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ABSTRACT 

 

Understanding the creep properties of gas shales at elevated temperatures is critical 

for accurately predicting reservoir performance and assessing the effect of viscous 

behavior on closure rate, production rate, and conductivity loss. In order to better 

understand creep properties at in-situ conditions, a quantitative relationship between 

temperature, mechanical properties, and complex chemo-physical mechanisms that causes 

thermal alteration needs to be obtained. In this study, elastic, strength, and creep properties 

of organic-rich shales are investigated by a combination of nanoindentation, energy 

dispersive x-ray spectroscopy, and micromechanical modeling over a range of 

temperatures (23-350ᵒC). In particular, elastic and strength properties are extracted 

through nanoindentation between temperatures of 23-350ᵒC and creep properties are 

measured similarly between temperatures of 23-300ᵒC. Within the allotted temperature 

range, the elastic and strength properties of the porous clay/kerogen phase remains 

unchanged due to the highly mature organic matter and low water content present within 

the matrix. A similar behavior is noticed in the creep modulus from temperatures 23-200ᵒC 

where it remains relatively unchanged and shows an isotropic characteristic. However, the 

creep modulus of the clay phase increases at 300ᵒC in both parallel and perpendicular 

directions to the bedding plane. In addition, the indentation modulus and hardness increase 

at 300ᵒC are a result of the enhancement of particle sliding and compaction of clay 

particles due to the transformation of organic matter to hydrocarbons. Analysis of the 

creep data obtained in this experimental effort sheds light on the dictating role of organic 
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matter and porosity on creep properties of organic-rich shales and emphasizes the pivotal 

role of organic matter in the time-dependent response. Specifically, the isotropic increase 

also suggests that the isotropic phases, which are organic matter and porosity, play an 

important role in driving creep properties in shales. Evaluation of the probability density 

functions (PDF) of the contact creep modulus suggests that a bimodal distribution occurs 

between temperatures of 23-200ᵒC which corresponds to two different modes: the 

clay/kerogen mode (mode I) and the porous clay mode (mode II). However, at 300ᵒC, a 

unimodal trend exists that aligns closely with mode II, indicating that it is only linked to 

the porous clay phase rather than the clay/kerogen mode. 
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NOMENCLATURE 

 

𝐴̇ Angstroms 

𝐴𝑐 Projected Contact Area 

𝐴1 Constant 1 

𝐴2 Constant 2 

𝐴𝑢 Projected Contact radius 

β Shales relaxation/retardation constant 

B Empirical Constant/Compliance Constant 

BIC Bayesian Information Criteria 

C Celsius 

𝐶𝑖 Contact Creep Modulus 

𝐶𝑢 Uniaxial Creep Modulus 

𝐶ℎ𝑜𝑚 Homogenized Stiffness Tensor 

EDX Energy Dispersive X-ray Spectroscopy 

𝜀 Geometric Constant 

E Elastic young’s modulus of the material (same as 𝐸𝑜) 

𝜀𝑐 Creep Strain 

𝐸𝑜 Elastic young’s modulus of the material 

𝐸1 Magnitude of time-dependent penetration 

𝐸𝑖 Indentation Elastic Modulus (diamond) 

𝐸𝑟 Reduced Modulus 
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𝑓𝑘 Overall Fraction of Kerogen 

𝑓𝑐 Overall Fraction of Clay 

G Shear Modulus 

h Displacement 

ℎ𝑐 Contact height 

ℎ𝑚𝑎𝑥 Maximum height 

H Indentation Hardness 

ℎ̇(𝑡) Rate of Penetration of Tip during Creep Phase 

∆ℎ(𝑡) Penetration depth After Creep Phase 

J(t) Contact Creep Compliance 

𝑘 Material constant 

K Bulk Modulus 

𝐿̇(𝑡) Contact Creep Compliance Rate 

𝑀𝑒𝑞/𝑔 Cation Exchange Capacity (milli-equivalents per gram) 

𝑚2/𝑔 Specific surface area of 1 gram of clay in m2 

M Indentation Modulus 

𝑀𝑜 Indentation Modulus 

𝑛 Material constant/Power-law Exponent 

𝜂𝑐 Volume Fraction of Clay 

𝜂𝑘 Volume Fraction of Kerogen 

𝑝 Material constant 

P Load 
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ϕ Porosity (Level II) 

ϕ𝑘+𝑐 Porosity of Kerogen and Clay 

φ Porosity (Level I) 

𝑃𝑚𝑎𝑥 Average Pressure Applied onto probe 

𝜌𝑇𝑂𝐶  Density of TOC 

𝜌𝐵𝑈𝐿𝐾  Bulk Density of Sample 

S Contact Stiffness 

SEM Scanning Electron Microscope 

𝜎 Stress 

SSA Specific Surface Area 

TOC Total Organic Content 

𝜏𝑖 Characteristic Time from Indentation Testing  

𝜏𝑢 Characteristic Time from Uniaxial Testing  

𝜐 Poisson’s Ratio (material) 

𝑣𝑖 Poisson’s Ratio (diamond) 

XRD X-ray Diffraction Spectroscopy 



 

ix 

 

CONTRIBUTORS AND FUNDING SOURCES 

Contributors 

 This work was supported by a thesis committee consisting of Professors Sara 

Abedi and Eduardo Gildin of the Department of Petroleum Engineering and Professor 

Arash Noshadravan of the Department of Civil Engineering. 

All work for the thesis was completed by the student, in collaboration with 

Professor Sara Abedi of the Department of Petroleum Engineering. 

Funding Sources 

This work was made possible in part by the Harold Vance Department of 

Petroleum Engineering, Texas A&M University. 



 

x 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

NOMENCLATURE .......................................................................................................... vi 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. ix 

TABLE OF CONTENTS ................................................................................................... x 

LIST OF FIGURES ........................................................................................................ xiii 

LIST OF TABLES ....................................................................................................... xviii 

CHAPTER I  INTRODUCTION ....................................................................................... 1 

1.1 Shales in petroleum engineering .............................................................................. 1 

1.2 Creep of shales ......................................................................................................... 2 
1.3 The challenges of measuring creep in shales ........................................................... 2 
1.4 The possibilities of creep measurements using nanoindentation ............................. 3 

1.5 Scope of the work and its novelty ............................................................................ 3 
1.6 Outline of this thesis ................................................................................................. 5 

CHAPTER II  LITERATURE REVIEW ........................................................................... 6 

2.1 Multi-scale structure thought model ........................................................................ 6 

2.1.1 Level 0: Elementary clay particles .................................................................... 8 
2.1.2 Level I: Porous organic/clay composite ............................................................ 9 
2.1.3 Level II: Textured clay layer composite ............................................................ 9 

2.2 Description of clays present within shales ............................................................. 11 
2.2.1 Clay minerals ................................................................................................... 15 
2.2.2 Specific surface area ........................................................................................ 20 

2.3 Introduction and theory of creep ............................................................................ 21 

2.4 Creep testing on shales and a summary of results: macroscopic level................... 24 
2.5 Creep testing on shales and a summary of results: microscopic level ................... 28 
2.6 Temperature testing and mechanical properties of shales ...................................... 34 



 

xi 

 

2.7 Reservoir temperatures of shales............................................................................ 39 
2.8 Chapter summary ................................................................................................... 40 

CHAPTER III MATERIALS AND METHODS ............................................................. 42 

3.1 Sample preparation ................................................................................................. 42 

3.2 Porosity, XRD, TOC, rock eval and thermogravimetry ......................................... 46 
3.2.1 Shale sample .................................................................................................... 46 
3.2.2 Composition of Haynesville (XRD results) .................................................... 46 
3.2.3 Porosity calculations ........................................................................................ 48 
3.2.4 TOC and rock eval results ............................................................................... 51 

3.2.5 Thermogravimetry ........................................................................................... 52 

3.3 Nanoindentation ..................................................................................................... 54 

3.3.1 Background and introduction to nanoindentation ........................................... 54 
3.3.2 Indentation modulus ........................................................................................ 58 
3.3.3 Indentation hardness ........................................................................................ 61 
3.3.4 Contact creep modulus .................................................................................... 62 

3.3.5 Standard transducer, NanoDMA III transdsucer, and experimental 

parameters ................................................................................................................ 65 

3.3.6 Loading or replacing the diamond tip ............................................................. 68 
3.3.7 Tip to optics calibration ................................................................................... 69 
3.3.8 Air indent calibration ....................................................................................... 70 

3.3.9 Cleaning the tip and standard sample .............................................................. 70 
3.3.10 Tip calibration ............................................................................................... 71 

3.3.11 Indentation at elevated temperatures ............................................................. 72 
3.4 SEM and EDX ........................................................................................................ 77 

3.5 Coupling nanoindentation and EDX results ........................................................... 81 
3.6 Model-based clustering for chemo-mechanical characterization ........................... 83 

3.7 Chapter summary ................................................................................................... 88 

CHAPTER IV RESULTS AND DISCUSSION .............................................................. 89 

4.1 Effect of temperature on elasticity and strength properties: short-duration 

nanoindentation ............................................................................................................ 89 
4.2 Post creep elasticity and strength ........................................................................... 95 
4.3 Creep rate from nanoindentation .......................................................................... 101 
4.4 Thermogravimetry ................................................................................................ 103 

4.5 The role of organic matter and porosity: bimodal trend....................................... 105 
4.6 Summary of results............................................................................................... 112 

4.7 Chapter summary ................................................................................................. 115 

CHAPTER V CONCLUSION AND SIGNIFICANCE ................................................. 116 

5.1 Conclusion ............................................................................................................ 116 
5.2 Significance .......................................................................................................... 117 



xii 

REFERENCES ............................................................................................................... 119 

APPENDIX A ................................................................................................................ 129 

APPENDIX B ................................................................................................................ 133 

APPENDIX C ................................................................................................................ 136 

APPENDIX D ................................................................................................................ 160 



 

xiii 

 

LIST OF FIGURES 

 Page 

Figure 1 – Multiscale thought model proposed by Abedi et al., (2016) where Level 0 

corresponds to the clay minerals (10-9 to 10-8), Level 1 corresponds to the 

porous organic/clay composite (10-7 to 10-6), and Level II corresponds to the 

porous solid-silt inclusion composite (10-4 to 10-3) (Abedi, et al., 2015). .......... 7 

Figure 2 – A) TEM image of smectite fabric; scale bar = 1µm (Byrant, et al., 1990). 

B) Level I image obtained under a SEM (Ortega, et al., 2009) and C) Level 

0 image obtained under a TEM (Deirieh, et al., 2011). ...................................... 8 

Figure 3 – Backscattered Electron (BSE) image of Haynesville shale (X1-direction, 

23C) taken on a Cameca SX Five Electron Microprobe; 1 = Dolomite 

(Mg+Ca), 2 = Pyrite (Fe+S), 3 = Quartz (Si), 4 = Feldspar (Si+Al+Na), 5 = 

Apatite (P+Ca), 6 = Carbonate (Ca), and 7 = Kerogen. ................................... 10 

Figure 4 – Schematic of a single tetrahedral sheet composed of four oxygen atoms 

(anions) and one silicon atom (cation). ............................................................. 12 

Figure 5 – Schematic of a tetrahedral sheet connected by oxygen atoms. ....................... 12 

Figure 6 – A simplified diagram of a tetrahedral sheet. ................................................... 12 

Figure 7 – Schematic of a single octahedral sheet composed of six oxygen atoms 

(anions), two hydroxyl atoms (anions), and one silicon atom (cation). ........... 13 

Figure 8 – Schematic of an octahedral sheet connected by oxygen atoms. ..................... 14 

Figure 9 – A simplified diagram of an octahedral sheet. ................................................. 14 

Figure 10 – Structural diagram of the four major clay groups: kaolinite, smectite, 

illite, and chlorite. ............................................................................................. 15 

Figure 11 – Intact kaolinite in a pore system obtained under a Scanning Electron 

Microscope (Hayatdavoudi, et al., 1996). ......................................................... 16 

Figure 12 – Intact Na-montmorillonite in a pore system obtained under a Scanning 

Electron Microscope (Keller et al., 1986). ....................................................... 18 

Figure 13 – Intact illite in a pore system obtained under a Scanning Electron 

Microscope; image dimension: 7.5µm (Mitchell, 1993, taken from Tovey 

1971). ................................................................................................................ 19 



xiv 

Figure 14 – Elastic deformation after proppant embedment (Revised from Guo, 

2012). ................................................................................................................ 21 

Figure 15 – The three stages of creep observed in materials (Findley et al., 1976). ........ 23 

Figure 16 – The creep and recovery trend of metals and plastics (Findley et al., 1976). 23 

Figure 17 – A histogram distribution of the constitutive parameter E_1, the time-

dependent penetration, for 30 second tests showing the trimodal distribution 

representing low-density C-S-H, high-density C-S-H, and ultra-high density 

C-S-H (Jones and Grasley, 2010). .................................................................... 32 

Figure 18 – Maps of reduced modulus at 25ᵒC (top) and 150ᵒC (bottom) where the 

conversion of Bitumen is much greater (becomes softer) and Kerogen 

remains relatively the same in comparison (Emmanuel, et al., 2016). ............. 36 

Figure 19 – Bedding planes illustrated in both parallel (left) and perpendicular 

(normal) (right) directions. ............................................................................... 44 

Figure 20 – (A) Eagle ford outcrop sample depicting the direction of bedding plane, 

(B) Buehler diamond saw machine, (C) Buehler grinding machine (located

at Materials Characterization Facility, Texas A&M University), (D) Buehler

diamond suspension (25μm), (E) Branson ultra-sonic water bath with mesh,

(F) polishing glass surface, (G) Buehler TexMet polishing pads, and (H)

finished sample surface. .................................................................................... 45 

Figure 21 – Energy Dispersive Spectroscopy (EDX) results for Haynesville set 1 X3 

250ᵒC. ............................................................................................................... 48 

Figure 22 – TA Instruments Model Q500 used to perform Thermogravimetry 

Analysis on Haynesville. .................................................................................. 53 

Figure 23 – Hysitron TI-950 Nanoindenter located at the Texas A&M University – 

Microscopy Characterization Facility. .............................................................. 55 

Figure 24 – Schematic of a diamond tip indenting into the sample surface (Kumar et. 

al., 2012). .......................................................................................................... 56 

Figure 25 – Berkovich indentation on a polished Eagle Ford shale sample using 

contact-mode imaging; taken at the Texas A&M University Materials 

Characterization Facility. .................................................................................. 57 

Figure 26 – Schematic of indentation depth versus load for two indent (Oliver and 

Pharr, 2003). ..................................................................................................... 58 



 

xv 

 

Figure 27 – Schematic of the tip penetration the sample under a specific indentation 

load; several parameters used to obtain the mechanical properties are listed 

(Zhang et al., 2014). .......................................................................................... 60 

Figure 28 – Short-duration tip (left) and high temperature tip (right) used for 

indenting samples. ............................................................................................ 66 

Figure 29 – Indentation grid (20x20) performed using nanoindentation using the 

parameters listed in Table 8. ............................................................................. 67 

Figure 30 – Small tool (left) and large tool (right) for replacing the short-duration and 

high temperature tips, respectively. .................................................................. 68 

Figure 31 – Cleaning a high temperature tip using a cotton swab and acetone. .............. 71 

Figure 32 – A Hysitron TI950 Nanoindenter temperature stage assembly (upper stage 

and lower stage) connected to a cooling system used to heat the sample and 

maintain a uniform temperature around the stage. ........................................... 73 

Figure 33 – Increasing the stage temperature before (left, A) and after (right, B) 

selecting the “ramp” feature (modified from Hysitron Temperature Stage 

Controls manual, 2014). ................................................................................... 74 

Figure 34 – Average drift rate (nm/s) over a range of temperatures. ............................... 75 

Figure 35 – Optical image of an X1-direction Haynesville sample before (left) and 

after (right) heating to 350°C. ........................................................................... 77 

Figure 36 – Cross-section illustration of the depth at which secondary electrons and 

back-scattered electrons penetrate the sample surface (taken from Ads, et. 

al., 2014). .......................................................................................................... 78 

Figure 37 – Chamber view of a Lyra FIB-SEM machine (left) and SEM/EDX work 

station (right) located at the Microscopy Imaging Center (Texas A&M 

University). ....................................................................................................... 79 

Figure 38 – Topographic and elemental images of a Haynesville shale sample (X1, 

parallel) for a sample tested at 250ᵒC (on the nanoindenter) using the Lyra 

FIB-SEM........................................................................................................... 81 

Figure 39 – SEM and elemental maps with overlapped indents for Haynesville (X1-

250ᵒC). .............................................................................................................. 83 

Figure 40 – Chemo-mechanical clustering results for Haynesville shale sample 

parallel-to-bedding (X1) at room temperature where the indentation 



 

xvi 

 

modulus, indentation hardness, volume fractions, and allocation rates for 

each phase are presented. .................................................................................. 85 

Figure 41 – Chemo-mechanical clustering results for Haynesville shale sample 

parallel-to-bedding (X1) at room temperature where the average intensity 

for aluminum and silicon are presented as well as the indentation depths for 

each phase. ........................................................................................................ 85 

Figure 42 – Indentation modulus (left) and indentation hardness (right) for clustered 

chemo-mechanical results produced in figures 2-4 plotted based on volume 

fraction. ............................................................................................................. 86 

Figure 43 – Color maps (A and B) and elemental maps (C and D) are presented for 

Aluminum and Silicon on the same area as the nanoindentation grid 

(Haynesville X1-23ᵒC). .................................................................................... 87 

Figure 44 – Phase color map of the clustered results for a nanoindentation grid 

performed on Haynesville X1-23ᵒC. Comparison of all five maps validate 

that correct indentation locations were used to couple and cluster the 

experimental data. ............................................................................................. 88 

Figure 45 – Indentation modulus obtained from short-duration experiments for 

Haynesville shale samples parallel and perpendicular to bedding direction 

for a range of temperatures (23-350ᵒC). ........................................................... 91 

Figure 46 – Indentation hardness obtained from short-duration experiments for 

Haynesville shale samples parallel and perpendicular to bedding direction 

for a range of temperatures (23-350ᵒC). ........................................................... 92 

Figure 47 – Indentation modulus obtained from creep nanoindentation experiments 

for Haynesville shale samples parallel and perpendicular to bedding 

direction for a range of temperatures (23-300ᵒC). ............................................ 97 

Figure 48 – Indentation hardness obtained from creep nanoindentation experiments 

for Haynesville shale samples parallel and perpendicular to bedding 

direction for a range of temperatures (23-300ᵒC). ............................................ 98 

Figure 49 – Results from back-analysis showing changes in packing density during 

the holding phase. ........................................................................................... 100 

Figure 50 – Examples of three contact creep compliance functions obtained from 

creep nanoindentation experiments performed at 23ᵒC on a Haynesville 

shale sample, parallel (X1) to bedding direction. ........................................... 101 



 

xvii 

 

Figure 51 – Contact creep modulus data versus temperature (23-350ᵒC) for all creep 

experiments performed on Haynesville shale samples parallel and 

perpendicular to bedding direction. ................................................................ 102 

Figure 52 – Thermogravimetry Analysis (TGA) performed on Haynesville shale at 

300ᵒC; figure shows the change in weight (%) (primary axis) and 

temperature (°C) (secondary axis) versus time (min) (x-axis). ...................... 104 

Figure 53 – Thermogravimetry Analysis (TGA) performed on Haynesville shale at 

300ᵒC; figure shows the change in weight (%) (primary axis) and 

temperature (°C) (secondary axis) versus time (min). .................................... 105 

Figure 54 – Frequency density and Probability Density Function (PDF) of contact 

creep modulus values (x-axis) for porous clay/kerogen phase at X3-23ᵒC 

overlaid with deconvoluted peaks. ................................................................. 106 

Figure 55 – Frequency density and Probability Density Function (PDF) of contact 

creep modulus values (x-axis) for the porous clay-kerogen phase at X1-

300ᵒC present within the Haynesville shale sample. ...................................... 107 

Figure 56 – Probability Density Functions (PDF) of the contact creep modulus values 

for porous clay/kerogen indentations performed parallel and perpendicular 

to bedding direction. ....................................................................................... 109 

Figure 57 – Volume fractions detected within the porous clay/kerogen phases for all 

creep experiments in X1 and X3 directions. ................................................... 110 

Figure 58 – Comparison of the creep curves at 23ᵒC and 300ᵒC. .................................. 113 

 

 

 



xviii 

LIST OF TABLES 

Page 

Table 1 – Marcellus formation temperature (ᵒF). ............................................................. 40 

Table 2 – Fayetteville formation temperature (ᵒF). .......................................................... 40 

Table 3 – Haynesville formation temperature (ᵒF). .......................................................... 40 

Table 4 – X-Ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDX) 

results for Haynesville shale............................................................................. 47 

Table 5 – Material volume fraction calculations for Haynesville shale. .......................... 51 

Table 6 – Rock eval results obtained for a Haynesville core sample. .............................. 52 

Table 7 – TGA published results on shales. ..................................................................... 54 

Table 8 – Nanoindentation settings for measuring the mechanical properties of clays 

in shales (Bobko and Ulm, 2007; Abedi et. al., 2015). ..................................... 67 

Table 9 – Temperature dependence on drift rate for short-duration indentation 

experiments performed between 23-350°C. ..................................................... 75 

Table 10 – Summary of the mechanical and elemental intensity values for X1-250ᵒC. . 83 

Table 11 – Haynesville shale results including Indentation Modulus, Indentation 

Hardness, Silicon, Aluminum, and Si/Al ratio for all short-duration 

indentation experiments. ................................................................................... 94 

Table 12 – Haynesville shale results including Indentation Modulus, Indentation 

Hardness, Silicon, Aluminum, and Si/Al ratio for all creep indentation 

experiments. ...................................................................................................... 96 



 

1 

 

CHAPTER I  

INTRODUCTION 

 This chapter is a summary of the research project. The chapter begins with a brief 

overview of shales and their importance to petroleum engineers as well as the benefits, 

challenges, and possibilities of studying creep in shales. Next, the objectives of this 

research are summarized as well as the scientific and industrial benefits of this work. 

