, 12th, and 15th 

days. 

4.3.4 Model development  

The decision support tool GREY-ANN is proposed in the study with the 

objective of determining optimal greywater treatments required to meet desired effluent 

standards for its reuse. Artificial Neural Network (ANN) was applied as black box 

modeling tool in effluent quality prediction and verified with experimental data. The 

GREY-ANN is comprised of five unit models, which are 1) BOD-ANN, 2) TDS-ANN, 

3) TURBIDITY-ANN, 4) PH-ANN, and 5) ORP-ANN, where each unit acts as a 

prediction tool for the corresponding water quality parameters. The unit models were  

further sub-divided into five sub-models; each represents the five stages of treatment 

train as Treatment Train A, Treatment Train B, Treatment Train C, Treatment Train D, 

and Treatment Train E.  

Figure 4.2 shows the flow diagram of the unit model as an element of the GREY-

ANN. It represents a decision support tool for selection of appropriate treatment train for 

achieving a user-defined treatment goal. A total of 25 sub-models were developed, and 

each functions independently for a given greywater influent quality.  

A multi-parameter BOD-MP model was  also developed as a supportive tool for 

GREY-ANN. The model predicts BOD5 values from known values of TDS, turbidity, pH, 

and ORP. The water quality database from the batch experiments were used 
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Figure 4.2 Unit model flow diagram of GREY-ANN 
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for the model development, where a data-driven approach using ANN was applied in 

water quality prediction modeling.  

4.3.5 ANN application in model development 

The concept of the artificial neural network was applied in developing the water 

quality prediction models using Neuro Solutions 6 (2008) platform.  The model 

development flowchart is shown in Figure 4.3.  The data were preprocessed before 

building the prediction models.  All the data rows were randomized to adapt variability 

in observations rather than capturing a consistent pattern. Missing data points were 

substituted with the mean values, and erratic data (beyond the data outliers) were 

replaced either with the minimum and maximum value depending on its proximity to 

either of the values. 

The ANN model development consisted of partitioning the observed data into 

training, cross- validation (CV) and testing data sets. The datasets  were pertioned  for 

ANN model development with 70 % of the data for training, 15% data for validation, 

and 15% data for testing.  However, several other combinations of training, CV, and 

testing data with the ratio of 65:15:20, 60:20:20, and 60:25:15 were also evaluated.  

Several ANN architectures were trained cross-validated and tested in the process 

of model development, which included probabilistic neural network (PNN), generalized 

feedforward (GFF), multilayer preceptor (MLP), time-delayed neural network (TDNN), 

and radial biased function (RBF). The training determines model architecture based on 

the observed input/output relation. The networks were trained and cross-validated with 

several epochs to minimize the error in predicted and observed values. The cross-



54 
 

validation determines the accuracy of the trained network using  CV data, and the 

training stops at a minimum validation error. Several optimized ANN architectures were 

applied to the test data (which were not used for training and cross-validation).  Their 

performance was evaluated in terms of MSE, MAE, and correlation r for given input and 

model predicted output. The optimized ANN model architectures with the highest 

performance i.e. least MAE values were considered as the final models.    

The performance parameters MSE and MAE are defined in Equations 4.1 and 4.2 

respectively.  The Mean square is defined as the average of the square of the errors (both 

positive and the negative error), and the mean absolute error (MAE) is defined as the 

average of the errors (both positive and negative error). 

 

MSE = 1/n∑ |𝑝𝑖 − 𝑦𝑖|2n
i=0   

   (4.1) 

MAE = 1/n∑ |pi − yi|n
i=0   

   (4.2) 

Where:  pi is the model predicted value     

And, yi is the observed value 

The procedures were applied to both the GREY-ANN unit models as well as the 

BOD-MP model development. The models presented in the study correspond to the best  

 



55 
 

                                                  ANN models development  
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Figure 4.3 The flowchart defining the steps applied in ANN model development 

 

performing ANN architectures in predicting the effluent quality of the GAC-MI-ME 

system. An additional validation was added to the predicted values to ensure that it 

resided within the expected range so that the model did not predict values out of range.  

The study also included a sensitivity analysis for the developed models. Two 

different cases of sensitivity analysis were performed for GREY-ANN unit models and 

BOD-MP model respectively. The model output sensitivity was determined using Neuro 
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Solutions6 (2008) platform, where the input was varied about its mean by a fixed number 

of stdev (1) for 50 steps by keeping other input parameters fixed (Kamari, 2015).  

The sensitivity about the mean was determined for water quality parameters at 

Treatment Train D (UF effluent) and Treatment Train E (RO effluent) with the intent of 

determining the impact of the pre-filtration on RO and UF membrane. The same 

procedure was applied for BOD-MP model sensitivity analysis.  

4.4 Results & discussions 

The results have been illustrated in four different sections: 1) raw and GAC-MI-

ME effluents analysis, 2) GREY-ANN Unit-Models [BOD-ANN, TDS-ANN, 

TURBIDITY-ANN, PH-ANN, and ORP-ANN.] performance evaluation and model 

sensitivity analysis, 3) the multi-parameter BOD-MP model analysis, and 4) storage 

impacts of raw and GAC-MI-ME treated effluent.  

4.4.1 Raw and GAC-MI-ME treated effluent characteristics: 

The raw and GAC-MI-ME treated greywater showed wide variability in water 

quality parameters (TDS, Turbidity, pH, ORP, and BOD) as shown in Figure 4.4.  

Regarding turbidity, the GAC-MI-ME treated effluents at RO and UF show significant 

turbidity reduction. The GAC along with CR-F and MF played a vital role as pre-

filtration for UF and RO modules. The average turbidity reduction observed at GAC 

module was about 75%, where the individual contribution of GAC was 42%, and  CR-F 

and MF contribution was 33%. The RO and UF effluent showed the turbidity range 

between 0.11 to 5.23NTU and 0.1 to 1.17 NTU respectively, whereas the raw greywater 

turbidity ranged from 9.13 to 423 NTU.  
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However, for the TDS removal, CR-F, MF, and GAC filtration only accounted for 16.3 

% average reduction. Along with that, the UF membrane module only accounted for 

12.6 % reduction.  The RO module was responsible for a majority of TDS removal with 

the overall GAC-MI-ME terminal efficiency of 92 %. The observed TDS at UF and RO 

module ranged between 65 to 770, and 10 to 112 mg/l respectively compared to the raw 

influent range of 112 to 995 mg/l. It shows that RO is a critical part of GAC-MI-ME in 

dissolved solids removal.  

The BOD5 values also showed wide variability in treated effluents. The GAC-

MI-ME average  terminal efficiency for BOD5 removl was 99%  , with the highest 

contribution from GAC module of about 46% average. Though the raw greywater 

showed BOD5 range of  8.4 to 259 mg/l,  the treated effluent at GAC, UF, and RO 

modules were between 0 to 34, 0 to 34, and 0 to 3.6 mg/l respectively. Comparing the 

pH in the effluents of GAC-MI-ME, the average value of pH does not show much 

variation. The average pH ranged from 7.2 to 7.5 in all the effluents.  However, the raw 

and CR-F effluent showed a broad spectrum of the pH variation from 5.9 to 9.2 and 5.9 

to 9.3, respectively. The UF and RO showed minimum pH above 6.5 (more suitable for 

reuse). Along with that, the ORP values also showed a consistent increase from negative 

to a positive potential and highest in RO effluent. The ORP signified the steady 

improvement in effluent quality along the treatment matrix of the GAC-MI-ME system, 

with improving oxidizing potential (Wareham et al., 1993). 
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Figure 4.4 Water quality variability in raw greywater and GAC-MI-ME treated effluents 
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The variability in raw/treated greywater quality decreased along the treatment 

matrix of GAC-MI-ME. However,  the stringency of water reuse regulations may not 

allow the selected treatment train due to the range of variability where upper limit 

exceeds the permissible limits.  For example, the maximum limit of BOD5 according to 

Asano etal.,(2007)  US regulation for unrestricted and restricted urban reuse are 2 and 30 

mg/l  respectively.  The GAC effluent of GAC-MI-ME system may not be applied, as 

the upper range of BOD5 for the treated effluent ( (87 mg/l) exceeds the unrestricted 

water reuse criteria.  

However, the average BOD5 observed at the treatment train was 18mg/l, which is 

lower than the restricted uses.  Therefore addressing the influent, effluent variability 

along with an appropriate treatment system selection becomes a critical task to improve 

water reuse potential.  

4.4.2 GREY-ANN 

The section demonstrates the performance evaluation of the  5 unit models of 

GREY-ANN  including TURBIDITY-ANN,  PH-ANN, ORP-ANN,  BOD-ANN, and  

TDS-ANN,  where each unit model corresponds to turbidity, pH, ORP, and BOD5, TDS  

prediction at five different stages of GAC-MI-ME systems as described in section 4.3. A 

total of 25 sub-models were developed following the procedures in section 4.3, where 

optimal network selection for prediction models is based on minimum error attenuation 

at training, cross-validation, and testing data sets. Appendix A2 shows comparative.  
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Table 4.2  GREY-ANN unit models performance evaluation with best ANN architecture 

GREY-ANN 

ANN 

Model  MAE 

BOD-ANN     

CR-F MLP-PCA 8.49 

MF PNN 6.52 

C-F RBF 5.55 

UF PNN 2.84 

RO MLP 0.28 

TURBIDITY-

ANN     

CR-F LR 21.69 

MF TDNN 14.01 

C-F TLRN 12.43 

UF TDNN 0.62 

RO TDNN 0.05 

ORP-ANN     

CR-F PNN 56.60 

MF MLP 32.83 

C-F PNN 41.37 

UF MLP 51.50 

RO GFF 41.74 

PH-ANN     

CR-F RBF 0.18 

MF MLP 0.11 

C-F MLP 0.28 

UF RN 0.13 

RO MLP 0.24 

TDS-ANN     

CR-F MLP 11.25 

MF MLP 19.00 

C-F MLP 34.74 

UF MLP 36.70 

RO 
TDNN 6.84 
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performance matrices of the best two ANN architectures for the training, CV, and testing 

data. 
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Figure 4.5 The model (Turbidity –ANN) performance in predicting the 

turbidity values (NTU) for CR-F (A), MF (B), and GAC (C), UF (D), and RO 

(E) effluents of GAC-MI-ME system 
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Figure 4.6 The model (PH –ANN) performance in predicting the pH values (NTU) for 

CR-F (A), MF (B), and GAC (C), UF (D), and RO (E) effluents of GAC-MI-ME system 
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The best performing networks based on least MAE criteria were appraised as the 

GREY-ANN unit-models. Table 4.2 shows the correspond ANN networks adapted to the 

unit models. Figures 4.5, 4.6, 4.7,4.8, and 4.9 shows GREY-ANN unit-models 

performance evaluations. It was validated using the test data, which were not part of the 

model development process and therefore represents unbiased results. Figure 4.8 

represents TDS-ANN, where the correlations between observed and the model predicted 

values were made for CR-F, MF, GAC, UF, and RO effluents and corresponding  R2 

values were observed as 0.99, 0.97, 0.91, 0.85, and 0.66 respectively. Although  weak 

correlations were observed for RO effluent,  the corresponding   MAE values were  0.23.  

Figure 4.5 represents TURBIDITY-ANN, where the R2 values were observed as 0.97. 

0.98. 0.93. 0.65, and 0.91 for the corresponding effluents of the GAC-M-ME systems. In 

this case, most of the sub-models showed high performance in terms of coefficient of 

determination except for the UF, where R2  was 0.71. In the case of ORP-ANN the R2 

values exceeded the 0.9 values in all the prediction sub-models. 
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Figure 4.7 The model (BOD –ANN) performance in predicting the BOD5(mg/l) values 

(NTU) for CR-F (A), MF (B), and GAC (C), UF (D), and RO (E) effluents of GAC-MI-

ME system 
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Figure 4.8 The model (ORP –ANN) performance in predicting the ORP values (mV) for 

CR-F (A), MF (B), and GAC (C), UF (D), and RO (E) effluents of GAC-MI-ME system 
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Figure 4.9 The model (TDS –ANN) performance in predicting the TDS(mg/l) values for 

CR-F (A), MF (B), and GAC (C), UF (D), and RO (E) effluents of GAC-MI-ME system 
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the PH-ANN showed prediction performance with R2  values under  0.7 for GAC and 

RO effluent with MAE of  0.28 and 0.23 respectively.  At the same time, the BOD –

ANN performance observed with R2 under 0.7 and MAE of 2.8 and 0.27 for UF and RO 

effluent respectively.  

Overall, the GREY-ANN unit-models showed  high correlations between the 

observed and model predicted values. The decreasing trend of MAE from coarse 

filtration to RO signifies improving water quality along the treatment trains of the  GAC-

MI-MGE system . The sub-models with predicive perfimance of R2 less than 0.7 were 

attributed mostly to the UF and  RO effluent, which depends on the variability of other 

effleunt. However the small MAE for the parameters at UF, RO, shows that the modules 

can be used for modeling. 

Sensitivity analysis was performed for UF and RO effluents, for determining the 

impact of raw greywater and GAC-MI-ME effluent on the treatment. For UF effluent, the 

quality was considered at   CR-F, MF, and C-F, and for RO effluent, CR-F, MF, and C-F, 

and UF were used to determine the variability of the specific water quality parameter (in 

this case TDS, Turbidity, pH, ORP, and BOD). UF and RO effluent sensitivity to other 

treatment stages (GAC, MF, and CR-F) determine the parameter if the variation in either 

of the effluent affects the RO water quality. Figure 4.10 and Figure 4.11 show the 

sensitivity about the mean for all the water quality parameters to determine the impact on 

UF and RO effluent water quality, respectively. Turbidity at UF was influenced by 

turbidity variation in CR-F, whereas as the turbidity at RO shows almost equal weight to 

all the effluents, even though RO turbidity is below 1 NTU in most of the cases.   The least 
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impact was raw greywater turbidity on RO and UF effluents turbidity. TDS showed 

highest sensitivity at C-F for both UF and RO effluent.  

 

  
 

’          NTU-ANN                           TDS -ANN                           ORP-ANN    

  

 

  
                  PH-ANN         BOD-ANN 

  

Figure 4.10 Sensitivity of GREY-ANN unit-models   on UF effluents 
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’              
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                   PH-ANN         BOD-ANN 

 

Figure 4.11 Sensitivity of GREY-ANN unit models on RO effluent 
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In a complex system such as GAC-MI-ME, where the influent quality variability 

along with variability in the treatment system affect the overall treatment load on the 

more expensive UF and RO membrane modules. The sensitivity analysis provides an 

understanding of load distributions and improvement potentials of the GAC-MI-ME 

system unique to the water quality parameters 

4.4.3.  BOD-MP model for predicting BOD  

The multi-parameter BOD modeling was done using ANN algorithms. The 

corresponding input database was created for turbidity TDS, ORP, pH BOD. Outliners 

set between mean max values for the each of the parameters after removing the erratic or 

the missing data.   

