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ABSTRACT 

 

The purpose of this study was to investigate the setting expansion characteristics of three 

commercially available phosphate bonded investment materials for casting high fusing 

alloys and heat pressed lithium disilicate. The experimental groups in this study were 

P90 (Powercast 90% Special Liquid for Cobalt-Chrome alloys), P60 (Powercast 60% 

Special Liquid for High Noble Gold alloys), FF75 (FastFire 15 75% Special Liquid for 

Cobalt-Chrome alloys), FF50 (FastFire 15 50% Special Liquid for High Noble Gold 

alloys), and PVS (PressVest Speed 60% Special Liquid for Lithium Disilicate Veneers, 

Partial Crowns and Single Crowns). Twenty specimens per group were poured in a 

trough that conformed to ADA Specification No. 2 for the measurement of the linear 

setting expansion of gypsum bonded investments. Measurements of the setting 

expansion were taken at 2, 4, 6, 8, 12, and 24 hours after mixing.  

A one sample T-Test revealed that the setting expansion measured for all of the groups 

was statistically significant and that all of the groups exhibited statistically significant 

differences in setting expansion at the manufacturer’s recommended burn-out time from 

the setting expansion reported by the manufacturer (P≤0.01).  

P90, P60, FF50 and PVS showed less expansion than is required in order to fully 

compensate for solidification shrinkage during the casting procedures. FF75 was the 

only group that managed to fully compensate for the solidification shrinkage of the alloy 

it is intended for (P≤0.01). 
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The delayed burn-out times evaluated in this study resulted in significantly different 

setting expansion for PVS. A statistically significant difference was detected after 4 

hours. The dimension of the PVS specimens did not change significantly after 4 hours. 

No such difference in setting expansion at delayed burn-out times could be detected for 

P90, P60, FF75 & FF50 (P≤0.01).  

Within the limitations of this study, the setting expansion of the phosphate bonded 

investment materials tested could not fully compensate for the solidification shrinkage of 

the alloys except for FF75. Delayed burn-out times resulted in significantly different 

setting expansion for PVS. Significant differences at delayed burn-out times could not be 

detected for the rest of the groups. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

The dimensional behavior of dental investment materials has always been an area of 

interest for researchers of the properties of dental materials. Different types of 

investment materials have been formulated in order to meet the evolving requirements of 

the process. Yet, the rationale for all of them has been the same; the investment material 

has to be a refractory material that can withstand high casting temperatures and a 

material that expands in order to counteract the solidification contraction of casting 

alloys or ceramic materials.  

In 2011, Christensen [1] reported that the percentage of metal, metal-ceramic, and all-

ceramic restorations fabricated at a major US dental lab changed significantly from 1997 

to 2010. In 1997, seventy two percent of indirect restorations fabricated were metal-

ceramic restorations, 12% were metal and 16% were all-ceramic and resin based 

composite. In 2010, the percentage of metal-ceramic restorations dropped to 45%, the 

percentage of metal restorations dropped to 6% and the percentage of all ceramic 

restorations increased to 50%. Furthermore, due to the increased prices of gold and silver 

since 2010, it is safe to expect a rise in the usage of base metal alloys for the fabrication 

of metal-ceramic restorations. Therefore, with regard to the study of the properties of 

investment materials, the types of investments that are used in the casting of high noble 

porcelain fused to metal restorations, the casting of cobalt-chrome alloys for removable 

partial denture frameworks and the investments used in heat pressing of ceramic 

materials like lithium disilicate glass ceramics are of interest.  
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Different investment types are indicated depending on the melting range of the alloy or 

ceramic material used. Gypsum-based materials (Type I &II) have been traditionally 

used to cast Type 3 gold alloy inlays, onlays & crowns. Phosphate-bonded investments 

were created to be used with metal-ceramic restoration alloys that require higher casting 

temperatures, and also for base metal alloys and pressable ceramics. In 1998 Takahashi 

[2] developed a new gypsum bonded investment suitable for casting high fusing alloys 

used in metal ceramic technology. This investment material was composed of gypsum as 

a binder and alumina as a refractory material. Ethyl silicate-bonded investments are used 

with cobalt-based and nickel-based alloys for the casting of removable partial denture 

frameworks. There have been attempts to cast commercially pure titanium and titanium 

alloys without major commercial application due to the highly sensitive casting 

technique with special investments and a controlled atmosphere [3]. The investment 

materials that are currently used for the majority of restorations belong to the category of 

the phosphate-bonded investments. 