Finally, an outline of the thesis is provided including the main contents covered of each 

chapter. 

 

1.1 Shales in petroleum engineering 

Naturally occurring rocks are composed of one mineral (homogeneous) or several 

minerals (heterogeneous). Traditionally, rocks are classified into three categories: 

sedimentary, metamorphic, and igneous (Blatt et. al., 1996). Sedimentary rocks are of 

highest importance to petroleum engineers. Typically, conventional oil and gas is 

produced from formations in which there is adequate reservoir pressure and flow, resulting 

in a cost effective drilling program. Unconventional oil and gas, however, refers to 

reservoirs with low permeability and porosity where the hydrocarbons do not flow as 

easily as those in conventional reservoirs. As defined by Holditch (2003), “An 

unconventional reservoir is one that cannot be produced at economic flow rates without 

assistance from massive stimulation treatments or special recovery processes and 

technologies. Typical unconventional reservoirs are tight gas sands, coalbed methane, 

heavy oil and gas shales.” To maximize the recovery of the residual hydrocarbons, 



 

2 

 

secondary (water drive) and tertiary (liquid petroleum gas flooding, carbon dioxide 

flooding, or surfactant flooding) recovery methods are needed (Dake, 1978). Shale is a 

sedimentary rock covering 75% of the earth’s crust. As a result, production from shales 

has continued to increase over the last several years due to an increase in the world’s 

energy demands and technological developments in economically extracting 

hydrocarbons from the tight pore spaces of the rock matrix. 

 

1.2 Creep of shales 

 Shales have an extremely low permeability which makes enhanced recovery an 

essential process in the production of hydrocarbons. Many factors cause the loss of 

fracture conductivity, which results in low recovery and inefficient production. One of the 

main factors affecting fracture conductivity is the creep of the rock. Creep is the time-

dependent deformation of the material under constant stress (Findley, 1989). Failure to 

characterize the time-dependent behavior of these source rocks may result in errors in 

estimating reservoir performance during depletion. 

 

1.3 The challenges of measuring creep in shales 

 Organic-rich shales are extremely heterogeneous sedimentary rocks composed 

mainly of clay particles, organic-matter, silt-size inclusions such as quartz and feldspar, 

and trace amounts of other minerals. Furthermore, shales contain different types of clays, 

varying levels of maturity of organic-matter, and have different porosity values, all of 

which are dependent on the depositional environment and depth the rock was extracted 
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from; the mechanical response of shales also vary based on the formation temperature and 

the formation temperature and largely affects the creep response of shales. Lastly, 

measuring creep at the macroscopic level using experimental methods (compression tests) 

can take large amounts of time and measurements at this level do not capture the effect of 

heterogeneity (the contribution of each individual constituent) on the creep properties of 

shales. These are a few factors that make measuring and obtaining creep properties 

expensive and a challenge for researchers to understand the controlling factors of creep in 

shales. 

 

1.4 The possibilities of creep measurements using nanoindentation 

Nanoindentation has been proven as a well suited technique in measuring the 

mechanical properties of organic-rich shales (Abedi et al., 2015; Slim et al., 2017). These 

properties include indentation modulus, hardness, and, more recently, creep. Moreover, 

recent developments have enabled the ability to perform instrumented nanoindentation at 

elevated temperatures with the use of temperature control stages. This serves as a pathway 

for determining the behavior of shales at in-situ conditions and the factors that control it. 

 

1.5 Scope of the work and its novelty 

Numerous experimental and theoretical studies have dealt with obtaining creep 

properties of organic-rich source rocks under ambient conditions (Sone and Zoback, 2013; 

Li and Ghassemi, 2012; Rassouli and Zoback 2016). However, these conditions do not 

capture the in-situ behavior of many source rocks. Moreover, recent progress in thermal 
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recovery of shale gas requires an enhanced understanding of reservoir properties at 

elevated temperatures. In this regard, a quantitative relation between temperature, 

mechanical properties, and complex chemo-physical mechanisms that cause the thermal 

alteration needs to be obtained. 

There are three main objectives of this research: 

 

1. To determine whether high temperatures affect the mechanical response of shales; 

these mechanical properties include elasticity (indentation modulus), strength 

(indentation hardness), and creep. Evaluation of the results is performed using a 

chemo-mechanical assessment validated by Abedi et al., (2015). 

2. To determine the main factors that influence the creep response of shales. 

3. To use an existing logarithmic model to obtain quantitative contact creep modulus 

values from results obtained through nanoindentation experiments to analyze the 

creep behavior of the porous clay/kerogen phase at higher temperatures. 

 

There are three scientific and industrial benefits to this research: 

 

1. Short indentation tests can be performed to obtain the long-term creep properties 

of organic-rich shales at high temperatures. 

2. An understanding of the mechanisms that drive creep properties in organic-rich 

shales. 
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3. A well-suited logarithmic model that assesses the creep behavior of the porous 

clay/kerogen phase at high temperatures. 

 

1.6 Outline of this thesis 

There are four main parts to this thesis. The first part (chapter II) includes a 

literature review of the theoretical and experimental studies performed on creep. The 

second part (chapter III) provides information on the sample used in this study including 

sample preparation procedures and various ways to measure porosity. Furthermore, 

explanation of thermogravimetry settings and the equipment used, particularly 

nanoindentation and Energy Dispersive X-ray Spectroscopy (EDX), in order to complete 

the study are included within. The chapter ends with an explanation of the coupling and 

statistical based clustering techniques used to analyze the experimental results. The third 

part (chapter IV) includes the final results and is supported with discussions. The final 

phase (chapter V) includes the final conclusions, where the main findings and limitations 

from this study are summarized. 
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CHAPTER II  

LITERATURE REVIEW 

 This chapter begins with a discussion of the multi-scale structure thought model 

used to differentiate between the various scales of shales and a detailed summary of the 

types of clays present in shales including the major differences between each of them. 

Next, a review of the theory of creep is included, literature review of the types of 

experiments completed and results obtained at both the macroscale and the microscale 

levels are provided, and miscellaneous experimental methods used to measure the 

mechanical (time-independent) properties of shales are summarized. Finally, the chapter 

ends with a list of temperatures for three separate formations. This chapter provides the 

preliminary background needed to understand the concept of creep and the applications of 

it.  

 

2.1 Multi-scale structure thought model 

Shales are heterogeneous multiphase composite materials and are composed of 

porous clay and various silt-size inclusions. When performing experiments at the 

macroscale, researchers have used triaxial testing and acoustic testing to determine the 

strength properties of shales. At the microscale level, however, the heterogeneity of shales 

can be explained through a revised multi-scale structure thought model proposed by Abedi 

et al., (2016). This thought model is useful in determining the mechanical properties at the 

different length scales. These levels are as follows: elementary particles (Level 0), porous 

organic/clay composite (Level 1), and porous solid-silt inclusion composite (Level 2). 



 

7 

 

Through the use of nanoindentation, a high-resolution technique, the mechanical 

properties can be measured at the level 1 scale. The next section discusses the three-level 

thought-model (Fig. 1) for shales in greater detail.  

 

 

Figure 1 – Multiscale thought model proposed by Abedi et al., (2016) where Level 0 

corresponds to the clay minerals (10-9 to 10-8), Level 1 corresponds to the porous 

organic/clay composite (10-7 to 10-6), and Level II corresponds to the porous solid-

silt inclusion composite (10-4 to 10-3) (Abedi, et al., 2015). 
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2.1.1 Level 0: Elementary clay particles 

Level 0 is one of the three length scales proposed by Abedi et al., (2016). This 

level is composed of the clay particle phase in shale, and it is considered the fundamental 

scale of clay mineralogy. The level is observed at the nanometer scale with a length scale 

on the order of 10-9 to 10-8m. Images of the clay phase at this scale are obtained through 

Scanning Electron Microscopy or Transmission Electron Microscopes (TEM) and are 

shown in Fig. 2A-C. Clay minerals have an aspect ratio of 1/20. Fig. 2A is an image taken 

under the TEM and shows the nanostructure of smectite fabric. Shale is transversely 

isotropic and as can be seen from Fig. 2B, can be visually interpreted by the bedding plane 

visible under an SEM; the clay particles and pores align in a single direction, giving it an 

obvious bedding plane. Fig. 2C shows the platy clay structure at level 0. 

 

 

Figure 2 – A) TEM image of smectite fabric; scale bar = 1µm (Byrant, et al., 1990). 

B) Level I image obtained under a SEM (Ortega, et al., 2009) and C) Level 0 image 

obtained under a TEM (Deirieh, et al., 2011). 
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2.1.2 Level I: Porous organic/clay composite 

Level I is the second length scale described in the think-model and has a scale 

length of 10-7 to 10-6m. This level, generally referred to as the porous clay composite, is a 

combination of the fundamental scale of clay (Level 0) and the porosity of the shale 

sample. It is proposed that the mechanical behavior of shales is a function of the packing 

of clay conglomerates which is of particular importance in this study of shale’s mechanical 

properties since it is the driver of macroscopic properties. Through nanoindentation, an 

experimental technique commonly used to study the mechanical properties of materials at 

the micro scale, the probe indents the shale sample at this particular length scale and 

provides the reduced modulus and hardness properties of the various phases present. The 

stiffness value measured at this particular level is one order of magnitude smaller than the 

clay mineral due to the deformation of the pore space. In addition, the measured values 

prove that a small amount of anisotropy exists at this level. An example of the shale surface 

at Level I is shown in Fig. 2B. At this particular level, the direction of bedding place (X1 

or X3) are typically visible in most shale samples. 

 

2.1.3 Level II: Textured clay layer composite 

Level II is representative of the macroscopic length scale in that it includes the 

various constituents present in the shale matrix, specifically, clays and silt-size grains 

(mainly quartz and feldspar inclusions). The length scale of level II is 10-4 to 10-3 m. The 

difference between level I and II, besides length scale, is that the shale fabric is more 
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obvious at a smaller magnification, making the sample appear more homogenous at this 

level. 

Fig. 3 is an example of an elemental overlay showing the different minerals present 

in Haynesville shale obtained perpendicular to the bedding plane using a Cameca Electron 

Microprobe. Elements such as dolomite, pyrite, quartz, feldspar, apatite, carbonate, and 

kerogen are present in the sample. Clay, kerogen, and porosity are interspersed in between 

these elements where clay serves as the binding-phase of the whole sample. 

 

 

Figure 3 – Backscattered Electron (BSE) image of Haynesville shale (X1-direction, 

23C) taken on a Cameca SX Five Electron Microprobe; 1 = Dolomite (Mg+Ca), 2 = 

Pyrite (Fe+S), 3 = Quartz (Si), 4 = Feldspar (Si+Al+Na), 5 = Apatite (P+Ca), 6 = 

Carbonate (Ca), and 7 = Kerogen. 
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2.2 Description of clays present within shales 

In order to understand the mechanical properties of clays in shales, it is necessary 

to study the chemical structure of clays and differentiate between the types of clay. 

Clays are phyllosilicates that form sheet structures composed of a tetrahedral sheet 

of silicon and oxygen and an octahedral sheet of aluminum, oxygen, and hydroxyl atoms 

(Bassiouni, 1994). Each type of clay mineral is determined by the arrangement of these 

layers as well as the accessory cations that lie within the platelet structure. 

The tetrahedral sheet (or silica sheet) is composed of tetrahedrons connected by 

oxygen atoms. There are four oxygen atoms and one silicon atom in each molecule. 

Oxygen (O-2) is an anion, which means that the oxygen atom has a “negative” charge; 

Silicon (Si+4) is a cation, meaning that silicon atoms have a “positive” charge. Figs. 4 and 

5 show a diagram of the structure of the four oxygen atoms and silicon atom as well as the 

connection of each molecule by oxygen atoms that is more commonly referred to as the 

tetrahedral sheet. An excess of negative charge in the structure exists because of the eight 

oxygen anions and four silicon cations. For simplicity, a trapezoid is used to represent the 

tetrahedral sheet, as shown in Fig. 6. The oxygen atom at the base is connected to the next 

tetrahedron and two tetrahedrons can share only one oxygen atom. 
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Figure 4 – Schematic of a single tetrahedral sheet composed of four oxygen atoms 

(anions) and one silicon atom (cation). 

            

 

 

Figure 5 – Schematic of a tetrahedral sheet connected by oxygen atoms. 

 

 

 

Figure 6 – A simplified diagram of a tetrahedral sheet. 
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The octahedral sheet (or aluminum sheet) is composed of octahedrons connected 

by oxygen, hydroxyl, and aluminum atoms. There are six oxygen atoms, two hydroxyl 

atoms, and one aluminum (or magnesium) atom in each molecule, giving the structure 

eight different faces. While oxygen has a “negative” charge and is referenced as an anion, 

aluminum is a cation and is more appropriately called tetravalent aluminum due to the 

number of valence electrons (Al+3). Figs 7 and 8 show the structure that makes up the 

octahedral sheet in a clay platelet. Octahedral sheets also have a net negative charge due 

to the six oxygen anions, two hydroxyl anions, and three aluminum cations. Similar to 

tetrahedral sheets, octahedral sheets are drawn as a rectangle for quick illustration, as 

shown in Fig. 9. 

  

 

Figure 7 – Schematic of a single octahedral sheet composed of six oxygen atoms 

(anions), two hydroxyl atoms (anions), and one silicon atom (cation). 
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Figure 8 – Schematic of an octahedral sheet connected by oxygen atoms. 

 

 

 

Figure 9 – A simplified diagram of an octahedral sheet. 

 

 

The stacking of the clay layers determine the type of clay whereas the adsorbed 

(also called interlayer or accessory) cations and water determine the strength of the clay 

platelets. 
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Figure 10 – Structural diagram of the four major clay groups: kaolinite, smectite, 

illite, and chlorite. 

 

2.2.1 Clay minerals 

In general, there are four major classes of clays: kaolinites, smectites, illites, and 

chlorites (Fig. 10). Each class of clay is differentiated by the arrangement of structure, the 

interlayer cation present, and the cation exchange capacity. A discussion of the similarities 

and differences between each class of clay is provided next. 

2.2.1.1 Kaolinite Minerals 

Kaolinites are a 1:1 clay type mineral. The structure is composed of an alternating 

tetrahedral and octahedral layer as shown in Fig. 10 (Mitchell, et al., 2005). Kaolinites 

have a strong interlayer strength due to Van Der Wall forces and hydrogen bonds (Bear, 

1964). In particular, kaolinites have an outer hydroxyl group that is located on the 

octahedral sheet that is not in contact with the tetrahedral sheet and an inner hydroxyl 

group that is located in between the tetrahedral and octahedral sheets. As a result, most 
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sorption takes place on the open surface of the platelet. Kaolinite does not expand or 

compact and has very little isomorphous substitution, which is the process of one type of 

cation being replaced with another cation with the same or different valence (Rengasamy, 

1975). Consequently, kaolinites have a low cation exchange capacity, averaging at around 

0.03 meq/g (Mitchell et al., 2005). An image of kaolinite obtained under a scanning 

electron microscope is shown in Fig. 11. Kaolinites have a lateral dimension of 0.1-4µm 

and a thickness of 0.05-2µm (Mitchell et al., 2005). Common examples include kaolinite, 

nacrite, dickite, anauxite, and halloysite (higher water content), and are polymorphs. The 

basal spacing of kaolinites are approximately 7.2 Å (Mitchell et al., 2005). 

 

 

Figure 11 – Intact kaolinite in a pore system obtained under a Scanning Electron 

Microscope (Hayatdavoudi, et al., 1996). 

 

 

2.2.1.2 Smectites 

Smectites are a 2:1 type mineral. This means that the structure of smectite includes 

two tetrahedral sheets on either side of an octahedral sheet. Other than the structural 
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differences between kaolinite and smectite, the capacity for smectites to absorb and store 

water in the basal layer is significantly greater due to weak van der walls forces and is 

typically selected for studies where clays with high sensitivity to temperatures and 

pressures are needed. When smectite is submerge in water, the water molecules cause an 

increase in the hydration energy which overcomes the attraction force between the silica 

and alumina layers. The basal spacing, as shown in Fig. 10, is the height of one unit layer 

and ranges between 9.7 and 17.2Å depending on the amount of interlayer water present. 

The thickness of a single layer of water molecule is approximately 2.9Å (Bassiouni, 1994). 

The most common type of smectite is montmorillonite and the width and thickness of a 

montmorillonite clay sheet is 1-2µm and 10Å, respectively. Other types of smectites 

include pyrophyllite, sauconite, saponite, and stevensite. Fig. 12 shows the structure of 

bentonite clay under a scanning electron microscope. 

The structure of smectite contains aluminum and silicon cations and undergoes 

extensive isomorphous substitution. The aluminum cations present in the octahedral sheet 

have a tendency to be replaced by other cations, such as magnesium, iron, zinc, or lithium. 

The silicon cations present in the octahedral sheet tend to be replaced by trivalent cations.  
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Figure 12 – Intact Na-montmorillonite in a pore system obtained under a Scanning 

Electron Microscope (Keller et al., 1986). 

 

2.2.1.3 Illites 

Like smectites, illites are a 2:1 type mineral. However, unlike smectites, illites do 

not have interlayer swelling due to the strong bond provided by the potassium ions and 

contain only potassium as the interlayer cation. The unit layer of illite is typically about 

10Å and remains constant in spite of the presence of polar liquids. The structure of illite 

is similar to that of hydrous mica and therefore the two terms are used interchangeably. 

However, differences between the two minerals should be noted. First, more aluminum 

cations replace the silicon cations in hydra mica than illite during isomorphous 

substitution. Second, illite plates are randomly stacked. Third, Potassium content in illite 

is lower than in micas. Lastly, the particle size of illite is smaller than those in micas 
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(Mitchell et al., 2005). During cation exchange, the potassium ions present on the surface 

of the platelets can be replaced with other cations; however, the potassium ions between 

the layers are fixed and cannot be replaced. During isomorphous substitution, the silicon 

in the tetrahedral sheets are replaced by aluminum whereas the aluminum in the octahedral 

sheets are replaced by magnesium or iron. The already present potassium helps balance 

the overall charge deficiency within the platelet. In general, illites, like montmorillonite, 

have a high cation exchange capacity, averaging at about 0.20 meq/g (Bassiouni, 1994). 