 

 

Figure 4.12  Comparison of the model simulated and observed BOD5 values 
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The data were partitioned and in the best results were obtained at 60 % training and 20 

% validation. The model trained though several ANN algorithms.  The best performing 

neural network algorithm was applied to predict BOD values (Figure 4.12).   

 

        

A  B 

 

          
C          D 

Figure 4.13  BOD (mg/l) variation in BOD-MP model with respect the independent 

parameters (A) turbidity (B) TDS(C) ORP and (D) pH 
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In this case, GFF algorithm was selected with MAE of 17 mg/l and correlation-r 

with (0.76) for test data.  The major issues were observed with data input ranges for 

modeling. However, it is critical to note that the data used were varied for six different 

types of combination water (raw and GAC-MI-ME effluents). The primary reason for 

low correlation r was due to the several null values of RO and UF effluent making the 

data over fitted, and the model was unable to predict zero values. The error is similar to 

errors observed for BOD-ANN for RO and UV.  Figure 4.13 shows the model prediction 

for a diverse input range of independent parameters.  

 

 

Figure 4.14 Comparison of GFF, and multilinear regression predictions for observed 

BOD 
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4.14).  Though, the ANN showed much better performance than the linear regression can 

be applied as with higher range of BOD5 

 

 

Figure 4.15  BOD sensitivity in  BOD –MP model 
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BOD5 in greywater can be attributed to suspended and colloidal particles rather than 

dissolved substances. 

4.4.4. The impact of storage on raw and “GAC-MI-ME” effluents: 

A B   C

E      F G 

Figure 4.16  Change of TDS mg/l with storage time for raw greywater (A) and treated 

greywater (B, C, D, E and F) for coarse filtration (CF), microfiltration (MF), granular 

activated GAC), ultrafiltration (UF), and reverse osmosis (RO) respectively 
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Figures 4.16 to 4.19 show water quality parameter variations for the raw and 

GAC-MI-ME treated greywater over 15 days storage span. The corresponding statistics 

of the parameters variation is listed in Appendix A4. 

A            B C 

D        E      F 

Figure 4.17  Change of turbidity (NTU) with storage time for raw greywater (A) and 

treated greywater (B, C, D, E, and F) for coarse filtration (CF), microfiltration (MF), 

granular activated GAC), ultrafiltration (UF), and reverse osmosis (RO), respectively 
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In raw greywater the average DO drastically changes from 6.1 to 1.6 mg/l in 24 

hours and showed a further decrease during the rest of the period, reaching 1.3 mg/l on 

the 15th day. The pH, values kept dropping down for the entire monitoring period and  
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Figure 4.18  Change of pH with storage time for raw greywater (A) and treated 

greywater (B, C, D, E, and F) for coarse filtration (CF), microfiltration (MF), granular 

activated GAC), ultrafiltration (UF), and reverse osmosis (RO), respectively 
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reached 6.5 on the 15th day.  However, some of the samples showed pH less than 6.5 as 

shown in Figure (4.11). The mean turbidity went down from 134 to 71.6 NTU for the 

storage period span (15 days).  The average TDS showed a consistent increase and 

ranged from 637.8 to 720.5 mg/l. Overall the water quality degrades very quickly for the 

raw greywater and tends to be acidic over a period of 15 days. 

The CR-F effluent showed a similar drift. The DO values came down to from 7.2 

to 2.4 in 24 hours. It reached 1.6 mg/l in 4days and almost remained constant during the 

remaining days at 1.6 mg/l. The pH, values showed a decrease from 7.5 to 6.7 between 

the 1st and 15th day of observation. The mean turbidity decreased from 98.9 to 64.5 

NTU.  The TDS values showed marginal increase from 621.6 to 695.4 NTU.  

For MF effluent the mean DO changed from 7.2 to 3.2 mg/l in 24 hours, which 

was comparatively higher than the Raw and CR-F effluents. However, within 15 days 

span dropped to 1.2 mg/l.  The average pH fell from 7.6 to 6.9.  Mean turbidity went 

down from 89.2 to 59.1 NTU. The TDS showed an increasing trend from 6328.9 to 

699.9mg/l.  

The C-F effluent showed better stability than the MF and CR-effluents. The DO 

values showed decrease down to 4.3 mg/l in 24 hours, at lower DO depletion rate than 

the previously discussed effluents, however, it attained a minimum value of 1.6 mg/l 

after of 15 days. The TDS showed incremental increase from 592.5 to 657.8 mg/l similar 

to MF effluent. However, much less turbidity was found in C-F effluent compared to 

MF, and it showed a slight decrease from 18.8 to 8.8 NTU. The pH also showed a 

marginal decrease from 7.7 to 7.  
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The UF effluent showed a slight increase in TDS from 481 to 499.6 mg/l. The 

mean turbidity went under 1 mg/l from 1.9 mg/l   in 15 days. The DO showed a marginal 

decrease in DO from 8.1 to 7.1mg/l in 15 days, and pH showed a marginal decrease from 

7.8 to 7.3.  

 

 

 

A              B          C 

 

D           E  F 

Figure 4.19  Change of dissolved Oxygen (DO) in mg/l with storage time (days) for raw 

greywater (A) and treated greywater (B, C, D, E and F) for coarse filtration (CF), micro 

filtration (MF), granular activated GAC), ultrafiltration (UF), and reverse osmosis (RO) 

r 

-1

1

3

5

7

9

11

0 10 20

D0(RAW)

-1

1

3

5

7

9

11

0 10 20

DO(CR-F)

-1

1

3

5

7

9

11

0 10 20

DO(MF)

-1

1

3

5

7

9

11

0 10 20

DO(C-F)

-1

1

3

5

7

9

11

0 10 20

DO(UF)

0

2

4

6

8

10

0 10 20

DO(RO) 



79 

The RO water was stable in all the parameters. The DO values almost remained 

constant with slight fluctuation about 0.1mg/l, and turbidity was within 1 mg/l.  

However, it showed an increase in the average pH from 6.5 to 8.3 at the end of 15 days.  

However, the pH value was most stable during 5 to 10 days span with SD of 0.5 as 

shown in Appendix A4. 

Overall, the data from Figure 4. 16 to 4.19 showed RO and UF as very stable 

water, which did not show much variation in DO, turbidity, and TDS. However slight 

upscaling in pH for some of the samples was observed. It increased in pH values in RO 

water averaging to about 7.1 with 0.5 SD during 5th and 10th day of storage. The 

effluents CR-F, MF, C-F, and RAW water showed a similar trend for all the water 

quality parameters with decreasing pH, DO, and Turbidity, and increasing TDS. This 

most likely due to anaerobic decay, where suspended COD turns to dissolved COD over 

time (Ward et al., 1996) 

According to (Ghunmi et al., 2011), greywater excluding kitchen influent is high 

in COD content where 40 % of COD is dissolved, 28 % suspended, and 32 % colloidal. 

GAC-MI-Me treatment trains remove most of the suspended and colloidal solids up to 

UF. This is possibly the reason why the UF and RO effluent shows stability compared to 

microfiltration and other coarse filtration. However, DO depletion rate varied in all 

effluents.  Comparing the time it took DO to reach below 2 mg/ l, it was fastest in raw 

water (24 hours), three days in CR-F, whereas for CF it took nine days. If a decision is to 

be made based on the DO depletion rate, the CF effluent is superior to the other 
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treatments as it can be stored up to 9 days. On the other hand, there are no restrictions on 

storage of UF and RO effluents. 

4.5 Conclusion 

GAC-MI-ME greywater treatment system is capable of improving water quality 

from low to high grade. The unit-models of GREY-ANN showed effective results in 

predicting the water quality parameter and can be applied as potential decision support 

tool in selections of appropriate treatment train specific to the type of greywater and 

treatment goal. The sensitivity analysis of the unit models determined the potential 

variability in treatment trains affecting the specific parameter in UF and RO effluent.  

The multi- parameter model BOD-MP showed less effective results. The possible 

reason can be attributed to the inability of the model to predict extremely low or null 

values in BOD5. At the same time, MAE was very small, which implies that BOD-MP 

can be applied in the prediction of higher BOD ranges. The water quality analysis also 

showed the BOD of the greywater selected in this study mostly associated with turbidity 

rather than TDS, as the BOD–MP analysis revealed that BOD is highly sensitive to the 

turbidity values.  

Greywater storage impact of treated greywater shows longer storage potential for 

the GAC effluent than the MF, CR-F, and raw water.  Untreated greywater has lowest 

storage potential due to rapid depletion of DO and increases in TDS values. Though the 

turbidity decreased in most of the samples, increasing TDS values may further 

complicate the treatment processes, and therefore it is not recommended for storage.  

However, RO/UF treated greywater showed unrestricted storage potentials. 
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This case study provided a possible solution to increase greywater reuse based on 

the experimental evaluations and data-driven modeling approaches.  They are limited to 

the type of greywater applied, and the membrane modules of the GAC-MI-ME system.  

However, a similar approach can be implemented to develop future protocols for 

greywater treatment and reuse using an advanced physical filtration system. 
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 AIR-CONDITIONERS (A/C) CONDENSATE MODELING USING 

PSYCHROMETRIC COMPUTATIONS: AN APPROACH USING MASS 

AND ENERGY BALANCE 

5.1. Introduction 

5.1.1. Background 

The concept of air-conditioning (A/C) condensate collection is an emerging 

alternative in hot and humid climate, but it is not being widely adopted. The A/C 

condensate can be considered as a lucrative alternative for the regions lacking freshwater 

resources, which may not require additional efforts other than piping, plumbing, storage, 

and distribution. Conventionally, A/C condensate is drained and sometimes becomes a 

disposal issues by affecting sewage conveyance and volumetric load on water treatment 

plants (Painter et al., 2009).  In this scenario, the onsite collection and use of A/C 

condensate will not only subside the wastewater conveyance load but  also  will partially 

offset municipal water demand, which potentially can help to promote green 

infrastructure for water scarce regions (Wilson et al., 2008).  

The uncertainty in condensate volume with varying seasonal load was identified 

as a major barrier to its use as an alternative water resource (Cook et al., 2014).  For a 

building planner to use A/C condensate, the potential drivers for condensate estimation 

are financial obligations and water supply strategies during low production periods 

(Lawrence et al., 2010).  It may not be feasible with circumstances, where installation 

and maintenance cost exceeds the financial return. Also, the volumetric information for 

condensate is required for water supply management strategies. Therefore, the 
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condensate estimation is a critical step in improving its potential as an alternative 

resource. 

5.1.2. Condensate 

Grenard et al., (1967) proposed water recovery from a hot and humid climate of 

St. Croix (Caribbean island) using deep sea cold water, with an estimated recovery of 16 

g of water / m3of air).  ‘Heating Ventilation and Air Conditioning’ (HVAC) systems are 

the most common examples of cooling and dehumidification processes. The 

condensation occurs in HVAC systems, when hot and humid air passes through its 

cooling coil, and the air parcel attains the temperature below or at its dew-point (100 % 

moisture saturation condition). In automated temperature and humidity controlled 

system, where the primary function of HVACs is to offset the heat gain (cooling load) 

and meet indoor comfort (Alahmer et al., 2011), it’s hard to capture the system dynamics 

with changing cooling load.  

5.1.3. Attempts made in condensate estimation 

A case study in the San Antonio by Guz et al., (2005) illustrated the high 

potential of condensate collection in hot and humid climate (250 gallons per day from its 

downtown mall, and about 0.16 million gallons per month from its central library).  

Generalized empirical relations were developed to estimate condensate for the city of 

San Antonio, as shown in Equation [5.1] 

 (𝑉)𝑐𝑜𝑛𝑑 𝑖𝑛 𝑔𝑝ℎ = (𝑡𝑜𝑛𝑠 𝑜𝑓  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)(𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟)(0.2 𝑔𝑎𝑙𝑙𝑜𝑛𝑠)  (5.1) 
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It showed the condensate relationship with the maximum cooling capacity of 

HVAC system with an estimate of (0.1 to 0.3) gallon condensate per hour, per ton of 

cooling load. 

Bryant et al., (2008) developed another case-specific set of empirical equations 

for condensate estimation from buildings in Qatar as shown in Equation (5.2):   

  (Mw)condensate = 1.08 CFM 
∆T

12000
   (5.2) 

Where: CFM implies for cubic feet per minute air flow, and ∆T is the 

temperature difference across cooling coil (°F). The estimated condensate for a 

commercial building was proposed in this study to be around 110 gallons for per ton of 

cooling load, considering the dew point temperature exceeds 60° F for at least 140 days 

of a year. 

Painter et al., (2009) estimated condensate for major cities of Texas considering 

energy efficient HVAC systems (enthalpy wheels as heat recovery unit). Air- 

psychrometric relationships were used to determine condensates shown in Equation 

(5.3), which considers the condensate formation as a function of humidity difference 

across the cooling of HVAC system i.e. between supply condition and enthalpy wheel.    

(𝛶) =  ∆𝑊𝑐𝑐 
𝑃𝑎

1.0 ×106   (5.3) 

Where: 𝛶 is condensate potential in gal/ft3, ∆𝑊𝑐𝑐  is the difference of humidity 

ratio across cooling coil, and Pa stands for density of dry air (lb/ft3). The study showed 

the estimated condensate volume for the cities of San Antonio, Houston, and Dallas were 

6 х 10-5, 5.6 х 10-5, and 5.0 х 10-5 gallon per cubic feet of cooling space respectively. 
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Lawrence et al., (2010) developed a model for condensate estimation using air-

psychrometric approach for dedicated air handling units (100% ventilation). Condensate 

computations in this study were based on Equation (5.4), where the volumetric 

condensate was considered as a function of the difference of the humidity ratio between 

the supply air and the outside air.  

(𝑀𝑤)𝑐𝑜𝑛𝑑 = (𝐴𝑖𝑟𝑓𝑙𝑜𝑤) (𝐷𝑒𝑛𝑠𝑖𝑡𝑦)60
𝑚𝑖𝑛

ℎ𝑟
   (𝛥𝑊) (5.4) 

Where: Mw stands for mass of condensate in (kg), and 𝛥𝑊 is the difference of 

humidity ratio across cooling coil. Significant errors in the study were attributed to 

indirect supply-air volume measurement (logging motor current of supply fan) as well as 

direct measurement of temperature and humidity data of supply air.   The supply flow 

volume resulted in 15% error, while the model simulated result was with 28% variation 

in condensate volume.   

