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ABSTRACT 

 

Accurate Construction Work Zone (CWZ) impact assessments of unprecedented 

travel inconvenience to the general public are required for all federally-funded highway 

infrastructure improvement projects. These assessments are critical, but they are also 

very difficult to perform. Most existing prediction approaches are project-specific, short-

term, and univariate, thus incapable of benchmarking the potential traffic impact of 

CWZs for highway construction projects.  

This study fills these gaps by creating a big-data-based decision-support 

framework and testing if it can reliably predict the potential impact of a CWZ under 

arbitrary lane closure scenarios. This study proposes a big-data-based decision-support 

analytical framework, “Multi-contextual learning for the Impact of Critical Urban 

highway work Zones” (MICUZ). MICUZ is unique as it models the impact of CWZ 

operations through a multi-contextual quantitative method utilizing sensored big 

transportation data.  

MICUZ was developed through a three-phase modeling process.  First, 

robustness of the collected sensored data was examined through a Wheeler’s 

repeatability and reproducibility analysis, for the purpose of verifying the homogeneity 

of the variability of traffic flow data. The analysis results led to a notable conclusion that 

the proposed framework is feasible due to the relative simplicity and periodicity of 

highway traffic profiles. Second, a machine-learning algorithm using a Feedforward 

Neural Networks (FNN) technique was applied to model the multi-contextual aspects of 
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long-term traffic flow predictions. The validation study showed that the proposed multi-

contextual FNN yields an accurate prediction rate of traffic flow rates and truck 

percentages. Third, employing these predicted traffic parameters, a curve-fitting 

modeling technique was implemented to quantify the impact of what-if lane closures on 

the overall traffic flow. The robustness of the proposed curve-fitting models was then 

scientifically verified and validated by measuring forecast accuracy.  

The results of this study convey the fact that MICUZ would recognize how 

stereotypical regional traffic patterns react to existing CWZs and lane closure tactics, 

and quantify the probable but reliable travel time delays at CWZs in heavily trafficked 

urban cores. The proposed framework provides a rigorous theoretical basis for 

comparatively analyzing what-if construction scenarios, enabling engineers and planners 

to choose the most efficient transportation management plans much more quickly and 

accurately.  
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1. INTRODUCTION  

 

1.1 Highway Infrastructure: Where We Are 

Most state highways in the United States were constructed in the 1950s as 

prompted by the Federal Aid Highway Act of 1956. The main intent was to provide 

about 41,000 miles of national interstate and defense highways (Weingroff 1996). 

However, the majority of the transportation infrastructure has become obsolete because 

they were designed to sustain for 20-year serviceability (Bayraktar and Hastak 2009; 

Choi and Bae 2015; Choi et al. 2016; Choi et al. 2010; Choi et al. 2016; Federal 

Highway Administration 2002; Napolitan and Zegras 2008). Figure 1 illustrates the 

current state of practice in maintaining transportation infrastructure by state (Ingraham 

2015).   

 

 

Figure 1 Percentages of deteriorated major urban roadways in the United States 
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To address this emergent issue that is tied closely to the health of national 

economy, state highway agencies are under ever-increasing pressure to rebuild the aging 

infrastructure systems across the state. The American Recovery and Reinvestment Act 

(ARRA) of 2009 was enacted to promote the restoration and repair of deteriorating 

highway systems as well as to spark up the economic growth of the nation  (Choi et al. 

2016; Conley and Dupor 2011). The ARRA Act allocated $27.5 billion for highway 

infrastructure improvement projects under the Federal Highway Administration 

(FHWA) (Conley and Dupor 2011; Orndoff and Papkov 2011). Recently, transportation 

agencies, daily commuters, and business sectors are facing an immediate need for 

massive highway infrastructure rebuilding, as promoted by the 2015 Fixing America’s 

Surface Transportation (FAST) Act funding plans worth $305 billion for extensive 

transportation infrastructure rehabilitation projects (Federal Highway Administration 

2016). 

In spite of the economic stimulus, rehabilitating the deteriorated infrastructure 

systems is still challenging because it can cause costly traffic delays and disruptions to 

the traveling public and surrounding communities during construction. Meanwhile, these 

issues often impede the timely delivery of these types of projects  (Choi and Bae 2015; 

Choi et al. 2016). Accelerating project delivery and reducing the level of motorist’s 

inconvenience during lane closure in and between CWZs have been identified as some 

of key challenges that State Transportation Agencies (STAs) and the traveling public 

face, throughout the Moving Ahead for Progress in the 21st Century Act (MAP-21) 

(Choi et al. 2016; Federal Highway Administration 2014). 
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1.2 Traffic Impacts of Highway Construction 

Traffic congestion is regarded as one of the most critical problems facing 

transportation agencies and the general public especially in large metropolitan areas in 

the United States (Nam and Drew 1998). According to the Texas A&M Transportation 

Institute’s annual mobility report, in 2011 alone traffic congestion cost urban Americans 

an additional 5.5 billion hours of travel time and 2.9 billion gallons of fuel; together, this 

brings the congestion cost to $121 billion or $818 for each automobile commuter in the 

498 urban areas in the United States (Texas A&M Transportation Institute 2012).  

Highway traffic congestion can be classified into two groups: recurrent and non-

recurrent. Recurrent congestion is caused by high traffic volume and thus is predictable. 

Conversely, non-recurrent congestion is affected by incidents on the highway such as 

vehicle accidents, stalled vehicles, spills and debris on the road, inclement weather, and 

work zones (Chung 2011; Hou et al. 2015). Especially, National Cooperative Highway 

Research Program (NCHRP) Report 726 by Shane et al. (2012) indicates that road 

construction and maintenance activities form a remarkable portion of traffic congestion, 

approximately 10% of the total congestion on highways and 24% of non-recurrent 

congestion (Abdelmohsen and El-Rayes 2016). The FHWA reported that traffic 

congestion due to road maintenance and construction can be translated into annual fuel 

loss more than 310 million gallons in 2014 (Federal Highway Administration 2014).  
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1.3 Motivating Case of Research: Work Zone Rule 

Construction Work Zones (CWZs) are imperative when rehabilitating aging 

highway infrastructure networks.  A CWZ occurs within an existing highway system 

wherever maintenance, rehabilitation, and/or reconstruction work is conducted. During 

construction, traffic and highway work exist in close proximity to one another (Karim 

and Adeli 2003). Traffic has both spatial and temporal features, which means that traffic 

on a road is affected by traffic on nearby roadways; moreover, traffic on a road has a 

significant relationship with previous flows at the same location (Dell'Acqua et al. 

2015).  

In this regard, a CWZ causes spatial and temporal restrictions on a highway by 

negatively impacting the normal flow of traffic (Karim and Adeli 2003). Therefore, they 

have become one of the leading causes of traffic congestion in heavily trafficked urban 

areas and caused significant inconvenience to the traveling public and affected 

communities (Bayraktar and Hastak 2009; Jiang and Adeli 2004; Karim and Adeli 2003; 

Zhu et al. 2009). Negative impacts of highway infrastructure improvement include 

increased travel times, queue delays, reductions in highway capacity, potential increases 

in accident rates, and higher levels of dissatisfaction in and between construction work 

zones  (Karim and Adeli 2003; Zhu et al. 2009). Specifically, highway infrastructure 

improvement projects conducted in heavily trafficked urban areas frequently cause 

severe traffic congestion (Zhu et al. 2009), resulting in the average driver losing 67 

hours and burning 32 extra gallons of fuel each year (Hasley 2013).  
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Given these significant economic impact, there is a pressing need to improve 

safety and mobility in and between CWZs. To meet with this need, updates to the work 

zone regulations at  “23 Code of Federal Regulations (CFR) 630 Subpart J” were made 

by the FHWA in 2004, which is named the “Rule on Work Zone Safety and Mobility” 

(Choi and Bae 2015; Choi and Kwak 2012; Scriba 2006). Key terms in this rule are 

defined as follows (Legal Information Institute 2004):  

 “Work zone” is an area of highways where construction, maintenance, or utility 

work activities are occurred;  

 “Safety” represents any potential exposure to hazards for highway workers and 

users of highway facilities. Specifically, “work zone safety” refers to minimizing 

these potential hazards near work zone areas and at the work zone area 

interfacing with traffic. The number of crashes or criticality of crashes at a 

particular location or along a segment of highway can be used as means of 

measurement; and  

 “Mobility” in relation to work zones aims to efficiently move road users through 

or around work zones, with only a minimum delay as compared to baseline travel 

under normal conditions. The most commonly used performance measures for 

evaluating mobility encompass delay, speed, queue length, and travel time.  

The updated rule was designed to 1) address several issues of CWZs such as 

increasing traffic volumes and congestion, little growth in roadway capacity, concerns 

about safety, and disruptions to the public, 2) develop and implement the effective 

management strategies to reduce safety and mobility impacts, and 3) develop feasible 
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provisions to control the both current and future CWZ issues (Scriba 2006). In pursuit of 

these goals, all state and local governments receiving federal-aid funding have been 

mandated to comply with the provisions of the rule since October 2007 (Federal 

Highway Administration 2007).  

Among these specific objectives, a key focus of this rule is enforcing STAs and 

thus assisting in developing and implementing a sounder Transportation Management 

Plan (TMP) for each project. A TMP lays out how a set of well-coordinated 

transportation management strategies should be applied to manage CWZ impacts in 

order to improve safety and mobility during construction (Federal Highway 

Administration 2006; Federal Highway Administration 2015). The FHWA has identified 

three key components for a systematic TMP (Federal Highway Administration 2006; 

Federal Highway Administration 2015): 

1) A CWZ impact assessment through traffic pattern analysis and quantification of 

traffic impacts at the work zone; 

2) Guiding ideas regarding how work zone impacts can be managed; and 

3) Public outreach strategies to effectively and efficiently inform the public about 

the planned project. 
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2. PROBLEMS AND RESEARCH SETTING 

  

2.1 Problems and Research Questions 

For a successful TMP, impact assessments of CWZ are essential, but they are 

also very difficult to perform. The completion of impact assessments of CWZs may be 

facilitated if critical traffic measurements such as traffic flow and travel time can be 

benchmarked from previous projects with similar characteristics. However, it is very 

challenging to benchmark traffic patterns and accurately quantify the potential traffic 

impact of CWZs for planned future highway infrastructure improvement projects, due to 

the increasing complexity of urban highway networks on multi-contextual aspects.  

A common issue of existing methods to perform CWZ impact analysis is how to 

obtain accurate estimates of traffic parameters and their patterns effectively and 

efficiently. Accurate estimates of traffic flow are very essential and crucial to conduct 

the mandated CWZ traffic impact analysis. Flow is defined as “the hourly distribution of 

vehicles (for each of the 24 hours in a day) passing through the roadway in a single 

direction and under normal operating conditions” (Federal Highway Administration 

2011). In current state of practice, actual traffic flow measurements are often required, 

and accurate results need a considerable time investment since these figures are 

unknown. Although many research efforts have been made to overcome this difficulty, 

most existing traffic flow prediction approaches are project-specific, short-term, and 

univariate, thus incapable of benchmarking the potential traffic impact of CWZs for 

planned future highway infrastructure improvement projects.  
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In addition, accurate estimates of travel time play a pivotal role in assessing the 

level of motorist’s inconvenience during lane closure in and between CWZs. Accurate 

information about expected travel time during construction is essential for the traveling 

public to make better-informed decisions about their trips and find optimal alternate 

routes when necessary. However, most existing models cannot reveal the travel time 

variability before and during construction accurately, due to a lack of the capability to 

estimate the difference between recurrent traffic congestion under normal traffic flow 

conditions and traffic flow congestion caused by the presence of a CWZ.  

Unfortunately, there are still gaps in the existing body of knowledge, and this has 

prevented researchers from studying traffic prediction algorithms; little is known about 

the application of big sensored data, as well as exploring effective prediction approaches 

that can cover the multi-contextual complexity inherent in this issue. The following are 

key questions to identify gaps in current knowledge and establish the primary objective 

of this study: 

 What methods can leverage the simplicity and periodicity of traffic profiles on 

large urban highways? 

 Which prediction techniques are the most effective and accurate specifically for 

predicting the potential long-term traffic flow for incorporation into CWZ impact 

analysis?   

 How effectively can traffic prediction techniques and multi-contextual 

characteristics be intermingled into modeling the impact of CWZs?  
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 How to create a numerical model that can quantify the probable but reliable 

impact of CWZs under arbitrary lane closure scenarios on travelers at the 

construction zone, undertaking a parametric functional form that has the strength 

in practical applications? 

 

2.2 Gaps in Current Knowledge 

Knowledge gaps emerged from the extensive review of previous studies on the 

subjects of 1) traffic flow prediction techniques for incorporation into CWZ impact 

analysis (Sections 2.2.1 and 2.2.2), 2) existing methods to perform CWZ impact analysis 

(Section 2.2.3), and 3) validating the robustness of collected large volumes of traffic 

sensor readings (Section 2.2.4).  

 

2.2.1 Traffic Flow Prediction for Incorporation into Work Zone Analysis 

The FHWA underlines that knowing precisely about unknown potential traffic 

flow is needed to determine whether a facility will be forced to operate either above or 

below its capacity (Federal Highway Administration 2014). However, most existing 

traffic measurement and information systems focus on providing historical and real-time 

data with no capability of predicting future long-term traffic flow, particularly for lane 

closure impacts. For example, as one of the most widely used traffic measurement 

systems, GPS-based traffic information collected from many individual travelers would 

cause inaccuracy due to limited user participation (that is also changeable) as well as 



 

10 

 

inherent imprecision of the current GPS devices (Bhat et al. 2004; Vovsha and Bradley 

2006).  

To address this issue, previous research efforts to predict traffic flows were made 

through univariate and multivariate time series analyses. As the most representative 

univariate model, Auto-Regressive Integrated Moving Average (ARIMA) models tend 

to focus on means, omitting the extreme values (Kamarianakis and Prastacos 2003). 

Therefore, ARIMA cannot capture sudden changes in traffic flow caused by any 

incidents or work zones (Pan et al. 2012). Even though ARIMA models would shorten 

computational time, these hold a critical issue to obtain accurate and reliable results 

because they do not respond to any change in traffic flow caused by incidents or CWZs. 

On the other hand, multivariate approaches such as space-time ARIMA models can 

represent the spatial characteristics of the roadway network and temporal evolution of 

traffic flow in other locations in the network (Kamarianakis and Prastacos 2003). 

Although multivariate models improve the accuracy, the both time series analyses 

assume linear correlation structures. In other words, the nonlinearity of traffic flow by its 

nature cannot appear through time series models.  