When evaluating the expansion properties of a dental investment material one has to 

determine the linear percentage of solidification contraction of the alloy or ceramic 

material, since the investment is supposed to compensate for that by providing a 

corresponding percentage of expansion. The linear solidification shrinkage of casting 

alloys has been calculated to be 1.56% for Type 1 gold alloys, 1.37% for Type 2 gold 

alloys, 1.42% for Type 3 gold alloys, 2.30 for Type 4 nickel-chrome based alloys and 

2.30 for cobalt-chrome based alloys [3]. The size and shape of the casting as well as the 

high heat compressive strength of the investment are also recognized as factors that 
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could influence the percentage of linear solidification shrinkage [4, 5]. Price reported a 

solidification shrinkage of 2.2% for gold alloys, Shell 1.71%, Coleman 1.25% and 

Hollenback & Skinner 1.3% to 1.5% [6, 7]. In these studies the shrinkage of the alloy 

was calculated indirectly by directly measuring the dimensions of the wax pattern and 

the casting and correcting for investment expansion. One major disadvantage was that 

since their wax patterns were bars and rods, they had no clinical relevance. Fusayama 

devised an accurate technique for an indirect calculation of the solidification shrinkage 

and showed that it can be affected by the shapes and sizes of the castings [8]. Fusayama 

& Ide in their study of the shrinkages of gold alloys determined the percentage of 

shrinkage to 1.9% to 2.1% for Type 1 alloy and 1.8% to 1.9% for Type 2 and Type 3 

alloys for single restorations [9]. They employed an indirect calculation technique which 

minimized wax pattern distortion before and after removal from the die and by utilizing 

an experimental investment with minimal setting expansion which was close to isotropic 

in nature thanks to the use of an asbestos liner in the casting ring with sufficient 

thickness. Furthermore, in a subsequent study by Fusayama and Kono [10], the 

solidification shrinkage of Type 3 gold alloys was calculated to be 1.5% for vertical 

molds and 1.5% for horizontal molds. The solidification shrinkage of lithium disilicate is 

calculated using the coefficient of thermal expansion of the material, which is reported 

to be 10.55 x 10-6K-1 for the 100°-500° C range.  

Investment materials have different ways of achieving the desired expansion. Ideally, the 

total setting and thermal expansion should equal the solidification thermal contraction of 

the material used for the casting [11,12]. Type I gypsum-bonded investments counteract 
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the solidification shrinkage of the alloy by means  of thermal expansion. Type II 

gypsum-bonded investments achieve solidification shrinkage compensation by means of 

hygroscopic expansion, which occurs as they are permitted to set immersed in a water 

bath. Phosphate-bonded investments utilize both setting and thermal expansion.  

Hygroscopic expansion is a result of surface tension. During the initial setting reaction, 

the precipitated gypsum crystals are enclosed in a film of water. The surface tension of 

this film of water prevents the crystals from growing further [13]. If the investment 

material is placed in a waterbath after it has achieved green strength, the surface tension 

and the friction between the crystals diminishes and the crystals are allowed to expand 

[14]. In this sense, hygroscopic expansion can be considered an unhindered setting 

expansion. Both gypsum-bonded and phosphate-bonded investment materials show 

hygroscopic expansion. Setting expansion and hygroscopic expansion are important with 

gypsum bonded investments because thermal expansion is limited. The burn-out 

temperature is not high enough to ensure adequate thermal expansion. And if it were 

raised further for alloys with higher melting points then the water molecules between the 

layers of calcium sulphate would be eliminated at two very specific temperature ranges; 

from 200° - 230° C and 270° - 350° C [14, 15]. This would cause a collapse of the 

structure that would be manifested macroscopically as a shrinkage of the mould cavity. 

Furthermore, in order to ensure adequate thermal expansion the temperature would have 

to be elevated to levels at which the gypsum binder would start to deteriorate. From 700° 

C to 900° C the binder starts to break down. Calcium sulphate reacts with the silica in 
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the presence of heat producing calcium silicate and sulphur trioxide gas. This material 

deterioration is not an issue with phosphate bonded investments [14, 15].  

In phosphate bonded investments, the refractory material is quartz, christobalite or both. 

Magnesium oxide and phosphoric acid or mono ammonium phosphate is the binder. 