Examples of illite clay include hydra-micas, phengite, and glauconite. Illites have a width 

of 0.1-several µm and a thickness of approximately 30Å. Fig. 13 shows an image of illite 

plates obtained under the scanning electron microscope. 

 

 

Figure 13 – Intact illite in a pore system obtained under a Scanning Electron 

Microscope; image dimension: 7.5µm (Mitchell, 1993, taken from Tovey 1971). 
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2.2.1.4 Chlorites 

Chlorites are very similar in structure to smectites and illites. While smectites carry 

water and ions and illites carry potassium ions between their interlayers, chlorites have an 

additional octahedral layer in between each clay platelet. Consequently, chlorites are also 

a 2:1 clay type minerals with a basal spacing of 14Å. The sheet in between the two clay 

platelets is a trioctahedral sheet composed of magnesium cations. The sheet in between 

the tetrahedral layers is a decahedral sheet. 

 

2.2.2 Specific surface area 

Clays control the behavior of the soil as they are present in almost all soils and 

contain the largest surface area fraction compared to other minerals in the soil. As a result, 

the specific surface area (SSA) of clays is another factor in determining the amount of 

absorption of organic matter, nutrients, and pollutants that can take place within the 

structure and is crucial to quantify. Through the use of Atomic Force Microscopy (AFM) 

and other methods, researchers were able to determine the specific surface area of illite 

and montmorillonite (Macht, 2011). Mitchell noted that the specific surface area of 

kaolinite falls within 10 – 20 m2/g while illite and smectite have a specific surface area of 

65 – 100 m2/g and 50-120 m2/g, respectively ( Mitchell et al., 2005). Macht et al. noted 

the specific surface area of illite and montmorillonite to be approximately 83 m2/g and 

346 m2/g.  
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2.3 Introduction and theory of creep 

The highly heterogeneous and transversely anisotropic nature of shales as well as 

their tight packing makes understanding and characterizing their multi-scale behavior very 

challenging. Applying the material science paradigm to study the microstructure of shales 

can provide valuable information about their physical properties and behaviors. In the field 

of petroleum engineering, hydrocarbon recovery is limited by the low permeability and 

porosity of source rocks. While hydraulic fracturing can help increase the amount of 

hydrocarbons recovered from the formation, several factors including the loss of fracture 

conductivity due to proppant embedment (Fig. 14) can result in lower recovery and 

inefficient production. One of the major contributors to the drop in fracture conductivity 

is the creep of the rock. This time-dependent (creep) behavior impacts the transport 

properties within the formation during production; as a result, observing the behavior of 

these rocks may result in accurately estimating reservoir performance during depletion. 

 

 

Figure 14 – Elastic deformation after proppant embedment (Revised from Guo, 

2012). 
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With the continuous development of technology and the introduction and uses of 

complex materials, an understanding of the relationship between stresses and strains is 

critical for proper design and functionality. An elastic, plastic, or viscoelastic behavior is 

observed depending on the type of material under study. An elastic strain is observed in 

most materials under a small constant load (stress), meaning that upon removal of the load, 

the material reverses with no permanent deformation. In materials where plastic behavior 

is seen, the material shows signs of elastic behavior at the onset of a loading but quickly 

deforms when the load exceeds the elastic limit. Viscoelastic behavior, which is a 

combination of elasticity and viscosity, is different from elastic and plastic behavior in 

that it is dependent on three parameters: stress, strain, and time. Viscoelastic behavior 

shows a declining strain when a constant stress is applied. The time parameter is included 

to quantify the viscoelastic behavior because such materials show a different strain 

behavior based on the loading rate used. Examples of viscoelastic materials include 

plastics, wood, and concrete. The study of the time-dependent viscoelastic behavior of 

materials is classified as “creep”. By definition, creep is the deformation of a material 

under constant load or stress (Findley et al., 1976). The behavior of creep is divided into 

three separate stages: primary, secondary, and tertiary (Fig. 15). Primary creep is the 

decrease in strain over constant load, secondary creep is the constant strain under constant 

load and is achieved after primary creep, and tertiary creep is the exponential increase in 

strain with constant load and results in a fracture. Fig. 16 illustrates the behavior of various 

materials during and after the loading period. Linearly viscoelastic simply means that the 

stress is proportional to the strain. Shales are considered to be linearly viscoelastic.  
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Figure 15 – The three stages of creep observed in materials (Findley et al., 1976). 

 

 

 

Figure 16 – The creep and recovery trend of metals and plastics (Findley et al., 

1976). 
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The study of creep properties are crucial in all aspects of engineering. For example, 

creep in cements can have a positive or negative impact on the structure. Creep can assist 

in relieving stresses caused by strains initiated by shrinkage and changes in temperature. 

On the contrary, creep can interfere and counteract the artificial stresses imposed on the 

cement structure (Zhang et al., 2014). In shales, creep can significantly affect the 

production of hydrocarbons from a reservoir by causing fracture closure, conductivity 

loss, and reservoir subsidence, and requires a better understanding in order to improve 

wellbore stability and proppant embedment problems. In addition, creep at high 

temperatures are still unknown and, hence, the in-situ behavior of shales needs to be 

investigated. Furthermore, thermal recovery of shales requires an enhanced understanding 

of reservoir properties at elevated temperatures. In this regard, a quantitative relation 

between temperature, mechanical properties, and complex chemo-physical mechanisms 

that cause the thermal alteration needs to be obtained. 

Next, a summary of the macroscopic testing procedures performed by various 

researchers studying creep is provided as well as their findings and limitations. 

 

2.4 Creep testing on shales and a summary of results: macroscopic level 

 Li and Ghassemi (2012) studied the creep behavior of shales (Barnett, 

Haynesville, and Marcellus) containing varying amounts of clay and carbonates. They 

performed this study because there are several factors that affect the quality of the 

hydraulic fractures in gas-shales and the fracture conductivity. Proppant and asperity 

embedment as only two of these factors. While elastic properties are time-independent and 
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occur immediately, the creep (viscous) response is relatively slow and is classified as time-

dependent. 

Li and Ghassemi (2012) performed experimental tests at room temperature to 

study the visco-elasto-plastic property of shales. These samples were drilled perpendicular 

to bedding plane and contained varying amounts of clays and carbonates. Marcellus 

contained the maximum clay (40%), and the lowest carbonate (9%) and QFP (Quartz, 

feldspar, plagioclase, and pyrite) (28%). Barnett contained the lowest clay content (25%) 

and highest QFP (60%). Finally, Haynesville had a clay contented of 33% and a carbonate 

and QFP content of 23% and 25%, respectively. Samples were tested using a GCTS 

triaxial rock test system with syringe pumps to control the confining pressure on the 

samples. 

Li and Ghassemi suggested that a linear viscoelastic model such as the Burgers or 

Maxwell model can be used between the 0-80 MPa range. Between the two models, the 

Maxwell model does not capture the transient creep portion of the train time relationship 

whereas the Burgers model, though provides a good fit to the creep strain, fails to capture 

the effect of plasticity. As a result, Li and Ghassemi suggested using the power law 

function to observe the creep deformation of shale samples. The power law has been used 

frequently to determine the relationship between stress, strain, and time. Eq. 2.1 is also 

known as the nutting equation and is as follows,  

 

𝜀𝑐 = 𝑘𝜎𝑝𝑡𝑛 
 

(2.1) 

where 𝜀𝑐 is the creep strain, 𝜎 is the stress, and 𝑘, 𝑝, and 𝑛 are the material constants. 
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Through these studies, Li and Ghassemi (2012) determined that shales with a high 

content of clays and organic matter creeped more than shales containing carbonates and 

other silt-size inclusions. A similar correlation was found when measuring the young’s 

modulus through triaxial tests. 

Rassouli and Zoback (2016) performed long-term creep experiments on 

Haynesville shale rocks. They performed the research to understand the effect that viscous 

deformation has on the mechanical properties and its impact on production. Triaxial creep 

experiments were performed in a servo-controlled triaxial apparatus in both parallel and 

perpendicular to bedding planes to observe the anisotropic in both directions. The 

Haynesville sample was extracted from North Louisiana and East Texas and contain 42% 

clay, 8% carbonate, and 1.6% TOC. 

The experimental results were analyzed using a power-law model in the form of 

(Eq. 2.2) 

𝜀 = 𝜎𝐵𝑡𝑛 
 

(2.2) 

where 𝜀 is the strain, 𝜎 is the differential applied stress, 𝐵 is the empirical constant and 𝑛 

is the power-law exponent. Rassouli and Zoback (2016) found that samples in the 

horizontal direction showed less creep than in the vertical direction; furthermore, the 

power-law exponent, 𝑛 is smaller for the horizontal samples than the vertical samples. 

Rassouli and Zoback (2016) concluded that the bedding direction plays an important role 

in the time-dependent compaction of shales. 

Sone and Zoback (2013) evaluated the time-dependent deformation of gas shales 

and their effect on the in-site state of stress. It is well understood that materials with more 
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and organic matter show a higher time-dependency that samples that have stiffer 

components.  

Sone and Zoback (2013) noted that the mechanical properties of shales can be used 

for improving wellbore stability, understanding the long-term behavior of the reservoir, 

and preventing errors in predicting reservoir compaction during depletion and accurate 

estimation of surface subsidence. 

Triaxial tests were performed using a servo-controlled triaxial apparatus. The 

samples under study were Barnett (rich in QFP), Haynesville, Eagle Ford (carbonate rich), 

and Fort St. Johns. Here, they assumed that the principle of linear viscoelasticity and the 

principle of linear superposition (Boltzmann Superposition) holds. The Boltzmann 

superposition principle is used to describe linearly viscoelastic behavior. The principle 

states that the total stress outputs as a result of two separate stress inputs applied to a 

material is equivalent to the total strain output as a result of the total strain input. 

Analysis of the experimental results were evaluated for creep using the logarithmic 

function (Eq. 2.3) and the power-law function in the form (Eq. 2.4), 

 

𝐽(𝑡) = 𝐴1 + 𝐴2𝑙𝑜𝑔10(𝑡) 
 

(2.3) 

𝐽(𝑡) = 𝐵𝑡𝑛 
 

(2.4) 

where 𝐽(𝑡) is the creep compliance function describing the time dependent strain response, 

𝐴1 and 𝐴2 are constants, 𝑡 is the hold time, 𝐵 is the compliance constant and 𝑛 is the 

power-law exponent, both of which are constitutive parameters. The compliance constant 
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is the amount of strain that occurs after 1s of input stress. The power law exponent is the 

tendency to exhibit time-dependent deformation. The power law predicted future creep 

behavior more accurately. 

Sone and Zoback (2013) found that Eagle Ford and Haynesville show a significant 

level of creep after three hours. Similar to the understanding by many researchers, they 

found that creep is directly proportional to the amount of clay/organic matter in the sample. 

Higher amounts of soft material means higher the creep rate. In equation form, 1/B 

correlated with the elastic modulus and a higher power-law exponent means higher creep 

behavior. The difference in anisotropy was also noted from the results, where horizontal 

samples had a tendency to creep less than vertical samples (horizontal B and n < vertical 

B and n).  

The drawback to macroscopic testing is that researchers are unable to study the 

individual contribution of the material phases on the over property of the rock. 

 This section included a summary of the macroscopic experimental procedures and 

results performed by various researchers. However, methods such as Nanoindentation and 

Atomic Force Microscopy can be used to study the behavior of shales. Next, a similar 

summary of nanoindentation tests performed to measure creep is included. 

 

2.5 Creep testing on shales and a summary of results: microscopic level 

Slim et al., (2017) performed indentation experiments at the nano- and microscale 

levels to study role of organic matter. The study was performed because having a better 
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understanding of the viscous behavior of gas shales could sheds light on its effect on 

drilling, hydraulic fracturing, and pressure depletion due to production.  

Slim et al, (2017) performed indentation tests to study the role of organic matter 

within mature and immature shales. The samples were divided based on two schemes: 

granular morphology, also known as self-consistent morphology, and Mori-Tanaka 

morphology, also known as inclusion morphology. Self-consistent morphology considers 

porosity to be evenly distributed throughout all phases of the material with the clay phase 

containing most of the organic matter; this method assumes a “disordered morphology” in 

which neither the solid nor the pore space makes up the matrix (Abedi et al., 2016). As a 

result, a percolation threshold (porosity level) of 0.5 exists for this method, above which 

the self-consistent scheme is no longer valid. Samples included Marcellus and Haynesville 

shales (mature samples). The Mori-Tanaka morphology is based on the assumption that 

the pore is completely surrounded by the solid phase (Dormieux et al., 2006). This 

approach considers porosity and kerogen to be concentrated within the matrix (clay) and 

applies specifically to immature samples (Abedi, et al., 2015). Samples included Antrim, 

Barnett, and Woodford shales.  

Slim et al., (2017) used a chemo-mechanical approach to study the porous 

kerogen/clay phase present within these samples. For nanoindentation tests, a maximum 

force of 4.8mN is used, whereas a maximum force of 12-50nN is used for 

microindentation tests. Next, EDX is used to obtain the chemical information of the 

indented spaces. Finally, the clustering technique called MCLUST is used to analyze the 

experimental results and separate the data in similar phases. 
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Slim et al., (2017) used a logarithmic fit which could be used to quantify the 

contact creep modulus and characteristic time. They found that the contact creep modulus 

and characteristic time increased as the material became stiffer. The clay/kerogen phase is 

the softest component of the sample and the contact creep modulus for the porous 

clay/organic matter is the lowest as well. This means that the creep rate is high. In 

differentiating between mature and immature samples, Slim et al., (2017) determined that 

the creep rate present within the source rocks was isotropic, which also shows that a 

relationship exists between the isotropy of the contact creep modulus and the isotropic 

nature of kerogen and porosity. 

Jones and Grasley (2010) measured the creep properties of cements using 

nanoindentation. They performed this study to have a better understanding of the 

deformation mechanisms within concrete. Obtaining the input parameters for the multi-

scale response of Portland cement concrete can help predict the macroscale behavior of 

cements. With few studies on using nanoindentation as a tool for measuring the creep 

properties of cements, Jones and Grasley (2010) performed nanoindentation tests to 

quantify the viscoelastic behavior of cements at the nanoscale.  

Specially cement samples cured in 98% humidity at room temperature and placed 

in lime water for 90 days were prepared and cut into 3mm tick plates for indentation. The 

Hysitron Triboindenter model TI-900 was used for creep tests and indented into using a 

Diamond Berkovich tip. The hold period for the tests was either 30s or 1 hour. 

Jones and Grasley (2010) applied the elastic-viscoelastic correspondence 

principle, which makes use of the Laplace transformation to solve the boundary value 
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problem. Using the displacement (nm) versus time (sec) graph, a best fit function was 

applied to the raw data to obtain a fitted curve. Lee and Radok (1960) showed that, for 

indentation problems, this correspondence principle can be applied as long as the contact 

area (or equivalently the penetration depth) increases monotonically. They used a 

stretched exponential function (Eq. 2.5), where 𝐸𝑜 is the initial elasto-plastic penetration, 

𝐸1 is the magnitude of the time-dependent penetration, and 𝛽 controls the shape of the 

relaxation/retardation function. 

𝐽(𝑡) =
1

𝐸0
+

1

𝐸1(1 − 𝑒−1)
(1 − 𝑒

−
𝑡

𝑡ℎ

𝛽

) 

 

(2.5) 

where 𝐸𝑜 controls the initial elasto-plastic penetration into the material, 𝐸1 controls the 

magnitude of the time-dependent penetration, and 𝛽 controls the shape of the 

relaxation/retardation function. They determined that three peaks exist within the fitted 

parameters, indicating the contribution of the low-density C-S-H, high-density C-S-H, and 

ultra-high density C-S-H phases (Fig. 2.17). 
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Figure 17 – A histogram distribution of the constitutive parameter E_1, the time-

dependent penetration, for 30 second tests showing the trimodal distribution 

representing low-density C-S-H, high-density C-S-H, and ultra-high density C-S-H 

(Jones and Grasley, 2010). 

 

Zhang et al., (2014) performed long-term creep tests on cementation materials 

comparing microindentation tests to macroscopic tests. Autogenous shrinkage, drying 

shrinkage, and aging are just three factor that contribute to the deformation of the material; 

creep is the fourth factor and occurs due to external mechanical load and can be divided 

into short-term creep and deviatoric long-term creep. 

Creep was performed on concrete for 14.5 years using uniaxial compression. 

Autogenous shrinkage tests were performed, where on sample was held constant (no 

external load) and another sample was held under a constant load. Meanwhile, months-

long (100 days) uniaxial compression creep experiments were performed. Lastly, minutes-

long creep tests were performed at room temperature using the microindenter. 
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The results obtained from these experiments were plotted on a semi-log plot where 

time (day or seconds) was in a log form and the uniaxial creep function/contact creep 

function were in a Cartesian form. Next, a logarithmic model was fit to the raw data using 

regression and two parameters were obtained: the contact creep modulus (Eq. 2.6) for 

indentation tests or a Uniaxial creep modulus (Eq. 2.7), which quantifies the long-term 

creep kinetics, and the characteristic time (𝜏), which represents the point at which the 

creep kinetics starts to show logarithmic behavior. The time component (t) represents the 

holding period during which the primary stage of creep occurs. 

 

𝐿(𝑡) −  
1

𝑀𝑜
=

ln(𝑡/𝜏𝑖 + 1)

𝐶𝑖
 

 

(2.6) 

𝐿(𝑡) −  
1

𝐸𝑜
=

ln(𝑡/𝜏𝑢 + 1)

𝐶𝑢
 

 

(2.7) 

The contact creep compliance function, 𝐿(𝑡) − 𝐿(0), can be obtained by 

integrating Eq. 2.8 with respect to time from the beginning of the holding phase (Zhang 

et al., 2014) to obtain Eq. 2.9. The contact creep compliance rate, 𝐿̇(𝑡), can be obtained 

during the holding phase of the nanoindentation creep experiment (Vandamme and Ulm, 

2013). In Eq. 2.8, 𝑃𝑚𝑎𝑥 is the applied loading during the creep phase, 𝑎𝑢 is the equivalent 

projected contact area between the indenter and the indented material at the onset of 

unloading, and ℎ̇(𝑡) is the rate of penetration of the tip during the creep phase. 

𝐿̇(𝑡) =
2𝑎𝑢ℎ̇(𝑡)

𝑃max
 

(2.8) 
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𝐿(𝑡) − 𝐿(0) = 𝐿(𝑡) −  
1

𝑀𝑜
=  

2𝑎𝑢∆ℎ(𝑡)

𝑃𝑚𝑎𝑥
 

 

(2.9) 

Zhang et al., (2014) determined that nanoindentation was an accurate measure for 

determining the creep properties of cements by comparing the results to uniaxial tests, one 

that was years long and one that was months long. 

 

2.6 Temperature testing and mechanical properties of shales 

This section summarizes the various instruments used by researchers to study the 

behavior of shales, the objectives of their research, and experiments performed to study 

shales at high temperatures. This section is created to discuss other types of research on 

shales, particularly those related to high temperatures and/or mechanical properties (time-

independent) that shed light on the developments made in these two areas. Researchers 

whose works have been summarized below include, Smith (2010), Grebowicz (2014), 

Eliyahu et al., (2015),  Ahmadov et al., (2011), Emmanuel et al., (2016), Zargari et al., 

(2013), Shukla et al., (2013), Kumar et al., (2015), Abousleiman et al., (2007), Abedi et 

al., (2015), and Deirieh et al., (2012). 

Smith (2010) introduced a study to recover hydrocarbons from unconventional 

reservoirs using heat (SAGD, Steam Assisted Gravity Drainage) produced from High 

Temperature Gas Reactors (nuclear energy). The study proposed heating the organic 

matter at a slow rate at temperatures between 350-400ᵒC for improved hydrocarbon 
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recovery. This method would eliminate the use of natural gas as a heat source and reduce 

CO2 emissions. 