 In an effort to unlock the increasing nonlinear complexity of traffic flow, many 

studies have endeavored to find solutions to this problem and consequently have 

reported that Machine Learning (ML) approaches are effective and efficient not only for 

analyzing large quantities of traffic data but also for predicting traffic patterns and 

recommending alternatives. ML is a technique for processing data and exhibiting 

inferences by applying lessons learned from a training dataset (Portugal et al. 2016; 
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Simovici 2015). Many studies have explored ML approaches to developing a series of 

traffic flow prediction models, such as artificial neural networks, support vector 

machine, k-nearest neighbor algorithms.  

However, throughout the thorough review of previous studies, it was found that 

there is still very little known about the capability of existing models whether they can 

predict traffic flow for incorporation into the mandated CWZ traffic analysis. Traffic 

flow prediction can be classified into two different temporal scales: short-term and long-

term. Short-term traffic flow predictions include15, 30, 45 and 60 minutes advanced 

forecasts, which are needed for real-time traffic control and management (Habtemichael 

and Cetin 2016; Hou et al. 2015). In other words, short-term traffic flow prediction 

serves as a fundamental input and is a crucial aspect of being successful in advanced 

traffic management system (Zhang et al. 2014). Most of these studies have focused on 

short-term traffic flow prediction (Abdi et al. 2012; Abdi et al. 2013; Abouaissa et al. 

2016; Barros et al. 2015; Bing et al. 2015; Cai et al. 2016; Chen and Chen 2007; Dia 

2001; Dougherty and Cobbett 1997; Habtemichael and Cetin 2016; Hamed et al. 1995; 

Hong et al. 2015; Hu et al. 2016; Innamaa 2000; Jiang et al. 2016; Jiang et al. 2013; Kim 

and Hobeika 1993; Lee and Fambro 1999; Lin et al. 2013; Ma et al. 2015; Pan et al. 

2013; Pan et al. 2015; Shahsavari and Abbeel 2015; Smith and Demetsky 1994; Tan et 

al. 2016; Vlahogianni et al. 2005; Wei and Liu 2013; Xu et al. 2013; Zhang and Ye 

2008; Zhang et al. 2014).  

In contrast, long-term traffic flow predictions concentrate on predictions on 

levels of hours, days, months, and even years for the unit of time. Long-term traffic flow 
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prediction is typically appropriate for CWZ scheduling applications because planning 

CWZs utilizes traffic flows during different times of a specific day as input to help STAs 

schedule traffic operation plans and construction progress timely, while minimizing the 

negative impactful times during lane closures (Hou et al. 2015; Jiang et al. 2013; Yu et 

al. 2015). Throughout an extensive literature review, it was found that only a very 

limited number of studies used ML approaches to predict long-term traffic flow under 

normal conditions (Çetiner et al. 2010; Choi and Bae 2015) or future traffic flows in 

urban work zones (Hou et al. 2015). In a nutshell, the literature search concludes that 

most previous ML studies to date were focused on predicting “short-term” traffic flow 

under a normal condition, and therefore, knowledge about learning the long-term impact 

of urban highway work zones is largely missing.   

 

2.2.2 Multi-Contextual Complexity of Construction Work Zones 

Despite a sizeable body of research, little scientific work has been done on 

holistic approaches to obtaining the most realistic and reliable traffic flow patterns. 

Many of the existing methods predict traffic flow at a single section considering 

temporal dimensions solely, thereby ignoring the spatial or other characteristics of the 

road network. In other words, these methods employed the univariate approach and 

assume that the variable of interest is affected by a single factor (Dell'Acqua et al. 2015).  

On the other hand, the multivariate approach assumes that multiple factors affect 

the prediction variable; this assumption produces more accurate and reliable forecasts 

(Dell'Acqua et al. 2015). However, a limited number of studies have explored 
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multivariate approaches to the prediction of traffic flow, due to the increasing multi-

contextual complexity of roadway networks. For example, Roh et al. (2015) reported 

that previous studies proved that highway traffic variations (i.e., reduction in traffic 

volume and changes in traffic patterns) are affected by weather conditions along with 

spatial characteristics of roadway network (Datla et al. 2013; Keay and Simmonds 2005; 

Maze et al. 2006). Nevertheless, there are limitations of previous studies because spatial 

or temporal features of traffic flow did not appear through these studies.  

In summary, existing approaches are inadequate with regards to predicting traffic 

flow within a distinct set of clusters, because they fail to incorporate the unique 

characteristics of a particular spatial cluster into the prediction model. These exclusive 

characteristics should be construed as multiple contexts such as spatial, temporal, 

weather, socio-demographic, and highway facility function conditions. In this regard, 

there remains a significant gap in current knowledge regarding how model the multi-

contextual aspects of long-term traffic flow predictions.  

 

2.2.3 Existing Methods to Conduct Work Zone Delay Analysis  

Most State Transportation Agencies (STAs) currently use the methodology in the 

Highway Capacity Manual (HCM) in order to analyze CWZ traffic impacts (Federal 

Highway Administration 2014; Vadakpat et al. 2000). The HCM lists the most widely 

used macroscopic deterministic model for use in predicting whether a facility will be 

forced to operate either above or below its capacity (Federal Highway Administration 

2014). A number of HCM-based work zone impact analysis tools have been widely 
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used, such as spreadsheets, Queue and User Cost Evaluation of Work Zones (QUEWZ), 

DELAY Enhanced 1.2, IntelliZone, QuickZone, and Construction Analysis for 

Pavement Rehabilitation Strategies (CA4PRS). Most of these tools (i.e., spreadsheets, 

QUEWZ, DELAY Enhanced 1.2, and IntelliZone) are very simple to use but complex 

with regards to determining adjustment factors, which often results in the overestimation 

of traffic impacts (Abdel-Rahim et al. 2010). QuickZone, developed by the FHWA, 

incorporates various factors affecting delays at work zones and therefore provides 

comprehensive and detailed outputs (Abdel-Rahim et al. 2010). However, it also 

requires a huge amount of detailed input information about the roadway network. 

CA4PRS quantifies a CWZ impact on the traveling public on the aspect of time spent in 

queue (Lee and Choi 2006). CA4PRS’s traffic module can be operated by either a 

manual input of 24-hour traffic flow data or updates through the California Department 

of Transportation (Caltrans) the freeway Performance Measurement System (PeMS). 

PeMS converts freeway sensor data into intuitive tables and graphs that show historical 

and real-time traffic patterns on highways in California (Caltrans 2012). Its scope, 

however, is limited to the collection and analysis of historical and real-time data; it has 

no capability to predict traffic flow (Demiryurek et al. 2010). These simple macroscopic 

input-output traffic analysis methods have a critical limitation to benchmark traffic 

impact patterns because they cannot maintain historical datasets and learn from them in 

making better-informed decisions (Karim and Adeli 2003). In addition, an input-output 

analysis assumes that planners and engineers are aware of the impact of work zones on 

highway capacity reduction due to the planned construction (Karim and Adeli 2003).  
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As a different approach to quantifying the impact of CWZs, most traffic 

simulators developed in recent decades adopt microscopic simulation models (Ben-

Akiva et al. 1998; Hourdakis et al. 2003; Kamarianakis and Prastacos 2005). 

Microscopic simulation models such as VISSIM and CORSIM utilize a differential 

equation for single vehicle motion, along with various boundary conditions (Abdel-

Rahim et al. 2010; Ghosh-Dastidar and Adeli 2006). The microsimulations employ 

dynamic route assignment algorithms that can test various alternatives (Abdel-Rahim et 

al. 2010). However, questions are remained regarding effectiveness and efficiency of 

their ability to address various real-world situations. Instead of using real-world traffic 

data, they are dependent upon the start time at a source node, using simplistic models 

with synthetic datasets to represent the temporal aspect of the road network. 

 

2.2.4 Traffic Data Measurements: Are They Repeatable and Reproducible? 

 In an effort to achieve the most representative traffic pattern within a particular 

cluster that includes a number of sensors, it is important to identify effective and 

efficient validation methods to test whether traffic data obtained from multiple sensor 

readings can be repeatable and reproducible on a certain temporal scale; this is necessary 

for the projection of a particular single cluster’s characteristics. Several studies have 

reported that Repeatability and Reproducibility (R&R) analyses can be employed as a 

means of determining the most accurate and precise measurement systems (AIAG 2010; 

Joubert and Meintjes 2015). However, to the best of this author’s knowledge after an 

extensive literature review, little is known about R&R studies for transportation 
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applications. The only one conducted in the last decade studied R&R for transportation 

industry applications. Joubert and Meintjes (2015) determined the R&R of GPS data for 

freight activity chains. Each GPS dataset had unique characteristics, so the process 

required corresponding processing and validation techniques to extract vehicle 

behaviors, even though GPS data processing was automated through advanced 

algorithms.  

A key fundamental aspect of R&R analysis is determining the number of samples 

and repeat readings (MoreSteam 2015). Larger numbers of parts and repeat readings 

provide results with higher confidence levels (MoreSteam 2015). Sensored big 

transportation data used in this study address spatiotemporally large variations along 

with each different sensor locations at different temporal scales (i.e., hour, day, week, 

and season), which means that R&R analysis is appropriate to validate the robustness of 

traffic sensored big data on the aspect of the periodicty. However, there is a lack of 

research on testing the robustness of collected data to investigate the precision of traffic 

sensored data; this information is necessary for the management and validation of 

archived traffic data that must occur before a traffic data analysis can be conducted.  

 

2.3 Research Objectives 

Accurate work zone impact assessments of unprecedented travel inconvenience 

to the general public are required for all federally-funded highway infrastructure 

improvement projects. These assessments are critical, but they are also very difficult to 

perform for projects located in large urban areas with relatively dense roadway 
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networks. Most existing prediction approaches are project-specific, short-term, and 

univariate, thus incapable of benchmarking the potential traffic impact of CWZs for 

highway rehabilitation projects.  

This study fills these gaps by creating a big-data-based decision-support 

framework and testing if it can reliably predict the potential impact of a CWZ under 

arbitrary lane closure scenarios. This study proposes a big-data-based decision-support 

analytical framework, “Multi-contextual learning for the Impact of Critical Urban 

highway work Zones (MICUZ).” MICUZ is unique as it models the impact of what-if 

work zone operations through a multi-contextual quantitative method utilizing sensored 

big transportation data. Following describes the proposed MICUZ framework, followed 

by key sub-objectives of this study.  

 

2.3.1 The Proposed MICUZ Framework 

The significant impact of using large volumes of real-world traffic data on the 

prediction performance was identified by the previous studies. If the number of loop 

detectors is large enough the prediction performance of model can be improved by 

capturing the relationship between time slots and traffic data in different locations (i.e., 

spatiotemporal relationship) (Kamarianakis and Prastacos 2003; Pan et al. 2012). In 

addition to using sensored big transportation data, to make a significant leap forward in 

impact assessments of CWZs, MICUZ incorporates multi-contextual aspects into 

predicting long-term traffic flow and quantifying the potential traffic impact of CWZs, 

while mirroring various real-world situations.  
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MICUZ specifically focuses on modeling and predicting the traffic impact of 

nighttime CWZs on the aspect of travel time delays to assess the level of motorist’s 

inconvenience caused by the presence of a CWZ in heavily trafficked large urban 

corridors. To define large urban corridors, MICUZ addresses critical highways in large 

urban cores where the Annual Average Daily Traffic (AADT) volume is over 250,000 

(Federal Highway Administration 2015). AADT is simply represents how busy 

highways, drawn as the total volume of vehicle traffic. In large urban corridors, various 

construction alternatives in the conventional nighttime closures have been widely used 

because nighttime construction can improve daytime mobility, allowing road users to 

avoid traffic congestion during peak hours (Al-Kaisy and Hall 2003; Shane et al. 2012). 

On the other hand, nighttime construction often decreases work zone capacity due to 

reduced attention from travelers (Al-Kaisy and Hall 2003).   

As depicted in Figure 2, the proposed MICUZ framework was developed through 

a three-phase modeling process: 1) robustness check of collected sensored data; 2) multi-

contextual learning modeling using an Artificial Neural Network (ANN) technique; and 

3) curve-fitting modeling. Three phases of each are identified as specific sub-objectives 

of this study, and described in the following sections (Sections 2.3.2 to 2.3.4). 
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Figure 2 The proposed MICUZ framework 
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2.3.2 Phase I: Robustness Check of Collected Sensored Data 

The objective of Phase I is to test whether traffic flows extracted from archived 

multiple sensor readings can be repeatable and reproducible, thereby validating the 

robustness of the collected multi-sensored data whether they can represent the temporal 

traffic flow within a distinct set of spatial clusters (i.e., different sensor locations on 

different (or same) highways adjacent to a large urban core).  

 Hypothesis: The unique temporal periodicity (i.e., a single temporal traffic flow 

trend) is represented by numerous traffic flow data collected from multiple 

sensors that are placed in different locations within a large urban core.  

 Research approach: In the proposed MICUZ framework, Wheeler’s Honest 

Gauge repeatability and reproducibility (HG) analysis is conducted to test the 

robustness of historical traffic data collected from multiple sensor readings. 

 Significance: This research phase is the first of its kind that is undertaken for 

testing the repeatability and reproducibility of measurements of numerous traffic 

sensor readings. This approach will lay groundwork for efficiently and 

effectively classifying various temporal traffic flows into a distinct spatial 

regional cluster, as a pre-process for numerous traffic analyses. 

 

2.3.3 Phase II: Multi-Contextual Learning Modeling via Neural Networks 

Phase II aims to develop a multi-contextual predictive model that determines the 

stereotypical patterns of traffic flow. Specifically, the proposed network model predicts 
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traffic flow rates (veh/hr) and truck percentages (%) under prevailing traffic conditions 

as well as under lane closures, along with the multi-contextual characteristics. 

 Hypothesis: There is a strong correlation between long-term traffic flows 

before/during construction and multi-contextual characteristics such as weather 

conditions (visibility and precipitation), highway facility functional information 

(number of lanes, lane width, shoulder, and number of lanes to be closed), and 

socio-demographic conditions (population density adjacent to the traffic flow 

analysis zone and percentages of primary commute modes on highways such as 

self-driving and car/vanpooling). 

 Research approach: The MICUZ framework develops a multi-contextual learning 

model and tests the validity of its use of ANN whether it can robustly predict 

long-term traffic flow rates and truck percentages before and during construction 

simultaneously, within a distinct set of urban highway clusters. When 

considering multi-contextual characteristics that include several types of 

continuous, ordinal, and categorical datasets, ANNs take advantage over other 

ML techniques because it can be feasibly applied to any system and is capable of 

inherently modeling highly nonlinear systems. 

