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ABSTRACT

In my dissertation, I focus on resource reallocation problem. Speci�cally, I consider the housing

market problem. In this problem, there is a group of agents and a group of objects. Each agent owns

at most one object and each object is owned by at most one agent. Agents have preferences over

objects. The goal is to reallocate these objects among agents while satisfying desirable properties;

Pareto e�ciency (not possible to make someone better-o� without making someone worse-o�),

individual rationality (each agent is assigned an object at least as good as her endowment), strategy

proofness (no agent has an incentive to lie) and weak-core selection (no group of agents can trade

among themselves such that each of them becomes better-o�). In addition, I consider this problem

while allowing agents to be indi�erent between objects.

Recently, favorable results have been established for such problems. It has been proved that

Pareto e�cient, weak-core selecting (hence, individually rational) and strategy proof rules exist

for such problems. I consider additional properties for the housing market problem with indi�er-

ences. I show that there are rules which, in addition to the aforementioned properties, satisfy no

justi�ed-envy for agents with identical endowments and weak group strategy proofness even though

Pareto e�ciency and group strategy proofness are incompatible under the assumption of indi�er-

ences. I achieve this by providing su�cient conditions for weak group strategy proofness. Then, I

propose a procedural enhancement which prioritizes the outcome achieved without violating strat-

egy proofness. I show that some of the existing rules do not satisfy this criterion. So, I propose a

new mechanism which satis�es this property in addition to other desirable results. Additionally, I

present an amended version of su�cient condition for strategy proofness for housing market problem

with weak preferences.

I also consider random assignment solutions to housing market problem which is referred to

as fractional housing market problem in literature. For general and strict preferences, several

impossibility results have been established for such problems. I show that for a restricted class of

preferences, trichotomous preferences, these impossibility results do not hold.
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CHAPTER I

INTRODUCTION

In this chapter, I provide a brief introduction of the research presented in the following chapters.

This dissertation is a study of the housing market problem. This problem was �rst modeled by

Shapley & Scarf [28]. In this problem, there is a set of agents and a set of objects. Each agent owns

at most one object and each object is owned by at most one agent. Agents have preferences over

the objects which are to be reassigned. Preferences can be broadly categorized as; general (weak

preferences) and restricted (includes, but not limited to, no indi�erences with endowment, strict,

trichotomous, etc). Solution concept for the problem is of the following types: deterministic (an

object is assigned to an agent or not) or random/fractional (an agent can be assigned fractions of

objects).

The second chapter considers housing market problem with weak preferences for deterministic

solutions. The main objective of that chapter is to extend results already established in this setting.

In certain real life applications of housing market problem, social ranking of agents1 could be of

importance i.e. it might be of interest to treat agents with higher social ranking systematically

better in assignment of objects. Social ranking of agents can arise in real-life applications of the

housing market problem: donor lists in organ donor markets; �rst-come, �rst-serve criterion for

campus housing and seminar slots; seniority of employees for o�ce assignment, etc. Social ranking

of agents allows us to consider fairness notions for the housing market problem. However, for

deterministic solutions, fairness cannot be examined in a very meaningful manner since an agent

either receives an object or not. A fairness notion that can be considered is no justi�ed-envy for

agents with identical endowments. This property states that for agents with identical endowments2,

the agent with a higher social rank should receive an object she likes at least as much as the

other agent. The existing rules for the housing market problem with weak preferences use priority

orderings over agents and/or objects [3, 14, 27]. An intuitive and simple solution would be to use

social ranking of agents as the priority orderings required by these rules; if the rule requires priority

ordering of agents, use social ranking as the priority ordering whereas if the rule requires priority

ordering of objects, endowments of agents are ranked according to the social rank. As it turns

out, when priority orderings re�ect social ranking of agents, rules proposed in [3, 14, 27] satisfy no

1I assume that no two agents are ranked identically under the social ranking.
2Every agent is indi�erent between endowments of these agents.
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justi�ed-envy for agents with identical endowments.

Then, I present su�cient conditions for weak group strategy proofness which states that no group

of agents can misreport their preferences such that each of agent in the group becomes better-o�.

Additionally, I show that the rule proposed in [3] satis�es weak group strategy proofness. Hence,

for housing market problem with weak preferences, there are rules which are Pareto e�cient, weak

core selecting, core selecting (whenever core is non-empty), weakly group strategy proof and satisfy

no justi�ed-envy for agents with identical endowments.

Under weak preferences, housing market problem can have several solutions satisfying the same

desirable properties. Additionally, no justi�ed-envy for agents with identical endowments states

only how agents with identical endowments are treated under the rule. It might be of interest to

direct how the rule selects the solution to these problems. So, I propose a procedural enhancement;

prioritized treatment of market-equal unsatis�ed agents. This criterion prioritizes the treatment

of unsatis�ed agents during the course of the algorithm while satisfying conditions for strategy

proofness as proposed by Saban & Sethuraman [27]. I show that the existing rules do not satisfy

this property when priority orderings re�ect social ranking of agents. Arguably, priority orderings

could be found, in certain situations, such that this property is satis�ed by existing rules. However,

this would require �nding such priority orderings for each housing market problem which might

not be a trivial task. So, I propose a new rule, Modi�ed Top Cycles rule. I study this rule for

preferences for which there are no indi�erences with endowment. The results for this rule show

that for housing market problem, there are rules which are Pareto e�cient, weak core selecting,

strategy proof and satisfy no justi�ed-envy for agents with identical endowments and prioritized

treatment of market-equal unsatis�ed agents.

Third chapter is a note on Saban & Sethuraman [27]. Using Modi�ed Top Cycles rule, I was

able to identify an oversight in their su�cient conditions for strategy proofness i.e. their result does

not hold in general. Then, I provide three conditions under which results of Saban & Sethuraman

[27] are valid; no indi�erences with endowment, ine�ective status change of agents and ine�ective

status change of objects.

In the �nal chapter, I consider a random assignment solution to the housing market problem

i.e. in this setting, agents can be assigned fractions of objects. The fractions of objects can be

interpreted as partial ownership of the object or the probability of receiving an object. Random

assignment solution for housing market problem are of interest because fairness can be considered

2



in a more meaningful manner in this setting. Since several impossibility results have been reported

for random assignment solutions to housing market problem under weak and strict preferences, I

consider the problem under restricted setting of trichotomous preferences.

For random assignment solutions, preferences of agents need to be extended to random as-

signments. To this end, I employ stochastic dominance relation and use that to de�ne desirable

properties. Using rules in class of mechanisms presented by Saban & Sethuraman [27], I generate

a random assignment solution to the housing market problem for trichotomous preferences. I show

that this rule is e�cient, core-stable, strategy proof and satis�es no-envy for agents with identical

endowments, no justi�ed-envy and equal treatment of equals. Therefore, several impossibility results

do not hold under the setting examined in this chapter.

For each of the following chapters, I introduce the problem along with related literature, model

the problem3, report the results with some discussion and �nally provide concluding remarks.

3Except for Chapter III for which the model is same as that for Chapter II.

3



CHAPTER II

HOUSING MARKET WITH WEAK PREFERENCES: ADDITIONAL

SELECTION CRITERION

Introduction

I consider problem of reallocating objects among a set of agents. Speci�cally, I consider problems

where each agent has to be assigned (at most) one object and is endowed with (at most) one object.

Agents have preferences over objects and these objects are to be reassigned without any monetary

transfers. Such reallocation problems are referred to as housing market problems in literature and

were �rst modeled by Shapley & Scarf [28]. This simple economy has several real-life applications

such as allocation of housing [2], o�ces, seminar slots, and organs for transplant [25].

Top Trading Cycles (TTC) rule, attributed to David Gale, was proposed by Shapley & Scarf [28]

for housing market problems. Under strict preferences, TTC proceeds by repeating the following

until no agent is left in the problem: Each agent points at an agent holding her most preferred

object. Since each agent is pointing at someone and there are �nite number of agents, there is

at least one cycle. Each agent in a cycle is assigned object of the agent she is pointing at and

are removed from the problem with this object. The outcome TTC rule satis�es several desirable

properties. Roth & Postlewaite [24] show that TTC outcome is the unique allocation in the core

and it is also the unique competitive allocation. Moreover, TTC mechanism is strategy proof [23],

no agent has an incentive to misreport her preferences, and group strategy proof [7], no group of

agents has an incentive to misreport their preferences such that no agent in the group is made

worse-o� and at least one agent is made better-o�. Additionally, TTC is the only mechanism which

satis�es Pareto e�ciency, individual rationality and strategy proofness [17, 29]. Also, as shown by

Miyagawa [19], TTC is anonymous, independent of how agents are named, and non-bossy, no agent

can in�uence welfare of other agents without a�ecting her own welfare.

Considering weak preferences is a natural extension to the housing market problem. Under weak

preferences, agents are allowed to be indi�erent between objects. Indi�erences among objects can

arise when there is not enough information to break ties. Similarly, an agent might be indi�erent

between some objects if those objects are of similar importance to her e.g. organs for transplant

can be identical for an agent when considering properties like blood and tissue type of the donor.
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In accounting for indi�erences, some of the desirable properties cannot be achieved. In presence

of indi�erences, a core allocation may not exist [28], competitive allocation does not coincide with

core [31] and Pareto e�ciency is incompatible with group strategy proofness [12]. Additionally,

Pareto e�ciency, individual rationality and strategy proofness are not compatible in general [29].

Moreover, following impossibility results hold under weak preferences: (1) no rule is Pareto e�cient,

strategy proof and anonymous, and (2) no rule is Pareto e�cient, strategy proof, individually rational

and non-bossy [8, 14].

Moreover, TTC algorithm is limited to strict preferences for agents. An intuitive work around

would be to arbitrarily break ties between objects and then applying TTC algorithm to the resulting

housing market problem with strict preferences. This straightforward rule is weakly Pareto e�cient,

individually rational, strategy proof, non-bossy and consistent [13]. Additionally, this rule can be

generalized to agents owning multiple objects [21, 22]. Unfortunately, weak Pareto e�ciency is

quite weak in this setting since any assignment in which one agent gets one of her most preferred

objects is weakly Pareto e�cient. In fact, examples can be found where no matter how ties are

broken, outcome of TTC with �xed tie-breaking is not Pareto e�cient [14].

Even though several desirable results, in case of strict preferences, do not hold for the housing

market problem with weak preferences, some appropriate results can still be achieved since weak

core is non-empty [28] and incompatibility of Pareto e�ciency, individual rationality and strategy

proofness holds only under certain assumptions on preference domains [30]. Utilizing this, much

progress has been made recently for the housing market problem with weak preferences. Alcalde-

Unzu & Molis [3] and Jaramillo & Manjunath [14] independently proposed generalizations of TTC

algorithm to account for indi�erences; Top Trading Absorbing Sets (TTAS) rule and Top Cycles

(TC) rule , respectively. Both these rules are Pareto e�cient, individually rational, strategy proof,

weak core selecting and core selecting (whenever core is non-empty) [3, 6, 14]. Moreover, TC has

a polynomial running time whereas TTAS has an exponential running time in the worst possible

case [6, 14]. Saban & Sethuraman [27] establish su�cient conditions for strategy proofness and

employ that condition to come up with fast algorithms. They provide a class of rules for which

each member satis�es Pareto e�ciency, individual rationality, weak core selection and strategy

proofness, namely; common ordering on agents, individual ordering on objects (CAIO). Moreover,

they propose a member from this class of rules, Highest Priority Object (HPO) rule, which has a

polynomial running time.
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Algorithms for the three rules are quite similar. Each rule is iterative where each step consists of

three phases; departure, pointing and trading. In the departure phase, a group of agents are chosen

to depart in a manner so that there are no bene�cial trades possible involving any agent from the

departing group. When agents are allowed to be indi�erent between objects, it possible to have

multiple most preferred objects. Each of these rules employ priority ordering over agents and/or

objects to determine a unique pointee for each agent in the pointing phase. In the trading phase,

objects are exchanged according to the cycles formed in pointing phase.

In real-life applications of the housing market problem, social rankings of agents might arise

e.g. seniority of people in o�ce assignment problem, donor lists in organ donor market, �rst-come,

�rst-served criterion in on-campus housing problem, etc. It might be of interest to treat agents

with higher social ranking better than agents with lower social ranking. A simple solution would

be to use social ranking of agents as priority orderings for the existing rules. Speci�cally, for rules

which use priority ordering of agents, social ranking of agents can be used as the priority orderings

and rules which use priority ordering of objects, social ranking of agents could be used to rank

endowments of agents. Then, it might be of interest to determine if these rules satisfy some fairness

criterion associated with social ranking of agents because using certain priority orderings could

potentially lead to systematic favoring of some agents. No justi�ed-envy for agents with identical

endowments is an appropriate fairness criterion for the housing market problem. This property

states that if agents have identical endowments, then agent with higher social ranking should be

favored by the mechanism.

Next, I show that even though group strategy proofness is incompatible with Pareto e�ciency,

weak group strategy proofness can still be achieved for the housing market problem with weak

preferences. I present two su�cient conditions for weak group strategy proofness and show that

TTAS is weakly group strategy proof.

Finally, I propose a procedural enhancement which I refer to as prioritized treatment of market-

equals unsatis�ed agents. This property prioritizes trading cycles which occur at each step based

on priority ordering of agents and/or objects without violating strategy proofness. I show that TC,

TTAS and HPO rules do not satisfy this property. So, I propose a rule which satis�es this property

along with other desirable properties.

To the best of my knowledge, additional properties for housing market problem with weak

preferences have not been explored as of yet. In the next section, I present the model and provide

6



some relevant notation.

Model

Let N be set of agents and O be set of objects. Without loss of generality, it can be assumed

that |N | = |O| [14]. Each agent is endowed with an object and that object is denoted by the

bijection ω : N → O. For each i ∈ N , agent i's endowment is denoted as ω (i) and for any M ⊆ N ,

let ω(M) ≡ ∪i∈M {ω (i)}.

Let R be set of all possible preference relations over O. For a given R ∈ RN , preference relation

for i ∈ N is denoted as Ri and for each a, b ∈ O; (1) a being at least as good as b for agent i is

represented as aRib, (2) a being preferred to b by agent i is represented as aPib and (3) agent i

being indi�erent between a and b is denoted as aIib. R−i is used to denote preferences of everyone

other than agent i. For any M ⊆ N , RM denotes preferences of everyone in M and R−M denotes

preferences of everyone other than M . For any R ∈ RN , i ∈ N and O′ ⊆ O, let τ (Ri, O
′) represent

agent i's most preferred objects in O′ under Ri. Formally, τ (Ri, O
′) ≡ {a ∈ O′ : aRib ∀b ∈ O′}.

Let A be set of all possible allocations i.e. it contains all bijections from N to O. For any

allocation α ∈ A, let object allocated to person i under α be denoted as α(i). Moreover, for any

M ⊆ N , let α(M) ≡ ∪i∈M{α(i)}.

Priority orderings over objects and agents are required for the housing market problem with

weak preferences. Let ≺ denote some complete, transitive and antisymmetric priority ordering over

agents in N or over objects in O. With slight abuse of notation, I use same notation for priority

ordering of agents or objects. For ordering over agents, ≺, agent i has higher priority ordering than

agent j if i ≺ j. For ordering over objects, ≺, object a has higher priority ordering than object b if

a ≺ b.

The quadruple (O,N, ω,R) denotes a housing market problem with set of agents N , objects O,

endowment ω and preference pro�le R. An allocation rule, ϕ : RN × A → A, gives an allocation

for a given housing market problem.

Let ϕ : RN×A→ A be a rule which is iterative and each of its steps has three phases: departure,

pointing and trading. In the departure phase, some agents and objects are chosen to be removed

from the problem. In the pointing phase, each (or some) agent points at a unique agent and in

trading phase, agents trade objects in accordance with the cycles formed in the pointing phase. For

7



any step t, pϕt (i) will denote the agent pointed at by agent i in pointing phase of ϕ at step t. Let

hϕt (i) be the object held by agent i at beginning of step t under ϕ. Moreover, for any M ⊆ N ,

let hϕt (M) ≡ ∪i∈M {hϕt (i)}. Let Nϕ
t and Oϕt be set of agents and objects, respectively, remaining

after departure phase of ϕ in step t. Any i ∈ Nϕ
t is said to be satis�ed if hϕt (i) ∈ τ (Ri, O

ϕ
t ). Let

Sϕt be set of all satis�ed agents in Nϕ
t . Any agent i ∈ Nϕ

t who is not satis�ed is referred to as an

unsatis�ed agent and set of all unsatis�ed agents in Nϕ
t are denoted as Uϕt . At step t, let G

ϕ
t denote

the graph where there is a directed arc from each i ∈ Nϕ
t to j ∈ Nϕ

t such that hϕt (j) ∈ τ (Ri, O
ϕ
t ).

In the next section, I formally describe some desirable properties for allocations in the housing

market problem.

Some Properties

Consider any (R,ω) ∈ RN × A. An allocation α ∈ A Pareto dominates β ∈ A if α(i)Riβ(i) for

all i ∈ N and α(j)Pjβ(j) for some j ∈ N . An allocation rule, ϕ : RN × A→ A, is Pareto e�cient

if for all (R,ω) ∈ RN ×A, ϕ (R,ω) is not Pareto dominated by any allocation in A.

An allocation rule, ϕ, is individually rational if for all (R,ω) ∈ RN×A and i ∈ N , ϕ (R,ω) (i)Riω (i)

i.e. each agent receives an object at least as good as her endowment.

An allocation rule is strategy proof if no agent has an incentive to misreport her preferences i.e.

for each i ∈ N , R ∈ RN and R′i ∈ R, ϕ (R,ω) (i)Riϕ (R′, ω) (i) where R′ = (R−i, R
′
i).

An allocation rule is weakly group strategy proof if no group of agents can misreport preferences

such that every agent in the group is made better-o� i.e. for anyM ⊆ N , there are no R ∈ RN and

R′M ∈ RM such that ϕ (R′, ω) (i)Piϕ (R,ω) (i) for each i ∈ M where R′ = (R−M , R
′
M ). It should

be obvious that weak group strategy proofness implies strategy proofness but converse is not true in

general.

For each allocation α ∈ A and M ⊆ N , α is said to be blocked by M if ∃β ∈ A such that

β(M) = ω(M) and for each i ∈M , β(i)Piα(i). An allocation α ∈ A is said to be weakly blocked by

M ⊆ N if ∃β ∈ A such that β (M) = ω (M), β (i)Riα (i) for all i ∈ M and β (j)Pjα (j) for some

j ∈ M . An allocation is in the weak core if it is not blocked by any subset of N . An allocation is

in the core if it is not weakly blocked by any subset of N . An allocation rule is said to be weak core

selecting if it always �nds allocations in the weak core and core selecting if it �nds allocations in

the core whenever the core is non-empty.
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Existing Rules

In this section, I brie�y describe three of the existing mechanisms proposed for housing market

problem with weak preferences. First, I present the common departure condition for the three rules.

Then, I describe the properties required for su�cient conditions of strategy proofness as given by

Saban & Sethuraman [27]. Finally, I describe the pointing phase of each of the three rules.

Departure Condition

At each step of the algorithm, agents and objects are chosen to depart. Unlike TTC rule, in

presence of indi�erences among objects, agents cannot be allowed to depart after they have been

part of a trading cycle since some bene�cial trades might still be possible. So, in order to achieve

Pareto e�ciency, following departure condition is used for the existing rules and I state it for a

general rule ϕ: A group of agents is selected to depart if every person in the group is satis�ed

and the group, as a whole, owns all their most preferred objects among the remaining objects.

Formally, a set of agents, M , is chosen to depart at step t if hϕt (i) ∈ τ (Ri, O
′) for all i ∈ M and

hϕt (M) = ∪i∈Mτ (Ri, O
′) where O′ ⊆ Oϕt−1 and Oϕt−1\O′ are the objects removed at step t before

group M is chosen for departure. The process is repeated until no other group of agents satis�es

the departure condition.

This departure condition is equivalent to condition of paired-symmetric absorbing sets used for

TTAS by Alcalde-Unzu & Molis [3] and terminal sinks used for HPO by Saban & Sethuraman

[27]. This condition ensures Pareto e�ciency for these rules because all possible bene�cial trades

are exhausted.

Independence of Unsatis�ed Agents and Persistence

Saban & Sethuraman [27] establish su�cient conditions for strategy proofness. They show that

independence of unsatis�ed agents and persistence play an important role for strategy proofness of

rules for housing market problem under weak preferences. I present these properties for a general

rule ϕ.

Independence of unsatis�ed agents states that pointing phase should be independent of most

preferred objects (among the remaining ones) of unsatis�ed agents. Consider any step t and i ∈ Uϕt ,

then by independence of unsatis�ed agents, changing outgoing edges of agent i in Gϕt should not
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change the unique pointee selected for any j ∈ Nϕ
t \ {i}.

Persistence states that if an unsatis�ed agent was pointed at (directly or indirectly) by some

agents, then those agents should keep on pointing (directly or indirectly) at that agent until the

unsatis�ed agent becomes part of a trading cycle or leaves the problem. Formally, if at step t, there

is {i1, · · · , im} ⊆ Nϕ
t such that pϕt (ir) = ir+1 for all r ∈ {1, · · · ,m− 1}, im ∈ Uϕt and t′ > t be

the �rst step agent im becomes part of a trading cycle or leaves the problem, then pϕ
ẗ

(ir) = ir+1

for all r ∈ {1, · · · ,m− 1}, ẗ ∈ {t, · · · , t′ − 1}, if agent im departs at step t′, and ẗ ∈ {t, · · · , t′}, if

agent im becomes part of a trading cycle at step t′. This condition ensures that any object made

available to an unsatis�ed agent once, should remain available to that agent until she becomes part

of a trading cycle or leaves the problem.

Top Cycles Rule

In this section, I brie�y describe Top Cycles (TC) rule proposed by Jaramillo & Manjunath

[14] and provide some relevant notation. Let ≺ be some priority ordering of agents. Step t of the

algorithm is as follows:

1. Group of agents satisfying departure condition are chosen to depart until no more group of

agents satisfy the departure condition. Each departing agent is assigned the object she is

holding i.e. if agent i was chosen to depart, then agent i is assigned hTCt (i).

2. Each agent points at an agent holding one of her most preferred objects among the remaining

objects. If there are more than one such agents, the unique agent pointed at is determined in

the following manner:

(a) (TC-persistence) For any agent j who holds the same object as in the previous step,

agents pointing at agent j in the previous step, point at agent j in the current step i.e.

if hTCt (j) = hTCt−1 (j), for each i ∈ NTC
t such that pTCt−1 (i) = j, pTCt (i) = j4.

(b) If at least one of the most preferred objects of an agent is held by an unsatis�ed agent,

that agent points at the unsatis�ed agent with the highest priority under ≺.

(c) Any agent who is not pointing must have all her most preferred objects held by satis�ed

agents. If some of those satis�ed agents point at an unsatis�ed agent, the agent points

4TC rule explicitly enforces persistence. However, TC-persistence is more restrictive than persistence and might
result in some cycles not having any unsatis�ed agents [27].
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at whoever points at the higher priority unsatis�ed agent. If two or more satis�ed agents

point at the unsatis�ed agent with highest priority, the agent points at the satis�ed agent

having a higher priority under ≺. If none of the satis�ed agents point at an unsatis�ed

agents, the agent points at whoever points at someone who points at an unsatis�ed agent

with the highest priority. If two or more satis�ed agents point at someone who points at

the unsatis�ed agent with highest priority, among these agents, the agent points at the

satis�ed agent with a higher priority and so on.

(d) Any agent unable to reach an unsatis�ed agent points at the highest priority agent, other

than herself, holding one of her most preferred objects.

