

WELL PLACEMENT OPTIMIZATION USING IMPERIALIST COMPETITIVE

ALGORITHM

A Dissertation

by

MOHAMMAD ABDULLAH Q. AL DOSSARY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Hadi Nasrabadi
Committee Members, Maria Barrufet
 Michael King
 Eduardo Gildin
Head of Department, Daniel Hill

May 2017

Major Subject: Petroleum Engineering

Copyright 2017 Mohammad Abdullah Q. Al Dossary

 ii

ABSTRACT

 An efficient and optimized field development plan is a crucial and primary aspect

of maximizing well productivities and improving the recovery factors of oil and gas

fields, and thereby most effectively increasing profitability. In this research, we apply a

meta-heuristics algorithm known as the imperialist competitive algorithm (ICA) to

determine optimal well locations for maximum well productivity.

 The ICA, an evolutionary algorithm that mimics socio-political imperialist

competition, uses an initial population that consists of colonies and imperialists that are

assigned to several empires. The empires then compete with each other, which cause the

weak empires to collapse and the powerful empires to dominate and overtake their

colonies.

We compared the ICA performance with that of particle swarm optimization

(PSO) and the genetic algorithm (GA) in the following four optimization scenarios: 1) a

vertical well in a channeled reservoir, 2) a horizontal well in a channeled reservoir, 3)

placement of multiple vertical wells, and 4) placement of multiple horizontal wells. In all

four scenarios, the ICA achieved a better solution than did the PSO or GA in a fixed

number of simulation runs. We also applied the ICA optimization algorithm to optimize

well placement, well type (producer/injector), well configuration (vertical/directional),

wellbore length, and drilling schedules for a sector of a Middle East reservoir.

In addition, we conducted sensitivity analyzes on three important parameters

(revolution ratio, assimilation coefficient, and assimilation angle), and the analyses show

 iii

that the recommended ICA default parameters generally led to acceptable performances

in our examples. However, to obtain optimum performance, we recommend tuning the

three main ICA parameters with respect to specific optimization problems.

 iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Hadi Nasrabadi, and my

committee members, Professor Maria Barrufet, Professor Michael King, and Dr.

Eduardo Gildin for their guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff

for making my time at Texas A&M University a great experience. I also want to extend

my gratitude to Saudi Aramco, which sponsored me as a PhD student.

Finally, thanks to my mother and father for their encouragement and to my wife

for her patience and love.

 v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Dr. Hadi

Nasrabadi (chair advisor) and Professor Michael King of the Department of Petroleum

Engineering and Dr. Eduardo Gilding of Department of Petroleum Engineering and

Professor Maria Barrufet of the Department of Chemical Engineering.

All work for this dissertation was completed independently by the student.

Funding Source

Graduate study was supported by a sponsorship from Saudi Aramco.

vi

TABLE OF CONTENT

Page

ABSTRACT .. ii

ACKNOWLEDGEMENT ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

TABLE OF CONTENT vi

LIST OF FIGURES ... viii

LIST OF TABLES .. xi

1. INTRODUCTION ... 1

1.1 Literature Review ... 3
1.2 Scope of Work ... 10
1.3 Dissertation Outline ... 11

2. OPTIMIZATION TOOLS .. 13

2.1 Imperialist Competitive Algorithm .. 15
2.1.1 The Initiation of Empires ... 16
2.1.2 Assimilation of Colonies .. 18
2.1.3 Revolution .. 19
2.1.4 Imperialist and Colonies Position Exchange ... 20

2.2 Genetic Algorithm .. 26
2.3 Particle Swarm Optimization ... 28

3. OPTIMIZATION RUNS AND RESULTS ... 31

3.1 Case 1 – Single Vertical Well Placement Optimization 35
3.2 Case 2 – Single Horizontal Well Placement Optimization 40
3.3 Case 3 – Multiple Vertical Wells Placement Optimization 44
3.4 Case 4 – Multiple Horizontal Wells Placement Optimization 48

4. SENSITIVITY ANALYSIS OF ICA PARAMETERS .. 51

4.1 Revolution Ratio Parameter ... 52
4.2 Assimilation Coefficient Parameter ... 54
4.3 Assimilation Angle Parameter ... 55

 vii

5. APPLYING ICA FOR REAL FIELD EXAMPLE ... 58

5.1 Problem Description and Approach ... 58
5.2 Reservoir Model Description ... 59
5.3 Real Field Infill Drilling Optimization .. 63
5.4 Methodology For Code Implementation .. 64
5.5 Net Present Value Formulation .. 73
5.6 Geological Uncertainty .. 74
5.7 Real Field Example Results ... 75

6. SUMMARY AND CONCLUSION .. 96

7. FUTURE WORK .. 99

REFERENCES .. 100

APPENDIX A ... 110

APPENDIX B ... 117

APPENDIX C ... 118

 viii

LIST OF FIGURES

Page

Fig. 1: Generation of initial empires. Stars (imperialists) and circles (colonies) of the

same color belong to one empire. The red empire is the most powerful as it
has more colonies. The stars and colonies represent potential solutions for
well placement in the 2-dimensional search space (X and Y are well
coordinates) ………………………………………………...…...………........ 18

Fig. 2: Assimilation process...………………………………………………………... 19

Fig. 3: Imperialistic competition to take possession of the weakest colony (from

Atashpaz-Gargari, 2007) …...………………………………………………... 21

Fig. 4: a) Initiation of empires, b) assimilation process, c) revolution process, and d)

position swapping process ……...……………………………………………. 23

Fig. 5: ICA algorithm flowchart……………………………………………………… 25

Fig. 6: GA algorithm flowchart……………….……………………………………… 27

Fig. 7: PSO algorithm flowchart……………………………………………………… 30

Fig. 8: Permeability (md) distribution of the channeled reservoir (case 1)…………... 36

Fig. 9: Objective function (cumulative oil production) surface for case 1.…………... 37

Fig. 10: ICA, PSO and GA performances as a function of the number of simulations

for the single vertical well case....……..…………………………………….. 39

Fig. 11: Optimal well location for the single vertical well (yellow star represents the

well location)....….…...……………………………………………….……... 40

Fig. 12: Permeability (md) distribution of the 3-layer channeled reservoir (case 2)..... 41

Fig. 13: Well directions and corresponding values used as an optimization variable... 42

Fig. 14: ICA, PSO and GA performances as a function of the number of simulations

for case 2 …………………….……………………….…………………........ 43

Fig. 15: Optimal well location for the single horizontal well (yellow line encompassed

by the red circle)..……………………………………………………………. 44

 ix

Fig. 16: ICA, PSO and GA performances as a function of the number of simulations
for case 3 …………………………………….…………………………......... 46

Fig. 17: Optimal well locations for the multiple vertical wells case (yellow stars

represent the well locations)…...……………..…………………………….... 47

Fig. 18: ICA, PSO and GA performances as a function of the number of simulations

 for case 4…………………………...……………….………….……………. 49

Fig. 19: Optimal well locations for the multiple horizontal wells case (yellow lines

encompassed by the red circles) ………..…………………………………… 50

Fig. 20: ICA performance with five different revolution ratios for case 1…………… 53

Fig. 21: ICA performance with five different assimilation coefficients for case 1…... 55

Fig. 22: ICA performance with five different assimilation angles for case 1……….... 57

Fig. 23: 3D view of ME1 reservoir model…………………………………………..... 60

Fig. 24: Relative permeability curve…………………………………………………. 61

Fig. 25: Timeline for major field events……………………………………………… 63

Fig. 26: Well modeling representation in a 3D view…………………………………. 65

Fig. 27: ICA performance of three runs and their average………………………….... 78

Fig. 28: Final well locations and configurations for Opt 3 run. The blue font

 corresponds to the injector and the red to the producers. The numbers
 associated with I and P indicate the drilling schedule sequence ……..….…. 79

Fig. 29: Oil saturation for Opt 3 at the end of the simulation for layer 1…….….…… 80

Fig. 30: Oil saturation for Opt 3 at the end of the simulation for layer 2…….….…… 81

Fig. 31: Oil saturation for Opt 3 at the end of the simulation for layer 3……….….… 82

Fig. 32: Oil saturation for Opt 3 at the end of the simulation for layer 4…………..… 83

Fig. 33: Oil saturation for Opt 3 at the end of the simulation for layer 5…………..… 84

Fig. 34: ICA performance for 100 iterations……………………………………..…... 85

 x

Fig. 35: Final well locations and configurations for 100-iteration run. The blue font
corresponds to the injector and the red to the producers. The numbers

 associated with I and P indicate the drilling schedule sequence…..……..…. 86

Fig. 36: Oil saturation for the 100-iteration run at the end of the simulation (layer 1).. 87

Fig. 37: Oil saturation for the 100-iteration run at the end of the simulation (layer 2).. 88

Fig. 38: Oil saturation for the 100-iteration run at the end of the simulation (layer 3).. 89

Fig. 39: Oil saturation for the 100-iteration run at the end of the simulation (layer 4).. 90

Fig. 40: Oil saturation for the 100-iteration run at the end of the simulation (layer 5).. 91

Fig. 41: Optimum well configurations at various optimization iterations: a) iteration

 20, b) iteration 40, c) iteration 60, and d) iteration 80 ………..…………….. 92

Fig. 42: Change in the optimum number/type of wells and total kh along the well
 path at various optimization iterations... 95

 xi

LIST OF TABLES

 Page

Table 1: ICA parameters used for the optimization runs ... 32

Table 2: PSO parameters used for the optimization runs ... 33

Table 3: GA parameters used for the optimization runs .. 33

Table 4: Reservoir input parameters used in the reservoir models 34

Table 5: PVT data used in the reservoir models ... 35

Table 6: Rankings of revolution ratio parameters ... 52

Table 7: Rankings of assimilation parameters .. 54

Table 8: Rankings of assimilation angle parameters ... 56

Table 9: Permeability ranges of the ME1 layers ... 61

Table 10: Reservoir model parameters .. 62

Table 11: Injectors and producers well control constraints ... 62

Table 12: Economics parameters used in NPV calculations ... 74

Table 13: ICA parameters used for this example .. 76

 1

1. INTRODUCTION

In recent years, the optimization of well placement has been the focus of much

research as field developments have become more challenging and oil and gas producers

have tried to respond appropriately to increasing global energy demands. As such,

optimization techniques must be utilized to determine the field development plan that

will yield maximum well productivity as well as increased effectiveness of the recovery

factors.

Well placement optimization is a complex and challenging problem due to its

non-linear nature involving various decision variables, constraints, and multiple

scenarios that have both direct and indirect effects on the final optimal solution. For

instance, well placement optimization problems are typically solved by optimizing the

well location, configuration (vertical, horizontal, multilateral), type (producer, injector),

and operation status (open, closed) (Nasrabadi et al., 2012). Decision variables with

uncertainties and solution constraints lead to a very complex and large solution space,

with many possible solution combinations. In addition, most optimization problems have

various types of physical and economic constraints that must be heeded during the

optimization process. Depending on the nature of the desired outcome of the

optimization problem, the best combination of two or more conflicting objective

functions (maximizing net present value (NPV) while minimizing cumulative injected

water) must be found, which increases the complexity of the problem. Also, the many

possible variable combinations mean that it is not sufficient to use only intuitive

 2

engineering judgment to determine the optimum sets of problem variables. Optimization

methods have also been applied to other petroleum-related problems such as history

matching and inversion in reservoir simulations (Zhang, F. and Reynolds, A., 2002;

Chunduru, R.K., et al., 1997; Sen, M. and Stoffa, P., 1995)

Many researchers have designed and implemented automated simulation

algorithms that optimize the drilling of infill wells. Franstorm, K.L. and Litvak, M.L.

(2000) developed an algorithm that optimizes the placement of new infill wells while

also optimizing the recompletion design for existing wells using a full-field simulation

model. Litvak, M., et al. (2007) designed and applied an automated optimization

algorithm to optimize the placement of new and existing wells, waterflooding, well rates,

and surface facilities. The work of these authors yielded substantial improvements with

respect to oil recovery and NPV.

Typically, automatic well placement optimization for determining a global

optimum solution involves several steps. The process begins with a user selecting an

initial well position based on engineering judgment. Then, with the aid of an

optimization algorithm, a new and improved well position is suggested. Next, a reservoir

response model is applied to the newly suggested position, and the result is reported to

the programed algorithm. This step is repeated until a pre-determined stopping point

criterion is met.

 3

 1.1 Literature Review

Researchers have attempted to solve the well placement problem using various

optimization algorithms. The first optimization algorithm used for well placement was

the mixed integer programing method in which sets of pre-determined requirements are

represented by mathematical linear relationships to maximize an objective function.

Rosenwald and Green (1974) utilized this method to identify optimized well locations

that would minimize the difference between production and scheduled demand. This

method has also been used in offshore field development optimization with respect to

platform placements, the number of wells in each platform, pipeline-network designs,

and production constraints (Devine and Lesso, 1972; Dogru, 1987; Eeg and Herring,

1997; Garcia-Diaz et al., 1996; Hansen et al., 1992; lyer et al., 1998; Sullivan, 1982; van

den Heever and Grossmann, 2000; Watson et al., 1989). The mixed integer programing

method is not applicable to non-linear flow conditions and has yielded poor results in

cases with a large possible solution space (Nasrabadi et al., 2012).

Gradient-based methods have also been applied to well placement optimization.

In these methods, a maximum or minimum solution to an n-dimensional objective

function is determined through the application of Taylor-series expansion and the

calculation of an objective function gradient. There are two main approaches to the

gradient calculations: the finite difference and adjoint-based methods. Gradient-based

optimization has been used by several authors to determine optimum well placement and

well trajectory for horizontal wells (Bangerth et al., 2006; Castineira and Alpak, 2009;

Forouzanfar et al., 2010; Sarma and Chen, 2008; Viemmix et al., 2009; Wang et al.,

 4

2007; Zandvliet, M.J., et al., 2008). Handels et al. (2007) and Wang et al. (2007) also

utilized gradient-based optimization techniques. In their work, the authors proposed a

workflow by which they calculate the gradient of the objective function and utilize a

steepest ascent direction to direct the optimization search. They were successful in

achieving a near optimal solution with fewer simulation runs. However, they only

considered the optimization of vertical well placement, and they concluded that their

proposed optimization workflow will not perform comparably if it is applied to more

complex well configurations. In any case, a major flaw associated with the gradient-

based optimization method is its high dependency on the initial guess, which may trap it

in a local optimum. (Nasrabadi et al., 2012).