 Deliverables: The most effective architecture and learning structure for ANN are 

achieved, specifically centering to improved long-term traffic flow prediction on 

critical urban highway systems. Predicted values obtained from the proposed 

model encompass the potential long-term traffic flow rates and truck percentages 

within the corresponding traffic flow. The predicted traffic flow rates are then 
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incorporated into the proposed curve-fitting models directly, while the predicted 

truck percentages are used for the capacity adjustment to develop the proposed 

curve-fitting models (Phase III). 

 Significance: The proposed multi-contextual learning model yield an accurate 

prediction rate of long-term traffic flow, which proves that the proposed model 

would be repeatable and verifiable to other traffic region. 

 

2.3.4 Phase III: Modeling the Potential Work Zone Travel Time Delay Impact 

The objective of Phase III is to model, quantify, and validate the potential impact 

that CWZs have on travelers on the aspect of travel time delays. To achieve this goal, 

this phase adopted a curve-fitting technique that specifically aims to quantify travel time 

delay trends under what-if lane closure schemes for the nighttime construction.  

 Hypothesis: The proposed curve-fitting models bolster trend approximation of 

CWZ delay impacts at the boundaries of critical highway work zones.  

 Research Approach: MICUZ creates curve-fitting formulations by transforming 

the exisiting volume-delay function and blending the predicted long-term traffic 

flow rates and truck percentages obtained from the multi-contextual learning 

networks (Phase II) with what-if lane closure schemes.  

 Deliverables: The proposed curve-fitting models produce travel time delay trends 

under prevailing traffic conditions as well as under a number of what-if lane 

closure schemes for weekday and weekend nighttime construction in heavily 

trafficked urbanized downtown areas, which would be practically used. 
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 Significance: The proposed curve-fitting models overcome the drawbacks of the 

existing volume-delay function, capturing the travel time variability under 

prevailing traffic conditions and aribitrary lane closure scenarios. The end results 

quantify the probable but reliable travel time delays to assess the level of 

motorist’s inconvenience caused by the presence of a CWZ in heavily trafficked 

large urban cores. 

 

2.4 Research Methodology 

In pursuit of the end goal of this study, MICUZ utilizes large volumes of real-

world traffic sensored data along with the corresponding multi-contextual 

characteristics, specifically aimed at deepening knowledge in improving the accuracy 

and reliability of work zone travel time delay impacts. The discussed objectives were 

achieved through a solid eight-stage methodology:  

1. A total of 17,518 traffic sensor readings on Interstate highways (I-10 East and I-

110 South) adjacent to the Central Business District (CBD) in the City of Los 

Angeles (LA), California were extracted from the PeMS database. Hourly traffic 

volumes that include the percentage of trucks within the corresponding traffic 

flow are collected during the whole year in 2014 (0:00 am on January 1 to 11:59 

pm on December 31, 2014).    

2. Multi-contextual datasets were gathered in order to improve the accuracy of 

prediction of the proposed network learning model, including highway facility 

functional information, weather conditions, and socio-demographic 
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characteristics. Highway facility functional variables were collected from the 

PeMS to capture the impact of the existing highway capacity condition on the 

traffic flow variation under normal condition as well as lane closures. The 

weather conditions including the historical datasets of daily precipitation and 

visibility in 2014 were collected from the Quality Controlled Local 

Climatological Data (QCLCD) database provided by National Oceanic and 

Atmospheric Administration (NOAA). As socio-demographic characteristics, 

Population density in the Census areas adjacent to the traffic flow analysis zone 

was collected from Census Tracts of California. In addition, percentages of 

primary commute modes on the highways, such as self-driving and 

car/vanpooling, were collected from the LA Department of City Planning.  

3. To test whether traffic flows extracted from archived multiple sensor readings 

can be repeatable and reproducible, a two-stage R&R study on the collected 

historical traffic flow sensor readings was conducted through Wheeler’s Honest 

Gauge R&R (HG) method: the R&R of the collected traffic flow measurements 

1) before lane closure and 2) during lane closure.  

4. Based on the validated robustness of multiple sensored data, a multi-contextual 

learning model was developed adopting an artificial neural network technique to 

predict long-term traffic flow rates and truck percentages within the 

corresponding traffic flow, by incorporating the multi-contextual characteristics.  

To develop the proposed learning model, a five-stage modeling process was 

implemented within Phase II of MICUZ modeling framework: 1) developing the 
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architecture of ANN; 2) identifying the critical components affecting the learning 

performance of the model; 3) determining the learning structure of the proposed 

model; 4) developing the multi-contextual learning model; and 5) evaluating the 

learning performance of the proposed model. In detail, the proposed model was 

designed with three layers based on the MLP feedforward neural networks. The 

learning structure of the proposed model was then determined to control the most 

critical components affecting the performance of neural networks, such as 

training algorithm, activation functions, and the optimal number of hidden nodes 

in the hidden layer. In order to improve the accuracy and reliability of the model, 

the confirmed learning structure network was re-trained, thereby achieving the 

improved multi-contextual learning model. The learning performance of training, 

cross-validation, and test sets was then statistically validated by comparing actual 

values with predicted values. 

5. As the pre-process for modeling the impact of potential work zone delays, the 

adjusted capacities of highway facilities before and during construction were 

computed through a procedure in the Highway Capacity Manual; this process 

incorporated the predicted truck percentages obtained from the proposed multi-

contextual learning model as one of a number of adjustment factors. 

6. Potential travel times before and during lane closure were estimated by creating 

stereotypical traffic volume-capacity ratio patterns that incorporate the predicted 

long-term traffic flow rates and the corresponding truck percentages.  
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7. In an effort to quantify the percentile travel time delay trend before and during 

construction, curve-fitting models were developed through the third-order 

polynomial equations.  

8. The robustness of the proposed curve-fitting models was scientifically verified 

and validated by measuring the forecast accuracy through Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean Percentage Error (MPE), and 

Mean Absolute Percentage Error (MAPE). 

 

2.5 Research Assumptions and Limitations 

This research was performed according to the following assumptions:  

 This study assumes that any incident with a higher level of uncertainty would not 

occur.  

 This study uses unidirectional traffic sensor readings, which capture the traffic 

flow toward the study region. The other directions are assumed to have a traffic 

profile symmetric with the studied directions.  

 It is assumed that annual temporal weather conditions at the studied spatial zone 

are identical. 

The following are limitations of this study: 

 The focal point of this research is confined to highway systems, and the scope of 

the highway network examined is limited to mainlines in multilane (3, 4, and 5 

lanes in one direction having 12 ft. of each lane width plus shoulders) highways 

(and therefore excludes ramps, intersections, and HOV lanes) where the traffic 



 

27 

 

flow is significantly simpler and more predictable than arterials in a local road 

network. 

 This study is limited to nighttime construction. Nighttime construction is a 

dominant construction window on highways in urbanized downtown areas with 

CBDs, which is intended to minimize inconvenience to the traveling public 

during the daytime. 

 This study is limited to quantifying the potential CWZ impact on the aspect of 

travel time delays, which means that queue length and road user cost are 

excluded from the scope of analysis.  

 Work zone travel time delay trend achieved from this study is confined to 

nighttime construction (9:00 pm-6:00 am during weekdays and 8:00 pm-11:59 

pm on Sundays) in a large urban core, such as the CBD. 

 Regarding open lane conditions, this study is limited to lane drops only, and 

excluded the median crossover. 

 Though it is one of the critical weather conditions affecting traffic conditions, 

snowfall was excluded due to the climatic characteristics of the study region.  

 

 

2.6 Contributions 

The proposed MICUZ framework is unique as it models the impact of what-if 

CWZ operations from a quantitative perspective using high-confidence real-world multi-

contextual big data.  Based on the proposed multi-contextual approach through ANN and 

curve-fitting, MICUZ is able to learn and generalize from a training data set of certain 
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critical urban highway systems, and apply this knowledge to other highway systems with 

similar characteristics but where sensor data are not available.  

Phase I of MICUZ is the first of its kind that is undertaken for testing temporal 

and spatial periodicity present among traffic flow measurements of multiple traffic 

sensors through a measurement system analysis. The results will allow for more efficient 

management of measured sensor data through an assessment of its repeatability and 

reproducibility. The proposed multi-contextual learning model (Phase II) is expected to 

provide a solid foundation for the accurate and reliable prediction of long-term traffic 

flows before and during construction, which will serve as a baseline for incorporation 

into CWZ impact analyses encompassing travel time delay, queue length, and road user 

cost. In additions, through the proposed curve fitting models (Phase III), MICUZ has a 

potential to generalize travel time delay trends under normal traffic conditions and a 

number of what-if lane closure schemes for nighttime construction that is the most 

popular construction alternative in urban cores.  

This study conveys a notable conclusion that travelers’ inconvenience can be 

assessed into a set of distinct signature modeling patterns. The proposed MICUZ 

framework provides a rigorous theoretical basis for comparatively analyzing what-if 

construction scenarios, enabling engineers and planners to choose the most efficient 

transportation management plans much quickly and accurately. This study will assist 

STAs and the general traveling public in understanding potential traffic flow issues 

attributable to construction in heavily trafficked large urban cores (i.e., downtown areas 

with CBDs), while improving mobility in and between CWZs and positively affecting 
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regional development. Moreover, the proposed multi-contextual models will also help 

state transportation agencies quantify the reasonable rate of traffic demand reduction 

under various alternative lane closure scenarios in advance, while providing the traveling 

public both pre-trip planning and en-route guidance during construction. 
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3. LITERATURE REVIEW 

 

This section reviews previous studies on CWZ traffic analysis and traffic flow 

prediction techniques as key to successful implementation of CWZ impact assessments. 

A review of pertinent literature was intended to extract existing knowledge about work 

zone traffic impact analysis, focusing on traditional empirical studies on work zones and 

traffic flow dynamics (Section 3.1). Three key areas for the literature review related to 

traffic flow prediction modeling approaches were then identified. Section 3.2 focused on 

the three approaches such as 1) univariate, 2) multivariate, and 3) ML approaches to 

traffic flow predictions. Among the studied ML approaches, previous studies on ANN 

approaches were reviewed deeply to gain insight into traffic flow prediction modeling, 

as the most appropriate learning technique for the proposed MICUZ framework (Section 

3.3).  

 

3.1 Construction Work Zone Traffic Analysis 

  Overall, previous efforts on conducting construction work zone traffic impact 

analysis can be divided into two research areas: 1) traditional empirical studies and 2) 

applications of traffic flow dynamics at microscopic and macroscopic levels. 

 

3.1.1 Traditional Empirical Studies on Work Zones 

Many previous research efforts on CWZ traffic analysis were made to identify 

and model work zone impacts on aspects of traffic flow, work zone capacity, and traffic 
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congestion. Dudek and Richards (1981) developed a chart showing the cumulative 

distribution of work zone capacity and delay by analyzing 37 work zone sites in Texas. 

Krammes and Lopez (1994) presented a single base work zone capacity by analyzing 33 

different work zone configurations. The authors highlighted that the work zone capacity 

could be adjusted to reflect the intensity of work, percentage of trucks, and the existence 

of ramps upstream of the work zone. Dixon et al. (1996) analyzed 24 work zone data to 

capture work zone capacity on urban and rural highways. The authors underlined that 

work zone capacity is critically affected by the intensity of work, locational 

characteristics of urban and rural areas, and the level of darkness. Ullman (1996) studied 

about natural diversion on traffic conditions upstream of work zone lane closures on 

urban highways in Texas, which represents that the existence of work zone forces road 

users to choose alternate routes when the highway has continuous frontage roads. 

Cottrell (2001) developed an empirical model of queueing delay through a linear 

regression analysis that utilized 161 highway queuing observations. The developed 

model aimed to quantify the statistical relationship between traffic flow and capacity 

variables and queue delay. However, this linear regression model has drawbacks in its 

applicability to work zone traffic conditions because it represents recurrent congestion 

under prevailing traffic flow conditions. As the most widely used guideline, the HCM 

currently provides the current state of practice in traffic analyses by summarizing the 

previous empirical studies over the past 30 years (Transportation Research Board 2010).  

It is obvious that previous empirical studies laid a groundwork for analyzing 

CWZ traffic impacts. However, they are very limited to particular projects, thereby often 
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leading to unmatched findings of the study. For example, Dixon and Hummer (1996) 

reported that work zone capacity was about 10 percent higher than the capacity shown in 

the HCM, by analyzing work zones during 1994 and 1995 in North Carolina. On the 

other hand, Al-Kaisy and Hall (2003) found that work zone capacity of six long-term 

work zone sites was lower than the HCM base capacity. In this regard, the results and 

main findings of these empirical studies are not applicable to other various scenarios of 

work zones all the time.  

 

3.1.2 Traffic Flow Dynamics: Microscopic Versus Macroscopic Models 

 For the assessment of CWZ impact incurred by the presence of lane closures 

being performed to rehabilitate again highway networks, two primary techniques are 

widely used such as microscopic and macroscopic modeling techniques (Adeli and 

Ghosh-Dastidar 2004). A microscopic model utilizes a differential equation for a single 

vehicle in the traffic flow (Adeli and Ghosh-Dastidar 2004). The microscopic model 

deals with acceleration as the control variable affected by the inter-vehicular density 

(Bando et al. 1995; Chandler et al. 1958; Kachroo and Özbay 2012). Most of the traffic 

simulators developed in the recent decade adopt microscopic models, such as VISSIM 

and CORSIM (Ben-Akiva et al. 1998; Hourdakis et al. 2003; Kamarianakis and 

Prastacos 2005). The microsimulations employ dynamic route assignment algorithms 

that can test various alternatives (Abdel-Rahim et al. 2010). These microscopic models 

can provide detailed analyses. However, they cannot capture global descriptions of the 

traffic flow rate, density, and velocity and often are restricted to synthetic or simplified 
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data (Van Lint et al. 2002). The accuracy of these models relies heavily on the accuracy 

of social, environmental, and behavioral data that critically affect the traffic flow. 