Cook et al., (2012) estimated condensate volume for a commercial building in 

Brisbane using the model developed by Lawrence et al., (2010). The study showed that 

the estimated condensate of 4200 l/day could meet the non-potable irrigation water 

demand during peak summer hours.  

Most of the studies cited above were site and system specific, and models were 

empirical in nature. The volumetric flow rate was considered as a more conventional 

way to compute condensate. However, measuring volumetric flow rate is itself a 

challenge that could result in a significant error. 

Also, predicting condensate volume at maximum cooling capacity of HVAC 

would be an over prediction.  HVAC designs for buildings are based on the peak cooling 
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load (Hui et al., 1998). In real time, energy gain and loss in the system will vary with 

time (Al-Rabghi et al., 1999) affecting overall operation of HVAC systems and 

henceforth the condensate formation.  

This study proposed a methodology for time-step condensate estimation by 

accounting for weather variability and HVAC control settings. The weather variability 

refers to temporal changes in temperature (T), and relative humidity (RH) of outdoor and 

indoor conditions. The HVAC control settings used are outdoor air ventilation (η), 

volumetric exchange rate (SV/hr), cooling coil temperature (Tc) and its bypass factor (f).  

More emphasis is given on variable cooling load for the condensate volume estimation. 

5.1.4. Objective 

The specific objective of the study is to develop an A/C condensate estimation tool 

(“ACON Model”) accounting for seasonal and HVACs operational variability.  

5.2.  Methods  

This section presents the scientific rationale and the detailed procedures involved 

in developing the “ACON Model”. The “Visual Basic for Applications” (VBA) was 

used as a framework for the model development.  The model automates the 

thermodynamic computations involved in cooling and dehumidification processes. 

5.2.1. Model logic and assumptions  

The ACON model uses mass balance and energy conservation approaches to 

compute condensate and considers HVAC operation under steady state conditions. It 

accounts for psychrometric state of different air parcels during the cooling and 
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dehumidification processes. The condensate formation across the cooling coil is a result 

of phase change of moist-air at saturation. 

Figure 5.1 shows recirculating air streams for an operating HVAC system, and 

assumes the supply conditions in thermodynamic equilibrium with the conditioned air 

(?) during a given time-interval. The psychrometric states (specific enthalpy, specific 

humidity, relative humidity, dry bulb temperature, specific volume, dew point 

temperature, saturation vapor pressure and partial pressure of moist air) of air parcels 

continuously changes from outdoor air to supply conditions as described Figure 5.2. The 

node ‘A’ is outdoor air. The node ‘B’ is mixed air (the mixed condition with the return 

and outdoor air). The node ‘C’ is the point of condensation at cooling coil. The node ‘D’ 

represents air stream at the exit of the cooling coil (includes the effects of the coil-bypass 

factor). The node ‘S’ is supply air to the conditioned space at steady state, and the node 

‘Z’ represents indoor design condition. The node ‘R’ is the return air stream, and the 

node ‘E’ represents the exhaust air flow. The ACON model does not account for the 

sensible heat gain due to fan operation, and therefore model computations consider 

points ‘S,' ‘R,' ‘Z,' and ‘E’ at the same psychrometric state with no transition.  

The following assumptions and considerations were made for “ACON model” 

development. (1) Cooling and dehumidification processes follow law of conservation of 

mass and energy. (2)  HVAC systems work with constant air volume supply (CAV). (3) 

The moist air is an approximation of ideal gas. (5) It also assumed that the coiling-coil of 

HVAC system operates at constant temperature and bypass factor, but with variable 

volume at node ‘C’. (6) The psychrometric state of supply volume at node ‘S’ is  result 
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of  combined  thermodynamic state of mixed air stream at node ‘M’, and coil supply air  

at node ‘C’. (7) The exhaust air and the return air are in the same psychrometric state as 

of indoor conditions. (8) The condensate temperature is the same as the cooling coil 

temperature. (9)  There is no additional heat gain in the system due to the electric fan.  

(10) There were no separate considerations for enthalpy wheel, reheating coil or 

additional dehumidifier/humidifier in the system. (11) The model categorized the 

cooling load as internal cooling load and the Ventilation Load.  The Ventilation Load 

was accounted as combined effect of outdoor air mixing as well as the room volume 

exchange rate.  The internal cooling load was considered as all the load transitions in the 

conditioned space excluding Ventilation Load (building envelope, number of occupants, 

operating appliances , time of operation, infiltrations or any other factors affecting  load 

gain/or loss ). 

5.2.2. Model input parameters  

The ACON model considered thermo-hygrometric (T, RH) information as 

weather variant parameters. The parameters affecting HVAC operation were included as 

ratio of the outdoor air to the return air (ƞ), coil temperature and coil-bypass factor (f), 

volumetric air exchange rate (SV/hr) for the building, duration of operation, atmospheric 

pressure (Pa), room volume (m3), and time series Internal Load data (kJ). 



Figure 5.1 Operational details of ACON model for condensate estimation during mechanical cooling and dehumidification 

process, assuming steady state conditioned space and considering law of conservation and mass and energy in ideal condition 
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5.2.3. Model development 

The model computations were based on the psychrometric chart and divided into 

five different sub-models: (1) “Psychrometric” module, (2) “Mixed-air” module, (3) 

“Condensate analysis” module, (4) “Operational HVAC module,” and (5) “Load 

analysis” module.” 

5.2.3.1. Psychrometric module 

The psychrometric module determines the thermodynamic state of air parcels 

from given weather variant parameters. The moist-air psychrometry is graphically 

represented in the psychrometric chart (Wexler et al., 1983). The module eliminates the 

need for manual computations, and graph-reading using the known psychrometric 

parameters in this case relative humidity (ф), and dry bulb temperature (T).  It 

determines the following psychrometric parameters, including, dew-point temperature 

(Tdew), specific-humidity (W), specific volume (v), saturation vapor pressure (𝑃𝑤𝑠), and 

specific enthalpy (h). The following equations and derivations were applied to determine 

the parameters. 

As, relative humidity (ф) is the ratio of partial pressure of moist air (Pw) to the 

ratio of partial pressure at saturated condition (Pws) (Tsilingiris et al., 2008). Partial 

pressure of water vapor can be expressed in terms of relative humidity and saturation 

vapor pressure Equation (5.5). The partial pressure of moist air (Pw) can be determined 

by substituting condition (Pws) from Equation (5.14) in Equation (5.5). 
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Figure 5.2 psychrometric calculations considered in “ACON” model for air parcels transition 
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Pw =  ф ∗ Pws (5.5) 

Pw =  ф ∗ 610.78 exp (17.269
T

237.3+T
) (5.6) 

As per assumption, the moist air, dry air, and water vapor follows the ideal gas 

law. Using to ideal gas law in Equation 5.7, the specific volume of water in Equation 5.8 

can in can be expressed in terms of dry bulb temperature and partial vapor pressure of 

water (Pw) in Equation 5.9. 

Pw ∗ vw = Rw ∗ Tw (5.7) 

vw = Vw/Mw (5.8) 

vw = Rw ∗
Tw

Pw
(5.9) 

So, the mass of water can be expresses in terms of ideal gas law by Equations 5.8 

and 5.9 as Equation 5.10. 

           Mw = Vw ∗ Pw/(Rw ∗ Tw) (5.10) 

Similarly, for dry air the mass  (Ma) can be expressed as in Equation (5.11) 

Ma = Va ∗ Pa/(Ra ∗ Ta)     (5.11) 

The humidity ratio (W)  in the psychrometric chart measures the water content of 

moist-air, which is the ratio of mass of water (Mw) to the mass of dry air (Ma)  as 

expressed in Equation (5.12). The humidity ratio can be expressed as in Equation (5.13) 

(Alahmer et al., 2011), by substituting Equations. (5.10 and 5.11) in (5.12). 

W =
Mw

Ma
(5.12) 

Or, W =
Rw

Ra
∗

Pw

Pa
 [ Va = Vw, And Ta = Tw] 
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 Or, W = 0.622 ∗
Pw

Pa
 [ 

Rw

Ra
= 0.622   ] 

(5.13) 

Saturation vapor pressure Pws is as function of temperature can be obtained from 

the psychrometric chart. In this model, the expression for(Pws) was used from Singh et 

al., (2002) as shown in Equation (5.14). 

Pws = 610.78 exp (17.269
T

237.3+T
)      [0°C < T < 63°C] 

      (5.14) 

Relative humidity and dry bulb temperature are known psychrometric parameter 

here, so for the air-vapor mixture, humidity ratio can be written in terms of saturation 

pressure (Pws), and relative humidity (ф) as Equation (5.15) by substituting Equation 

(5.6) in (5.13). 

 W = 0.622 ∗
ф∗Pws

Patm−ф∗Pws
 [ Patm = Pw + Pa, and Pws =  ф ∗ Pw] 

 (5.15) 

The specific enthalpy(h) of air parcel can be obtained using the psychrometric 

chart from two known psychrometric parameters. The derivation [h = f(T)] can also be 

defined (Wilhelm et al., 1975) as shown in Equation (5.16). 

H = 1.006 T + W(2501 + 1.775T)  [−50°C ≤ T ≤ 110°C]  

    (5.16) 

The model computes the dew point temperature of air parcel using Wilhelm et 

al., [1975] 
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Tdew = 6.983 + 14.38 ln (
Pw

1000
) + 1.079{ln (

Pw

1000
)}2    

                                             (5.17) 

  [0°C < T ≤ 50°C]  

5.2.3.2. Determining psychrometric transitions of airstreams due to HVAC control 

settings using “Mixed-air module” 

 

The HVAC control settings in the ACON model accounts for outdoor air 

ventilation (η), cooling coil temperature  (Tcoil) and corresponding bypass factor (f), 

and room volume exchange rate (SV/hr). This section emphasizes the psychrometric 

state change in air parcels in cooling and dehumidification processes as a result of 

varying operating conditions primarily due to outside air ventilation (η), and cooling coil 

and associated bypass factor (f).  

If η is the volumetric ratio of air streams (outside air, and total volumetric flow) 

with different humidity ratio and temperature, the humidity ratio and temperature of the 

mixed stream can be determined using mass balance for mixing two streams with no 

humidification (Kamm et al., 2007).  The following Equation (5.18) can be written. 

(1 −η)(Ma,Mw)Return +η(Ma,Mw)outside = (Ma.Mw)mixed                              

(5.18) 

Where, η =
(V)Outside

(V)Total
,  and  

1 − 𝜂 =
(𝑉)𝑅𝑒𝑡𝑢𝑟𝑛

(𝑉)𝑇𝑜𝑡𝑎𝑙
 

Using energy conservation, as the energy exchange between two streams as 

result of temperature gradient can stated below (Kamm et al., 2007).   
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{(ℎ)𝑚𝑖𝑥𝑒𝑑 − (ℎ)𝑟𝑒𝑡𝑢𝑟𝑛}(𝑀𝑎)𝑟𝑒𝑡𝑢𝑟𝑛 = {(ℎ)𝑜𝑢𝑡𝑠𝑖𝑑𝑒 − (ℎ)𝑚𝑖𝑥𝑒𝑑}(𝑀𝑎)𝑜𝑢𝑡𝑠𝑖𝑑𝑒  

So,   

(ℎ)𝑚𝑖𝑥𝑒𝑑 = [{(ℎ)𝑟𝑒𝑡𝑢𝑟𝑛 (𝑀𝑎)𝑟𝑒𝑡𝑢𝑟𝑛 + (ℎ)𝑚𝑖𝑥𝑒𝑑}(𝑀𝑎)𝑜𝑢𝑡𝑠𝑖𝑑𝑒}/

{(𝑀𝑎)𝑂𝑢𝑡𝑠𝑖𝑑 + (𝑀𝑎)𝑟𝑒𝑡𝑢𝑟𝑛}]   

                                           (5.19)

   

(𝑀𝑎)𝑟𝑒𝑡𝑢𝑟𝑛 = (𝑉)𝑟𝑒𝑡𝑢𝑟𝑛/(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛, 

(𝑀𝑎)𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = (𝑉)𝑜𝑢𝑡𝑠𝑖𝑑𝑒/(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 

 

Hence, Equation (5.19) can be written in terms of η, and 𝑣: 

(ℎ)𝑚𝑖𝑥𝑒𝑑 = [
{((𝐸)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
)+

𝜂(𝐸)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
}

]  

                                            (5.20) 

 

Similarly,  

(𝑇)𝑚𝑖𝑥𝑒𝑑 = [
{((𝑇)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
)+

𝜂( )𝑜𝑢𝑡𝑠𝑖𝑑𝑒

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
}

]    

                                            (5.21)
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And, 

(𝑊)𝑚𝑖𝑥𝑒𝑑 = [
{((𝑊)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
)+

𝜂(𝑇)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
}

]          

(5.22) 

5.2.3.3.Cooling coil temperature: 

Cooling coil temperature is another parameter that determines the temperature of 

the air parcel passing through it. The model considers an ideal state where the air parcel 

exits the coil at the coil temperature and the condensation also occurs at the coil 

temperature which implies for air turns to 100 % saturation state.  Also, the conditional 

statement shown below states that dehumidification only occurs if the cooling coil 

temperature is equal or less than the dew point of the mixed air stream: 

Condition 1: (No condensate formation) 

 (𝑇𝑑𝑒𝑤)𝑚𝑖𝑥𝑒𝑑 > 𝑇𝑐𝑜𝑖𝑙,     

Condition 2: (Condensate formation) 

(𝑇𝑑𝑒𝑤)𝑚𝑖𝑥𝑒𝑑 ≤ (𝑇)𝑐𝑜𝑖𝑙,    

The model accounts for the bypass factor (f) of the cooling system, which 

implies that a fraction of the air parcel does not come in contact with the cooling coil 

fins (Pita et al., 1998).  

The psychrometric states of the supply air were calculated with similar analogy 

of mixing of two air stream with different psychrometric states without dehumidification  

as discussed earlier in section (5.2.3.2) and the following equations were derived, where 

(ℎ)′𝑐𝑜𝑖𝑙, (𝑇)′𝑐𝑜𝑖𝑙, 𝑎𝑛𝑑 (𝑤)′𝑐𝑜𝑖𝑙 represents the change air parcel exiting the cooling coil 
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with impact of bypass factor. In this case mixing occurs in the ratio of bypass factor(𝑓), 

and supply air condition is assumed to have no sensible heat gain due to operation of the 

fan.  