Another optimization technique that has been used for well placement is

simultaneous perturbation stochastic approximation (SPSA), which is considered to be

an approximate gradient-based algorithm. The simultaneous perturbation stochastic

approximation (SPSA) algorithm is based on computing the gradient of the objective

function in a random direction, which generates two new points that are then used to

calculate the objective function of those two new points. If the new calculated objective

function shows better value, it is used to generate two more new points and the process

continues in the direction that yields a better objective function value (Spall, J.C., 1998;

Spall, J.C., 2003). Bangerth et al. (2006) applied simultaneous perturbation stochastic

approximation (SPSA) in the placement of multiple vertical wells and concluded that

simultaneous perturbation stochastic approximation (SPSA) performed better than both

the genetic algorithm (GA) and simulated annealing (SA) in their study example. One

 5

pitfall associated with simultaneous perturbation stochastic approximation (SPSA) is the

sensitivity of the chosen step size for calculating new solutions. Researchers have found

that if a wrong step size is assigned, a non-feasible solution can be generated that may

hinder the solution convergence. Also, simultaneous perturbation stochastic

approximation (SPSA) has shown poor handling for discontinuous objective functions,

as the calculated gradient might not be defined.

Many probabilistic and stochastic optimization methods have also been applied

to well placement optimization. Simulated annealing, first introduced by Kirkpatrick et

al. (1983), is a probabilistic method for finding a global optimum by mimicking the

recrystallization process of a heated solid object until it becomes a frozen structure that

corresponds to a minimum energy configuration. Beckner and Song (1995) and Norrena

and Deutch (2002) applied this method for well placement optimization.

Another stochastic optimization method is particle swarm optimization (PSO), a

population-based method first introduced by Kennedy and Eberhart (1995) that mimics

the searching efforts of animal groups such as birds and fish. In particle swarm

optimization (PSO), the algorithm starts by populating possible solutions, which are

referred to as particles. Each particle is assigned a position that is updated at each

iteration based on its fitness and its relative position to the other particles. The main

particle swarm optimization (PSO) algorithmic operator is particle velocity, which is

responsible for moving particles through the search space in an attempt to establish a

better position (solution) (Helwig, S. and Wanka, R., 2008; Shi, Y. and Eberhardt, R.C.,

1998; Engelbrecht, A.P., 2005). Mattot et al. (2006) used particle swarm optimization

 6

(PSO) to minimize the cost of water remediation of produced and injected water by

optimizing the number, location, and rate of injection wells. Also, Onwunalu and

Durlofsky (2010) applied particle swarm optimization (PSO) to well placement

optimization for single and multiple wells as well as for nonconventional well

configurations. The authors concluded that in most cases particle swarm optimization

(PSO) performed better than the genetic algorithm (GA).

Genetic algorithm (GA) was first introduced by Holland in 1975 when he was

inspired by the idea of mimicking the process of natural evolution in a self-adaptive

automated algorithm. Genetic algorithm (GA) became popular as a robust and effective

algorithm for finding optimum solutions in a highly dimensional and complex solution

space. The typical genetic algorithm (GA) process consists of three main operators:

selection, crossover, and mutation. The genetic algorithm (GA) process starts with the

generation of an initial population that consists of many individuals that correspond to

possible solutions. Each individual is created by a set of parameters or variables that

constitute chromosomes pertaining to the individual. Then, the generated individuals

undergo a fitness evaluation whereby the chromosomes are evaluated, ranked, and

selected with respect to their fitness for mating and reproduction (selection). This

process is known as survival of the fittest, and the chromosomes that yield better

solutions are carried into the next generation. This process continues until a pre-

determined criterion is met (Goldberg, D.E., 2004; Haupt, R.L. and Haupt, S.E., 2004;

Mitchell, M., 1996).

 7

The application of genetic algorithm (GA) to oil and gas well placement

optimization has yielded favorable results that have made genetic algorithm (GA) a

widely used and accepted optimization algorithm for solving oil and gas industry

optimization problems. For example, Bittencourt and Horne (1997) developed a hybrid

binary genetic algorithm (GA) that combines the genetic algorithm (GA) with the

polytope method to determine optimal well placement and well configuration

(vertical/horizontal) in faulted reservoirs. The polytope method uses linear programing

to generate a simplex that includes several vertices. Each vertex is evaluated and the

process loops to produce solutions with improved feasibilities based on chosen pivot

elements. Montes et al. (2001) applied the genetic algorithm (GA) to vertical well

placement optimization and used cumulative oil production as the objective function to

be maximized. The authors used two synthetic reservoir models and found that the use of

elitism improved the convergence rate to the optimum solution. Emeric et al. (2009)

used the genetic algorithm (GA) to determine the best optimum number, location, and

trajectory for deviated producer and injector wells in field development. They introduced

a handling sub-routine that discards infeasible solutions by applying a crossover between

the infeasible solutions and previously determined feasible solutions.

Yeten et al. (2003) constructed a framework that utilized the genetic algorithm

(GA) as a searching algorithm to identify the optimum well placement and

configuration. The authors used a 3D reservoir model and included the option of having

a multilateral well as one possible configuration. Several helper functions, such as

artificial neural networks and the hill climber technique, were used to further enhance

 8

the genetic algorithm (GA) optimization performance. Furthermore, the authors applied

near-wellbore upscaling to account for near-well heterogeneity. Rigot (2003) further

enhanced Yeten et al.’s optimization method to improve the efficiency of multilateral

well placement optimization. He introduced a proxy to avoid the need to evaluate the

objective function in cases where the expected well productivity is within the validity

range of a proxy.

Several researchers have applied well placement optimization to waterflooding

projects. Bangerth et al. (2006) applied well placement optimization to both producers

and injectors. In their work, the authors compared the performances of the simultaneous

perturbation stochastic approximation (SPSA), genetic algorithm (GA), finite difference

gradient (FDG), and very fast simulated annealing (VFSA), and concluded that

simultaneous perturbation stochastic approximation (SPSA) and very fast simulated

annealing (VFSA) produced better results than genetic algorithm (GA) and finite

difference gradient (FDG).

Since reservoir modeling is associated with many geological and fluid

uncertainties, many researchers have accounted for these uncertainties when developing

their optimization techniques by designing a robust optimization workflow. However,

since considering multiple realizations in optimization problems increases the

computational expense, it is prudent to develop techniques that address this challenge.

One approach is to choose a set of realizations that is representative of the whole

uncertainty spectrum. For example, Artus et al. (2006) used statistical proxies instead of

simulation runs to find the optimal well locations for dual-lateral wells. Their method

 9

makes it possible to find the objective functions without having to run many model

simulations. Williams, G.J.J., et al. (2004) developed an automated optimization process

that takes into account the effect of reservoir uncertainties on model performance

prediction. The authors applied their process on both new and mature fields and reported

up to a 20% increase in the overall net present value (NPV). Guyaguler et al. (2000)

applied a hybrid optimization algorithm that uses both a binary genetic algorithm and a

polytope technique. The authors also incorporated artificial neural networks (ANN) and

Kriging techniques to generate function proxies for use in cost function evaluation.

Utilizing artificial neural networks (ANN) and Kriging as a substitute for running model

simulations reduces the optimization running time. Furthermore, Tupac, Y. J., et al.

(2007) used function approximation models as simulator proxies and utilized quality

maps to improve the optimization process while also reducing the optimization cost.

Wang et al. (2012) considered reducing the required number of realizations by

utilizing a retrospective optimization framework. In their work, the authors considered a

sequence of different numbers of realization sets and were able to substantially reduce

the computational expense. Also, Yeten et al. (2003) included the risk of inflow control

valve failure on well controls optimization. The authors also applied the optimization

process to a set of five geological realizations to find the optimized expected net present

value (NPV). Cameron et al. (2012) considered a set of geological realizations to find

the optimal injected CO2 rates and used particle swarm optimization (PSO) as their main

algorithm engine. Yasari et al. (2013) also applied optimization to a waterflooding

project and included robust optimization (RO) to account for geological uncertainty. Van

 10

Essen et al. (2009) also applied robust optimization (RO) in their work by introducing a

set of realizations to represent the field uncertainty range.

1.2 Scope of Work

In this research, we apply an imperialist competitive algorithm (ICA) to

determine the optimum well location for maximum well productivity. The imperialist

competitive algorithm (ICA) is an evolutionary meta-heuristic algorithm that mimics

socio-political imperialist competition to search for a global optimal solution. In the

imperialist competitive algorithm (ICA), an initial population consists of colonies and

imperialists that are assigned to several empires. The empires then compete and as the

weak empires collapse the powerful empires take over their colonies. This iterative

process continues until the best solution is reached based on a pre-determined criterion.

Although the imperialist competitive algorithm (ICA) has not been previously applied to

the well placement optimization problem, it has been applied in the context of petroleum

engineering for well flow rate predictions (Ahmadi, et al., 2013). Also, imperialist

competitive algorithm (ICA) has been applied in other engineering disciplines and has

shown potential superiority over other well-known optimization techniques, such as the

genetic algorithm (GA) and particle swarm optimization (PSO), in terms of its

convergence rate and global optima achievement (Atashpaz-Gargai, et al., 2007;

Rajabioun, et al., 2008; Sepehri Rad, et al., 2008). In the first part of this research, we

compare the performance of the imperialist competitive algorithm (ICA) with that of the

particle swarm optimization (PSO) and the genetic algorithm (GA), with respect to well

 11

placement optimization. In the second part, we apply the imperialist competitive

algorithm (ICA) optimization algorithm on a sector of a Middle East reservoir, with the

objective of identifying the optimal well placement, configuration, type, and drilling

schedule for a waterflooding project while addressing the geological uncertainty

associated with the reservoir.

1.3 Dissertation Outline

The objective of this work is to examine the applicability and robustness of the

imperialist competitive algorithm (ICA) and benchmark its overall performance against

the genetic algorithm (GA) and particle swarm optimization (PSO). In section 2, we

present a detailed imperialist competitive algorithm (ICA) optimization algorithm and

describe the imperialist competitive algorithm (ICA) algorithm workflow along with an

overview of the genetic algorithm (GA) and particle swarm optimization (PSO)

algorithms used in this work. Since the imperialist competitive algorithm (ICA) is our

main optimization algorithm, we describe the algorithm workflow in detail and more

briefly describe the genetic algorithm (GA) and the particle swarm optimization (PSO).

In section 3, we consider the application of the imperialist competitive algorithm

(ICA), genetic algorithm (GA), and particle swarm optimization (PSO) in four cases. In

the first case, we optimize the well placement of a single vertical well in a 2-D

channeled reservoir. In the second case, we place a single horizontal well in a 3-D

channeled reservoir. In the third case, we simultaneously optimize the placement of

multiple vertical wells in a 2-D channeled reservoir. In the fourth case, we consider the

 12

optimized placement of multiple horizontal wells in a 3-D channeled reservoir. The

results from these cases reveal a better overall performance by the imperialist

competitive algorithm (ICA) compared to the genetic algorithm (GA) and the particle

swarm optimization (PSO).

In section 4, we perform a sensitivity analysis for the three main imperialist

competitive algorithm (ICA) operators: a) assimilation coefficient, b) assimilation angle

coefficient, and c) revolution ratio. We conduct the sensitivity analysis by varying the

value of one operator while fixing the values of the other two. We vary each operator

with five different values. Our results suggest that the best imperialist competitive

algorithm (ICA) operator combination depends on the problem at hand and were found

the operator values suggested by the researcher who developed the imperialist

competitive algorithm (ICA) algorithm to work well as a first guess.

In section 5, we apply the imperialist competitive algorithm (ICA) optimization

algorithm to a sector of a Middle East reservoir. In this example, we want to optimize

the number of wells, type of wells (injector/producer), configuration of wells

(vertical/horizontal), length of the wellbores, and the drilling schedule for a maximum of

ten wells to be drilled within a five-year window. We performed three optimization runs

with a maximum of fifty iterations and one optimization run with a maximum of one

hundred iterations. We achieved an approximately 5% increase in the net present value

(NPV). In sections 6 and 7, we draw our conclusions and describe our plans for future

work.

 13

2. OPTIMIZATION TOOLS

Optimization techniques can be defined as a set of systematic processes that

search for the set of optimization variables within the lower and upper limits of an

optimization problem that yields the most efficient variable values for a pre-determined

objective function. Depending on the nature of the optimization problem, the goal is to

maximize or minimize the objective function. Optimization techniques can be classified

into various groups (Nocedal and Wright, 1999). In this section, we present three of the

main optimization categories: a) global or local, b) stochastic or deterministic, and c)

constrained or unconstrained.

Local optimization techniques tend to show early convergence to local optima

and are considered to be faster than global optimization techniques. Two main

disadvantages of local optimization techniques are that convergence to local minima or

maxima depends on the initial guess and these techniques perform poorly when dealing

with non-smooth and multimodal objective functions (Abo-Hammour, 2002). Global

optimization techniques, on the other hand, better handle multimodal objective functions

and tend to explore the solution space in an attempt to find global optima. Imperialist

competitive algorithm (ICA), genetic algorithm (GA), and particle swarm optimization

(PSO) are considered to be metahueristic algorithms that search for global optima and,

hence, are more suitable for solving the well placement optimization problems presented

in our study.

Stochastic optimization techniques are techniques that depend on utilizing

 14

randomness operators to direct their searches to find optimum solutions. One major

advantage of stochastic optimization algorithms is their ability to explore and search

over a wider spectrum of the solution space through the introduction of sudden changes

in the search space that may help to identify better solutions. We note that with

stochastic optimization techniques, global optima are found in more than one direction

path even if the same initial guess is for several runs. On the other hand, deterministic

optimization techniques tend to follow the same direction path from the initial solution

guess to converge on an optimum solution, regardless of how many times it is repeated

(Spall, 2004). Imperialist competitive algorithm (ICA), genetic algorithm (GA), and

particle swarm optimization (PSO) are considered to be stochastic optimization

techniques.