Colloidal silica solutions mixed with water in different ratios for different applications 

provide an additional source of expansion to counteract the greater solidification 

contraction resulting from the higher melting range of the alloys employed. In phosphate 

bonded investments, the expansion that is the result of the formation of magnesium 

ammonium phosphate hexahydrate during the setting reaction is called setting expansion 

[16, 17, 18]. Jorgensen & Okamoto reported that the main drawback of phosphate 

bonded investments is the fact that their setting expansion is influenced by many factors 

(the measuring technique, the measuring force applied to the investment, the amount of 

time that passes from the end of mixing to the beginning of measuring the expansion, 

temperature, the powder/liquid ratio, the type of liquid used, the mixing device, the 

material volume, mixing time, the use of a casting ring and the type of liner) [11, 12, 

13]. In addition, Santos & Ballester reported that the setting expansion of phosphate-

bonded investments can be significantly affected by changes in environmental humidity 

and temperature, even after the investment’s final set [19, 20]. According to Stevens, 

dimensional changes in castings can be the result of the way they are positioned in the 

casting ring, due to settling and packing of silica particles [21]. Lengthy patterns are 

more prone to such casting inaccuracies, especially when significant vibration is applied, 

something that may be required with long casting rings [22, 23]. According to Jones, 
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setting expansion is more prone to variations and is less consistent than thermal 

expansion [15]. A significant range of values of setting expansion can be obtained 

depending on the conditions of restraint of the investment and water availability. The 

phosphate salts used as a binder are significantly hygroscopic in nature and despite the 

fact that this category of investments is not typically used with the technique of 

hygroscopic expansion a significant absorption of water is possible, one that could cause 

bloating until cracking and ruptures could occur [14, 15].  

Gypsum bonded investment materials were traditionally used with a metal casting ring. 

This was necessary because the green and high temperature strength of the gypsum 

bonded investments was not adequate. Liners of various compositions were also 

routinely used in combination with the casting ring in order to limit the restriction of the 

investment’s setting expansion. Earnshaw reported that if the setting expansion surpasses 

the amount the liner permits, then the radial restriction provided by the casting ring walls 

will direct the expansion in an axial direction [24]. As a result the length of the mould 

cavity will increase and the casting will be distorted. The effect of utilizing lined or 

unlined casting rings on the dimensional changes of investments and castings has been 

examined by several authors [25, 26, 27]. They all concluded that unlined casting rings 

produce undersized castings. Rice and Morgano reported that the restraining effect of an 

unlined casting ring directed the setting expansion inwards, producing undersized 

castings in a radial direction [28, 29]. Morgano also stated that this might be beneficial 

for investing and casting patterns for intra-coronal casting such as cast post and cores or 

inlays, since a slightly undersized cast post and core will allow for cement space and a 
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more passive fit, with less chance of vertical root fractures and catastrophic failures [28]. 

Otun concluded that investing without a casting ring liner and utilizing a final burn-out 

temperature of 600° C resulted in the fabrication of cast posts and cores that require 

significantly less chair side adjustment time than those cast in a lined casting ring with a 

burn-out temperature of 815° C [30]. Junner & Stevens demonstrated the anisotropic 

setting expansion of three phosphate-bonded investments when the casting ring 

technique was utilized [31]. The thermal expansion of the casting ring is significantly 

different from that of the investment material resulting in distorted castings of reduced 

diameter and increased length. According to Fusayama’s study of investment expansion 

in casting rings, the setting expansion is influenced by the restrictive stress exerted on 

the investment [10]. Jack and Cruickshanks-Boyd reported that the thermal expansion of 

the phosphate bonded investments that they examined was not affected by the heating 

rate or the age of the set investment but were extremely sensitive to the level of 

restricting stress of casting rings and liners [32]. Jorgensen & Okamoto concluded that 

the setting expansion of phosphate bonded investment materials in casting rings, lined or 

unlined, with one or multiple layers of liners, pretreated or not with water or vaseline is a 

significantly unreliable method to partly compensate for the solidification shrinkage of 

alloys [12].  

Phosphate bonded investments on the other hand are capable of achieving adequate 

green and high temperature strength, thus making the use of a rigid casting ring 

unnecessary. In this “Ringless” approach, a soft plasticized PVC ring contains the 

investment material until it has reaching the initial set. This PVC ring is then removed 
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and the investment enters the burn-out furnace without it. Lloyd reported that the elastic 

PVC rings in the “Ringless” technique limit the radial restrictive stress and permit 

greater radial setting expansion and less axial setting expansion [17, 18]. This more 

isotropic pattern of expansion is considered to produce castings with less distortion. 