3. Since at each step, every agent is pointing at someone, there is at least one cycle among the

remaining agents. In the next step of TC rule, every agent in a cycle holds object of the agent

she was pointing at i.e. if agent i is part of a trading cycle at step t, hTCt+1 (i) = hTCt
(
pTCt (i)

)
.

The second phase of TC ensures that each cycle has at least one unsatis�ed person in absence of

TC-persistent pointing. For any (R,ω) ∈ RN × A and priority ordering ≺, outcome of TC rule is

denoted as TC≺ (R,ω). TC rule is Pareto e�cient, individually rational, strategy proof, weak core

selecting and core selecting (whenever core is non-empty) [6, 14]. Moreover, it has been shown to

have a polynomial running time[14].

Top Trading Absorbing Sets Rule

I brie�y describe TTAS rule given by Alcalde-Unzu & Molis [3]. Let ≺ be some ordering over

objects.

There is a path from node v to node v′ if there are nodes {v1, · · · , vm} such that there is an

arc from vl−1 to vl for all l ∈ {2, · · · ,m}, v1 = v and vm = v′. A set of nodes, V , is said to be

an absorbing set if for all v, v′ ∈ V , there is a path from v to v′ and for each v ∈ V , there is no

path from v to some v′ /∈ V . Absorbing set V is paired-symmetric if for all v ∈ V , ∃v′ ∈ V such

that there is an arc from v to v′ and an arc from v′ to v. Step t of the algorithm proceeds in the

following manner5:

5Even though for TTAS rule, each agent points at an object and each object points at an agent, I describe the
rule such that agents are pointing at agents for notational congruity.
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1. Each remaining agent points at each agent holding one of her most preferred objects (among

the remaining ones) i.e. each i ∈ NTTAS
t points at all agents who own an object in τ

(
Ri, O

TTAS
t

)
,.

2. Group of agents are chosen to depart according to the departure condition until no more

group of agents satisfy departure condition. Each departing agent is assigned the object she

is holding i.e. if agent i was chosen to depart, then agent i is assigned hTTASt (i).

3. Now consider remaining absorbing sets, if any. For each agent in the absorbing set with

multiple most preferred objects (among the remaining ones), a unique agent is chosen to

point at in the following manner: among the most preferred objects that have not been

assigned to the agent yet, the agent points at the agent who owns the object with the highest

priority ordering under ≺. If all most preferred objects have been assigned to the agent at

least m times, the agent points at the agent who owns the highest priority most preferred

object which has not been assigned to her m + 1 times. For this criterion, endowment of an

agent is considered as a previously assigned object.

4. Since each agent, in an absorbing set, is pointing at an object there is at least one cycle. Each

agent and object in a cycle are kept in the algorithm. However, in step t+ 1, each agent in a

cycle is assigned the object she was pointing at in the cycle i.e. if agent i is in a cycle at step

t, hTTASt+1 (i) = hTTASt

(
pTTASt (i)

)
.

(3) and (4) can be considered as pointing and trading phase of TTAS, respectively. The al-

gorithm ends when every agent and object has departed. For any (R,ω) ∈ RN × A and priority

ordering of objects ≺, outcome of TTAS rule will be denoted as TTAS≺ (R,ω). TTAS rule is

Pareto e�cient, individually rational, strategy proof, weak core selecting and core selecting (when-

ever core is non-empty) [3]. However, TTAS rule can have an exponential running time in the

worst possible case [6].

Highest Priority Object Rule

I brie�y describeHPO rule proposed by Saban and Sethuraman [27]. HPO rule requires priority

ordering over objects which is then used to induce an ordering over agents at each step. However,

the induced ordering of agents is not used for HPO rule and was used only to show that HPO

belongs to the class of rules; common ordering on agents, individual ordering on objects [27]. So,
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I ignore induced ordering of agents in the following description. Let ≺ be some priority ordering

over objects. Step t of HPO proceeds as follows:

1. Group of agents are chosen to depart according to the departure condition until no more

agents satisfy departure condition. Each departing agent is assigned the object she is holding

i.e. if agent i was chosen to depart, then agent i is assigned hHPOt (i).

2. Unique pointee for each agent in NHPO
t is determined in the following manner:

(a) (Persistence) For any i ∈ UHPOt , if there are {i1, · · · , im} ⊆ NHPO
t−1 such that pHPOt−1 (ir) =

ir+1 for all r ∈ {1, · · · ,m− 1} and pHPOt−1 (im) = i, then pHPOt (ir) = ir+1 for all

r ∈ {1, · · · ,m− 1} and pHPOt (im) = i.

(b) For each i ∈ UHPOt who is not pointing yet, letM ⊆ NHPO
t be such that for each j ∈M ,

hHPOt (j) ∈ τ
(
Ri, O

HPO
t

)
. Then, agent i points at the agent in M who owns the highest

priority object under ≺.

(c) Repeat the following until everyone is pointing: agents who are already pointing at

someone are referred to as labeled agents and denoted as L. Moreover, agents adjacent

to labeled agents are denoted as AL i.e. for each i ∈ AL, there is j ∈ L such that

hHPOt (j) ∈ τ
(
Ri, O

HPO
t

)
. Select the agent in AL who owns the highest priority object,

say agent i. Let M ⊆ L be such that for each j ∈M , hHPOt (j) ∈ τ
(
Ri, O

HPO
t

)
. Then,

agent i points at an agent in M who owns the highest priority object i.e. pHPOt (i) = j

if for each j, j′ ∈ M , j 6= j′ and hHPOt (j) ≺ hHPOt (j′). Add agent i to L and each

j ∈ NHPO
t \L such that hHPOt (i) ∈ τ

(
Rj , O

HPO
t

)
to AL.

3. Since each agent is pointing, there is at least one cycle of remaining agents and by (2), each

cycle has at least one unsatis�ed agent. In the next step of HPO rule, each agent in a cycle

holds object of the agent she was pointing at i.e. if agent i is part of a trading cycle at step

t, hHPOt+1 (i) = hHPOt

(
pHPOt (i)

)
.

For any (R,ω) ∈ RN × A and priority ordering of objects ≺, outcome of HPO rule is denoted

as HPO≺ (R,ω). HPO rule is Pareto e�cient, individually rational, strategy proof and weak

core selecting [27]. Moreover, HPO rule can be implemented in O
(
n2 log n+ n2γ

)
where γ is the

maximum number of objects agents are indi�erent between for a given preference list.
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Results for Existing Rules

In this section, I present results for the existing rules. First, I present a fairness criterion, no

justi�ed-envy for agents with identical endowments, and show that it is satis�ed by TC, TTAS

and HPO rules. Next, I show that TTAS satis�es weak group strategy proofness and also present

selection criteria which induces weak group strategy proofness. I show that TTAS satis�es one of

these su�cient conditions and hence, is weakly group strategy proof. Then, I present a procedural

enhancement which prioritizes the trades occurring during the algorithm while satisfying strategy

proofness. I show that this criterion is not satis�ed by TC, TTAS or HPO rule.

No Justi�ed-Envy for Agents with Identical Endowments

In real-life applications of housing market problem, social ranking of agents might arise and it

might be of interest to treat agents in accordance with this ranking. Examples of social rankings

arising in housing market problems are as follows: seniority of employees in o�ce assignment,

donor lists in organ donor market, �rst-come, �rst-serve criterion for on-campus housing, etc. The

aforementioned rules, TC, TTAS and HPO, make use of priority ordering of agents or objects.

So, which priority ordering should be used for a given housing market problem for these rules?

An intuitive and simple solution to this question would be to use the social ranking of agents as

the priority ordering. If priority ordering is over agents, it could be same as social ranking of

agents whereas if priority ordering is over objects, social ranking of agents can be used to induce

an ordering of objects in the following manner: if agent i has a higher social ranking than agent j,

then ω (i) has a higher priority ordering than ω (j).

Then, a fairness notion of interest could be that a higher priority agent should receive an

object she likes at least as much as that of a lower priority agent when endowments of these

agents are considered to be identical by everyone. Formally, a rule ϕ with priority ordering ≺

over agents or objects, ϕ : RN × A → A satis�es no justi�ed-envy for agents with identical en-

dowments if for any i, j ∈ N such that i ≺ j or ω (i) ≺ ω (j) and ω (i) Ikω (j) for all k ∈ N , then

ϕ≺ (R,ω) (i)Riϕ
≺ (R,ω) (j). As it turns out, no justi�ed-envy for agents with identical endowments

is satis�ed by TC, TTAS and HPO rules when priority ordering re�ects social ranking of agents.

Proposition 2.1. For ordering ≺ and any (R,ω) ∈ RN×A, TC, TTAS and HPO rules satisfy

no justi�ed-envy for agents with identical endowments.
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Proof. Let ϕ be some individually rational rule. If there are i, j ∈ N such that i ≺ j or

ω (i) ≺ ω (j), ω (i) Ikω (j) for each k ∈ N and ϕ (j)Piϕ (i), then it cannot be that ϕ (j) = ω (j)

since then ω (i)Piϕ (i). So, ϕ (j) 6= ω (j). For TC, TTAS and HPO rules, this implies that agent

j is part of a trading cycle at least once.

(TC rule) On contrary, there is (R,ω) ∈ RN × A, ordering over agents ≺, i, j ∈ N such that

i ≺ j and ω (i) Ikω (j) for all k ∈ N but α (j)Piα (i) where α ≡ TC≺ (R,ω). Let t be the �rst

step agent j becomes part of a trading cycle. So, hTCt (j) = ω (j) and α (j) ∈ τ
(
Rj , O

TC
t

)
. It

must be the case that i has neither departed nor been part a trading cycle for any t′ ≤ t i.e.

hTCt (i) = ω (i). If i departed in some t′ ≤ t, then α (i)Rib for all b ∈ OTCt′ and since OTCt ⊆ OTCt′−1,

α (i)Riα (j). If i has been part of a trading cycle for some t′ ≤ t, then α (i) ∈ τ
(
Ri, O

TC
t′

)
and

since OTCt ⊆ OTCt′ , we again have a contradiction. Moreover, it cannot be the case that agent i

is satis�ed at step t because if ω (i) ∈ τ
(
Ri, O

TC
t

)
, ω (i)Riα (j). Now, let k ∈ NTC

t be the agent

pointing at agent j in the trading cycle including agent j. Then, ω (j) ∈ τ
(
Rk, O

TC
t

)
and since

ω (i) Ikω (j), ω (i) ∈ τ
(
Rk, O

TC
t

)
. Since agent k is not pointing at agent i, it must be the case that

agent k is pointing at agent j by TC-persistence of pointing phase. Let tk < t be the �rst step

agent k points at agent j. Since ω (i) , ω (j) ∈ τ (Rk, Otk), i, j ∈ UTCtk and i ≺ j, it cannot be the

case that agent k points at agent j in step tk.

(TTAS rule) On contrary, there exists (R,ω) ∈ RN ×A, ordering over objects ≺, i, j ∈ N such

that ω (i) ≺ ω (j) and ω (i) Ikω (j) for all k ∈ N but α (j)Piα (i) where α ≡ TTAS≺ (R,ω). Let t be

the �rst step agent j is part of a cycle. So, we have hTTASt (j) = ω (j) and α (j) ∈ τ
(
Rj , O

TTAS
t

)
.

It cannot be the case that agent i has departed at some t′ ≤ t since then α (i)Rib for all b ∈ OTTASt′

and so, α (i)Riα (j) because OTTASt ⊆ OTTASt′ . Also, agent i could not have been part of a cycle

at some t′ ≤ t since then α (i) ∈ τ
(
Ri, O

TTAS
t′

)
and α (i)Riα (j) because OTTASt ⊆ OTTASt′ . So,

hTTASt (i) = ω (i). Now, let k ∈ NTTAS
t be the agent pointing at agent j in the cycle containing

agent j. Let S be the absorbing set containing agents j and k. It must be the case that the agent

i is in this absorbing set as well because there is a path from agent k to agent i. Neither ω (i) nor

ω (j) have been assigned to agent k previously since agents i and j have not been part of a cycle

before t. Then, it cannot be the case that agent k points at agent j in step t because ω (i) ≺ ω (j).

(HPO rule) On contrary, there exist (R,ω) ∈ RN × A, ordering over objects ≺, i, j ∈ N such

that ω (i) ≺ ω (j) and ω (i) Ikω (j) for all k ∈ N but α (j)Piα (i) where α ≡ HPO≺ (R,ω). Let t be

the �rst step agent j is part of a trading cycle. Then, we have hHPOt (j) = ω (j). Since α (j)Piα (i),
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it cannot be the case that agent i departed at or became part of a trading cycle at some step t′ ≤ t.

So, hHPOt (i) = ω (i). Moreover, i ∈ UHPOt . Let k be the agent pointing at agent j in the trading

cycle consisting of agent j. Note that it must be the case that agent k is persistently pointing at

agent j because (1) if k ∈ UHPOt , agent k points at whoever owns a higher priority object among

agents holding one of agent k's most preferred objects and since ω (i) ≺ ω (j), pHPOt (k) 6= j, and

(2) if k ∈ SHPOt , whenever unique pointee of agent k is to be determined, agent k cannot point at

agent j because ω (i) ≺ ω (j) and agent i is always labeled because i ∈ UHPOt .

Let tk < t be the �rst step agent k points at agent j. If k ∈ UHPOtk
, agent k points at whoever

owns a higher priority object among agents holding one of agent k's most preferred objects and since

ω (i) Ikω (j) and ω (i) ≺ ω (j), it cannot be the case that pHPOtk
(k) = j. If k ∈ SHPOtk

, whenever

unique pointee of agent k is to be determined, agent k cannot point at agent j because ω (i) ≺ ω (j)

and agent i is already labeled because i ∈ UHPOtk
. This completes the proof. �

Weak Group Strategy Proofness

Even though group strategy proofness is incompatible with Pareto e�ciency for the housing

market problem under weak preferences [12], weak group strategy proofness is still compatible with

Pareto e�ciency as I show in this subsection.

For notational simplicity, I drop ϕ in the superscript. Let R,R′ ∈ RN . At step t of rule ϕ,

let Nt (resp. N ′t) and Ot (resp. O′t) be set of remaining agents and objects, respectively, after

departure phase of step t under R (resp. R′). Let pt (i) (resp. p′t (i)) denote the agent pointed at

by agent i at step t under R (resp. R′). Let ht (i) (resp. h′t (i)) denote the object held by agent i

at step t under R (resp. R′). For any R ∈ RN , let Ci (R, t) denote set of all agents having a path

to agent i at step t, under preferences R, via pointing (including agent i) i.e.

Ci (R, t) ≡


j ∈ Nt :

j = i,

pt (j) = i,

pt (pt (j)) = i,

...

Independence of unsatis�ed agents is de�ned for one unsatis�ed agent. However, if a rule satis�es

this property, it holds for multiple unsatis�ed agents as well. Consider the following: Let G0 be some
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TTC−graph and {i1, · · · , im} be some set of unsatis�ed agents. Let G1, · · · , Gm be TTC−graphs

such thatGk andG0 di�er only in outgoing edges from agents i1, · · · , ik for each k ∈ {1, · · · ,m}. Let

F be the unique pointee selection criterion under rule ϕ which satis�es independence of unsatis�ed

agents. Since Gk−1 and Gk di�er only in outgoing edges from agent ik, F (Gk−1) and F (Gk) di�er

only in outgoing edge from agent ik, by independence of unsatis�ed agents, for all k ∈ {1, · · · ,m}.

Then, graphs F (G0) and F (Gm) di�er only in outgoing edges from agents i1, · · · , im. However,

independence of unsatis�ed agents may not be enough to ensure weak group strategy proofness. So,

I introduce a stronger notion of independence.

Comprehensive Independence of Agents: Let G1 and G2 be two TTC−graphs which di�er

only in outgoing edges of an agent i. Let F be the unique pointee selection criterion under rule ϕ

where F (G) represents graph obtained after applying F criterion to graph G. Then, rule ϕ satis�es

comprehensive independence of agents if F (G1) and F (G2) di�er only in outgoing edge from agent

i.

In contrast to independence of unsatis�ed agents, comprehensive independence of agents holds

for all agents rather than just for unsatis�ed agents. Hence, comprehensive independence of agents

implies independence of unsatis�ed agents. Similar to independence of unsatis�ed agents, compre-

hensive independence of agents also holds for multiple agents. Similar to independence of unsatis�ed

agents, consider the following: Let G0 be some TTC−graph and {i1, · · · , im} be any set of agents.

Let G1, · · · , Gm be TTC−graphs such that Gk and G0 di�er only in outgoing edges from agents

i1, · · · , ik for each k ∈ {1, · · · ,m}. Let F be the unique pointee selection criterion under rule ϕ

which satis�es comprehensive independence of agents. Since Gk−1 and Gk di�er only in outgo-

ing edges from agent ik, F (Gk−1) and F (Gk) di�er only in outgoing edge from agent ik for all

k ∈ {1, · · · ,m}, by comprehensive independence of agents. Then, graphs F (G0) and F (Gm) di�er

only in outgoing edges from agents i1, · · · , im.

Now, I introduce a notion which restricts how unique pointee selection criterion, F , operates

when a group of agents are misreporting their preferences. I refer to this notion as consistent

pointing and it is de�ned below.

Consistent Pointing: Consider any R ∈ RN and let R′ = (R−M , R
′
M ) for any M ⊆ N . Let

t (resp. t′) be the �rst step an agent in M departs, becomes satis�ed or becomes part of a trading

cycle under R (resp. R′). Suppose that t′ < t. Let CM (R, ·) = ∪i∈MCi (R, ·). Suppose there is

step t̃ < t such that for all ẗ < t̃:
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1.
N ′
ẗ
⊆ Nẗ

Nẗ\N ′ẗ ⊆ CM
(
R, ẗ− 1

) and
O′
ẗ
⊆ Oẗ

Oẗ\O′ẗ ⊆ hẗ
(
CM

(
R, ẗ− 1

)) ,

2. for all j ∈ Nẗ\CM
(
R, ẗ
)
, pẗ (j) = p′

ẗ
(j), and

3. for all j ∈ Nẗ\CM
(
R, ẗ
)
, hẗ+1 (j) = h′

ẗ+1
(j), then

if N ′
t̃
⊆ Nt̃, Nt̃\N ′t̃ ⊆ CM

(
R, t̃− 1

)
, O′

t̃
⊆ Ot̃, and Ot̃\O′t̃ ⊆ ht̃

(
CM

(
R, t̃− 1

))
, then the unique

pointee selection criterion for rule ϕ is said to be consistent if pt̃ (j) = p′
t̃
(j) for each j ∈ Nt̃\CM

(
R, t̃
)
.

If unique pointee selection criterion of rule ϕ is consistent, I say that the rule ϕ satis�es consistent

pointing.

Proposition 2.2. An individually rational rule satisfying comprehensive independence of

agents, persistence and consistent pointing properties satis�es weak group strategy proofness.

Proof. On contrary, suppose there isM ⊆ N and R′M ∈ RM such that ϕ (R′, ω) (i)Piϕ (R,ω) (i)

for all i ∈ M where R′ = (R−M , R
′
M ) where ϕ is an individually rational rule. Let α ≡ ϕ (R,ω)

and α′ ≡ ϕ (R′, ω). Let t (resp. t′) be the �rst step in ϕ under R (resp. R′) where either of the

following is true for some agent i ∈M :

1. i departs at step t (resp. t′) under R (resp. R′),

2. i becomes satis�ed at step t (resp. t′) under R (resp. R′), or

3. i becomes part of a trading cycle at step t (resp. t′) under R (resp. R′).

Claim 1. α′ (i)Piω (i) for each i ∈M .

Proof. By individual rationality of ϕ, α (i)Riω (i) for each i ∈ N . By initial assumption,

α′ (i)Piα (i) for all i ∈M . Then, it must be the case that α′ (i)Piω (i) for all i ∈M .

So, it must be the case that each agent inM becomes part of a trading cycle at least once under

R′. So, t′ represents the �rst step an agent in M becomes satis�ed or becomes part of a trading

cycle under R′. �

Claim 2. No agent in M departs at step 1 of ϕ under either R or R′.

Proof. This follows for R′ directly from Claim 1. On contrary, suppose some agent inM departs

at step 1 under R. Let i ∈M be the �rst such agent. Let Ni,1 be set of agents who departed before

agent i at step 1. Since these agents depart without ever trading, we have α (j) = ω (j) for all

j ∈ Ni,1. Since α′ (i)Piα (i), owing to the departure condition, some agent in Ni,1 would have to be
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made strictly worse o� under R′. This violates individual rationality of rule ϕ because α (j) = ω (j)

for all j ∈ Ni,1. �

Claim 3. No agent in M is satis�ed at step 1 under R.

Proof. Note that if ω (i) ∈ τ (Ri, O1) for some i ∈ M , then, by departure condition, i can be

made strictly better o� under R′ only if some person in N\N1 is made strictly worse o�. This

violates individual rationality because α (j) = ω (j) for all j ∈ N\N1. �

Claim 4. Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and for j ∈ Nt̃\M , pt̃ (j) = p′

t̃
(j) for all t̃ < t = min {t, t′}.

Moreover, ht = h′t. Also, if no agent in M departs at step t under R, Nt = N ′t and Ot = O′t
6.

Proof. If t = 1, the claim holds vacuously. Now suppose that t > 1. Consider t̃ = 1. No one in

M departs at step 1 under either R or R′ (Claims 1-2). Then, set of departing agents and objects

should be the same because R′j = Rj for all j ∈ N\M . So, N1 = N ′1 and O1 = O′1. Moreover, each

agent holds her endowment at step 1 so that h1 = h′1. By comprehensive independence of agents,

we have p1 (j) = p′1 (j) for each j ∈ N1\M .

Now, suppose claim holds for some t̃ < t − 1. We want to show that the claim is true for step

t̃ + 1. By assumption, we have Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and pt̃ (j) = p′

t̃
(j) for each j ∈ Nt̃\M .

Since t̃ < t, no agent in M is part of a trading cycle under either R or R′ at step t̃. So, same

cycles occur under both R and R′ because pt̃ (j) = p′
t̃
(j) for each j ∈ Nt̃\M . Hence, ht̃+1 = h′

t̃+1
.

Since t̃ + 1 < t, no agent in M departs at step t̃ + 1 under either R or R′. So, Nt̃+1 = N ′
t̃+1

and

Ot̃+1 = O′
t̃+1

because ht̃+1 = h′
t̃+1

and R′j = Rj for all j ∈ N\M . By persistence and comprehensive

independence of agents, pt̃+1 (j) = p′
t̃+1

(j) for all j ∈ Nt̃+1\M .

To show that ht = h′t, we simply need to show that ht̃+2 = h′
t̃+2

. Since t̃ + 1 < t, no agent in

M is part of a trading cycle at step t̃ + 1 under R and R′. Then, same cycles occur under R and

R′ at step t̃+ 1 because pt̃+1 (j) = p′
t̃+1

(j) for all j ∈ Nt̃+1\M and so, we have ht̃+2 = h′
t̃+2

.

Now, we show that last part of the claim holds true. Since ht = h′t and no agent in M departs

at step t under either R (by assumption) or R′ (Claim 1), same agents depart at step t under R

and R′ because R′j = Rj for all j ∈ N\M . Hence, Nt = N ′t and Ot = O′t. �

Claim 5. Suppose t′ < t. For any step t̃ and R ∈ RN , let CM
(
R, t̃
)

= ∪i∈MCi
(
R, t̃
)
. Then,

for all t̃ ∈ {t′, · · · , t− 1}:

1.
N ′
t̃
⊆ Nt̃

Nt̃\N ′t̃ ⊆ CM
(
R, t̃− 1

) and
O′
t̃
⊆ Ot̃

Ot̃\O′t̃ ⊆ ht̃
(
CM

(
R, t̃− 1

)) ,

6It should be noted that the proof for Claim 4 does not require the rule to satisfy consistent pointing.
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2.
St̃ ⊆ S′t̃

S′
t̃
\St̃ ⊆ CM

(
R, t̃− 1

) or equivalently,
U ′
t̃
⊆ Ut̃

Ut̃\U ′t̃ ⊆ CM
(
R, t̃− 1

) ,

3. for each j ∈ Nt̃\CM
(
R, t̃
)
, pt̃ (j) = p′

t̃
(j), and

4. for each j ∈ Nt̃\CM
(
R, t̃
)
, ht̃+1 (j) = h′

t̃+1
(j).