Optimization problems are classified as constrained or unconstrained based on

the set of feasible solutions for a problem. Typically, most real physical problems

require that pre-determined constraints be set that include only feasible solutions. This

step is essential to avoid unnecessary optimization iterations and to produce a better

converged optimum solution. To do so, penalty functions are applied to disregard the

choice of infeasible solutions for further iteration. In our work, we use the penalty

approach for the imperialist competitive algorithm (ICA), genetic algorithm (GA), and

particle swarm optimization (PSO). Other approaches for dealing with infeasible

solutions can be found in the literature (Clerc, M., 2006; Zhang, W.J., et al., 2004).

The objective of this section is to present an overview of the three main

algorithms used throughout this study. These three algorithm techniques are: a) the

 15

imperialist competitive algorithm (ICA), genetic algorithm (GA), and particle swarm

optimization (PSO), all of which belong to the meta-heuristic algorithm group inspired

by natural phenomena and all utilize stochastic search techniques. Imperialist

competitive algorithm (ICA), genetic algorithm (GA), and particle swarm optimization

(PSO) are population-based algorithms wherein optimization starts with a population of

several possible solutions, and the goal of the optimization algorithm framework is to

continue to improve the population individuals to eventually evolve toward a better

solution.

There are a couple of advantages associated with using population-based

stochastic algorithms for well placement optimization problems. One advantage is that

the algorithms can be parallelized to accelerate the process of finding optimal solutions.

Another advantage is that the operating parameters include greedy and exploration

parameters that search both for near-best solutions and in random directions to avoid

getting trapped in local optima. They require no gradient calculations and hence they

perform better with complex and discontinuous objective functions. We present detailed

explanations of the imperialist competitive algorithm (ICA), genetic algorithm (GA),

and particle swarm optimization (PSO) in the sections below.

2.1 Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA), first introduced by Esmaeil

Atashpaz-Gargari (2007), is an evolutionary algorithm that mimics the competition

 16

between imperialist countries to control more colonies in order to strengthen their

empires through a process of imperialistic competition.

The imperialist competitive algorithm (ICA) process is similar to other

evolutionary algorithms in that it begins with an initial population, which in the

imperialist competitive algorithm (ICA) consists of countries. These countries are then

divided into two categories: imperialists and colonies. To generate empires, colonies are

distributed among the imperialists based on their relative strengths, as determined by a

pre-defined criterion. The empires then compete with each other to control more

colonies and expand their power. As this competition loops, stronger empires expand

their power by taking possession of weak colonies from weaker empires. This process is

repeated until a pre-defined stopping criterion is satisfied. A detailed description of the

steps involved in this algorithm is presented in the subsection below.

2.1.1 The Initiation of Empires

The initiation of empires starts with the creation of several arrays that contain

different problem variables (Pi). In imperialist competitive algorithm (ICA) terminology,

these arrays are called “countries”. Imperialist competitive algorithm (ICA) countries are

analogous to individuals in the genetic algorithm (GA). Any country can be defined as a

1 × number of variables (Nvar) array, for the purpose of cost function evaluation. A

country can be either an imperialist or a colony.

 (1)

 17

 (2)

Next, an initial population that consists of both imperialists Nimpr and colonies

Ncoln is generated to form the total population Npop. The formation of initial empires

starts by the assignment of colonies to the imperialists, based on the relative power of

the imperialists. The number of colonies an imperialist acquires is directionally

proportional to its power. This is achieved by normalizing the cost of each imperialist

(Cn) and then dividing this value by the total normalized cost of all the imperialists (Pn).

 (3)

 (4)

After the determination of the imperialists’ power, colonies are randomly

distributed among the imperialists to create empires. The number of colonies held by

each imperialist (N.Cn) is determined as follows:

 (5)

By the end of this process, several empires have been created, each with their

relative imperialists and colonies, as depicted in Fig. 1. For instance, as shown in Fig. 1,

five empires are represented by five different colors. The stars represent the imperialists

 18

and the circles represent the colonies. Imperialists and colonies of the same color

comprise one distinct empire. The larger the star (imperialist), the more powerful is the

empire.

Figure 1: Generation of initial empires. Stars (imperialists) and circles (colonies) of
the same color belong to one empire. The red empire is the most powerful as it has

more colonies. The stars and colonies represent potential solutions for well
placement in the 2-dimensional search space (X and Y are well coordinates)

2.1.2 Assimilation of Colonies

After the initiation of the empires, the next step is to move colonies toward their

respective imperialists. In this step, we move all colonies toward their imperialists by

moving x distance closer to the imperialist position. The distance x is chosen from a

 19

random distribution within the interval [0, d*(assimilation.coefficient)], as shown in Fig.

2. Also, to make the assimilation process more robust and effective, a deviation

parameter is assigned to the assimilation process to ensure a greater solution search

space.

Figure 2: Assimilation process

2.1.3 Revolution

After the colonies move toward their imperialists, some colonies are chosen to

participate in a revolution, which, in this case, involves a sudden change in the X and Y

coordinates of the well positions. This revolution process facilitates more search and

exploration activity in the solution space and thus prevents premature convergence. The

revolution process is analogous to mutation in the genetic algorithm (GA).

 20

2.1.4 Imperialist and Colonies Position Exchange

Next, the total power of each empire, which is the summation of its imperialist

and colonial powers, is evaluated in order to rank empires based on their lowest cost

functions. We note that an empire’s power is mainly affected by the power of its

imperialist and that the powers of colonies range from very low to almost negligible.

 (6)

where T.Cn is the total cost of an empire and ξ is a value less than 1. The use of ξ

assigns less importance to the colonies’ cost and makes the empire’s cost mainly

dependent on the cost of its imperialist.

 21

Figure 3: Imperialistic competition to take possession of the weakest colony (from

Atashpaz-Gargari, 2007)

Next, the empires are ready to participate in the main imperialist competitive

algorithm (ICA) process—imperialist competition. In this process, the empires compete

to take possession of the weakest colonies that belong to the weakest empires, as shown

in Fig. 3. The competition is initiated by assigning a possession probability to each

empire. The possession probability increases as an empire’s power increases (lowest

cost). To perform this process, first, a normalized total cost (N.T.Cn) is evaluated for

each empire. Then, each empire’s total normalized cost (N.T.Cn) is divided by the sum

of the total normalized cost of all the empires to obtain the possession probability for

each empire (Ppn):

 22

 (7)

 (8)

After evaluating the possession probability of each empire, three vectors are formed as

follows:

 P = [Pp1, Pp2, …., Ppn]

R = [r1, r2, …, rn] ; where r ~ U(0,1)

 D = P – R = [D1,…., Dn]

The weakest colony is then given to the empire with the maximum D index. Further

details are provided in the Appendix.

Figure 4 below summarizes the empire initiation, assimilation, revolution, and

exchange processes.

 23

Figure 4: a) Initiation of empires, b) assimilation process, c) revolution process, and

d) position swapping process

.

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

 24

The competitive process repeats and iterates until meeting a pre-determined

stopping criterion or until only one empire exists. Fig. 5 shows an imperialist

competitive algorithm (ICA) algorithm flowchart that summarizes the well placement

process. For a more detailed description of the imperialist competitive algorithm (ICA)

algorithm process, the reader is advised to refer to the original paper by Esmaeil

Atashpaz-Gargari (2007).

 25

Figure 5: ICA algorithm flowchart

 26

2.2 Genetic Algorithm

The genetic algorithm (GA) is a stochastic meta-heuristic algorithm technique that

mimics the natural phenomena of population selection and evolution. The main concept

of the genetic algorithm (GA) is the survival of the fittest individual. This occurs by

selecting the fittest parents and then mating those parents to generate new offspring. The

two operators responsible for producing the new generation are selection and

reproduction. Then, some of these offspring undergo some genetic alteration, which

occurs by mutation, which is the third operator. There are two main genetic algorithm

(GA) types: a) binary genetic algorithm (bGA) and b) continuous genetic algorithm

(cGA). The main difference between binary genetic algorithm (bGA) and continuous

genetic algorithm (cGA) is that in binary genetic algorithm (bGA) the variables are

coded as binary whereas in continuous genetic algorithm (cGA) the variables used are

real-valued numbers. In our study, we utilized continuous genetic algorithm (cGA) as

our genetic algorithm. A summary of the algorithm steps is as follows:

• Step 1: Set genetic algorithm (GA) parameters (number of individuals, crossover

factor, mutation factor, etc.)

• Step 2: Initialize the first generation consisting of N individuals with Nvar

chromosomes

• Step 3: Evaluate objective function for each individual

• Step 4: Select best chromosomes that will survive to next iteration (Elitism)

• Step 5: Select individuals that will be used as parents

 27

• Step 6: Apply crossover and mutation to produce new individuals

• Step 7: Reflect changes to the new generation

• Step 8: Repeat steps 3 to 7 until a stopping criterion is met

• Step 9: Return best solution (individual) and best objective value

Figure 6: GA algorithm flowchart

Define GA parameters (crossover, mutation,..etc)

Create initial population

Evaluate objective function

Choose individual as parent

Apply crossover and mutation

Stopping criteria met?

Report result

No

Yes

Define GA parameters (crossover, mutation,..etc)

Create initial population

Evaluate objective function

Choose individual as parent

Apply crossover and mutation

Stopping criteria met?

Report result

No

 initial

e objec

ossover

individ

ing cri

eport re

Yes

 28

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic meta-heuristic algorithm

technique that mimics how biological species, such as birds and fish, interact with each

other socially and cognitively. The algorithm was first developed by Eberhart and

Kennedy (1995). Like the imperialist competitive algorithm (ICA) and genetic algorithm

(GA), particle swarm optimization (PSO) demonstrates good capability to search for a

global solution while reducing the chances of being trapped in local optima. The particle

swarm optimization (PSO) optimization process starts by populating a set of possible

solutions that are referred as a “swarm” and which contain individual possible solution

“particles.” These particles move through the search space at each iteration. The

movement of the particles is based on the velocity given to each particle. The velocity of

each particle is determined by three components: a) inertial (the particle’s velocity in the

previous iteration), b) cognitive (the component responsible for moving the particle to

the best solution found by the particle itself), and c) social (the component responsible

for moving the particle to the best solution of all the particles). A summary of the

equations used to determine the velocity of each particle and the new position is as

follows:

 (9)

 (10)

 29

where v is the velocity; i denotes the particle; k denotes the iteration; ω, c1, and c2 are the

parameter weights; r1 and r2 are random numbers between 0 and 1; is the best position

found by the particle; y* is the best position found by all particles; and x is the particle

position. Below is a summary of the particle swarm optimization (PSO) optimization

workflow:

• Step 1: Set particle swarm optimization (PSO) parameters (number of population,

coefficients, inertia)

• Step 2: Initialize the particle velocities and positions.

• Step 3: Evaluate objective function for each particle

• Step 4: Update best position of particle if new position yields better solution

• Step 5: Update the global best fitness value (best solution of all particles)

• Step 6: Calculate the next velocity and position of each particle

• Step 7: Repeat steps 3 to 6 until a stopping criterion is met

• Step 8: Return best position and best objective value

 30

Figure 7: PSO algorithm flowchart

Define PSO parameters (particles, coefficients,..etc)

Create initial particles population

Evaluate objective function

Update particle’s best position

Calculate particles velocities

Stopping criteria met?

Report result

No

Yes

Define PSO parameters (particles, coefficients,..etc)

Create initial particles population

Evaluate objective function

Update particle’s best position

Calculate rticles velocities

Stopping criteria met?

Report result

No

ial part

e objec

e partic

article’

ing cri

eport re

Yes

 31

3. OPTIMIZATION RUNS AND RESULTS*

To apply the imperialist competitive algorithm (ICA) to our well placement

optimization problem, we used a MATLAB code that executes the imperialist

competitive algorithm (ICA) processes and interacts with a commercial simulator in

order to evaluate all cost functions. For instance, the MATLAB code performs the

imperialist competitive algorithm (ICA) steps until reaching the cost evaluation in which

optimized input parameters are fed to the reservoir simulator to evaluate the cumulative

oil production for a specific well placement position. In this part, we defined the

objective function as the cumulative oil production achieved after 21 years of

production.

Since the imperialist competitive algorithm (ICA), particle swarm optimization

(PSO), and genetic algorithm (GA) are stochastic in nature; the methodology used in this

part is a comparison of the performances of the imperialist competitive algorithm (ICA),

particle swarm optimization (PSO), and genetic algorithm (GA) with somewhat similar

algorithm parameters. For example, in all comparison cases, both algorithms were

assigned the same initial populations (well locations), similar stopping criteria (number

of simulation runs), and a similar number of optimization runs. Then, for the purpose of

* Reprinted with permission from “Well Placement Optimization Using Imperialist
Competitive Algorithm” by Mohammad Al Dossary & Hadi Nasrabadi, 2016. Journal of
Petroleum Science and Engineering, Vol. 147, P. 237 – 248. Copyright 2016 by Journal
of Petroleum Science and Engineering.

 32

comparison, we graphed the resulting optimization runs for each algorithm to illustrate

the average, best, and worst performances.

Moreover, the imperialist competitive algorithm (ICA), particle swarm

optimization (PSO), and genetic algorithm (GA) parameters used in our example cases

were similar to those used by Atashpaz-Gargari et. al., (2007), Hosseni et. al., (2014),

Onwunalu and Durlofsky (2010), Onwunalu, j. (2006), Yeten (2003) and Farshi (2008),

in order to eliminate the necessity of performing a parameters sensitivity analysis, since

these other authors have already done so. The imperialist competitive algorithm (ICA),

particle swarm optimization (PSO), and genetic algorithm (GA) parameters used for all

cases are summarized in Table 1, Table 2 and Table 3. A detailed explanation of the

performance of each algorithm is presented in the results section.

ICA Parameter Value

Number of Countries 30

Assimiliation Coefficient 2

Assimiliation Angle 0.5

Revolution Ratio 0.3

Number of Generations 50

Table 1: ICA parameters used for the optimization runs

 33

PSO Parameter Value

Number of Particles 30

Inertia Coefficient (ω) 0.721

Cognitive Parameter (C1) 1.193

Social Parameter (C2) 1.193

Number of Generations 50

Table 2: PSO parameters used for the optimization runs

GA Parameter Value

Population Size 30

Crossover Probability 0.8

Mutation Probability 0.05

Ranking Scale 2

Number of Generations 50

Table 3: GA parameters used for the optimization runs

 34

In this research, we used 2D and 3D synthetic channeled reservoir models. The

2D model was used for the placement of vertical wells, while the 3D model used for the

placement of horizontal wells. Table 4 and Table 5 summarize the input parameters for

each model and the pressure-volume-temperature (PVT) data used.