Junner and Stevens stated that when a rigid ring was employed the axial expansion was 

significantly higher than the radial expansion and that they were not significantly 

different when a flexible ring was used [31].  

Various authors have recognized the unreliable nature of setting expansion of phosphate 

bonded investment materials as a means of achieving the necessary expansion, along 

with the thermal expansion, to compensate for the total percentage of solidification 

shrinkage of the alloys used for casting. Lloyd reported that setting expansion builds to a 

certain extent and continues at a reduced rate beyond the time at which many technicians 

commence the burn-out process in the furnace [16, 17]. Stevens stated that usually it is 

convenience that dictates when the burn-out process begins and that this varies 

significantly [22]. In his study the setting expansion of phosphate bonded investments 

continued for more than six hours. Investments heated to 100° C within six hours of the 

beginning of mixing expanded fast and the rate of expansion was greater when the time 

between mixing and heating was reduced and when greater concentrations of colloidal 

silica solutions were employed. This rapid expansion was interpreted as a combination 

of thermal and accelerated setting expansion. Jones & Wilson reported that accelerated 

heating of dry calcium sulphate bonded investment materials resulted in significantly 
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less thermal expansion [14, 15]. Phosphate bonded investments on the other hand were 

unaffected by accelerated heating [15].  

Due to this unreliable setting expansion behavior of investment materials several authors 

have concluded that the ideal investment material should exhibit minimum setting 

expansion and that the total percentage of expansion necessary to compensate for alloy 

shrinkage upon cooling should be achieved by means of thermal expansion. Some even 

attempted to formulate experimental phosphate bonded investment materials with these 

characteristics. Watanabe stated that the setting expansion of dental investment materials 

should be minimal to prevent distortion of the invested wax pattern and that the thermal 

expansion should be high enough in order to compensate completely for the shrinkage of 

the alloy upon cooling [33]. Stevens & Jorgensen described the setting chemical reaction 

of investment materials as exothermic and stated that the heat produced during this 

reaction could distort the wax pattern, along with the possible anisotropic expansion of 

the mould cavity [11, 12, 21]. Their findings indicated that when aqueous glycerol 

solutions were used the setting expansion was close to zero, yet the distortion of the wax 

patterns was considerable, a finding that was attributed to wax stress relaxation as a 

result of the heat of the exothermic reaction. Jorgensen & Okamoto concluded that the 

use of colloidal silica special liquids should be avoided with phosphate bonded 

investments in an attempt to minimize setting expansion and wax pattern distortion [12]. 

They advocated the use of water or an aqueous glycerol solution in order to achieve 

adequate thermal expansion [12]. Junner & Stevens stated that new types of phosphate 

bonded investments should be developed that will exhibit lower setting expansions. The 
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necessary total expansion should be obtained by means of an increased thermal 

expansion instead [31]. In 1981, Finger reported on the use of an gypsum bonded 

investment material with minimal setting expansion and adequate unrestricted thermal 

expansion. The disadvantage of this material was its limited applicability since it is not 

suitable for casting alloys routinely used in metal ceramic technology that require 

elevated casting temperatures [34]. On the same note, in 1986 Jorgensen & Watanabe 

published a study on a new experimental phosphate bonded investment with minimal 

setting expansion of 0.03-0.05% at 24h after mixing [35]. 

Therefore, there is limited data regarding the setting expansion of routinely used 

commercially available investment materials for casting alloys for porcelain fused to 

metal restorations, removable dental prosthesis frameworks and heat pressed lithium 

disilicate restorations. Interestingly, the ADA Specification No. 42 does not specify 

setting expansion percentages for phosphate-bonded investment materials [4]. Ideally, 

the setting expansion of these investment materials should be close to zero and the 

thermal expansion adequate to compensate for the total solidification shrinkage of the 

casting material. If minimal setting expansion cannot be achieved, there is limited data 

as to whether it is possible for the material to achieve setting expansion adequate for 

solidification shrinkage compensation, when combined with the material’s thermal 

expansion. In addition, there is limited data as to whether the necessary percentage of 

setting expansion is achieved at the time proposed by the manufacturer for burn-out. 

Furthermore, the behavior of these investment materials from a setting expansion 

standpoint has not been determined if the burn-out time is delayed beyond the 
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manufacturer’s recommendation as casting convenience for the dental technician might 

necessitate. 