Proof. Consider t̃ = t′. By Claim 4, Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
and ht̃ = h′

t̃
. So, (1) holds for step t̃.

An agent in Nt̃\M is satis�ed at step t̃ under R if and only if she is satis�ed at step t̃ under

R′ because ht̃ = h′
t̃
and R′j = Rj for all j ∈ N\M . Moreover, each agent in M is unsatis�ed at

step t̃ under R because t̃ < t. So, St̃ ⊆ S′t̃. If each agent in M is unsatis�ed at step t̃ under R′, we

have St̃ = S′
t̃
. Now suppose some agent j ∈M is satis�ed at step t̃ under R′. Then, j ∈ S′

t̃
\St̃. By

construction, j ∈ CM
(
R, t̃− 1

)
. So, (2) holds at step t̃.

Since Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
and ht̃ = h′

t̃
, the graphs at step t̃ under R and R′ di�er only in

outgoing edges of agents in M . Then, by comprehensive independence of agents, pt̃ (j) = p′
t̃
(j) for

all j ∈ Nt̃\M . So, (3) holds at step t̃.

By (3), we know that for each j ∈ Nt̃\CM
(
R, t̃
)
, pt̃ (j) = p′

t̃
(j). So, any trading cycles consisting

only of agents in Nt̃\CM
(
R, t̃
)
at step t̃, occur under both R and R′. So, ht̃+1 (j) = h′

t̃+1
(j) and

hence, (4) holds at step t̃.

Now, suppose that the claim holds for some t̃ such that t′ ≤ t̃ < t − 1. We want to show that

the claim is true for step t̃ + 1. Note that any cycle that occurs at step t̃ under R must consist

entirely of agents in Nt̃\CM
(
R, t̃
)
and these cycles occur at step t̃ under R′ as well. Moreover, any

cycle that occurs under R′ but not under R, at step t̃, must consist entirely of agents in CM
(
R, t̃
)
.

This implies (1) and (2) at step t̃+ 1.

Next, we want to show that (3) is true at step t̃ + 1. By Claim 4 and induction hypothesis,

conditions of consistent pointing are satis�ed for all ẗ < t̃ + 1. Since t̃ + 1 < t, we have pt̃+1 (j) =

p′
t̃+1

(j) for all j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
by consistent pointing.

By (4) at step t̃ and (3) at step t̃+ 1, we have ht̃+2 (j) = h′
t̃+2

(j) for all j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
so that (4) holds at step t̃+ 1. �

Remark 2.1. Claim 5 holds at step t till an agent in M departs or becomes satis�ed at step t

under R.

Claim 6. It cannot be the case that t′ < t.

Proof. On contrary, suppose that t′ < t. Note that if any agent i ∈ M departs at step t̃,
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under R′, such that t̃ < t7, then α′ (i) ∈ ht−1 (CM (R, t− 1)). This is the case because for any step

ẗ < t, if j ∈ CM
(
R, ẗ
)
, then h′

ẗ+1
(j) ∈ hẗ

(
CM

(
R, ẗ
))
. So, α′ (i) ∈ ht̃−1

(
CM

(
R, t̃− 1

))
and, by

persistence, ht̃−1

(
CM

(
R, t̃− 1

))
⊆ ht−1 (CM (R, t− 1)).

By de�nition, at least one agent in M departs, becomes satis�ed or becomes part of a trading

cycle at step t under R. Let i ∈M be the �rst agent to depart or become satis�ed at step t under R.

Let Ni,t ⊆ Nt−1 and Oi,t ⊆ Ot−1 be set of agents and objects, respectively, departing before agent i

departs or becomes satis�ed at step t under R. Then, by persistence, Ni,t ∩ CM (R, t− 1) = φ

and Oi,t ∩ ht−1 (CM (R, t− 1)) = φ. If agent i departed at some step t̃ < t under R′, then

α′ (i) ∈ ht−1 (CM (R, t− 1)). Since ht−1 (CM (R, t− 1)) ⊆ Ot−1\Oi,t, α (i)Riα
′ (i). Now, suppose

agent i departs at some step t̃ ≥ t under R′. Note that, by Remark 2.1, Ni,t and Oi,t depart at step

t under R′ as well. Moreover, if any agents and objects depart with (or before) Ni,t and Oi,t under

R′, then those agents and objects must be in CM (R, t− 1) and ht (CM (R, t− 1)), respectively.

However, by persistence, ht (CM (R, t− 1)) ⊆ Ot−1\Oi,t and so, α (i)Riα
′ (i)8.

Now, suppose that no agent in M departs or becomes satis�ed at step t under R. Let i ∈ M

be an agent who becomes part of a trading cycle at step t under R. So, we have α (i) ∈ τ (Ri, Ot).

If agent i departs at some step t̃ < t under R′, then α′ (i) ∈ ht−1 (CM (R, t− 1)). By persistence,

ht−1 (CM (R, t− 1)) ⊆ Ot and so, α (i)Riα
′ (i). Now, suppose agent i departs at step t under R′.

Then, α′ (i) ∈ ht−1 (CM (R, t− 1)) and so, α (i)Riα
′ (i). Now, suppose that agent i departs at some

step t̃ > t under R′. We have O′
t̃−1
⊆ Ot because O′t ⊆ Ot by Remark 2.1. Then, α (i)Riα

′ (i). �

Claim 7. It cannot be the case that t ≤ t′.

Proof. On contrary, suppose that t ≤ t′. Consider the following cases:

Case 1. No agent in M departs at step t under R.

Then, we have Nt = N ′t and Ot = O′t because ht = h′t and R′i = Ri for each i ∈ N\M . By

de�nition of t and assumption, there is at least one agent in M who either becomes satis�ed or

becomes part of a trading cycle at step t under R.

Let i ∈ M be the �rst agent to become satis�ed at step t under R i.e. after departure of some

agents, agent i is holding one of her most preferred objects and so, α (i) Iiω (i). However, by Claim

4, Nt = N ′t and Ot = O′t. Then, for each a ∈ Ot, we have α (i)Ria so that it must be the case that

α (i)Riα
′ (i).

7By Claim 1, t′ < t̃.
8If agent i departs with (or before) Ni,t at step t under R

′, then α′ (i) ∈ ht (CM (R, t− 1)). If agent i departs at
some step t̃ > t under R′, then O′

t̃
⊆ Ot−1\Oi,t.
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Now, let i ∈ M be an agent who becomes part of a trading cycle at step t under R. Then,

α (i) ∈ τ (Ri, Ot). Suppose agent i �rst becomes part of a trading cycle at step t′i under R
′. Then,

t ≤ t′i and so, O′t′i ⊆ Ot
9. Since α′ (i) ∈ τ

(
R′i, O

′
t′i

)
and O′t′i ⊆ Ot, we have α (i)Riα

′ (i).

Case 2. Some agents in M depart at step t under R.

Let i ∈M be the �rst agent in M to depart at step t under R. Since no agent in M was part of

a trading cycle at step t− 1 under R, we have α (i) = ω (i). Let Ni,t and Oi,t be the set of agents

and objects departing before agent i at step t under R, respectively. Then, Ni,t and Oi,t depart

at step t under R′ as well. Then, α′ (i) ∈ Ot\Oi,t because by Claim 4, ht (Ni,t) = h′t (Ni,t). Then,

α (i)Riα
′ (i) by departure condition. �

Claims (6) and (7) give a contradiction. This completes the proof. �

So, Proposition 2.2 gives a su�cient condition for a rule to satisfy weak group strategy proofness.

Next, I show that TTAS rule is weakly group strategy proof. I prove this by showing that TTAS

satis�es comprehensive independence of agents and consistent pointing.

Proposition 2.3. Top Trading Absorbing Sets Rule (TTAS) satis�es weak group strategy

proofness.

Proof. We know that TTAS satis�es persistence and individual rationality. At any step of

TTAS, unique pointee of an agent is determined by priority ordering of objects and number of

times an object was previously held by that agent. So, TTAS satis�es comprehensive independence

of agents as well.

Now, we need to show that TTAS satis�es consistent pointing. Consider any R ∈ RN and let

R′ = (R−M , R
′
M ) for some M ⊆ N . Suppose t′ < t. By Claim 4, we have Nt̃ = N ′

t̃
, Ot̃ = O′

t̃
,

ht̃ = h′
t̃
and for j ∈ Nt̃\M , pt̃ (j) = p′

t̃
(j) for all t̃ ≤ t′10. So, TTAS satis�es consistent pointing

for t̃ ≤ t′.

Now, suppose that TTAS satis�es consistent pointing property for some t̃ such that t′ ≤ t̃ < t−1.

We want to show that TTAS satis�es the property for step t̃+ 1. So, for all ẗ ≤ t̃, we have:

1.
N ′
ẗ
⊆ Nẗ

Nẗ\N ′ẗ ⊆ CM
(
R, ẗ− 1

) and
O′
ẗ
⊆ Oẗ

Oẗ\O′ẗ ⊆ hẗ
(
CM

(
R, ẗ− 1

)) ,

2. for all j ∈ Nẗ\CM
(
R, ẗ
)
, pẗ (j) = p′

ẗ
(j), and

3. for all j ∈ Nẗ\CM
(
R, ẗ
)
, hẗ+1 (j) = h′

ẗ+1
(j).

9This is the case because, by Claim 4, Ot = O′t and O
′
t′i
⊆ O′t.

10This is the case because Claim 4 does not require consistent pointing to be true.
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Suppose thatN ′
t̃+1
⊆ Nt̃+1, Nt̃+1\N ′t̃+1

⊆ CM
(
R, t̃
)
, O′

t̃+1
⊆ Ot̃+1, andOt̃+1\O′t̃+1

⊆ ht̃
(
CM

(
R, t̃
))
.

Consider any j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
. We need to show that pt̃+1 (j) = p′

t̃+1
(j). In order to do

that, we �rst show that for each a ∈ τ
(
Rj , Ot̃+1

)
and b ∈ τ

(
Rj , O

′
t̃+1

)
, aIjb. Then, we show that

τ
(
Rj , O

′
t̃+1

)
⊆ τ

(
Rj , Ot̃+1

)
.

First, note that aRjb because O′
t̃+1
⊆ Ot̃+1. Now, if aPjb, then it must be the case that

τ
(
Rj , Ot̃+1

)
∩ O′

t̃+1
= φ. But then, τ

(
Rj , Ot̃+1

)
⊆ ht̃+1

(
CM

(
R, t̃
))

because Ot̃+1\O′t̃+1
⊆

ht̃+1

(
CM

(
R, t̃
))
. So, at step t̃ + 1 under R, agent j points at some agent holding an object

in τ
(
Rj , Ot̃+1

)
but then, j ∈ CM

(
R, t̃+ 1

)
because each agent who owns an object in τ

(
Rj , Ot̃+1

)
is in CM

(
R, t̃+ 1

)
. So, aIjb for each a ∈ τ

(
Rj , Ot̃+1

)
and b ∈ τ

(
Rj , O

′
t̃+1

)
. Hence, it must be the

case that τ
(
Rj , O

′
t̃+1

)
⊆ τ

(
Rj , Ot̃+1

)
because O′

t̃+1
⊆ Ot̃+1.

By persistence, j ∈ Nẗ\CM
(
R, ẗ
)
for all ẗ ≤ t̃ + 1 and so, same cycles occur for agent j for

all steps ẗ ≤ t̃ under R and R′. Since same cycles occurred for agent j for all ẗ ≤ t̃, objects in

τ
(
Rj , O

′
t̃+1

)
would have been assigned same number of times under R and R′. Let a ∈ τ

(
Rj , O

′
t̃+1

)
be the object that is assigned least number of times11 to agent j. Then, under R′, agent j points

at the agent who owns object a at step t̃+ 1. Under R, it cannot be the case that agent j points at

an agent holding an object in Ot̃+1\O′t̃+1
because Ot̃+1\O′t̃+1

⊆ ht̃
(
CM

(
R, t̃
))
. So, agent j points

at an agent holding object a at step t̃+ 1 under R. Let pt̃+1 (j) = k and p′
t̃+1

(j) = k′ under R and

R′. Since j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
, it must be the case that k, k′ ∈ Nt̃+1\CM

(
R, t̃+ 1

)
. Then, by

persistence, k, k′ ∈ Nt̃\CM
(
R, t̃
)
and so, ht̃+1 (k) = h′

t̃+1
(k) and ht̃+1 (k′) = h′

t̃+1
(k′). Then, we

have k = k′ and so, pt̃+1 (j) = p′
t̃+1

(j) which completes the proof. �

Based on Proposition 2.1, Proposition 2.3 and results already proved for TTAS rule, following

theorem can be stated.

Theorem 2.1. For a housing market problem with weak preferences, there are rules which

are Pareto e�cient, weak core selecting (hence, individually rational), weakly group strategy proof

(hence, strategy proof ), core selecting (whenever, core is non-empty) and satisfy no justi�ed-envy

for agents with identical endowments.

The su�cient condition given in Proposition 2.2 might be too restrictive especially because rules

satisfying comprehensive independence of agents might be computationally complex which is true

for TTAS rule. This complexity in running time might arise because a rule satisfying comprehensive

independence of agents cannot ensure that each trading cycle consists of at least one unsatis�ed

11If there are multiple such objects, ties are broken according to priority ordering of objects.
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agent. So, I provide an alternative su�cient condition for weak group strategy proofness. Consider

the following variation of consistent pointing :

Consistent∗ Pointing: For anyM ⊆ N and R,R′ ∈ RN such that R′ = (R−M , R
′
M ). Suppose

there is step t̃ for rule ϕ under preferences R and R′ such that:

1. ∀j ∈ Nt̃−1\CM
(
R, t̃− 1

)
, ht̃ (j) = h′

t̃
(j),

2.
N ′
t̃
⊆ Nt̃

Nt̃\N ′t̃ ⊆ CM
(
R, t̃− 1

) and
O′
t̃
⊆ Ot̃

Ot̃\O′t̃ ⊆ ht̃
(
CM

(
R, t̃− 1

)) , and

3.
St̃ ⊆ S′t̃

S′
t̃
\St̃ ⊆ CM

(
R, t̃− 1

) or equivalently,
U ′
t̃
⊆ Ut̃

Ut̃\U ′t̃ ⊆ CM
(
R, t̃− 1

) , then

rule ϕ is said to satisfy consistent∗ pointing if for all j ∈ Nt̃\CM
(
R, t̃
)
, pt̃ (j) = p′

t̃
(j).

The next result shows that an individually rational rule satisfying independence of unsatis�ed

agents, persistence and consistent∗ pointing satis�es weak group strategy proofness.

Proposition 2.4. An individually rational rule satisfying independence of unsatis�ed agents,

persistence and consistent∗ pointing satis�es weak group strategy proofness.

Proof. On contrary, suppose there isM ⊆ N and R′M ∈ RM such that ϕ (R′, ω) (i)Piϕ (R,ω) (i)

for all i ∈M where R′ = (R−M , R
′
M ). Let α ≡ ϕ (R,ω) and α′ ≡ ϕ (R′, ω). Let t (resp. t′) be the

�rst step in ϕ under R (resp. R′) where either of the following is true for some agent i ∈M :

1. i departs at step t (resp. t′) under R (resp. R′),

2. i becomes satis�ed at step t (resp. t′) under R (resp. R′), or

3. i becomes part of a trading cycle at step t (resp. t′) under R (resp. R′).

I prove this result by showing that claims made in proof of Proposition 2.2 are true under these

properties as well. Note that Claims 1-3 hold for rule ϕ. Now I show that Claim 4 is true when

comprehensive independence of agents is replaced with independence of unsatis�ed agents.

Claim 4. Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and for j ∈ Nt̃\M , pt̃ (j) = p′

t̃
(j) for all t̃ < t = min {t, t′}.

Moreover, ht = h′t. Also, if no agent in M departs at step t under R, Nt = N ′t and Ot = O′t.

Proof. If t = 1, the claim holds vacuously. Now suppose that t > 1. Consider t̃ = 1. No agent in

M departs at step 1 under either R or R′ (Claims 1-2). Then, set of departing agents and objects

should be the same because R′j = Rj for all j ∈ N\M . So, N1 = N ′1 and O1 = O′1. Moreover, each
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agent holds her endowment at step 1 so that h1 = h′1. Since each agent inM is unsatis�ed at step 1

under R and R′, by independence of unsatis�ed agents, we have p1 (j) = p′1 (j) for each j ∈ N1\M .

Now, suppose claim is true for some t̃ < t− 1. We want to show that the claim is true for t̃+ 1.

By induction hypothesis, we have Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and pt̃ (j) = p′

t̃
(j) for each j ∈ Nt̃\M .

Since t̃ < t, no agent in M is part of a trading cycle under either R or R′ at step t̃. So, same

cycles occur under both R and R′ because pt̃ (j) = p′
t̃
(j) for each j ∈ Nt̃\M . Hence, ht̃+1 = h′

t̃+1
.

Since t̃ + 1 < t, no agent in M departs at step t̃ + 1 under either R or R′. So, Nt̃+1 = N ′
t̃+1

and

Ot̃+1 = O′
t̃+1

because ht̃+1 = h′
t̃+1

and R′j = Rj for all j ∈ N\M . Moreover, since no agent in M is

satis�ed at step t̃+1 under either R or R′, by independence of unsatis�ed agents, pt̃+1 (j) = p′
t̃+1

(j)

for all j ∈ Nt̃+1\M .

To show that ht = h′t, we simply need to show that ht̃+2 = h′
t̃+2

. Since t̃ + 1 < t, no agent in

M is part of a trading cycle at step t̃ + 1 under R and R′. Then, same cycles occur under R and

R′ at step t̃+ 1 because pt̃+1 (j) = p′
t̃+1

(j) for all j ∈ Nt̃+1\M and so, we have ht̃+2 = h′
t̃+2

.

Now we show that last part of the claim holds true. Since ht = h′t and no agent in M departs

at step t under either R (by assumption) or R′ (Claim 1), same agents depart at step t under R

and R′ because R′j = Rj for all j ∈ N\M . Hence, Nt = N ′t and Ot = O′t. �

Claim 5. Suppose t′ < t. For any step t̃ and R ∈ RN , let CM
(
R, t̃
)

= ∪i∈MCi
(
R, t̃
)
. Then,

for all t̃ ∈ {t′, · · · , t− 1}:

1.
N ′
t̃
⊆ Nt̃

Nt̃\N ′t̃ ⊆ CM
(
R, t̃− 1

) and
O′
t̃
⊆ Ot̃

Ot̃\O′t̃ ⊆ ht̃
(
CM

(
R, t̃− 1

)) ,

2.
St̃ ⊆ S′t̃

S′
t̃
\St̃ ⊆ CM

(
R, t̃− 1

) or equivalently,
U ′
t̃
⊆ Ut̃

Ut̃\U ′t̃ ⊆ CM
(
R, t̃− 1

) ,

3. for each j ∈ Nt̃\CM
(
R, t̃
)
, pt̃ (j) = p′

t̃
(j), and

4. for each j ∈ Nt̃\CM
(
R, t̃
)
, ht̃+1 (j) = h′

t̃+1
(j).

Proof. Consider t̃ = t′. By Claim 4, Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
and ht̃ = h′

t̃
. So, (1) holds for step t̃.

An agent in Nt̃\M is satis�ed at step t̃ under R if and only if she is satis�ed at step t̃ under R′

because ht̃ = h′
t̃
, R′j = Rj for all j ∈ N\M and Ot̃ = O′

t̃
. Moreover, each agent in M is unsatis�ed

at step t̃ under R because t̃ < t. So, St̃ ⊆ S′
t̃
. If each agent in M is unsatis�ed at step t̃ under R′,

we have St̃ = S′
t̃
. Now, suppose some agent j ∈M is satis�ed at step t̃ under R′. Then, j ∈ S′

t̃
\St̃.

By construction, j ∈ CM
(
R, t̃− 1

)
. So, (2) holds at step t̃.
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Since ht̃ = h′
t̃
(by Claim 4), (1) and (2) hold at step t̃ and the rule satis�es consistent∗ pointing,

we have pt̃ (j) = p′
t̃
(j) for all j ∈ Nt̃\CM

(
R, t̃
)
i.e. (3) holds at step t̃.

By (3), we know that for each j ∈ Nt̃\CM
(
R, t̃
)
, pt̃ (j) = p′

t̃
(j). So, any trading cycles consisting

only of agents in Nt̃\CM
(
R, t̃
)
at step t̃, occur under both R and R′. So, ht̃+1 (j) = h′

t̃+1
(j) and

hence, (4) holds at step t̃.

Now, suppose that the claim holds for some t̃ such that t′ ≤ t̃ < t − 1. We want to show that

it is true for step t̃ + 1. Note that any cycle that occurs at step t̃ under R must consist entirely

of agents in Nt̃\CM
(
R, t̃
)
and these cycles occur at step t̃ under R′ as well. Moreover, any cycle

that occurs under R′ but not under R, at step t̃, must consist entirely of agents in CM
(
R, t̃
)
. This

implies (1) and (2) at step t̃+ 1.

Next, we want to show that (3) is true at step t̃ + 1. Since (4) holds at step t̃, (1) and (2) are

satis�ed at step t̃+ 1 and the rule satis�es consistent∗ pointing, we have pt̃+1 (j) = p′
t̃+1

(j) for all

j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
.

By (4) at step t̃ and (3) at step t̃+ 1, we have ht̃+2 (j) = h′
t̃+2

(j) for all j ∈ Nt̃+1\CM
(
R, t̃+ 1

)
so that (4) holds at step t̃+ 1. �

Claim 6. It cannot be the case that t′ < t.

Proof. On contrary, suppose that t′ < t. Note that if any agent i ∈M departs at step t̃, under

R′, such that t̃ < t12, then α′ (i) ∈ ht−1 (CM (R, t− 1)). This is the case because for any step

ẗ < t, if j ∈ CM
(
R, ẗ
)
, then h′

ẗ+1
(j) ∈ hẗ

(
CM

(
R, ẗ
))
. So, α′ (i) ∈ ht̃−1

(
CM

(
R, t̃− 1

))
and, by

persistence, ht̃−1

(
CM

(
R, t̃− 1

))
⊆ ht−1 (CM (R, t− 1)).

By de�nition, at least one agent in M departs, becomes satis�ed or becomes part of a trading

cycle at step t under R. Let i ∈M be the �rst agent to depart or become satis�ed at step t under R.

Let Ni,t ⊆ Nt−1 and Oi,t ⊆ Ot−1 be set of agents and objects, respectively, departing before agent i

at step t under R. Then, by persistence, Ni,t ∩CM (R, t− 1) = φ and Oi,t ∩ ht−1 (CM (R, t− 1)) =

φ. If agent i departed at some step t̃ < t under R′, then α′ (i) ∈ ht−1 (CM (R, t− 1)). Since

ht−1 (CM (R, t− 1)) ⊆ Ot−1\Oi,t, α (i)Riα
′ (i). Now, suppose agent i departs at some step t̃ ≥ t

under R′. Note that, by Remark 2.1, Ni,t and Oi,t depart at step t under R′ as well. Moreover,

if any agents and objects depart with (or before) Ni,t and Oi,t under R′, then those agents and

objects must be in CM (R, t− 1) and ht (CM (R, t− 1)), respectively. However, by persistence,

12By Claim 1, t′ < t̃.
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ht (CM (R, t− 1)) ⊆ Ot−1\Oi,t and so, α (i)Riα
′ (i)13.