Vertical Well

(Channeled)

Horizontal Well

(Channeled)

Number of Grids 40 × 40 × 1 40 × 40 × 3

Each Grid Block Dimension (ft) 300 × 300 × 50 300 × 300 × 50

Permeability Range (md) 1 - 100 1 - 100

Porosity 0.25 0.25

Rock Compressibility (psi-1) 0.000003 0.000003

Initial Pressure (psi) 4800 4800

BHP Constraint (psi) 1000 1000

Total Production Time (yrs) 21 21

Initial Water Saturation 0.2 0.2

Initial Oil Saturation 0.8 0.8

Oil Density (Ib/ft3) 51.5 51.5

Table 4: Reservoir input parameters used in the reservoir models

 35

P Rs Bo Eg viso visg co

14.7 5.11 1.04 4.89 1.74 0.0119 3.E-05

146.1 29.37 1.05 49.51 1.52 0.0120 3.E-05

277.4 58.27 1.06 95.79 1.34 0.0122 3.E-05

671.6 159.03 1.10 244.99 0.97 0.0129 3.E-05

802.9 195.80 1.11 298.22 0.89 0.0132 3.E-05

1760 493.89 1.25 724.30 0.57 0.0164 2.E-05

3280 1037.2 1.53 1321.07 0.38 0.0237 1.E-05

4040 1331.0 1.69 1525.45 0.33 0.0272 8.E-06

4800 1636.2 1.87 1682.55 0.30 0.0304 7.E-06

Table 5: PVT data used in the reservoir models

3.1 Case 1 – Single Vertical Well Placement Optimization

The first imperialist competitive algorithm (ICA), particle swarm optimization

(PSO), and genetic algorithm (GA) optimization application was carried out with respect

to the placement of a single vertical well in a channeled reservoir where the permeability

distribution varies from 1– 100 md, as shown in Fig. 8. First, we performed an

exhaustive run in order to determine the cumulative oil production for each possible well

 36

location. With 40 × 40 grids, there were 1,600 possible well locations and hence 1,600

simulation runs. The resulting cumulative oil productions for this exhaustive run is

shown in Fig. 9. As can be seen from the graph, the objective function surface shows

many local maxima scattered throughout the model grid, which is due to the

heterogeneity of the subject reservoir model. Furthermore, we found the best cumulative

oil production to be 20,206 MSTB, which belongs to the grid that has x = 24 and y = 13

coordinates, Fig. 11. As such, we used this grid as a benchmark to test the overall ICA,

PSO and GA performances.

Figure 8: Permeability (md) distribution of the channeled reservoir (case 1)

 37

Figure 9: Objective function (cumulative oil production) surface for case 1

Fig. 10 shows a comparison of the cumulative oil production per number of

simulations for the imperialist competitive algorithm (ICA), particle swarm optimization

(PSO), and genetic algorithm (GA). For example, the black line represents the average

imperialist competitive algorithm (ICA) performance of 20 optimization runs, the blue

line represents the averaged particle swarm optimization (PSO) performance over 20

optimization runs, the red line represents the averaged genetic algorithm (GA)

performance of 20 optimization runs, and the green line represents the global optimum.

The graph clearly shows that the overall imperialist competitive algorithm (ICA) and

particle swarm optimization (PSO) performances are better than the overall genetic

 38

algorithm (GA) performance in converging to the global optimum. Also, both the

imperialist competitive algorithm (ICA) and particle swarm optimization (PSO) average

performances were able to find the best optimal solution (20,206 MSTB) that was

determined by the exhaustive run before reaching the stopping criterion (1000

simulation).

However, the genetic algorithm (GA) overall performance didn’t reach the

optimal solution by the end of 1000 simulations. The genetic algorithm (GA) resulting

maximum cumulative production was 19,650 MSTB. Interestingly, particle swarm

optimization (PSO) showed faster convergence rate especially in the first 100

simulations and towards the end of the simulation interval while the imperialist

competitive algorithm (ICA) performance exhibits more gradual increase towards the

end of the 1000 simulations. This was vividly evident when considering the individual

optimization runs where imperialist competitive algorithm (ICA) showed more

consistent individual runs compared to those of the particle swarm optimization (PSO)

where different runs exhibits high difference as some runs showed high performance

while other showed very poor performances. This differences in runs performances

made the averaged run to show high jumps with longer periods of flat areas.

 39

Figure 10: ICA, PSO and GA performances as a function of the number of

simulations for the single vertical well case

 40

Figure 11: Optimal well location for the single vertical well (yellow star represents

the well location)

3.2 Case 2 – Single Horizontal Well Placement Optimization

The second imperialist competitive algorithm (ICA), particle swarm optimization

(PSO), and genetic algorithm (GA) optimization application was applied to determine

the optimal well placement for a horizontal well. We used the same reservoir model as in

case 1 but with three horizontal layers, as depicted in Fig. 12. The optimized variables

for this problem were the x and y well coordinates and an extra variable that dictated the

well orientation. For example, in this case the length of the horizontal section was set to

 41

be 8 grids, which could be oriented in four different perpendicular directions, as shown

in Fig. 13. A physical constraint was induced in the algorithm so that no horizontal

section will violate the grids boundaries. If any unfeasible horizontal section is

encountered during the algorithm iterations, a penalty function is applied to this violating

solution. An exhaustive run was performed and it was found that the best solution

corresponds to x = 24, y = 21 and d (orientation) = 3 with a cumulative oil production of

78,842 MSTB, Fig. 15.

Figure 12: Permeability (md) distribution of the 3-layer channeled reservoir (case

2)

 42

Figure 13: Well directions and corresponding values used as an optimization

variable

Fig. 14 shows a comparison of the cumulative oil production per number of

simulations for the imperialist competitive algorithm (ICA), particle swarm optimization

(PSO), and genetic algorithm (GA). All three algorithms were run 20 times each and

then the averaged performances were plotted. The graph clearly shows that among the

three algorithms average performances, the overall imperialist competitive algorithm

(ICA) performed better and it resulted in the highest cumulative oil production (78,083

MSTB) at the end of the 1000 simulations. Also, it is worth pointing that even though

the averaged imperialist competitive algorithm (ICA) performance plotted did not reach

the optimal solution that was found by the exhaustive search, three of the twenty

imperialist competitive algorithm (ICA) optimization runs were able to converge to the

optimal solution before reaching to the 1000 simulations. Another interesting

observation that can be deduced from the graph is that the imperialist competitive

algorithm (ICA) curve tends to increase in a more gradual pace, which is an indication

 43

that the imperialist competitive algorithm (ICA) can handle the problem of premature

convergence by exploring other search space, and hence continue searching with being

trapped to local optimal solutions. The resulting maximum cumulative oil production for

the particle swarm optimization (PSO) and genetic algorithm (GA) was 75,416 MSTB

and 74,083 MSTB, respectively. Moreover, the particle swarm optimization (PSO)

performed better than the genetic algorithm (GA) in terms of both convergence rate as

well as final optimal solution.

Figure 14: ICA, PSO and GA performances as a function of the number of

simulations for case 2

 44

Figure 15: Optimal well location for the single horizontal well (yellow line

encompassed by the red circle)

3.3 Case 3 – Multiple Vertical Wells Placement Optimization

In this case, we considered the optimization of multiple vertical wells placement.

The optimization variables are x, y and n (number of wells). In this example, we set the

number of wells to be from one to no more than ten wells. Since we are including the

number of wells as a decision variable, we used the net present value (NPV) as the

 45

objective function that needed to be maximized. The economical parameters used to

calculate the NPV’s are similar to those used by Onwunalu and Durlofsky (2010). For

this case, we did not perform an exhaustive search, as we believed it would require too

many simulation runs and the previous two examples were sufficient to build the

confidence of the imperialist competitive algorithm (ICA) performance. Also, since we

are dealing with multiple wells, a minimum well distance constraint was induced to the

algorithm and a penalty function was assigned to any solution that does not honor this

constraint. Fig. 16 shows the overall performances of the three algorithms and again the

imperialist competitive algorithm (ICA) showed superiority among the others. For

instance, we found that for this case the imperialist competitive algorithm (ICA)

provided better solutions all the way from the beginning till the end of the 1000

simulation. Also, the imperialist competitive algorithm (ICA) solution evolvement is

gradual with continuous improving and no long flat periods, which may falsely suggest a

convergence. The best solution that resulted in the highest NPV was found by imperialist

competitive algorithm (ICA) to be three wells as can be seen in Fig. 17, which yielded a

NPV of $3.73×108 compared to NPV of $3.05×108 for particle swarm optimization

(PSO) and $2.85×108 for genetic algorithm (GA).

 46

Figure 16: ICA, PSO and GA performances as a function of the number of

simulations for case 3

 47

Figure 17: Optimal well locations for the multiple vertical wells case (yellow stars

represent the well locations)

 48

3.4 Case 4 – Multiple Horizontal Wells Placement Optimization

For the last case, we considered the optimization of multiple horizontal wells

placement. The optimization variables are x, y, d (orientation) and n (number of wells).

In this example, we set the number of wells to be from one to a maximum of six wells.

The objective function used for this example is the net present value (NPV). The

economical parameters used to calculate the NPV’s are similar to those used by

Onwunalu and Durlofsky (2010). Similar to the multiple vertical case above, we did not

perform an exhaustive search for the same reasons stated in case 3. For this case, we

induced three physical constraints to the algorithm. These constraints are: 1) a minimum

well distance of 1640 ft, 2) no crossing between wells’ mainbores, and 3) honoring the

model boundaries. Fig. 18 shows the overall performances of the three algorithms. The

results show that the imperialist competitive algorithm (ICA) achieved the highest NPV

of $1.67×109 while the particle swarm optimization (PSO) resulted in NPV of $1.59×109

and genetic algorithm (GA) resulted in NPV of $1.51×109. The best solution, which was

found by the imperialist competitive algorithm (ICA), is two horizontal wells as can be

seen in Fig. 19.

 49

Figure 18: ICA, PSO and GA performances as a function of the number of

simulations for case 4

 50

Figure 19: Optimal well locations for the multiple horizontal wells case (yellow lines

encompassed by the red circles)

 51

4. SENSITIVITY ANALYSIS OF ICA PARAMETERS*

After applying the imperialist competitive algorithm (ICA) to the above synthetic

reservoir model, we performed a sensitivity analysis on the imperialist competitive

algorithm (ICA) parameters to further test the effect of the imperialist competitive

algorithm (ICA) parameters on the quality of the solution evolvement. We chose three of

the main imperialist competitive algorithm (ICA) parameters for this sensitivity analysis,

including 1) the revolution ratio, 2) the assimilation coefficient, and 3) the assimilation

angle. The reason we chose these specific parameters is that they have similar

functionalities compared to genetic algorithm (GA) crossover and mutation operators. In

this sensitivity analysis, we performed optimization runs for each parameter while fixing

the value of the others. Each parameter was divided into five sets of values and each

value was used to perform five optimization runs. We averaged the results of these five

optimization runs for the purpose of comparison. For example, the revolution ratio

values were 0.3, 0.4, 0.5, 0.6, and 0.7. The analysis began by fixing the value of the

revolution ratio to be 0.3 while holding constant the other imperialist competitive

algorithm (ICA) parameters. Then, we plotted the average of the five optimization runs

using 0.3 as the revolution ratio value. The same process was carried out for the other

* Reprinted with permission from “Well Placement Optimization Using Imperialist
Competitive Algorithm” by Mohammad Al Dossary & Hadi Nasrabadi, 2016. Journal of
Petroleum Science and Engineering, Vol. 147, P. 237 – 248. Copyright 2016 by Journal
of Petroleum Science and Engineering.

 52

imperialist competitive algorithm (ICA) parameters (assimilation coefficient and

assimilation angle).

4.1 Revolution Ratio Parameter

The first imperialist competitive algorithm (ICA) parameter to be tuned, the

revolution ratio, is responsible for creating a sudden change in the positions of an

empire’s colonies. This parameter can be considered to be analogous to the GA’s

mutation parameter and is an important imperialist competitive algorithm (ICA)

parameter as it is responsible for broadening the exploration for new solutions and thus

avoiding pre-mature solution convergence. From a survey of the literature, we found the

recommended value for the revolution ratio to be between 0.2 to 0.3 (Atashpaz-Gargari

et. al., 2007; Hosseni et. al., 2014). We considered five different revolution ratio values

(0.3, 0.4, 0.5, 0.6, and 0.7). For each value, we performed five optimization runs in order

to decrease the effect of the stochastic nature of optimization.

We then compared and ranked the parameter sensitivity test results based on the

total average objective value, as shown in Fig. 20 and in Table 6.

Ranking Value

1 0.5

2 0.3

3 0.4

4 0.7

5 0.6

Table 6: Rankings of revolution ratio parameters

 53

Figure 20: ICA performance with five different revolution ratios for case 1

Based on the above figure and table, we found the best revolution ratio value for

0.5. This suggests that a mid-range revolution ratio would result in a balance between

exploration and exploitation of the solution space and hence better optimization

performance.

 54

4.2 Assimilation Coefficient Parameter

The second imperialist competitive algorithm (ICA) parameter to be tuned was

the assimilation coefficient, which plays a significant role during the assimilation

process when colonies move toward their imperialists. Based on a survey of the

literature, the recommended value for the assimilation coefficient is 2 (Atashpaz-Gargari

et. al., 2007; Hosseni et. al., 2014). Following the same methodology used for the

revolution ratio parameter, we examined five different assimilation coefficient values

(0.5, 2, 3, 4, and 5) and performed optimization runs for each value five times for the

single vertical well case. We then compared and ranked the parameter sensitivity test

results based on the total average objective values, as shown in Figs. 21 and in Table 7.

Based on the below figure and table, we found the best assimilation coefficient value to

be equal to 0.5.