(ℎ)′𝑐𝑜𝑖𝑙 = [
{((ℎ)𝑐𝑜𝑖𝑙

(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
)+

𝑓𝜂(ℎ)𝑚𝑖𝑥𝑒𝑑

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

{
(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
+

𝑓𝜂

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

]  

                                                                                         (5.23) 

(𝑇)′𝑐𝑜𝑖𝑙 = [
{((𝑇)𝑐𝑜𝑖𝑙

(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
)+

𝑓(𝑇)𝑚𝑖𝑥𝑒𝑑

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

{
(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
+

𝑓𝜂

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

]  

                                              (5.24) 

 

(𝑤)′𝑐𝑜𝑖𝑙 = [
{((𝑤)𝑐𝑜𝑖𝑙

(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
)+

𝑓(𝑤)𝑚𝑖𝑥𝑒𝑑

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

{
(1−𝑓)

(𝑣)𝑐𝑜𝑖𝑙
+

𝑓𝜂

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

]  

                                                                                         (5.25) 

5.2.4. Condensate estimation using “condensate analysis module” 

Energy conservation and mass balance approach were used to solve the problem. 

The energy gain in the conditioned space due to moisture and temperature increments, 

results in the total cooling load, which implies that the heat is extracted from the parcel 

of supply air to maintain steady state at designed indoor conditions (desired humidity 

and temperature).  Steady state equations can be determined to estimate condensate with 

continuous change in moisture and energy in air parcels. 

Using mass balance, it can be written as follows; 
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(𝑀𝑎)𝑖𝑛 = (𝑀𝑎)𝑂𝑢𝑡 

(𝑀𝑤)𝑖𝑛 = (𝑀𝑤)𝑜𝑢𝑡 + (𝑀𝑤)𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 

Now, writing the mass balance equation in terms of humidity-ratio using Equation 

(5.26). 

(𝑀𝑤)𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 = (𝑀𝑎)(𝑊)𝑚𝑖𝑥𝑒𝑑 − (𝑀𝑎)(𝑊)𝑐𝑜𝑖𝑙  `

                                              (5.26) 

Using energy balance: 

(𝐸)𝑚𝑖𝑥𝑒𝑑 = (𝐸)𝑐𝑜𝑖𝑙 + (𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + (𝐸)𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 

   

(𝐸)𝑚𝑖𝑥𝑒𝑑 − (𝐸)𝑐𝑜𝑖𝑙 = (𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + (𝐸)𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 

                                              (5.27) 

Considering enthalpy of dry air and water vapor in air-vapor mixture as following 

equations 

(𝐸)𝑐𝑜𝑛𝑑 = (𝑀𝑤)𝑐𝑜𝑛𝑑 ∗ (ℎ𝑤)𝑐𝑜𝑛𝑑  

                                              (5.28) 

The mass and energy balance equation can be written as it as Equation (5.29) (Kamm et 

al., 2007). 

(ℎ)𝑚𝑖𝑥𝑒𝑑 − (ℎ)𝑐𝑜𝑖𝑙 =
(𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝑀𝑎
+ (𝑊𝑚𝑖𝑥𝑒𝑑 − 𝑊𝑐𝑜𝑖𝑙)(ℎ𝑤)𝑐𝑜𝑛𝑑           

                                            (5.29) 
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The information about cooling loads, weather data, conditioned space data, 

bypass factor, recirculation ratio, cooling coil temperature can be integrated together to 

find the condensate formation  with respect to time.  

However, the condensation occurs at the cooling coil. This implies that the dry 

mass air flow determines the condensate formation, using the energy equation  

 𝑀𝑎 =   (𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔/[(ℎ)𝑚𝑖𝑥𝑒𝑑 − (ℎ)𝑐𝑜𝑖𝑙 − (𝑊𝑚𝑖𝑥𝑒𝑑 − 𝑊𝑐𝑜𝑖𝑙)(ℎ𝑤)𝑐𝑜𝑛𝑑] 

                                                                                         (5.30) 

The above Equation (5.30) assumes a 100 % effectiveness of cooling coil. 

Considering the bypass factor(𝑓),  only a fraction of the total dry mass supply is 

effectively in condensate formation as can be written as: 

𝑀𝑎′ = −(1 − 𝑓)(𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔/[ (ℎ)𝑐𝑜𝑖𝑙 − (ℎ)𝑚𝑖𝑥𝑒𝑑 − (𝑊𝑐𝑜𝑖𝑙 −

𝑊𝑚𝑖𝑥𝑒𝑑)(ℎ)𝑐𝑜𝑛𝑑]   

                                              (5.31) 

Therefore, the condensate formation can be obtained by substituting the Equation 

(5.31) in Equation (5.26), and the expression of condensate formation can be written in 

Equation (5.32) 

(𝑀𝑤)𝑐𝑜𝑛𝑑 =
(1−𝑓)(𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔

[ (ℎ)𝑚𝑖𝑥𝑒𝑑−(ℎ)𝑐𝑜𝑖𝑙−(𝑊𝑚𝑖𝑥𝑒𝑑− 𝑊𝑐𝑜𝑖𝑙)(ℎ)𝑐𝑜𝑛𝑑]
[(𝑊)𝑚𝑖𝑥𝑒𝑑 − (𝑊)𝑐𝑜𝑖𝑙]

 (5.32) 

 

By substituting Equations (5.20), and (5.22) in Equation (5.32), the final 

expression can be written as Equation (5.33). 
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(𝑀𝑤)𝑐𝑜𝑛𝑑 =  
(1−𝑓)(𝑄)𝑐𝑜𝑜𝑙𝑖𝑛𝑔

[
 
 
 
 
 
 
 

 
{((𝐸)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)
(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛

)+
𝜂(𝐸)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂
(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛

}
−

(ℎ)𝑐𝑜𝑖𝑙−{
{((𝑊)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)
(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛

)+
𝜂(𝑇)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂
(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛

}
− 𝑊𝑐𝑜𝑖𝑙}(ℎ)𝑐𝑜𝑛𝑑

]
 
 
 
 
 
 
 
  

  

 

 

[
 
 
 
{
((𝑊)𝑟𝑒𝑡𝑢𝑟𝑛

(1−𝜂)

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
)

+
𝜂(𝑇)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒

}

{
(1−𝜂)

(𝑣)𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+

𝜂

(𝑣)𝑟𝑒𝑡𝑢𝑟𝑛
}

− 𝑊𝑐𝑜𝑖𝑙
]
 
 
 

 

    

(5.33) 

5.2.5.  Determining operational duration and intensity of HVAC system using 

“operational HVAC module”   

The “Operational HVAC module” of ACON model determines operational 

duration and intensity of HVAC systems for varying load conditions while meeting the 

thermodynamic steady state of conditioned space.  

The term ‘Binary Operational Coefficients’ (€) was introduced, which represents 

operating/non-operating conditions of HVAC (cooling and dehumidification only). The 
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ACON model uses the concept to determine the time period during which the HVAC 

system will be operating with condensation.  The ACON model determines the ambient 

energy with known temperature and relative humidity using Equation. 5.16, where the 

total ambient energy is the combined effect of sensible and latent heat energy. The term 

sensible heat ratio (SHR) is commonly used in HVAC design, which is the ratio of 

sensible load to the total load on the system (Mazzei et al., 2005). The SHR value of 1 

indicates sensible cooling only (no dehumidification). The model determines the 

potential operating and non-operating conditions of HVAC system [€ (1, 0)] by 

considering seasonal variability, indoor design conditions along with HVAC control 

settings.  Following conditional statements were used to determine (€).  

Condition 1(SHR<1): 

 (𝑇)𝑚𝑖𝑥𝑒𝑑 > (𝑇)𝑖𝑛,  And  

(𝑊)𝑚𝑖𝑥𝑒𝑑 > (𝑊)𝑐𝑜𝑖𝑙, Then 

€ = 1 

Condition 2 (SHR=1): 

(𝑇)𝑚𝑖𝑥𝑒𝑑 > (𝑇)𝑖𝑛,  And  

(𝑊)𝑚𝑖𝑥𝑒𝑑 < (𝑊)𝑐𝑜𝑖𝑙, Then 

€ = 0 

Condition 3: 

(𝑇)𝑚𝑖𝑥𝑒𝑑 < (𝑇)𝑖𝑛,  Then 

€ = 0 
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The term ‘Cooling Load Index’ (𝜓) was proposed in this study to represent the 

operational intensity of HVAC system (during cooling and dehumidification process 

only). The operational intensity is demonstrated in Figure 5.3 (higher cooling load 

implies for higher volumetric flow of mixed air stream though cooling coil to attain 

steady state supply conditions). The Cooling Load Index is the fraction of the coil-

supply air to total supply and represents intensity of HVAC operation with cooling load 

on the system. The value of (𝜓) Equation (5.35) increases and approaches 1 for 

maximum cooling load and the value is zero for non-operational conditions of HVAC 

system. The value of mixed flow index (∀) (Equation 5.36) decreases with increasing 

load, and approaches maximum (1) at non-operational condition. Equations (5.34) and 

(5.37) represent constant supply volume in the system. 

 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑉𝑚𝑖𝑥 + 𝑉𝐶𝑜𝑖𝑙                                                    

  

 (5.34) 

(𝜓) =
𝑉𝑠𝑢𝑝𝑝𝑙𝑦

𝑉𝑐𝑜𝑖𝑙
    

   

  (5.35) 

(∀) =
𝑉𝑠𝑢𝑝𝑝𝑙𝑦

𝑉𝑚𝑖𝑥
   

   

   

 (5.36) 

And,   
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 𝜓 + ∀ = 1   

   

  (5.37) 

 

Considering that the system operates at Ventilation Load, the corresponding 

value of Cooling Load Index is 𝜓𝑣.  The term Internal Load is attributed to all the heat 

gain and loss in the system than need to be offset by increasing the Cooling Load Index. 

With additional Internal Load (𝜓𝑖), the total Cooling Load Index (𝜓) is shown in 

Equation (5.38). 

𝜓𝑣 +  𝜓𝑖 =  𝜓   

  (5.38) 

ACON model determines (𝜓) values for time series data of temperature and 

relative humidity by iterating for known computed values of enthalpy (ℎ)𝑠𝑢𝑝𝑝𝑙𝑦 ,  

mixed air (ℎ)𝑚𝑖𝑥𝑒𝑑, and coil supply air (ℎ)𝑐𝑜𝑖𝑙, as shown in Equations (5.38) and 

(5.39).  

Using conservation of the mass: 

(𝑀𝑎) 𝑐𝑜𝑖𝑙 + (𝑀𝑎)𝑚𝑖𝑥𝑒𝑑 = (𝑀𝑎)𝑠𝑢𝑝𝑝𝑦 

𝑉𝑐𝑜𝑖𝑙

(𝑣′)𝑐𝑜𝑖𝑙
+

𝑉𝑚𝑖𝑥𝑒𝑑

(𝑣)𝑚𝑖𝑥𝑒𝑑
=

𝑉𝑠𝑢𝑝𝑝𝑙𝑦

(𝑣)𝑠𝑢𝑝𝑝𝑙𝑦
  

(𝜓𝑡)𝑉𝑠𝑢𝑝𝑝𝑙𝑦

(𝑣)𝑐𝑜𝑖𝑙
+

(∀𝑡) 𝑉𝑠𝑢𝑝𝑝𝑙𝑦

(𝑣)𝑚𝑖𝑥𝑒𝑑
=

𝑉𝑠𝑢𝑝𝑝𝑙𝑦

(𝑣)𝑠𝑢𝑝𝑝𝑙𝑦
  

Using conservation of energy: 
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(ℎ)𝑠𝑢𝑝𝑝𝑙𝑦 = [
{( 𝑀𝑎)𝑐𝑜𝑖𝑙(ℎ)𝑐𝑜𝑖𝑙+(𝑀𝑎)𝑚𝑖𝑥𝑒𝑑 (ℎ)𝑚𝑖𝑥𝑒𝑑}

{𝑀𝑎) 𝑐𝑜𝑖𝑙+(𝑀𝑎)𝑚𝑖𝑥𝑒𝑑 }
]  

Or, 

(ℎ)𝑠𝑢𝑝𝑝𝑙𝑦 =
{
(𝜓𝑡) (ℎ)𝑐𝑜𝑖𝑙

(𝑣)𝑐𝑜𝑖𝑙
+

(∀𝑡)(ℎ)𝑚𝑖𝑥𝑒𝑑 

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

{
(𝜓𝑡)

(𝑣)𝑐𝑜𝑖𝑙
+

(∀𝑡)

(𝑣)𝑚𝑖𝑥𝑒𝑑
}

  

  (5.39) 

(𝑉)𝑠𝑢𝑝𝑝𝑙𝑦 = (𝑉)𝑐𝑜𝑜𝑙𝑖𝑛𝑔𝑠𝑝𝑎𝑐𝑒  (
𝑆𝑉

ℎ𝑟
)  𝑇𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

  (5.40) 

The ACON model determines the total supply volume time of operation, cooling 

space volume and volumetric exchange rate as shown in Equation (5.40). The supply 

condition corresponds to given indoor temperature and relative humidity. The 

corresponding coil-induced supply volume is determined using Equation (5.35), and the 

condensate is determined using Equation (5.33). 

5.2.6. Determining internal load for observed condensate data using “load 

analysis module” 

The “Load analysis module” computes the total cooling load on the system for 

known time series data on temperature, relative humidity, and condensate (for cooling 

and dehumidification cases only). The simulations include backward iterative 

computation of the “Condensate analysis” module by determining total coil-supply 

index (𝜓) . It computes the Internal Load on the system by following Equation (5.41) 

and is used where Ventilation Load is determined. 
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𝜓𝑖 =  𝜓𝑡 − 𝜓𝑣                                             (5.41) 

 

 

 

Figure 5.3 The diagram depicts variable coil supply volume and mixed air volume 

together for total supply volume to meet the thermodynamic steady state 

condition of supply volume 

 

 

5.3. Conclusion 

A model (ACON) was developed for condensate estimation from conventional 

HVAC units. Two different concepts were proposed in this study: 1) total cooling load 

categorized as Ventilation Load, and Internal Load, 2) “Cooling Load Index” (ratio of 

coil induced volume to the total supply volume) representing the intensity of system 

operation corresponding to cooling load on the system.  The input parameters for ACON 

model include; (1) temperature and hygrometric data (T, and RH) for both the outdoor 

and indoor conditions , (2) outdoor air ventilation , (3) cooling-coil temperature  and 

corresponding bypass factor, (4) volumetric  air exchange rate for the conditioned-space, 

Cooling coil
V Supply = V Mixed + Vcoil Coil

V Coil

V Mixed
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(5) time of operation, and (6) atmospheric air pressure, (7) conditioned-space volume,(8) 

time series Internal Load data (condensate analysis module) or  time series observed 

condensate data (load analysis module).  