The purpose of this study was to investigate the setting expansion characteristics of three 

commercially available phosphate bonded investment materials for casting high fusing 

alloys and heat pressed ceramic lithium disilicate. Four null hypotheses were tested.  

The first null hypothesis of the experiment was that there would be no setting expansion 

of the investments at the burn-out time proposed by the manufacturer.  

The second null hypothesis of the experiment was that there would be no difference in 

setting expansion from the one reported by the manufacturer, at the time recommended 

for burn-out.  

The third null hypothesis of the experiment was that there would be no difference in the 

setting expansion measured (at the burn-out time proposed by the manufacturer) from 

the setting expansion required to fully compensate for the solidification shrinkage of the 

various alloys and pressable ceramics.  

The fourth null hypothesis was that there would be no difference in the setting expansion 

measured at the burn-out time proposed by the manufacturer from the expansion at 

delayed burn-out times (4, 6, 12 & 24h after mixing). 
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2. MATERIALS AND METHODS 

 

The three investment materials tested were: FasftFire 15 (Whip Mix, Louisville, Ky.), 

Powercast (Whip Mix, Louisville, Ky.) and IPS PressVest Speed (Ivoclar Vivadent AG, 

9494 Schaan/Liechtenstein) (Table 1) . Twenty specimens per group were poured in a 

trough that conformed to ADA Specification No. 2 for the measurement of the linear 

setting expansion of gypsum bonded investments (Figure 1) . The resulting specimens 

were 100mm in length and triangular in cross section (33x50x33 mm) at the time of 

pouring. Since ADA Specification No. 42 for phosphate bonded investments does not 

specify a measurement device for the setting expansion of these materials, the measuring 

protocol specified by the ADA for gypsum bonded investments was employed (ISO 

6893) [5]. All investment materials were stored in an environment that conformed to the 

manufacturer’s recommendations. The room temperature was maintained at 70° C (+-5) 

and the deionized water used for the colloidal silica solution was maintained at a 

temperature of 78° C (+-2). Standardized humidity conditions were not established in 

order to realistically represent conventional dental laboratory settings. 

Dedicated mixing bowls (Whip Mix, Louisville, Ky.) were used that were rinsed with 

deionized water prior to mixing each specimen and air dried to remove all the residual 

water. The powder was added to the liquid for each specimen and the mixture was hand 

spatulated according to the manufacturer’s recommendations. Specifically, Powercast 

specimens were hand spatulated for 20 seconds, FastFire 15 for 15 seconds, PressVest 

Speed for 20 seconds. Even wetting of the powder was achieved. Powercast was then 
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mechanically mixed under vacuum at 350-450 RPM for 90 seconds, FastFire 15 at 350-

450 RPM for 60 seconds and PressVest Speed at 350 RPM for 150 seconds. The Whip 

Mix VPM2 Mixer (Whip Mix, Louisville, Ky.) was employed. Powder/liquid ratios and 

Special Liquid concentrations were determined according to the manufacturers’ 

recommendations for different applications. The following 5 groups were established 

and are listed in Table 1.  

After mixing each investment material was immediately poured into the V shaped trough 

of the expansion gauge (EMI 300; SAM Prazisiontechnik GmbH, Munich, Germany) 

which was lined with rubber dam (Hygenic Dental Dam; Coltene/Whaledent, Mahwah, 

N.J.) (Figure 1) . The rubber dam prevents direct contact of the investment material with 

the walls of the V-shaped trough and minimizes any friction, which would restrict the 

linear expansion of the investment material. The linear expansion of each specimen was 

measured with a Mitutoyo IDS-1012B Digimatic Indicator with the ability to measure 

changes from 0.01-12mm (Mitutoyo Corporation, Japan). According to the Mitutoyo 

Corporation the Digimatic Indicator exerts 1.5N or less to the expanding plate of the V 

shaped trough. Expansion was measured at 2, 4, 6, 8, 12, 24h after mixing (Table 3). It 

was measured in mm and expressed in a percentage through the formula E/L % where E 

is the measured expansion at each one of the six time interval and L the initial length of 

100mm. Expansion data were transferred to the computer using a SmartCable device 

(Advanced Systems & Designs, Greystone Industries LLC, Model # 600-390-KB-USB, 

Firmware: v2.2) (Figure 2). Data were recorded in .txt files in a Microsoft Windows XP 

PC and then converted to .xls files in Microsoft Excel. 
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The manufacturer’s recommended burn-out times, the delayed burn-out times, the 

manufacturer’s reported linear setting expansion and the linear solidification shrinkage 

of the alloys and lithium disilicate are shown in Table 2, 3 & 4.  