On the other hand, a macroscopic model controls the traffic flow as a continuum, 

which means that traffic flow changes over space and time constantly (Nam and Drew 

1998). The macroscopic model is based on a differential equation of continuity that 

consists of traffic flow measured in vehicles per hour, speed in miles (or kilometers) per 

hour, and density measured in vehicles per mile (or kilometer) (Adeli and Ghosh-

Dastidar 2004; May 1990). Two different principal analyses have been used to develop 

macroscopic models: 1) shock wave analysis (also known as kinematic wave theory or 

Lighthill-Whitham-Richards (LWR) model) and 2) queueing analysis (also called 

queuing theory or simple input-output model). A pioneering concept in analyzing traffic 

flow at bottlenecks was introduced by Lighthill and Whitham (1955), which assumes 

traffic flow as a compressive fluid flow. This idea was strengthened by adding the 

concept of shock waves on highways proposed by Richards (1956), resulting in the so-

called LWR model or kinematic wave theory (Mazaré et al. 2011). This theory presents 

traffic is supposed to behave like a fluid, and its kinematic waves are generated from 

each vehicle. When demand exceeds capacity at a bottleneck, these waves interact with 

each other, called shock waves (Vadakpat et al. 2000). A shock wave is defined as a 

boundary condition in the time-space domain, which shows a discontinuity in the flow-

density condition (Nam and Drew 1998). A shock wave analysis traces shock waves in 

time and space in order to determine which flow regions are queued or uncongested 

(Karim and Adeli 2003). In other words, this analysis presents traffic queues through 
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traffic density changes in the time-space domain. The central premise of this analysis is 

the relationship between flow and density is known throughout roadways (Nam and 

Drew 1998; Vadakpat et al. 2000). A shock wave analysis assumes a single deterministic 

flow-density relationship over the whole time-space domain, which is simple to use. 

However, in general, density is considered as a traffic parameter that is difficult to 

measure directly (Nam and Drew 1998). In addition, the single deterministic flow-

density relationship maintains over the entire length of the studied road segment, which 

is also identical over the studied time duration. Therefore, the wave model has its limited 

applications because it cannot consider the multi-contextual complexity of work zones 

when modeling the traffic impact of CWZs.  

 Alternatively, queuing analysis uses a cumulative queuing diagram to determine 

traffic queues at a particular time based on the difference between the cumulative 

arrivals and the cumulative departures at a bottleneck, without considering the space 

dimension (Zhu and Ahmad 2008).  Queuing analysis can be either deterministic or 

stochastic. However, stochastic queuing analysis requires the information of traffic 

distribution that is often too difficult to obtain from the real-world condition (Karim and 

Adeli 2003). In this regard, most STAs currently adopt the procedures described in the 

HCM, which is based on the deterministic queueing analysis at macroscopic level for the 

prediction of whether a facility can be forced to operate either above or below its 

capacity  (Federal Highway Administration 2014; Vadakpat et al. 2000). A deterministic 

macroscopic queuing model is based on the principle of conservation of traffic flow, 

which represents that the number of vehicles entering a segment during a particular time 
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period must be equal the number of vehicles exiting the segment during the same time 

period under the identical roadway condition (Karim and Adeli 2003). 

 Many previous research efforts were made to help conduct CWZ impact analysis, 

using a number of tools based on deterministic queuing theory at the macroscopic level: 

spreadsheets, QUEWZ, QuickZone, and CA4PRS. As a traditional way, the spreadsheet-

based tool estimates work zone delay and queue lengths by integrating the deterministic 

queuing theory explained in the HCM with analytical equations (Abdel-Rahim et al. 

2010). A number of previous studies utilized the QUEWZ that is a DOS-based analysis 

tool developed by the Texas A&M Transportation Institute, specifically aiming at 

predicting congestion and the corresponding road user costs in work zone (Abdel-Rahim 

et al. 2010; Copeland 1998; Karim and Adeli 2003; Krammes et al. 1987; Memmott and 

Dudek 1984; Sadegh et al. 1988). However, these tools are commonly very simple to 

use, but complicated to determine adjustment factors, which often result in 

overestimating traffic impacts (Abdel-Rahim et al. 2010). Especially, QUEWZ is 

operated based on the conservation of traffic flow principle and follows empirical speed-

flow-density relationships, missing the work zone layouts.  

 Alternatively, the FHWA developed a Microsoft Excel-based software 

application called QuickZone in order to predict the average queue lengths and travel 

times in work zones (Abdel-Rahim et al. 2010; Adeli and Ghosh-Dastidar 2004; Federal 

Highway Administration 2015; Karim and Adeli 2003). QuickZone has the capability of 

incorporating various factors that affect delays at work zones, thereby providing 

comprehensive and detailed outputs (Abdel-Rahim et al. 2010). It utilizes the difference 
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between traffic demand at hourly and daily levels and highway capacity to estimate 

queuing and travel times, incorporating the seasonal demand factors. Then, it compares 

travel time before and during construction to identify the additional travel time or delay 

due to work zones. However, it requires a huge amount of input information about 

detailed roadway network. In addition, QuickZone does not model traffic flow under 

lane closure, dealing with it indirectly in the form of the capacity reduction in work 

zones.  

CA4PRS developed by the University of California Pavement Research Center 

through the UC Berkeley Institute of Transportation Studies is also one of the most 

widely used software application, specifically aiming at supporting the integrated 

analysis of rehabilitation project alternatives in terms of cost, time, and traffic impacts 

(Federal Highway Administration 2015; Lee and Ibbs 2005). CA4PRS’s traffic module 

quantifies the CWZ impacts on aspects of time spent in queue and road user cost (Lee et 

al. 2008). One of the powerful features of this module is that it can be integrated with the 

macroscopic or microscopic traffic models to quantify CWZ traffic impacts (Lee and 

Ibbs 2005). CA4PRS’s traffic module can be operated by either a manual input of 24-

hour traffic flow data or updates through the Caltrans PeMS. A manual input of traffic 

flow for every single analysis is labor-intensive and time-consuming. In spite of its 

capability of integrating with the Caltrans PeMS, as stated previously, the scope of 

PeMS is limited to collection and analysis of historical and real-time data with no 

capability of predicting long-term traffic flow (Demiryurek et al. 2010). The major 

limitation of these conventional macroscopic models is that they are too simplistic to 
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create accurate traffic impacts of highway construction work zones, especially roadway 

segments upstream of work zones affected by lane closure. In addition, macroscopic 

models assume that planners and engineers are aware of the impact of work zones on the 

aspect of highway capacity reduction due to the planned construction (Karim and Adeli 

2003).  

 

3.2 Modeling Approaches to Traffic Flow Prediction 

Despite many previous research efforts, most existing approaches to traffic flow 

prediction are often univariate, assumed as linear structures, and focused on short-term. 

These previous studies cannot therefore provide a guidance for benchmarking the 

potential traffic impact of CWZs. To address this issue, a comprehensive review of 

literature on the subject of traffic flow prediction modeling approaches was conducted, 

thereby identifying pros and cons of existing modeling approaches and determining the 

most appropriate method for the proposed multi-contextual modeling. Traffic flow 

prediction modeling methods were classified into three different approaches: 1) 

univariate modeling; 2) multivariate modeling; and 3) machine learning approaches. 

 

3.2.1 Univariate Modeling Approaches 

In univariate models, historical traffic flow data obtained from a specific location 

are utilized to model and predict the future traffic flow on the same location 

(Kamarianakis and Prastacos 2003). Univariate approaches to traffic flow prediction are 

mainly presented by Historical Average Methods (HAMs) and time series models.  



 

38 

 

HAMs use the cyclic feature of traffic flow, by simply employing the average 

values of past traffic volumes to predict future traffic flow (Chang et al. 2011). These 

methods have been applied to the urban traffic control system and traveler information 

systems (Jeffery et al. 1987; Kamarianakis and Prastacos 2003; Kaysi et al. 1993; 

Stephanedes et al. 1981). Even though these methods would shorten computational time, 

these methods hold a critical issue to obtain accurate and reliable results as they do not 

respond to any change in traffic flow, such as incidents and work zones.  

A majority of time series models is presented by Auto-Regressive Integrated 

Moving Average (ARIMA) models (Ahmed and Cook 1979; Hamed et al. 1995; Kim 

and Hobeika 1993; Lee and Fambro 1999; Williams et al. 1998; Yao and Cao 2006). 

ARIMA models were emerged by merging the concepts of Auto Regression (AR) and 

Moving Average (MA) models, which is also known as the Box-Jenkins model (Oh et 

al. 2015). In an effort to predict traffic flow based on stochastic traffic mechanism, 

Ahmed and Cook (1979) and Levin and Tsao (1980) introduced the ARIMA models. 

Comparing with HAMs, it was found that the ARIMA has better performance (Smith 

and Demetsky 1997). However, a number of researchers reported the limitations of 

ARIMA models as they tend to focus on means, omitting the extreme values. Therefore, 

they cannot capture rapid changes in traffic flow caused by any incidents or work zones 

(Davis et al. 1990). Kamarianakis and Prastacos (2003) underlined that numerous loop 

detectors’ data cause excessive computational time when predicting traffic flow through 

ARIMA, which is difficult to reflect the real-world urban roadways.  
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Functional limitations of existing HAMs and ARIMA models for predicting 

traffic flow were comprehensively reported by Pan et al. (2012). They underscored that 

HAMs cannot react to traffic dynamics affected by any traffic events (e.g., road 

construction, social events, and accidents), while ARIMA has no capability to control 

sudden changes in traffic flow. Also, it was found that ARIMA models are not accurate 

in long-term traffic flow because they rely on the very recent data (Pan et al. 2012). 

 

3.2.2 Multivariate Modeling Approaches 

Unlike univariate models, multivariate models can represent traffic flow in 

numerous locations (Kamarianakis and Prastacos 2003). Kamarianakis and Prastacos 

(2003) underscored that multivariate models could represent the spatial characteristics of 

the roadway network and temporal evolution of traffic flow in other locations in the 

network. Multivariate models are created through the state-space formulation. A state-

space model extends a univariate time series model to multivariate conditions. State-

space models were introduced by Okutani and Stephanedes (1984), in an effort to predict 

traffic diversion in urban freeway entrance ramps. Kamarianakis and Prastacos (2005) 

proposed the space-time ARIMA model that attempts to represent the spatiotemporal 

evolution of traffic flow in urban roadways. Statthopoulos and Karlaftis (2003) 

highlighted that multivariate state-space models improved the accuracy of prediction, 

compared to univariate ARIMA models.  

As a parametric statistical technique, a Kalman filter is the most widely used 

technique to obtain a solution for the state-space formulation (Chang et al. 2011; Oh et 
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al. 2015; Okutani and Stephanedes 1984; Whittaker et al. 1997). This technique 

continuously updates the selected state variables through time series approaches, by 

assuming certain relationships between state vectors and discrete time period, and 

between observation vectors and the corresponding observation equations (Kalman 

1960; Oh et al. 2015). Utilizing Markov transition matrix, a selected state vector is 

generated through the past and current observations along with an optimal state vector 

(Kalman 1960). However, Kalman filters based on the Markov process has limitations 

for use in efficiently and effectively predicting future traffic flow. The Markov process 

encompasses hidden mechanisms, lacking the dependence on functional mechanisms 

(Oh et al. 2015). In addition, the first-order Markov chains with stationary transition 

probability have no capability to deal with inconsistent and disproportionate natures of 

traffic flow.  

 

3.2.3 Machine Learning Approaches 

Due to the nonlinear characteristic of traffic flow by its nature, researchers have 

paid much attention to nonparametric methods that do not undertake any particular 

functional form to represent the relationship between the dependent and independent 

variables. Nonparametric methods attempt to detect historical data that are similar to the 

prediction one and utilize the average of the detected datasets to forecast future (Lin et 

al. 2013; Lv et al. 2015). As nonparametric methods, ML techniques aim to achieve 

definitive information from large sets of data for pattern recognition, classification, and 

prediction by unlocking the complexity of nonlinearity (Arciszewski et al. 1994; Effati et 
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al. 2015; Jain et al. 1996; Kargah-Ostadi 2014), which has become widely used since 

1990s (Portugal et al. 2016).    

ML algorithms are generally classified into three kinds of learning: 1) 

supervised; 2) unsupervised; and 3) reinforcement learning (Portugal et al. 2016). 

Supervised learning starts with a training phase using labeled data having the expected 

output. The learning algorithm is then implemented having unlabeled input data and 

generating output, which is available for using with unknown data to validate the 

accuracy of the predictive responses (Ekedebe et al. 2015). Unsupervised learning 

algorithms are appropriate for discovering hidden patterns by employing unlabeled data, 

such as clustering and k-means. Reinforcement learning algorithms that learn from the 

mistakes aim to improve rewards of future outputs by receiving feedback from the 

corresponding real-world outputs.  

Most widely-used supervised ML algorithms for traffic flow prediction include 

Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and Artificial Neural 

Networks (ANN) algorithms. Some researchers applied the SVM algorithm to short-term 

traffic flow prediction because it has good generalization ability based on statistical 

learning theory (Chang et al. 2011; Cong et al. 2016; Gu et al. 2015; Su et al. 2007; Tang 

et al. 2013; Wei and Liu 2013; Yu and Lam 2014). In addition, KNN algorithm also has 

been widely used in traffic flow pattern searching studies, because of its simple process 

of training data and estimating parameters (Cai et al. 2016; Dell'Acqua et al. 2015; Hong 

et al. 2015; Zheng and Su 2014). However, these algorithms have several drawbacks in 

practical application. SVMs tend to make decisions difficult in choosing the kernel and 
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the size of training and testing sets, while not providing a parametric functional form for 

the reasonable interpretation (Chang et al. 2011; Karamizadeh et al. 2014; Yu and Lam 

2014), while nonparametric regression such as KNN is computationally expensive to 

find the nearest neighbors if the dataset is large (Chang et al. 2011). 

Among various ML algorithms, ANN approaches have been proven to provide 

potentially plausible prediction models with the good accuracy for many transportation 

applications and have been explored extensively over the decades (Abdi and Moshiri 

2015; Kumar et al. 2015; Liu et al. 2016; Pamuła 2011; Sommer et al. 2015). Especially, 

a large number of studies have been deployed in an effort to predict traffic flow using 

ANNs (Chen and Chen 2007; Dougherty and Cobbett 1997; Innamaa 2000; Kumar et al. 

2015; Ledoux 1997; Li and Liu 2014; Lingras and Mountford 2001; Pan et al. 2015; 

Shahsavari and Abbeel 2015; Smith and Demetsky 1994; Sommer et al. 2015; Tiefeng 

2010; Zhang 2000; Zhu et al. 2014). An extensive systematic review of literature in this 

specific ML approach to predicting traffic flow is undertaken in the following section 

(Section 3.3). 

In summary, as depicted by Figure 3, most of the previous studies using the most 

widely used ML techniques such as SVM, KNN, and ANNs over the past fifteen years 

have been centered on predicting the generic short-term traffic flow under the normal 

condition, which are not suitable for scheduling construction work zone applications. All 

the previous studies using the selected ML approaches focused on predicting normal 

traffic conditions over the last decade, without work zone conditions.  As shown in 

Figure 3, ANNs have been the most commonly used ML approaches to traffic flow 
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prediction, compared to KNN and SVM. Specifically, previous research efforts prove 

that the ANNs has a relatively high potential to be suited for the long-term traffic flow 

prediction. In other words, there remains questionable about the suitability of long-term 

traffic flow prediction through the other learning approaches. 