The ACON model can be used as a universal application with weather data, and 

Internal Load information and the HVAC settings for a given conditioned space.  As 

outdoor air ventilation is a critical operational component affecting the total cooling load 

on the system and as a result condensate estimation, the ACON model facilitates user 

customization of ventilation and computes the condensate. The improved accuracy in 

condensate estimates over the conventional empirical approach will promote its use in 

several ways; 1) determining the financial costs and return associated with condensate 

collection systems and, 2)  and also may help in decision making in water supply 

strategies during  condensate recovery periods. 
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 APPLICATION OF ACON MODEL SIMULATIONS IN CONDENSATE 

ESTIMATION USING WEATHER DATA: A CASE STUDY OF DOHA 

USING ANN PREDICTION TOOL 

6.   

6.1. Introduction 

This study determined the potential for A/C condensate use as an alternative 

water resource for the city of Doha using a time-step (hourly/daily) condensate-volume 

estimation and water quality analysis. A Hybrid modeling approach using psychrometric 

based ACON (air-conditioner-condensate) model, and data-driven ILAN (Internal Load 

analysis using neural-network) was applied semi-empirically for condensate volume 

estimation. 

 The ACON model uses the Cooling Load Index (ventilation and internal) for 

time-step condensate estimation using thermo-hygrometric data and HVAC control 

settings as described in Section 5. The model determines the Ventilation Load Index, and 

uses Internal Load as input. The Internal Loads are empirical in nature and vary with 

building type and conditions. The ILAN model was developed for the city of Doha to 

predict time-step Internal Load Index for variable climatic conditions (Temperature, 

Relative humidity).  The input-output database for ILAN was derived using ACON 

simulations from observed condensate volume which included; 1) temperature, 2) 

relative humidity, 3) specific enthalpy for outdoor and indoor condition and, 4) 

Ventilation Load Index at 20 % for desired output of 5) Internal Load Index.  

6.1.1. Background of study  

 The city of Doha is located in the Arabian Peninsula and is a business hub for 
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the State of Qatar. High economic growth, associated with its large oil and natural gas 

reserves, is resulting in rapid urbanization and population growth (Bryant et al., 2008). 

The overall impact is increasing water stress, and therefore lowering water availability 

per capita (UNDP, 2009). According to UNDP (2009), the country’s municipal water 

demand will increase by five times between the years 2010 and 2060. At the same time, 

low freshwater availability in Qatar with annual rainfall (1.5 inch) and brackish surface 

water (51.4 MCM) and groundwater (15 MCM) (Abahussain et al., 2002) adds to the 

problem of water stress. 

Desalination is the only primary means of water supply in the country, with an 

average production of 200 million gallons per day (MGPD) (Bryant et al., 2008). 

Expansions of desalination plants with increasing water demand are posing critical 

challenges on future water sustainability, as the desalination processes are a capital and 

energy intensive process that is detrimental to local marine ecosystems (Latteman et al., 

2008). Therefore, a new sustainable alternative need to be found to offset dependency on 

desalination.  

6.1.2. A/C condensate potential  

There is a high potential for A/C condensate in a hot and humid climate of Doha, 

where most of its residential and commercial buildings are equipped with HVAC 

systems.  The water quality evaluations and quantitative estimation will play a vital role 

in determining A/C condensate as an alternative resource for the city. 

Water quality analysis, determines the type of water reuse that can be achieved 

based on, local or regional water regulations to avoid risks associated with human and 
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environmental safety (WHO, 2003).  Table 2.3 shows water quality variations observed 

in A/C condensate. However the water quality of A/C condensate can be attributed to 

type, age, and surrounding air contamination (Loveless et al., 2013). In this scenario, a 

case specific study on water quality evaluations would provide a better assessment for it 

potential use of A/C condensate. 

 Information on water quantity is another critical aspect in determining supply 

management strategies (Abrishamchi et al., 2005). Considering A/C condensate as a 

potential alternative water resource, volumetric measurement is essential not only for 

decision making in supply strategies but also to determine its economic feasibility 

(Anderson et al., 2011).  

6.1.3. ACON model and condensate estimation 

The ACON model categories total cooling load as Ventilation Load and Internal 

Load. It considers indoor design conditions, weather data, HVAC operational controls, 

and determines Ventilation Load Index. The model uses Cooling Load Index (ventilation 

and internal) for time-step condensation using thermo-hygrometric data and HVAC 

control settings as described in Section 5. The model determines the Ventilation Load 

Index, and uses Internal Load as input. The Internal Load, which is completely empirical 

in nature, and will vary with the location and the other factors associated with building-

energy-dynamics. 
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6.1.4. Internal load determination for ACON model 

Several Building Energy Simulation Softwares (BESS) are available (Crawley et 

al., 2008), and can be applied to determine Internal Load for ACON model. For 

example, The BESS “Energy Plus” is capable of time-step cooling load simulation 

(Hong et al., 2009). However, the primary limitations with the BESS are their 

dependency on experimental data (Ben-Nakhi et al., 2004). The BESS need building 

information as well as exhaustive time series data log as input for thermal load 

simulation (Chou et al., 1986). At the same time, The ACON model (“Load Analysis 

Module”) can determine the cooling load using condensate data (for cooling and 

dehumidification cases only). Subsequently, the Internal Load can be determined as the 

difference between the total Load Index and the Ventilation Load Index as in Equation 

(5.41).  

However to determine a generalized application for Internal Load as a function 

of weather variation, a black box modeling can be applied in lieu of non-linear data 

intensive complex formulation of Internal Load. The ANN can predict outputs from a 

complex system, and does not rely on data and time intensive process modeling 

approach (Ben-Nakhi et al., 2004).  It is a commonly applied technique in building 

energy analysis either in system identification or a parameter prediction (Kreider et al., 

1995). It provides a better technique in energy simulation compared to statistical tools 

and analyzes a complex system efficiently (Yalcintasv, 2005; Kumar et al., 2013).     
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6.1.5. Artificial intelligence in building energy generalization/prediction  

Gouda et al., (2002) applied ANN using experimental data in the prediction of 

room temperature as a function of HVAC control (heating valve position)  and weather 

data (ambient temperature for an outdoor condition, solar-irradiance). Yalcintas et al., 

(2005) applied ANN to determine power consumption for a chiller plant using dry bulb 

(Db) temperature, wet bulb (Wb)-temperature, relative humidity, dew point, and wind 

speed/direction. The model prediction showed the goodness of fit with 10 % error during 

testing and 9.7 % error during training.     

Ben-Nakhi et.al, (2004) applied general regression neural networks (GRNN) to 

predict cooling load from outdoor ambient temperature, using a database derived from 

BESS (ESP-r). In this case, the BESS required a time series log for diffuse solar 

radiation, solar intensity, and wind speed and direction thermo-hygrometric data. In 

contrast, the ANN model showed high accuracy for the test data (not applied in the 

model building) in generalization/prediction of the cooling load by using temperature as 

a single dependent parameter.    

6.1.6. Condensate determination for Doha using ACON model  

A hybrid modeling approach (system modeling and data-driven) was proposed 

and applied in this case study for hourly/daily condensate simulations. The ACON 

model was used to determine Ventilation Load.  

Whereas, the ‘Internal Load Artificial Neural Network' (ILAN) model was 

developed using  ANN to generalize/predict Internal Load using thermo-hygrometric 

and ACON simulated energy parameters. Accordingly, the total condensate volume can 
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be determined for analogous buildings of Doha using ACON simulated ventilation and 

ILAN simulated internal cooling load.     

6.1.7. Objectives 

The main objective of the Section is to determine the feasibility of condensate 

water collection for the city of Doha by evaluating the condensate water quality and 

simulating hourly/daily condensation using a hybrid modeling approach. The specific 

objectives for the research are as follows 

I. Develop ILAN model for internal cooling load prediction/generalization 

using ANN.  

II. Perform a sensitivity analysis of the ILAN model to determine the weather 

parameter variability in Internal Load prediction. 

III. Validate of ILAN model with real-time data. 

IV. Validate ILAN-ACON condensate estimation with real-time data 

V. Use ILAN-ACON for condensate estimation using yearlong climatic data 

from Doha, Qatar for a conditioned space of 100 m3.  

VI. Evaluate the water quality of A/C condensate for the city of Doha. 

6.2. Methods 

6.2.1. System setup and data acquisition 

The data in this Section was generated from experiments conducted at Qatar 

University campus in Doha, Qatar.   
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6.2.1.1.Weather data acquisition  

Temperature and relative humidity are the key psychrometric parameters used in 

ACON model (Section 5). The HVAC operation depends on the energy difference 

between the outdoor and indoor conditions (Mustafaraj et al., 2011). The outdoor 

conditions were used as a climate indicator, while the indoor conditions were considered 

to represent design conditions or thermal comfort zone (Zhang et al., 2008).   Using two 

different installations of HOBO thermo-hydro data logger (company name, location), 

time series data of for temperature and relative humidity was measured for indoor and 

corresponding outdoor conditions for two test buildings. 

6.2.1.2.Condensate data acquisition 

 Experimental data were acquired for continuously operating single-zone split-

type HVAC units. Condensate volume was measured using ‘WATCH DOG’ tipping 

bucket rain gauge with an in-built data logger (Spectrum, Inc., Aurora, IL).  Table (6.1) 

lists the test buildings with HVAC units used for condensate data acquisition. 

Table 6.1 Test-Building specifications used in experimental data 

S. No Dimensions Volume Load capacity 

(L×W×H) (m3) (Ton) 

Test-Building-I 17×4.95×3.55 298.7 4 

Test-Building-II  12×6×4m 288 4 

All the data were logged at ten minute interval for different time span between 

January and December, and preprocessed for missing values or erratic instrumental 



Figure 6.1 Data acquisition and processing for hourly/daily condensate data with corresponding mean 

outdoor/ indoor temperature and hygrometric data 
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reading. The databases were compiled for cumulative hourly condensate formation, and 

average hourly temperature and humidity variation as illustrated in Figure 6.1. 

6.2.2. ILAN model development using ANN 

The Internal Load represents the difference between the total load and the 

Ventilation Load. It represents heat gain in the system due to architectural design, 

construction material, operating appliances in building, human occupancy and ambient 

weather as well as the room temperature and relative humidity. 

6.2.2.1.Input database for ILAN model using ACON simulation 

The (ILAN) was developed to determine hourly Internal Load Index using 

experimental data from Test-Building-I. In the ACON model, the Internal Load on the 

system was determined as the difference between total cooling load and Ventilation 

Load at hourly time time-step for the operating conditions. 

. 

Table 6.2 ACON model simulation settings for case study of Doha 

ACON simulation settings 

Parameters Description Value 

Patm Atmospheric pressure , Pa 1.031*105 

SV Conditioned space volume, m3 100 

Ώ volumetric exchange rate, SV /hr 1 

BF Bypass factor of cooling coil 

η Fraction of outside air,% (1)      20 

(2)    100 

Ф In Relative humidity of air, % 60 

Tin Indoor temperature ,  °C 22 

Tcoil Coil temperature , °C 6 

115 



116 

The ACON model was applied using simulation settings listed in Table 6.2. The 

Ventilation Load (ψv) was simulated using the thermo-hygrometric data for outdoor and 

indoor conditions and the HVAC operational controls settings. The observed condensate 

data along with the thermo-hygrometric data were used to derive the internal Cooling 

Load Index (𝜓𝑖)  as the difference of the total Cooling Load Index (𝜓𝑡) and ventilation 

Cooling Load Index (𝜓𝑣) using “Load analysis module” of ACON model. The ILAN 

input database was derived only for operational conditions i.e. when Binary Operational 

Coefficient is 1 (€ =1). The outliner for total load was set between 0 and 1, as the coil 

supply index for negative value implies for heating instead of cooling, and the values 

greater than one implies for under design of HVAC.  

The parameters included for the ILAN model development are: (1) Weather data   

(T, Rh), indoor design condition (T, Rh), (2) time of operation, (3) ACON simulated 

energy information (enthalpy) for outdoor and indoor conditions along with, (4) 

Ventilation Load Index at 20 % (𝜓𝑣)  were considered as independent parameter, and 

(5) Internal Load (𝜓𝑖) as dependent parameter.  

6.2.2.2.ANN modeling for ILAN model development 

The ANN modeling steps described in Section 4 were applied for ILAN model 

development. The ILAN model was developed with intent of determining internal 

Cooling Load Index (ψi).  The parameters affecting the internal Cooling Load Index are 

unknown in this case.  The only data available in this case were thermo-hygrometric data 

and time of operation. Additionally, the ACON derived parameters were considered as 
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independent parameters, which included indoor Cooling Load Index at 20 % ventilation, 

and specific enthalpy for outdoor and indoor condition.  

Highly correlated input may affects the ANN model performance (Bowden et al., 

2005). The independent input data correlations were determined and are shown in Table 

6.3. The input parameters with correlation (r) greater than 0.85 are considered as highly 

correlated, and among them one of the parameters is only used in the ANN model as the 

training input. However, in this case, none of the independent data showed a high 

correlation.  

 

Table 6.3 ILAN Input data correlation 

  Time Tout RHOut T In RHIn Eout (J/g) Ein 

(

𝝍𝒗) 

Time 1        

Tout 0.124386 1       

RHOut -0.17102 -0.64558 1      

T In 0.052216 0.582673 -0.0054 1     

RHIn -0.07543 -0.4407 0.328127 -0.68325 1    
Eout 

(J/g) 0.027244 0.65354 0.124687 0.809668 -0.31415 1   

Ein -0.0833 0.027476 0.017526 0.095509 -0.02007 0.058885 1  

(𝝍𝒗) -0.01461 0.376982 -0.01872 -0.0952 0.128171 0.415122 

-

0.01595 1 

 

 

6.2.2.3.ANN algorithms applied for training, cross validation and testing 

The ANN model was applied for different types of network (Table 6.4).  Seventy 

% of the data were training data, with the 15% of the data used as the cross validation, and 

the remaining 15 % as test data. The ANN processing were adopted in training, cross 

validation with activation function are described in Section 4. 
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6.2.3. A/C condensate water quality analysis for Doha 

The preliminary water quality evaluations for A/C condensate were performed in 

the campus of Qatar University. Random samples from six different HVAC units were 

collected for water quality analysis. Because of the high ambient temperature, the 

sample were immediately stored at laboratory conditions.  The pH measurement was 

done using (Hach - PHC28101-PH Electrodes). Electrical conductivity was measure 

using Hach HQ14d Portable Conductivity Meter.  ICP-MS test methods were used to 

analyze Al, Ba, Cd, Co, Cr., Cu, Mn, Ni, Pb, Se, and Sr.  Standard methods used to 

determine, Na +, K+, Ca++, Mg ++, Cl-, SO4-2,   NO3-1, PO4-3. Microbial analysis included 

E.coli count using Hatch m-ColiBlue24® Prepared Agar Plate. 