Statistical analysis was performed with SPSS v11.5 (SPSS Inc., Chicago IL).  

A one sample T-test was performed to: 

a) Determine whether the setting expansion measured at the manufacturer’s 

recommended time for burn-out was statistically significant,  

b) Compare the setting expansion measured at the manufacturer’s recommended time 

for burn-out with the setting expansion reported by the manufacturer, 

c) Compare the setting expansion measured at the manufacturer’s recommended time 

for burn-out with the setting expansion required to fully compensate for the 

solidification shrinkage of the alloys and pressable ceramic 

A One-way ANOVA test was performed to compare the setting expansion measured at 

the manufacturer’s recommended time for burn-out with the setting expansion at delayed 

burn-out times, namely at 4, 6, 8, 12 and 24 hours after investing. When a difference was 

detected, a post-hoc analysis was performed using the Tukey HSD test. The statistical 

significance level was set at P≤0.05.  
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3. RESULTS 

 

Means for the setting expansion of each experimental group were calculated from the 

measurements collected at 2 hours, 4 hours, 6 hours, 8 hours, 12 hours and 24 hours.  

These means and standard deviations are shown for all groups in Tables 5-9.  

A one sample T-Test showed that the setting expansion measured for all of the 

experimental groups was statistically significant (P≤0.01).  

A one sample T-Test indicated that all of the groups exhibited statistically significant 

differences in setting expansion at the manufacturer’s recommended burn-out time, 

namely 2 hours, from the setting expansion reported by the manufacturer (P≤0.01). All 

of the groups exhibited setting expansion greater than the one reported by the 

manufacturer.  

A one sample T-Test showed that all of the groups exhibited statistically significant 

differences in setting expansion at the manufacturer’s recommended burn-out time, 

namely 2 hours, from the setting expansion required in order to fully compensate for the 

solidification shrinkage of the various alloys and the pressable ceramics with which the 

various investment materials are used (P≤0.01). P90, P60, FF50 and PVS expanded less 

than what is required in order to fully compensate for solidification shrinkage during the 

casting procedures. FF75 was the only group that managed to fully compensate for the 

solidification shrinkage of the alloy it is intended for. 

One-way ANOVA was calculated to compare the setting expansion at delayed burn-out 

times (Table 11). Levene’s test of homogeneity of variances was satisfied (P≥0.05) 
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(Table 10). The ANOVA did not reveal a statistically significant difference in setting 

expansion at delayed burn-out times for P90, P60, FF75 & FF50 (Figures 3, 4, 6, 7). The 

ANOVA revealed a statistically significant difference in setting expansion at delayed 

burn-out times for PVS  (P≤0.01) (Figure 5). A post-hoc analysis for PVS using the 

Tukey HSD test revealed that there was a statistically significant difference in setting 

expansion between two sets of subgroups: 2 and 4 hours groups on one hand and the 6 

hours, 8 hours, 12 hours and 24 hours groups on the other (P≤0.03 for the 6 hours group 

and P≤0.01 for the 8 hours, 12 hours and 24 hours groups). The dimension of the PVS 

specimens did not change significantly after 4 hours (Figure5).  
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4. DISCUSSION 

 

In this in vitro study, the setting expansion of five experimental groups for various 

applications was investigated. This study proved that the investment materials examined 

in the various groups exhibit setting expansion. According to Watanabe, this is important 

since ideally an investment material should mainly exhibit thermal expansion and only 

minimal or negligible setting expansion [33]. As discussed in the review of the literature, 

setting expansion is the type of expansion that is more variable, influenced by a greater 

number of factors and is more difficult to standardize and control compared to thermal 

expansion. There have been attempts in the past to create investment materials with ideal 

behavior in terms of expansion by trying to limit their setting expansion. These 

investments would theoretically compensate for the solidification shrinkage that occurs 

during the casting procedures by means of thermal expansion only. This has not been 

possible yet.  

This study also assessed the accuracy and reproducibility of the measurements of setting 

expansion provided by the manufacturers. The statistical analysis proved that these 

values are indeed different from the ones the manufacturers report. This was possible 

due to the highly controlled conditions of the experiment, as the homogeneity of 

variance for the various groups shows.  