 

 

Figure 3 A summary of studied machine learning approaches to traffic flow prediction 

(2000-2016) 

 

3.3 Traffic Flow Prediction Using Artificial Neural Networks 

In spite of common drawbacks of long training time and complex internal 

structure in ANNs (Chang et al. 2011; Sommer et al. 2015), there are main reasons why 

a large amount of studies have paid much attention to ANNs among several ML 

approaches. First, ANNs have the capability of controlling multi-dimensional data and 

do not require assumption checking regarding data (Ma et al. 2015). Second, the 
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structure of an ANN is robust to achieve reliable prediction performance by changing its 

structure and internal information that pass through the network during the training 

phase, thereby being applied feasibly to any system (Rizwan et al. 2016; Sheela and 

Deepa 2013; Sommer et al. 2015). Last, ANNs are capable of inherently modeling 

highly nonlinear systems (Gevrey et al. 2003; Rizwan et al. 2016; Sheela and Deepa 

2013; Sommer et al. 2015).  

With these strength of ANN learning approaches, many studies over the last 

decade have been used ANN approaches to transportation applications, specifically 

aiming at improving the accuracy and efficiency of traffic flow prediction. In detail, 

many of previous studies applied Multi-Layer Perception (MLP) networks for traffic 

flow prediction. Innamaa (2000) employed an MLP network to predict short-term traffic 

flow 15 minutes ahead of the observed data. The proposed network used the 

combination of activation functions including a hyperbolic tangent for the hidden layer 

and a linear function for the output layer, in order to improve the accuracy of the 

network model. Although the performance of the proposed model was accurate by 

having a small mean squared errors, mean relative errors, and mean errors, the authors 

pointed out that a small amount of data (i.e., one-month period) and the number of 

observations during peak period should be greater in order to make the model learn and 

predict the potential short-term flow better.  

Dia (2001) proposed an object oriented neural network for short-term traffic 

prediction, which lays a solid groundwork for modeling complex interactions, by mixing 

rules of supervised and unsupervised learning algorithms in the same network model or 
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incorporating a recurrent processing factor into a hidden layer of Feedforward Neural 

Networks (FNN). Jin and Sun (2008) introduced the multi-task learning NN through 

FNN for traffic flow prediction from the historical dataset. The multi-task learning in 

this study represents more than one predicted output values, which is different from 

single task learning that has the only one single main predicted flow output. The 

proposed model was developed using a sigmoid function for the activation function and 

trained by Levenberg-Marquardt algorithm considering its efficiency and precision. The 

authors underlined that single task learning tends to fail to attach important information 

resources, while the proposed multi-task learning can improve the generalization of the 

network and have higher accuracy of the prediction. Çetiner et al. (2010) employed a 

three-layered ANN to predict traffic flow in a metropolitan city in Turkey, Istanbul, by 

using temporal traffic input data during one year, 2006. To achieve the best performance 

of the network, the network was trained and tested by changing the network structure 

and cases of input variables related to temporal characteristics.  The prediction was 

performed based on either 5-minutes interval traffic data or 1-hour data through two 

different network models. The authors concluded that hourly prediction is recommended 

because of the accuracy of prediction in the study area, Istanbul.  

Passow et al. (2013) tested the suitability of four distinct ANN techniques to 

predict traffic flow conditions in the city of Leicester, UK, which include feed-forward 

backpropagation, cascade-forward back propagation, radial basis, and generalized 

regression ANNs. To achieve the accuracy of the prediction, hours of the day, days of 

the week, and a number of weather conditions (i.e., temperature, cloud coverage, air 
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pressure, rain, wind speed, and direction) were taken into the network. The authors 

highlighted that the feed-forward backpropagation led to the best results, closely 

followed by the cascade-forward backpropagation. To predict short-term traffic flow, 

Cao and Han (2014) applied a back propagation neural network that is a multilayer FNN 

training with the error back propagation algorithm. The proposed model trained and 

predicted traffic flow at the same time of different days and sequent time of the same 

day in a Chinese urban arterial. The authors concluded that the error was small, and thus 

the proposed network can predict the short-term flow well.  

Dai et al. (2015) investigated the unique characteristics of traffic patterns in 

holidays within Zhejiang province in Shanghai freeway in China, both spatially and 

temporally. An ANN model using an MLP network was then applied to predict the 

traffic flow in the future 5 minutes, which led to the good accuracy of the traffic flow 

prediction in holidays. Kumar et al. (2015) investigated whether ANN is effective to 

predict short-term traffic prediction. An MLP network, also known as FNN was used to 

predict 5-minute ahead traffic volumes of four-lane non-urban highway in India. For 

generating the network, a set of 480 data records were used, including the day of the 

week, time of day, classified traffic volume (e.g., car, van, bus, truck, and so on), the 

corresponding average speed of vehicles and density of vehicles. The authors underlined 

that FNN could predict vehicle count accurately even if vehicle types and their 

corresponding speeds were controlled separately. However, key issues behind this study 

lie in the use of a limited number of input parameters and time period. Specifically, 

weather condition, seasonal variation, and congestion were not taken into consideration. 
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In addition, the study data collected during only off-peak hours would cause practical 

and technical limitations. Liu et al. (2016) compared four training algorithms (Gradient 

Descent (GD), Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Fletcher-

Reeves conjugate gradient (CGF)) in an MLP ANN model to test the accuracy and 

efficiency of short-term traffic flow prediction. The results represented that the models 

trained by LM, BR, and CGF had similar performance on the aspect of the prediction 

accuracy, while these three outperformed GD-based MLP model. In terms of the 

computation efficiency, BR-based MLP network model held the best performance. The 

authors concluded that the BR-based MLP network model is the most appropriate for 

prediction short-term traffic flow.  

Other studies employed the RBF neural network that is the other type of the 

FNN. Chen and Chen (2007) explored an ensemble learning approach that combines 

Radial Basis Function (RBF) network predictors with the bagging method in order to 

improve the predictability of unstable procedures of existing RBF networks. As one of 

the most popular ensemble methods, bagging stands for Bootstrap Aggregation and 

attempts to decrease the variance of prediction by producing additional training data 

from the original dataset. The authors employed the proposed network to predict short-

term traffic flow at a certain location of the Loop 3 freeway in Beijing, China. Zhu et al. 

(2014) proposed a new method based on RBF networks to predict short-term traffic flow 

at the adjacent intersections.  

To summarize the review of previous studies on ANN approaches to traffic flow 

prediction in a nutshell, there is a still knowledge gap in achieving accurate and reliable 
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prediction of long-term traffic flow before and during construction. In addition, there 

still remains a significant gap in existing body of knowledge whether they can capture 

the potential stereotypical long-term traffic flow within a distinct set of clusters, while 

covering the multi-contextual complexity that affects traffic flows before and during 

construction.  

 

3.4 Summary of Literature Review 

It was found throughout an extensive literature review that existing methods and 

processes for the implementation of work zone impact analysis and traffic flow 

prediction still have critical limitations. For the betterment of construction work zone 

traffic analysis, many previous research efforts have been made through empirical 

studies. However, empirical studies are very project-specific, thereby lacking the 

capability to develop generalized computational models for successful TMPs.  

To overcome this deficiency, microscopic and macroscopic modeling approaches 

to traffic flow dynamics have been mainly used to analyze CWZ impacts, by estimating 

queue lengths and travel delay. Throughout the pertinent literature review, it was 

revealed that microscopic models could not represent global descriptions of traffic 

characteristics and often are restricted to simplified data that cannot be applicable to 

various real-world situations. In addition, macroscopic traffic flow models based on the 

kinematic wave theory and queuing theory are too simplistic to create accurate traffic 

impacts of highway construction work zones, especially roadway segments upstream of 

work zones affected by lane closure.  



 

49 

 

A common issue of existing CWZ impact analysis methods was identified that 

they require accurate estimates of traffic flow. Despite many previous research efforts, 

most existing approaches to traffic flow prediction are often univariate, assumed as 

linear structures, and focused on short-term. These previous studies cannot therefore 

provide a guidance for benchmarking the potential traffic impact of CWZs.  

To address this issue, a comprehensive overview of three different traffic flow 

prediction modeling approaches was conducted. As the most representative univariate 

model, ARIMA models tend to focus on means, omitting the extreme values. In turn, 

they cannot control rapid changes in traffic flow. Although multivariate models improve 

the accuracy of prediction compared to univariate models, the both univariate and 

multivariate time series analyses assume linear correlation structures, which means that 

they have limitations to effectively address the nonlinearity of traffic flow.  

Due to the nonlinearity of traffic flow by itself, ML approaches have been widely 

used to predict traffic flow, utilizing SVM, KNN, and ANN over the past fifteen years. 

Comparing with SVM and KNN, many studies over the last decade adopted ANN 

approaches to transportation applications, specifically aiming at improving the accuracy 

and efficiency of traffic flow prediction. However, most of these ML approaches 

focused on generic short-term traffic prediction under normal traffic flow conditions, 

meaning that these are inappropriate for incorporation into scheduling CWZ 

applications. Therefore, there is a still knowledge gap in achieving accurate and reliable 

prediction of long-term traffic flow. In addition, there still remains a significant gap in 

existing body of knowledge whether they can accurately capture the potential 
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stereotypical long-term traffic flow within a distinct set of clusters, by integrating the 

multi-contextual complexity in and around work zones.  
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4. MULTI-CONTEXTUAL DATA COLLECTION AND SUMMARIZATION 

 

In an effort to benchmark long-term traffic flow in heavily trafficked critical 

urban highway networks, Annual Average Daily Traffic (AADT) values served as a 

baseline for addressing highly congested urban areas where the AADT volumes are over 

250,000 (Federal Highway Administration 2015). Among various urban sets of heavy 

AADT clusters that were examined, the City of Los Angeles (LA) in the state of 

California was chosen for this study because LA has been named the city with the worst 

traffic in the United States (CBS Los Angeles 2016; Chew 2016). A national 

transportation research group named by TRIP estimated that the average driver in urban 

areas in LA loses 61 hours a year due to traffic congestion, which can be translated into 

the form of $2,485 of additional vehicle operating costs due to congestion annually 

(TRIP 2014). In this regard, the learned knowledge through the case of LA would be 

applied to other critical urban highway systems with similar characteristics but where 

sensor data are not available. 

Within a city or county limit, it was found that the overall traffic flow follows 

different patterns along with types of spatial regions (e.g., downtown, residential, and 

attraction areas) because the traffic flow is significantly affected by the spatial 

characteristics (Demiryurek et al. 2009). Among several spatial regions, in general, the 

Central Business District (CBD) is characterized by a key urban structure type and 

commercial land use (i.e., retail and service business). CBDs commonly appear through 

large cities and is home to numerous economic activities (Stewart et al. 2016; 
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Taubenböck et al. 2013). Nilsson and Smirnov (2016) pointed out that these economic 

activities are significantly affected by changes in the transportation system, such as the 

potential capacity expansion and the proximity of transportation infrastructure.  

In this study, as the traffic flow analysis zone, Interstate highways adjacent to the 

CBD, simply known as “Downtown LA,” were selected for this study. In detail, highway 

directions toward the CBD including I-10 East and I-110 South were served as the traffic 

flow analysis network. When considering that the CBD is a common significant urban 

structure in major cities, the potential traffic impact of CWZs in a large urban core 

would be appropriately benchmarked by the CBD in LA. As a part of the LA 

metropolitan area, Downtown LA ranks the first on the list of congested regions in the 

United States (CBS Los Angeles 2016). Therefore, the traffic analysis zone chosen for 

this study is expected to be applicable for analyzing the potential traffic impact in other 

large urban cores.  

Figure 4 shows the hierarchical outline of the data collection for this study as 

follows: 

1) A traffic flow analysis zone was selected, which is highways adjacent to the 

CBD.  

2) Traffic sensored data in the traffic analysis zone were achieved from the Caltrans 

PeMS during the whole year in 2014.  

3) Multi-contextual datasets such as highway facility, weather, and socio-

demographic contexts were collected from the PeMS, National Oceanic and 
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Atmospheric Administration, U.S. Census Track, and the City of LA, 

respectively. 

 

 

Figure 4 Multi-contextual data collection 

 

4.1 Traffic Data Collection and Summarization 

Traffic flow data near the CBD in LA were collected from the Caltrans PeMS 

database. PeMS collects traffic data every 30 seconds from over 15,000 individual loop 

detectors that are placed in freeway systems across the state of California (Chen et al. 

2001; Lv et al. 2015). The collected traffic data are then aggregated at a 5-minute 

interval for each detector (Caltrans 2012; Lv et al. 2015).  
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In this study, a total of 17,518 traffic sensor readings on Interstate highways (I-10 

East and I-110 South) adjacent to the CBD were extracted from the PeMS database. 

Hourly traffic volumes that include the corresponding percentage of trucks are collected 

during the whole year in 2014 (0:00 am on January 1 to 11:59 pm on December 31, 

2014). These two key traffic parameters of hourly traffic volumes and truck percentages 

were served as target prediction values in the proposed network model, which can 

contribute to conduct the mandated work zone traffic analysis through the demand-

capacity model described in the Highway Capacity Manual (Transportation Research 

Board 2010). Especially, demand is defined as the 24-hour hourly distribution of 

vehicles passing through the work zone in a single direction under normal operating 

conditions, which are unknown and thus require reliable potential traffic flow at the 

work zone site (Federal Highway Administration 2011). In addition, capacity is defined 

as the maximum possible traffic service flow (Transportation Research Board 2010), and 

percentage of trucks is one of the most critical determinants of the capacity adjustment 

during construction.  

Figure 5 shows a summary of temporal granularity of the traffic flow data 

projected by 24-hour traffic flow on every day in a week per season, while a total of 10 

American holidays were separated from the regular day of the week. First, 24-hr traffic 

flow datasets obtained from each sensor were collected. At the second level, the 

granularity of temporal summaries was increased by providing a set of traffic flow with 

each one representing a unique day in a week, which consist of a total of 8 categories of 

days of the week and a total of 3 categories of week levels including weekdays, 
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weekends, and holidays. At the third level, the temporal granularity was increased by 

seasonal information, which is classified into four seasons: 1) Spring (March-May); 2) 

Summer (June-August); 3) Fall (September-November); and 4) Winter (December-

February). Based on such a hierarchy, the summarized traffic flow datasets were 

classified into different long-term temporal scales. 