Grebowicz (2014) performed a thermal analysis of Green River Basin shale 

samples in order to investigate the use of nuclear heat as a heat source for increasing 

hydrocarbon recovery. Grebowicz determined that kerogen begins to decompose around 

320ᵒC. Furthermore, through the use of Thermogravimetry Analysis (TGA) from room 

temperature to 1000ᵒC, Grebowicz proved that kerogen and carbonates decomposed below 

460ᵒC only and above 500ᵒC, respectively. This comprehensive study to monitor the 

behavior of shale constituents under high temperature serves to further research initiatives 

for using the nuclear energy produced by reactors for In-situ Conversion Processes (ICP). 

Eliyahu et al., (2015) obtained the mechanical properties of the various phases 

present in shales using Atomic Force Microscope (AFM). With the additional use of EDX 

elemental maps, they determined that four phases were present on the sample surface: 

pyrite, quartz (63 +/- 8 GPa) and calcite (52 +/- 6 GPa), clay minerals (29 +/- 1 GPa), illite 

and Fe-chlorite), and kerogen (0-25 GPa). A similar study was also performed by 

Ahmadov et al, (2011) using Atomic Force Microscopy to study kerogen. The study was 

conducted to build a better understanding of borehole stability and fracturing techniques 

and hydrocarbon flow. 

For shales, Emmanuel et al., (2016) studied the behavior of organic matter at high 

temperatures using another high-resolution technique called Atomic Force Microscopy 

(AFM). They studied the mechanical response of both kerogen and bitumen and noticed 

that bitumen became softer with increasing temperatures whereas kerogen underwent little 
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to no change (Fig. 18). While large scale high-resolution studies have been performed on 

concretes and shales, little evidence is found on measuring the mechanical behavior 

(elastic, strength, and creep) of shales at the microscopic scale through high temperature 

nanoindentation tests. 

 

 

Figure 18 – Maps of reduced modulus at 25ᵒC (top) and 150ᵒC (bottom) where the 

conversion of Bitumen is much greater (becomes softer) and Kerogen remains 

relatively the same in comparison (Emmanuel, et al., 2016).

Kerogen 
Bitumen 
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Zargari et al., (2013) performed a large scale nanoindentation study to monitor the 

behavior of kerogen in Bakken shale samples. Hydrous pyrolysis, which is pyrolysis in 

the presence of water, was used, through which the samples were heated to 350ᵒC for 72 

hours. Studies have shown that hydrous pyrolysis produces hydrocarbons similar in nature 

to that of reservoir rocks. Several observations were noted. First, by observing the sample 

surface under a Scanning Electron Microscope, a color change occurred and was linked to 

calcification of carbonates. Second, kerogen present within the immature samples showed 

a reduction in TOC and transformation of kerogen into bitumen/hydrocarbons; this was 

correlated to a reduction in the Young’s modulus for these immature samples, measured 

through nanoindentation. For mature samples, the Young’s modulus remained the same 

or increased slightly. Unlike kerogen in immature samples, where the kerogen exists in 

clusters, kerogen in mature samples are interspersed within the clay matrix (Abedi et. al., 

2015). Mature samples showed little to no increase in modulus, whereas immature samples 

became softer. This study enhances the understanding of the evolution of shales when 

exposed to higher temperatures. 

Shukla et al., (2013) performed a nanoindentation study on Wolfcamp, Woodford, 

Barnett, Haynesville, Eagle Ford, and Collingwood shale samples to obtain the mechanical 

properties of the various phases present (pyrite, carbonates, clay, and kerogen). These 

results were then compared to hypothetical drill cutting samples prepared from crushed 

core sample pieces ranging between three and five millimeters. The young’s modulus 

values of these “drill cuttings” were in between the perpendicular and parallel modulus 

values obtained previously, as was expected due to the randomness of the bedding 
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orientation. There are several take away points from this experimental effort. First, using 

drill cuttings is a cost effective method to obtain the mechanical properties of the pay zone, 

thereby improving hydraulic fracture design efforts. Second, an increase in porosity 

correlated with an increase in TOC, meaning that TOC contains a large amount of 

porosity. Third, and likely the most crucial comparison in the development of in-situ 

hydrocarbon recovery efforts, is the nanoindentation measurements on TOC before and 

after exposure to “low temperature.” Kerogen was placed under a low temperature plasma 

ash for six hours, causing an increase in the modulus value. This was believe to be 

associated to the loss of the light hydrocarbons released from the concentrated kerogen. 

Kumar et al., (2015) also performed a similar study on shales, particularly Barnett, 

Eagle Ford, Haynesville, Kimmeridge, Ordovician, and Woodford, to determine the 

dependence of porosity, TOC, and clay content on the elastic modulus. Kumar et al. 

determined that the elastic modulus decreased with increasing TOC, porosity, and clay 

content. Meanwhile, the elastic modulus increased with increasing quartz and carbonate 

(QC). Obtaining the mechanical properties is crucial in designing appropriate hydraulic 

fracturing designs, particularly in horizontal wells. Furthermore, due to the high cost of 

extracting core samples, drill cuttings can be used to interpret the type of shale present in 

the pay zone. 

Abousleiman, et al., (2007) analyzed the mechanical properties of Woodford shale 

samples and correlated the results to acoustic measurements and log interpretations. Small 

shale samples were used for nanoindentation to reflect realistic sizes of drill cuttings, 
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proving the effectiveness of using readily available pay zone rocks rather than core 

samples that are expensive to extract and preserve. 

Abedi et al., (2015) studied the mechanical behavior of the porous clay phase (with 

intermixed organic matter) in both mature and immature samples through a coupled 

nanoindentation-EDX analysis. The importance of this research is directly linked to 

developing predictive reservoir models in place of conducting costly experiments. A 

statistical clustering methodology was used to separate the clay phase from the remaining 

phases. Next, a power function was used to fit all of the experimental data; the power 

function indicated that the stiffness of the sample was directly dependent on the hardness. 

In other words, as hardness increased, so did the indentation modulus. 

Deirieh et al., (2012) performed a similar study to Abedi et al, (2015) in terms of 

experimentally performing calculations on clay rich samples by measuring the mechanical 

(through nanoindentation) and chemical components (through Wave Dispersive 

Spectroscopy). They also used a statistical clustering approach to observe the mechanical 

properties of the clay phase. This research effort is important for developing appropriate 

drilling strategies, hydraulic fracturing, and carbon sequestration initiatives as they require 

a thorough understanding of the heterogeneous nature of shales. 

 

2.7 Reservoir temperatures of shales 

Reservoir temperature within the Haynesville shale formation is relatively higher 

than other shale formations. A comparison of the reservoir temperatures of Marcellus, 

Fayetteville, and Haynesville is shown in Tables 1-3 from various sources. It can be seen 



 

40 

 

that the average reservoir temperature for Haynesville is between 323-338ᵒF, whereas the 

average temperature for Marcellus and Fayetteville are between 132-148ᵒF and 117-

187ᵒF. 

 

Table 1 – Marcellus formation temperature (ᵒF). 

Marcellus Formation 

Temperature (ᵒF) 

Reference 

140 Williams et al., 2011 

120-150 Kargo, D et al., 2010 

100-150 Gaultieri D., 2009 

140 Izadi et al., 2014 

160 Ajayi et al., 2011 

 

Table 2 – Fayetteville formation temperature (ᵒF). 

Fayetteville Formation  

Temperature (ᵒF) 

Reference 

120-220 Fritz, B. et al., 2012 

100-150 Terracina J.M. et al., 2010 

120-220 Bai B. et al., 2013 

120-220 Deville J. P. et al., 2011 

125 Song B. et al., 2011 

 

Table 3 – Haynesville formation temperature (ᵒF). 

Haynesville Formation 

Temperature (ᵒF) 

Reference 

315 Parker M et al., 2009 

>300 Thompson J.W. et al., 2010 

>350 Guo Q. et al., 2012 

300-375 Pope C. et al., 2009 

350-360 Trichel, K. et al., 2011 

325 Terracina J.M. et al., 2010 

 

2.8 Chapter summary 

In the first portion of chapter II, the three level multi scale structure model is 

provided. Here, the three levels are differentiated and uses of each level is explained. 
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Nanoindentation tests are performed at level I, which is the porous clay/kerogen interface 

(clay + kerogen + porosity). Following this discussion, a detailed summary of the types of 

clays present in shales is introduced supported by supporting details of each clay and 

pictures taken under microscopes. In this study, the primary clay present in the sample is 

illite, which is a 1:1 type clay with little water content. In section 2.3, the concept of creep 

and the theory behind it is explained. Much of the experimental work measures the primary 

section of creep and the beginning portions of secondary creep. A literature review of 

studies performed at the macroscale and microscale along with results in each of those 

experiments is listed. Of particular importance is the microscale research performed by 

Zhang et al., (2014), Jones and Grasley (2010) and Slim et al., (2017). Their findings and 

analytical approach will be considered and partially used to study the experimental results 

in this thesis. In support of microscale and macroscale studied performed including, but 

not limited to, the mechanical properties (time-independent) is briefly mentioned in 

section 2.6. Finally, a comparison of reservoir temperatures of Haynesville, Marcellus, 

and Fayetteville are compared to show the relatively higher formation temperature of 

Haynesville as compared to other shale formations. 
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CHAPTER III 

MATERIALS AND METHODS 

 Chapter three is broken into six major categories. First, details on the sample 

preparation methodology is provided along with schematics. Second, information on the 

type of sample used, including compositional results, porosity calculations, TOC and Rock 

Eval results, and experimental settings to measure Thermogravimetry are presented. 

Third, the theory behind nanoindentation, measurement testing techniques and the steps 

required to obtain accurate indentation results are discussed in depth. The fourth and fifth 

section include details on the SEM&EDX equipment used and data collection from this 

equipment as well as the procedure to couple the mechanical (nanoindentation) and 

chemical (EDX) technique. Finally, the chapter ends with a description of the model-based 

clustering technique and the application of it in evaluations the coupled experimental data. 

 

3.1 Sample preparation 

Shale is extremely heterogeneous and is composed of minerals with different 

mechanical and chemical properties. Furthermore, shales are considered transversely 

isotropic materials, where stiffness C11 is close to C22 and twice as large as C33. (Wenk et 

al., 2007).  As a result, to comprehensively determine the mechanical properties of shales, 

evaluation is required in both parallel (X1) and perpendicular (X3) to bedding planes. 

Traditionally, two methods have been used by researchers to reduce the sample 

roughness. The first method utilizes broad beam argon ion milling (Kumar et al., 2012) 

and the second method uses a series of polishing pads (Abedi et al., 2015). Ion milling is 



 

43 

 

a procedure in which particles are raster-polished away from the surface to create a smooth 

and flat surface. One major drawback to using ion milling is the embedment of material 

particles into the pore space. This issue can interfere with providing nanoindentation 

measurements that are reflective of the true mechanical properties of the material. Loucks 

et al., (2012) also proved that ion milling may lead to a “curtaining” effect which could 

cause “a minor annoyance in photomicrographics” when images are taken of the sample. 

Consequently, the second method (manual polishing) is performed on all Haynesville 

samples in this study. 

The samples are prepared in the following manner. First, proper evaluation of the 

sample is needed to determine the direction of bedding plane. Figs 19A and 19B show a 

visual of the directions and corresponding nomenclature used throughout this thesis. Using 

these guidelines, an Eagle Ford outcrop sample is shown in Fig. 20A indicating the 

location of the bedding planes. The visibility of the bedding planes vary significantly 

depending on the amount of TOC present in the sample and the depositional environment. 

Given the transversely isotropic nature of shales, samples need to be prepared in two 

directions. 
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Figure 19 – Bedding planes illustrated in both parallel (left) and perpendicular 

(normal) (right) directions. 
 

The second step is to cut the sample in each direction using a diamond saw machine 

(Fig. 20B). Lubricant (n-Decane) is used to prevent damage to the blade and the sample 

material. The third step is to grind the sample (Fig. 20C) using a 25μm polishing pad 

(Buehler TextMet) lubricated with an oil-based diamond suspension (Fig. 20D) for 10-15 

minutes, or as needed. The fourth step is to clean the sample in an ultra-sonic water bath 

for 20 minutes (Fig. 20E). The sample is submerged in n-Decane and placed in a graduated 

cylinder; the graduated cylinder is then placed into the water bath for cleaning. Caution 

should be taken to ensure that only n-Decane (not water) is in contact with the sample. 

Sound waves from the sonic bath form microscopic bubbles (cavitation) at low pressures 

which implode at high pressures, creating enough energy to remove loose particles from 

the sample surface. The next step is to manually polish the sample using FiberMet 

(Buehler) polishing pads (9μm, 3μm, 1μm, and when needed, 0.3μm) (Fig. 20G) on a flat 

surface (Fig. 20F) to reduce the sample roughness (Fig. 20H). The sample should be 

washed repeatedly using the sonic bath to remove lose particles from the sample surface. 
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Figure 20 – (A) Eagle ford outcrop sample depicting the direction of bedding plane, 

(B) Buehler diamond saw machine, (C) Buehler grinding machine (located at 

Materials Characterization Facility, Texas A&M University), (D) Buehler diamond 

suspension (25μm), (E) Branson ultra-sonic water bath with mesh, (F) polishing 

glass surface, (G) Buehler TexMet polishing pads, and (H) finished sample surface. 

 

The sample height is limited by the thickness of the rubber gasket placed in 

between the Nanoindenter temperature stage. Furthermore, the sample width should be 

smaller than the ceramic heating pod stationed at the bottom of the temperature stage. 

Samples tested under ambient conditions were approximately 6x6x6mm (lxwxh) and 

samples tested within the temperature control stage were 4x4x2mm. 

Upon completion of clustering analysis, consistency in indentation depth was used 

as a standard to confirm polishing quality. Donnelly et al. (2006) determined that for 

proper surface measurements of shales, surface roughness should be three times smaller 

than the indentation depth.  

Samples under investigation were carbon coated (20nm) to prevent electron charge 

build-up during imaging. 
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3.2 Porosity, XRD, TOC, rock eval and thermogravimetry 

The purpose of this section is to provide information on the composition of the 

sample under study in this research. Additionally, methods and results of testing porosity 

of shale samples are introduced as well as volume fraction calculations to support the 

multi-scale thought model discussed previously. The results provided here will be used to 

interpret the chemo-mechanical properties obtained for the clay/kerogen phase. 

 

3.2.1 Shale sample 

The Haynesville shale core sample was provided by the Harold Vance Department 

of Petroleum Engineering at Texas A&M University. The Haynesville sample contains 

both organic and inorganic matter and was extracted from a gas-rich zone. Little 

information on the composition and porosity was provided thereby requiring XRD and 

porosity tests to be performed. The sample presents a high level of transverse anisotropy, 

with an anisotropic ratio of approximately 4:3 as determined through experimental results. 

 

3.2.2 Composition of Haynesville (XRD results) 

The composition of this sample was obtain by X-ray diffraction (XRD). The 

sample was also studied under the Energy Dispersive Spectroscopy (EDX) to qualitatively 

verify the validity of the XRD results. The XRD results and EDX distributions are 

provided in Table 4. 
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Table 4 – X-Ray Diffraction (XRD) and Energy Dispersive Spectroscopy 

(EDX) results for Haynesville shale. 

Mineralogy Haynesville 

Shale (wt. %) 

Haynesville Shale 

(% Distribution per EDX 

map, fig. 3.3) 

Clay 27.50 65.30 

Quartz 23.10 10.01 

Carbonate 40.90 13.84 

Pyrite 1.40 1.800 

Feldspar 6.20 8.050 

Apatite 0.90 1.000 

TOC 2.77 (combined with clay) 

Fig. 21 represents the elemental overlay of silicon, aluminum, magnesium, sulfur, 

calcium, and sodium taken under an Energy Dispersive Spectroscope. The overlay is used 

to visually check the distribution of the various minerals present within the sample and 

compare the results to those obtained from an XRD test. It can be noticed that the 

differences between the EDX and XRD results for Pyrite, Feldspar, and Apatite are within 

close proximity of one another whereas the clay, quartz, and carbonate distributions vary 

significantly. Explanation for this resides in the fact that an area that is rich is clay and 

poor is quartz and carbonate was selected for indentation experiments. Comparing the 

results provided in Table 1, nonetheless, proves that the mineralogy detected through both 

approaches are the same; in other words, no additional mineralogy was detected through 

one method that was detected through the other method. 
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Figure 21 – Energy Dispersive Spectroscopy (EDX) results for Haynesville set 1 X3 

250ᵒC. 

3.2.3 Porosity calculations 

There are several experimental and analytical methods to determine the porosity 

of shales samples. The first method uses the mineralogy data obtained from the XRD 

results to determine the bulk density of the shale sample. The following equation can be 

used to calculate the porosity of a shale sample: 

∅

100
=  

Bulk Volume − Total Mineral Volume

Bulk Volume

(3.1) 

which can be re-written as, 

∅

100
= 1 − 

∑ [

XRD wt. % of mineral x (100 − % TOC)
100
ρi

]

inorganic

+ [
% TOC

ρTOC
]

Organic

𝑁
𝑖=1

100
ρbulk

(3.2) 
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The second method to determine the porosity is to determine the bulk density of 

the shale sample before and after saturation. To obtain the bulk density after saturation, 

the sample is submerged into a fluid to allow the fluid to occupy the pore space. When 

considering the bulk density of the unsaturated sample, the sample should be oven dried 

(60ᵒC, 2 hours) to remove any surface water present within the sample. Combining these 

two values, the following equation can be used to calculate the porosity: 

 

∅

100
=  

ρsaturated −  ρunsaturated

ρsaturated
 

 

(3.3) 

∅

100
=   

masssaturated

Volume
−  

massafter oven−drying

Volume
masssaturated

Volume

=  
masssaturated −  massafter over−drying

masssaturated
 

(3.4) 

 

The third method to calculate porosity in shales is through the use of helium 

porosimetry or mercury porosimetry (MICP). This method is conducted by pressurizing 

the crushed sample with helium or mercury within a closed chamber. MICP tends to 

underestimate the porosity. Mercury porosimetry was performed on Haynesville by 

Nutech PoroLabs. 

The volume fraction of the Haynesville sample can be divided as such: 

𝜂𝑠 +  𝜂𝑘 + ∅ = 1 (3.5) 
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where the sum of the inorganic phase (clay), organic phase (kerogen), and porosity equal 

to one. Eq. 3.6 and 3.7 can then be used to calculate the kerogen volume fraction: 

 

𝜂𝑘 =  
𝑓𝑘

𝑓𝑘 + 𝑓𝑐 + ∅𝑘+𝑐
 

(3.6) 

 

𝜂𝑐 =  
𝑓𝑐

𝑓𝑘 + 𝑓𝑐 + ∅𝑘+𝑐
 

(3.7) 

 

Abedi et al. (2016) noted that the porosity at level I is equivalent to the porosity at 

level II in a self-consistent (mature) morphology which means 𝜙 = 𝜑; this is not 

applicable to immature samples. Table 5 lists the calculations followed to obtain the 

volume fractions of clay and kerogen using the XRD values provided. Considering the 

high maturity of organic matter in the Haynesville sample, we assumed a density value of 

1.3 g/cm3 (Sone and Zoback, 2013). 
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Table 5 – Material volume fraction calculations for Haynesville shale. 

 
 
 
 

3.2.4 TOC and rock eval results 

Rock eval. analysis was performed to understand the maturity level of the 

Haynesville shale sample. Analysis was performed by Nutech PoroLabs. Table 6 shows 

the Tmax, S1, S2, S3, and calculated Ro values. Tmax is an indicator of maturity, where 

higher values mean higher the maturity. S1 is the amount of free hydrocarbons in the 

sample, S2 is the amount of hydrocarbons that the rock is capable of producing, S3 is the 

amount of CO2 produced, and Ro is the vitrinite reflectance. Here, a value of Ro is 

indicative that the sample is from a dry gas zone and a Tmax value of 495 shows that the 

sample is mature. 
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Table 6 – Rock eval results obtained for a Haynesville core sample. 