Now, suppose that no agent in M departs or becomes satis�ed at step t under R. Let i ∈ M

be an agent who becomes part of a trading cycle at step t under R. So, we have α (i) ∈ τ (Ri, Ot).

If agent i departs at some step t̃ < t under R′, then α′ (i) ∈ ht−1 (CM (R, t− 1)). By persistence,

ht−1 (CM (R, t− 1)) ⊆ Ot and so, α (i)Riα
′ (i). Now, suppose agent i departs at step t under R′.

Then, α′ (i) ∈ ht−1 (CM (R, t− 1)) and so, α (i)Riα
′ (i). Now suppose that agent i departs at some

step t̃ > t under R′. We have O′
t̃−1
⊆ Ot because O′t ⊆ Ot by Remark 2.1. Then, α (i)Riα

′ (i). �

Claim 7. It cannot be the case that t ≤ t′.

Proof. On contrary, suppose that t ≤ t′. Consider the following cases:

Case 1. No agent in M departs at step t under R.

Then, we have Nt = N ′t and Ot = O′t because ht = h′t and R′i = Ri for each i ∈ N\M . By

de�nition of t and assumption, there is at least one agent in M who either becomes satis�ed or

becomes part of a trading cycle at step t under R.

Let i ∈ M be the �rst agent to become satis�ed at step t under R i.e. after departure of some

agents, agent i is holding one of her most preferred objects and so, α (i) Iiω (i). However, by Claim

4, Nt = N ′t and Ot = O′t. Then, for each a ∈ Ot, we have α (i)Ria so that it must be the case that

α (i)Riα
′ (i).

Now, let i ∈ M be an agent who becomes part of a trading cycle at step t under R. Then,

α (i) ∈ τ (Ri, Ot). Suppose agent i �rst becomes part of a trading cycle at step t′i under R
′. Then,

t ≤ t′i and so, O′t′i ⊆ Ot
14. Since α′ (i) ∈ τ

(
R′i, O

′
t′i

)
and O′t′i ⊆ Ot, we have α (i)Riα

′ (i).

Case 2. Some agents in M depart at step t under R.

Let i ∈M be the �rst agent in M to depart at step t under R. Since no agent in M was part of

a trading cycle at step t− 1 under R, we have α (i) = ω (i). Let Ni,t and Oi,t be the set of agents

and objects departing before agent i at step t under R, respectively. Then, Ni,t and Oi,t depart at

step t under R′ as well. Then, α′ (i) ∈ Ot\Oi,t because by Claim 4, ht (Ni,t) = h′t (Ni,t) and agent

i does not depart at step t under R′. Then, α (i)Riα
′ (i) by departure condition. �

Claims (6) and (7) give us a contradiction. This completes the proof. �

13If agent i departs with (or before) Ni,t at step t under R
′, then α′ (i) ∈ ht (CM (R, t− 1)). If agent i departs at

some step t̃ > t, then O′
t̃
⊆ Ot−1\Oi,t.

14This is the case because, by Claim 4, Ot = O′t and O
′
t′i
⊆ O′t.
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Prioritized Treatment of Market-Equal Unsatis�ed Agents

I resume the use of notation with ϕ in super-script. In this section, I propose a new crite-

rion; namely, prioritized treatment of market-equal unsatis�ed agents. Before de�ning this property

formally, I provide some intuition for this property using an example.

Example 2.1: Consider the following housing market problem: N = {1, 2, 3, 4, 5}, O = {a, b, c, d, e},

ω = (a, b, c, d, e) and preference pro�le:

R1 R2 R3 R4 R5

bcd ab a a a

a
... ce d e

e
...

...
...

In this problem, Pareto e�cient and individually rational assignments are: (c, b, a, d, e), (d, b, c, a, e)

and (c, b, e, d, a). In each of these assignments, exactly one agent in {3, 4, 5} gets her unique most

preferred object a. Which of these assignments should be outcome of the housing market problem

though? As mentioned earlier, social ranking of agents can arise in real-life applications of the

housing market problem. So, a potential solution could be to select whoever has highest priority

among agents 3, 4 and 5 to receive object a. However, note that no rule employing trading cycles

can ever select the outcome (c, b, e, d, a) because agents 1 and 2 �nd object e to be worse than

their endowments and agents 3 and 4 cannot trade with agent 5 until object a has been removed

from the problem. On the other hand, agents 1, 2, 3 and 4 would want to trade with each other

because there is a potential for bene�cial trades i.e. for each agent i ∈ {1, 2, 3, 4}, there is an agent

j ∈ {1, 2, 3, 4} such that agent j holds one of agent i's most preferred object (among the remaining

ones) and all most preferred objects (among the remaining ones) of agent i are held by agents in

{1, 2, 3, 4}. I refer to such agents as market-equals. Then, by de�nition, agents in an absorbing set

of a graph are market-equals. So, at any step of rule ϕ, I refer to agents in the same absorbing

set as market-equals. Satis�ed (resp. unsatis�ed) agents in this absorbing set are referred to as

market-equal satis�ed (resp. unsatis�ed) agents.

Note that object a is one of the most preferred objects for agent 2 as well. However, agent 2

already holds one of her most preferred objects in the problem. Existing rules ensure that an agent's

welfare does not decrease throughout the algorithm, so it would make sense to prioritize treatment
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of market-equal agent who does not hold one of her most preferred objects (among the remaining

ones). Hence, for this criterion, I consider only market-equal unsatis�ed agents. So, it might be of

interest to require that among market-equals, highest priority unsatis�ed agent receives one of her

most preferred objects (among the remaining ones). However, if strategy proofness is required, it

might not always be possible to achieve this. So, in de�ning prioritized treatment of market-equal

unsatis�ed agents, independence of unsatis�ed agents and persistence need to be considered.

Consequences of persistence are straightforward. By enforcing persistence, certain trading cycles

might not be achievable because unique pointees for some agents are determined from the previous

step. So, only those paths in an absorbing set can be considered which do not violate persistence.

Consequences of independence of unsatis�ed agents are slightly more complicated. This condition

requires that unique pointee of each agent are determined independent of preferences of other un-

satis�ed agents. Consider an absorbing set. Suppose agent i1 is the highest priority unsatis�ed

agent in this absorbing set. Additionally, suppose that for each cycle containing agent i1 in this

absorbing set, there are at least three unsatis�ed agents (including agent i1). However, by indepen-

dence of unsatis�ed agents, it cannot be ensured that a cycle consisting of agent i1 occurs at that

step. Suppose the cycle has unsatis�ed agents i1, i2 and i3 such that there is a path from agent

i1 to agent i2, path from agent i2 to agent i3 and path from agent i3 to agent i1. Then, a rule

satisfying independence of unsatis�ed agents cannot ensure that path from agent i2 to i3 occurs via

pointing.

So, I de�ne the following condition which ensures that independence of unsatis�ed agents and

persistence do not interfere with assigning the highest priority market-equal unsatis�ed agent her

most preferred object (among the remaining ones):

Strategy proofness compliance: At any step of a rule ϕ, an absorbing set satis�es strategy

proofness compliance if there is at least one cycle such that:

1. each agent in the cycle is either not pointing based on persistence or is pointing at the same

agent/object as in the cycle, and

2. there are at most two unsatis�ed agents in the cycle who have a higher priority than every

other unsatis�ed agent in the absorbing set.

Now, prioritized treatment of market-equal unsatis�ed agents can be de�ned as follows:

Prioritized Treatment of Market-Equal Unsatis�ed Agents: A rule ϕ satis�es prioritized
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treatment of market-equal unsatis�ed agents if, at any step of the rule, whenever an absorbing set

satis�es strategy proofness compliance, the highest priority unsatis�ed agent in the absorbing set

receives one of her most preferred objects (among the remaining ones).

Now that this new criterion has been de�ned, it would be of interest to determine if some existing

rules satisfy this property. The next result shows that TC, TTAS and HPO rules do not satisfy

prioritized treatment of market-equal unsatis�ed agents when priority orderings required for these

rules is based on social ranking of agents.

Proposition 2.5. TC, TTAS and HPO rules do not satisfy prioritized treatment of market-

equal unsatis�ed agents.

Proof. Consider the following housing market problem: N = {1, 2, · · · , 8}, O = {a, b, · · · , h},

ω = (a, b, c, d, e, f, g, h), priority ordering 1 ≺ · · · ≺ 8 (a ≺ · · · ≺ h for TTAS and HPO) and

preference pro�le:

R1 R2 R3 R4 R5 R6 R7 R8

d d ac defg eh cf bg d

a b
...

...
...

...
... h

...
...

...

Note that in this housing market problem, all agents are market-equals and it satis�es strat-

egy proofness compliance because in the �rst step of ϕ ∈ {TC, TTAS,HPO} persistence does

not play any role and agent 1 is the highest priority unsatis�ed agent according to the priority

orderings. Now, consider outcomes of TC, TTAS and HPO: TC≺ (R,ω) = (a, d, c, g, e, f, b, h)

and TTAS≺ (R,ω) = HPO≺ (R,ω) = (a, b, c, e, h, f, g, d). So, agent 1 does not receive her most

preferred object. �

Note that for TC rule, no priority orderings can be found where agent 1 gets object d in

counter-example of Proposition 2.5 because for any priority ordering, agent 4 points at either agent

5 or agent 7. Arguably, for TTAS and HPO rules, for a given housing market problem, it might

be possible to �nd priority orderings such that agent 1 receives object d. However, this would

require determining priority orderings for each housing market problem so that these rules satisfy

prioritized treatment of market-equal unsatis�ed agents. In the next section, I propose a rule which

satis�es prioritized treatment of market-equal unsatis�ed agents when priority ordering re�ects social

ranking of agents i.e. there is no need to determine priority orderings in order to satisfy prioritized

treatment of market-equal unsatis�ed agents. Additionally, I show that this rule satis�es several
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desirable properties.

Modi�ed Top Cycles Rule

Here, I present a new rule; namely Modi�ed Top Cycles (MTC) rule. However, I drop MTC

in the super-script since I discuss only MTC from here on. The goal of proposing this rule is to

achieve prioritized treatment of market-equal unsatis�ed agents along with other desirable results.

In this and the following section, I assume that there are no indi�erences with endowments. Let

this class of preferences be represented as R̄. Then, for any (R,ω) ∈ R̄N × A, i ∈ N and a ∈ O,

aIiωi implies that a = ωi
15. Also, priority ordering over agents ≺ is used for MTC.

Like all the rules discussed in this chapter, each step ofMTC proceeds in three phases; departure,

pointing and trading. Step t of the algorithm proceeds as follows:

1. Agents satisfying departure condition are chosen to depart until no more agents satisfy the

departure condition. Each departing agent is assigned the object she is holding at that step

i.e. if agent i was chosen to depart, then agent i is assigned ht (i).

2. Each agent points at an agent holding one of her most preferred objects (among the remaining

ones). If there are more than one such people, the unique pointee is determined in the following

manner:

(a) (Persistence) For any i ∈ Ut, if there are {i1, · · · , im} ⊆ Nt−1 such that pt−1 (ir) = ir+1

for all r ∈ {1, · · · ,m− 1} and pt−1 (im) = i, then pt (ir) = ir+1 for all r ∈ {1, · · · ,m− 1}

and pt (im) = i.

(b) Here we determine a unique pointee for each agent in St who is not pointing as yet.

Repeat the following until all agents in Ut have been considered16:

i. Let j ∈ Ut be the highest priority unsatis�ed agent who has not been considered

yet. For any i ∈ St who is not pointing yet and ht (j) ∈ τ (Ri, Ot), agent i points at

agent j i.e. pt (i) = j. If there is no such agent, move on to the next highest priority

unsatis�ed agent who has not been considered yet, otherwise move to (ii).

15The reasoning behind this assumption will become apparent in the next chapter.
16Note that after (b), each satis�ed agent must be pointing due to the departure condition.

31



ii. For each i ∈ St, let X (i) denote the �rst unsatis�ed agent that can be reached by

following pointing of agent i i.e. i points at X (i), i points at a satis�ed agent who

points at X (i), i points at a satis�ed agent who points at a satis�ed agent who

points at X (i) and so on. For any k ∈ St who is not pointing yet, if there is an

i ∈ St such that X (i) = j and ht (i) ∈ τ (Rk, Ot), then agent k points at agent i.

If there are more than one such agents, agent k points at agent i who has higher

priority under ≺ and X (i) = j. Repeat until each agent k ∈ St, who is not pointing

yet, any satis�ed agent i who holds one of her most preferred objects (among the

remaining ones), X (i) 6= j or X (i) is not de�ned. Return to (i).

(c) Now we determine a unique agent to point at for any agent in Ut who is not pointing as

yet. For each j ∈ Ut, let X (j) = j. Consider any i ∈ Ut who is not pointing yet. Agent

i points at whoever holds one of her most preferred objects and has a higher priority

unsatis�ed agent reachable under X. If there are multiple such agents, agent i points at

whoever among these agents has a higher priority. Formally, let K ⊆ Nt be such that for

each k ∈ K, ht (k) ∈ τ (Ri,Ot). Let J ⊆ K be such that for each j ∈ J , X (j) ≺ X (k)

where k ∈ K\J and for each j, j′ ∈ J , X (j) = X (j′). Agent i points at whoever has

highest priority in J under ≺ i.e. pt (i) = j if j ≺ j′ for each j′ ∈ J\ {j}.

3. Since every agent is pointing at another agent, there is at least one cycle of agents in the

problem. In the step next step, each agent in a cycle holds object of the agent she was

pointing at.

For any (R,ω) ∈ R̄N ×A and priority ordering of agents ≺, Modi�ed Top Cycles rule outcome

is denoted as MTC≺ (R,ω). As I show in the next section, MTC satis�es prioritized treatment of

market-equal unsatis�ed agents along with several desirable properties.

Results for Modi�ed Top Cycles Rule

In this section, I present results for MTC rule. Proposition 2.6 states that MTC rule is

Pareto e�cient, individually rational and weak core selecting. These properties follow directly

from Propositions 3 and 4 of Jaramillo & Manjunath [14] and so, I do not provide a formal proof.

Proposition 2.6. For each priority ordering ≺ and (R,ω) ∈ R̄N ×A, MTC≺ (R,ω) is Pareto
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e�cient, individually rational and weak-core selecting.

Next, I establish that MTC is strategy proof i.e. no agent has an incentive to misreport her

preferences. Notice that persistence has been explicitly enforced in algorithm of MTC. Moreover,

MTC satis�es independence of unsatis�ed agents. This is the case because every agent, who is not

persistently pointing, points at an agent leading to a path to the highest priority unsatis�ed agent

that she can reach and that decision is independent of preferences of unsatis�ed agents. Then,

by Theorem 3 of Saban & Sethuraman [27] and Theorems 3.1 and 3.2, presented in Chapter III,

strategy proofness of MTC is equivalent to local invariance which is de�ned as follows:

Local Invariance: Consider any (R,ω) ∈ R̄N ×A. Suppose some agent i ∈ N receives a ∈ O

such that aPiω (i) under rule ϕ. Let R′i ∈ R̄ be such that R′i|O\{a} = Ri|O\{a} i.e. ordering of

objects in O\ {a} is same under both Ri and R′i. Moreover, bPia ⇐⇒ bP ′ia and aRib ⇐⇒ aP ′i b for

all b ∈ O\ {a}. The rule ϕ is said to satisfy local invariance if ϕ (R′, ω) (i) = a where R′ = (R−i, R
′
i).

In order to establish local invariance ofMTC, I use some additional notation. Consider R,R′ ∈

R̄N such that R′ = (R−i, R
′
i), ω ∈ A and some priority ordering ≺ over agents. Let Nt (resp.

N ′t) and Ot (resp. O
′
t) be set of agents and objects remaining after departure phase of step t for

MTC≺ (R,ω) (resp. MTC≺ (R′, ω)), respectively. Let St ⊆ Nt (resp. S′t ⊆ N ′t) and Ut ⊆ Nt (resp.

U ′t ⊆ N ′t) be set of satis�ed and unsatis�ed agents at step t forMTC≺ (R,ω) (resp. MTC≺ (R,ω)),

respectively. Let ht (j) (resp. h′t (j)) denote object held by agent j at beginning of step t of

MTC≺ (R,ω) (resp. MTC≺ (R′, ω)). For any step t and j ∈ Nt (resp. j ∈ N ′t), let pt (j) (resp.

p′t (j)) represent the agent pointed at by agent j in pointing phase of step t for MTC≺ (R,ω) (resp.

MTC≺ (R′, ω)). Let Ci (R, t) (resp. Ci (R′, t)) be set of all j ∈ Nt (resp. j ∈ N ′t) such that j = i,

pt (j) = i (resp. p′t (j) = i), pt (pt (j)) = i (resp. p′t (p′t (j)) = i) and so on under R (resp. R′).

Now, �x agent i and assume that only agent i is misreporting her preferences. Let t (resp. t′)

be the �rst step agent i becomes part of a trading cycle or becomes satis�ed under MTC≺ (R,ω)

(resp. MTC≺ (R′, ω)). Let t = min {t, t′}. Following result says that state of algorithm is same

before step t regardless of whether agent i reports Ri or R′i.

Lemma 2.1. For all 0 ≤ t̃ < t, Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and for each j ∈ Nt̃\ {i},

pt̃ (j) = p′
t̃
(j). Moreover, ht = h′t and if i is not satis�ed at step t under R and R′, then Nt = N ′t ,

Ot = O′t , and for each j ∈ Nt\ {i}, pt (j) = p′t (j).

Proof. If t = 1, the claim holds vacuously for t̃ = 0. Now suppose t > 1. Then, it must be the

case that i ∈ U1 and i ∈ U ′1. The set of departing agents in step 1 should be the same under R
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and R′ because i does not depart and for each j ∈ N\ {i}, R′j = Rj . So, it must be the case that

N1 = N ′1 and O1 = O′1. Before �rst step, no trading has taken place so each agent is holding her

endowments i.e. h1 (j) = h′1 (j) = ω (j) for all j ∈ N . Moreover, each j 6= i points at the same

person at step 1 because i is unsatis�ed under both R and R′ and MTC satis�es independence of

unsatis�ed agents. So, the claim holds for step 1.

Now, suppose the claim holds for some t̃ < t− 1. We need to show that it holds for step t̃+ 1.

By assumption, we have Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
, ht̃ = h′

t̃
and for each j ∈ Nt̃\ {i}, pt̃ (j) = p′

t̃
(j). Since

t̃ < t, agent i is not part of a trading cycle under R or R′. So, same trading cycles are formed

for both R and R′ at step t̃. Hence, ht̃+1 = h′
t̃+1

. Moreover, since t̃ + 1 < t, agent i does not

depart in departure phase of step t̃+ 1 under either R or R′. Then, it must be that Nt̃+1 = N ′
t̃+1

and Ot̃+1 = O′
t̃+1

. Moreover, it must be that for each j ∈ Nt̃+1\ {i}, pt̃+1 (j) = p′
t̃+1

(j) because

i ∈ Ut̃+1, i ∈ U ′t̃+1
and MTC satis�es independence of unsatis�ed agents.

Now, we prove second part of the lemma. We know that Nt−1 = N ′t−1, Ot−1 = O′t−1, ht−1 =

h′t−1 and for each j ∈ Nt−1\ {i}, pt−1 (j) = p′t−1 (j). Agent i is not part of a trading cycle under

R or R′ at step t − 1. So, we have same trading cycles under both R and R′. Hence, ht = h′t. If

agent i is not satis�ed under either R or R′ at step t, we have Nt = N ′t and Ot = O′t. Also, for

each j ∈ Nt\ {i}, pt (j) = p′t (j) because MTC satis�es independence of unsatis�ed agents. This

completes the proof. �

The following result proves that MTC satis�es local invariance for general preferences.

Proposition 2.7. For each priority ordering ≺ and (R,ω) ∈ RN × A, MTC≺ (R,ω) satis�es

local invariance.

Proof. Consider any (R,ω) ∈ RN × A and i ∈ N such that MTC≺ (R,ω) (i) = a such that

aPiω (i). Let R′i ∈ R be such that R′i|O\{a} = Ri|O\{a}, bPia ⇐⇒ bP ′ia and aRib ⇐⇒ aP ′i b for

all b ∈ O\ {a}. Let α ≡ MTC≺ (R,ω) and α′ ≡ MTC≺ (R′, ω). We want to show that α′ (i) = a.

Notice that since α (i)Piω (i), it cannot be the case that agent i becomes satis�ed before trading

phase of step t because ht (i) = ω (i).

Note that it must be the case that α (i) ∈ O′t. If not, α (i) would have departed at (or before)

step t under R as well because ht = h′t by Lemma 2.1. This would imply that agent i cannot

receive α (i) under R. Since ht (i) = h′t (i), it cannot be the case that agent i is satis�ed at step t

under either R or R′ because we have α (i)P ′iω (i). So, it cannot be the case that agent i departs

in departure phase of step t = min {t, t′} under R or R′. Moreover, it cannot be the case that
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α′ (i) I ′iω (i) since then it cannot be possible for agent i to receive α (i) under R. This is the case

because if t′ ≤ t, then it means that each b ∈ O such that bP ′iω (i) has departed by departure phase

of step t′ under R′ but by construction of R′i, bPiω (i) ⇐⇒ bP ′iω (i), and so agent i cannot receive

α (i) under R. If t < t′, then the trading cycle agent i is part of at step t under R, occurs as a

chain in pointing phase at step t under R′ and keeps on occurring until agent i becomes satis�ed by

persistence. In other words, under R′, agent i can always receive ht+1 (i) and since ht+1 (i)Piω (i),

we have ht+1 (i)P ′iω (i). So, agent i cannot become satis�ed before trading phase of step t′ under

R′.

Step 1: α (i)Riα
′ (i). Consider the following cases:

Case 1: t = t ≤ t′.

Since agent i does not depart at step t, by Lemma 2.1, Ot = O′t. Moreover, under R, agent i is

part of a trading cycle at step t. So, α (i) Iiht+1 (i) and ht+1 (i) ∈ τ
(
Ri, Ot

)
. Since O′t′ ⊆ Ot and

α′ (i) ∈ Ot, we have α (i)Riα
′ (i).

Case 2: t = t′ < t.

On contrary, suppose that α′ (i)Piα (i). Since agent i does not depart at step t, by Lemma 2.1,

Nt = N ′t , Ot = O′t and ht = h′t. Since t = t′, agent i is part of a trading cycle at step t under R′.

Let the cycle be C = {i1, · · · , im} such that p′t (i1) = i2, p′t (i2) = i3,· · · , p′t (im) = i1. Without loss

of generality, let im = i and so, α′ (i) I ′iht (i1). Since α′ (i)Piα (i), we have α′ (i) 6= α (i). Then, by

construction of R′i, ht (i1) 6= α (i). So, α′ (i) Iiht (i1).

Note that, by Lemma 2.1, each j ∈ Nt\ {i} points at same agent at step t under R and R′.

So, the trading cycle C occurs as a chain at step t under R i.e. pt (i1) = i2, pt (i2) = i3,· · · ,

pt (im−1) = im and im = i17. Then, by persistence, this chain keeps occurring as long as agent i is

unsatis�ed. Agent i remains unsatis�ed until trading phase of step t under R. So, this chain occurs

up to step t and we have ht (j) = ht (j) for all j ∈ {i1, · · · , im}. Speci�cally, ht (i1) ∈ Ot. Since

agent i is part of a trading cycle at step t, α (i) Iiht+1 (i) and ht+1 (i) ∈ τ (Ri, Ot). So, α (i)Riα
′ (i)

which is a contradiction.