An attempt was also made to determine whether the investment materials examined 

could provide the necessary expansion in order to compensate for solidification 

shrinkage and produce an accurate casting.  Within the limitations of this study, it was 
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shown that this was not possible. All of the groups expanded less than the required 

amount, except for FF75, which showed a greater amount of expansion. The literature 

review conducted by the author revealed the numerous attempts by other investigators in 

the past to provide percentages of solidification shrinkage for the various materials used 

in casting procedures. This literature review also revealed the complexity of attempting 

such calculations, as solidification shrinkage can be influenced by the shape and size of 

the castings, the high heat compressive strength of the investment material, wax pattern 

expansion, die size, even the manner of investing in a horizontal or a vertical mold. For 

the purposes of this study the percentages reported in the widely accepted “Phillips’ 

Science of Dental Materials” text were used [1] (Table 4).  

This study also investigated the setting expansion at delayed burn-out times (Table 3). It 

proved that for PVS a delayed burn-out time after 4 hours from mixing resulted in a 

significant difference in setting expansion. No significant differences in setting 

expansion at delayed burn-out times could be detected for the rest of the experimental 

groups. A greater number of specimens for these experimental groups could potentially 

provide enough statistical power in order to confirm the absence of a statistical 

difference, yet that number of specimens was beyond the limitations of this in vitro 

study.  

There are several implications in the daily practice of a dental laboratory. Much like with 

most other dental laboratory materials, investment materials require close monitoring in 

terms of the timing of the procedures. Since it is usually convenience that dictates the 

timing and sequencing of the various investing and casting procedures in the busy 
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schedule of a dental laboratory, knowing the dimensional behavior of the material used 

is critical. Within the limitations of this study, it can be noted that delayed burn-out time 

for PVS past the manufacturer’s recommended time could result in significantly greater 

setting expansion of the investment material. Whether this could result in clinically 

significant differences in the restorations produced remains to be determined in a 

different study. No general statement can be made for the other experimental groups, yet 

within the limitations of this study their dimensional behavior in terms of setting 

expansion appears to be more stable for the first 24h after the recommended burn-out 

time. Furthermore, other factors that affect the dimensional characteristics of the casting, 

like the expansion of the die stone, the die spacer thickness and the dimensional behavior 

of the invested was pattern should be further assessed and adjusted accordingly in order 

to fully compensate for the solidification shrinkage of the various alloys or pressable 

ceramics. Future directions for other studies on the topic of dental casting and 

investment materials could include examining the grain size of the each investment 

material used, since this is another very important factor that influences the initial 

adjustments of the casting in the dental laboratory and potentially the fit of the casting 

intra-orally and how that grain size could potentially change with delayed burn-out 

times. Optical inspection of the various specimens in this study at delayed burn-out 

times revealed a noticeable change in appearance, roughness of the surface and 

potentially a change in grain size, all of them factors that could affect the quality of the 

produced casting.  



 

 20 

5. CONCLUSIONS 

 

Within the limitations of this in vitro study, the following conclusions can be drawn: 

1. The setting expansion measured for all groups was statistically different from the 

one reported by the manufacturer, for the recommended burn-out time.  

2. P90, P60, FF50 and PVS expanded less than what is required in order to fully 

compensate for solidification shrinkage during the casting procedures. FF75 was 

the only group that managed to fully compensate for the solidification shrinkage 

of the alloy it is intended for. 

3. The delayed burn-out times evaluated in this study resulted in significantly 

greater setting expansion for PVS.  
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APPENDIX A - FIGURES 
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Figure 1. Mitutoyo Digimatic expansion gauge with V shaped trough lined with rubber 
dam. 
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Figure 2. SmartCable for data transfer to computer 
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Figure 3. P60 Mean setting expansion (%) & SD at delayed burn-out times 
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Figure 4. P90 Mean setting expansion (%) & SD at delayed burn-out times 
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Figure 5. PVS Mean setting expansion (%) & SD at delayed burn-out times 
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Figure 6. FF50 Mean setting expansion (%) & SD at delayed burn-out times 
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Figure 7. FF75 Mean setting expansion (%) & SD at delayed burn-out times 
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APPENDIX B - TABLES 
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Table 1. Experimental groups 
 