Rock Eval. Results 

Tmax 495 

S1 0.79 

S2 0.37 

S3 0.30 

Calculated Ro 1.75 

 

3.2.5 Thermogravimetry 

Thermogravimetric Analysis (TGA) is used to study the weight behavior of a 

material over a range of temperatures and time intervals. This methodology can be applied 

to both conventional and unconventional reservoir rocks. TGA can be used to study the 

removal of volatile components, loss of moisture, and adsorption/desorption within the 

nanopores. TGA tests was performed using TA Instruments Model Q500 (SN: 0500-1104) 

per testing method ASTM E1131-08 (2014); an image of the instrument is shown in Fig. 

22. 
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Figure 22 – TA Instruments Model Q500 used to perform Thermogravimetry 

Analysis on Haynesville. 

Table 7 shows a summary of published TGA data on shales with heating rates and 

other experimental parameters followed. 
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Table 7 – TGA published results on shales. 

Rock Temperature 

Range (°C) 

Heating 

Rate 

(°C/min.) 

Gas 

Used 

Purge 

Rate 

(ml/ 

min.) 

Relative 

Humidity 

(%) 

Source 

Haynesville 110-200 5 Reagent 

grade 

Nitroge

n (N2) 

50  50 U. 

Kuila, 

et al. 

2013 

Conclusion: TGA used at 200°C to remove clay bound water from the clay (illite) 

rich Haynesville shale sample; between 110-200°C, weight % loss of 0.14%; total 

weight % loss of 1.92%; 9-11% porosity 

Barnett 900 3 Nitroge

n Gas 

(N2) 

N/A N/A T.G. 

Easley, 

et al. 

2007 

Conclusion: TGA can be used to clean shale gas samples; clay bound water 

calculation for shales 

Bakken, 

Eagle Ford, 

and Utica 

1100 10 Nitroge

n Gas 

(N2) 

40  Desiccator 

humidity 

J. P. 

Gips, 

et al. 

2014 

Conclusion: Less than 100°C, free fluid escapes 

 

 

The following settings were used to obtain the TGA results for Haynesville shale 

in this research. The sample was heated at a rate of 1ᵒC/min. or 5ᵒC/min. up to 300ᵒC or 

350ᵒC. Nitrogen gas was used at a purge rate of 50ml/min. Sample weight of 40-60mg 

were used during each experiment. 

 

3.3 Nanoindentation 

3.3.1 Background and introduction to nanoindentation  

The nanoindentation technique has been in application since the early 1700’s (Ulm 

et al., 2005). In the 1980’s and 1990’s, developments in nanotechnology, much to the 
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contributions of Bulychev, et al. (1975), Doerner and Nix (1986) and Oliver and Pharr 

(1992), have paved way to quickly and accurately determine the mechanical properties of 

materials using a depth sensing technique. Well known for their contribution to 

mechanical testing at the sub-micron scale, Oliver and Pharr performed studies on the 

indentation load-displacement behavior of six homogeneous samples to tabulate their 

elastic and strength properties. The Nanoindenter used in this study is the Hysitron TI-950 

located at The Texas A&M University – Microscopy Characterization Facility (Fig. 23). 

Figure 23 – Hysitron TI-950 Nanoindenter located at the Texas A&M University – 

Microscopy Characterization Facility. 
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The setup of nanoindentation can be understood as follows. A ceramic indentation 

probe with a diamond tip is connected to a transducer to control the load applied on the 

specimen (Fig. 24). For the purposes of elastic, strength, and/or creep properties, a 

berkovich tip has been used by researchers to penetrate the sample (Jones and Grasley 

(2010), Vandamme and Ulm (2013), Abedi et al. (2015), and Slim et al., (2017)). These 

researchers have proven to effectively and accurately measure the mechanical properties 

of the various phases present within the specimen using large grids of indentations. The 

berkovich tip leaves a triangular impression on the sample surface, as shown in Fig. 25, 

in which both elastic and plastic deformation occur. During retraction of the tip from the 

sample surface, only the elastic properties are recovered and can be used to determine the 

mechanical properties of the indented material. 

Figure 24 – Schematic of a diamond tip indenting into the sample surface (Kumar 

et. al., 2012). 
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Figure 25 – Berkovich indentation on a polished Eagle Ford shale sample using 

contact-mode imaging; taken at the Texas A&M University Materials 

Characterization Facility. 

Fig. 26 is a schematic representing the load-depth curve from an indentation test. 

During the loading and unloading phases of indentation, the load (P) versus displacement 

(h) curve is continuously measured by the indenter probe (Fig. 24). Using the P-h curve

as well as the slope of the unloading curve, also known as the contact stiffness (S), the 

indentation modulus and indentation hardness of the probed material is calculated. 
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Figure 26 – Schematic of indentation depth versus load for two indent (Oliver and 

Pharr, 2003). 

3.3.2 Indentation modulus 

Originally proposed by a group of researchers, the BASh (Bulychev et. al. 1975) 

method provides an analytical tool for determining the elastic modulus. Indentation 

modulus is commonly represented by Eq. 3.8. 

𝑀 =  
√𝜋

2
𝑆√𝐴𝑐 

(3.8) 

where, 𝑆 is the initial slope of the unloading curve and is shown in Eq. 3.9. 

𝑆 =
𝑑𝑃

𝑑ℎ
=  

2

𝜋
𝐸𝑟√𝐴𝑐 

(3.9) 

𝐴𝑐 = 𝜋𝑎𝑢
2 (3.10) 
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𝐸𝑟 is the reduced modulus and 𝐴𝐶  is the portion of the tip that is in contact with 

the specimen (Eq. 3.10); 𝑎𝑢 is the contact radius between the tip and the sample surface. 

The 𝐴𝐶  parameter was also proposed by BASh and can be calculated using indirect 

methods using the maximum indentation depth. Oliver and Pharr introduced Eq. 3.11 

which can determine the contact height of the probed region. To account for the edge 

effects, a geometric constant of 𝜀 = 0.75 is used in this equation. 

ℎ𝑐

ℎ𝑚𝑎𝑥
= 1 −  𝜀

𝑃𝑚𝑎𝑥

𝑆 ℎ𝑚𝑎𝑥

(3.11) 

The contact area is determined using the geometry of the tip and the depth of the 

contact, where the indenter geometry can be determined using the area function that relates 

the contact area to the indenter depth (hmax) as shown in Eq. 3.12. 

𝐴 = 𝐶𝑜ℎ2 + 𝐶1ℎ +  𝐶2ℎ1/2 + 𝐶3ℎ1/4 + 𝐶4ℎ1/8 + 𝐶4ℎ1/16 (3.12) 

The contact depth can be obtained by subtracting the contact perimeter, ℎ𝑠, from 

the maximum contact depth. The contact perimeter can be obtained using Eq. 3.11. A 

schematic is provided in Fig. 27 that show the physical meaning of many of these 

parameters.  
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Figure 27 – Schematic of the tip penetration the sample under a specific indentation 

load; several parameters used to obtain the mechanical properties are listed (Zhang 

et al., 2014). 

While some authors have directly used the Poisson’s ratio of 0.3 for modulus 

calculation (Kumar et al., 2012), the elastic modulus in this thesis will be displayed as a 

function of Poisson’s ratio, thereby classifying the reduced modulus values as indentation 

elastic modulus instead (Eq. 3.13). The reduced modulus can be written has a function of 

Poisson’s ratio and modulus of both the specimen and the diamond tip. 

1

𝐸𝑟
=

(1 − 𝑣2)

𝐸
+

(1 − 𝑣𝑖
2)

𝐸𝑖

(3.13) 

 In Eq. 3.13, 𝜐𝑖 and 𝐸𝑖  are the Poisson’s ratio and indentation elastic modulus of 

the diamond tip (0.07 and 1141 GPa, respectively). The indentation elastic modulus can 

also be represented by the plane-stress elastic moduli (Eq. 3.14), where K is the bulk 
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modulus and G is the shear modulus. The derivation of the transfer from the plane-stress 

elastic moduli equation to the plane-stress elastic moduli equation is shown in Appendix 

A. This equation can only be used for isotropic materials. However, given that shales are 

transversely isotropic materials, the indentation modulus can be obtained using Eq. 3.15 

and 3.16, where the elastic constants (𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝑎𝑛𝑑 𝐶44) are the five constants 

that define the material. In Voigt notation, these constant can be written as 

𝐶1111, 𝐶1122, 𝐶1333, 𝐶3333, 𝑎𝑛𝑑 𝐶44 =  𝐶1313 =  𝐶2323) (Delafargue and Ulm, 2004). 

 

𝑀 =
𝐸

(1 − 𝑣2)
= 4𝐺

3𝐾 + 𝐺

3𝐾 + 4𝐺
 

(3.14) 

 

  

𝑀3 ≈ 2√
𝐶11𝐶33 − 𝐶13

2

𝐶11
(

1

𝐶44
+  

2

√𝐶11𝐶33 + 𝐶13

)

−1

 

(3.15) 

 

  

𝑀1 ≈ √√
𝐶11

𝐶33

𝐶11
2 − 𝐶12

2

𝐶11
𝑀3 

(3.16) 

 

  

3.3.3 Indentation hardness 

The hardness, as determined by Oliver and Pharr, can be calculated using the 

projected contact area and the average pressure, 𝑃𝑚𝑎𝑥, applied onto the probe (Eq. 3.17). 
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𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝐶
 

(3.17) 

It is understood that indentation hardness is not a property of a material. Accuracy 

of the results are primarily dependent on the contact area, the derivation of which is 

provided in the previous section.  

 

3.3.4 Contact creep modulus 

In measuring the indentation modulus and hardness using nanoindentation, the tip 

is held in contact with the sample for 10 seconds. The load and uploaded phases are also 

10 seconds, which are fast enough to minimize the effect of plasticity during loading and 

viscous effects during loading and unloading (Vandamme and Ulm, 2013). When 

measuring creep of the heterogeneous sample, a hold time of 200 seconds is used.  

There are several means of describing the behavior of viscoelastic materials. One 

such method is called the integral operator (also called the hereditary Integral) (Eq. 3.18). 

When a linear viscoelastic material is loaded over positive time (t>0) in a triaxial creep 

experiment, the output strain response can be described through this integral form. In other 

words, the strain 𝜀(𝑡) can be described at time, 𝑡, using the integral equation. 

𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)
𝑑𝜎(𝜏)

𝑑𝜏

𝑡

0

𝑑𝜏 (3.18) 

𝜏 represents any time between 0 and 𝑡. 𝐽(𝑡) is the creep compliance function that 

characterizes the time-dependent strain response to sudden loading and is a memory 
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function. By performing creep indentation tests, the contact creep compliance, can be used 

to characterize the creep properties of the material.  

The Galin-sneddon solution, a widely used method for indentation of isotropic 

materials, is presented in Eq. 3.19. 𝑃(𝑡) represents the indentation load, ℎ(𝑡) is the 

indentation depth, where both are a function of time. 𝜃 represents the half-angle of the 

conical indenter and 𝑀 represents the indentation modulus. The indentation modulus is 

presented in Eq. 3.12.  

𝑃(𝑡) =
2 tan 𝜃

𝜋
𝑀ℎ2(𝑡) (3.19) 

The correspondence principle of linear viscoelasticity is a well-established method 

for solving boundary value problems involving viscoelastic materials. Here, the time-

dependent elastic field variables and constitutive properties are replaced by the s-

multiplied Laplace transform analogs, solved in the Laplace domain, and then translated 

back to the time domain. Proven by Lee and Radoc (1960), this principle can be applied 

as long as the contact area between the indenter probe and the indented material is 

increasing monotonically. Applying this principle to Eq. 3.19 results in Eq. 3.20. 

 

𝑃(𝑠)̅̅ ̅̅ ̅̅ =
2 tan 𝜃

𝜋
𝑠𝑀(𝑠)̅̅ ̅̅ ̅̅ ̅ℎ2(𝑠)̅̅ ̅̅ ̅̅ ̅ =

2 tan 𝜃

𝜋

ℎ2(𝑠)̅̅ ̅̅ ̅̅ ̅

𝑠𝐿̅(𝑠)̅̅ ̅̅
 (3.20) 

Creep indentation experiments can be approximated by a Heaviside step loading 

(Eq. 3.21). 
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𝑃(𝑡) = 𝑃𝑚𝑎𝑥𝐻(𝑡) (3.21) 

where 𝑃max is the maximum applied load and 𝐻(𝑡) is the Heaviside step function.  

The overbar in Eq. 3.20 represents the Laplace transformed quantity and 𝑠 the 

Laplace parameter. 𝐿(𝑡) is the contact creep compliance, which can be rewritten in the 

laplace domain as 𝑠𝐿(𝑠)̅̅ ̅̅ =
1

𝑠𝑀(𝑠)̅̅ ̅̅ ̅̅ ̅ (Vandamme et al., 2012; Vandamme and Ulm, 2013; 

Zhang et al., 2014).  

Vandamme and Ulm (2013) showed that the contact creep compliance rate 

𝐿̇(𝑡) can be obtained during the holding phase of the nanoindentation creep experiment 

(Eq. 3.22), as presented in Eq. 2.8, whose derivative with respect to time is shown in Eq. 

3.23 (also presented in Eq. 2.9) (Zhang, et al., 2014). At time zero, which corresponds to 

the start of the holding period, the contact creep compliance is 
1

𝑀
. Hence, the equation can 

be re-written to include the inverse of the indentation modulus (Eq. 3.24) and fit with a 

logarithmic function (Zhang et al., 2014).  

𝐿̇(𝑡) =
2𝑎𝑢ℎ̇(𝑡)

𝑃max
 (3.22) 

𝐿(𝑡) − 𝐿(0) = 𝐿(𝑡) −
1

𝑀
=

2𝑎𝑢𝛥ℎ(𝑡)

𝑃𝑚𝑎𝑥
 (3.23) 

𝐿(𝑡) −
1

𝑀
=

ln (
𝑡
𝜏 + 1)

𝐶
 

(3.24) 

The contact creep modulus, 𝐶, represents the creep kinetics, where the greater the contact 

creep modulus, the lower the creep rate of the material. The characteristic time 𝜏 specifies 
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the time at which creep kinetics starts showing a logarithmic behavior. The rate of this 

long-term creep kinetics can be can be captured by the contact creep modulus (3.25). 

𝐿̇(𝑡) =
1

𝐶𝑡
; 𝑡 ≫ 𝜏 (3.25) 

 

3.3.5 Standard transducer, NanoDMA III transdsucer, and experimental parameters 

The Hysitron TI950 nanoindenter was used to extract the indentation modulus, 

indentation hardness, and creep properties of the Haynesville shale samples studied in this 

thesis. Specifically, the 2-D transducer was used to measure the indentation modulus and 

indentation hardness whereas the nanoDMA III transducer was used to measure the time-

dependent (creep) properties. The nanoDMA III transducer, a dynamic testing technique, 

was designed by Hysitron® to measure time dependent properties that are not easily 

measured through standard techniques (Hysitron nanoDMA III User Manual, 2014). The 

Hysitron TI-950 nanoindenter located at the Texas A&M Materials Characterization 

(MCF) facility was used for all experiments performed in this study. Calibration of the 

nanoindenter was performed on fused quartz and polycarbonate to ensure that the tip, 

optics, and stage were calibrated correctly. A Nano-DMA III transducer was used instead 

of a 2D transducer to measure the creep behavior because of its reduced sensitivity to drift. 

Experiments at ambient conditions utilized a short-duration Berkovich tip while 

experiments at high temperatures required an extended temperature tip. The extension of 

the tip is required to account for the thickness of the temperature stage. An image of the 

short-duration and high temperature tip are shown in Fig. 28. 
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Figure 28 – Short-duration tip (left) and high temperature tip (right) used for 

indenting samples. 

  

Indentation settings are highly dependent on the material being examined. Wang 

et al., (2009) used load settings between 1-9mN for nanocrystalline nickel. In the case for 

shales, Kumar et al., (2013) used a load of 300-500mN for nanoindentation of Woodford 

samples. In a large scale indentation campaign, Bobko and Ulm (2008) experimented with 

a range of applied loads between P = 0.3mN and 4.8mN; at a constant loading rate of 0.3 

mN, the indentation depths were between 250-500nm and a load of 4.8mN resulted in 

depths between 0.5-2.5µm, the latter producing more stable mechanical properties. Bobko 

and Ulm (2008) proposed nanoindentation parameters (with the exception of creep 

holding time) listed in Table 8 to capture the mechanical properties of materials with 

length scales between 0.5 to 3μm which is particularly useful for understanding the 

mechanical responses of porous clays. In an attempt to capture accurate mechanical 

properties of porous clay in the X1 and X3 bedding directions, load conditions listed in 

Table 8 are applied for all experiments performed in this study. Each experiment consisted 

of 400-625 indents (20x20 or 25x25 matrix) covering approximately 140μmx140μm to 
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175μmx175μm of the sample surface. Test runs were made on Haynesville, Marcellus, 

and Eagle Ford samples on the nanoindenter and the results were validated to ensure the 

surface polishing protocol was adequate for correct data extraction. A representation of 

the indentation grid is shown in Fig. 29. 

 

Table 8 – Nanoindentation settings for measuring the mechanical properties of 

clays in shales (Bobko and Ulm, 2007; Abedi et. al., 2015). 

Nanoindentation Load Settings 

Applied Load (µN) 4800 

Loading Time (sec) 10 

Unloading Time (sec) 10 

Short-duration Holding Time 

(sec) 

10 

Creep Holding Time (sec) 200 

Spacing (µN) 7 

 

 

Figure 29 – Indentation grid (20x20) performed using nanoindentation using the 

parameters listed in Table 8. 
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3.3.6 Loading or replacing the diamond tip 

Replacing the tip on the transducer is a delicate process and should be performed 

carefully so as to avoid damage to the probe. To replace the diamond tip, 

1. Unplug the three transducer/scanner cords from the system, loosen the hex screw, 

remove the transducer/scanner from the nanoindenter, and place on a flat surface. 

2. Carefully remove the standard berkovich probe from the transducer using one of 

two nanoindentation tip mounting tools. The short tool is for the berkovich probe 

and the long tool is for the high temperature berkovich probe (Fig. 30). 

 

 

Figure 30 – Small tool (left) and large tool (right) for replacing the short-duration 

and high temperature tips, respectively. 

 

3. When unscrewing the tip, carefully place the tool over the tip with minimal lateral 

movement and loosen in a counter-clockwise manner until the tip is completely 

removed from the transducer socket. 

4. Once removed, place the tip back into the plastic tube and store carefully. 

5. Next, remove the high temperature tip carefully from the storage container and 

remove the tip from the plastic tube. Note that when storing the tip in the plastic 

tube, the tip should be inserted into the tube without force; the metallic portion of 

Short Tool for 

short-duration 

tip 

Long Tool for 

Temperature tip 
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the tip should be partially inserted into the plastic tube. This is to prevent damage 

to the tip shaft. 

6. Insert the tip into the long mounting tool and carefully place the end of the tip into 

the transducer socket. Rotate the tool in a counter-clockwise manner until a “click” 

is heard, then tighten in the clockwise direction. Rotate the tool an additional 

quarter circle once the tip is fully tightened.  

7. Load the transducer back onto the nanoindenter machine, tighten the hex screw, 

and connect all wires. 

8. Load the correct area function by going to Calibration > Tip calibration > File. 

Make sure to choose the correct slot when loading the area function. 

 

3.3.7 Tip to optics calibration 

Tip to optics calibration is performed when the transducer has been removed and 

needs to be aligned with the optical microscope. Tip to optics calibration should be 

performed on a soft sample, such as Aluminum or Polycarbonate. To perform tip to optics 

calibration, the following method should be used: 

1. Create a boundary on the standard sample (Aluminum or Polycarbonate) 

2. Go to Calibration > Stage Calibration > Tip to Optics Calibration. Create an “H-

pattern” on the sample. 

3. Once complete, place the optical microscope on the center indent of the “H-

pattern” and indent once more to complete the calibration. 
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3.3.8 Air indent calibration 

Air indent calibration is performed to confirm that the tip is free of foreign debris. 