Step 2: α′ (i)R′iα (i) when t = t′ ≤ t. Since agent i does not depart at step t, by Lemma 2.1,

Ot = O′t. Moreover, under R′, agent i is part of a trading cycle at step t. So, α′ (i) I ′ih
′
t+1 (i) and

h′t+1 (i) ∈ τ
(
R′i, Ot

)
. Since, Ot ⊆ Ot, α (i) ∈ O′t. This implies that α′ (i)R′iα (i).

Step 3: α′ (i) = α (i) or α′ (i)R′iα (i) when t = t < t′. In order to prove this, we follow the

17Under R, this is not a cycle because t′ < t.
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approach of Jaramillo & Manjunath [14]. Consider the following claim:

Post-trade Inclusion Claim: Let t < t′ i.e. t = t. Then, for all ẗ ∈ {t, · · · , t′}:

1.
Oẗ ⊆ O′ẗ

O′
ẗ
\Oẗ ⊆ hẗ

(
Ci
(
R′, ẗ− 1

)) , and
Nẗ ⊆ N ′ẗ

N ′
ẗ
\Nẗ ⊆ Ci

(
R′, ẗ− 1

) ,

2. S′
ẗ
⊆ Sẗ and Sẗ\S′ẗ ⊆ Ci

(
R′, ẗ− 1

)
,

3. for each j ∈ N ′
ẗ
\Ci

(
R′, ẗ

)
, pẗ (j) = p′

ẗ
(j), and

4. for each j ∈ N ′
ẗ
\Ci

(
R′, ẗ

)
, hẗ+1 (j) = h′

ẗ+1
(j).

Proof. Consider ẗ = t. Then, by Lemma 2.1; Nt = N ′t , Ot = O′t, ht = h′t and for each

j ∈ Nt\ {i}, pt (j) = p′t (j). So, (1)− (3) hold for ẗ = t.

Since for each j ∈ Nt\ {i}, we have pt (j) = p′t (j), it must be that Ci (R, t) = Ci (R′, t). So, if

any j ∈ Nt\Ci (R, t) is part of a trading cycle at step t under R, that trading cycle must consist only

of agents in Nt\Ci (R, t) otherwise we would have j ∈ Ci (R, t). Then, for any j ∈ Nt\Ci (R′, t),

same trading cycles occur under both R and R′. Hence, for each j ∈ N ′t\Ci (R′, t), we would have

ht+1 (j) = h′t+1 (j) because ht = h′t. So, (4) holds for ẗ = t.

Now, suppose (1)− (4) hold for all ẗ < t′ − 1. We want to show that the claim is true for step

ẗ + 1. Note that at step ẗ + 1, no agent in Ci
(
R′, ẗ

)
departs under R′ because agent i does not

become satis�ed before trading phase of step t′. So, any agents (along with their objects) departing

at step ẗ + 1 under R′ must be in N ′
ẗ
\Ci

(
R′, ẗ

)
. By induction hypothesis, we know that for any

j ∈ N ′
ẗ
\Ci

(
R′, ẗ

)
, hẗ+1 (j) = hẗ+1 (j) and Oẗ ⊆ O′

ẗ
. So, if a group of agents, G ⊆ N ′

ẗ
departs

at step ẗ + 1 under R′, G ⊆ N ′
ẗ
\Ci

(
R′, ẗ

)
. Notice that G ⊆ Nẗ otherwise there is j ∈ G such

that j ∈ Ci
(
R′, ẗ− 1

)
and by persistence, Ci

(
R′, ẗ− 1

)
⊆ Ci

(
R′, ẗ

)
so that j ∈ Ci

(
R′, ẗ

)
. Let

G = G1 ∪ · · · ∪ GT where G1 is the �rst group to depart, G2 is second group to depart,· · · , GT

is the T -th (and last) group to depart at step ẗ + 1 under R′. Moreover, let Ak = h′
ẗ+1

(Gk) for

k ∈ {1, · · · , T}. Then, by departure condition, for each j ∈ Gk, h′ẗ+1
(j) ∈ τ

(
Rj , O

′
ẗ
\
(
∪k−1
l=1 Al

))
and h′

ẗ+1
(Gk) = ∪j∈Gk

τ
(
Rj , O

′
ẗ
\
(
∪k−1
l=1 Al

))
for k ∈ {1, · · · , T}. Then, we have for each j ∈ Gk,

hẗ+1 (j) ∈ τ
(
Rj , Oẗ\

(
∪k−1
l=1 Al

))
, and hẗ+1 (Gk) = ∪j∈Gk

τ
(
Rj , Oẗ\

(
∪k−1
l=1 Al

))
for k ∈ {1, · · · , T}

because Oẗ ⊆ O′ẗ from (1) and hẗ+1 (j) = h′
ẗ+1

(j) for all j ∈ G from (4). So, any agents, along with

their objects, departing at step ẗ+ 1 under R′, depart at step ẗ+ 1, along with their objects, under

R as well. So, we have Nẗ+1 ⊆ N ′ẗ+1
and Oẗ+1 ⊆ O′ẗ+1

because Nẗ ⊆ N ′ẗ and Oẗ ⊆ O
′
ẗ
.
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Note that for any trading cycle, say C, that occurs at step ẗ under R but not under R′, it must

be the case that C ⊆ Ci
(
R′, ẗ

)
by (3) at step ẗ. Moreover, any trading cycle that occurs at step

ẗ under R′, also occurs under R because no agent in Ci
(
R′, ẗ

)
is part of a trading cycle at step ẗ

under R′. Then, it must be the case that S′
ẗ+1
⊆ Sẗ+1 and Sẗ+1\S′ẗ+1

⊆ Ci
(
R′, ẗ

)
because S′

ẗ
⊆ Sẗ,

Sẗ\S′ẗ ⊆ Ci
(
R′, ẗ− 1

)
, any cycle that occurs at step ẗ under R′ also occurs under R and any cycle

that occurs at step ẗ under R but not under R′ must consist entirely of agents in Ci
(
R′, ẗ

)
.

Now, we show that N ′
ẗ+1
\Nẗ+1 ⊆ Ci

(
R′, ẗ

)
. Suppose j ∈ N ′

ẗ+1
\Nẗ+1 but j /∈ Ci

(
R′, ẗ

)
. Note

that if j ∈ N ′
ẗ
, then j ∈ Nẗ because N

′
ẗ
\Nẗ ⊆ Ci

(
R′, ẗ− 1

)
and Ci

(
R′, ẗ− 1

)
⊆ Ci

(
R′, ẗ

)
by

persistence. Suppose that j ∈ Sẗ. It cannot be that j ∈ S′ẗ since then j ∈ S
′
ẗ+1

which contradicts

S′
ẗ+1
⊆ Sẗ+1. So, j /∈ S′

ẗ
. But then, j ∈ Sẗ\S′ẗ ⊆ Ci

(
R′, ẗ− 1

)
and Ci

(
R′, ẗ− 1

)
⊆ Ci

(
R′, ẗ

)
by

persistence.

Now, suppose that j /∈ Sẗ. Note that (2) at step ẗ is equivalent to Uẗ ⊆ U ′
ẗ
and U ′

ẗ
\Uẗ ⊆

Ci
(
R′, ẗ− 1

)
. Moreover, j /∈ S′

ẗ+1
because S′

ẗ+1
⊆ Sẗ+1. So, j ∈ U ′ẗ+1

and j /∈ Nẗ+1 which implies

that j ∈ Ci
(
R′, ẗ

)
because U ′

ẗ+1
\Uẗ+1 ⊆ Ci

(
R′, ẗ

)
.

Now, we show that O′
ẗ+1
\Oẗ+1 ⊆ hẗ+1

(
Ci
(
R′, ẗ

))
. Suppose b ∈ O′

ẗ+1
\Oẗ+1 such that b /∈

hẗ+1

(
Ci
(
R′, ẗ

))
. It must be that b /∈ O′

ẗ
\Oẗ becauseO′ẗ\Oẗ ⊆ hẗ

(
Ci
(
R′, ẗ− 1

))
and Ci

(
R′, ẗ− 1

)
⊆

Ci
(
R′, ẗ

)
by persistence. Then, some agent, say j, departed with b at step ẗ+1, hẗ+1 (j) = b, under

R but not under R′. Then, j ∈ N ′
ẗ+1
\Nẗ+1 and hence, j ∈ Ci

(
R′, ẗ

)
. Then, it must be the case

that b ∈ hẗ+1

(
Ci
(
R′, ẗ

))
which is a contradiction.

Now, we prove (3) for step ẗ+ 1 i.e. for each j ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
, pẗ+1 (j) = p′

ẗ+1
(j). Take

any j ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
. If agent j is persistently pointing at someone at step ẗ + 1 under

R′, we have p′
ẗ+1

(j) = p′
ẗ
(j). Notice that by persistence, j ∈ N ′

ẗ
\Ci

(
R′, ẗ

)
and, by (3) at step ẗ,

pẗ (j) = p′
ẗ
(j) so that p′

ẗ+1
(j) = pẗ (j). Moreover, pẗ (j) /∈ Ci

(
R′, ẗ

)
and so, pẗ (pẗ (j)) = p′

ẗ

(
p′
ẗ
(j)
)

and so on. Hence, the same unsatis�ed agent, say agent k, is chosen for agent j in pointing phase

of step ẗ under R and R′. Then, it must be the case that k /∈ N ′
ẗ+1
\Nẗ+1 otherwise, k ∈ Ci

(
R′, ẗ

)
and j ∈ Ci

(
R′, ẗ

)
. Moreover, it cannot be the case that agent k is part of a trading cycle at step ẗ

under R but not under R′ since then k ∈ Ci
(
R′, ẗ

)
and j ∈ Ci

(
R′, ẗ

)
. Since agent j is persistently

pointing at step ẗ + 1 under R′, it must be that k ∈ U ′
ẗ+1

and since agent k cannot be part of a

trading cycle at step ẗ under R without being part of a trading cycle at step ẗ under R′, it must

be that k ∈ Uẗ+1. Hence, agent j must be persistently pointing at step ẗ + 1 under R as well i.e.

pẗ+1 (j) = pẗ (j). Therefore, pẗ+1 (j) = p′
ẗ+1

(j).
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Now, suppose that agent j is not persistently pointing at step ẗ + 1 under R′. Note that it

cannot be the case that agent j is persistently pointing at step ẗ+ 1 under R. Since j /∈ Ci
(
R′, ẗ

)
it

cannot be the case that k ∈ Ci
(
R′, ẗ

)
where k is any agent on a chain starting from agent j. Then,

for each agent k on a chain from agent j, we have pẗ (k) = p′
ẗ
(k) from (3) at step ẗ. Moreover, we

have Uẗ+1 ⊆ U ′ẗ+1
. So, if agent j is persistently pointing at step ẗ+ 1 under R, it must be that j is

persistently pointing at step ẗ+ 1 under R′ as well.

Note that it cannot be the case that in pointing phase of step ẗ + 1 under R′, the path chosen

for agent j includes some agent in Ci
(
R′, ẗ+ 1

)
since then j ∈ Ci

(
R′, ẗ+ 1

)
. So, no agent on a

chain starting from agent j at step ẗ+ 1 under R′ can be a member of Ci
(
R′, ẗ+ 1

)
. Let k ∈ Uẗ+1

be the unsatis�ed agent chosen for agent j at step ẗ + 1 under R. Notice that it cannot be the

case that k ∈ Ci
(
R′, ẗ+ 1

)
because k is highest priority unsatis�ed agent in Uẗ+1 that agent j can

reach. Also, Uẗ+1 ⊆ U ′ẗ+1
and U ′

ẗ+1
\Uẗ+1 ⊆ Ci

(
R′, ẗ

)
, so that in pointing phase of step ẗ+ 1 under

R′, either agent k is chosen for agent j or some unsatis�ed agent from U ′
ẗ+1
\Uẗ+1 is chosen. In both

cases, it would mean that j ∈ Ci
(
R′, ẗ+ 1

)
. So, k /∈ Ci

(
R′, ẗ+ 1

)
and it must be that agent k is

the highest priority unsatis�ed agent in U ′
ẗ+1

that can be reached by agent j at step ẗ + 1 under

R′. Moreover, for each agent k ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
, we have k ∈ N ′

ẗ
\Ci

(
R′, ẗ

)
and, so, by (4) at

step ẗ, hẗ+1 (k) = h′
ẗ+1

(k). So, it must be the case that pẗ+1 (j) = p′
ẗ+1

(j).

Now, we show that (4) is true for step ẗ + 1 i.e. for each j ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
, hẗ+2 (j) =

h′
ẗ+2

(j). Notice that for each j ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
we have j ∈ N ′

ẗ
\Ci

(
R′, ẗ

)
so that hẗ+1 (j) =

h′
ẗ+1

(j) and pẗ+1 (j) = p′
ẗ+1

(j). So, a trading cycle consisting of agents only in N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
must occur under both R and R′ at step ẗ+ 1. Moreover, if any trading cycle, C, occurs under R

but not under R′ it must be the case that C ⊆ Ci
(
R′, ẗ+ 1

)
. So, we have hẗ+2 (j) = h′

ẗ+2
(j) for

all j ∈ N ′
ẗ+1
\Ci

(
R′, ẗ+ 1

)
. This completes the proof of the Post-trade Inclusion claim. �

First, suppose that α (i) ∈ O′t′ . Since agent i is part of a trading cycle at step t′ under R′, it

must be the case that α′ (i)R′iα (i). Now, suppose that α (i) /∈ O′t′ . Since agent i is assigned α (i)

under R, there is some t̃ such that ht̃+1 (i) = α (i). By post-trade inclusion, t̃ < t′, because Oẗ ⊆ O′ẗ
for all ẗ ∈ {t, · · · , t′}. Moreover, it must be the case that τ

(
R′i, O

′
t̃

)
= {α (i)} because Ot̃ ⊆ O′

t̃
,

O′
t̃
\Ot̃ ⊆ ht̃

(
Ci
(
R′, t̃− 1

))
and α (i)Riα

′ (i). So, agent i points at some agent, say agent j, holding

α (i) at step t̃ under R′ i.e. p′
t̃
(i) = j and h′

t̃
(j) = α (i). Since α′ (i) 6= α (i), j /∈ Ci

(
R′, t̃

)
and

so, by post-trade inclusion, ht̃ (j) = h′
t̃
(j). Then, the chain initiating from agent j at step t̃ under

R′ cannot consist of any agent in Ci
(
R′, t̃

)
. So, for any agent k on a chain from agent j at step t̃
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under R′, we have k /∈ Ci
(
R′, t̃

)
. By post-trade inclusion, pt̃ (k) = p′

t̃
(k). Then, it cannot be the

case that agent i is part of a trading cycle consisting of agent j at step t̃ under R. This contradicts

the assumption that ht̃+1 (i) = α (i).

Step 4: α′ (i) = α (i). Note that whenever α (i)Riα
′ (i) and α′ (i)R′iα (i) it must be the case

that α′ (i) = α (i). Suppose not. Then, by de�nition of R′i, α
′ (i)P ′iα (i) because α′ (i)R′iα (i).

Hence, α′ (i)Piα (i) which is a contradiction. So, MTC satis�es local invariance. �

By local invariance of MTC rule, Theorems 3.1 and 3.2 (presented in Chapter III), MTC rule

is strategy proof. This result is stated in the following corollary.

Corollary 2.1. For each priority ordering ≺ and (R,ω) ∈ R̄N × A, MTC≺ (R,ω) is strategy

proof.

Now, I show that MTC satis�es no justi�ed-envy for agents with identical endowments.

Proposition 2.8. For each priority ordering ≺ and (R,ω) ∈ R̄N × A, MTC≺ (R,ω) satis�es

no justi�ed-envy for agents with identical endowments.

Proof. On contrary, there is (R,ω) ∈ R̄N × A, priority ordering ≺ and i, j ∈ N such that

i ≺ j, ω (i) Ikω (j) for all k ∈ N and α (j)Piα (i) where α ≡ MTC≺ (R,ω). It cannot be the case

that α (j) = ω (j) because then ω (i)Piα (i) which contradicts individual rationality of MTC≺. So,

agent j must have been part of a trading cycle at least once.

Let t be the �rst step agent j becomes part of a trading cycle so that α (j) ∈ Ot. It cannot

be that agent i is part of a trading cycle at some t′ ≤ t since then, α (i) ∈ τ (Ri, Ot′) and hence,

α (i)Riα (j) because Ot ⊆ Ot′ . Moreover, it cannot be that agent i departed with ω (i) at some

step t′ ≤ t because then ω (i)Rib for all b ∈ Ot′ which is a contradiction. So, we have ht (i) = ω (i)

and ht (j) = ω (j). Let k ∈ Nt be the agent pointing at agent j in the trading cycle containing

agent j. Then, ω (j) ∈ τ (Rk, Ot) and so, ω (i) ∈ τ (Rk, Ot). Since agent k is not pointing at agent

i, it must be the case that agent k was pointing at agent j in step t− 1 and is pointing at agent j

in step t owing to persistence. Let tk be the �rst step agent k points at agent j. Since agent k is

not persistently pointing at step tk and i ≺ j, it cannot be the case that agent k points at agent j

in step tk. This completes the proof. �

The next result shows that whenever priority ordering of agents re�ects social ranking of agents

in the housing market problem, MTC satis�es prioritized treatment of market-equal unsatis�ed

agents.

Proposition 2.9. For each priority ordering ≺ and (R,ω) ∈ R̄N × A, MTC≺ (R,ω) satis�es
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prioritized treatment of market-equal unsatis�ed agents.

Proof. Consider any priority ordering ≺, (R,ω) ∈ R̄N × A and any step of MTC≺. Let

α ≡ MTC≺ (R,ω). Since we are considering a general step, we drop sub-script of step in the

notation. Let AS = (N ′, O′) be any absorbing set at this step, where N ′ and O′ are sets of

agents and objects in the absorbing set AS, respectively, such that AS satis�es strategy proofness

compliance. Let U ⊆ N ′ be the set of unsatis�ed agents in this absorbing set. Let agent i be the

highest priority unsatis�ed agent in the absorbing set.

Since AS satis�es strategy proofness compliance, there is at least one cycle which has at most

two unsatis�ed agents (including agent i). First, suppose each such cycle has agent i as the unique

unsatis�ed agent. Let this cycle be (i1, · · · , im) such that there is an arc from each il to il+1 in the

absorbing set, im+1 = i1, and i1 = i. Then, im is either persistently pointing at agent i or she is

pointing at agent i under the pointing phase because agent i owns one of her most preferred objects

(among the remaining ones) and agent i is the highest priority unsatis�ed agent in the absorbing

set. Then, im−1 is either persistently pointing at im, points directly at agent i, points at im or a

higher priority satis�ed agent who has a path to agent i under the pointing phase because agent i

is the highest priority unsatis�ed agent. In this manner, it can be concluded that agent i2 is either

persistently pointing at agent i3 (who has a path to agent i via pointing), points at agent i3 or

a higher priority satis�ed agent who has a path to agent i via pointing. Once unique pointees of

satis�ed agents have been determined, we determine unique pointees of unsatis�ed agents. Either

agent i is persistently pointing at agent i2 or points at an agent holding one of her most preferred

objects with a path (via pointing) to the highest priority unsatis�ed agent reachable. Since i2 holds

one of the most preferred objects for agent i, agent i either points at i2 or a higher priority satis�ed

agent with a path to herself. So, α (i) ∈ τ (Ri, O
′).

Now, suppose there is a cycle in the strategy proofness compliant absorbing set which has

two unsatis�ed agents; agent i and j. By assumption, i ≺ k and j ≺ k for each k ∈ U\ {i, j}.

Additionally, suppose agent i is the highest priority unsatis�ed agent so that i ≺ j. Let this cycle

in the absorbing set be as follows: (i1, · · · , ik, · · · , im) such that there is an arc from each il to il+1

in the absorbing set, im+1 = i1, i1 = i and ik = j. By same reasoning as for the previous case,

each agent in {ik+1, · · · , im} has a path (via pointing) to agent i. If there is a path from some

agent in {i2, · · · , ik−1} to agent i via pointing, then α (i) ∈ τ (Ri, O
′). So, suppose there is no path

from an agent in {i2, · · · , ik−1} to agent i via pointing. Then, in the same manner, each agent in
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{i2, · · · , ik−1} forms a path to agent j via pointing. Now, we determine unique pointees for agents

i and j. For the agents holding one of the most preferred objects of agent i (among the remaining

ones), agent j has to be the highest priority unsatis�ed agent who can be reached via pointing. So,

agent i either points at agent i2 or a higher priority agent with a path to agent j. Similarly, agent

i has to be the highest priority unsatis�ed agent that can be reached by agents holding one of the

most preferred objects of agent j. So, agent j either points at agent ik+1 or a higher priority agent

with a path to agent i via pointing. In either case, we get α (i) ∈ τ (Ri, O
′). �

Based on Propositions 2.6-2.9, following theorem can be stated.

Theorem 2.2. For housing market problem under weak preferences and no indi�erences with

endowments, there exist rules which satisfy Pareto e�ciency, weak-core selection (hence, individual

rationality), strategy proofness, no justi�ed-envy for agents with identical endowments and priori-

tized treatment of market-equal unsatis�ed agents.

I conclude this chapter in the next section.

Conclusion

When housing market problem is considered under weak preferences, several mechanisms have

been shown to satisfy desirable properties like Pareto e�ciency, individual rationality, weak core

selection and strategy proofness. I consider some additional properties. I show that three of the

existing rules satisfy no justi�ed-envy for agents with identical endowments. Additionally, I provide

su�cient conditions for a rule to satisfy weak group strategy proofness. Finally, I consider a criterion

which prioritizes how unsatis�ed agents are treated in the problem. I show that this property is not

satis�ed by TC, TTAS and HPO rules. I present a rule, MTC, which does satisfy this procedural

enhancement along with additional desirable properties.

In deriving this new rule, I was able to identify an oversight in the paper of Saban & Sethuraman

[27]. This oversight pertains to their su�cient conditions for strategy proofness. In the next chapter,

I explain that oversight and provide conditions which rectify this issue.

In going forward, it might be of interest to show if any existing rules other than TTAS satisfy

weak group strategy proofness especially because TTAS has an exponential running time in the

worst case. However, this chapter does prove existence of rules which satisfy Pareto e�ciency,

individual rationality, weak core selection, strategy proofness, weak group strategy proofness and no
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justi�ed-envy for agents with identical endowments. Additionally, relationship between weak group

strategy proofness and prioritized treatment of market-equal unsatis�ed agents is unclear which

might require further investigation.
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CHAPTER III

A NOTE ON �HOUSE ALLOCATION WITH INDIFFERENCES: A

GENERALIZATION AND A UNIFIED VIEW�

Introduction

Saban & Sethuraman [27] consider the housing market problem while allowing for indi�erences.

In this problem, each agent initially owns at most one object and each object is initially owned

by at most one agent. The goal is to reallocate these resources in a way that the �nal allocation

satis�es some desirable properties; Pareto e�ciency (no agent can be made better-o� without

making someone else worse-o�), individual rationality (each agent receives something at least as

good as her endowment), weak core (no subset of agents can trade among themselves, each using

her endowment, such that each agent in the subset gets something better) and strategy proofness

(no agent has an incentive to misreport her preferences). They provide a class of rules for which

each member is Pareto e�cient, weak core selecting (hence, individually rational) and strategy

proof. Mechanisms satisfying such properties for housing market problem with weak preferences

had already been proposed (independently) by Alcalde-Unzu &Molis [3] and Jaramillo &Manjunath

[14].

Major contributions of Saban & Sethuraman [27] include unifying the existing mechanisms

and establishing su�cient conditions for strategy proofness. They provide su�cient conditions for

strategy proofness and hence, narrow down the class of rules provided by Aziz & de Keijzer [6].