6.3. Results and discussion 

The results are presented in three different sections: 1) Weather data and 

corresponding energy analysis, 2) ACON and ILAN simulation for daily condensate 

estimation for year-wide thermo-hygrometric data, 3) Validation of ILAN and ACON 

models using test data, and test building 2. ACON model was validated for Binary 

Coefficient of operation. ILAN model was validated for Internal Load prediction using 

test data.  Hybrid modeling approach by integration of empirically predicted internal 

cooling load using ILAN and ACON simulated Ventilation Load were used to validate 

hourly condensate data from test building 2 (which is not part of model development). 4) 

The hybrid model was applied for condensate estimation for the city of Doha. 5) The 

A/C condensate water quality was also evaluated.  
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6.3.1. ILAN model analysis 

The ILAN model was developed based on the performance criteria of the 

different ANN algorithms applied in training, cross-validation, and testing of the input 

database.  Cross-validation (CV) were performed with several iteration, and 

corresponding changes for weight and bias were made in the training algorithm with the  

   

  

 

 

Figure 6.2 The ILAN (PNN) vs ACON estimated Cooling Load Index for Internal Load 

(ψ) 

 

0

0.2

0.4

0.6

0.8

1

1 15 29 43 57 71 85 99 113 127 141

𝜓
𝑖

Test Data points

Test data:ACON Output (ψiACON) and  ILAN Output (ψiILAN)

ψiACON ψiILAN

R² = 0.7872

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

ψ
iII

LA
N

N
 

ψiACON

Testing data (ψiIILANN vs ψiACON



 

120 
 

 

 

Figure 6.3 The ILAN (MLP) vs ACON estimated Cooling Load Index for Internal Load 

(ψ) 

 

objective of minimizing the MSE in the CV data. The trained model applied for testing 

data, which are not part of training and cross validation. Different statistical performance 

measures including; MAE, MSE, and correlation r were used to determine the 

performance of the algorithms. Table 6.4 shows the performance measure for the 

different ANN algorithms applied for the training, CV, and testing data.  The best two 

algorithms were PNN, and MLP with higher correlation (r) between models simulated 

results and test data.  Figure 6.2, and Figure 6.3 show ILAN predicted and ACON 

derived Internal Load Index values (ψi) for ILAN-PNN and ILAN-MLP respectively. 
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Table 6.4 Performance matrix for different ANN algorithms applied in ILAN model 

development 

  Training     

Cross 

Validation   Testing     

ANN 

Model MSE r MAE MSE r MAE MSE r MAE 

MLP 0.011 0.840 0.064 0.008 0.866 0.056 0.011 0.834 0.062 

PNN 0.000 0.996 0.006 0.008 0.877 0.046 0.008 0.887 0.045 

RBF 0.024 0.528 0.105 0.024 0.506 0.097 0.024 0.566 0.102 

GFF 0.006 0.911 0.050 0.007 0.889 0.055 0.010 0.854 0.058 

TDNN 0.015 0.741 0.086 0.018 0.670 0.095 0.021 0.650 0.101 

 

 

Sensitivity of the output for the given input establish how much output will be 

affected for a small change in the input (Loucks et al., 2005). Sensitivity analysis for the 

best performing ANN algorithms were performed for the independent parameters 

affecting Internal Load Index. The sensitivity of the input parameters is shown in Figure 

6.4 and 6.5 for the corresponding PNN and MLP algorithms.  The PNN shows highest 

sensitive index for indoor relative-humidity (0.2068) followed by indoor temperature 

(0.1067) while the MLP shows highest sensitive index for outdoor temperature (0.158) 

for Internal Load Index (ψi). 
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Figure 6.4 Internal Load (ψi) sensitivity in ILAN model for using PNN model 

 

The essence of these two algorithms illustrated for the two different case 

applications 1) When the indoor temperature and relative humidity shows deviation from 

the design condition, 2) When thermo-hygrometric data are in accordance with the 

indoor design condition. The PNN can be applied for predicting Internal Loads in the 

initial case, and MLP can be applied in later case where outdoor temperature is more 

sensitive towards Internal Load Index prediction (𝜓𝑖) .  
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Figure 6.5 Internal Load (ψi) sensitivity in ILAN model for using MLP 

 

6.3.2. ACON-ILAN model validation 

The concept of hybrid-modeling applied in this case for the condensate 

estimation using system modeling (ACON) and data driven (ILAN) model. The hybrid 
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Figure 6.6 Comparison of observed and simulated Binary Operational Coefficient for 

Test-Building-II 

 

As the HVAC systems operates to maintain the indoor energy by offsetting the 

energy gain the system, the potential operational duration of HVAC system can be 

determined, as discussed in Section 5. The ACON simulated Binary operating 

coefficients were determined for Test-Building-II for 509 hourly operating points. The 

real-time data shows all the 509 points as operational (€=1). ACON simulations for the 

corresponding thermo-hygrometric conditions determined 504 cases of true-positive 

operating conditions (€=1), and 5 case  
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Figure 6.7 Hourly condensate simulation with ACON-ILAN for Test-Building-II 

 

 

with false-negative (€=0), with overall accuracy of 99.1 %. The simulated and observed 

points for their corresponding hourly operating points are shown in Figure 6.6. 

ILAN –ACON simulations for the observed thermo-hygrometric condition and 

the same HVAC operational settings were applied for Test-Building-II. In this case the 

ILAN was applied to determine Internal Load by both the algorithms; 1) PNN, and 2) 

MLP.  The observed and simulated condensate data were shown in Figure 6.7. The 

corresponding scatter plots are shown in Figure 6.8, where the ILAN-ACON with PNN 

and MLP shows R2 of 0.905, and 0.886 respectively.   
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A          B 

Figure 6.8 ILAN-ACON simulated condensate compared with the observed condensate 

applying   A) PNN, B) MLP for Test-Building-II 

 

6.4. ILAN-ACON deployment with Doha climatic data 
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Considering the constant design condition of an average 22 C and relative 

humidity of 60 %, it shows most of the days in year particularly though April and 

November the daily mean the ambient temperature exceeds the indoor design conditions 

The temperature and humidity data were visualized in terms of ambient energy 

(enthalpy), which is combined effect of sensible and latent heat energy (the temperature 

corresponds to the sensible heat and the moisture content as latent heat). Figure 6.10 

shows the outdoor energy variation with fixed indoor energy (indoor design conditions).   

The ACON model was simulated to determine the Binary-Operational 

Coefficient [€ (1, 0)] HVAC operation duration corresponding to the outdoor conditions. 

The Figure 6.10 shows; HVAC units are operational with condensation during most part 

of year.  In this case it determines 234 days the system will operate with condensate 

formation.  

ILAN-ACON was applied for the 234 operating point’s simulations using daily 

mean temperature, and the relative humidity for HVAC control setting as listed in Table 

6.1 at 1 SV/hr. with cooling space of 100 m3. The ILAN was applied using MLP, in 

internal cooling-supply index (ψi) as described in section 6.3.1.  In this case, the indoor 

design conditions are fixed, and outdoor conditions vary. Therefore MLP was applied 

for predicting (ψi), assuming the prediction will be more accurate for variable outdoor 

conditions than PNN (which is more sensitive towards indoor condition). The ACON 

model was applied with ILAN generated (ψi) as input, and was simulated for: 1) 20% 

outdoor ventilation, 2) 100 % outdoor ventilation. The ILAN-ACON daily simulation 
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results are shown in Figure 6.11, and monthly estimated condensate shown in Figure 

6.12.   The statistical analysis of simulated condensate is shown Appendix (C2)   . 

 

 

 

Figure 6.9 Thermo-hygrometric data variation for the city of Doha 
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Figure 6.10 Binary Operational Coefficient with respect to outdoor energy and fixed 

indoor design conditions for the city of Doha 
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cooling space is 3700 l condensate when using a100 % ventilated HVAC system 

compared to 1370 l for condensate from a 20 % ventilated system.  

 

 

 

Figure 6.11 Daily condensate simulation for Doha climate at 20 and 100 % ventilation 

using ACON, and ILAN 
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Figure 6.12 Monthly condensate estimation by ILAN-ACON 

. 
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model can be applied to generalize the internal cooling load. So the total estimation may 

vary if the Internal Load is not analogous to the test building used in model 

development. However, in the ILAN-ACON simulation, it is evident that the Internal 

Load has comparatively lower contribution for total condensation during peak season, 

compared to Ventilation Load. So the variation of Internal Load is a more significant 

parameter for HVAC operating either at low ventilation or during moderately warm 

climate.  

Moreover, the reliability on the ILAN model depends on the data considered 

during training and model development. Though the model provides prediction with 

correlation r of 0.88 for test data (during MLP), the overall impact on total condensate 

calculation was not significant.  The ILAN-MLP also had similar simulation results 

when validated for Test-building-II.   

The overall simulation result shows high potential for condensate for most of the year 

primarily between the months of April and November. ACON-ILAN model can be 

applied as a versatile condensate forecasting tool using forecasted weather data. In turn 

this will provide decision making strategies to the water planners for condensate use.  

6.5.1. A/C condensate water quality analysis for Doha 

The samples showed marginal presence of Zn, and Se, Cu, and Mn with 

maximum values of 0.04, 1.19, 1.63, 0.02 mg/l, respectively. However, no trace was 

detected for Al, Ba, Cd, Co, Cr, Ni, Pb, and Sr.   

 The observed pH value for condensate was between 6.5 to 7.1, which is in 

accordance with the Cook et al., (2014), and Bryant et al., (2008). This increases the 
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condensate suitability for unrestricted irrigation and livestock’s, and also is within the 

drinking water standards, except for the observations  shows pH below 6.5 (Loveless et 

al., 2013).  

The low conductivity of the observed samples between   35.1 to 134 µS/cm 

shows unrestricted water use and excellent for irrigation water. The sample showed 

some presence of (Na+), (Mg+2), and (Ca+2) in the condensate sample with maximum 

value of 0.90, 8.39, and 0.31 mg/l.  The drinking water not set for (Mg+2), and (Ca+2), 

but the (Na+) concentration is below the secondary drinking water standards (20mg/l) 

and also suitable for irrigation, livestock and industrial uses as shown in Appendix C3.  

 The condensate water also showed marginal presence of (Cl-) between 0.77 to 

14.5 mg/l and (SO4
-2) between 0.77 to 21.4 mg/l. Though no standards set for (Cl-), the 

(SO4
-2) is below the mcl of 250 mg/l for secondary drinking water standards.  At the 

same time no presence were detected for (NO3
-) and phosphate (PO4

-3) in all the 

samples. A study from Cook et al., (2014) and Bryan et al., (2008) shows the marginal 

presence of (NO3
-) as shown in Table 6.1.  

6.5.1.1. Discussion on water quality:   

The study showed the water quality of condensate equivalent to drinking water 

standard, and can applied for unrestricted water use beyond the conventional reuse for 

toilet flushing, irrigation, and industrial applications.  

Latures not know to author knowledge were reported for heavy metal presence in 

condensate water. Parameters are under the primary and secondary drinking water 

standard as shown in Table 6.3 except for Cu, which exceeds the MCL (maximum 
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contamination limitations) for the both primary(1.3 mg/l) and secondary (1.0 mg/l) water 

standards as well as the irrigation, and industrial boiler standards. Though the average 

value of Cu was within the range, but attention may be required for Cu as limiting factor 

for unrestricted use of condensate water.  Although, the microbial analysis showed 

negative results for total coliform presence, lature survey from (Alipour et al., 2013) 

shows substantial microbial contamination in condensate water. There could be a 

possible variability in condensate quality depending on the age and type of the HVAC 

units, corrosion of pipes or duct lines used (Diaz, 2014), and outside air quality, that 

require local testing before reuse..  

6.6. Conclusion 

6.6.1. ILAN model  

The ILAN model provided a generalized solution for internal Cooling Load 

Index simulation primarily from time series thermo-hygrometric (T, RH) data for indoor 

and outdoor conditions. Different ANN algorithms and architecture were considered 

while developing ILAN model.  PNN was applied as the best performing ANN 

algorithms showing the highest perdition accuracy in Cooling Load Index (ψ) with 

correlation r as 0.99, 0.87, and 0.88 for training, cross-validation and testing data. 

Sensitivity analysis showed that the Internal Load is highly correlated to indoor 

temperature and humidity compared to secondary parameters derived from the ACON 

model. The ILAN model is an added advantage to conventional BESS programs as it is 

less data intensive and can be used for locations where parameters are not available for 
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BESS simulations. However, it refers to Internal Load only simultaneous process of 

cooling and dehumidification.  

6.6.2. ILAN-ACON hybrid model 

  The ILAN-ACON hybrid model provides a clear methodology in condensate 

estimation; which can be applied for time-step condensate simulation considering; 1) 

temporal, 2) geographical, and 3) climatic/seasonal variability. The ILAN-ACON model 

can be easily deployed with thermo-hygrometric data and is capable of determining 

condensate with much higher accuracy than empirical modeling for condensate 

estimation which are season and location specific.  ILAN-ACON simulation results 

showed the impact of Internal Load to be higher in total condensate formation 

particularly during moderately warm and humid climate and also during low ventilation 

profile HVAC systems (e.g. 20 %). However, HVAC controls like ventilation have a 

significant impact on condensate formation particularly during peak summer season. 

6.6.3. Impact of cooling load type on condensate formation 

Internal Load is the primary factor governing condensate formation during low 

ventilation and moderately warm climate as the ambient and internal energy difference is 

much lower in these cases. The majority of condensation is a result of air ventilation in 

peak summer. The Internal Load shows impact during the moderately warm climate 

from December to March, as the simulations at 20 and 100 % ventilation do not show 

much difference in condensate formation. The Ventilation Load significantly varies with 

variable ventilation and indoor volumetric exchange rates. The model has the capability 
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to determine time-step Ventilation Load for varying ventilation types and room air 

exchange rate using the thermo-hygrometric data.   

6.6.4. Potential of A/C condensate for the city of Doha 

 For the city of Doha with its ultramodern-urban setup, and hot-humid climate, 

the study showed high-quantity of condensate can be produced with potentially high 

water quality and can be substantially applied as alternative water resource during most 

part of year with significant volumetric reduction in desalinated water demand for city. 

ILAN-ACON can be applied as a versatile tool unlike most of condensate estimation 

formulations which are site-specific or completely empirical in nature (Section 5).  
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 CONCLUSION AND SUMMARY 

This study aims at improving potentials of greywater and Air-Conditioner (A/C) 

condensate reuse particularly in urban settings by   providing tools to integrate emerging 

alternative water resources into water management plans. It addresses the water quality 

variability in greywater and lack of knowledge/attention in greywater treatment that is 

needed to make this source more widely used. It also addresses the quantification of A/C 

condensate in a comprehensive way that will allow builders and planners to design cost 

effective A/C condensate collection systems for reuse. The following specific 

conclusions were found: 

 1)   Due to water quality variability in greywater, treatment systems were applied in 

series, which allows for specific treatments for the type of greywater (i.e. shower, wash 

basin or Washing machine), and is robust enough to produce high grade effluent good 

for unrestricted water use.  The broad impact of this study is to reduce the cost of 

greywater treatment by selecting appropriate treatments to specific needs.  