Ranking Value

1 0.5

2 2

3 4

4 5

5 3

Table 7: Rankings of assimilation parameters

 55

Figure 21: ICA performance with five different assimilation coefficients for case 1

4.3 Assimilation Angle Parameter

The last imperialist competitive algorithm (ICA) parameter we considered in this

sensitivity analysis was the assimilation angle, which works as a deviation in the

assimilation process to ensure a broad search space and hence greater search

diversification. Based on a survey of the literature, the recommended value for the

assimilation angle is π/4 (Atashpaz-Gargari et. al., 2007; Hosseni et. al., 2014). We

examined five different assimilation angles (in radians) (0.3, 0.4, 0.5, 0.6, and 0.7) and

 56

performed optimization runs for each value five times for the single vertical case. We

then compared and ranked the parameter sensitivity test results based on the total

average objective values, as shown in Figs. 22 and in Table 8.

Ranking Value

1 0.4

2 0.5

3 0.7

4 0.6

5 0.3

Table 8: Rankings of assimilation angle parameters

 57

Figure 22: ICA performance with five different assimilation angles for case 1

The best assimilation angle value was found to be 0.4. Also, by examining the

above figures, we note that most of the differences between the sensitivity runs occurred

in the first 400 simulation runs after which the solutions tended to converge, and the

differences between the last objective functions are considered very small.

 58

5. APPLYING ICA TO A REAL FIELD EXAMPLE

After applying imperialist competitive algorithm (ICA) to multiple synthetic model

cases and given the fact that imperialist competitive algorithm (ICA) generally

performed better than particle swarm optimization (PSO) and genetic algorithm (GA) in

these examples, the next step is to investigate and analyze imperialist competitive

algorithm (ICA) performance with respect to a more complicated optimization problem

that deals with real field data and more optimization variables, such as well

configuration (vertical/directional), well type (producer/injector), number of wells, and

drilling schedule.

5.1 Problem Description and Approach

In this part of the study, our objective was to optimize the placement of a

maximum of ten wells to maximize the field production net present value (NPV). We

further complicated the problem by having the imperialist competitive algorithm (ICA)

optimization algorithm find the best optimization variable combination of well type

(producer/injector), well configuration (directional/vertical), well position, and well

drilling schedule (drill/no-drill). In this section, we first describe the reservoir model we

used. Then, we detail the objective function with respect to the chosen economic

parameters. Lastly, we present a detailed description of how the imperialist competitive

algorithm (ICA) algorithm interacts with the commercial simulator (CMG) to generate

an optimized solution.

 59

5.2 Reservoir Model Description

The model we used for this task is specific to a sector of a Middle Eastern

onshore carbonate reservoir that we hereafter refer to as ME1. ME1 extends over a 4.5

km by 1.6 km area and represents half of an anticlined structure, as shown in Fig. 23.

The field has three existing flank water injectors and eight producers that have been in

production for a total of five years. All wells are perforated in all five layers. We will

continue to use these control constraints for new infill wells subject to the well

placement optimization results of this study. The reservoir consists of five layers that

yield a total thickness of 160 ft. The average permeability of layers 1, 4, and 5 ranges

from 5 to 20 md, whereas the average permeability of layers 2 and 3 range from 150 to

600 md, as shown in Table 9. The porosity is correlated to the horizontal permeability,

which we calculated using Equation 11. We discretized the model by 49 × 40 × 5 for a

total of 9,800 grid blocks. This is a three-phase model with an initial pressure of 3,410

psi and undersaturated fluid with a bubble point pressure of 2,533 psi. The relative

permeability curve corresponds to that of a single rock type, as shown in Fig. 24, with no

capillary forces assumption. Table 10 provides a summary of other reservoir model

parameters.

 (11)

All existing and future wells considered in this model are subject to production

and injection control constraints. Producers are subject to a minimum bottomhole

 60

pressure of 1,000 psi and a maximum liquid production rate of 15,000 STB/d, as well as

control constraints. Injectors are subject to a maximum injection pressure of 3,500 psi

and a maximum injection rate of 15,000 STB/d as well control constraints. Table 11

shows the injector and producer well control constraints.

Figure 23: 3D view of ME1 reservoir model

 61

Figure 24: Relative permeability curve

Layer Minimum (md) Maximum (md)

1 5 20

2 250 600

3 150 450

4 2 10

5 2 10

Table 9: Permeability ranges of the ME1 layers

 62

Parameter Value

Grid size 49 × 40 × 5

Grid cell dimension 300 × 120 × 32 (ft)

Initial pressure 3,410 psi

Rock compressibility 0.5 × 10-5 psi-1

Oil density 52.36 Ibm/ft3

Gas density 0.061 Ibm/ft3

Water density 71.85 Ibm/ft3

Table 10: Reservoir model parameters

Control Type Value

Minimum bottom hole pressure (producer) 1000 psi

Maximum liquid production rate (producer) 15,000 STB/d

Maximum injection pressure (injector) 3,500 psi

Maximum injection rate (injector) 15,000 STB/d

Table 11: Injectors and producers well control constraints

 63

5.3 Real Field Infill Drilling Optimization

In this example, our objective is to optimize the placement of multiple producers

and injectors following a six-month drilling schedule for an existing field that has been

producing for five years. To implement this task, the proposed optimization variables

include: a) the well’s midpoint 3D coordinates, b) total well length, c) vertical well

distance between heel and toe, and d) the decision to drill or not (producer/injector)

every six months. The criteria for choosing these variables are that they: a) represent the

most critical and important well parameters that have the greatest impact on the desired

objective function (NPV), and b) are independent to reduce the number of required

variables. In this study, we established variable settings similar to those introduced by

Farshi (2008). The wells to be optimized are infill monobore producer/injector wells that

are drilled every six months. Fig. 25 illustrates the reservoir production time, including

the optimization infill drilling period.

Figure 25: Timeline for major field events

Existing 11 wells

2012 2017

1st Infill

2022

Last Infill

2040

End of sim. f

 64

5.4 Methodology For Code Implementation

To fully represent the wellbore trajectories, six variables are necessary, including

the well’s midpoint 3D coordinates (xmid, ymid, zmid), the total length of the wellbore

(Ltotal), the x-y rotation angle (θ), and the vertical distance between the well’s heel and

toe (Lz), which we use instead of the vertical azimuth angle as it is more easily

controlled with respect to the vertical reservoir model constraints. Fig. 26 depicts how a

well is modeled. In addition to these six variables, we added an extra variable regarding

the decision/type of the well (D). The D variable can be assigned one of three values

(0,1,2), which represent (no-drill, producer, injector). Following this methodology, we

can represent any well using just seven variables. With these seven variables, we can

also generate other dependent parameters, such as the heel and toe coordinates, and we

can then feed them, and the D variable to the simulator input file to initiate the

simulation. A summary of variable transformation equations are provided below:

 (12)

 (13)

 (14)

 65

 (15)

Figure 26: Well modeling representation in a 3D view

By utilizing the abovementioned seven variables, we can generate a full country

representation, as used in the imperialist competitive algorithm (ICA), as follows:

Country=[(xmiddle,ymiddle,zmiddle,Ltotal,Lz,θ, D)well1,..,(xmiddle,ymiddle,zmiddle,Ltotal,Lz,θ, D)welln]

Also, since the imperialist competitive algorithm (ICA) algorithm code interacts

with the CMG, we must fix from the beginning the maximum possible number of wells

to be considered in the optimization. This step is necessary to avoid complexity when

overwriting the simulator input file in each simulation run. In this study, we considered a

66

maximum number of 10 wells. Hence, the total number of optimization variable for each

country is as follows:

Number of variables (country) = Number of wells × 7 = Total of 70 variables

The code we used in this work is a modified version of that developed by

Esmaeil Atashpaz Gargari

(https://www.mathworks.com/matlabcentral/fileexchange/22046-imperialist-

competitive-algorithm--ica-). Although the imperialist competitive algorithm (ICA) code

developed by Esmaeil is typically used for solving mathematical functions, in order to

use the imperialist competitive algorithm (ICA) code for our well placement

optimization problem, a substantial modification was necessary. We applied most of

these modifications to the Main_ImperialistCompetitveAlgorithm.m,

GenerateNewCountry.m, and CostFunction.m files.

The Main_ImperialistCompetitveAlgorithm.m file is the MATLAB file

responsible for the implementation of the algorithm. In this file, the user enters the

number of optimization variables, the maximum and minimum limits of the optimization

variable values, the number of countries, the number of initial imperialists, the

assimilation coefficient, the assimilation angle coefficient, the revolution parameter, and

the maximum number of iterations. These pre-defined parameters are then fed to the

GenerateNewCountry.m.

In the GenerateNewCountry.m file, the countries are created, and the code uses

Equations 11, 12, 13, and 14 to generate the initial populations of the countries. This file

67

also implements a filter to check that the variables of all countries adhere to the lower

and upper limits of the optimization variables. For example, if a variable exceeds the

upper limit, its value will be set back to the maximum value of that specific variable.

The outcome of the GenerateNewCountry.m file is a matrix with the size Numbercountries

× Numbervariables. The MATLAB code for this file is presented below.

function NewCountry = GenerateNewCountry(NumOfCountries,ProblemParams)

 VarMinMatrix = repmat(ProblemParams.VarMin,NumOfCountries,1);

 VarMaxMatrix = repmat(ProblemParams.VarMax,NumOfCountries,1);

 Country = round((VarMaxMatrix - VarMinMatrix) .* rand(size(VarMinMatrix)) +

VarMinMatrix);

 angle = Country(:,[6:7:end]).*(pi/180);

 Country(:,6:7:end)=angle;

 Ang=angle;

 %calculating Lxy

 Ltot=Country(:,4:7:end);

 Lz=Country(:,5:7:end);

 Lxy=round((Ltot.^2-Lz.^2).^0.5);

 %calculating x heels

 Ncol=size(Country,2);

 Nwell=Ncol/7;

68

 xmid=Country(:,1:7:end);

 xh=xmid-round((Lxy.*sin(Ang)).*0.5);

 xt=xmid+round((Lxy.*cos(Ang)).*0.5);

 xh(xh<5)=5;

 xh(xh>35)=35;

 xt(xt<5)=5;

 xt(xt>35)=35;

 % calculating y heels

 ymid=Country(:,2:7:end);

 yh=ymid-round((Lxy.*sin(Ang)).*0.5);

 yt=ymid+round((Lxy.*cos(Ang)).*0.5);

 yh(yh<5)=5;

 yh(yh>35)=35;

 yt(yt<5)=5;

 yt(yt>35)=35;

 % calculating zheels

 zmid=Country(:,3:7:end);

 zh=round(zmid-(Lz.*0.5));

 zt=round(zmid+(Lz.*0.5));

 zh(zh<1)=1;

 zh(zh>7)=7;

 zt(zt<1)=1;

 69

 zt(zt>7)=7;

 D=Country(:,7:7:end);

 %xh=Country(:,1:6:end)-times(Country(:,4:6:end),sin((Country(:,6:6:end))));

 Ncol=size(Country,2);

 Nwell=Ncol/7;

 for i=1:Nwell

 Well{i}=[xh(:,i) yh(:,i) zh(:,i) xt(:,i) yt(:,i) zt(:,i) D(:,i)];

 end

 NewCountry=cell2mat(Well);

end

The cost function file is considered to be the soul of our modified imperialist

competitive algorithm (ICA). In this file, the imperialist competitive algorithm (ICA)

input parameters are conditioned to be made compatible for being run by CMG. After

the CMG input file is created, it is fed to the CMG execution file by calling a batch file,

which runs the model simulation to produce the CMG output file. Then, the code reads

the cumulative oil, gas, produced water, and injected water for each year and uses these

values to calculate the expected net present value (NPV). This process is repeated for all

countries for the five realizations and then the countries are ranked based on their

objective function values. The most difficult part of the code implementation is

conditioning the CMG input file to make it readable by the CMG. Since our optimization

 70

problem formulation consists of varying the number and length of the wells, we had to

ensure that the code would seamlessly loop through the full iterations. We did so by

fixing the maximum number of wells to be considered, in our work this was ten wells,

and fixing the maximum length a well could have. Below, we describe the main practical

implementations we used to overcome the abovementioned difficulties. We have

included only a part of the code of one well input file conditioning for illustration

purposes. For more code details, please refer to Appendix B.

%1st well input file modifications

S=floor(x(ii,[7:7:end]));

Nactive=nnz(S);

point11=x(ii,1:3);

point21=x(ii,4:6);

t=0:.1:1;

C=repmat(point11,length(t),1)';

Cbeforefinal=(point21-point11)'*t;

Cfinal=floor(C+Cbeforefinal)';

perf=unique(Cfinal,'rows','stable');

aa=size(perf,1);

bb=12-aa; % need change if you have different max number of perforations

filename = sprintf('%s%02d%s','realization',jj,'.dat'); %naming the file

fid = fopen(filename, 'r+');

71

Type1=x(ii,7);

if Type1==1 || Type1==0

 D='PRODUCER ';

 E='**COMP WATER';

 F='OPERATE MIN BHP 1000.0 CONT';

 O='OPERATE MAX STL 15000.0 CONT';

 G='FLOW-TO ';

elseif Type1==2

 D='INJECTOR MOBWEIGHT';

 E='INCOMP WATER';

 F='OPERATE MAX BHP 3500.0 CONT';

 O='OPERATE MAX STW 15000.0 CONT';

 G='FLOW-FROM';

end

%need for fseek and idx;

ww=fscanf(fid,'%c',Inf);

idx1 = strfind(ww, '**wl1');

fseek(fid, idx1+4, 'bof');

fprintf(fid, '\r\nDATE 2017 1 1\r\nWELL "Well01"\r\n%s

"Well01"\r\n%s\r\n%s\r\n%s\r\nGEOMETRY K 0.25 0.37 0.25 0.0\r\nPERF

GEOA "Well01"',D,E,F,O);

fprintf(fid, '\r\n %02d %02d %02d 1.0 OPEN %s "SURFACE"', perf(1,:),G);

 72

for i=2:aa

 fprintf(fid, '\r\n %02d %02d %02d 1.0 OPEN %s %02d', perf(i,:),G,i-1);

end

for i=1:bb

 fprintf(fid,'\r\n ************************************');

end

if Type1==0

 H='SHUTIN "Well01"';

else

 H='OPEN "Well01" ';

end

fprintf(fid,'\r\n%s',H);

fclose(fid);

 % end of 1st well modifications

 73

5.5 Net Present Value Formulation

As stated above, we determined the objective function (J) based on the

application of a robust optimization (RO) of the net present value (NPV) in each

realization. Hence, defining the economic parameters is crucial for the NPV calculations.