They use their su�cient conditions to come up with mechanisms that are computationally more

e�cient than the mechanisms provided in earlier works. The su�cient conditions are derived

by establishing equivalence of strategy proofness with local invariance. While strategy proofness

requires that no agent has an incentive to misrepresent her preferences (in any manner), local

invariance only eliminates very speci�c misrepresentations. Local invariance is de�ned in Saban &

Sethuraman [27] as follows:

Local Invariance: Let R = (R−i, Ri) be the preference lists of the agents, where

Ri = (p1, · · · , pr) and pm represents the set of objects corresponding to agent i's mth

indi�erence class18. Suppose that agent i obtains object a ∈ pm (a is in agent i's mth

18For each a, b ∈ pm, aIib. Moreover, for each a ∈ pm and b ∈ pm̃, aPib if m < m̃.
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indi�erence class) when mechanismM is applied to the preference pro�le R, and suppose

aPiω (i). Let R′ = (R−i, R
′
i), where R

′
i = (p1, · · · , pk−1, a, pk\ {a} , pk+1, · · · , pr). Then,

when mechanism M is applied to R′, agent i still obtains a.

Saban & Sethuraman [27] show that for mechanisms satisfying independence of unsatis�ed agents

and persistence, local invariance and strategy proofness are equivalent. Following notation of Saban

& Sethuraman [27], let F be a selection rule which determines unique pointees at each step of

a mechanism. That is, let G be any graph of a housing market problem in which agents are

represented as vertices and for each vertex representing an agent, say i, edges are extended to all

vertices representing agents holding one of the most preferred objects (among the remaining ones)

of agent i. Then, F (G) represents a subgraph of G in which each vertex has a unique outgoing edge.

In any such graph G, agent i is said to be satis�ed if agent i owns one of her most preferred objects

(among the remaining ones) and unsatis�ed if she is not satis�ed. Additionally, (a1, · · · , ak) is said

to be a path in F (G) if there is an edge from vertex al to vertex al+1 for each l ∈ {1, · · · , k − 1}.

The aforementioned properties are de�ned by Saban & Sethuraman [27] as follows:

Independence of unsatis�ed agents: The selection rule F satis�es independence of

unsatis�ed agents if for any unsatis�ed agent i, and any two graphs G1 and G2 that di�er

only in the outgoing edges from i, F (G1) and F (G2) can di�er only in the outgoing

edge from agent i.

Persistence: Let p = (a1, · · · , ak) be a path in F (G). Then, path p is said to be

persistent if p appears in all the successive steps of the algorithm until agent ak trades

her object or leaves the problem.

Saban & Sethuraman [27] present the equivalence of strategy proofness and local invariance in

Theorem 3 which is reproduced below.

Theorem 3. A mechanism M satisfying the �Independence of Unsatis�ed Agents� and

the �Persistence� properties is strategy proof if and only if it satis�es local invariance.

In the next section, I describe why the result proposed in Theorem 3 of Saban & Sethuraman [27]

may not hold, in general, and then present a mechanism which was shown to satisfy local invariance

in the previous chapter for a restricted class of preferences but, in general, is not strategy proof.

Then, I present additional restrictions under which result of the aforementioned theorem holds true.
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Results

To prove converse of Theorem 3, Saban & Sethuraman [27] proceed as follows: Let M be a

mechanism that satis�es local invariance but not strategy proofness. Then, there is an agent i who

can report R′i ∈ R to obtain a strictly better object, say a. Let α ≡ M (R,ω) and α′ ≡ M (R′, ω)

where R′ = (R−i, R
′
i). Then, α

′ (i)Piα (i) where α′ (i) = a. The authors then state that, by local

invariance, it can be assumed that a is the only object in its indi�erence class for misreported

preferences R′i of agent i. However, by de�nition, local invariance requires the assigned object of

the agent to be strictly better than her endowment under the reported preferences i.e. the proof

implicitly assumes that aP ′iω (i) which may not be the case in general.

As a counter-example, I consider the Modi�ed Top Cycles (MTC) rule which was presented

in the previous chapter. It was shown that this rule satis�es independence of unsatis�ed agents,

persistence and local invariance. However, the following example shows that this rule does not

satisfy strategy proofness for weak preferences.

Example 3.1: Consider the following housing market problem: N = {1, 2, 3, 4, 5}, O = {a, b, c, d, e},

ω = (a, b, c, d, e), 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 and the preference pro�le:

R1 R2 R3 R4 R5 R′4

e ab b b cde bd

a c d

Then, MTC outcome under R and R′ is (e, a, b, d, c) and (e, a, c, b, d), respectively. Agent 4 is

able to receive a better outcome by feigning to be satis�ed. That is, under local invariance agents

might still have an opportunity to manipulate the rule by pretending to be satis�ed i.e. reporting

their endowment as one of their most preferred objects (among the remaining ones).

Now I present a property, local push-up invariance, which is equivalent to strategy proofness

under the aforementioned restrictions on the mechanism. This property was used by Alcalde-Unzu

& Molis [3] and Jaramillo & Manjunath [14] to establish strategy proofness of their rules.

Local Push-up Preference: Consider any R ∈ RN . Let α be outcome of some mechanism

M under preferences R. R′i ∈ R is said to be local push-up preference of Ri for mechanism M if:

1. Ri|O\{α(i)} = R′i|O\{α(i)},

2. aPiα (i) if and only if aP ′iα (i) for all a ∈ O\ {α (i)}, and
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3. α (i)Ria if and only if α (i)P ′ia for all a ∈ O\ {α (i)}.

Local Push-up Invariance: A mechanism M is said to satisfy local push-up invariance if for

each R ∈ RN and i ∈ N , α (i) = α′ (i) where α ≡M (R,ω), α′ ≡M (R′, ω), R′ = (R−i, R
′
i) and R

′
i

is local push-up preference of Ri for mechanism M .

Theorem 3.1 states that local push-up invariance is equivalent to strategy proofness for mecha-

nisms satisfying independence of unsatis�ed agents and persistence properties.

Theorem 3.1. A mechanism M satisfying the independence of unsatis�ed agents and persis-

tence properties is strategy proof if and only if it satis�es local push-up invariance.

Proof. Consider mechanismM which satis�es independence of unsatis�ed agents and persistence.

First, suppose that M satis�es strategy proofness but not local push-up invariance. Then, there is

i ∈ N and R,R′ ∈ RN , where R′ = (R−i, R
′
i) and R′i is local push-up preference of Ri, such that

α (i) 6= α′ (i) where α ≡ M (R,ω) and α′ ≡ M (R′, ω). Since M is strategy proof, it must be the

case that α′ (i)R′iα (i). Since α (i) 6= α′ (i), by de�nition of local push-up preference, α′ (i)P ′iα (i)

which implies that α′ (i)Piα (i). This contradicts strategy proofness of M .

To show the converse, suppose that M satis�es local push-up invariance but not strategy proof-

ness. Then, there is i ∈ N and R,R′ ∈ RN , where R′ = (R−i, R
′
i), such that α′ (i)Piα (i) where

α ≡ M (R,ω) and α′ ≡ M (R′, ω). Then, by local push-up invariance, we can assume that α′ (i)

is the only object in its indi�erence class for preferences R′i. The remaining proof follows from

Theorem 3 of Saban & Sethuraman [27]. �

It should be noted that local push-up invariance implies local invariance but not vice versa.

Next, I present additional restrictions under which local invariance is equivalent to local push-up

invariance so that result of Theorem 3 from Saban & Sethuraman [27] holds true under these

conditions. One possible solution is to restrict attention to only those preference pro�les for which

endowment is the only object in its indi�erence class for each agent. I refer to this class of preferences

as no indi�erences with endowment. For this restricted class of preferences, local invariance and local

push-up invariance are obviously equivalent. Before proceeding further, I provide some additional

notation.

Some Notation: Consider any R,R′ ∈ RN . Let Nt̃ (resp. N
′
t̃
) and Ot̃ (resp. O

′
t̃
) be set of

agents and objects, respectively, remaining at step t̃ under R (resp. R′). Let ht̃ (resp. h
′
t̃
) denote

objects held by agents at step t̃ under R (resp. R′). For i ∈ Nt̃ (resp. N ′t̃), let pt̃ (i) (resp. p′
t̃
(i))

be the agent pointed at by agent i at step t̃ under R (resp. R′). Let t (resp. t′) be the �rst step
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agent i becomes satis�ed or part of a trading cycle under R (resp. R′). For any R ∈ RN and step

t̃, denote all agents having a path to agent i via pointing (including agent i) as Ci
(
R, t̃
)
i.e.

Ci
(
R, t̃
)

=


j ∈ Nt̃ :

j = i

pt̃ (j) = i

pt̃ (pt̃ (j)) = i

...

Before presenting additional restrictions, I return to the housing market example to provide

some intuition for the following restrictions. Under MTC, agent 4 had an opportunity to bene�t

by pretending to be satis�ed because she was able to get an additional agent, agent 5, to point

at her. Intuitively, such incentives need to be eliminated in order to achieve strategy proofness.

Consider the following requirement:

Ine�ective Status Change (Agents): At each step t ≤ t̃ < t′, any R ∈ RN , R′ = (R−i, R
′
i)

where R′i is local push-up preference of Ri under ruleM , if j ∈ N ′
t̃
\Ci

(
R′, t̃

)
, then j ∈ Nt̃. Moreover,

if pt̃ (j) = k, then p′
t̃
(j) = k.

Ine�ective status change (agents) makes sure that no agent is able to attain additional �pointers�

by misreporting her preferences. Another possible way to achieve this would be to use an object

variant of the above property:

Ine�ective Status Change (Objects): At each step t ≤ t̃ < t′, any R ∈ RN , R′ = (R−i, R
′
i)

where R′i is local push-up preference of Ri under ruleM , if j ∈ N ′
t̃
\Ci

(
R′, t̃

)
, then j ∈ Nt̃. Moreover,

if pt̃ (j) = k, then h′
t̃

(
p′
t̃
(j)
)

= ht̃ (k).

Under ine�ective status change (objects), instead of each agent pointing at the same agent under

both preference pro�les, each agent may point at di�erent agents under the two preference pro�les

but the object held by these agents are the same. In fact, the two variants of ine�ective status

change are same as two of the su�cient conditions of local invariance provided in Theorem 4 of

Saban & Sethuraman [27]. I use these conditions to show that class of rules presented in Saban &

Sethuraman [27] are still strategy proof. The next result shows that under each of aforementioned

conditions, local invariance is equivalent to local push-up invariance and hence, strategy proofness

from Theorem 3.1.

Theorem 3.2. For a mechanism M satisfying independence of unsatis�ed agents and persis-
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tence properties, local invariance is equivalent to local push-up invariance (equivalently, strategy

proofness) if:

1. there are no indi�erences with endowment,

2. M satis�es ine�ective status change (agents), or

3. M satis�es ine�ective status change (objects).

Proof. Under (1), equivalence of local invariance and local push-up invariance is obvious.

Since local push-up invariance implies local invariance, for (2) and (3), we need to prove that local

invariance implies local push-up invariance. Suppose that M satis�es local invariance but not local

push-up invariance. Then, there is i ∈ N and R,R′ ∈ RN , R′ = (R−i, R
′
i) and R

′
i is local push-up

preference of Ri for mechanismM , such that α (i) 6= α′ (i) where α ≡M (R,ω) and α′ ≡M (R′, ω).

Since M satis�es local invariance, it must be the case that α (i) Iiω (i). Moreover, by de�nition of

local push-up preference, we have either α′ (i)P ′iα (i) or α (i)P ′iα
′ (i). Since Ri|O\{a(i)} = R′i|O\{a(i)}

and Rj = R′j for all j ∈ N\ {i}, steps of M under R and R′ are identical until all a ∈ O such that

aPiα (i) have been removed19. Then, it cannot be the case that α′ (i)P ′iα (i) because, by de�nition

of local push-up preference, α′ (i)Piα (i) and so, agent i should be able to receive α′ (i) under R as

well. Also, note that if α (i) = ω (i), then α′ (i) = ω (i). So, suppose that α (i) 6= ω (i).

Now, suppose that α (i)P ′iα
′ (i). Then, it must be the case that α′ (i) I ′iω (i) and α′ (i) Iiω (i).

Again, steps ofM under R and R′ are identical until all a ∈ O such that aPiα (i) have been removed.

Let t̄ be the �rst step such that each a ∈ O with aPiα (i) has been removed from the problem under

R and R′. Then, Nt̄ = N ′t̄ , Ot̄ = O′t̄ and ht̄ = h′t̄
20. Moreover, for all a ∈ Ot̄\ {α (i)}, α (i)Ria and

α (i)P ′ia. Since α (i) Iiω (i), α (i)P ′iω (i) and ht̄ (i) = ω (i), i ∈ St̄ and i ∈ U ′t̄ i.e. t̄ = t < t′ where

t (resp. t′) is the �rst step agent i becomes satis�ed or part of a trading cycle under R (resp. R′)

for mechanism M .

We show that following is true forM under both ine�ective status change (agents) and ine�ective

status change (objects) for all t̃ ∈ {t, · · · , t′ − 1}:

1.
Nt̃ ⊆ N ′t̃

Nt̃\N ′t̃ ⊆ Ci
(
R′, t̃− 1

) and
Ot̃ ⊆ O′t̃

O′
t̃
\Ot̃ ⊆ ht̃

(
Ci
(
R′, t̃− 1

)) ,

19Until all such objects have been removed, at each step, set of remaining agents and objects are same, pointing
decisions are same for all agents and hence, same cycles occur under R and R′.

20Since α (i) 6= ω (i), it must be the case that α (i) ∈ Ot̄.
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2. for each j ∈ N ′
t̃
\Ci

(
R′, t̃

)
, pt̃ (j) = p′

t̃
(j), and

3. for each j ∈ N ′
t̃
\Ci

(
R′, t̃

)
, ht̃+1 (j) = h′

t̃+1
(j).

Additionally, (1) is true for step t′.

First let t̃ = t. Since t̄ = t, we have Nt̃ = N ′
t̃
, Ot̃ = O′

t̃
and ht̃ = h′

t̃
. So, (1) holds. Now we

show that (2) is true under both; ine�ective status change (agents) and ine�ective status change

(objects). By ine�ective status change (agents), we have pt̃ (j) = p′
t̃
(j) for all j ∈ N ′

t̃
\Ci

(
R′, t̃

)
and

so, (2) holds at step t̃ = t. Since ht̃ = h′
t̃
, we have pt̃ (j) = p′

t̃
(j) for all j ∈ N ′

t̃
\Ci

(
R′, t̃

)
under

ine�ective status change (objects) as well. By ht̃ = h′
t̃
and (2) at step t̃, we get (3) at step t̃.

Now, suppose that (1)-(3) hold for each t̃ such that t ≤ t̃ < t′−1. We want to show that (1)-(3)

are true for step t̃ + 1. Note that any cycle that occurs at step t̃ under R but not under R′ must

consist entirely of agents in Ci
(
R′, t̃

)
. So, (1) is true at step t̃ + 1. Now, we show that (2) holds

for both; ine�ective status change (agents) and ine�ective status change (objects). By ine�ective

status change (agents), we have (2) at step t̃+1. For ine�ective status change (objects), consider any

j ∈ N ′
t̃+1
\Ci

(
R′, t̃+ 1

)
. Let p′

t̃+1
(j) = k. Then, it must be the case that k ∈ N ′

t̃+1
\Ci

(
R′, t̃+ 1

)
and, by persistence, k ∈ N ′

t̃
\Ci

(
R′, t̃+ 1

)
. Then, by (3) at step t̃, ht̃+1 (k) = h′

t̃+1
(k) and so,

pt̃+1 (j) = p′
t̃+1

(j) by ine�ective status change (objects). Then, by (3) at step t̃ and (2) at step

t̃ + 1, we have (3) at step t̃ + 1. At step t′ − 1, any cycle that occurs under R but not under R′

must consist entirely of agents in Ci (R′, t′ − 1). So, we have (1) at step t′.

Now, let ti be the step agent i departs under R. It cannot be the case that ti > t′ because

Oti ⊆ Ot′ and Ot′ ⊆ O′t′ . So, α (i) ∈ O′t′ . Agent i becomes satis�ed or part of trading cycle at

step t′ under R′ and so, α′ (i)R′iα (i) which is a contradiction. Now suppose that ti ≤ t′. Let

ẗi be the last step agent i becomes part of a trading cycle under R. Denote this cycle as C. It

must be the case that t ≤ ẗi < ti. Since ti ≤ t′, agent i is not part of a trading cycle at step ẗi

under R′ so that C is not a trading cycle at step ẗi under R′. Then, it must be the case that C

consists entirely of agents in Ci
(
R′, ẗi

)
. Then, it must be the case that α (i) ∈ h′

ẗi

(
Ci
(
R′, ẗi

))
. If

not, we have α (i) ∈ h′
ẗi

(
N ′
ẗi
\Ci

(
R′, ẗi

))
i.e. there is j ∈ N ′

ẗi
\Ci

(
R′, ẗi

)
such that h′

ẗi
(j) = α (i).

Since j ∈ N ′
ẗi
\Ci

(
R′, ẗi

)
, by persistence, it must be the case that j ∈ N ′

ẗi−1
\Ci

(
R′, ẗi − 1

)
. Then,

by (3) at step ẗi − 1, we have hẗi (j) = h′
ẗi

(j). This implies that j ∈ C which is a contradiction.

Since α (i) ∈ h′
ẗi

(
Ci
(
R′, ẗi

))
, by persistence, it must be the case that α′ (i)R′iα (i) which is a

contradiction. This completes the proof. �
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An immediate corollary of the above theorem is that MTC is strategy proof when considering

class of preferences with no indi�erences with endowment because in that case, local invariance is

equivalent to local push-up invariance. Let R̄ denote the set of preferences for which there are no

indi�erences with endowment, A be the set of all possible assignments and ≺ be priority ordering

over agents.

Corollary 3.1. For any (R,ω) ∈ R̄N × A and priority ordering ≺ over agents, MTC≺ (R,ω)

is strategy proof.

Conclusion

In this chapter, I identify an oversight in Saban & Sethuraman [27]. I provide conditions under

which results of Saban & Sethuraman [27] hold true. An earlier version of this note was made

available to Daniela Saban and Jay Sethuraman. Appropriate revisions have been made in their

paper to rectify the oversight.
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CHAPTER IV

FRACTIONAL HOUSING MARKET WITH SINGLE AND

DISCRETE ENDOWMENTS

Introduction

In this chapter, I study the problem of reallocating goods to agents in a manner which satis�es

some desirable properties. In particular, I consider the problem where each agent owns an object

and has preferences over the set of objects and each object is owned by one agent. The goal is

to reassign these objects in a manner which satis�es some desirable properties such as: Pareto

e�ciency (not possible to make someone better-o� without making someone worse-o�), individual

rationality (each agent gets something at least as good as her endowment), strategy proofness (truth-

telling is a weakly dominant strategy) and core stability (not possible for any group of agents to

achieve a better assignment by trading among themselves). In literature, such models of exchange

economy of goods are commonly referred to as the housing market. Housing market is widely used

in the kidney exchange markets [26].

Shapley & Scarf [28] proposed Top Trading Cycles (TTC) rule which is attributed to David

Gale. Under strict preferences, outcome of TTC is the unique allocation in the core and it is also

the unique competitive allocation [24]. Moreover, TTC rule is strategy proof [23] and it is the only

rule which satis�es Pareto e�ciency, individual rationality and strategy proofness [17].

Considerable amount of work has been done to extend the housing market problem. Alcalde-

Unzu & Molis [3] and Jaramillo & Manjunath [14] independently proposed generalizations of TTC

rule; Top Cycles (TC) rule and Top Trading Absorbing Sets (TTAS) rule, respectively, which

allow for indi�erences in preferences for the housing market problem. These rules are Pareto

e�cient, weak core selecting (hence, individually rational), strategy proof and core selecting (when

core is non-empty) [3, 6, 14]. Saban & Sethuraman [27] present su�cient conditions to achieve

strategy proofness when considering housing market with indi�erences. In doing so, they are able

to present a class of rules; common ordering on agents, individual ordering on objects (CAIO),

for which each member is Pareto e�cient, weak core selecting (hence, individually rational) and

strategy proof 21. Moreover, they propose a member of CAIO, Highest Priority Object (HPO)

21TC and TTAS rules are members of CAIO.
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rule, which is computationally quicker than TC and TTAS. Each member of CAIO is an iterative

algorithm where each iteration has three phases: departure phase, a set of agents are chosen to

depart if they hold one of their most preferred objects (among the remaining ones) and all their

most preferred objects (among the remaining ones) are held by that set of agents; pointing phase,

priority orderings22 over agents and/or objects are used to determine a unique pointee for each

agent; trading phase, trades occur based on the cycles formed in the pointing phase.

Another extension to the housing market problem is to consider random assignment solutions

rather than deterministic assignment solutions. In a deterministic assignment solution, an object

is assigned to an agent or not whereas for a random assignment solution, an agent can be assigned

fractions of an object. Random assignment solutions are of signi�cance because such solutions allow

to consider fairness properties in a meaningful manner which may not be possible for deterministic

assignment solutions. For a random assignment solution, fractions of assigned objects can be

interpreted as partial ownership or probability of receiving the object. Random assignment solutions

to housing market problem have been studied in various settings.

Abdulkadiroglu & Sonmez [1] and Bogomolnaia & Moulin [9] consider the problem where agents

do not own objects. Such problems are referred to as random assignment problem in literature.

Abdulkadiroglu & Sonmez [1] present a mechanism which is strategy proof, ex-post Pareto e�cient

and satis�es equal treatment of equals. Bogomolnaia & Moulin [9] propose a mechanism which is

ordinally e�cient, envy-free and satis�es weak strategy proofness. Katta & Sethuraman [15] extend

this problem to weak preferences and show that weak strategy proofness con�icts with ordinal

e�ciency and envy-freeness.

Recently, several papers have considered random assignment solution to the housing market

problem. Yilmaz [33] explores this problem while allowing for indi�erences. They present a rule

which is individually rational, ordinally e�cient and satis�es no justi�ed-envy. No-envy is a central

notion of fairness in economics. It requires that no agent likes (envies) assignment of another agent

better than her own. However, when agents own endowments, no-envy is incompatible with indi-

vidual rationality. Yilmaz [32] introduced the notion of no justi�ed-envy. No justi�ed-envy requires

that an agent can envy another agent only if her assignment is individually rational for the other

agent. So, no justi�ed-envy is weaker than no-envy but is compatible with individual rationality.

However, individual rationality, strategy proofness and no justi�ed-envy are incompatible in this

22These are complete, transitive and antisymmetric orderings.
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setting [32, 33].

Athanassoglou & Sethuraman [4] study the housing market problem, while allowing for indif-

ferences, where agents may initially own fractions of objects. They present a mechanism which

satis�es ordinal e�ciency, individual rationality and no justi�ed-envy. They also prove three im-

possibility results: (1) for at least 3 agents, any mechanism which satis�es individual rationality,

ordinal e�ciency and no justi�ed-envy cannot satisfy weak strategy proofness23, (2) for at least 4

agents, there is no mechanism which satis�es individual rationality, ordinal e�ciency and strategy

proofness, and (3) for at least 5 agents, any mechanism satisfying individual rationality and ordi-

nal e�ciency cannot simultaneously satisfy no justi�ed-envy and no-envy for agents with identical

endowments. Additionally, these impossibility results hold even under the restricted case of strict

preferences.