2)    An advanced physical filtration like GAC-MI-ME can improve the utility of 

greywater in urban settings by providing ease of operation, portability, and user 

customized water availability. The multi-grade effluent of the treatment system provides 

an economic option for users by avoiding over or under treatment of greywater for a 

specific use and meeting local regulation on water-reuse. That will also help to 

determine the extent of treatment required for the specific characteristics of their 

greywater to meet requirements for specific uses including safe discharge into the 

environment to landscape and vegetable irrigation, toilet flushing, and even potable use. 
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3)    The sensitivity analysis of unit-models determined the specific parameter that 

caused the most variability in treatment trains affecting the effluent in UF and RO 

effluent. This can be used to further improve the GAC-MI-ME greywater treatment 

system. 

4)    The ILAN-ACON model provided a methodology in condensate estimation, which 

can be potentially applied for time-step condensate simulation considering a) temporal, 

b) geographical, and c) climatic/seasonal variability.   

5)    The study also demonstrated the use of ACON model in time step condensate 

estimation by determining intensity and duration of HVAC operation based on the 

outdoor condition. This adds a strategic advantage for planners, as this tool may 

potentially help in water supply planning. The improved accuracy in condensate estimate 

over the conventional empirical approach will promote its use in several ways; a) 

determining the financial costs and return associated with piping and plumbing 

requirements of condensate collection and, b)  and also may help in decision-making in 

water supply strategies even during low production periods.  

6)    Greywater and A/C condensate would reduce the volume of wastewater from 

residential and commercial buildings, and thereby reduce the municipal cost of 

wastewater treatment. Houses and the building can independently use their reclaimed 

water for lawn irrigation, toilet flushing, laundry, car wash, or other unrestricted 

purposes. The study may also contribute in establishing the fact that greywater reuse and 

A/C condensate can partially offset high-grade water supply.  
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7)    This study provides planners and designers of water reuse systems with tools , 

which  may result in a wider reuse of greywater and A/C condensate, especially in water 

scarce areas, thereby reducing the impact of increased water use and population growth 

on dwindling water resources.  

8)   The primary beneficiary would be the commercial developers and city planners 

working on green infrastructure.  

7.1  Future work 

 

A/C condensate and GAC-MI-ME RO effluent can be categorized as pure water. A 

further analysis is required to compare the condensate and RO effluent with drinking 

water standards.  

A study on the operational performance of the GAC-MI-ME system regarding 

membrane fouling characteristics may help in cost & efficiency optimization. 

The water quality of condensate may depend on the age and Type of A/C and the 

surrounding area.  A thorough analysis of A/C condensate quality will improve its reuse 

potential primarily for direct potable use.  A proper air filtration of the outdoor air duct 

can also improve the water quality of the condensate, as well as the quality associated 

with indoor air, outdoor air, and HVAC duct. 

The Unit –Models for GREY-ANN can be improved with increasing the 

experimental data. The operational data can be applied to improve the system 

performance. A cost module determination based on the life of for the filter modules, 

energy consumption, and initial cost associated with it would be beneficial. 
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The study provides a method that can be applied as a micro tool for greywater reuse 

and water supply duration. 

In addition, other factors need to be emphasized for wider application of alternative 

resources such as 1) improvement of water reuse regulations to be more specific to the 

type of alternative resource and the extent of its treatment, 2) Integration of decision 

support tools that determine the robustness of treatment systems specific to treatment 

technology for specific type of alternative resources, and will also help in providing 

water supply strategies for specific uses, 3) More   public awareness is desired towards 

achieving future sustainable goals with alternative resources. That will help in increasing 

social acceptability and positive perception towards use the alternative resources, 4) 

Lifetime assessments tools are required for each of the proposed alternative resources in 

order to meet the overall sustainability. 
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APPENDIX-A1 

Synthetic greywater composition used by F. Hourlier et al., (2010) 

  

Product Function Concentration g/L 

Lactic acid Acid produced by skin 100 

Cellulose Suspended solids 100 

Sodium 

dodecyl 

sulfate Anionic surfactants 50 

Glycerol 

Denaturant, solvent, 

moisturizer 200 

Sodium 

hydrogen 

carbonate pH buffer 70 

Sodium 

sulphate Viscosity control agent 50 

Septic effluent Microbial load 10 

✖Pollution due to  (1) human body; (2) shampoo and shower gel; (3) soap; (4) 

deodorant; (5) tooth paste; (6) shaving and moisturizing cream; (7) make-up and 

make-up remover 
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APPENDIX-A2 

Performance matrix comparison of for different ANN algorithm GREY-ANN 

(MSE, r, and MAE) 

 

 

  

 

 

 

BOD-ANN

Treatment-Train ANN Model 

MLP-PCA 163.0407 0.957406 8.270496 72.49303 0.990007 6.830465 121.3311 0.949543 8.491106

GFF 159.305 0.956939 8.421551 94.57387 0.988961 7.005295 127.4458 0.94985 8.418874

PNN 117.1368 0.971077 7.25617 80.93253 0.954449 7.299573 108.2654 0.953912 6.517551

MLP 137.8085 0.965906 8.42167 66.30956 0.955591 6.361873 127.9438 0.951997 7.53685

RBF 61.99398 0.925058 6.016926 75.7508 0.881696 6.804789 78.0886 0.875875 5.549613

TLRN 110.6521 0.88698 8.600473 59.22789 0.918062 6.859929 95.10051 0.885764 7.421898

PNN 2.680487 0.945195 1.116101 35.32057 0.638876 3.217059 13.73406 0.791202 2.840956

GFF 6.245665 0.866653 1.707363 13.26417 0.913143 2.462126 16.06708 0.710101 2.852317

MLP 0.199186 0.728093 0.318648 0.816943 0.434842 0.560622 0.128382 0.725902 0.276745

RBF 0.243676 0.648839 0.366365 0.813939 0.464345 0.572472 0.139068 0.700527 0.29046

C-F

UF

RO

Training Cross Validation Testing

CR-F

MF

NTU-ANN

Treatment-Train ANN Model 

LR 728.5997 0.960467 21.49036 1184.856 0.917132 27.26219 687.3747 0.985722 21.69077

TLRN 719.7382 0.961528 20.44818 1216.964 0.919376 25.08707 741.0605 0.981734 22.78536

TDNN 260.2402 0.985559 11.64806 465.1961 0.963375 18.54478 327.8474 0.98742 14.0062

MLP 367.8506 0.979974 13.88661 359.741 0.977748 15.67574 493.2282 0.983754 17.14552

TLRN 127.8227 0.967828 8.875741 817.9398 0.804886 21.3379 245.9245 0.962768 12.4316

TDNN 101.7629 0.974361 6.169544 336.8172 0.908819 14.99624 445.1437 0.924412 14.10799

TDNN 0.594246 0.864247 0.565642 0.684339 0.803586 0.6684 0.858981 0.808687 0.615478

RBF 0.980135 0.748069 0.75667 0.828356 0.685312 0.687699 0.956644 0.758405 0.713996

TDNN 0.009478 0.952848 0.044673 0.016442 0.909578 0.054368 0.010637 0.955108 0.054337

PNN 0.01704 0.915896 0.078972 0.02308 0.855396 0.069765 0.013509 0.954281 0.083466

Training Cross Validation Testing

C-F

UF

RO

CR-F

MF

ORP-ANN

Treatment-TrainANN Model 

PNN 1595.787 0.979322 30.11777 7307.159 0.892228 47.24812 7668.951 0.917071 56.60446

MLP 3252.472 0.964934 43.84158 5746.592 0.908235 49.78235 9073.073 0.901277 68.5279

MLP 29128.96 0.784727 53.69305 2294.505 0.973923 33.71757 3135.139 0.963318 32.82736

GFF 29453.08 0.785072 61.54616 1801.945 0.977347 33.51491 4793.912 0.962328 47.14845

PNN 2503.556 0.960241 32.77729 3800.721 0.947541 45.99931 3090.767 0.94776 41.3662

RBF 5026.197 0.92466 53.73667 3296.93 0.940477 43.8984 6154.341 0.911355 59.72363

MLP 5776.349 0.843972 53.52857 3992.197 0.893329 45.65589 4890.546 0.893559 51.4986

RBF 6136.64 0.834349 57.15426 4208.323 0.897056 45.31226 6181.347 0.893696 56.79518

GFF 1393.613 0.945437 28.56464 5475.183 0.692341 47.02816 2675.653 0.912659 41.7399

MLP 725.6987 0.972777 21.27872 751.1921 0.961856 22.33813 2683.014 0.911322 36.40288
RO

Testing

CR-F

MF

C-F

UF

Training Cross Validation
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APPENDIX-A2 (Continued) 

Performance matrix comparison of for different ANN algorithm GREY-ANN 

(MSE, r, and MAE) 

 

PH-ANN

Treatment-TrainANN Model 

RBF 0.093872 0.891098 0.184919 0.033278 0.972022 0.140082 0.26646 0.68555 0.178824

PNN 0.08702 0.899616 0.167727 0.022932 0.979739 0.10933 0.27552 0.671212 0.183394

MLP 0.138365 0.791616 0.256842 0.144891 0.869418 0.320402 0.017193 0.94683 0.113475

RBF 0.089338 0.886316 0.220524 0.206309 0.845231 0.379189 0.043528 0.889354 0.150279

MLP 0.142669 0.841368 0.296258 0.176847 0.624256 0.315346 0.112931 0.826186 0.283133

PNN 0.122717 0.869224 0.236567 0.125658 0.727085 0.282954 0.141517 0.778147 0.270426

RN 0.149947 0.778701 0.300298 0.070505 0.741859 0.23716 0.02638 0.871561 0.13242

MLP 0.143929 0.786584 0.292755 0.045464 0.842071 0.171196 0.045897 0.909767 0.182109

MLP 0.11088 0.7314 0.245746 0.084914 0.768677 0.21212 0.081934 0.793008 0.235678

RBF 0.12059 0.639729 0.237425 0.111258 0.702359 0.259527 0.102028 0.796337 0.249861
RO

Testing

CR-F

MF

C-F

UF

Training Cross Validation

TDS-ANN

Treatment-TrainANN Model 

MLP 1918.613 0.978552 23.22757 330.3283 0.997173 11.3921 178.7989 0.998756 11.25375

GFF 1903.853 0.978503 23.72153 320.5089 0.997148 12.8421 189.9116 0.998654 12.09193

MLP 1868.568 0.977261 26.01317 316.9971 0.997294 14.33915 710.827 0.986117 18.99632

GFF 1853.802 0.978535 26.59158 332.8003 0.996966 14.35088 747.3227 0.985441 19.61428

MLP 5751.601 0.936477 58.9484 5662.346 0.947985 61.8247 1954.252 0.939894 34.74024

RBF 6217.354 0.926963 64.58949 8319.529 0.932981 75.92976 2911.683 0.921045 41.29594

MLP 6477.048 0.894714 56.21663 1993.779 0.971227 37.42164 2177.167 0.924971 36.70187

GFF 5433.935 0.912973 50.34618 2737.455 0.955186 43.09088 2732.402 0.923257 45.54888

TDNN 96.14485 0.911061 5.738778 167.4088 0.875453 7.842843 99.68606 0.811057 6.841853

PNN 215.6558 0.823864 11.26821 241.3501 0.817768 10.90061 162.4907 0.743727 10.33335
RO

Testing

CR-F

MF

C-F

UF

Training Cross Validation
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APPENDIX-A3 

Performance matrix comparison of for different ANN algorithm including MLP, and 

GFF and Multi-L-Regression for BOD-MP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Name MSE r MAE 

M-L-R 785.4 0.36 22.5 

MLP 686.12 0.67 17.86 

GFF 532.77 0.76 17.37 
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APPENDIX-A4 

Storage Impact of raw and treated greywater 

Days Mean SD Mean SD Mean SD Mean SD

1 637.8 102.9 134.4 77.6 6.1 1.9 7.7 0.2

2 654.1 104.4 121.1 63.9 1.6 0.9 7.4 0.3

4 676.9 126.7 108.1 57.0 1.2 0.4 7.0 0.3

6 679.0 125.6 100.3 55.4 1.2 0.4 6.9 0.2

9 690.3 127.0 88.8 60.4 1.2 0.3 6.8 0.3

12 701.9 134.0 77.0 59.5 1.2 0.3 6.7 0.2

15 720.5 136.7 71.6 56.9 1.5 0.5 6.5 0.3

1 621.6 117.8 98.9 67.9 7.2 1.4 7.5 0.2

2 654.4 115.9 95.9 64.9 2.4 1.2 7.3 0.3

4 659.1 118.2 88.5 63.2 1.4 0.4 7.0 0.3

6 667.0 123.4 81.6 66.1 1.5 0.5 6.9 0.3

9 676.1 126.8 75.1 67.1 1.6 0.5 7.0 0.3

12 679.6 131.2 68.7 64.4 1.7 0.5 6.8 0.2

15 695.4 131.7 64.5 61.7 1.6 0.5 6.7 0.2

1 628.6 93.0 89.2 73.4 7.3 1.3 7.6 0.2

2 641.0 106.1 85.3 72.3 3.2 1.0 7.3 0.2

4 649.8 109.4 77.1 70.7 1.6 0.4 7.0 0.3

6 657.3 113.2 73.0 72.4 1.5 0.2 7.0 0.2

9 668.3 115.8 69.7 73.1 1.2 0.2 7.0 0.2

12 673.8 125.6 63.3 66.0 1.3 0.3 6.9 0.2

15 699.9 129.5 59.1 62.2 1.3 0.4 6.9 0.3

1 592.5 72.6 18.8 14.4 8.2 0.9 7.7 0.6

2 602.8 79.1 17.0 14.8 4.3 1.1 7.5 0.5

4 614.1 84.4 13.7 14.4 2.9 1.2 7.2 0.5

6 623.4 83.4 12.9 13.6 2.1 0.7 7.2 0.5

9 643.3 78.2 12.3 13.1 1.4 0.6 7.2 0.5

12 646.8 81.3 10.4 11.6 1.7 0.4 7.0 0.5

15 657.8 85.0 8.4 10.0 1.6 0.6 7.0 0.5

1 481.1 128.4 1.9 1.2 8.1 0.4 7.8 0.8

2 488.3 128.9 1.8 1.0 7.5 0.4 7.7 0.7

4 488.4 129.5 1.5 1.0 7.2 0.5 7.5 0.6

6 491.8 131.5 1.1 0.9 7.2 0.6 7.5 0.6

9 501.0 128.8 1.0 0.8 6.9 1.1 7.2 0.5

12 496.0 130.9 0.8 0.6 7.1 1.6 7.3 0.5

15 499.6 130.2 0.6 0.2 7.1 1.7 7.3 0.5

1 49.3 24.6 0.3 0.1 8.4 0.3 6.5 2.3

2 50.6 25.0 0.5 0.2 8.5 0.1 6.6 1.9

4 52.6 25.1 0.6 0.2 8.3 0.5 6.8 1.2

6 52.3 25.2 0.5 0.2 8.5 0.3 7.1 0.5

9 56.8 27.1 0.6 0.2 8.4 0.2 7.5 0.6

12 55.4 25.1 0.6 0.3 8.4 0.2 7.9 1.7

15 57.1 26.5 0.7 0.2 8.4 0.2 8.3 2.7

C
R

-F
M

-F
C

-F
U

F
R

O

TDS (mg/l) Turbidity (NTU) DO(mg/l) .pH

R
A

W
  W

A
TE

R
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APPENDIX-A5 

Raw and GAC-MI-ME treated greywater (Statistics) 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAC-MI-ME effluent at multiple stages of tretament 