To perform air indent calibration, the following method should be used: 

1. Calibration > Systems Calibration > Indentation Axis > Calibrate > Air Indent 

2. When running the test, make sure that the vibration isolation control unit is turned 

on. 

Note: air indent calibration is not necessary when performing tip to optics calibration. 

If the air indent is unsuccessful, confirm that the tip is clean, placed correctly into 

the transducer slot, and that the scanner screw is tightened completely. 

 

3.3.9 Cleaning the tip and standard sample 

Cleaning the tip and standing sample is one of the most important and crucial steps 

in performing a proper experiment. To clean the tip, use a cotton swap and acetone and 

wipe the tip from top to bottom (Fig. 31). Do not place the cotton swab directly onto the 

end of the shaft as it can damage the tip. Once the tip has been cleaned with acetone, gently 

blow compressed nitrogen along the shaft to evaporate the excess liquid. The tip can also 

be cleaned using an ultra-sonic water bath, though this cleaning procedure was not 

following in this thesis. 

To clean the standard sample, such as fused quartz, the following steps should be 

used: 

1. Blow compressed nitrogen onto the sample to remove large particles 
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2. Wet a cotton swap with acetone and gently rub the wet swap over the sample. Start 

in the middle and circle outwards to remove maximum amount of debris. 

3. Use the compressed nitrogen and blow the surface to remove excess fluid. 

4. Repeat steps 2-3 three times for best results. 

 

 

Figure 31 – Cleaning a high temperature tip using a cotton swab and acetone. 

 

3.3.10 Tip calibration 

To confirm that the tip produces accurate results, standard sample calibration 

should be performed before and after each experiment. Fused quartz has a modulus and 

hardness of 69.6 GPa and 9.25 Gpa, respectively. A short test of 6-9 indents should be 

performed over a range of loads. Typical loads used were between 4,000 and 10,000mN. 

If scatter in the results is detected, it may likely be due to excess drift, in which case, the 

sample should be placed carefully inside the nanoindenter chamber for 20 minutes before 

beginning the test. A tip calibration is important because each berkovich tip, which is 
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similar in shape, has its own unique shape. To account for the particular shape of the tip, 

an area function is obtained as shown in Eq. 3.26. 

𝐴 = 𝐶𝑜ℎ2 + 𝐶1ℎ +  𝐶2ℎ1/2 + 𝐶3ℎ1/4 + 𝐶4ℎ1/8 + 𝐶4ℎ1/16 (3.26) 

3.3.11 Indentation at elevated temperatures 

In this study, the Hysitron® TI-950 nanoindenter equipped with a dual XSol 

temperature stage (max temperature of 800°C) was used to perform indentations at 

elevated temperatures. The upper and lower temperature stages contain heating elements 

that maintain a uniform temperature gradient throughout the sample (Fig. 32). The 

temperature stage comes equipped with a dry gas shroud connected to a dry gas source 

(argon) to prevent condensation on the sample when it is cooled to room temperature. The 

argon gas also helps reduce the occurrence of oxidation of the diamond tip and the sample, 

the latter being a key condition needed to replicate in-situ conditions. 
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Figure 32 – A Hysitron TI950 Nanoindenter temperature stage assembly (upper 

stage and lower stage) connected to a cooling system used to heat the sample and 

maintain a uniform temperature around the stage. 

 

The temperature of the top and bottom stages are measured in real time by the 

stage sensors and stored by the computer software. The stage can be programmed to heat 

the sample instantly or at a constant rate. A plot of temperature versus time (Fig. 33) shows 

that allowing the sample to heat at a constant rate reduces the chance of exceeding the pre-

set temperature value. Moreover, since the goal of this investigation is to characterize the 

effect of exposure to high temperatures on mechanical properties of organic-rich shales, 

the heating procedure needs to be designed to limit the corresponding thermal gradients 

and transient effects of heating. Therefore, specimens were heated at a rate of 1°C/min. 

using the constant rate method, also known as the “ramp” feature. 

Upper 

Stage 

Cooling 
System 

Optical 

Microscope 

Lower 

Stage 
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Figure 33 – Increasing the stage temperature before (left, A) and after (right, B) 

selecting the “ramp” feature (modified from Hysitron Temperature Stage Controls 

manual, 2014). 

 

There are two major types of drifts to consider when performing indents, especially 

at higher temperatures. The first is electrical drift and the second is thermal drift. Electrical 

drift is caused by the motors and sensors connected to the stage and tip assemblies (Lu et 

al., 2010). Thermal drift occurs when the components of the system, such as the motors, 

release heat into the surrounding and cause temperature fluctuations in the system. 

Engineers and researchers have attempted to eliminate thermal drift by increasing the 

amount of “dwell” time between the tip and sample during indentation. In the case of the 

nanoindenter, it was observed that a dwell time of 45 seconds is automatically 

programmed in each indentation cycle to allow for the drift to stabilize. While 45 seconds 

may not entirely eliminate this issue, this hold time allows the drift for most indents to fall 

within the desired drift limit (+/- 0.05 nm/s). Table 9 lists the percent of indents that fell 

A B 
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within the drift limit for all short-duration indentation tests (23-350°C), and Fig. 34 shows 

the average drift rate for each experiment. 

 

Table 9 – Temperature dependence on drift rate for short-duration indentation 

experiments performed between 23-350°C. 

Temperature (°C) % of Indents within the 

Drift Rate (=<-0.05 nm/s) 

X1-23 (Set 1) 100 

X1-23 (Set 2) 99 

X1-70 98 

X1-250 83 

X1-350 97 

X3-23 67 

X3-250 (Set 1) 86 

X3-250 (Set 2) 71 

X3-350 (Set 1) 85 

X3-350 (Set 2) 99 

 

 

Figure 34 – Average drift rate (nm/s) over a range of temperatures. 
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To reduce the amount of error in indentation measurements, careful attention 

should be placed to ensure that the tip and sample are at the same temperature. A tip at 

room temperature coming into contact with the heated sample can cause incorrect 

mechanical property measurements. In addition, it is necessary to consider the specific 

environment that the nanoindenter is placed in. As a result, an equilibrium time of ~4 hours 

was allotted for any unforeseen causes affecting the system’s steady-state rate. During 

heating and equilibrium time, the tip is brought into contact with the sample and then 

retracted 0.05μm to account for sample expansion. Grebowicz (2014) recorded the thermal 

expansion of green river shales and determined that between 100-210°C, the sample 

expanded linearly and by 4.3% in dimension up to 350°C. While it is unclear whether 

significant sample expansion occurs during the heating process in our experiments, 

precaution was taken by retracting the tip during all temperature experiments to avoid 

damage to the tip or the sample. To monitor the sample expansion, images of the sample 

surface were taken on the nanoindenter before and after the thermal equilibrium had been 

achieved. Fig. 35 shows a comparison of the Haynesville sample surface before and after 

heating it to 350°C. To achieve a higher level of clarity in the second image, the 

magnification needed to be reduced slightly. Two conclusions can be drawn from these 

images. The first is that the sample may have expanded due to an increase in temperature. 

Further investigation is needed to determine whether dilatation occurs in the sample and 

the amount of time needed to heat the sample before expansion levels off. The second 

conclusion is that the magnification needed to be changed due to the interference with heat 
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waves. No major changes were made to the experimental procedure to account for sample 

expansion. 

 

   
Figure 35 – Optical image of an X1-direction Haynesville sample before (left) and 

after (right) heating to 350°C. 

 

3.4 SEM and EDX 

Scanning Electron Microscope was used to obtain high-resolution topographic 

images of sample surfaces and is commonly used to study the pore network present within 

organic-rich shales (Loucks et al., 2009). The scanning electron microscope has four main 

components: the electron gun, electron lenses (both of which make up the “column”), a 

vacuum system, and a specimen stage (Reed). The electron gun is composed of a tungsten 

filament closely set to a cathode and an anode that helps control the flow of electrons from 

the filament and onto the sample surface. The electron lenses help project the electrons 

onto the surface of the sample. The lens, which are composed of an iron shroud and copper 

windings, consist of a small window opening that allows the beam to deflect towards the 

axis. A total of three lenses (two condensers and one immersion lens) are used to redirect 
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the electron beam towards the sample surface. A low pressure environment is created to 

prevent damage to the electron source and high-voltage breakdown in the gun. The 

vacuum also allows the electrons to reach the surface directly, rather than dispersing 

around the sample. When electrons reach the surface of the sample, the behavior of the 

electrons are categorized into two groups: inelastic and elastic electrons. Elastic electrons, 

also known as secondary electrons, are electrons with energies less than 50eV, and reflect 

at an angle less than 90°. See Fig. 36 for a cross-sectional illustration. These electrons are 

captured by a detector such as the Everhart-Thornley type detector. Inelastic electrons, 

also known as back-scattered electrons, have energies greater than 50eV and reflect at an 

angle greater than 90° thereby analyzing a deeper portion of the sample surface. These 

electrons are captured by a detector typically placed directly above the specimen. 

 

 
Figure 36 – Cross-section illustration of the depth at which secondary electrons and 

back-scattered electrons penetrate the sample surface (taken from Ads, et. al., 

2014). 
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Energy Dispersive X-Ray Spectroscopy (EDS or EDX) was used in conjunction 

with an SEM to help acquire quantitative and qualitative chemical information of the 

imaged surface. All results were obtained using a LYRA FIB-SEM, equipped with a 

standard EDX Microanalysis System, located at the Texas A&M MCF facility or an 

Electron Microprobe, paired with a Thermo EDS System (Fig. 37), located at the Texas 

A&M Microscopy and Imaging Center. Electrons bombarded onto the sample surface 

cause electrons to be ejected from the atoms. X-rays are emitted as a consequence of the 

transferring of electrons from a higher state to a lower stage and are captured by the EDX 

detector for processing; EDX is reflective of the energy level of the x-rays emitted from 

the sample surface. 

 

 

Figure 37 – Chamber view of a Lyra FIB-SEM machine (left) and SEM/EDX work 

station (right) located at the Microscopy Imaging Center (Texas A&M University). 
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Processing of the x-rays versus counts is needed to determine the elemental 

composition of the imaged surface. An accelerating voltage of 15kV and a working 

distance of 9mm were used to obtain topographical and compositional images of the 

nanoindentation grids. Qualitative data was extracted for elements of interest: Si, Al, and 

Ca. Other elemental maps were also obtained (C, Fe, K, Mg, Na, O, P, and S) but were 

typically not included in the analytical approach to study the porous clay/kerogen phase. 

Next, the quantitative results for Si and Al were extracted to identify the clay/kerogen 

phase (Deirieh et al., 2012, Abedi et al., 2015, and Slim et al., 2017). Qualitative results 

were extracted from the software in the form of .tiff files, which provide the intensity 

values for each pixel. For example, a typical image resolution obtained was 512x351; the 

.tiff file would correspond to 512X351 columns and rows of numerical data which can be 

imported into another program (Matlab) for analysis. The elemental maps are shown in 

Fig. 38. 
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Figure 38 – Topographic and elemental images of a Haynesville shale sample (X1, 

parallel) for a sample tested at 250ᵒC (on the nanoindenter) using the Lyra FIB-

SEM. 

 

Samples under investigation were carbon coated (20nm) to prevent electron charge 

buildup during imaging. All samples were carbon coated using the carbon coating machine 

located at the Texas A&M MIC facility. 

 

3.5 Coupling nanoindentation and EDX results 

With the extraction of mechanical properties from nanoindentation and chemical 

properties from SEM/EDX, coupling analysis is performed to determine the averaged 

chemical intensity values around each indentation point; these quantitative values are 

needed to implement a chemo-mechanical clustering approach, as will be discussed in the 

next section. First, determine the elements of interest. Second, using a programming 

platform (Matlab), the pixel location of the four corners of the indentation grid need to be 

obtained. Next, using the x-value and y-value of each indent (provided by the Hysitron 



 

82 

 

software) and knowing that the spacing of each indent is 7μm, we determine the pixel 

locations of each indent. Fourth, an averaged intensity value is extracted for all visible 

indents within each elemental map. Given that our focus is to primarily understand the 

behavior of indented clay phase, average (1μm radius) intensity values are obtained for 

each indent for both aluminum (Al) and silicon (Si); depending on the concentration of 

calcium and type of clay present within the imaged area, the calcium (Ca) and/or 

potassium (K) intensity values were also obtained. As a result, for each indentation 

modulus, indentation hardness, and contact creep modulus value exists an averaged silicon 

and aluminum intensity value. In cases where dolomite concentrations were relatively 

high, the magnesium (Mg) intensity values were also obtained to help better differentiate 

the soft components (clays) from the hard components (carbonates) in this model-based 

clustering analysis. 

An example of the output of this analysis is shown in Fig. 39. Though indentations 

are not visible on the elemental maps, these images show the locations at which the sample 

was indented; indents are visible on the SEM images and are used as reference to overlay 

the indents on elemental maps. Table 10 lists the mechanical properties (elastic and 

strength) with the corresponding elemental intensity values for calcium, aluminum, 

silicon, and potassium for the first five indents (starting from bottom left of grid and to the 

right) for one grid. 
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Figure 39 – SEM and elemental maps with overlapped indents for Haynesville (X1-

250ᵒC). 

 

 

Table 10 – Summary of the mechanical and elemental intensity values for X1-

250ᵒC. 

Haynesville X1-250ᵒC 

Points Reduced 

Modulus 

(GPa) 

Indentation 

Modulus 

(GPa) 
𝐸

1 − 𝜈2
 

Hardness 

(GPa) 

Averaged Intensity 

(1μm Radius) 

    Ca Al Si K 

1 45.30 47.17 0.725 1.7 4.2 12.9 1 

2 23.51 24.00 0.187 5.1 5.0 7.7 1.4 

3 29.47 30.25 0.509 2.0 4.6 16.8 1.5 

4 13.25 13.40 0.093 3.5 4.3 6.3 0.6 

5 32.42 33.37 0.309 7.6 2.5 5.4 0.9 

 

3.6 Model-based clustering for chemo-mechanical characterization 

To evaluate the experimental results obtained from nanoindentation and 

SEM/EDX mapping, the mechanical properties (M, H, C) and chemical intensity values 

(Si, Al, and Ca or K) are used in conjunction as input parameters to a model-based 

clustering approach. Such a statistical approach is commonly used to group similar data 
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points and provide uncertainties associated with each grouped data set (Fraley and Raftery, 

2007). Analysis was performed using R programming language with a model-based 

clustering package (mclust) available through R. The mclust package uses a model-

selection criteria called BIC, or Bayesian Information Criterion, to identify and categorize 

the input parameters based on maximum likelihood (volume, shape, and orientation). 

An example of the chemo-mechanical clustered results for X1-23°C experiment 

are shown in Fig. 3.21 and 3.22, where phases 1 through 4 in Fig. 3.21 correspond to clay-

rich (2:1, Si:Al ratio), clay-carbonate interface, carbonate-rich, and quartz rich phases, 

respectively. The input parameters in evaluating these results are: H, M, Si, and Al. Fig. 

40 shows the intensity values of aluminum and silicon with the corresponding intensity 

values. In interpreting these results, it is necessary to understand the chemical formula of 

each mineral present in the sample. For example, quartz has a chemical formula of SiO2. 

This corresponds closely to phase 4, which has negligible aluminum and a high value for 

silicon. Therefore, this phase is classified to represent quartz. The high mechanical 

properties also prove that this phase correlates with a harder mineral. It is also evident that 

indentation depth decreases with increasing mechanical properties, confirming that the 

softest phase (Kerogen/clay phase) has the highest indentation depth. 
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Figure 40 – Chemo-mechanical clustering results for Haynesville shale sample 

parallel-to-bedding (X1) at room temperature where the indentation modulus, 

indentation hardness, volume fractions, and allocation rates for each phase are 

presented. 

 

 

Figure 41 – Chemo-mechanical clustering results for Haynesville shale sample 

parallel-to-bedding (X1) at room temperature where the average intensity for 

aluminum and silicon are presented as well as the indentation depths for each 

phase. 

 

Fig. 41 shows the frequency distribution of each of these phases for both 

indentation modulus and hardness according to their respective volume fractions. A 

similar behavior is observed for creep experiments where both indentation modulus and 
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indentation hardness as well as contact creep modulus increase with decreasing 

indentation depth. In the case of contact creep modulus, a high modulus value means lower 

creep kinetics. In other words, quartz has a higher contact creep modulus than clay, but 

creeps less than clay. 

 

 

Figure 42 – Indentation modulus (left) and indentation hardness (right) for 

clustered chemo-mechanical results produced in figures 2-4 plotted based on 

volume fraction. 

 

Using the coupled and clustered results discussed previously, phase maps are 

created to validate the accuracy of coupling the qualitative elemental values to the 

mechanical results obtained from nanoindentation. Fig. 42 shows the color map of the 

calculated intensity values for elements Al and Si as well as the estimated location of the 

indentation grid overlayed on Si and Al elemental maps. Additionally, a phase map (Fig. 

43) is composed using the model-based clustered results and is compared to both the 

elemental and color maps for similarities to confirm that the indentation points were 

selected with high accuracy on the elemental maps. This is of vital importance particularly 
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for nanoindentation grids performed in the direction perpendicular to bedding plane (X3) 

where poor polishing is attributed to a higher pore connectivity (Ulm et al., 2005). It is 

clear that areas that are rich in only silicon correspond to phase 4, which is attributed to 

quartz (SiO2). An extensive library of indentation, coupling, clustering, and color map 

results are included in Appendix C. 

 

 

Figure 43 – Color maps (A and B) and elemental maps (C and D) are presented for 

Aluminum and Silicon on the same area as the nanoindentation grid (Haynesville 

X1-23ᵒC). 
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Figure 44 – Phase color map of the clustered results for a nanoindentation grid 

performed on Haynesville X1-23ᵒC. Comparison of all five maps validate that 

correct indentation locations were used to couple and cluster the experimental data. 

 

3.7 Chapter summary 

This chapter introduced the various ways of analyzing shales samples, ranging 

from XRD, TOC, Rock Eval, and TGA. Furthermore, calculations are provided for 

obtaining the volume fraction of clay and kerogen. Next, the theory and experimental 

procedure to obtain mechanical properties, setting up the equipment, and various 

calibration methods are presented. Finally, the SEM&EDX results, coupling 

methodology, and clustering analysis are explained though sample images. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 This chapter includes the results and discussions of this work. Initially, discussion 

of the effect of temperature on the time-independent results for short-duration indentations 

are reviewed followed by time-independent results obtained from creep experiments. 

After that, the contact creep modulus for each experimental temperature value is provided 

and explained in detail. Results from thermogravimetry and its correlation to the outcome 

of the results is also explained in a separate section. At the end, further evaluation of the 

experimental data shows particular behavior was performed and are included within. To 

consolidate all research findings introduced in this chapter, a section is dedicated to the 

summary of these results in a numbered format. 

 

4.1 Effect of temperature on elasticity and strength properties: short-duration 

nanoindentation 

Nanoindentation tests were performed in both the X1 and X3 directions it measure 

the time-independent properties, which are indentation modulus and hardness, at 23, 70, 

250, and 350°C. These results were coupled with the chemical intensities explained in 

Chapter III and evaluated using MCLUST. Two elements were used, Si and Al, to 

determine the presence of clay, though Ca and K were also used based on their 

concentration within the indented region. 

 Figs. 45 and 46 show the trend of indentation modulus and hardness at each 

experimental temperature value. The indentation modulus and hardness values of the 
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porous clay/kerogen phase shows some variation in mechanical properties; however, the 

overall trend is relatively stable and suggests that little to no change occurs with increasing 

temperatures. Emmanuel et al., (2016) performed high temperature studies using Atomic 

Force Microscope (AFM) to evaluate the behavior of kerogen and bitumen. They also 

suggested that little change in modulus occurs with increasing temperature values for 

kerogen. Ibanez and Kronenberg (1993) observed weak temperature dependencies of 

illite-rich shales between temperatures of 22–196°C. Jarad et al., (2016) showed a 

negligible variation in effective stress-strain response of compacted illitic clay up to 

69.2°C. These observations sheds light on the insensitive nature of the mechanical 

properties, (kerogen and illite) to high temperatures. 
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Figure 45 – Indentation modulus obtained from short-duration experiments for 

Haynesville shale samples parallel and perpendicular to bedding direction for a 

range of temperatures (23-350ᵒC). 
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Figure 46 – Indentation hardness obtained from short-duration experiments for 

Haynesville shale samples parallel and perpendicular to bedding direction for a 

range of temperatures (23-350ᵒC). 