Aziz [5] generalizes Top Trading Cycles rule for the housing market problem with fractional

endowments while allowing for indi�erences. One particular contribution of Aziz [5] is to de�ne

core using stochastic dominance relation which they refer to as SD-core stability. They present

a mechanism, Fractional Top Trading Cycles (FTTC) rule, which is SD-core stable and ordinally

e�cient. They show that FTTC satis�es maximal set of desirable results by presenting two impos-

sibility results: (1) there is no mechanism that satis�es SD-core stability and no justi�ed-envy, and

(2) there is no mechanism which satis�es individual rationality, ordinal e�ciency and weak strategy

proofness. Additionally, these results hold even for strict preferences and single unit allocations

and endowments [5]. However, FTTC is not in general a fractional solution to the housing market

problem. In fact, when endowments are single and discrete, FTTC reduces to Plaxton's mechanism

which is a class of deterministic rules for the housing market problem with indi�erences [5].

Notably, several impossibility results have been established for random assignment solution to

the housing market problem and several of these results hold even when endowments are single

and discrete and preferences are strict. In this chapter, I consider random assignment solution to

the housing market problem with single and discrete endowments for a restricted class of prefer-

ences; trichotomous preferences. Under trichotomous preferences, each agent considers an object

as being acceptable or unacceptable. Additionally, I assume that each agent �nds each acceptable

object to be better than her endowment and her endowment to be better than each unacceptable

object i.e. there are three indi�erence classes for each preference ordering. So, trichotomous pref-

23This impossibility result holds even for the case of single endowments.
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erences, like strict preferences, are an extreme case of the full preference domain. I consider this

class of preferences for several reasons. First, multiple impossibility results have been established

for random assignment solutions to the housing market problem even for strict preferences and

single and discrete endowments. So, it seems natural to consider another extreme case of the full

preference domain to determine whether these impossibility results still hold. As we show later on,

the aforementioned impossibility results do not hold for this setting. Secondly, for trichotomous

preferences, probability of being assigned acceptable objects can be used as the canonical utility

representation. Thirdly, trichotomous preferences can arise in real-life situations; housemates as-

signing rooms, preferences over dorm-rooms in hostels, etc. More importantly, kidney exchange

can be argued to have trichotomous preferences. Some of the most important criteria to determine

whether a kidney is acceptable for a patient are: blood type, cross-matching and tissue type. Of

these three criteria, blood type and cross-matching are binary i.e. based on these a kidney is either

acceptable or unacceptable for a patient. Tissue type, on the other hand, compares six basic tissue

antigens between donor and the patient where the best match would be to have all six antigens

matching. However, successful transplants are possible even if there are no matching tissue antigens

between donor and the patient.

I present the model and some relevant notation in the next section.

Model

I consider the fractional housing market problem with single and discrete endowments. In this

problem, each agent initially owns one object, each object is initially owned by one agent and each

agent is to be assigned fractions of objects adding up to one. These fractions of objects can be

considered as probability of receiving an object or a part-time assignment of an object. Let N and

O denote set of agents and objects, respectively. Let ω denote the vector of endowment of agents

in N and ωi represent endowment of agent i. For each i ∈ N , I represent preferences as Ri, R′i, etc.

Strict and indi�erence relations associated with Ri are denoted as Pi and Ii, respectively. Moreover,

R = (Ri)i∈N represents preference pro�le. In this chapter, I assume agents to have trichotomous

preferences where each agent considers an object to be acceptable or unacceptable. Agents are

indi�erent between acceptable objects and also between unacceptable objects. Moreover, I assume

that each agent prefers every acceptable object to her endowment and prefers her endowment to
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each unacceptable object. Let T be the set of all possible trichotomous preferences24. For any

Ri ∈ T , let A (Ri) denote the set of acceptable objects under Ri. Then, for any a, b ∈ A (Ri), aIib.

Moreover, if a, b /∈ A (Ri) and ωi /∈ {a, b}, then agent i considers objects a and b to be unacceptable

and aIib. Finally, for each a ∈ A (Ri) and b /∈ A (Ri) ∪ {ωi}, we have aPiωi, aPib and ωiPib. An

interesting aspect of these preferences is that preferences of any agent can be described completely

by the set of objects that she �nds acceptable. Additionally, probability of being assigned acceptable

objects can be used as the canonical utility representation.

An allocation is said to be a deterministic assignment if each agent receives exactly one object

and each object is allocated to exactly one agent. Each deterministic assignment can be represented

as a n × n permutation matrix [αi,a]i∈N,a∈O such that for each i ∈ N and a ∈ O, αi,a ∈ {0, 1}25,∑
i∈N αi,a = 1 and

∑
a∈O αi,a = 1. When assignment α is deterministic, with a slight abuse of

notation, I use αi to denote the object assigned to agent i. Let A be the set of all possible determin-

istic assignments. I use α, β, etc. to represent deterministic assignments. As mentioned already,

endowment is represented as ω and by assumption, ω ∈ A. Then, a deterministic assignment

mechanism for the housing market problem with single and discrete endowments is a mapping from

T N ×A to A for trichotomous preferences.

A random assignment x = [xi,a]i∈N,a∈O is a n× n stochastic matrix satisfying the following:

1. xi,a ∈ [0, 1] for each i ∈ N and a ∈ O,

2.
∑
a∈O xi,a = 1 for each i ∈ N , and

3.
∑
i∈N xi,a = 1 for each a ∈ O.

For random assignment x, xi,a represents probability with which agent i is assigned object a.

Moreover, agent i's assignment under random assignment x is represented as xi = (xi,a)a∈O. Let

X be the set of all random assignments. Then, X is the convex hull of A. I use x, y, z, etc. to

represent random assignments. Additionally, for any i ∈ N , random allocation x0 and preferences

R0 ∈ R, let U (R0, x0) =
∑
a∈A(R0) x0,a i.e. U (R0, x0) represents the probability of receiving an

acceptable object for preferences R0 under x0. Moreover, let:

Wi (R0, x0) = U (R0, x0) + x0,ωi

24Trichotomous preferences are identical to the preferences considered in Bogomolnaia & Moulin [10].
25αi,a represents allocation of object a to agent i under α.
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That is, Wi (R0, x0) represents the probability with which agent i receives an object at least as

good as her endowment according to preferences R0 under the random assignment x0. Then, for

the housing market problem (R,ω) ∈ T N ×A and random assignment x ∈ X , U (Ri, xi) represents

probability with which agent i receives an acceptable object under allocation xi and Wi (Ri, xi)

represents probability with which agent i receives an object at least as good as her endowment

under allocation xi. Additionally, let U (R, x) = (U (Ri, xi))i∈N and W (R, x) = (Wi (Ri, xi))i∈N

for any R ∈ T N and x ∈ X .

Then, a random assignment mechanism for the housing market problem with single and discrete

endowments is a mapping from T N ×A to X for trichotomous preferences. I refer to the problem

of �nding a random assignment solution to the housing market problem with single and discrete en-

dowments as the fractional housing market problem with single and discrete endowments. Moreover,

each such problem can simply be represented as (R,ω) ∈ T N ×A for trichotomous preferences.

Properties

Before describing appropriate properties for random assignment mechanisms, I extend prefer-

ences of agents over O to preferences over X . Standard method of comparing random assignments

is to use the stochastic dominance relation. For any i ∈ N , Ri ∈ R and x, y ∈ X , agent i likes xi

at least as much as yi if and only if xi stochastically dominates yi with respect to Ri i.e.

∑
aRib

xi,a ≥
∑
aRib

yi,a ∀b ∈ O

Moreover, when simply comparing assignment of agent i for random assignments x and y, I

denote x at least as good as y for agent i as x �i y. Additionally, to show that agent i likes

assignment of agent j at least as much as that of agent k under random assignment x, I use the

notation of xj �i xk. Additionally, if
∑
aRib

xi,a ≥
∑
aRib

yi,a for each b ∈ O and
∑
aRib

xi,a >∑
aRib

yi,a for some b ∈ O, then agent i strictly prefers x to y which is denoted as x �i y. If x �i y

and y �i x, then agent i is indi�erent between random assignments x and y. I denote this as x ∼i y.

Following Bogomolnaia & Moulin [10], for any reported preferences, I restrict attention to as-

signments under which each agent receives only those objects which are at least as good as her

endowment i.e. for any i ∈ N , Ri ∈ T and x ∈ X , xi,a > 0 if and only if a ∈ A (Ri) ∪ {ωi}.
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Additionally, I assume that agents have an aversion to receiving an unacceptable object with pos-

itive probability. Formally, for any i ∈ N , Ri ∈ T and x, y ∈ X such that Wi (Ri, xi) = 1 and

Wi (Ri, yi) < 1, xi �i yi. Then, for any random assignments satisfying these assumptions, say

x, y ∈ X , x �i y if and only if U (Ri, xi) ≥ U (Ri, yi)
26.

A deterministic assignment α is said to be Pareto e�cient if there is no β ∈ A such that βiRiαi

for each i ∈ N and βiPiαi for some i ∈ N . Random assignment x is said to be SD-e�cient if there

is no y ∈ X such that y �i x for each i ∈ N and y �i x for some i ∈ N . A mechanism is SD-

e�cient if it chooses a SD-e�cient assignment for every (R,ω) ∈ T N ×A. A random assignment

is said to be ex-post e�cient if it can be represented as a probability distribution over Pareto

e�cient deterministic assignments. A mechanism is ex-post e�cient if, for every (R,ω) ∈ T N ×A,

it chooses an assignment which is ex-post e�cient. A random assignment is said to be ex-ante

e�cient if for every pro�le of utility functions consistent with preference pro�le of agents, the

expected utility vector is Pareto e�cient. Since probability of receiving an acceptable object can

be used as the canonical utility representation for trichotomous preferences, random assignment

x is ex-ante e�cient if there is no y ∈ X such that U (Ri, yi) ≥ U (Ri, xi) for each i ∈ N and

U (Ri, yi) > U (Ri, xi) for some i ∈ N . A mechanism is said to be ex-ante e�cient if, for every

(R,ω) ∈ T N ×A, it chooses an ex-ante e�cient assignment.

A deterministic assignment α is said to be individually rational if αiRiωi for each i ∈ N i.e.

each agent receives an object at least as good as her endowment. A random assignment x is said

to be SD-individually rational (SD-IR) if Wi (Ri, xi) = 1 for each i ∈ N . A mechanism is said

to be SD-IR if it chooses SD-IR assignment for every (R,ω) ∈ T N × A. A random assignment

is said to be ex-post individually rational (ex-post IR) if it can be represented as a probability

distribution over individually rational deterministic assignments. A mechanism is ex-post IR if, for

every (R,ω) ∈ T N ×A, it chooses an ex-post IR assignment. A random assignment x is said to be

ex-ante individually rational (ex-ante IR) if W (Ri, xi) = 1 for each i ∈ N . A mechanism is ex-ante

IR if, for each (R,ω) ∈ T N ×A, it chooses an ex-ante IR assignment.

A random assignment mechanism is said to be SD-strategy proof if truthful revelation of pref-

erences is a weakly dominant strategy for each agent i.e. ϕ : RN × A → X is SD-strategy proof

if for each R ∈ T N , i ∈ N and R′i ∈ T , ϕ (R,ω) �i ϕ (R′, ω) where R′ = (R−i, R
′
i). A random

assignment mechanism is said to be weakly SD-strategy proof if for every agent, allocation received

26This is because I am assuming Wi (Ri, xi) =Wi (Ri, yi) = 1.
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by truthful revelation is not dominated by allocation obtained by reporting any other preference

i.e. ϕ : RN × A → X is weakly SD-strategy proof if for each R ∈ T N , i ∈ N and R′i ∈ T ,

ϕ (R′, ω) �i ϕ (R,ω) where R′ = (R−i, R
′
i)
27. Moreover, rule ϕ : RN × A → X is ex-ante strat-

egy proof if for each R ∈ T N , i ∈ N and R′i ∈ T , U (Ri, ϕi (R,ω)) ≥ U (Ri, ϕi (R′, ω)) where

R′ = (R−i, R
′
i).

For any (R,ω) ∈ T N × A, a deterministic assignment α ∈ A is said to be blocked by coalition

S ⊆ N if there is β ∈ A such that {βi : i ∈ S} = {ωi : i ∈ S} and βiPiαi for each i ∈ S. An

allocation is said to be in the weak core if it is not blocked by any subset of N . A random assignment

is said to be in the ex-post weak core if it can be represented as a probability distribution over

deterministic assignments in the weak core. A random assignment x ∈ X is said to be in SD-core

if there is no coalition S ⊆ N and y ∈ X such that
∑
i∈S yi =

∑
i∈S ωi and y �i x for each i ∈ S.

Additionally, a random assignment x ∈ X will be said to be in ex-ante core if there is no coalition

S ⊆ N and y ∈ X such that
∑
i∈S yi =

∑
i∈S ωi and U (Ri, yi) > U (Rixi) for each i ∈ S.

A random assignment is said to be envy-free if each agent prefers her allocation to every other

agent's allocation. That is, a random assignment x ∈ X is said to be envy-free if for each i, j ∈

N , xi �i xj . However, for the housing market problem, envy-freeness con�icts with individual

rationality. This can be established by the following example:

Example 4.1: Let N = {1, 2}, O = {a, b}, ω = (a, b) and preference pro�le be:

R1 R2

a a

b b

In this housing market problem, any assignment for which agent 2 does not envy agent 1 would

not be individually rational for agent 1.

So, it would be reasonable to consider no-envy for agents with identical endowments (NEIE )

i.e. a random assignment x ∈ X satis�es NEIE if xi �i xj whenever ωiIhωj for each h ∈ N\ {i, j}28

and ωj ∈ A (Ri) if and only if ωi ∈ A (Rj). The latter condition states that there is some symmetry

in preferences of agents whose endowments are identical for every other agent. Moreover, if this

27Note that, for deterministic assignments these notions are equivalent to truthful revelation being a weakly
dominant strategy for each agent.

28It should be noted that no agent is indi�erent between her endowment and any other object. I consider h ∈
N\ {i, j} instead of the usual de�nition because otherwise this property is trivially satis�ed.
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condition is not imposed, NEIE would be incompatible even with individual rationality. Consider

the housing market problem in Example 4.1. Agents 1 and 2 have identical endowments trivially

and any assignment for which agent 2 does not envy agent 1 would not be individually rational

for agent 1. Another fairness notion usually considered in literature is equal treatment of equals

(ETE ). A random assignment is said to satisfy ETE if two agents with identical endowments and

preferences receive identical allocations. Formally, a random assignment x ∈ X satis�es ETE if for

any i, j ∈ N such that ωiIhωj for all h ∈ N\ {i, j} and A (Ri) = A (Rj)
29, then xi ∼i xj . I require

A (Ri) = A (Rj) instead of Ri = Rj , as is usually the case, because there are no indi�erences with

endowment. Clearly, NEIE implies ETE but converse may not be the case in general. I say a

random assignment mechanism satis�es NEIE (resp. ETE ) if it always �nds an assignment which

satis�es NEIE (resp. ETE ).

Yilmaz [33] introduced an alternative notion of fairness, no justi�ed-envy (NJE ). This notion

of fairness allows an agent to envy another's assignment only if her assignment is SD-IR for the

latter. Formally, for a random assignment x ∈ X , agent i justi�ably envies agent j if xi �i xj and

xi �j ωj i.e. agent i does not like her allocation at least as much as agent j's and xi is SD-IR for

agent j. A random assignment mechanism is said to satisfy NJE if it �nds an assignment for which

no agent justi�ably envies any other agent. However, this criterion con�icts with Pareto e�ciency,

strategy proofness and individual rationality even for the case of strict preferences and single and

discrete endowments. Consider the following example:

Example 4.2: Let N = {1, 2, 3}, ω = (a, b, c) and preference pro�le be:

R1 R2 R3

b a b

c b c

a c a

Outcome of TTC would be (b, a, c) for this housing market problem. Note that agent 3 justi�ably

envies agent 1 because bP3c and cP1a. However, TTC is the only Pareto e�cient, strategy proof

and individually rational mechanism for housing market problem with strict preferences [17]. As it

turns out, however, in setting of this chapter, this con�ict does not arise. Additionally, I show that

no justi�ed-envy is satis�ed even when agent i is allowed to justi�ably envy agent j if xj,a > 0 for

29By de�nition of trichotomous preferences, ωj /∈ A (Ri) and ωi /∈ A (Rj) because A (Ri) = A (Rj).
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some a ∈ A (Ri), xi,ωi > 0 and xi �j ωj . This variation of NJE is clearly stronger than the notion

introduced above and is similar to ex-ante stability as de�ned by Kesten & Unver [16] for random

assignment solution to school choice problem.

Rules

In the recent years, several rules have been proposed for housing market problem while allowing

for indi�erences. Alcalde-Unzu & Molis [3] and Jaramillo & Manjunath [14] independently proposed

Top Trading Absorbing Sets (TTAS) rule and Top Cycles (TC) rule, respectively. Both these rules

are Pareto e�cient, weak core selecting and strategy proof. Moreover, these rules select from the

core whenever core is non-empty[3, 6]. Saban and Sethuraman [27] present a class of mechanisms:

common ordering on agents, individual ordering on objects (CAIO). Each member in this class

is Pareto e�cient, weak core selecting and strategy proof. From this class of rules, they propose

Highest Priority Object Rule (HPO) and show that it is computationally quick. Moreover, TTAS

and TC are members of CAIO.

Each member of CAIO is an iterative algorithm where each iteration proceeds in three phases;

departure, pointing and trading. In departure phase, a set of agents, N ′, and objects, O′, may be

chosen to depart, where each agent in N ′ holds some unique object in O′ and each object in O′ is

held by some unique agent in N ′, if each agent in N ′ holds one of her most preferred objects (among

the remaining ones) and all such objects are in O′. Each departing agent is assigned the object

she is holding at that iteration of the algorithm. This phase ensures Pareto e�ciency and weak

core selection. The departure phase is repeated until no more agents and objects can be chosen to

depart. In pointing phase, each agent i points at a unique agent holding one of her most preferred

objects (among the remaining ones). In presence of indi�erences, it is possible that more than one

agents hold one of the most preferred objects (among the remaining ones) for agent i. For agent i,

unique agent to point at is determined by using a linear ordering over agents and/or objects while

satisfying some properties to ensure strategy proofness30. In trading phase, trades occur based on

the cycles formed in the pointing phase.

Each member of CAIO uses linear orderings over agents and/or objects31. Additionally, Saban

30Saban and Sethuraman [27] provide su�cient conditions (selection criterion for determining unique pointees) for
strategy proofness.

31TC uses priority ordering of agents whereas TTAS and HPO use priority ordering of objects
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and Sethuraman [27] also show that these priority orderings do not need to be �xed and can

be changed in a particular manner while still maintaining strategy proofness. However, I restrict

attention to rules in CAIO with �xed priority ordering structure. These rules use an ordering over

agents and for each agent, an ordering over objects. The pointing phase of these rules proceeds

as follows: Each unsatis�ed agent points at the agent holding one of her most preferred objects

(among the remaining ones). If there are more than one such objects, the unsatis�ed agent points

at whoever holds the highest priority object among such objects. Among satis�ed agents who are

not pointing yet and have one of their most preferred objects (among the remaining ones) held by

some agent who is already pointing, the highest priority agent points at the agent holding one of

her most preferred objects (among the remaining ones). If there are more than one such objects,

the agent points at whoever holds the highest priority object among such objects32.

Let CAIOf denote these rules from the class of CAIO rules and let C be the set of all possible

priority orderings. Each member ≺∈C consists of common ordering over agents where i ≺ j is

interpreted as agent i having a higher priority than agent j and individual orderings over objects

where a ≺i b represents that object a has a higher priority than object b for agent i. Then, for any

(R,ω) ∈ T N ×A, ϕ ∈ CAIOf and ≺∈C, outcome of rule ϕ associated with priority ordering ≺ is

an n× n permutation matrix represented as ϕ≺ (R,ω).

The rule I propose in this chapter takes a lottery over speci�c outcomes that are achievable for

priority orderings in C. For any (R,ω) ∈ T N × A and ϕ ∈ CAIOf , let ϕ (R,ω) be the set of all

assignments achieved under the rule ϕ for priority orderings in C. Formally,

ϕ (R,ω) ≡
{
ϕ≺ (R,ω) :≺∈C

}
Among the assignments in ϕ (R,ω), I take a lottery over outcomes in ϕ (R,ω) which maximize

number of agents receiving an acceptable object. For any α ∈ A, let |α| represent number of agents

receiving an acceptable object under α i.e. |α| = |{i ∈ N : αi ∈ A (Ri)}|. Let set of assignments

with maximal number of agents receiving an acceptable object be represented as ϕ̄ (R,ω). Then,

ϕ̄ (R,ω) ≡ {α ∈ ϕ (R,ω) : |α| ≥ |β| ∀β ∈ ϕ (R,ω)}

The random assignment solution to the fractional housing market problem with single and

32Details of pointing phase can be found in Saban & Sethuraman [27].
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discrete endowments, (R,ω) ∈ T N ×A, is a lottery over assignments in ϕ̄ (R,ω) for some weights

π = (πα)α∈ϕ̄(R,ω) such that πα ≥ 0 for each α ∈ ϕ̄ (R,ω) and
∑
α∈ϕ̄(R,ω) πα = 1. Then, random

assignment rule for (R,ω) ∈ T N ×A, rule ϕ ∈ CAIOf and lottery π is represented as RAϕ,π (R,ω)

where:

RAϕ,π (R,ω) =
∑

α∈ϕ̄(R,ω)

παα

Since each member of CAIO is Pareto e�cient, individually rational and weak-core selecting,

RA is ex-post e�cient, ex-post IR and belongs in ex-post weak core. I say a lottery π is a uniform

distribution if for each (R,ω) ∈ T N × A, each assignment in ϕ̄ (R,ω) is given an equal weight

under π. Formally, if π is a uniform distribution, then for each (R,ω) ∈ T N ×A, πα = πβ for each

α, β ∈ ϕ̄ (R,ω).

Results

In this section, I provide results for the random assignment rule proposed in the previous section.

The rule proposed in the previous section takes a lottery over only speci�c outcomes of the rule

from CAIOf . It might be argued that taking lotteries over priority orderings could be a desirable

solution. Since rules in CAIOf are Pareto e�cient, this rule would be ex-post e�cient. However,

as shown in the next example, ex-post e�ciency does not imply SD-e�ciency, in general, even for

the case of trichotomous preferences33. This is contrary to the result of Bogomolnaia & Moulin

[10] for the two-sided matching problem under similar preference structure where they establish

equivalence between ex-post e�ciency and ex-ante e�ciency.

Example 4.3. Let N = {1, 2, 3, 4, 5, 6, 7}, O = {a, b, c, d, e, f, g} and ω = (a, b, c, d, e, f, g).

Consider the following preferences:

R1 R2 R3 R4 R5 R6 R7

be c df a f cg a

a b c d e f g

...
...

...
...

...
...

...

Then, the following assignments are Pareto e�cient (even, individually rational): α1 = (b, c, d, a, e, f, g),

33I would like to thank Vikram Manjunath for this counter-example.

62



α2 = (e, b, c, d, f, g, a), α3 = (c, b, d, a, f, c, g) and α4 = (b, c, f, d, e, g, a). The utility vectors

associated with these assignments, respectively, are as follows: U1 = (1, 1, 1, 1, 0, 0, 0), U2 =

(1, 0, 0, 0, 1, 1, 1), U3 = (1, 0, 1, 1, 1, 1, 0) and U4 = (1, 1, 1, 0, 0, 1, 1). Now, consider the following

random assignments: x = 0.5α1 + 0.5α2 and y = 0.5α3 + 0.5α4. The utility vectors corresponding

to x and y are U (R, x) = (1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) and U (R, y) = (1, 0.5, 1, 0.5, 0.5, 1, 0.5). It is

obvious that random assignment x is not SD-e�cient because it is dominated by the assignment y

even though x is ex-post e�cient.