RAW CR-F MF CF UF RO

Mean 194.1051 161.2855 128.8796 47.5496 1.93254 0.576349

Standard Error 9.745177 9.088553 8.810301 4.204789 0.126995 0.028937

Median 178.5 146.1 115.5 34.15 1.355 0.545

Mode 162 163 111 29.6 0.85 0.2

Standard Deviation 109.3893 102.0188 98.89538 47.19864 1.425518 0.324818

Sample Variance 11966.03 10407.83 9780.296 2227.712 2.032101 0.105507

Kurtosis -0.68222 -0.4465 -0.67307 1.219276 -0.64408 -1.01312

Skewness 0.309484 0.442251 0.521302 1.324288 0.793876 0.424739

Range 413.87 405.99 366.44 203.7 5.23 1.17

Minimum 9.13 3.01 2.56 0.3 0.11 0.1

Maximum 423 409 369 204 5.34 1.27

Sum 24457.24 20321.97 16238.83 5991.25 243.5 72.62

Count 126 126 126 126 126 126

Largest(1) 423 409 369 204 5.34 1.27

Smallest(1) 9.13 3.01 2.56 0.3 0.11 0.1

Confidence Level(95.0%) 19.28692 17.98737 17.43668 8.321799 0.251339 0.05727

Turbidity (NTU)
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APPENDIX-A5 (Continued) 

Raw and GAC-MI-ME treated greywater (Statistics) 

 

 

RAW CR-F MF CF UF RO

Mean -15.2911 -10.4199 -2.15516 29.61633 80.97602 130.0572

Standard Error 18.53572 18.17134 22.26886 15.6503 12.8724 10.22227

Median 49.25 37.75 15.9 52 98.7 162.95

Mode 226.9 251.1 266.9 291.5 263.4 242.4

Standard Deviation 209.7078 205.5853 251.9434 177.063 145.6346 115.6518

Sample Variance 43977.34 42265.3 63475.49 31351.3 21209.43 13375.33

Kurtosis -1.11652 -1.49187 11.04647 -1.07729 -0.52875 -0.21635

Skewness -0.40813 -0.26243 1.831634 -0.28031 -0.48906 -0.56734

Range 782.3 663.7 2010.05 693.7 645.75 514.5

Minimum -484.3 -407.2 -414.85 -381 -290.55 -151.2

Maximum 298 256.5 1595.2 312.7 355.2 363.3

Sum -1957.26 -1333.75 -275.86 3790.89 10364.93 16647.32

Count 128 128 128 128 128 128

Largest(1) 298 256.5 1595.2 312.7 355.2 363.3

Smallest(1) -484.3 -407.2 -414.85 -381 -290.55 -151.2

Confidence Level(95.0%) 36.67885 35.95781 44.06606 30.96913 25.47215 20.22803

ORP(.mV)
GAC-MI-ME effluent at multiple stages of tretament 

GAC-MI-ME effluent at multiple stages of tretament 

RAW CR-F MF CF UF RO

Mean 65.2217 54.7392 43.27671 18.47347 4.640263 0.518033

Standard Error 4.263007 3.909047 3.554472 1.716298 0.448728 0.064504

Median 52.2 42.29 29.25 11.2 3.15 0.125714

Mode 48 28.5 18 0 0 0

Standard Deviation 48.60576 44.56999 40.52721 19.5688 5.116286 0.738285

Sample Variance 2362.52 1986.484 1642.455 382.9381 26.17638 0.545065

Kurtosis 2.559283 2.872302 1.931318 1.952179 10.07495 3.753881

Skewness 1.422079 1.522398 1.480671 1.517757 2.412801 1.83708

Range 250.6 230.9 183.6 87 34.2 3.6

Minimum 8.4 5.1 1.4 0 0 0

Maximum 259 236 185 87 34.2 3.6

Sum 8478.821 7116.096 5625.972 2401.551 603.2342 67.86238

Count 130 130 130 130 130 130

Largest(1) 259 236 185 87 34.2 3.6

Smallest(1) 8.4 5.1 1.4 0 0 0

Confidence Level(95.0%) 8.434464 7.734145 7.032609 3.395737 0.887819 0.127614

BOD (mg/l)
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APPENDIX-A5 (Continued) 

Raw and GAC-MI-ME treated greywater (Statistics) 

 

 

GAC-MI-ME effluent at multiple stages of tretament 

RAW CR-F MF CF UF RO

Mean 7.241328 7.239922 7.166016 7.466172 7.477344 7.290859

Standard Error 0.063957 0.062559 0.052702 0.055655 0.049512 0.040173

Median 7.08 7.08 7.015 7.35 7.385 7.19

Mode 6.76 6.77 7.01 7.32 7.88 7.05

Standard Deviation 0.723586 0.707771 0.596256 0.629659 0.560161 0.454503

Sample Variance 0.523577 0.500939 0.355522 0.396471 0.31378 0.206573

Kurtosis 0.070259 1.354505 0.97647 0.463449 0.425117 0.74036

Skewness 0.668147 1.009516 0.997734 0.887475 0.744895 1.011842

Range 3.3 4.01 2.9 2.86 2.49 2.37

Minimum 5.9 5.92 6.05 6.31 6.53 6.37

Maximum 9.2 9.93 8.95 9.17 9.02 8.74

Sum 926.89 926.71 917.25 955.67 957.1 933.23

Count 128 128 128 128 128 128

Largest(1) 9.2 9.93 8.95 9.17 9.02 8.74

Smallest(1) 5.9 5.92 6.05 6.31 6.53 6.37

Confidence Level(95.0%) 0.126559 0.123792 0.104288 0.11013 0.097975 0.079495

Ph

GAC-MI-ME effluent at multiple stages of tretament 

RAW CR-F MF CF UF RO

Mean 546.3306 529.1065 507.1306 457.3629 388.3306 43.79839

Standard Error 19.31079 19.3673 19.05808 17.57145 15.54657 2.067443

Median 574.5 543.5 537.5 508 428 36.5

Mode 685 512 462 535 459 21

Standard Deviation 215.0358 215.6651 212.2218 195.6674 173.1193 23.02207

Sample Variance 46240.4 46511.45 45038.09 38285.75 29970.29 530.0159

Kurtosis -0.70969 -0.83591 -0.95042 -0.90881 -1.03162 0.375701

Skewness -0.35307 -0.37233 -0.33923 -0.38182 -0.269 0.983832

Range 883 824 807 735 642 102

Minimum 112 78 71 65 65 10

Maximum 995 902 878 800 707 112

Sum 67745 65609.2 62884.2 56713 48153 5431

Count 124 124 124 124 124 124

Largest(1) 995 902 878 800 707 112

Smallest(1) 112 78 71 65 65 10

Confidence Level(95.0%) 38.22452 38.33638 37.7243 34.78162 30.77348 4.092377

TDS(mg/l)



 

174 
 

APPENDIX-B1 

Greywater water collection scheme for the experiments 

 

 

 

Shower water collection 

 

 

 

Laundry water collection 
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Washbasin water collection 
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APPENDIX-B2 

 

GAC-MI-ME greywater treatment system 
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APPENDIX-B3 

GAC-MI-ME Components (Membrane, GAC, UV) 

    Membrane details: 

  Membrane used in GAC-MI-ME system       

Treatment -

Unit Filter media 
Manufacturer 

Pore 

diameter 

CR-F Ployster-Plus HARMSCO 50 µm 

 Polypropylene -Spun Bonded 

3M Water 

Filtration 20 µm 

 Ployster-Plus HARMSCO 10 µm 

 Ployster-Plus HARMSCO 5 µm 

MF Ployster-Plus HARMSCO 1 µm 

 Pleated Polyester Flow-Max 0.35 µm 

UF 

Hollow Fiber Membrane, Polyether Sulfone 

(PES) 
Neo-Pure 

0.020 µm 

 

Hollow Fiber Membrane, Polyether Sulfone 

(PES) AquaCera 0.025 µm 

RO Polyamide Thin film composite membrane AXEON 

>98% 

rejection 

 

    GAC details: 

  GAC 

Brand CALGON  

US sieve series 

 On 8 mesh 15% max 

 On30mesh 4% max 

Type  Bituminous  

  12×40 mesh 

 

UV System Details: 

  UV Sytem      

Brand  Sterilight  Silver    

Model S1Q-PA   

UV  Fluence  16mJ/cm2 for 3.3 gpm 

Reactor size 

39.4cm× 

6.4cm     
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APPENDIX-B4 

Instruments precision and accuracy 

 

Instruments 

Name Brand Parameter Accuracy 

YSI 6800 XLM YSI pH ±0.2 unit 

YSI 6800 XLM YSI  ORP(mV) ±20 mV  

YST ProBOD YS1 DO (mg/l) 0-20 mg/L, ±0.1 mg/L 

TDS-Meter HM Digital SP2 TDS(mg/l) ± 2 % 

HI88713 

HANNA 

Instruments Turbidity(NTU) 

±2% of reading plus 

straylight  

      

±5% of reading above 

1000 NTU 
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APPENDIX C1 

Histograms of indoor temperature and relative humidity 
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APPENDIX C2:   

 

Yearly condensate data ILAN-ACON simulations for Doha per 100 m3 cooling space. 

 

Q_Total20 implies for total condensate volume at 20 % outdoor ventilation, Q_Total100 

implies for total condensate volume at 100 % outdoor ventilation, and IL_Qcond 

implies for condensate due to Internal Load’  

Monthly

Month Load _Type Total Max Average Min SD

January Q_Total20 19.6 2.6 0.6 0 0.9

Q_Total100 26.6 3.9 0.9 0 1.3

IL_Qcond 18.2 2.3 0.6 0 0.9

Feb Q_Total20 15.7 2.3 0.5 0 0.7

Q_Total100 18.6 3.4 0.6 0 0.9

IL_Qcond 15.1 2 0.5 0 0.7

March Q_Total20 35.1 4.1 1.1 0 1.2

Q_Total100 41.8 5.1 1.3 0 1.5

IL_Qcond 32.7 3.7 1.1 0 1.1

April Q_Total20 132.3 6.2 4.4 0.9 1.5

Q_Total100 247.4 16.2 8.2 1 4.2

IL_Qcond 106.1 4.7 3.5 0.8 1.1

May Q_Total20 156.9 7.4 5.1 1.8 1.2

Q_Total100 302.6 19.7 9.8 4.4 4.3

IL_Qcond 118.6 5.1 3.8 0 0.9

June Q_Total20 153.1 6.5 4.9 2.6 0.7

Q_Total100 445.4 28.8 14.4 4.6 5.3

IL_Qcond 97.6 3.5 3.1 2.1 0.3

July Q_Total20 198.8 8.4 6.4 4.6 1.1

Q_Total100 650 37.6 21 6.3 8.9

IL_Qcond 112.4 3.9 3.6 3.3 0.2

August Q_Total20 221.5 8.8 7.1 5.3 1

Q_Total100 851.4 40.7 27.5 11.3 8.1

IL_Qcond 109.1 3.8 3.5 3.2 0.2

September Q_Total20 199.2 8.6 6.6 4.5 1.1

Q_Total100 630.1 33.7 21 6 7.5

IL_Qcond 119.2 4.4 4 3.4 0.3

October Q_Total20 152.4 6.4 5.1 4.4 0.5

Q_Total100 286.9 20.7 9.6 5.1 3.8

IL_Qcond 114.3 4.1 3.8 3.5 0.1

November Q_Total20 77.7 5.6 2.6 0 1.9

Q_Total100 192 16.2 6.4 0 5.7

IL_Qcond 56.4 4.2 1.9 0 1.3

December Q_Total20 6.8 1.7 0.2 0 0.4

Q_Total100 8.1 2.1 0.3 0 0.5

IL_Qcond 6.5 1.6 0.2 0 0.4

Condensate (L)

Daily Condensate
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APPENDIX C3:  

 

Water quality of A/C condensate (For the city of Doha) compared with different water 

use standard [Provin et al., 2002; EPA, 2003] 

 

 

 

 

n Mean Max Min SD Primary Secondary Recommended potential issue CAST potential issue

pH 6 7.1 7.7 6.5 0.57 6.5-8.5 <5.5/>8.5 <5.5/>8.5

DO (mg/L) - - - - -

Turbidity (NTU) - - - - - <1 and not exceed 0.3 95%

EC. µS/cm 6 83.77 134 35.1 37.92 0.0-0.25 >0.75(s)

Cl- (mg/L) 6 3.6 14.5 0.77 4.9

NO3- (mg/L) 6 0 0 0 0 >40 300

E.coli (Count/100 ml 6 0 0 0 5% sample -monthly

SO4-2 (mg/L) 6 6.18 21.4 0.77 7.1 250

PO4-3 (mg/L) 6 0 0 0 0  

Al (mg/L) 6 0 0 0 0 0.05-0.2

Ba (mg/L) 6 0 0 0 0 2 2 >10

Cd (mg/L) 6 0 0 0 0 0.05 0.01-0.5 0.05

Co (mg/L) 6 0 0 0 0

Cr (mg/L) 6 0 0 0 0 0.1-1.0 1

Cu (mg/L) 6 0.77 1.69 0 0.69 1.3 1 0.2 0.5

Mn (mg/L) 6 0 0.02 0 0.01 0.05

Ni (mg/L) 6 0 0 0 0 0.2 0.1

Pb (mg/L) 6 0 0 0 0 0.015 5.0-10.0 0.1

Se (mg/L) 6 0.01 0.04 0 0.01

Sr (mg/L) 6 0 0 0 0

Zn (mg/L) 6 0.52 1.19 0 0.5 5 2 25

Parameters Experimental data at Qatar University, Doha Drinking water Standards Irrigation Livestock