In order to find the net present value (NPV) for each potential solution, we ran a

simulation using CMG and converted the resulting oil, water, and gas production

profiles to dollar values along with the associated wells drilling costs. We calculated the

net present value (NPV) for each potential solution as follows:

 (16)

 (17)

where T is the total production time in years; Qt,o is the cumulative oil production (STB)

at time t; Qt,g is the cumulative gas production (SCF) at time t; Qt,wp is the cumulative

produced water (STB) at time t; Qt,wi is the cumulative injected water (STB) at time t; Po,

Pg, Pwp, and Pwi are the oil, gas, produced water, and injected water prices ($/STB),

respectively; r is the annual discount rate; and CDr is the cost to drill the wells, which

consists of the cost to drill the well to the top of the reservoir (Cn) and the cost to drill

the mainbore within the reservoir (Ln). We note that CDr is always taken as the

expenditure at t = 0. Table 12 summarizes the economic parameters we used to

determine the net present value (NPV).

 74

Parameter Value

Well drilling cost $ 12,500,000

Oil price $ 50/STB

Gas price $ 3.5/MSCF

Produced water cost $ 5/STB

Injected water cost $ 5/STB

Cost of drilling within the reservoir $ 1000/ft

Table 12: Economics parameters used in NPV calculations

5.6 Geological Uncertainty

One important aspect to consider when utilizing optimization techniques is the

extent of geological uncertainty and how it affects the optimization solution. Typically,

geological uncertainties are reduced either by taking additional measurements of the

uncertain parameters or by considering different scenarios that capture the parameter

uncertainty ranges. One technique used to model uncertainty is the robust optimization

(RO) technique. Van Essen et al. (2009) reduced the impact of uncertainty associated

with field development by utilizing the concept of robust optimization. In their work, the

authors chose a set of geological scenarios that reflect the geological uncertainties of the

reservoir and utilized this set when calculating the net present value (NPV).

75

The robust optimization (RO) objective can be represented in different ways. For

example, the most straightforward way is to identify the expected outcomes for a set of

geological realizations. Different robust optimization (RO) objectives can take into

consideration the variance in the outcomes or the worst case scenario. In our study, we

were interested in establishing the expected net present value (J) over a set of five

equiprobable geological realizations (θd), which we generated using a Gaussian

geostatistical simulation method. This robust optimization (RO) technique takes into

account the mean and standard deviation of the outcomes. Our goal is to determine the

expected net present value (J) for the optimized variables (x) over the set of geological

realizations (θd). Equations 18 and 19 summarize how we calculated the expected net

present value (J):

(18)

 (19)

5.7 Real Field Example Results

As stated above, our goal in this example is to optimize the field infill drilling by

finding an improved combination of producers and injectors that will yield a higher

NPV. The field under optimization is an existing field that has eight producers and three

injectors and has been operating for a total of five years. We made some assumptions in

this case. First, we assumed that only one rig is available for drilling, that the drilling

 76

time for drilling one well is six months, and that the rig is available only for 5 years. In

other words, this rig is available to drill a well only every six months. Second, any new

well will follow the same production and injection constraints of existing wells. Third,

the minimum distance between any new and existing well is 500 feet. We set the starting

time for drilling infill wells to January 1st, 2017 and the ending time to December 31st,

2022. The end of simulation time is January 1st, 2040.

 Since we have seven variables representing each well and we assume that we

can establish up to a maximum of ten wells, the total number of optimization variables is

seventy. In this example, we use a total forty initial countries and five geological

realizations. This equates to two hundred simulations for one algorithm iteration

(decade). Table 13 lists the imperialist competitive algorithm (ICA) parameters used in

this example.

ICA Parameter Value

Number of Countries 40

Assimiliation Coefficient 2

Assimiliation Angle 0.5

Revolution Ratio 0.3

Number of Generations 40

Table 13: ICA parameters used for this example

 77

Fig. 27 shows the results of three optimization runs along with the average of the

three. The highest yielding expected net present value (J) corresponds to the Opt 3 run,

which yielded a total of $7.42 × 109, corresponding to a 4.4% increase from the first

iteration. The Opt 3 configuration has one injector and six producers. By examining the

Opt 3 well distribution, we found the injector to be more of a vertical well placed in the

upper left corner of the reservoir, as shown in Fig. 28. This might be considered to be

non-intuitive as we had expected the injector to be located in the lower flank of the

reservoir. However, since our optimization problem is concerned with maximizing the

NPV based on the abovementioned assumptions, this result is reasonable in light of our

goal to maximize oil production for the five years of drilling time (from 2017 to 2022).

To further validate this result, Figs. 29, 30, 31, 32, and 33 show the saturation

profiles of each of the five layers. We can clearly see that layers 2 and 3 are almost 50%

swept and the placement of the injector in the upper right corner yielded better sweep.

 78

Figure 27: ICA performance of three runs and their average

 79

Figure 28: Final well locations and configurations for Opt 3 run. The blue font

corresponds to the injector and the red to the producers. The numbers associated

with I and P indicate the drilling schedule sequence

P1

P4

P5

P7

P8

I3

P2

 80

Figure 29: Oil saturation for Opt 3 at the end of the simulation for layer 1

 81

Figure 30: Oil saturation for Opt 3 at the end of the simulation for layer 2

 82

Figure 31: Oil saturation for Opt 3 at the end of the simulation for layer 3

 83

Figure 32: Oil saturation for Opt 3 at the end of the simulation for layer 4

 84

Figure 33: Oil saturation for Opt 3 at the end of the simulation for layer 5

 85

Also, in this part, we examined the imperialist competitive algorithm (ICA)

performance in a longer optimization run. In the previous example, we made a total of

8,000 simulation runs. Here, we increase the total number of simulation runs to 20,000

to yield an increase in the total expected net present value (J) of $7.53 × 109, which

corresponds to a 5.9% increase from the first iteration, as shown in Fig. 34. Also, in this

run, two injectors were placed in the upper part of the reservoir, following a pattern

similar to that in the previous example. However, the number of producers was reduced

to four mainly horizontal wells that are spread around the middle of the reservoir, as

shown in Fig. 35. All the producers are perforated from layers 1 to 4. Fig. 36, 37, 38, 39,

and 40 show better sweep compared to the previous example

Figure 34: ICA performance for 100 iterations

 86

Figure 35: Final well locations and configurations for 100-iteration run. The blue

font corresponds to the injector and the red to the producers. The numbers

associated with I and P indicate the drilling schedule sequence

P7

I6 I10

P2

P4

P1

 87

Figure 36: Oil saturation for the 100-iteration run at the end of the simulation for

layer 1

 88

Figure 37: Oil saturation for the 100-iteration run at the end of the simulation for

layer 2

 89

Figure 38: Oil saturation for the 100-iteration run at the end of the simulation for

layer 3

 90

Figure 39: Oil saturation for the 100-iteration run at the end of the simulation for

layer 4

 91

Figure 40: Oil saturation for the 100-iteration run at the end of the simulation for

layer 5

 92

Figure 41: Optimum well configurations at various optimization iterations: a)

iteration 20, b) iteration 40, c) iteration 60, and d) iteration 80

P9

P1
P10

P6

P7
P5

I2

I3

I6

P2

P8

P9 P5

P1

I1

I8

I4

P2

P9

P5

P2

P6

P3

I7
I8

 93

As can be seen from Fig. 41, at iteration 20 the optimization algorithm suggested

the drilling of one injector and seven producers. By closely examining the well

configurations and distribution through the field, we can deduce that the wells show an

almost equal spacing between new wells and existing ones. Also, the injector is placed

at the top of the reservoir away from the center of the reservoir where most of the

producer wells are placed. At iteration 40, the optimization algorithm improved the

expected net present value (NPV) by placing two injectors and five producers. The wells

distribution resulted of this iteration showed increased spacing between new and existing

wells. Also, the two injectors were placed far from each other in different reservoir areas

which improves oil sweep efficiency in these areas. At iteration 60, the algorithm

suggested drilling three injectors and three producers. Here, we can see that total number

of wells has been reduced to six wells compared to seven wells. Injectors I1 and I4 were

placed at the top of the reservoir that helps push more oil from that area towards the new

and existing production wells. Although, injector I8 was placed near the middle of the

reservoir next to existing and new wells (P5 and P9), the overall expected net present

value (NPV) was improved. This may be attributed to the fact that the other injectors (I1

and I4) were placed far from the existing and new producers that resulted in delayed

water breakthroughs in the other producers. At iteration 80, the optimization algorithm

suggested an improved expected net present value (NPV) with a total of five wells (two

injectors and three producers). At this iteration, we can see that the injectors were placed

in the upper part of the reservoir. By examining this iteration’s well distribution, it is

evident that the injectors are placed away from the producers that delayed water

 94

breakthrough. Also, the new producers (P2, P3 and P6) are placed far from each other.

This reduces the interference effect between the producers. At the end of the

optimization algorithm, the final wells distribution was similar to the wells distribution

at iteration 80 in terms of total number of new wells (five: two injectors and three

producers). However, the well distribution at the 100th iteration clearly shows better well

spacing between the injectors and the producers. Fig. 42 shows during the iterations the

optimization algorithm kept improving the placement of the wells in the most permeable

zones, while placing the injectors in the upper part of the reservoir far away from the

existing and the four new producer wells. This resulted in the most optimal solution at

iteration 100.

Throughout the optimization process, the algorithm is trying to find a case that

maintains reservoir pressure, maximize oil sweep and reduce water cycling while

minimizing the number of wells required. The location of injectors seems to be critical to

this process. As the number of iterations increases, the idea of placing injectors in mid-

field are abandoned and the optimization process seem to favor the top portion of the

reservoir for the location of injectors. This makes sense because by injecting water away

from the producers we are restricting the decline of reservoir pressure while delaying

water cut. As for producers, the optimization process seems to favor long horizontal

wells placed in the most permeable top layers of the reservoir to increase oil production

while reducing water encroachment (see kh variation in Fig. 42). The optimized

locations are found to be either in the middle of reservoir flanked by injectors from both

 95

the top and the bottom of the reservoir or in the unswept and undeveloped areas of the

reservoir.

Figure 42: Change in the optimum number/type of wells and total kh along the well

path at various optimization iterations

 96

6. SUMMARY AND CONCLUSION

As the demand for oil has continued to grow, over the past decade many

researchers have worked to identify new ways to effectively develop oil and gas fields.

One important aspect of this effort has been to identify effective and robust optimization

techniques to solve well placement optimization problems. Stochastic optimization

techniques have been applied to oil field development and show promising results. In

this study, we examined the effectiveness of applying imperialist competitive algorithm

(ICA) as an optimization tool by comparing its results with those of the well-known

genetic algorithm (GA) and particle swarm optimization (PSO) techniques. Our results

show that, overall, imperialist competitive algorithm (ICA) performed better than both

the genetic algorithm (GA) and particle swarm optimization (PSO) in four synthetic

reservoir models in which we had optimized the well placement and number of

producers to be drilled to maximize the NPV. In addition, to further test the ICA

optimization technique, we applied the ICA to a sector of a Middle East reservoir (ME1)

to optimize the well types (producer/injector) and well configuration

(vertical/horizontal). We present our major findings and conclusions below:

• The results show that the imperialist competitive algorithm (ICA) achieved better

convergence to the global optimum, thereby supporting the utilization of the

imperialist competitive algorithm (ICA) as a viable option for well placement

optimization.

 97

• The results of our sensitivity analyzes with respect to three important parameters

(revolution ratio, assimilation coefficient, and assimilation angle) show that the

recommended imperialist competitive algorithm (ICA) default parameters in our

examples generally led to acceptable performances. However, to obtain optimum

performance, we recommend tuning the three main imperialist competitive

algorithm (ICA) parameters to address specific optimization problems.

• We accounted for geological uncertainty by utilizing a set of five geological

realizations and took the expected net present value (J) as the objective function.

By applying a robust optimization (RO) formula, we calculated the expected net

present value (J), which can represent the optimization performance when

applied to any of the five realizations.

• We performed three optimization runs for the real field example and presented

the best optimized solution, which suggested drilling with one injector and six

producers. We further examined the effectiveness of the final optimized solution

by referring to the saturation profile of the ME1 reservoir, which indicates that

this well distribution would yield good sweep, especially in the more permeable

layers (layers 2 and 3).

• In a final optimization run for the ME1 field, we ran the optimization algorithm

for a longer simulation time (20,000 runs), which yielded a better final optimized

solution by the use of two injectors and four producers for a better expected net

present value (J).

 98

• By analyzing the evolvement of optimization iterations, it is clear that the

optimization algorithm is searching for an optimized well configuration that

maintains reservoir pressure, maximize oil sweep and reduce water injection

while minimizing the number of wells required. This was achieved by placing

two injectors at the top of the reservoir (away from the producers) and placing

four long horizontal producers in the middle of the reservoir in areas that exhibit

high permeability.

 99

7. FUTURE WORK

• To further enhance the imperialist competitive algorithm (ICA) optimization

performance in field development, we recommend that an optimization workflow be

generated that takes into account real-time data acquisition coupled with the

optimization method to achieve a more realistic optimum solution. One approach

could be to apply a closed-loop field development strategy whereby the models are

updated each time a well is drilled.

• To reduce the simulation computation time, we suggest the utilization of surrogate

models to replace the required simulation model runs.

• To further enhance the overall performance of the imperialist competitive algorithm

(ICA) optimization framework with respect to well placement, it would be beneficial

for the framework to couple well placement with the optimization of well control

parameters (flow rates/bottomhole pressures).

• To generate a multiobjective Pareto surface, this work can be extended to

multiobjective problems that include additional objectives such as watercut and the

recovery factor.

• In this work, we considered the well placement of producers and injectors in a

waterflood project. In future work, other recovery methods such as steam-assisted

gravity drainage and gas injection could be considered.

 100

REFERENCES

Abo-Hammour, Z.S., 2002, “Advanced Continuous Genetic Algorithms and their

applications in the motion planning of robot manipulators and the numerical solution

of boundary value problems”, Ph.D. thesis, Quaid-i-Azam University, Islamabad,

Pakistan.