 

Another reason for negligible change in the mechanical properties of the 

clay/kerogen phase with increasing temperatures is the ratio between the mechanical 

properties of kerogen and clay. One of the assumptions made under the self-consistent 

morphology is that organic matter has negligible modulus and hardness as compared to 

the inorganic (clay) phase (Abedi, et al., 2016). Furthermore, considering that illite is the 

main clay constituent and holds significantly less water than other clays such as smectite 

(discussed in Chapter II), the time-independent properties measured are mostly those of 

the clay phase. By these two measures, it can be justified that the mechanical properties 

of the clay/kerogen phase remain unchanged with high temperatures. 
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Under high temperatures, particularly around 300C, conversion of TOC into 

hydrocarbons occurs and causes an alteration of the physical properties of organic matter. 

It has been proved that TOC contains large numbers of pores, often referred to as 

“organoporosity.” While TOC is being converted into hydrocarbons at high temperatures, 

the formation of new pores, particularly within the organic matter, does not affect the 

volume fraction of the clay particles within the composite and as a result, no major changes 

in modulus and hardness are observed during nanoindentation. Tables 11 lists the various 

parameters measured and calculated for each of the time-independent experiments. 
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Table 11 – Haynesville shale results including Indentation Modulus, Indentation Hardness, Silicon, Aluminum, and 

Si/Al ratio for all short-duration indentation experiments. 

 
 

 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Hay-x1 1 23 1 174 0.817 0.26 42.40 6.75 496.41 100.50 3.62 1.37 2.00 0.73 1.81

Hay-x1 2 23 1 207 0.927 0.23 42.26 5.22 458.20 66.21 5.34 1.54 2.73 0.90 1.95

Hay-x1 1 70 1 140 0.854 0.21 44.83 6.61 471.55 64.10 4.41 1.75 2.45 0.99 1.80

Hay-x1 1 250 1 130 0.917 0.38 41.21 9.70 488.72 145.00 5.10 2.56 3.07 1.59 1.66

Hay-x1 1 350 1 144 0.948 0.34 41.32 7.90 467.86 107.01 8.93 2.01 4.72 1.27 1.89

Hay-x3 1 23 1 87 0.802 0.26 31.21 8.61 574.07 102.05 17.70 4.00 10.03 3.91 1.77

Hay-x3 1 250 1 68 0.506 0.26 33.54 10.84 794.39 279.89 5.24 1.54 2.38 0.60 2.20

Hay-x3 2 250 1 130 0.583 0.24 36.41 9.35 708.83 199.97 3.03 1.19 1.83 0.73 1.66

Hay-x3 1 350 1 177 0.751 0.28 34.82 8.45 568.20 143.69 4.89 1.33 2.50 0.78 1.96

Si/AlSample Set
Temperature 

(°C)

Clay 

Phase

# of 

Indents

H (GPa) M (GPa) h (nm) Si Al
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4.2 Post creep elasticity and strength 

Creep nanoindentation grids were performed in parallel to bedding and normal to 

bedding directions at 23, 100, 200, and 300°C. Similar to short-duration indentation 

results, coupling analysis was performed to find the elemental intensities of Silicon, 

Aluminum, as well as Calcium and/or Potassium and then coupled with the mechanical 

properties. For creep analysis, indentation modulus, hardness, and contact creep modulus 

were used for mechanical properties. Figs. 47 and 48 show that the trend of the indentation 

modulus and hardness between 23-200ᵒC are similar to short-duration indentation results. 

There is some variation in these properties; however, the overall trend is once again 

relatively stable and suggests that little to no change occurs between 23-200ᵒC. However, 

it is important to note that the indentation hardness values obtained from creep 

experiments are slightly lower than those from short-duration indentation results. In the 

X1 and X3 directions, the average indentation hardness is 0.892 GPa and 0.661 GPa for 

short-duration indentation tests and 0.659 GPa and 0.576 GPa for creep indentation tests. 

This is likely due to a higher contact radius between the tip and sample right before 

unloading caused by the increased hold period during creep tests (200s). It is also 

important to note the small increase in indentation modulus between 23-200ᵒC. In the X1 

and X3 directions, the average indentation modulus is 42.4 GPa and 34.0 GPa for short-

duration indentation tests and 39.8 GPa and 32.3 GPa for creep indentation tests. This is 

likely due to higher packing density values of the solid phase. Tables 12 lists the various 

parameters measured and calculated for each of the time-independent experiments.
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Table 12 – Haynesville shale results including Indentation Modulus, Indentation Hardness, Silicon, Aluminum, and 

Si/Al ratio for all creep indentation experiments. 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Hay-x1 1 23 1 160 0.72 0.23 40.69 6.39 520.72 88.00 194.96 75.28 0.63 0.74 6.35 1.68 2.93 0.70 2.17

Hay-x1 1 100 1 194 0.71 0.39 40.96 9.13 661.14 169.39 186.42 93.92 2.77 6.53 5.07 2.00 2.55 0.98 1.99

Hay-x1 1 200 1 69 0.54 0.08 37.86 4.60 680.31 50.18 134.81 34.79 1.05 1.92 4.78 2.68 1.97 0.58 2.42

Hay-x1 1 300 1 174 1.22 0.45 48.19 9.93 481.71 97.37 348.87 104.30 0.45 1.23 6.63 2.91 3.38 1.37 1.96

Hay-x3 1 23 1 124 0.37 0.17 25.38 7.27 794.84 349.72 131.72 69.18 0.61 0.70 6.37 2.85 3.04 1.27 2.09

Hay-x3 2 23 1,2 382 0.45 0.24 28.91 9.59 698.97 226.79 154.78 104.82 0.70 1.29 6.79 2.68 3.35 1.35 2.02

Hay-x3 1 100 1 90 0.65 0.26 35.26 9.48 660.65 144.50 172.13 73.83 0.44 1.43 7.18 2.37 4.18 1.63 1.72

Hay-x3 1 200 1 168 0.62 0.25 32.71 8.04 684.66 164.81 173.61 81.09 0.46 2.03 8.75 5.14 3.40 1.52 2.58

Hay-x3 1 300 1 202 1.22 0.66 41.36 11.96 518.92 169.52 331.97 224.42 0.95 4.99 7.28 3.73 3.50 1.82 2.08

Al
Si/Al

H (GPa) M (GPa) h (nm) Creep, C (Gpa) Tau, (s) Si
Sample Set

Temperature 

(°C)

Clay 

Phase

# of 

Indent
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Figure 47 – Indentation modulus obtained from creep nanoindentation experiments 

for Haynesville shale samples parallel and perpendicular to bedding direction for a 

range of temperatures (23-300ᵒC). 
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Figure 48 – Indentation hardness obtained from creep nanoindentation 

experiments for Haynesville shale samples parallel and perpendicular to bedding 

direction for a range of temperatures (23-300ᵒC). 

 

While similar time-independent trends are observed between creep experiments 

and short-duration indentation experiments, the results of hardness and modulus at 300ᵒC 

from creep experiments are different and require further investigation. At 300ᵒC, both the 

indentation hardness and modulus increased significantly compared to the results obtained 

by short-duration indentation (at 350°C) and the values at lower temperatures. There are 

two hypotheses to consider to explain this result. First, an increase in temperature yields 

an increase in the time-independent properties. Second, the conversion of TOC into 
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hypothesis is in contradiction based on the results obtained from short-duration 

indentation tests at 350ᵒC, where negligible change in mechanical properties were 

observed. As a result, an increase in the mechanical properties of the constituents of the 

indented volume at 300°C is not significant enough to be the sole source of the observed 

increased response. 

The second hypothesis required additional analysis of the indentation data to 

determine whether particle sliding occurs during creep experiments at 300ᵒC. To further 

investigate this argument, a back-analysis approach that incorporates textural modeling is 

used. This analysis was proposed and validated by Abedi et al., (2016) and is described in 

Appendix B. The back-analysis approach is based on the self-consistent scheme 

assumption. First, the packing density of 0.202 is used and the mechanical properties of 

clay particles are obtained from short-duration experimental tests at 23ᵒC. The obtained 

results are m1=69.13 and h1=1.96 GPa (X1) and m3=52.2 GPa and h3=1.96 GPa (X3). 

These results are consistent with the values obtained in Abedi et al. (2016) for a wide 

range of organic-rich shales with different thermal maturity levels and different organic 

contents. Assuming that there is negligible change in mechanical properties of the clay 

phase at high temperatures, a second back-analysis is performed using the results obtained 

from the first back-analysis to determine the packing density at each indentation point 

from creep indentation tests. The results produced are the predicted packing densities of 

the porous clay phase. The results from this analysis are plotted in Fig. 49.  
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Figure 49 – Results from back-analysis showing changes in packing density during 

the holding phase. 

 

Here, the packing density at room temperature is used as a reference point, above 

which the data points represent compaction and below which dilation occurs. It is clear 

that the packing density of clay between 23-200ᵒC are in the dilation region as a 

consequence of a decrease in packing density. Dilation can be attributed to the formation 

of microcracks as also observed by Slim et al., (2017) in samples with low amounts of 

TOC. On the other hand, an increase in the clay packing density at 300ᵒC proves that 

compaction of the clay particles occurs within the indented clay regions. As a result, the 

increased indentation modulus and hardness measured upon unloading at 300ᵒC can be 

attributed to particle sliding and compaction caused by the conversion of TOC into 

hydrocarbons. 
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4.3 Creep rate from nanoindentation 

The contact creep modulus values were obtained using a logarithmic function. The 

function was fitted to the raw experimental data and two parameters were obtained, one 

of which is the characteristic time and other, the contact creep modulus. Fig. 50 shows the 

contact creep function as a function of time for three experimental curves. These curves 

represent the clay/kerogen phase. This trend is qualitatively similar to those obtained by 

Sone and Zoback (2014) at the macroscopic level. Creep test on shales can be performed 

within minutes through nanoindentation, thereby shedding light one of the major benefits 

of using nanoindentation to measure the long term creep kinetics of shales. 

 

 

Figure 50 – Examples of three contact creep compliance functions obtained from 

creep nanoindentation experiments performed at 23ᵒC on a Haynesville shale 

sample, parallel (X1) to bedding direction. 

 

The contact creep modulus of the porous clay/kerogen phase were obtained for 
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contact creep modulus between 23-200ᵒC is relatively stable and remains unchanged in 

both the X1 and X3 directions. However, the contact creep modulus at 300ᵒC, the porous 

clay phase creeps slower (higher contact creep modulus) in both X1 and X3 directions. 

This shows that the organic phase plays a dominant role in driving the viscous behavior 

of organic-rich shales.  

 

 

Figure 51 – Contact creep modulus data versus temperature (23-350ᵒC) for all 

creep experiments performed on Haynesville shale samples parallel and 

perpendicular to bedding direction. 

 

Additionally, the isotropic increase in both the X1 and X3 directions shed light on 

the role of the isotropic phases, which are organic matter and porosity, in driving the creep 
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al. (2017), in which they performed indentations on mature and immature gas-rich shale 

samples and concluded that mature samples tend to creep less (higher contact creep 

modulus) than immature samples. This difference was attributed to kerogen and porosity 

and their tendency to drive creep rates within the composite clay phase. While the study 

by Slim et al. (2017) was limited to experiments at room temperature, this thought process 

can be applied to study the behavior of the porous organic-rich clay phases at elevated 

temperatures. 

 

4.4 Thermogravimetry 

The weight (%) change of the Haynesville sample as a function of temperature was 

measured by Thermogravimetry Analysis (TGA). The test was performed from room 

temperature (23°C) to 300°C at a heating rate of 5°C/min. The temperature was held 

constant for two hours at 300°C to investigate the weight change of the sample during 

high temperature creep indentations. Fig. 52 shows the change in weight (%) and 

temperature (°C) as a function of time (min). These results show a substantial weight loss 

between 23°C and 100°C, where the beginning portion accounts for the loss of surface 

and pore water and the latter portion reflects the transformation of the fraction of organic 

matter that takes place between 200-450°C (Tissot and Welte, 1984). This transformation 

results in the formation of low to medium molecular weight hydrocarbons and pore spaces. 

Fig. 53 shows a TGA experiment performed up to 350ᵒC, in which the temperature was 

held constant at 70ᵒC and 250ᵒC for two hours. Here, the change in weight was 

approximately 0.66% and 0.30% and stabilized overtime; however, the weight loss 



 

104 

 

continues to increase above this temperature and shows no signs of stabilization. This once 

again shows that the first two stages are likely caused by the free and surface water in pore 

space, whereas the third stage corresponds to the transformation of organic matter into 

hydrocarbons. 

 

 

Figure 52 – Thermogravimetry Analysis (TGA) performed on Haynesville shale at 

300ᵒC; figure shows the change in weight (%) (primary axis) and temperature (°C) 

(secondary axis) versus time (min) (x-axis). 
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Figure 53 – Thermogravimetry Analysis (TGA) performed on Haynesville shale at 

300ᵒC; figure shows the change in weight (%) (primary axis) and temperature (°C) 

(secondary axis) versus time (min). 
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distribution at 300ᵒC shows a unimodal distribution (Fig. 55). The unimodal distribution 

coupled with a high contact creep modulus (creeps less) proves that the second 

mechanism, which is the porous clay phase, plays a dominant role in driving creep kinetics 

at this temperature.  

 

 

Figure 54 – Frequency density and Probability Density Function (PDF) of contact 

creep modulus values (x-axis) for porous clay/kerogen phase at X3-23ᵒC overlaid 

with deconvoluted peaks. 
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Figure 55 – Frequency density and Probability Density Function (PDF) of contact 

creep modulus values (x-axis) for the porous clay-kerogen phase at X1-300ᵒC 

present within the Haynesville shale sample. 
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contribution of mode I (porous clay/kerogen phase) and mode II (porous clay phase only), 

where the average volume fractions of mode I and mode II are 0.78 and 0.22, respectively. 

These values are similar to the contribution of organic matter and porosity, which can be 

obtained using the methodology provided in Section 3.2.3. The contribution of organic 

matter is 
𝜂𝑘

𝜂𝑘+𝜑
=  

0.1695

0.1695+0.032
= 0.84 and 

𝜂𝑘

𝜂𝑘+𝜑
=  

0.032

0.1695+0.032
= 0.16. This further 

supports the argument that mode I corresponds to the porous clay/kerogen phase and mode 

II corresponds to the porous clay phase.  

Fourth, the unimodal distribution of contact creep modulus at 300°C exhibits peaks 

at 349 GPa (X1) and 309 GPa (X3) which are consistent with the second peak observed 

in the bimodal distributions of creep modulus between temperatures 23-200°C. This 

observation again points to the dominant role of organic matter in the creep behavior of 

organic-rich shales and supports the hypothesis that, at 300°C, the reduction in creep rate 

is attributed to the reduction of TOC due to exposure to high temperatures. 
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Figure 56 – Probability Density Functions (PDF) of the contact creep modulus 

values for porous clay/kerogen indentations performed parallel and perpendicular 

to bedding direction. 
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Figure 57 – Volume fractions detected within the porous clay/kerogen phases for all 

creep experiments in X1 and X3 directions. 
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clay/pore (porous clay) phases. The homogenized creep properties of these two phases, at 

the scale of nanoindentation, are obtained with a self-consistent homogenization scheme, 

as described previously (Vandamme and Ulm, 2013). Assuming a constant poisson’s ratio 

𝜈 = 0.2, Vandamme and Ulm (2013) showed that the homogenized creep modulus of a 

composite material is linked to the creep modulus of its constituents through (Eq. 4.1): 

𝐴 ∑ 𝜂𝑖

1

1 +
1
2 ((𝐶𝑖/𝐶ℎ𝑜𝑚) − 1)

=

𝑁

𝑖=1

∑ 𝜂𝑖

𝐶𝑖/𝐶ℎ𝑜𝑚

1 +
1
2 ((𝐶𝑖/𝐶ℎ𝑜𝑚) − 1)

𝑁

𝑖=1

 

(4.1) 

where 𝜂𝑖 and 𝐶𝑖 represent the volume fraction and contact creep modulus, respectively, of 

phase i and 𝐶ℎ𝑜𝑚 represents the homogenized contact creep modulus. It is assumed that 

the contact creep modulus of the clay/kerogen phase and the porous clay phase to be 132 

GPa (average of mode I, X1 23-200ᵒC and X3 23-200ᵒC) and 290 GPa (average of mode 

II, X1 23-200ᵒC and X3 23-200ᵒC), respectively. Considering the contribution of organic 

matter is
𝜂𝑘

𝜂𝑘+𝜑
=  

0.1695

0.1695+0.032
= 0.84 and 

𝜂𝑘

𝜂𝑘+𝜑
=  

0.032

0.1695+0.032
= 0.16, the homogenized 

creep modulus of the porous kerogen-rich clay is obtained to be 149 GPa; Eq. 4.2 shows 

the input values required to solve for the homogenized contact creep modulus, denoted as 

“y”. 

0.84 ⋅
1

1 + 0.5(
132

𝑦 − 1)
+ 0.16 ⋅

1

1 + 0.5(
290

𝑦 − 1)

=  0.84 ⋅
1

1 + 0.5(
132

𝑦 − 1)
+ 0.16 ⋅

1

1 + 0.5(
290

𝑦 − 1)
 

(4.2) 
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The averaged contact creep modulus of all creep nanoindentation tests at 

temperatures 23–200°C is 169 GPa. The close agreement of the model-based estimate of 

contact creep modulus and experimental measurements supports the hypothesis that 

organic matter and porosity play a dictating role on creep properties. At 300°C, a portion 

of the organic matter is transformed into hydrocarbons and the effect of porous clay phase 

dominates the creep behavior. 

 

4.6 Summary of results 

1. Nanoindentation creep tests at elevated temperature on Haynesville shale show 

that an increase in the contact creep modulus (reduced creep rate) occurs in both 

parallel (X1) and perpendicular (X3) directions to bedding plane at 300ᵒC. Fig. 

4.14 a comparison of the contact creep curve at 23ᵒC and 300ᵒC. This increase is 

attributed to the conversion of kerogen to hydrocarbons at 300ᵒC which creates 

additional pore spaces (i.e. organoporosity) within the kerogen/clay. The isotropic 

increase in the contact creep modulus values at 300ᵒC indicates toward the 

isotropic nature of organic matter and porosity and their dominant role in driving 

creep properties in shales. 
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Figure 58 – Comparison of the creep curves at 23ᵒC and 300ᵒC. 
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II). However, at 300ᵒC, the PDF function shows a unimodal trend, which aligns 

closely with mode II; this indicates that these values are only linked to the porous 

clay phase and not the clay/kerogen mode due to the conversion of kerogen to 

hydrocarbons. 

4. The indentation modulus and hardness values of the porous clay/kerogen phase 

show little to no change with increasing temperatures; this homogenized response 

is an acceptable outcome considering the highly mature nature of the sample and 

aligns closely with the observations made by Emmanuel et al. (2016) on Kerogen’s 

elastic properties with increasing temperatures. Through micromechanical 

modeling (back-analysis) results, dilation is observed in the clay particles between 

23-200ᵒC which is attributed to the formation of microcracks within the indented 

volume. At 300ᵒC, there in an increase in the indentation hardness and modulus; 

this can be explained by the transformation of organic matter to hydrocarbons, 

which creates more room for particle sliding and compaction of the clay particles 

and causes higher stiffness and strength measurements. 