 

 

Figure 5 A summary of temporal granularity of the traffic flow data 

 

As shown in Figure 5, the filled areas representing traffic flows are generated by 

the corresponding mean values. The other graphical components present box-and-

whisker plots of the traffic flow data at the long-term traffic scales. The ends of the 

whiskers show the lowest and highest flow data within 1.5 interquartile range of the 

lower and upper quartiles to effectively isolate outliers (Choi et al. 2016). The boxplots 
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also indicate that all the temporally classified traffic data had large gaps of interquartile 

ranges, caused by the generalized long-term temporal scales obtained from multiple 

sensor readings. Therefore, there remains questionable about the quality of traffic data 

whether this generalized profile of long-term temporal traffic flow toward the CBD can 

be repeatable and reproducible in an effort to apply for other similar cases. This issue 

was resolved through the gauge repeatability and reproducibility study in Section 5.2.  

 

4.2 Multi-Contextual Characteristics 

In addition to the temporal context frame as seen in Figure 4, other multi-

contextual datasets were collected in order to improve the accuracy of prediction of the 

proposed network learning model: 1) highway facility functional information; 2) weather 

conditions; and 3) socio-demographic characteristics.  

 

4.2.1 Highway Facility Functional Information 

Highway facility functional variables were collected from the PeMS to capture 

the impact of the existing highway capacity condition on the traffic flow variation under 

normal condition as well as the potential traffic flow under lane closures. In this study, 

as stated previously through Section 2.5, the location-based highway facility functional 

information is limited to mainlines in multilane (3, 4, and 5 lanes in one direction having 

12 ft. of each lane width). Finally, the highway facility functional context included the 

number of lanes, the road length covered by each sensor, and the number of lane 

closures due to construction.  
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4.2.2 Weather Conditions 

As stated previously, previous studies using statistical approaches have reported 

that changes in traffic flow are affected by weather conditions along with spatial 

characteristics of roadway network (Datla et al. 2013; Keay and Simmonds 2005; Maze 

et al. 2006). To capture traffic flow variations affected by weather conditions and 

improve the accuracy of prediction, precipitation and visibility data were incorporated 

into the MICUZ framework. The historical datasets of daily precipitation and visibility 

in 2014 were collected from the Quality Controlled Local Climatological Data (QCLCD) 

database provided by National Oceanic and Atmospheric Administration (NOAA). 

Figure 6 shows a summary of weather conditions at the daily temporal scale. Snowfalls 

were excluded due to the climatic characteristics of the study region.  

 

 

Figure 6 Weather conditions at the daily temporal scale 
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4.2.3 Socio-Demographic Characteristics 

To improve accuracy, the MICUZ framework employs the context of socio-

demographic characteristics, including the population density near traffic flow analysis 

zones and primary commute modes on highways. When considering the unique 

characteristics of CBDs, other factors such as household size, household income, and 

public transit mode were excluded, which might be effective to predict the future traffic 

flow around residential areas. Population density in the Census areas adjacent to the 

traffic flow analysis zone was collected from Census Tracts of California (State of 

California 2016). In addition, percentages of primary commute modes on the highways, 

such as self-driving and car/vanpooling, were collected from the LA Department of City 

Planning (City of Los Angeles 2016). The both quantity data were originally provided 

by the U.S. Census Bureau. 

 

4.3 Descriptive Statistics of Multi-Contextual Datasets 

Table 1 shows descriptive statistics of multi-contextual variables used in the 

proposed multi-contextual learning model (Phase II), which consists of a total of 2 

prediction target variables and 26 input variables that are classified into the 

aforementioned four different multi-contextual frames. As seen in Table 1, multi-

contextual frames include several types of continuous, ordinal, and categorical variables, 

which represents that the multi-contextual frames are shown as a highly nonlinear and 

complex system. Therefore, a ML algorithm using an ANN technique is expected to be 
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the most appropriate to develop the proposed learning model through Phase II of the 

MICUZ framework, compared to other ML algorithms such as SVM and KNN. 

 

Table 1 Descriptive Statistics of Multi-Contextual Variables 

Context Variable Unit Type Min. Max. Mean 
Standard 

Deviation 

Prediction 

Target 
Traffic flow 

rate 
veh/hr Continuous 495 7,523 

4,032.3

9 
1773.47 

Percentage 

of trucks 
% Continuous 0 23.55 1.571 1.493 

Temporal 
Season -* Categorical - 

Week -** Categorical - 

Day -*** Categorical - 

Time am/pm Continuous 0:00 23:59 - - 

Highway Number of 

lanes 
EA Ordinal 3 5 - - 

Length mile Continuous 0.65 1.08 0.866 0.215 

Number of 

lanes closed 
EA Ordinal 0 4 - - 

Lane closure 

filter 
-**** Categorical - 

Weather 
Precipitation inch Continuous 0 2.24 0.028 0.178 

Visibility mile Continuous 2 10 8.996 1.543 

Socio-

Demographic 
Population 

density 
ppl/sqmi Continuous 12,427 16,494 14,545 2,033.53 

Self-Driving % Continuous 25.3 57.1 41.854 15.8 

Car/vanpool

ing 
% Continuous 5.8 10.9 8.245 2.55 

*: Spring, Summer, Fall, and Winter 
**: Weekdays, Weekends, and Holidays 
***: Monday-Sunday, and Holiday 
****: Yes or No 
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5. PHASE I: ROBUSTNESS CHECK OF COLLECTED SENSORED DATA 

 

The main objective of this research phase aims to test whether traffic flows 

extracted from archived multiple sensor data can be repeatable and reproducible and be 

thus applicable to spatiotemporally similar characteristics of roadway networks. Existing 

traffic data management systems obtain numerous traffic data from multiple sensor 

readings, which would result in biased results when identifying the unique 

characteristics of traffic data within a distinct set of clusters. Specifically, Interstate 

highways adjacent to the CBD in the City of LA consist of multiple traffic sensor 

readings so that it is difficult to capture the most representative periodicity of traffic data 

representing the CBD. Therefore, there is a pressing need to adopt an appropriate 

validation technique to extract the informative data that can spatiotemporally represent 

the unique characteristics of a distinct set of traffic analysis zones, such as heavily 

trafficked urban highways adjacent to the CBD in major cities.   

As a preparation for developing the proposed network learning model that 

predicts long-term traffic flow before and during construction, this study performed the 

Repeatability and Reproducibility (R&R) study on the collected historical traffic flow 

sensor readings through Wheeler’s Honest Gauge R&R (HG) Method. A two-stage R&R 

study was conducted to determine the R&R of the collected traffic flow measurements 

before lane closure (Stage I) and to validate the R&R of historical traffic flow 

measurements during lane closure (Stage II).  
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5.1 Background of Measurement System Analysis 

Variations of data in measurement systems always occur due to measuring 

devices, operators, or the nature of measured parts (Burdick et al. 2003; Joubert and 

Meintjes 2015), which often cause the systematic error (i.e., bias) in a measurement 

(Smith et al. 2007). Hoffa and Laux (2007) stated that the Automotive Industry Action 

Group (AIAG) provides one of the widely used standard methods of assessing the 

measurement precision error defines a measurement system as “a collection of 

instruments or gauges, standards, operations, methods, fixtures, software, personnel, 

environment, and assumptions used to quantify a unit of measure or the complete 

process used to obtain measurements (AIAG 2002).” 

To scientifically validate the use of data in various measurement systems while 

overcoming certain limitations, a Measurement System Analysis (MSA) plays a vital 

role in determining the accuracy and precision of measurement systems. MSA qualifies a 

measurement system for use by quantifying systematic errors through the examination of 

multiple sources of variation in a process (Awad et al. 2009; Hoffa and Laux 2007; 

Larsen 2003).  

The precision of measurements can be translated into two key parameters: 

repeatability and reproducibility. Repeatability is the variation caused by the 

measurement system, which is determined by comparing the measurement results in the 

same part under the same condition more than once (Awad et al. 2009; Erdmann et al. 

2009; Joubert and Meintjes 2015; MoreSteam 2015; Zanobini et al. 2016). 

Reproducibility is the variation caused by the measurement system or the variation 
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observed when different operators measure the same part under the same condition 

(Awad et al. 2009; Erdmann et al. 2009; Joubert and Meintjes 2015; MoreSteam 2015; 

Zanobini et al. 2016).  In order to determine how much of the process variability would 

be observed due to the variability of the measurement system, a study known as the 

Gauge Repeatability and Reproducibility (R&R) has been widely used (Zanobini et al. 

2016).  

 

5.1.1 Methods of Repeatability and Reproducibility Studies 

Three methods of Gauge R&R studies have been widely used: 1) AIAG’s 

Average and Range (A&R) method; 2) the Analysis of Variance (ANOVA) method; and 

3) Wheeler’s Honest Gauge R&R method (Joubert and Meintjes 2015).  

The A&R method estimates the R&R, part-to-part contributions of the precision 

error, and the total measurement precision error, by analyzing the data through average 

and range charts (Stamm 2013). The ANOVA method of R&R analysis performs the 

R&R study by selecting multiple parts of a system and measuring a feature with multiple 

measuring devices several times. When it comes to these two methods described in the 

MSA manual by the AIAG, some of the previous studies pointed out that the ANOVA 

approach outperforms the A&R method (Antony et al. 1999; Burdick et al. 2003; 

Kazerouni 2009). The A&R has the tendency to underestimate the reproducibility of part 

interactions (Antony et al. 1999), whereas the ANOVA of R&R studies can calculate the 

confidence intervals of the R&R study (Burdick et al. 2003). To tackle these results, 

Osma (2011) compared the A&R method and the ANOVA method using a total of 90 
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measurements.  The results represented that the A&R achieved the measurement system 

acceptable, while the ANOVA led to the unacceptable system by showing that the 

residuals were not normally distributed. Therefore, the author concluded that the 

ANOVA approach to the R&R study is not valid. Some researchers criticized the 

AIAG’s methods, by pointing out that the AIAG’s methods rely on the precision-to-

tolerance ratio and produce the error of the calculation of the part-to-part variation that 

results in the weak acceptability (Ermer 2006; Knowles et al. 2000). 

As the third method, Wheeler’s HG method also comes from the criticism of the 

AIAG methods (Joubert and Meintjes 2015; Stamm 2013). In detail, Wheeler (2006) 

pointed out the traditional AIAG method controls standard deviations incorrectly. 

Wheeler (2006) introduced an alternative method of determining the precision of 

measurement systems, called the EMP (Evaluating the Measurement Process) methods. 

The HG method is an EMP version of a traditional Gauge R&R study, which differs 

from the AIAG’s methods on the aspect of the measurement precision error sum to the 

total amount of variation and the criteria for assessing the R&R (Wheeler 2006). Stamm 

(2013) compared these three methods and underlined that A&R and HG methods are 

well fitted into determining the R&R in measurement systems that have low to medium 

criticality, whereas the ANOVA is suited to measurement systems that are highly critical 

(Joubert and Meintjes 2015). Joubert and Meintjes (2015) pointed out that the R&R 

study approaches to transportation applications can be categorized into low to medium 

criticality, which means that the A&R or HG method is appropriate. Table 2 shows 



 

64 

 

mathematical formulation of the repeatability and reproducibility of measurement 

systems through the A&R and HG methods: 

 

Table 2 Calculation Methods of the Repeatability and Reproducibility 

 A&R Method HG Method 

Repeatability 

(R1) (%)  (
𝑅̅

𝑑
) 𝑇𝑉 × 100 ⁄  (

𝑅̅

𝑑
)2 (𝑇𝑉)2⁄ × 100 

Reproducibility 

(R2) (%) 
√

(𝑅𝑜)2

𝑑𝑜
− (

𝑜

𝑛 ∙ 𝑜 ∙ 𝑝
×

𝑅̅

𝑑
) 𝑇𝑉 × 100⁄  

(√
(𝑅𝑜)2

𝑑𝑜
− (

𝑜

𝑛 ∙ 𝑜 ∙ 𝑝
×

𝑅̅

𝑑
))2 (𝑇𝑉)2⁄

× 100 

Combined 

R1&R2 (%) 
√𝑅12 + 𝑅22 𝑇𝑉 × 100⁄  (𝑅12 + 𝑅22) (𝑇𝑉)2⁄ × 100 

 

Where 

𝑅̅: Average range of all the collected data; 

d: Bias correction factor; 

𝑅𝑜: The range of operator averages; 

𝑑𝑜: Bias correction factor for estimating variances for the number of operators; 

n: The number of measurements taken on each part; 

o: The number of operators; 

p: The number of measured parts; and 

TV: Total variation. 
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The total variation (TV) of the both methods shown in Table 2 is calculated by the 

following equation (Equation (1)): 

 

Total Variation (TV) =  √𝑅12 + 𝑅22 + 𝑃𝑉2                          (1) 

 

Where PV represents the part variation that can be calculated by Equation (2): 

 

Part Variation (PV) =  
𝑅𝑝

𝑑𝑝
                                         (2) 

 

 Where 𝑅𝑝 is the range of part averages and 𝑑𝑝 is the bias correction factor for 

estimating variances for the number of parts. 

 

5.1.2 Assessing the Repeatability and Reproducibility of Measurement Systems 

As the guideline on acceptability of measurement systems, the AIAG offers the 

following guidance of criteria index (AIAG 2010; Joubert and Meintjes 2015): 

 If R&R < 10%, then the Measurement System (MS) is acceptable; 

 If 10% < R&R < 30%, then the MS may be acceptable; and 

 If R&R > 30%, then the MS needs improvement. 

Wheeler’s method of determining the acceptability is based on the class of 

monitor. Specifically, a key of interpreting the test results lies on its four-class process 

monitoring approach based on the ratio of combined R&R to the total variation (Wheeler 
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2006). The following are the class monitors that were categorized by the attenuation of 

process signals: 

 First class: less than 10% of attenuation of process signals; 

 Second class: 10-30% of attenuation of process signals; 

 Third class: 30-55% of attenuation of process signals; and  

 Fourth class: over 55% of attenuation of process signals.  

 

5.2 Repeatability and Reproducibility Analysis of Collected Sensored Data 

The robustness of collected sensored data was analyzed through a two-stage 

Repeatability and Reproducibility (R&R) study on traffic flow measurements 1) before 

lane closure (Stage I) and 2) during lane closure (Stage II). 

 

5.2.1 Stage I: Traffic Flow Before Lane Closure 

As the very beginning stage of the HG method, the average and range charts of 

hourly traffic flow was generated. The average chart shows the average measurement for 

each operator and the combination of a number of parts in a measurement system, which 

serves as the baseline for making a decision whether it is needed to detect measurable 

part-to-part variation (SAS Institute 2007).  

Figure 7 shows the average measurements of traffic flow on a daily basis as an 

operator role and 24-hr temporal part combination within each operator. This average 

chart presents that the variability in the mean of hourly traffic flow is outside of upper 

and lower control limits, which needs to discover measurable part-to-part variation. The 



 

67 

 

both control limits are based on the most common principle of three standard deviations 

(i.e.,μ ± 3σ).  