Al Dossary, M. & Nasrabadi, H., 2016. Well Placement Optimization Using Imperialist

Competitive Algorithm. Journal of Petroleum Science and Engineering, Vol. 147, P.

237 – 248.

Atashpaz-Gargari, E., & Lucas, C., 2007. Imperialist Competitive Algorithm: An

Algorithm for Optimization Inspired by Imperialistic Competition. IEEE Congress on

Evolutionary Computation, 4661–4667.

Bangerth, W., Klie, H., Wheeler, M.F., Stoffa, P.L., Sen, M.K., 2006. On Optimization

Algorithms for the Reservoir Oil Well Placement Problem. Comput. Geosci. 10, 303-

319.

Beckner, B.L., Song, X., 1995. Field Development Planning Using Simulated Annealing

- Optimal Economic Well Scheduling and Placement, SPE Annual Technical

Conference and Exhibition Dallas, Texas.

Bittencourt, A.C., Horne, R.N., 1997. Reservoir Development and Design Optimization,

SPE Annual Technical Conference and Exhibition San Antonio, Texas.

 101

Castineira, D., Alpak, F.O., 2009. Automatic Well Placement Optimization in a

Channelized Turbidite Reservoir Using Adjoint Based Sensitivities, SPE Reservoir

Simulation Symposium The Woodlands, Texas.

Chunduru, R.K., Sen, M., Stoffa, P.: Hybrid optimization methods for geophysical

inversion. Geophysics 62, 1196–1207 (1997)

Clerc, M.: Particle Swarm Optimization. iSTE, London (2006)

D. A. Cameron and L. J. Durlofsky. Optimization of well placement, CO2 injec- tion

rates, and brine cycling for geological carbon sequestration. International Journal of

Greenhouse Gas Control, 10:100–112, 2012.

Devine, M.D., Lesso, W.G., 1972. Models for Minimum Cost Development of Offshore

Oil Fields. Manage. Sci. B Appl. 18, B378-B387.

Dogru, S., 1987. Selection of Optimal Platform Locations. SPE Drilling Eng. 2. 382 –

386.

Eberhardt, R.C., Kennedy, J.: A new optimizer using parti- cle swarm theory. In:

Proceedings of the 6th International Symposium on Micromachine and Human

Science, pp. 39–43 (1995)

Eeg, O.S., Herring, T., 1997. Combining Linear Programming and Reservoir Simulation

to Optimize Asset Value, SPE Production Operations Symposium OklahomaCity,

Oklahoma.

 102

Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C.,

Vellasco, M.M.B.R., 2009. Well Placement Optimization Using a Genetic Algorithm

with Nonlinear Constraints, SPE Reservoir Simulation Symposium The Woodlands,

Texas, USA.

Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, West

Sussex (2005)

Farshi, M.M., 2008. Improving Genetic Algorithms for Optimum Well Placement.

Master’s Thesis, Stanford University.

Forouzanfar, F., Li, G., Reynolds, A.C., 2010. A Two-Stage Well Placement

Optimization Method Based on Adjoint Gradient, SPE Annual Technical Conference

and Exhibition Florence, Italy.

Franstrom, K.L., Litvak, M.L.: Automatic simulation algo- rithm for appraisal of future

infill development potential of Prudhoe Bay. Paper SPE 59374 presented at the 2000

SPE/DOE Improved Oil Recovery Symposium, Tulsa, 3–5 April 2000

Garcia-Diaz, J.C., Startzman, R., Hogg, G.L., 1996. A New Methodology for

Minimizing Investment in the Development of Offshore Fields. SPE Prod. Facil. 11.

22 – 29.

Goldberg, D.E.: Genetic Algorithms in Search, Optimiza- tion, and Machine Learning.

Addison-Wesley, Reading (2004)

 103

Guyaguler, B., Horne, R.N.: Uncertainty assessment of well placement optimization.

SPE Reservoir Evaluation & Engi- neering, pp. 24–32 (2004)

H. Wang, D. Echeverr ́ıa Ciaurri, L. J. Durlofsky, and A. Cominelli. Optimal well

placement under uncertainty using a retrospective optimization framework. SPE

Journal, 17(1):112–121, 2012.

Handels, M., Zandvliet, M.J., Brouwer, D.R., Jasen, J.D. Adjoint-based well placement

optimization under production constraints. SPE Reservoir Simulation Symposium.

The Woodlands, TX, 2007.

Hansen, P., Pedrosa, E.D., Ribeiro, C.C., 1992. Location and Sizing of Offshore

Platforms for Oil-exploration. Eur. J. Oper. Res. 58, 202-214.

Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley, New York

(2004)

Helwig, S., Wanka, R.: Theoretical analysis of initial par- ticle swarm behavior. In:

Proceedings of the 10th Interna- tional Conference on Parallel Problem Solving from

Nature (PPSN08), pp. 889–898. Springer, Dortmund (2008)

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. University

of Michigan Press, Ann Arbor.

 104

Hosseini, S., Al Khaled, A. A Survey on the Imperialist Competitive Algorithm

Metaheuristic: Implementation in Engineering Domain and Directions for Future

Research. Applied Soft Computing 24 (2014), 1078-1094.

Iyer, R.R., Grossmann, I.E., Vasantharajan, S., Cullick, A.S., 1998. Optimal Planning

and Scheduling of Offshore Oil Field Infrastructure Investment and Operations. Ind.

Eng. Chem. Res. 37, 1380-1397.

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. In: 1995 IEEE

International Conference on Neural Networks Proceedings, vols. 1-6, 1942-1948.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by Simulated Annealing.

Science 220, 671-680.

Litvak, M., Gane, B., Williams, G., Mansfield, M., Angert, P., Macdonald, C.,

McMurray, L., Skinner, R., Walker, G.J.: Field development optimization technology.

Paper SPE 106426 presented at the 2007 SPE Reservoir Simulation Sym- posium,

Houston, 26–28 February 2007

Lizon, C., D’Ambrosio, C., Liberti, L., Le Ravalec, M., and Sinoquet, D. (2014). A

mixed-integer nonlinear optimization approach for well placement and geometry. In

ECMOR XIV-14th European conference on the mathematics of oil recovery.

M.A. Ahmadi, M. Ebadi, A. Shokrollahi, S.M.J. Majidi, 2013. Evolving artificial neural

network and imperialist competitive algorithm for prediction oil flow rate of the

reservoir. Appl Soft Comput, 13, pp. 1085–1098

 105

Mattot, L.S., Rabideau, A.J., Craig J.R.: Pump-and-treat optimization using analytic

element method flow models. Adv. Water Resour. 29, 760–775 (2006)

Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press (1996)

Montes, G., Bartolome, P., Udias, A.L., 2001. The Use of Genetic Algorithms in Well

Placement Optimization, SPE Latin American and Caribbean Petroleum Engineering

Conference Buenos Aires, Argentina.

Nasrabadi, H., Morales, A., Zhu, D. 2012. Well Placement Optimization: A survey with

Special Focus on Application for Gas/Gas-condensate Reservoirs. Journal of Natural

Gas Science and Engineering, Vol. 5, 6-16.

Nocedal, J. and Wright, S.J., 1999, “Numerical Optimization”, Springer, New York.

Norrena, K.P., Deutsch, C.V., 2002. Automatic Determination of Well Placement

Subject to Geostatistical and Economic Constraints, SPE International Thermal

Operations and Heavy Oil Symposium and International Horizontal Well Technology

Conference Calgary, Alberta, Canada.

Onwunalu, J., 2006. Optimization of Nonconventional Well Placement Using Genetic

Algorithms and Statistical Proxy. Master’s Thesis, Stanford University.

Onwunalu, J.E., Durlofsky, L.J., 2010. Application of a Particle Swarm Optimization

Algorithm for Determining Optimum Well Location and Type. Comput. Geosci. 14,

183-198.

 106

Rajabioun, R., Atashpaz-Gargari, E., & Lucas, C., 2008. Colonial Competitive

Algorithm as a Tool for Nash Equilibrium Point Achievement. Lecture Notes in

Computer Science, 5073, 680–695.

Rigot, V., 2003. New Well Optimization in Mature Fields. Master’s Thesis. Stanford

University.

Rosenwald, G.W., Green, D.W., 1974. A Method for Determining the Optimum

Location of Wells in a Reservoir Using Mixed-integer Programming. SPE J. 14, 44-

54.

Sarma, P., Chen, W.H., 2008. Efficient Well Placement Optimization with Gradient-

based Algorithms and Adjoint Models, Intelligent Energy Conference and Exhibition

Amsterdam, The Netherlands.

Sen, M., Stoffa, P.: Global Optimization Methods in Geo- physical Inversion. Elsevier

(1995)

Sepehri Rad, H., & Lucas, C., 2008. Application of Imperialistic Competition Algorithm

in Recommender Systems. In 13th international CSI computer conference

(CSICC’08), Kish Island, Iran.

Shi, Y., Eberhardt, R.C.: A modified particle swarm opti- mizer. In: Proceedings of the

1998 IEEE International Con- ference on Evolutionary Computation, pp. 69–73.

IEEE, New York (1998)

 107

Spall, J.C., 2004, “Stochastic Optimization”, in Handbook of Computational Statistics (J.

Gentle, W. Hardle, and Y. Mori, eds.), Springer−Verlag, New York, pp. 169−197.

Spall, J.C., Introduction to Stochastic Search and Optimiza- tion: Estimation, Simulation

and Control. Wiley, New Jersey (2003)

Spall, J.C.: An overview of the simultaneous perturbation method for efficient

optimization. John Hopkins APL Tech. Dig. 19(4), 482–492 (1998)

Sullivan, J., 1982. A Computer-model for Planning the Development of an Offshore

Gas-field. J. Petrol. Technol. 34, 1555-1564.

Tupac, Y.J., Faletti, L., Pacheco, M.A.C., Vellasco, M.M.B.R.: Evolutionary

optimization of oil field development. Paper SPE 107552 presented at the 2007 SPE

Digital Energy Con- ference and Exhibition, Houston, 11–12 April 2007

V. Artus, L. J. Durlofsky, J. E. Onwunalu, and K. Aziz. Optimization of non-

conventional wells under uncertainty using statistical proxies. Computational

Geosciences, 10(4):389–404, 2006.

Van den Heever, S.A., Grossmann, I.E., 2000. An Iterative Aggregation/Disaggregation

Approach for the Solution of a Mixed-integer Nonlinear Oilfield Infrastructure

Planning Model. Ind. Eng. Chem. Res. 39, 1955-1971.

108

Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jasen, J.D.

Robust waterflooding optimization of multiple geological scenarios. SPE-102913-PA.

SPE Journal, Vol.14, 202-210, 2009.

Vlemmix, S., Joosten, G.J.P., Brouwer, R., Jansen, J.-D., 2009. Adjoint-Based Well

Trajectory Optimization, EUROPEC/EAGE Conference and Exhibition Amsterdam,

The Netherlands.

Wang, C., Li, G., Reynolds, A.C., 2007. Optimal Well Placement for Production

Optimization, Eastern Regional Meeting Lexington, Kentucky USA.

Watson Jr., W.S., Mahaffey, D.W., Still, J.P., Taylor, R.D., 1989. PLATLOC: a Program

for Optimizing Offshore Platform Locations, Petroleum Computer Conference San

Antonio, Texas.

Williams, G.J.J., Mansfield, M., Macdonald, D.G., Bush, M.D.: Top-down reservoir

modeling. Paper SPE 89974 pre- sented at the 2004 SPE Annual Technical

Conference and Exhibition, Houston, 26–29 September 2004

Yasari, E., Pishvaie, M.R., Khorasheh, F., Salahshoor, K. Application of multi-criterion

robust optimization in water-flooding of oil reservoir. Journal of Petroleum Science

and Engineering 109, 1-11, 2013.

Yeten, B., Durlofsky, L.J., Aziz, K., 2003. Optimization of Nonconventional Well Type,

Location, and Trajectory. SPE J. 8., 200 – 210.

Zandvliet, M.J., Handels, M., van Essen, G.M., Brouwer, D.R., Jansen, J.D.: Adjoint-

109

based well-placement optimization under production constraints. SPE J. 13(4), 392–

399 (2008)

Zhang, F., Reynolds, A.: Optimization algorithms for auto- matic history matching of

production data. In: 8th European Conference on the Mathematics of Oil Recovery,

ECMOR, Freiberg, Germany, EAGE, September 2002

Zhang, W.J., Xie, X.F., Bi, D.C.: Handling boundary con- straints for numerical

optimization by particle swarm flying in periodic search space. In: IEEE Congress

on Evolution- ary Computation, vol. 2, pp. 2307–2311. IEEE, Piscataway (2004)

110

APPENDIX A

DETAILS OF ICA APPLICATION FOR WELL PLACEMENT

In this section, we show step-by-step how the ICA was utilized for well

placement optimization and further clarify how a solution evolves through the algorithm

process. Regarding methodology, here we apply the ICA in a simplified reservoir model

to provide the reader with a clear explanation and to minimize any confusion. We detail

the ICA implementation for well placement optimization below:

A.1 The Initiation of Empires

The first step is to define the countries, which in this example refer to the well

positions. For example, we start by having ten countries (two of which are imperialists

and the remaining eight colonies), which consist of two variables to be optimized (the x

and y coordinates). The initial positions of the countries are as follows:

Country = =

Country1

Country2

.

.

.

.

.
Country10

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

14 9
5 34
8 15
5 7
36 32
22 3
15 3
21 1
32 3
11 12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 111

The next step is to calculate the cost of each country by calling the commercial

simulator from the MATLAB code to calculate the cumulative oil production for each

well’s position (country). Then, the countries are sorted in descending order, and the two

countries with the highest cumulative oil productions are chosen as the imperialists.