As illustrated in Example 4.3, ex-post e�ciency does not ensure SD-e�ciency. This happens

because number of agents receiving an acceptable object may di�er for di�erent Pareto e�cient

assignments. This is not the case for the two-sided matching model considered in Bogomolnaia &

Moulin [10]. However, I establish that RA rule is SD-e�cient because it is a lottery over Pareto

e�cient and individually rational assignments with most number of agents receiving an acceptable

object. To that end, I �rst show that ϕ ∈ CAIOf can �nd every Pareto e�cient and individually

rational assignment for some priority ordering in C.

Lemma 4.1. For any (R,ω) ∈ T N×A and ϕ ∈ CAIOf , if α is Pareto e�cient and individually

rational, there is ≺∈C such that ϕ≺ (R,ω) = α.

Proof. Consider any (R,ω) ∈ T N ×A. Let α be any Pareto e�cient and individually rational

assignment. Let Gα be a graph associated with α where each agent is represented by a node.

Moreover, for each agent i ∈ N , there is a unique arc extending to agent j such that ωj = αi.

Then, each agent receiving an acceptable object under α is part of a cycle. To reproduce α using

ϕ ∈ CAIOf , I generate priority orderings ≺ such that improving cycles34 in Gα are generated in

the �rst step of ϕ≺ (R,ω). For each i ∈ N , let αi ≺i a for each a ∈ O\ {αi}. Then, each agent

in an improving cycle in Gα points at the same agent as in Gα in the �rst step of ϕ≺ (R,ω) since

each agent in N is unsatis�ed. So, all improving cycles in Gα occur in the �rst step of ϕ≺ (R,ω).

Note that once trades happen in accordance with the improving cycles, no other bene�cial trades

can occur because α is Pareto e�cient. Remaining priority orderings can be arbitrarily assigned.�

Since every Pareto e�cient and individually rational rule can be found using ϕ ∈ CAIOf and

some priority ordering, the result regarding SD-e�ciency of RA rule can be established.

Proposition 4.1. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and lottery π, RAϕ,π (R,ω) is

SD-e�cient.

34Cycles where at least one agent is receiving an acceptable object.
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Proof. Consider any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and lottery π. Let x ≡ RAϕ,π (R,ω).

On contrary, suppose that x is not SD-e�cient. Then, there is y ∈ X such that y �i x for each

i ∈ N and y �j x for some j ∈ N . Then,
∑
i∈N U (Ri, yi) >

∑
i∈N U (Ri, xi). Note that for each

α, β ∈ ϕ̄ (R,ω), |α| = |β|. Suppose |α| = m for each α ∈ ϕ̄ (R,ω). Then,
∑
i∈N U (Ri, xi) = m.

Hence,
∑
i∈N U (Ri, yi) > m. Then, it must be the case that y gives positive probability to some

individually rational assignment β ∈ A such that |β| > m. By Lemma 4.1, it must be the case that

β ∈ ϕ̄ (R,ω) which is a contradiction. �

Next, I show that SD-IR is equivalent to ex-post IR for the fractional housing market problem

with single and discrete endowments under trichotomous preferences.

Proposition 4.2. For any (R,ω) ∈ T N × A, a random assignment is SD-IR if and only if it

is ex-post IR.

Proof. (⇒) Obvious.

(⇐) Now, we show that the converse is true as well. Consider any (R,ω) ∈ T N × A. Let x

be a random assignment that satis�es ex-post IR. Then, x can be represented as a lottery over

deterministic individually rational assignments. Then:

x =

T∑
l=1

πlα
l

where for each l we have πl ≥ 0, αl ∈ A such that αliRiωi for each i ∈ N and
∑
l πl = 1. In other

words, Wi

(
Ri, α

l
i

)
= 1 for each i ∈ N and each l ∈ {1, · · · , T}. Then, we have Wi (Ri, xi) = 1 for

each i ∈ N which completes the proof. �

Since RAϕ,π (R,ω) is ex-post IR for each lottery π over assignments in ϕ̄ (R,ω), following result

can be stated:

Corollary 4.1. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and lottery π over assignments in

ϕ̄ (R,ω), RAϕ,π (R,ω) is SD-IR.

Now, I establish that RA rule is SD-strategy proof for any lottery π. The proof utilizes the fact

that no agent can decrease the number of agents receiving an acceptable object under RA rule and

whenever she successfully increases the number of agents receiving an acceptable object, it must be

the case that she receives an unacceptable object.

Proposition 4.3. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and uniform distribution π,

RAϕ,π (R,ω) is SD-strategy proof.
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Proof. On contrary, suppose there is i ∈ N , (R,ω) ∈ T N ×A, R′i ∈ T , ϕ ∈ CAIOf and uniform

distribution π such that x 6�i x′ where x ≡ RAϕ,π (R,ω), x′ ≡ RAϕ,π (R′, ω) and R′ = (R−i, R
′
i).

For each α ∈ ϕ̄ (R,ω) and α′ ∈ ϕ̄ (R′, ω), let |α| = m and |α′| = m′. It should be obvious that m′

is the number of agents receiving an acceptable object under preference pro�le R′.

Since x 6�i x′, it must be the case that U (Ri, xi) < 1 i.e. there is α ∈ ϕ̄ (R,ω) such that αi = ωi.

If α is Pareto e�cient under R′, then m′ ≥ m. Moreover, if α is not Pareto e�cient under R′,

then there is α′ ∈ A such that α′ Pareto dominates α under R′ i.e. m′ > m. Now consider the

following cases:

Case 1. m′ > m.

Consider any α′ ∈ ϕ̄ (R′, ω). It cannot be the case that α′i ∈ A (Ri) because α′ is individually

rational under R and so, m ≥ m′. Then, for each α′ ∈ ϕ̄ (R′, ω), α′i /∈ A (Ri) so that x �i x′ which

is a contradiction.

Case 2. m′ = m.

Then, for any α′ ∈ ϕ̄ (R′, ω) such that α′i ∈ A (Ri), it must be the case that α′ ∈ ϕ̄ (R,ω),

by Lemma 4.1, because α′ is Pareto e�cient35 and individually rational under R. Let S ≡

{α ∈ ϕ̄ (R,ω) : αi ∈ A (Ri)} and S′ ≡ {α′ ∈ ϕ̄ (R′, ω) : α′i ∈ A (Ri)}. Then, |S| ≥ |S′|. More-

over, for each α ∈ ϕ̄ (R,ω) such that αi = ωi, it must be the case that α ∈ ϕ̄ (R′, ω), by

Lemma 4.1, because α is Pareto e�cient36 and individually rational under R′. Similarly, for

each α′ ∈ ϕ̄ (R′, ω) such that α′i = ωi, it has to be the case that α′ ∈ ϕ̄ (R,ω), by Lemma 4.1,

because α′ is Pareto e�cient and individually rational under R. Let S̃ ≡ {α ∈ ϕ̄ (R,ω) : αi = ωi}

and S̃′ ≡ {α′ ∈ ϕ̄ (R′, ω) : α′i = ωi}. Then,
∣∣∣S̃∣∣∣ =

∣∣∣S̃′∣∣∣. Since each assignment in ϕ̄ (R,ω) is indi-

vidually rational, S ∪ S̃ = ϕ̄ (R,ω). If all assignments in ϕ̄ (R′, ω) are not individually rational for

agent i, x′i,a > 0 for some a /∈ A (Ri) ∪ {ωi}. Then, by assumption, x �i x′ which is a contradic-

tion. If all assignments in ϕ̄ (R′, ω) are individually rational for agent i, S′ ∪ S̃′ = ϕ̄ (R′, ω). Since

|S| ≥ |S′|,
∣∣∣S̃∣∣∣ =

∣∣∣S̃′∣∣∣ and π is a uniform distribution over assignments in ϕ̄ (R,ω) and ϕ̄ (R′, ω)

under preferences R and R′, respectively, it must be the case that x �i x′. This concludes the

proof. �

Next, I show that any ex-post IR and SD-e�cient random assignment belongs in the SD-core for

trichotomous preferences. If there is a group of agents who can trade among themselves such that

35If α′ is not Pareto e�cient under R, it must be dominated by some assignment in A. However, this suggests
that m′ < m.

36If α is not Pareto e�cient under R′, it must be dominated by some assignment in A. This suggests that m′ > m.
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each agent in that group gets something better-o�, then, by ex-post IR, each agent in this group

receives a positive fraction of her endowment. Then, these agents could trade among themselves

using fractions of their endowments so that each agent becomes better-o�. This would contradict

SD-e�ciency.

Proposition 4.4. For any (R,ω) ∈ T N×A, any ex-post IR and SD-e�cient random assignment

is in SD-core.

Proof. Consider any (R,ω) ∈ T N × A. Let x ∈ X be any ex-post IR (hence, SD-IR) and SD-

e�cient random assignment. On contrary, suppose x is not in SD-core. Then, there is S ⊆ N and

y ∈ X such that
∑
i∈S yi =

∑
i∈S ωi and y �i x for each i ∈ S. Since y �i x, we have U (Ri, xi) < 1

for each i ∈ S. Hence, xi,ωi > 0 for each i ∈ S. Note that
∑
i∈S yi,a = 1 for each a ∈ ω (S) and∑

a∈ω(S) yi,a = 1 for each i ∈ S.

Let c = mini∈S xi,ωi . Additionally, let ε be an n× n matrix such that for each i ∈ N\S, εi = 0

and for each i ∈ S, εi = c (yi − ωi).

Let z = x+ ε. We show that z ∈ X . Consider the following for any a ∈ O:

∑
i∈N

zi,a =
∑
i∈N\S

zi,a +
∑
i∈S

zi,a

=
∑
i∈N\S

xi,a +
∑
i∈S

xi,a +
∑
i∈S

εi,a

= 1 + c
∑
i∈S

(yi,a − ωi,a)

Consider the second term in the above expression. If a /∈ ω (S), then yi,a = 0 and ωi,a = 0 for

each i ∈ S. Additionally, if a ∈ ω (S), then
∑
i∈S yi,a =

∑
i∈S ωi,a = 1. So, we get

∑
i∈N zi,a = 1

for each a ∈ O. Note that for any i ∈ N\S, we have zi,a = xi,a for each a ∈ O. So,
∑
a∈O zi,a = 1

for each i ∈ N\S. Now consider the following for any i ∈ S:

∑
a∈O

zi,a =
∑

a/∈ω(S)

zi,a +
∑

a∈ω(S)

zi,a

=
∑

a/∈ω(S)

xi,a +
∑

a∈ω(S)

(xi,a + εi,a)

= 1 + c
∑

a∈ω(S)

(yi,a − ωi,a)

For the second term in the above expression,
∑
a∈ω(S) yi,a =

∑
a∈ω(S) ωi,a = 1. So,

∑
a∈O zi,a =
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1 for each i ∈ N . Now, we just need to show that zi,a ≥ 0 for each i ∈ N and a ∈ O. By

construction of z, zi,a = xi,a for each i ∈ N\S. So, zi,a ≥ 0 for each i ∈ N\S and a ∈ O. For any

i ∈ S and a /∈ ω (S), zi,a = xi,a. So, zi,a ≥ 0 for each i ∈ S and a /∈ ω (S). For any i ∈ S and

a ∈ ω (S), consider the following:

zi,a = xi,a + c (yi,a − ωi,a)

= xi,a − cωi,a + cyi,a

If a 6= ωi, then ωi,a = 0 and zi,a = xi,a + cyi,a ≥ 0. If a = ωi, cωi,a = c and xi,ωi
≥ c because

c = minj∈S xj,ωj . Then, zi,a ≥ 0 for each i ∈ S and a ∈ ω (S).

Therefore, zi,a ≥ 0 for each i ∈ N and a ∈ O. Moreover, it cannot be the case that zi,a > 1 for

some i ∈ N and a ∈ O because
∑
i∈N zi,a = 1 for each a ∈ O and

∑
a∈O zi,a = 1 for each i ∈ N .

Hence, z ∈ X .

Since zi,a = xi,a for each i ∈ N\S and a ∈ O, z ∼i x for each i ∈ N\S. Moreover, for each

i ∈ S, we have the following:

U (Ri, zi) = U (Ri, xi + c (yi − ωi))

= U (Ri, xi + cyi)

= U (Ri, xi) + cU (Ri, yi)

> (1 + c)U (Ri, xi)

We have U (Ri, xi + c (yi − ωi)) = U (Ri, xi + cyi) because ωi /∈ A (Ri) for any i ∈ N . Moreover,

since c > 0, U (Ri, zi) > U (Ri, xi) for each i ∈ S i.e. z �i x for each i ∈ S. This contradicts SD-

e�ciency of x and completes the proof. �

Following is an immediate corollary of Proposition 4.4.

Corollary 4.2. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and lottery π over assignments in

ϕ̄ (R,ω), RAϕ,π (R,ω) is in SD-core.

Proposition 4.4 is reminiscent of the result by Bogomolnaia and Moulin [10] where they show

that a matching is core stable if and only if it is e�cient and individually rational for two-sided

matching under �dichotomous� preferences. The preferences in their paper are identical to the

trichotomous preferences considered in this chapter. However, this equivalence result does not hold

67



for the fractional housing market problem under single and discrete endowments for trichotomous

preferences. Consider the following example:

Example 4.4: Let N = {1, 2, 3}, O = {a, b, c} and ω = (a, b, c). Consider the following prefer-

ences:
R1 R2 R3

bc ac ab

a b c

Let R = (R1, R2, R3) and α = (b, a, c). Note that α belongs in the SD-core because U (R1, α1) =

U (R2, α2) = 1 i.e. agents 1 and 2 cannot be made better-o�. However, α is clearly not ex-post

e�cient because β = (c, a, b) Pareto dominates α.

Now, I consider the fairness notions introduced in Section 3. The next result shows that any

ex-post IR and SD-e�cient random assignment satis�es the stronger notion of NJE mentioned

earlier.

Proposition 4.5. Consider any (R,ω) ∈ T N × A. An ex-post IR and SD-e�cient random

assignment satis�es NJE.

Proof. On contrary, suppose there are i, j ∈ N such that xj,a > 0 for some a ∈ A (Ri),

xi,ωi
> 0 and xi �j ωj . Since xi �j ωj , it must be the case that bRjωj for each b ∈ O such that

xi,b > 0. Speci�cally, we have ωi ∈ A (Rj). Let yh,b = xh,b for each h ∈ N\ {i, j} and b ∈ O.

Let c = min {xi,ωi , xj,a}. Then, set yi,b = xi,b and yj,b = xj,b for each b ∈ O\ {a, ωi} and set

yi,a = xi,a + c, yi,ωi
= xi,ωi

− c, yj,a = xj,a − c and yj,ωi
= xj,ωi

+ c. Then, y ∼h x for each

h ∈ N\ {i, j}, y �j x and y �i x which contradicts SD-e�ciency of x. �

Since RA rule satis�es ex-post IR and SD-e�ciency, following result can be stated.

Corollary 4.3. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and lottery π over assignments in

ϕ̄ (R,ω), RAϕ,π (R,ω) satis�es NJE.

Next, I show that RA rule satis�es NEIE. In the proof, I show that whenever agents have

identical endowments, the rule satis�es NEIE.

Proposition 4.6. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and uniform distribution π over

assignments in ϕ̄ (R,ω), RAϕ,π (R,ω) satis�es NEIE.

Proof. Consider any (R,ω) ∈ T N × A, ϕ ∈ CAIOf , uniform lottery π over assignments in

ϕ̄ (R,ω) and i, j ∈ N such that ωiIhωj for each h ∈ N\ {i, j} and ωj ∈ A (Ri) if and only if

ωi ∈ A (Rj). Let x ≡ RAϕ,π (R,ω). We want to show that xi �i xj . Suppose ωi ∈ A (Rj). Then,
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for each α ∈ ϕ̄ (R,ω), αiRiαj by Pareto e�ciency. So, xi �i xj .

Now, suppose that ωj /∈ A (Ri) and ωi /∈ A (Rj). If xj,a > 0 for some a /∈ A (Ri) ∪ {ωi}, then

xi � xj . Now suppose that xj,a > 0 only if a ∈ A (Ri) ∪ {ωi} and U (Ri, xj) > U (Ri, xi). Then,

it has to be the case that there is α ∈ ϕ̄ (R,ω) such that αi = ωi and αj ∈ A (Ri). Then, αj 6= ωj

and so, αj ∈ A (Rj). We construct priority orderings, ≺, such that βi ∈ A (Ri) and βj = ωj where

β = ϕ≺ (R,ω). Suppose |γ| = m for each γ ∈ ϕ̄ (R,ω). Let Gα be the graph associated with α

where each agent is represented by a node. Moreover, for each agent i′ ∈ N a unique arc is extended

to j′ ∈ N such that ωj′ = αi′ . Construct individual priority orderings over objects as follows: for

each i′ ∈ N\ {i, j} with an arc extending to an agent in N\ {j}, αi′ ≺i′ a for each a ∈ O\ {αi′}.

Then, each improving cycle which does not contain agent j occurs in pointing phase of step 1 of

ϕ≺ (R,ω). Now, consider the improving cycle containing agent j. For the agent pointing at agent

j in Gα, say agent j′ /∈ {i, j}37, ωi ≺j′ a for each a ∈ O\ {ωi}. Then, agent j′ points at agent i

in step 1 because ωj ∈ A (Rj′) and ωiIhωj for each h ∈ N\ {i, j}. Finally, for agent i, αj ≺i a for

each a ∈ O\ {αj}. Then, agent i points at the agent whose endowment is αj in the pointing phase

of step 1 of ϕ≺ (R,ω) because αj ∈ A (Ri).

Note that the only di�erence in cycles formed under ϕ≺ (R,ω) and improving cycles of Gα is

the cycle containing agent j in Gα. Moreover, that cycle di�ers only in replacement of agent j with

agent i. So, exactly m agents must be receiving an acceptable object in step 1 of ϕ≺ (R,ω) and,

by construction of ϕ̄ (R,ω), no more bene�cial trades can occur after step 1 of ϕ≺ (R,ω). Hence,

ϕ≺j (R,ω) = ωj . So, for each α ∈ ϕ̄ (R,ω) such that αj ∈ A (Ri) and αi = ωi, there is β ∈ ϕ̄ (R,ω)

such that βh = αh for each h ∈ N\ {i, j, j′}, βj′ = ωi, βi = αj and βj = ωj where j′ ∈ N is such

that αj′ = ωj . Additionally, for each γ ∈ ϕ̄ (R,ω) either γj /∈ A (Ri) or γi ∈ A (Ri) i.e. γiRiγj .

Since π is a uniform distribution over assignments in ϕ̄ (R,ω), it must be the case that xi �i xj .

This completes the proof. �

Since NEIE implies ETE, following corollary can be stated.

Corollary 4.4. For any (R,ω) ∈ T N × A, ϕ ∈ CAIOf and uniform distribution π over

assignments in ϕ̄ (R,ω), RAϕ,π (R,ω) satis�es ETE.

The results presented in this section can be summarized in the following theorem.

Theorem 4.1. For fractional housing market problem with single and discrete endowments

under trichotomous preferences, there exist rules which are SD-IR, SD-e�cient, SD-strategy proof,

37This is the case because αj 6= ωj and agent i is not part of an improving cycle in Gα.
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SD-core stable and satisfy NEIE, NJE and ETE.

This states that under trichotomous preferences, the impossibility results of Yilmaz [33]; incom-

patibility of individual rationality, no justi�ed-envy and strategy proofness, and Athanassoglou &

Sethuraman [4]; any mechanism which satis�es individual rationality, SD-e�ciency and no justi�ed-

envy cannot satisfy even weak strategy proofness, which hold under strict preferences and single and

discrete endowments, do not hold. Neither do impossibility results of Aziz [5], (1) incompatibility

of SD-core stability with NJE, and (2) SD-IR, SD-e�ciency and weak SD-strategy proofness, which

hold for strict preferences even for single endowments and allocations. Moreover, by relaxing as-

sumption of fractional endowments and full preference domain to single and discrete endowments

and trichotomous preferences, the following impossibility results of Athanassoglou and Sethuraman

[4] no longer hold; (1) incompatibility of individual rationality, SD-e�ciency and strategy proofness,

and (2) any individually rational and SD-e�cient mechanism cannot simultaneously satisfy NJE

and NEIE.

Conclusion

I use rules in common ordering on agents, individual ordering on objects under the assumption

of trichotomous preferences and single and discrete endowments, to show that several impossibility

results for fractional housing market problem with single and discrete endowments, which hold even

under strict preferences, can be avoided.

A particular concern would be the computational complexity of the proposed rule because RA

rule requires solving for all possible priority orderings and then selecting allocations with maximal

number of agents receiving an acceptable object. Additionally, for some housing market problems,

RA rule may not provide a random assignment solution. This could occur when there is a unique

Pareto e�cient assignment with maximal number of agents receiving an acceptable object. How-

ever, the goal of this chapter was to determine whether some impossibilities can be avoided for a

random assignment solution to the housing market problem under a restricted setting.

A possible way to resolve computational complexity might be to design this problem as an as-

signment problem from linear programming. Details of assignment problems in various settings can

be found in [11, 20]. However, additional constraints would be required for SD-IR and NEIE. Since

this chapter provides evidence of existence of solutions satisfying these properties, the assignment
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problem with appropriate constraints would have a solution for the setting studied in this chapter.

Moreover, by Propositions 4.4 and 4.5, this solution also satis�es SD-core stability and NJE. How-

ever, strategy proofness might be di�cult to achieve using linear programming. Another possible

solution could be to design the fractional housing market problem with single and discrete endow-

ments as a multi-objective optimization problem. Marler & Arora [18] present a brief survey on

multi-objective optimization methods which is a good starting point for designing such problems.
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CHAPTER V

SUMMARY

In this chapter, I summarize the research presented in this dissertation. I consider housing

market problem in various settings. In housing market problem, each agent owns at most one

object and each object is owned by at most one agent. Agents have preferences over objects. I

consider the case where agents may be indi�erent among objects.

In Chapter II, I show that some existing rules, in addition to several desirable properties, also

satisfy no justi�ed-envy for agents with identical endowments. I also provide su�cient conditions for

weak group strategy proofness. Using one of these conditions, I show that Top Trading Absorbing

Sets [3] rule satis�es weak group strategy proofness. This result shows that even though Pareto

e�ciency and group strategy proofness are incompatible for weak preferences [12], Pareto e�ciency

and weak group strategy proofness can be achieved simultaneously. Then, I propose a procedural

enhancement, prioritized treatment of market-equal unsatis�ed agents. This property directs how

trading cycles are selected at each step of the algorithm. It requires that when certain conditions are

satis�ed38, the highest priority unsatis�ed agent among market-equal unsatis�ed agents receives one

of her most preferred objects (among the remaining ones). This property might be of importance

when agents need to be treated in accordance with their social ranking. I show that some existing

rules do not, in general, satisfy this property. So, I propose a new rule, Modi�ed Top Cycles rule,

which satis�es this property in addition to other desirable results.

Chapter III is a note on Saban & Sethuraman [27]. UsingModi�ed Top Cycles rule, I was able to

identify an oversight in su�cient condition for strategy proofness provided in their paper. I present

conditions which rectify this issue.

In Chapter IV, I explore random assignment solution to the housing market problem. For general

and strict preferences, several impossibility results have been established. I consider a restricted

class of preferences, trichotomous preferences. Under these preferences, each agent �nds an object

(other than her endowment) to be acceptable or unacceptable. Agents are indi�erent between all

acceptable objects and also unacceptable objects. Each agent prefers each acceptable object to her

endowment and prefers her endowment to each unacceptable object. These preferences are identical

to dichotomous preferences considered by Bogomolnaia & Moulin [10]. I show that for this class

38These conditions ensure that strategy proofness is not violated.
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of preferences, there are rules which satisfy e�ciency, strategy proofness, core stability, no-envy for

agents with identical endowments, no justi�ed-envy and equal treatment of equals. Hence, several

impossibility results do not hold under the assumption of trichotomous preferences for fractional

housing market problem where endowments are single and discrete.
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