5. The homogenized response, obtained assuming a self-consistent homogenization 

scheme, of the model-based approach aligns well with experimental results and 

suggests that organic matter and porosity play a dominant role in the creep 

behavior of organic-rich shales. 
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4.7 Chapter summary 

In this chapter, all experimental and analytical results obtained in this project were 

provided. The effect of elasticity and strength with temperature is negligible. However, 

the elasticity and strength obtained through creep experiments shown an increase at 300ᵒC 

in both the X1 and X3 directions. This is likely because of the particle sliding and 

compaction caused by the conversion of TOC into hydrocarbons. Next, the creep kinetics 

showed a similar trend which shed light on the possibility that organic matter and porosity 

expressing play a role in the isotropic response of creep. The response of organic matter 

and water at high temperatures is captured my TGA experiments. From additional analysis 

of these results, it is evident that there is a bimodal distribution in the contact creep 

modulus data (observed through PDFs) which affirms that organic matter and porosity are 

the main drivers of creep. The chapter ends with a summary of all of the findings. 
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CHAPTER V 

CONCLUSION AND SIGNIFICANCE 

 This chapter summarized the major findings in this research, the limitations of this 

study, and ends with a significance of this work to petroleum engineers. 

 

5.1 Conclusion 

Short-duration and creep nanoindentation tests at ambient and elevated 

temperatures are performed to measure the elastic, strength, and creep properties of the 

porous clay/kerogen phase present within an organic-rich shale sample. Two hypotheses 

were studied to investigate the outcome of our experimental results. The first hypothesis 

was that the mechanical properties of organic matter or clay change with temperature. 

Negligible change occurs in the time-independent properties (elastic and strength) of the 

porous clay/kerogen phase between temperatures 23-350°C. The second hypothesis was 

that, at 300°C, the conversion of kerogen to hydrocarbons creates additional pore space 

allowing for particle sliding and compaction. This hypothesis is supported by results 

obtained from creep experiments. First, negligible anisotropy in creep rates is observed 

when comparing creep modulus in parallel to bedding (X1) and normal to bedding (X3) 

directions, which indicates toward the prevailing role of isotropic phases, specifically 

organic matter and porosity, in driving creep properties of organic-rich shales. Second, the 

results show a decrease in the creep rate (increased contact creep modulus) at 300°C in 

both parallel and perpendicular to bedding plane, proving the dominant role of organic 

matter in driving the viscous behavior of organic-rich shales. Micromechanical modeling 
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of the post creep mechanical response predicts the compaction of clay particles at the end 

of creep deformation at 300°C, signaling the existence of more pore space for particle 

sliding and compaction due to of kerogen transformation. 

A closer examination of the creep results at temperatures 23-200°C shows a 

bimodal trend within the porous clay/kerogen phase. It is suggested that the first mode 

captures the contribution of kerogen whereas the second mode is linked to the effect of 

porosity on viscoelastic response. On the other hand, the creep modulus of the porous 

clay/kerogen phase at 300°C exhibits a unimodal distribution with a wider range and 

combines both the kerogen and porosity modes due to the lesser contribution of kerogen. 

While these experiments shed light on the role of organic matter and porosity in 

organic-rich shales, this study focuses on a single shale formation. Further studies are 

required on both mature and immature shale samples to capture the time-dependent 

relationship present between organic matter (kerogen/bitumen), clays, and porosity from 

different depositional environments. 

 

5.2 Significance 

The significance of this work is to help petroleum engineers better understand the 

impact of high temperatures on the time-dependent (creep) properties of shales as well as 

the main factors that influence this time-dependent response. Many source rocks have a 

relatively low permeability which makes hydrocarbon extraction an expensive process. 

While hydraulic fracturing can help increase the amount of hydrocarbons recovered from 

the formation, several factors including the loss of fracture conductivity can result in lower 
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recovery and inefficient production. The loss of the fracture conductivity can be associated 

with the creep of the rock. The behavior of creep can be studied in laboratories at both the 

microscale and macroscale. Unlike macroscopic triaxial tests which can take a significant 

amount of time to produce meaning creep results, microscopic tests require shorter 

experimental times and small amounts of samples to produce meaningful results. 

Furthermore, studying the creep properties of rocks at elevated temperatures could shed 

light on the behavior of the rock in the reservoir and for thermal recover efforts performed 

in the reservoir. Producing quantitative values from short-term nanoindentation tests can 

quickly help petroleum engineers assess the quality of the reservoir early on, provide 

insight on how to accurately assess hydrocarbon recovery, and lead to optimized hydraulic 

fracture operations for economic production. The experimental procedure and analytical 

method presented here could also be used by researchers to investigate other shale 

formations with varying levels of maturity and develop a better understanding between 

kerogen/bitumen, clays, and porosity from different depositional environments. 
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APPENDIX A 

𝑀 =  
𝐸

1 − 𝜈2
= 4𝐺

3𝐾 + 𝐺

3𝐾 + 4𝐺

Starting with, 

𝐸 =  
9𝐾𝐺

3𝐾 + 𝐺

and, 

𝜈 =  
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
=  

3𝐾 − 2𝐺

6𝐾 + 2𝐺

Substitute into the original equation: 

𝑀 =  

9𝐾𝐺
3𝐾 + 𝐺

1 − (
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
)

2

Assume K = a and G = b, 

𝑀 =
9𝑎𝑏

(1 − [(
3𝑎 − 2𝑏

2(3𝑎 + 𝑏)
)]

2

) ∗ (3𝑎 + 𝑏)

𝑀 =
9𝑎𝑏

(1 −
(3𝑎 − 2𝑏)2

4 ∗ (3𝑎 + 𝑏)2) ∗ (3𝑎 + 𝑏)

𝑀 =
9𝑎𝑏

(
4 ∗ (3𝑎 − 2𝑏)2

4 ∗ (3𝑎 + 𝑏)2 −
(3𝑎 − 2𝑏)2

4 ∗ (3𝑎 + 𝑏)2) ∗ (3𝑎 + 𝑏)

𝑀 =
9𝑎𝑏

(
4 ∗ (3𝑎 + 2𝑏)2 − (3𝑎 + 2𝑏)2

4 ∗ (3𝑎 + 𝑏)2 ) ∗ (3𝑎 + 𝑏)

𝑀 =
9𝑎𝑏

(
3𝑎 + 𝑏) ∗ (4 ∗ (3𝑎 + 2𝑏)2 − (3𝑎 + 2𝑏)2)

4 ∗ (3𝑎 + 𝑏)2 )
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𝑀 =
9𝑎𝑏 ∗ (4 ∗ (3𝑎 + 𝑏)2)

(3𝑎 + 𝑏) ∗ (4 ∗ (3𝑎 + 𝑏)2 − (3𝑎 + 2𝑏)2)

𝑀 =
9𝑎𝑏 ∗ (4(3𝑎 + 𝑏))

(4(3𝑎 + 𝑏)2 − (3𝑎 + 2𝑏)2)

Expand using the FOIL method: 

(3𝑎 + 𝑏)2 = 9𝑎2 + 6𝑎𝑏 + 𝑏2

and 

(3𝑎 − 2𝑏)2 = 9𝑎2 − 12𝑎𝑏 + 4𝑏2

𝑀 =
9𝑎𝑏 ∗ 4 ∗ (3𝑎 + 𝑏)

4(9𝑎2 + 6𝑎𝑏 + 𝑏2) − (9𝑎2 − 12𝑎𝑏 + 4𝑏2)

𝑀 =
9𝑎𝑏 ∗ 4 ∗ (3𝑎 + 𝑏)

36𝑎2 + 24𝑎𝑏 + 𝑏2 − 9𝑎2 + 12𝑎𝑏 − 4𝑏2

Grouping like terms, 

𝑀 =
9𝑎𝑏 ∗ (4(3𝑎 + 𝑏))

27𝑎2 + 36𝑎𝑏

𝑀 =
9𝑏 ∗ (4(3𝑎 + 𝑏))

9(3𝑎 + 4𝑏)

𝑀 =
4𝑏 ∗ (3𝑎 + 𝑏)

(3𝑎 + 4𝑏)

Substitute back a = K and b = G, 

𝑀 =
4𝐺 ∗ (3𝐾 + 𝐺)

(3𝐾 + 4𝐺)

A derivation on how to obtain the following derivation is shown next: 

𝐸 =  
9𝐾𝐺

3𝐾 + 𝐺

We know that, 
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𝐸𝑖𝑖 =  
1

𝐸𝑦

[(1 + 𝑣)𝑇𝑖𝑖 − 3𝑣𝑇𝑘𝑘] =
1

𝐸𝑦

[(1 − 2𝑣)𝑇𝑖𝑖]

where 𝑇𝑖𝑖 = 3𝜎. Rearranging the above equation, we get: 

𝐾 =
𝜎

𝑒
=

𝐸𝑦

3(1 − 2𝑣)

which can we re-written as, 

𝐾 =  
𝐸

3(1 − 2𝑣)

Combining 𝑣 =  
𝐸

2𝐺
− 1 and 𝐾 =  

𝐸

3(1−2𝑣)
, we get: 

𝐾 =  
𝐸

3(1 − 2 (
𝐸

2𝐺 − 1))

Rearranging and solving for E, we get: 

𝐸 =  
9𝐾𝐺

𝐺 + 3𝐾

A derivation on how to obtain the following equation is provided next: 

𝜈 =  
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
=  

3𝐾 − 2𝐺

6𝐾 + 2𝐺

We know that, 

𝐾 =
𝜎

𝑒
=

𝐸𝑦

3(1 − 2𝑣)

Rewriting this equation, we get: 

𝐾 =
𝜎

𝑒
=

𝐸𝑦

3(1 − 2𝑣)

𝑒 =
𝜎

𝐾
=

3𝜎(1 − 2𝑣)

𝐸𝑦
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The stresses cancel and we are left with the simplified equation: 

𝐸𝑦 = 3𝐾(1 − 2𝑣) 

We know that, 

𝐺 =  
𝐸𝑦

2(1 + 𝑣)

Substituting this equation into the simplified equation, we get: 

𝑣 =  
2𝐺 + 3𝐾

6𝐾 + 2𝐺



APPENDIX B 

For an indentation test performed on porous organic-rich clay phase, the 

indentation volume probed by a Berkovich indenter is composed of the clay particles, the 

organic phase, and the empty pore spaces. Therefore, the mechanical response of the 

indentation test, i.e., indentation modulus (M) and indentation hardness (H), are 

representative of the homogenized response of porous organic-clay particles. This 

homogenized response can be written in dimensionless form as (Abedi et al., 2016): 

𝑀

𝑚𝑠
= Π𝑀 (

𝐶𝑖𝑗𝑘𝑙

𝑚𝑠
, 𝜂𝑠 , 𝜂𝑘, 𝜂0) (B-1) 

𝐻

ℎ𝑠
= Π𝐻(𝜂𝑠, 𝜂𝑘 , 𝜂0) (B-2) 

with 𝑚𝑠 and ℎ𝑠 being modulus and hardness of clay particles, 𝜂𝑘 volume fraction of 

kerogen, 𝜂𝑠 volume fraction of clay particles, and 𝜂0 percolation threshold which 

characterizes microstructural texture of the indented volume. The model can be used to 

back calculate mechanical properties of clay particles and porosity or volume fraction of 

kerogen from indentation mechanical properties (M and H).  In their back-analysis 

approach, Abedi et al., (2016) successfully attributed the role of thermal maturity on 

texture in modeling elasticity and strength of organic-rich shales, with immature systems 

exhibiting a matrix-inclusion morphology, while mature systems exhibit a polycrystal 

morphology (self-consistent scheme). Considering results of rock-eval pyrolysis, 

Haynesville sample can be considered as a mature sample; thus, we use a self-consistent 

morphology in back-analyzing indentation data. 
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The homogenized stiffness tensor of the anisotropic porous organic-rich clay phase 

can be obtained using linear micromechanics theory (Chateau and Dormieux, 2002; 

Dormieux et al., 2002; Dormieux et al., 2006; Hellmich et al., 2004; Ortega, et al., 2009): 

ℂℎ𝑜𝑚 = ∑ 𝜂𝑟ℂ𝑟𝔸𝑟

𝑟
(B-3) 

Based on the above equation, the homogenized stiffness tensor ℂℎ𝑜𝑚 depends on

the stiffness ℂ𝑟, packing density 𝜂𝑟, and the strain concentration tensor 𝔸𝑟 of each phase

r in a multiphase material. The strain concentration tensor is given by (Dormieux et al., 

2002; Hellmich et al., 2004; Ortega, et al., 2009; Zaoui, 2002): 

𝔸𝑟 = [𝕀 + ℙ𝑟: (ℂ𝑟 − ℂ0)]−1: {∑ 𝜂𝑠
𝑠

[𝕀 + ℙ𝑠 ∶ (ℂ𝑠 − ℂ0)]−1}
−1

(B-4) 

where 𝕀 is the fourth-order unit tensor and ℙ𝑠 is the Hill tensor that describes particle

interactions and particles shapes. For the self-consistent estimate (considered in this study 

for mature Haynesville samples) ℂ0 = ℂℎ𝑜𝑚, with ℂℎ𝑜𝑚 being the homogenized stiffness

of the composite material. 

Nonlinear micromechanics (Dormieux et al., 2002; Fritsch et al., 2007; Gathier, 

2008) is used to obtain the dimensionless equation presented in equation B-2. For the case 

of granular morphology, this dimensionless function is obtained as (Bobko and Ulm): 

Π𝐻 =
√2(1 − 2(𝜑 + 𝜂𝑘)) − (1 − 2(𝜑 + 𝜂𝑘))

√2 − 1

× (1 + 𝑏(𝜑 + 𝜂𝑘) + 𝑐(𝜑 + 𝜂𝑘)2 + 𝑑(𝜑 + 𝜂𝑘)3)

(B-5) 
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and for a cohesive solid that obeys Von-Mises strength criterion, the solid’s hardness, ℎ𝑠, 

is related to the solid’s cohesion, 𝑐𝑠, by ℎ𝑠 = 𝑎𝑐𝑠 where a = 4.7644, b = −5.3678, c =

12.1933, d = −10.3071, e = −1.2078, f = 0.4907, and g =  −1.7257. 

In applying the back-analysis approach to our indentation data, we have considered 

negligible kerogen’s strength and stiffness compared to clay particles properties. 



APPENDIX C 

Figure C.1 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X1-23ᵒC. 

Figure C.2 – Clustering results for X1-23ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.3 – Clustering results for aluminum, silicon, and indentation depth at X1-

23ᵒC for each phase detected. 
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Figure C.4 – Color maps for aluminum, silicon, and indentation depth at X1-23ᵒC 

for each phase detected. 
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Figure C.5 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X1-70ᵒC. 

Figure C.6 – Clustering results for X1-70ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.7 – Clustering results for aluminum, silicon, and indentation depth at X1-

70ᵒC for each phase detected. 
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Figure C.8 – Color maps for aluminum, silicon, and indentation depth at X1-70ᵒC 

for each phase detected. 
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Figure C.9 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X1-250ᵒC. 

Figure C.10 – Clustering results for X1-250ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.11 – Clustering results for aluminum, silicon, and indentation depth at 

X1-250ᵒC for each phase detected.  
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Figure C.12 – Color maps for aluminum, silicon, and indentation depth at X1-

250ᵒC for each phase detected. 
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Figure C.13 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X1-350ᵒC. 

Figure C.14 – Clustering results for X1-350ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.15 – Clustering results for aluminum, silicon, and indentation depth at 

X1-350ᵒC for each phase detected.  
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Figure C.16 – Color maps for aluminum, silicon, and indentation depth at X1-

350ᵒC for each phase detected. 
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Figure C.17 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X3-23ᵒC. 

Figure C.18 – Clustering results for X3-23ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.19 – Clustering results for aluminum, silicon, and indentation depth at 

X3-23ᵒC for each phase detected.  
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Figure C.20 – Color maps for aluminum, silicon, and indentation depth at X3-23ᵒC 

for each phase detected. 
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Figure C.21 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X3-250ᵒC (1). 

Figure C.22 – Clustering results for X3-250ᵒC (1); indentation modulus vs. 

indentation hardness and modulus, hardness, volume fraction, and allocation rate 

for each phase detected. 
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Figure C.23 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDS maps for X3-250ᵒC (1). 
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Figure C.24 – Color maps for aluminum, silicon, and indentation depth at X3-

250ᵒC (1) for each phase detected. 
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Figure C.25 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X3-250ᵒC (2). 

Figure C.26 – Clustering results for X3-250ᵒC (2); indentation modulus vs. 

indentation hardness and modulus, hardness, volume fraction, and allocation rate 

for each phase detected. 
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Figure C.27 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDS maps for X3-250ᵒC (2). 
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Figure C.28 – Color maps for aluminum, silicon, and indentation depth at X3-

250ᵒC (2) for each phase detected. 
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Figure C.29 – Nanoindentation grid and corresponding SEM, Calcium, Potassium, 

Silicon, Aluminum, and EDX maps for X3-350ᵒC. 

Figure C.30 – Clustering results for X3-350ᵒC; indentation modulus vs. indentation 

hardness and modulus, hardness, volume fraction, and allocation rate for each 

phase detected. 
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Figure C.31 – Clustering results for aluminum, silicon, potassium and indentation 

depth at X3-350ᵒC for each phase detected.  
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Figure C.32 – Color maps for aluminum, silicon, and indentation depth at X3-

350ᵒC for each phase detected. 
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APPENDIX D 

Figure D.1 – Analytical methodology outline to perform creep analysis using 

nanoindentation and SEM/EDX. 

A guide to performing creep experimental analysis is provided below where each stage 

is explained in detail in the respective sections of this thesis. Fig. D.1 is provided as an 

outline on the major stages needed to perform creep analysis using nanoindentation and 

SEM/EDX. 

1. Sample preparation

Creep Analysis

Sample 
Preparation

Nanoindentation 
& 

Nanoindentation 
Data Analysis

SEM/EDX

Coupling 
Analysis

Clustering 
Analysis

Color Maps
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a. Prepare samples in both the X1 (parallel) and X3 (perpendicular)

directions.

b. Perform polishing procedure as listed in Section 3.1

2. Nanoindentation and Nanoindentation Data Analysis

a. Perform grid indentations using either a regular Berkovich tip (for room

temperature experiments) or a high temperature Berkovich tip (for high

temperature experiments)

b. Use the following load settings: 20x20 grid (or larger), 7μm spacing,

4.8mN loading force, loading segment of 10s, holding period of 10s (for

normal indentations) and 200s (for creep indentations), and an unloading

segment of 10s.

c. Using the reduced modulus, obtained the indentation modulus from Eq.

D.1:

1

𝐸𝑟
=

(1 − 𝑣2)

𝐸
+

(1 − 𝑣𝑖
2)

𝐸𝑖

(D.1) 

d. Using Matlab, perform a least-squares regression and fit the logarithmic

function to the experimental data to obtain the two unknown parameters:

characteristic time, 𝜏, and contact creep modulus, 𝐶.

𝐿(𝑡) −
1

𝑀
=

ln (
𝑡
𝜏 + 1)

𝐶

(D.2) 

3. Scanning Electron Microscope/Energy X-Ray Dispersive Spectroscopy

(SEM/EDX)
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a. Obtain topographic images of the indented space (15kV/ working distance

of 9mm)

b. Obtain elemental maps for Si, Al, Ca, and K until intensity values are high

or the element map is easily differentiable

c. Using Matlab, obtain the average intensity around each indentation point

(1μm radius) for each elemental map.

4. Clustering Analysis

a. Using R-programming language and the MCLUST tool, input the

mechanical (Modulus, Hardness, and Contact Creep Modulus) and the

chemical intensity values (Silicon, Aluminum, and/or Potassium, Calcium)

for analysis. The data will be output as different phases.

b. Using the output results, determine the softest phase present in the sample.

This will correspond to the porous clay/kerogen phase which can be

determined by ensuring that the ratio between the Si:Al elemental

intensities is 2:1.

5. Color maps

a. Using Matlab with the PCOLOR function, create color maps of the phases

outputted from the clustering analysis. Each space will correspond to one

indentation point (e.g. 20x20 grid will have a pcolor plot of 400 squares).

b. Compare the phase variation to the Silicon and Aluminum maps for

similarities. A good correlation should exist if the coupling analysis was

performed accurately.