 

 

Figure 7 24/7 traffic flow measurement before construction  

 

Figure 8 indicates the range chart showing the variability for each operator and 

the combination of 24-hr temporal parts. This chart represents that the collected multiple 

traffic flow sensor readings adjacent to the CBD followed the same measuring method 

and were consistent spatiotemporally, including the homogeneity of errors (i.e., similar 

variation). 

 

 

Figure 8 24/7 traffic flow fluctuation before construction 
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Table 3 shows the R&R study results of traffic flow measurements. Repeatability 

is determined by comparing the measurement results in the same time (hourly scale). 

Repeatability of traffic flow measurements led to 26.7% of total variation, which 

represents that the temporally classified traffic flow measurements are marginally 

acceptable. Meanwhile, reproducibility is the variation caused when different daily 

temporal scale measures the identical hourly scale. Reproducibility held 2% of total 

variation, which is less than 10% and is thus acceptable. The combined proportions (26.7 

+ 2 = 28.7%) caused the marginal acceptance of the repeatability and reproducibility of 

the traffic flow measurements.  

 

Table 3 Gauge R&R Results of Traffic Flow Measurements 

 
Gauge R & R 

Repeatability Reproducibility Combined  

Proportions (%) of  Total Variation 26.7 2 28.7 

 

The result of determining the acceptability of the temporally classified traffic 

flow measurements was obtained from Wheeler’s HG method. Bias impact was 

incorporated into calculating the intraclass correlation, which represents the amount how 

much the bias factors affect the measurement system and reduce the potential intraclass 

correlation. As seen in Table 4, 16.89% of attenuation of process signal indicates the 

second class classification meaning that the strength of the process signal would be 

weakened by 16.89%. The bias factors had 1.53% of the impact on the intraclass 
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correlation, which represents that the intraclass correlation coefficient would be 

improved by 1.53% if the bias factors are eliminated.  

 

Table 4 Four-Class Classification Monitor Results of Traffic Flow Measurements 

Bias Impact 
Intraclass 

Correlation* 

Attenuation of 

Process Signal 

Classification 

Current* Potential** 

0.0153 0.6907 0.1689 Second Class Second Class 

*: with bias  
**: with no bias 

 

5.2.2 Stage II: Traffic Flow During Lane Closure 

Stage II R&R study aims to validate the repeatability and reproducibility of the 

collected historical traffic flow under lane closures due to construction, which can serve 

as the baseline of work zone traffic flow scenarios in the proposed network learning 

model by having scientifically validated traffic data near the CBD.  Stage II analysis was 

conducted by the same procedure of stage I analysis.  

Figure 9 shows the average measurements of traffic flow for work zones at 

weekly temporal scale as an operator role and nighttime part combination within each 

operator. This average chart presents that the variability in the mean of hourly traffic 

flow during weekday and weekend nighttime construction is outside of upper and lower 

control limits, which needs to identify measurable part-to-part variation. 
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Figure 9 Traffic flow measurement during nighttime construction 

 

Figure 10 indicates the range chart showing the variability for each operator and 

the combination of 24-hr temporal parts. This chart represents that the multiple traffic 

flow sensor readings during construction near the CBD include homogeneity of errors 

spatiotemporally. 

 

 

Figure 10 Traffic flow fluctuation during nighttime construction 

 

Table 5 shows the R&R study results of traffic flow measurements. Repeatability 

is determined by comparing the measurement results in the same time (hourly scale). 

Repeatability of traffic flow measurements led to 2.4% of total variation, which 
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represents that the work zone traffic flow measurements are highly acceptable. 

Meanwhile, reproducibility is the variation caused when different weekly temporal 

scales measure the identical hourly scale. Reproducibility had very little measurement 

variation by having zero percent of the total variation, which is also acceptable. The 

combined proportions (2.4 + 0 = 2.4%) caused the clear acceptance of the repeatability 

and reproducibility of the traffic flow measurements during the nighttime construction at 

the weekly temporal scale.  

 

Table 5 Gauge R&R Results of Traffic Flow Measurements During Construction 

 

Gauge R & R 

Repeatability Reproducibility Combined  

Proportions (%) of Total Variation 2.4 0 2.4 

 

In detail, as seen in Table 6, 1.22% of attenuation of process signal specifies the 

first class classification meaning that the strength of the process signal would be 

weakened by 1.22%. The bias factors had no impact on the intraclass correlation. 

 

Table 6 Four-Class Classification Monitor Results of Traffic Flow Measurements 

During Construction 

Bias Impact 
Intraclass 

Correlation* 

Attenuation of 

Process Signal 

Classification 

Current* Potential** 

0 0.9758 0.0122 First Class First Class 

*: with bias  
**: with no bias 
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5.3 Summary of Phase I  

Multiple traffic sensor readings within a spatiotemporally distinct set of clusters, 

such as highway traffic flow variations adjacent to the CBD at a specific time on a 

specific day, would result in biased results when predicting the potential traffic flow 

under similar conditions. To address this issue, this research phase attempted to test 

whether multiple traffic sensor readings on traffic flows can be applicable to 

spatiotemporally similar characteristics of roadway networks. To achieve this goal, this 

study adopted Wheeler’s HG method to determine the repeatability and reproducibility 

of temporally classified traffic flow measurements before construction (Stage I) and 

those of nighttime work zone traffic flow (Stage II). As the results, Table 7 provides a 

summary of two-stage R&R studies.  

 

Table 7 A Summary of Two-Stage Repeatability and Reproducibility Studies 

Measurements 

Components of Measurement System Results 

Parts Operators 

Wheeler’s 

Honest Gauge 

R&R Monitor 
Combined 

R&R (%) 

Stage I: Traffic 

flow before lane 

closure 
24-hr temporal 

distribution 

Daily temporal 

scales 
Second Class  28.7 

Stage II: Traffic 

flow during lane 

closure 

Nighttime 

construction time 

period  

Weekly temporal 

scale 
First Class 2.4 
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For the both Stage I and II analyses, hourly temporal distribution served as the 

parts of the measurement system. The overall 24-hr time period was used in stage I 

analysis, while nighttime construction hours were served as the part considering the 

historical work zone traffic data. As the role of an operator that includes several parts, 

the daily temporal scale was used in stage I analysis to take a closer look at the 

repeatability and reproducibility of traffic flow variation. On the other hand, instead of 

the daily temporal scale, the weekly temporal scale was considered as the operator of 

nighttime work zone traffic flow measurements because the difference between weekday 

and weekend traffic flow was investigated through the normal traffic flow measurement 

analysis (Stage I). The results confirmed that the both Stage I and II analyses were 

scientifically validated by meeting with the R&R criteria and the class classification 

monitors developed by Wheeler, by resulting in the second class monitoring 

classification for Stage I analysis and the first class for Stage II analysis. 

To summarize the confirmed results, it is noteworthy that traffic flow 

measurements during lane closure were relatively simpler and periodical within the 

urbanized downtown area. The analysis results can be translated into work zone 

characteristics. In general, work zones are relatively small areas, and certain restrictions 

are often applied to work zone traffic such as no lane changing, lowered speed limit, 

highway patrols’ enforced traffic control, and so on. In this regard, work zone traffic 

flow data in urban downtown areas can appear more repeatable and reproducible than 

those under normal traffic flow conditions.  



 

74 

 

6. PHASE II: MULTI-CONTEXTUAL LEARNING MODELING VIA ANN 

 

Throughout the previous section, the collected historical traffic data were 

scientifically validated on aspects of the repeatability and reproducibility at temporal 

scales. Especially, the historical traffic flow during lane closure revealed that highway 

construction projects were implemented employing the nighttime construction, 

considering the urban characteristics of the CBD. Based on the validated collected 

sensored data extracted from multiple sensor readings adjacent to the CBD in LA, 

California, this research phase aims to predict long-term traffic flow on the aspect of 

hourly traffic flow rates and the corresponding percentages of trucks. To achieve this 

goal, this research phase is intended to develop a multi-contextual learning model via 

artificial neural networks. The predicted outcomes will be then incorporated into the 

proposed curve fitting models specifically aiming at predicting the impact of CWZs in 

terms of travel time delay quantification throughout Section 7.  

 

6.1 Background of Artificial Neural Networks 

 

6.1.1 The Origin of Artificial Neural Networks 

ANNs govern a simplified functioning of a biological neural system and attempt 

to simulate the network through advanced data management (Grant 2014; Kumar et al. 

2015; Sommer et al. 2015). McCulloch and Pitts (1943) started with the concept of a 

single perceptron that is a single artificial neuron, currently also referred to as a node in 
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ANNs. ANNs as standard mathematical models were developed by Fausett (1994), 

based on the following assumptions:  

 Numerous single neurons generate information processing; 

 Neurons pass signals through connection links; 

 Each connection link has a relevant weight by multiplying by the signal 

transmitted; and 

 An activation function that is usually nonlinear is applied by each single neuron 

to its net input that is the sum of weighted input signals to determine the final 

output signal.  

Fausett (1994) concluded that a neural network could be characterized by 1) its 

pattern of connection between neurons (i.e., its architecture); 2) its method how to 

determine the weights on the connection (i.e., its training or learning algorithm); and 3) 

its type of activation function.  

 

6.1.2 Basic Structure of Artificial Neural Networks 

A basic ANN topology can be drawn as a basic connection among perceptrons 

with the most simplistic network, as depicted in Figure 11 (Grant 2014; Kumar et al. 

2015; Sommer et al. 2015). Any ANN must have each input and output layer and would 

one or more hidden layers to set a connection between input and output layers. A single 

(or multiple) hidden layer(s) include one or more hidden neurons that are connected to 

the neurons of the successive layer. As shown in Figure 11, an input is given to the 
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corresponding input neurons (x1 to xn), which pass each of them to the next layer (i.e., 

output layer in this simple structure). The output layer then returns the final result.   

 

 

Figure 11 A basic ANN topology 

  

Missing in the figure are bias neurons that are added to each input. The bias is 

commonly represented by a weight being multiplied by a constant input value. 

Specifically, the input value of perceptron Y is based on the weighted sum of the outputs 

of all neurons of the previous layer, as shown in Equation (3): 

 

∑(𝑦𝑖

𝑛

𝑖=1

× 𝑤𝑖)                                                           (3) 

 

 Where n is the number of connection of neurons, yi is the ith output value, wi is 

the corresponding weight of the connection between two neurons.  
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 The output of perceptron, Y, is then calculated by the selected activation function, 

f, shown in Equation (4) that highlights that the performance of ANN significantly 

depends on the connection weights and activation functions (Sommer et al. 2015). 

 

𝑌 = 𝑓 (∑ 𝑦𝑖

𝑛

𝑖=1

× 𝑤𝑖 )                                                  (4) 

 

6.2 Feedforward Neural Networks 

The most widely used ANN model in traffic flow prediction is the Feedforward 

Neural Networks (FNN) that are specifically modeled by Multi-Layer Perception (MLP) 

or Radial Basis Function (RBF) (Karlaftis and Vlahogianni 2011; Kumar et al. 2015; 

Zhu et al. 2014). The MLP neural network is defined as an ANN having at least three 

layers of neurons that are interconnected: 1) an input layer; 2) one or more hidden 

layer(s); and 3) an output layer. During the learning process in an MLP network, all 

inputs are mapped on the corresponding outputs, which represents the supervised 

learning. In the MLP network, the hidden layer typically uses the sigmoid or the 

hyperbolic tangent function. The difference between the actual and the prediction 

outputs serves as a baseline to adjust the weights of neurons iteratively, thereby 

minimizing the total error over all input-output pairs (Abdi and Moshiri 2015).  

 As the other type of the FNN, the RBF neural network is also a supervised 

learning technique. However, the RBF network is different from the MLP network on 

aspects of its structure and the use of activation functions. The RBF network consists of 
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a single hidden layer within the common three-layer network structure.  In the RBF 

network structure, unlike the MLP, the input layer includes neurons with a linear 

function. The hidden layer employs a Gaussian function. Finally, the output layer 

produces the response of the network (Abdi and Moshiri 2015). The RBF take an 

advantage over the MLP because it is simpler than the MLP. The RBF acts as the local 

approximation networks, and their outputs are affected by specified hidden neurons in 

certain corresponding local values.  

Although the MLP has more complex structure requiring iterative training, which 

might be slow for a large number of hidden nodes and datasets, many previous studies 

underlined that the MLP networks are compact and yield better learning outcomes, 

compared to other types of networks (Bissacot et al. 2016; Ilonen et al. 2003; Santos et 

al. 2013; Yu et al. 2011). A key reason is that the MLP networks work for large scale 

problems, and their outputs are determined by all the neurons in the networks (Ilonen et 

al. 2003; Santos et al. 2013; Yu et al. 2011).  

 

6.3 Development of Multi-Contextual Feedforward Neural Networks  

The proposed multi-contextual learning model encompasses a five-stage 

modeling process of the proposed learning model: 1) developing the network 

architecture; 2) determining the learning structure; 3) identifying the critical factors 

affecting the learning performance; 4) developing a multi-contextual learning model; 

and 5) evaluating the learning performance of the proposed model. 
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6.3.1 Stage I: Developing the Network Architecture 

Stage I aims to create an architecture of the proposed network learning model 

based on the Multi-Layer Perceptron (MLP) network. As an MLP network, the proposed 

network is designed with three layers of neurons that are interconnected: 1) an input 

layer; 2) one hidden layer; and 3) an output layer. Figure 12 presents the architecture of 

the multi-contextual feedforward neural networks to predict long-term traffic flow and 

the corresponding truck percentage within a specific hourly traffic volume at a specific 

time on a specific day in a specific season, before and during construction. 

 

 

Figure 12 Architecture of the proposed multi-contextual learning model 

 

As stated previously through Section 4.2, multi-contextual variables used in the 

proposed network learning model consist of a total of 26 input variables and 2 prediction 
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target variables (outputs), which includes a total of 17,518 supervised data samples. All 

the multi-contextual variables (inputs) are mapped on the corresponding outputs, which 

represents the proposed learning model centers on the supervised learning of artificial 

neural networks. 

 

6.3.2 Stage II: Identifying Critical Components of the Networks 

The performance of neural networks is significantly affected by the connection 

weights and activation functions (Sommer et al. 2015). The connection weights are 

unknown parameters that can be estimated by a training algorithm (Vijayalakshmi and 

Sugumar 2016). In addition, activation functions are mathematical formulas, specifically 

aiming at deciding the output of processing nodes. An activation function plays a vital 

role in transforming inputs into the network (Kumar 2016). In detail, activation function 

for hidden nodes is needed to incorporate the nonlinearity into the networks.  

For the betterment of determining the learning structure, critical components of 

the MLP networks were identified through previous studies: 1) activation functions, 2) 

training algorithms, and 3) the number of hidden nodes.  