Group Description 

P90 Powercast 100g/23mL – 90% Special 

Liquid for Cobalt-Chrome alloys 

LOT 074101401 

P60 Powercast 100g/23mL – 60% Special 

Liquid for High Noble Gold alloys 

LOT 074101401 

FF75 FastFire 15 100g/27mL – 75% Special 

Liquid for Cobalt-Chrome alloys 

LOT 072061601 

FF50 FastFire 15 100g/27mL – 50% Special 

Liquid for High Noble Gold alloys 

LOT 072061601 

PVS PressVest Speed 100g/27mL – 60% 

Special Liquid for Lithium Disilicate 

Veneers, Partial Crowns and Single 

Crowns 

LOT VL 1766 
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Table 2. Manufacturer's reported linear setting expansion percentages 
 

Investment Material Manufacturer’s reported Linear 

Setting Expansion at 2h (%) 

P90 1.2 

P60 0.22 

FF75 1 

FF50 1 

PVS Not reported 

 

 

 

 
 

Table 3. Burn-out times 
 

Investment Material Manufacturer’s 
Recommended Burn-Out 
Time  

Delayed Burn-Out Times 

P90 1.5 - 2 hours 4, 7, 8, 12, 24 hours 
P60 1.5 - 2 hours 4, 7, 8, 12, 24 hours 

FF75 1 - 2 hours 4, 7, 8, 12, 24 hours 
FF50 1 - 2 hours 4, 7, 8, 12, 24 hours 
PVS 1.5 - 2 hours 4, 7, 8, 12, 24 hours 
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Table 4. Linear solidification shrinkage percentages [3] 
 

Material Solidification Shrinkage (%) 

High Noble PFM Alloys 1.42 

Cobalt-Chrome Alloys 2.3 

Lithium Disilicate 0.791 

 

 

 

 
Table 5. P60 mean setting expansion & SD 
 

Time (hours) Mean Setting Expansion (%) Standard Deviation (%) 

2  0.277 0.102 

4  0.281 0.104 

6 0.280 0.102 

8  0.280 0.102 

12  0.279 0.99 

24  0.279 0.99 
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Table 6. P90 mean setting expansion & SD 
 

Time (hours) Mean Setting Expansion (%) Standard Deviation (%) 

2  0.99 0.353 

4  1.00 0.351 

6 0.948 0.370 

8  0.987 0.339 

12  0.968 0.334 

24  0.886 0.296 

 

 

 

 

Table 7. PVS mean setting expansion & SD 
 

Time (hours) Mean Setting Expansion (%) Standard Deviation (%) 

2  0.628 0.085 

4  0.705 0.088 

6 0.729 0.090 

8  0.736 0.091 

12  0.738 0.091 

24  0.774 0.051 
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Table 8. FF50 mean setting expansion & SD 

Time (hours) Mean Setting Expansion (%) Standard Deviation (%) 

2 0.399 0.095 

4 0.411 0.098 

6 0.414 0.099 

8 0.413 0.099 

12 0.413 0.099 

24 0.377 0.061 

Table 9. FF75 mean setting expansion & SD 

Time (hours) Mean Setting Expansion (%) Standard Deviation (%) 

2 1.635 0.302 

4 1.638 0.298 

6 1.638 0.298 

8 1.638 0.298 

12 1.586 0.348 

24 1.596 0.283 
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Table 10. Test for homogeneity of variances 
 

Group Levene Statistic df1 df2 Sig. 

P60 0.011 5 114 1.000 

P90 0.231 5 114 0.948 

PVS 0.668 5 114 0.649 

FF50 0.641 5 114 0.669 

FF75 0.242 5 114 943 
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Table 11. One-way ANOVA 
 

 Sum of 
Squares  

df  Mean 
Square  

F  Sig.  

P60  
Between Groups  
Within Groups  
Total  

 
.002 
1.183 
1.185  

 
5  
114 
119  

 
.000  
.010  

.030  1.000  

P90  
Between Groups  
Within Groups  
Total  

 
.189 
13.333 
13.522  

 
5  
114  
119  

 
.038  
.117  

.323  .898  

PVS  
Between Groups  
Within Groups  
Total  

 
.245  
.814 
1.060  

 
5  
114  
119  

 
.049  
.007  

6.865  .000  

FF50  
Between Groups  
Within Groups  
Total  

 
.021  
.991 
1.012  

 
5  
114  
119  

 
.004  
.009  

.485  .787  

FF75  
Between Groups  
Within Groups  
Total  

 
.058 
10.641 
10.699  

 
5  
114  
119  

 
.012  
.093  

.124  .987  

 
  
 