Cost = F(Country) = =

In this case, the imperialists are the countries that have the (X ,Y) coordinates of

(8, 15) and (22,3). The remaining countries (colonies) are distributed between the two

empires based on the relative power of each. The number of colonies an empire can

possess is directly proportional to its power. In this example, there are only two

imperialists. The distribution of colonies among the imperialists begins by calculating

the costs of the imperialists and then determining the normalized costs using Equation

(3), as provided in the main text of this dissertation:

Nimp = 2, Ncol = 8, c1 = -23,715, c2 = -22,480;

f (8,15)

f (22,3)

f (15,3)

f (32,3)

f (5,34)

f (36,32)

f (21,1)

f (11,12)

f (14, 9)

f (5, 7)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−23, 715

−22, 480

−21, 452

−21,206

−20, 744

−20,348

−20,049

−19,216

−16,308

−13, 733

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 112

C1 = -23,715 – (-22,480) = -1,235 ; C2 = -22,480 – (-22,480) = 0

Next, the power of each imperialist is calculated based on Equation (4):

p1 = = 0.51 ; p2 = = 0.49

After determining of the power of the two imperialists, the remaining eight

colonies are randomly distributed between them to create two empires. The number of

colonies each of the imperialists possess is determined by Equation (5):

N.C1 = round(0.51*8) = 4 ; N.C2 = round(0.49*8) = 4

The results indicate that each empire possesses four colonies. The initiation of

the empires is now complete and the algorithm is ready for the next step, which is the

assimilation process.

A.2 Assimilation of Colonies

After the initiation of the empires, the next step is to move colonies toward their

respective imperialists. In this step, we move all colonies toward their imperialists by

moving an x distance closer to the imperialist position. The distance x is chosen from a

random distribution within an interval of [0, d*(assimilation.coefficient)]. Also, to make

113

the assimilation process more robust and effective, a deviation parameter is assigned to

the assimilation process, to ensure a greater solution search space.

A.3 Revolution

After the colonies move toward their imperialists, some colonies are chosen for

revolution, which, in this case, involves a sudden change in the X and Y coordinates of

the well positions. This revolution process provides for more search and exploration of

the solution space and thus prevents pre-mature convergence. The revolution process is

analogous to mutation in the GA.

A.4 Imperialist and Colonies Position Exchange:

After the colonies complete the assimilation and revolution processes, the new

colonies’ positions (wells’ X and Y coordinates) are used to calculate their new cost

functions (cumulative oil production). Then, the cost functions (cumulative oil

production) of the colonies are compared with those of their relative imperialist. If any

colony is found to have a better cost function than its imperialist, then the imperialist

exchanges its position with that of the colony. Fig.15 below summarizes the empire

initiation, assimilation, revolution, and exchange processes.

 114

Figure A-1: a) Initiation of empires, b) assimilation process, c) revolution process,

and d) position swapping process

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

115

A.5 Competition between Empires:

In this step, competition is initiated between the empires, whereby the

imperialists compete in order to take possession of the weakest colonies of the weakest

empires. This process begins by calculating the power of each empire, which is

predominantly a function of its imperialist power but is also a small function of the

colonies’ mean power, as shown by Equation (6). Next, the competition begins between

the empires to overtake the weakest colony of the weakest empire. To do so, the

normalized total cost (NTCn) of each empire is calculated using Equation (7). Then, the

probability of each empire taking possession of this weakest colony is calculated using

Equation (8). Finally, the empire with the greatest power and possession probability

conquers this colony. Below, we provide a simplified example showing the steps just

described.

1) The total cost of each empire is calculated using Equation (6) and the resulting total

costs are shown as follows:

Total cost of empire 1 (TC1) = -24511

Total cost of empire 2 (TC2) = -22568

Total cost of empire 3 (TC3) = -21033

2) The normalized cost of each empire is calculated using Equation (7) as follows:

Normalized cost of empire 1 (NTC1) = -24511-(-21033) = -3478

Normalized cost of empire 2 (NTC2) = -22568-(-21033) = -1535

Normalized cost of empire 3 (NTC3) = -21033-(-21033) = 0

116

3) The possession probability of each empire is calculated using equation (8):

Possession probability of empire 1 (Pp1) = = 0.69

Possession probability of empire 2 (Pp2) = = 0.31

Possession probability of empire 2 (Pp3) = = 0.00

Next, the P, R, and D vectors (as defined in the main text of this dissertation) are

determined to assign the weakest colony to the empire with the highest D index. Here,

vector P = [0.69, 0.31, 0], vector R = [0.53, 0.11, 0.79], and vector D = [0.16, 0.2, -

0.79]. So, in this example, the colony will be possessed by empire number 2. Fig. 16

shows the collapse of the weakest colony and its possession by the second strongest

empire (green empire) as follows:

Figure A-2: Collapse of weakest empire and possession of colonies by stronger

empire: a) before the possession process, b) after the possession process.

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

G
ri

d’
s

N
um

be
r

in
 Y

 d
ir

ec
ti

on

Grid’s Number in X direction

117

APPENDIX B

The full ICA code that was used in this work was implemented through

MATLAB 2014 version. The full ICA code is included in a folder and it is intended to

be allowed for public usage. Should you need to get a copy of the entire files that were

associated with the ICA code, please do not hesitate to contact the authors.

Mohammad Al Dossary

mohada@tamu.edu

Dr. Hadi Nasrabadi

Hadi.nasrabadi@tamu.edu

118

APPENDIX C

INPUT FILE USED FOR MULTIPLE HORIZONTAL WELL PLACEMENT

INUNIT FIELD

WSRF WELL 1

WSRF GRID TIME

WSRF SECTOR TIME

OUTSRF WELL LAYER NONE

OUTSRF RES ALL

OUTSRF GRID SO SG SW PRES OILPOT BPP SSPRES WINFLUX

WPRN GRID 0

OUTPRN GRID NONE

OUTPRN RES NONE

**$ Distance units: ft

RESULTS XOFFSET 0.0000

RESULTS YOFFSET 0.0000

**$ (DEGREES)

RESULTS ROTATION 0.0000 ** (DEGREES)

RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0

119

**$

**$ Definition of fundamental cartesian grid

**$

GRID VARI 40 40 3

KDIR DOWN

DI IVAR

 40*300

DJ JVAR

 40*300

DK ALL

 4800*50

DTOP

 1600*2000

PERMJ EQUALSI

PERMK EQUALSI

**$ Property: NULL Blocks Max: 1 Min: 1

**$ 0 = null block, 1 = active block

NULL CON 1

 120

POR ALL

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616

 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697

121

 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616

 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301

 122

 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097

 123

 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773

 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493

 124

 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616

 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512

 125

 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715

 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616

 126

 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959

 127

 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045

 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684

 128

 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413

 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007

 129

 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616

 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301

 130

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697

 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616

 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414

 131

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301

 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616

 132

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097

 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773

 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937

 133

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493

 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616

 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433

 134

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512

 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715

 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097

 135

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616

 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959

 136

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959

 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045

 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959

 137

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684

 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413

 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128

 138

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007

 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616

 139

 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697

 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616

 140

 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301

 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345

 141

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097

 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773

 142

 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493

 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616

 143

 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512

 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715

 144

 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616

 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959

 145

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959

 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045

 146

 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684

 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413

 147

 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007

 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332

**$ Property: Permeability I (md) Max: 100 Min: 1

PERMI ALL

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22

 148

1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54

 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10

2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64

 149

 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28

94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30

 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1

 150

89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87

 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27

90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19

 151

 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2

2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1

 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99

 152

2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2

2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1

 153

 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1

21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45

 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1

 154

97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2

 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1

81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97

 155

 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22

1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54

 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10

 156

2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64

 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28

94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30

 157

 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1

89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87

 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27

 158

90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19

 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2

2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1

 159

 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99

2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2

 160

2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1

 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1

21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45

 161

 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1

97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2

 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1

 162

81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97

 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22

1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54

 163

 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10

2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64

 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28

 164

94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30

 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1

89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87

 165

 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27

90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19

 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2

 166

2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1

 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99

2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21

 167

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2

2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1

 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1

 168

21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45

 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1

97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2

 169

 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1

81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97

 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19

**$ Property: Pinchout Array Max: 1 Min: 1

**$ 0 = pinched block, 1 = active block

PINCHOUTARRAY CON 1

PRPOR 4800

CPOR 3e-6

MODEL BLACKOIL

TRES 140

 170

PVT EG 1

**$ p Rs Bo Eg viso visg co

 14.696 5.10911 1.03681 4.89173 1.74377 0.0118885 3e-005

 80.3829 16.4175 1.04107 27.0004 1.63191 0.0119408 3e-005

 146.07 29.3692 1.046 49.5142 1.52382 0.0120096 3e-005

 211.757 43.4031 1.05142 72.4411 1.42512 0.0120897 3e-005

 277.444 58.2658 1.05723 95.7885 1.33659 0.0121792 3e-005

 343.131 73.8084 1.06337 119.563 1.25762 0.0122775 3e-005

 408.818 89.9316 1.06983 143.77 1.1872 0.012384 3e-005

 474.505 106.564 1.07656 168.414 1.12425 0.0124985 3e-005

 540.191 123.651 1.08356 193.498 1.06781 0.0126209 3e-005

 605.878 141.15 1.09081 219.022 1.017 0.0127513 3e-005

 671.565 159.027 1.09829 244.986 0.971078 0.0128896 3e-005

 737.252 177.253 1.106 271.387 0.929409 0.0130359 3e-005

 802.939 195.803 1.11393 298.217 0.891451 0.0131904 3e-005

 868.626 214.657 1.12206 325.469 0.856743 0.0133531 3e-005

 934.313 233.798 1.1304 353.13 0.824896 0.0135242 3e-005

 1000 253.209 1.13893 381.184 0.795574 0.0137038 3e-005

 1760 493.893 1.25026 724.3 0.572387 0.0163979 2.45755e-005

 2520 757.168 1.38146 1053.67 0.45555 0.0199521 1.54197e-005

 3280 1037.28 1.52935 1321.07 0.383003 0.0237034 1.09554e-005

 171

 4040 1331.01 1.69188 1525.45 0.333177 0.0272185 8.36273e-006

 4800 1636.27 1.86761 1682.55 0.296617 0.0303767 6.68949e-006

GRAVITY GAS 0.7

REFPW 4800

DENSITY WATER 62.6005

BWI 1.00377

CW 2.74599e-006

VWI 0.516363

CVW 0

**$ Property: PVT Type Max: 1 Min: 1

PTYPE CON 1

DENSITY OIL 51.4561

ROCKFLUID

RPT 1

**$ Sw krw krow

SWT

 0 0 1

 0.2 0 1

 1 1 0

**$ Sl krg krog

SLT

 0 1 0

 172

 0.2 1 0

 1 0 1

INITIAL

USER_INPUT

**$ Property: Pressure (psi) Max: 4800 Min: 4800

PRES CON 4800

**$ Property: Bubble Point Pressure (psi) Max: 0 Min: 0

PB CON 0

**$ Property: Oil Saturation Max: 0.8 Min: 0.8

SO CON 0.8

**$ Property: Water Saturation Max: 0.2 Min: 0.2

SW CON 0.2

NUMERICAL

RUN

DATE 2012 1 1

**$

WELL 'Well-1'

PRODUCER 'Well-1'

OPERATE MIN BHP 1000. CONT

** UBA ff Status Connection

** rad geofac wfrac skin

 173

GEOMETRY K 0.25 0.37 1.0 0.0

PERF GEOA 'Well-1'

** UBA ff Status mohada1

36 28 1 1.0 OPEN FLOW-TO 'SURFACE' REFLAYER

36 29 2 1.0 OPEN FLOW-TO 1

36 30 2 1.0 OPEN FLOW-TO 2

36 31 2 1.0 OPEN FLOW-TO 3

36 32 2 1.0 OPEN FLOW-TO 4

36 33 2 1.0 OPEN FLOW-TO 5

36 34 2 1.0 OPEN FLOW-TO 6

36 35 2 1.0 OPEN FLOW-TO 7

36 36 2 1.0 OPEN FLOW-TO 8

**$

**

WELL 'Well-2'

PRODUCER 'Well-2'

OPERATE MIN BHP 1000.0 CONT

** rad geofac wfrac skin

GEOMETRY K 0.25 0.37 1.0 0.0

PERF GEOA 'Well-2'

** UBA ff Status mohada2

06 10 1 1.0 OPEN FLOW-TO 'SURFACE' REFLAYER

 174

06 11 2 1.0 OPEN FLOW-TO 1

06 12 2 1.0 OPEN FLOW-TO 2

06 13 2 1.0 OPEN FLOW-TO 3

06 14 2 1.0 OPEN FLOW-TO 4

06 15 2 1.0 OPEN FLOW-TO 5

06 16 2 1.0 OPEN FLOW-TO 6

06 17 2 1.0 OPEN FLOW-TO 7

06 18 2 1.0 OPEN FLOW-TO 8

**$

**

WELL 'Well-3'

PRODUCER 'Well-3'

OPERATE MIN BHP 1000.0 CONT

** rad geofac wfrac skin

GEOMETRY K 0.25 0.37 1.0 0.0

PERF GEOA 'Well-3'

** UBA ff Status mohada3

06 36 1 1.0 OPEN FLOW-TO 'SURFACE' REFLAYER

07 36 2 1.0 OPEN FLOW-TO 1

08 36 2 1.0 OPEN FLOW-TO 2

09 36 2 1.0 OPEN FLOW-TO 3

10 36 2 1.0 OPEN FLOW-TO 4

 175

11 36 2 1.0 OPEN FLOW-TO 5

12 36 2 1.0 OPEN FLOW-TO 6

13 36 2 1.0 OPEN FLOW-TO 7

14 36 2 1.0 OPEN FLOW-TO 8

**$

**

WELL 'Well-4'

PRODUCER 'Well-4'

OPERATE MIN BHP 1000.0 CONT

** rad geofac wfrac skin

GEOMETRY K 0.25 0.37 1.0 0.0

PERF GEOA 'Well-4'

** UBA ff Status mohada4

28 06 1 1.0 OPEN FLOW-TO 'SURFACE' REFLAYER

29 06 2 1.0 OPEN FLOW-TO 1

30 06 2 1.0 OPEN FLOW-TO 2

31 06 2 1.0 OPEN FLOW-TO 3

32 06 2 1.0 OPEN FLOW-TO 4

33 06 2 1.0 OPEN FLOW-TO 5

34 06 2 1.0 OPEN FLOW-TO 6

35 06 2 1.0 OPEN FLOW-TO 7

36 06 2 1.0 OPEN FLOW-TO 8

 176

DATE 2032 1 1.00000

STOP