 

6.3.2.1 Activation Functions 

Activation functions attempt to determine the output of processing nodes, by 

transforming inputs in the network (Kumar 2016). There are most commonly used 

activation functions in the MLP network: 1) the identity (i.e., linear) function, 2) the 
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(logistic) sigmoid function, and 3) the hyperbolic tangent (tanh) function (Kumar 2016; 

Sommer et al. 2015). 

With the identity function, the activation level is passed directly as the output of 

the processing neurons, without transforming the input (Bissacot et al. 2016). The 

sigmoid function is an S-shaped curve having the range (0, 1), while the hyperbolic 

tangent function is a symmetric S-shaped function that has the output range (-1, +1) 

(Bissacot et al. 2016; Kumar 2016; Sommer et al. 2015). The following are the 

mathematical forms of the aforementioned activation functions (Equations (5), (6), and 

(7)):  

 The identity function 

f(x) = 𝑥                                                             (5) 

 

 The sigmoid function 

f(x) =  (1 + exp(−𝑥))−1                                               (6) 

 

 The hyperbolic tangent function 

f(x) =  (exp(𝑥) − exp(−𝑥)) (exp(𝑥) + exp(−𝑥))⁄                         (7) 

 

In this study, a total of 9 (=32) different combinations of the most widely used 

activation functions in the MLP network were considered as alternatives of hidden 

activation and output activation for selecting the learning structure, which consist of 1) 

the identity function, 2) the sigmoid function and 3) the hyperbolic tangent function as 
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seen in Equations (5), (6), and (7). Hidden activation represents the activation function 

working for the hidden layer, while output activation indicates the activation function 

intended for the output layer.  

 

6.3.2.2 Training Algorithms 

One of the challenging problems when employing the neural networks is training 

the network because an ANN adjusts its structure during the learning process (Chen and 

Yao 2008). The connection weights are unknown parameters that can be estimated by a 

training algorithm (Vijayalakshmi and Sugumar 2016).  

 The Back Propagation (BP) algorithm is a traditionally well-known method for 

training an MLP feedforward neural networks (Lahmiri 2011; Mohammadi and 

Zangeneh 2016). The BP algorithm is formed in a supervised learning and produces a 

response based on random weights. Through an iterative process by changing weights, 

the error rate between the network output and actual (target) values decreases. This 

computational procedure starts from the output neuron and continues backwards 

(Mohammadi and Zangeneh 2016; Vijayalakshmi and Sugumar 2016).  

The weights in the standard BP network are adjusted through the gradient 

descent algorithm. The gradient descent algorithm is a first-order algorithm that attempts 

to move incrementally to lower points in search space successively in order to reach a 

minimum (Bissacot et al. 2016; Mohammadi and Zangeneh 2016). This method updates 

the weights and biases in the negative gradient direction (Dao and Vemuri 2002; Lahmiri 

2011). The new weight vector is adjusted as follows (Equation (8)):  
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∆𝒘𝑘 =  𝒘𝑘+1 − 𝒘𝑘 =  −𝛼 ∙ 𝒈𝑘                                     (8) 

 

 Where ∆𝒘𝑘 is a vector of changes in weights, 𝛼 is the learning rate determining 

the length of the weight update, and 𝒈𝑘 is the current gradient of the error related to the 

weight vector. 

The inefficiency of the gradient descent algorithm is drawn from its poor 

selection of the minimization direction and step sizes to reach the minimum error (Van 

Der Smagt 1994). In this regard, the standard BP network has a slow convergence in 

learning, while being often confined to the local minima (Lahmiri 2011). To overcome 

this hurdle, some previous studies introduced advanced BP algorithms, such as 

Conjugate Gradient (CG) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-

Newton (Bissacot et al. 2016; Dao and Vemuri 2002; Lahmiri 2011; Mohammadi and 

Zangeneh 2016). The both are currently widely used numerical techniques using the 

second-order methods, which allow networks to avoid local minima and provide much 

faster convergence than the standard BP algorithm (Bissacot et al. 2016; Dao and 

Vemuri 2002; Lahmiri 2011; Mohammadi and Zangeneh 2016). The CG algorithms 

provide convergence through a series of line searches based on error space. A line search 

is implemented along with the conjugate gradient direction to adjust the step size at each 

iteration that can minimize the performance function along the search line (Dao and 

Vemuri 2002; Lahmiri 2011).  

BFGS quasi-Newton method is implemented based on Newton’s method. As an 

alternative to the CG methods, Newton’s method often converges faster than the CG 
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methods (Dao and Vemuri 2002). The weight update used in Newton’s method is shown 

in Equation (9). 

 

∆𝒘𝑘 =  𝒘𝑘+1 − 𝒘𝑘 =  −𝑯𝑘
−1 ∙ 𝒈𝑘                                      (9) 

 

Where ∆𝒘𝑘 is a vector of changes in weights, 𝒈𝑘 is the current gradient of the 

error related to the weight vector, and  𝑯𝑘 is the Hessian matrix at the current values of 

the weights and biases, which is a square matrix of a scalar function’s second-order 

partial derivations. If the Hessian matrix is large, it becomes complex and requires high 

memory, causing longer time to compute ∆𝒘𝑘. However, an advanced class of Newton’s 

methods called quasi-Newton developed by Broyden, Fletcher, Goldfarb, Shanno 

(BFGS) does not require intensive calculation, which is often known as the most 

sophisticated method for solving unconstrained problems (Alekseev et al. 2009; Dao and 

Vemuri 2002). As a batch update method, BFGS quasi-Newton algorithm updates the 

average gradient of the error space of all cases before updating the weights once at the 

end of each iteration. BFGS algorithm converges in fewer steps than CG methods, which 

is more robust than CG (Alekseev et al. 2009; Dao and Vemuri 2002).  

 

6.3.2.3 Determining the Number of Hidden Nodes 

Long training time and complex internal structure of a network depend on 

determining the number of hidden layers and nodes within a network structure. 

Especially, the number of hidden nodes plays a pivotal role in achieving the most 
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efficient network because it directly governs the performance of model as the stability of 

the network is estimated by error. In general, a network having a higher number of 

hidden nodes might improve the model performance as it increases the number of curves 

in the network output function (Russell and Norvig, 2003). However, an exceeding 

number of hidden nodes tends to deepen the local minima problem by causing 

overfitting or too few would result in the ineffectiveness of the network model (Sun 

2012; Xu and Chen 2008).  

To overcome the difficulty, there have been a number of studies to develop  

methods to select the optimal number of hidden nodes to use in a network model, due to 

a lack of standard procedure for creating the most effective and efficient network. Some 

methods adapting the constructive approach start with an undersized number of hidden 

nodes and add nodes to them. The other methods through pruning approach start with 

oversized network and then prunes the less significant nodes while weighting to find the 

smallest size of the network. Fletcher et al. (1998) developed a method of determining 

the optimal number of hidden nodes in a traditional three-layered network. Their 

proposed method is conducted based on an iterative process, by increasing the number of 

hidden nodes upon a statistical analysis of errors. They pointed out that inaccurate fit to 

the target function is caused by too few nodes while an exceeding number of hidden 

nodes learn a large amount of the training data and are thus incapable of generalizing to 

other data. The authors concluded that the optimal number of hidden nodes should be 

selected based on the minimum number of hidden nodes that lead to the minimum error 

in a network.  Subramanian et al. (2004) initialized the number of hidden nodes using 
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Kolmogorov’s Theorem. This theorem guides that a sufficient number of hidden nodes 

comes from twice the number of input nodes plus one (𝑁ℎ =  2𝑁𝑖 + 1), which is referred 

as an ideal baseline to decide the number of hidden nodes and thus to be tailored to a 

specific use of networks (Resop 2006). Ke and Liu (2008) proposed a formula by testing 

40 cases: 𝑁ℎ = (𝑁𝑖 + √𝑁𝑝)/𝐿 where Ni is the number of input nodes, Np is the number 

of input sample, and L is the number of hidden layer. Trenn (2008) found the necessary 

number of hidden nodes using two hidden layers, which are formulated by  𝑁ℎ1 =  (𝑁𝑖 +

𝑁𝑜 − 1 )/2  for the first hidden layer and 𝑁ℎ2 =  (𝑁𝑖 − 𝑁𝑜 + 1 )/2 for the second 

hidden layer, where Ni is the number of inputs, and No is the number of outputs.  Sheela 

and Deepa (2013) reviewed various methods to select the optimal number of hidden 

nodes in ANN for the past twenty years. Through the simulation results, the authors 

underlined that the minimum error among network models that include each different 

number of hidden nodes is the key for determining the best number of hidden nodes, 

rather than relying only on the formula.  

Even though many researchers have been implemented various methods for 

selecting the number of hidden nodes, these still cannot guarantee of selecting the 

number of hidden nodes (Sheela and Deepa 2013). A key reason is that a number of 

variables, their types (e.g., numerical, ordinal, and categorical), and their numerous 

combination cases depending on a specific purpose in modeling networks significantly 

affect the determination of the number of hidden nodes as network variables include the 

number of inputs and outputs, training and test dataset sizes, network architecture, and 

types of activation functions (Sarle 1994; Sheela and Deepa 2013).  
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6.3.3 Stage III: Determining the Learning Structure 

Stage III is to determine the learning structure on aspects of training algorithm, 

activation functions and the optimal number of hidden nodes. Throughout previous 

studies, the proposed learning model employed the BFGS algorithm to predict long-term 

traffic flow before and during construction near the CBD. Based on the selected training 

algorithm, activation functions and the number of hidden nodes for the proposed 

network learning model were then determined by evaluating the minimum error among a 

number of network alternatives, utilizing the automated neural network search module 

provided by Dell’s STATISTICA software.  

When developing an MLP feedforward neural network, the collected data are 

divided into three different data sets of training, validation, and test (Gutierrez-Osuna 

2005). The training set is used in learning the model, while identifying the optimal 

weight with a BP algorithm to minimize the network error. The validation (i.e., cross-

validation) set is a key to seeking for the optimal number of hidden nodes that holds the 

minimum error, while monitoring errors during the training process and determining an 

appropriate stopping point for the BP algorithm. On the other hand, the test set is 

excluded from the training process. The test set is employed only to assess the 

performance of a fully-trained network model, while measuring the generalization ability 

of the network model.  

In this study, a total of 17,518 multi-contextual data were divided randomly into 

three sets with the following proportions: 1) training set (60% of the original dataset); 2) 

cross-validation set (20% of the original dataset); and 3) test set (20% of the original 
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dataset). Figure 13 shows the network search process to determine the most suitable 

learning structure for the proposed learning model.  

 

 

Figure 13 Network search process to determine the learning structure 

 

The procedure of the network search started with establishing the total number of 

networks to train. A total of 100 networks were considered as alternatives to the learning 

structure. Among these alternatives, five networks were retained for the short-list. 

Finally, the learning structure was determined based on the minimum error, among the 

shortlisted networks having each different number of hidden nodes and combination of 

activation functions. The maximum number of hidden nodes in the hidden layer was set 

as 100. In other words, a trial-and-error method for determining the number of hidden 

nodes was applied with the increment of hidden nodes from 1 to 100 nodes in the hidden 

layer of 100 different network alternatives having different combinations of activation 

functions.  
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For each different network that commonly employs BFGS algorithm for training 

the model, the maximum number of training cycles (i.e., epochs) was set as 1,000 in a 

way to determine the appropriate stopping point of the training process. An epoch 

represents a single completion of training all the given data (NeuroDimension Inc 2010).  

Through the automated neural network search, the shortlisted learning structures were 

obtained as shown in Table 8. Each network has its name depending on the complete 

multilayer network architecture, including the number of inputs, hidden nodes, and 

outputs. For example, the network named by 26-54-2 refers to an MLP feedforward 

network with 26 inputs, 54 nodes in the hidden layer, and 2 outputs.  

 

Table 8 Shortlisted Network Learning Structures 

Network 

Name 

Training 

Error 

Test 

Error 

Validation 

Error 

Algorithm 

/ Epochs 

Hidden 

Activation 

Output 

Activation 

26-75-2 106302.2 130078.8 139280.7 BFGS 780 Sigmoid Identity 

26-49-2 106597.4 139161.5 145476.6 BFGS 419 Sigmoid Sigmoid 

26-54-2 108947.1 123371.7 131927.9 BFGS 781 Sigmoid Identity 

26-30-2 112767.6 121639.8 134690.1 BFGS 867 Sigmoid Identity 

26-62-2 119128.3 135426.6 146063.0 BFGS 509 Tanh Tanh 

 

The network named by 26-54-2 was selected as the final learning structure, by 

looking at the error in the validation set. As stated previously, validation set plays a 

significant role in determining the number of the hidden nodes. As shown in Table 9, the 

26-54-2 holds the minimum error in the validation set comparing with the other shortlisted 
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networks. In addition, the sigmoid function for the hidden layer and the identity function 

for the output layer appear through this learning structure, by completing the training 

process with 781 epochs under BFGS algorithm. Figure 14 illustrates the determined 

structure of the proposed multi-contextual learning model.  

 

 

Figure 14 The proposed multi-contextual learning model structure 

 

In a nutshell, critical components for developing the learning model were 

determined through the automated neural network search, leading to 54 nodes in the 

hidden layer and the sigmoid function for the hidden layer and the identity function for 

the output layer as activation functions. Through the network search, the network 
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learning structure was confirmed on aspects of its activation functions and the number of 

hidden nodes. The mathematical form of the proposed learning model is shown in 

Equation (10). 

 

𝑂𝑝 = ∑ 𝑔2 (∑ (𝑤𝑗𝑝 ∙  𝑔1(∑ (𝑤𝑖𝑗 ∙  𝐼𝑖) +  𝑏𝑗𝑖 )) +  𝑏𝑝𝑗 )                          (10) 

 

Where 𝑂𝑝 is the value of pth output node (p=1, 2) for the predicted long-term 

traffic flow and the percentage of trucks within a specific long-term traffic flow, 𝐼𝑖 is the 

value of ith input node (i=1, 2, 3, …, 26) within the multi-contextual frames including  

highway facility functional information, weather conditions, and socio-demographic 

characteristics, 𝑤𝑖𝑗 is the weight of a link connecting the ith node in the input layer and 

the jth node in the hidden layer, 𝑤𝑗𝑝 is the weight of a link connecting the jth node (j=1, 2, 

3, …, 54) in the hidden layer  and the pth node in the output layer, and  𝑏𝑗 and 𝑏𝑝 are the 

network biases in the hidden layer and the output layer, respectively. 𝑔1 is the hidden 

activation defined by the sigmoid function as seen in Equation (11), while 𝑔2 is the 

output activation defined by the identity function as shown in Equation (12): 

 

𝑔1 (𝑥) =  (1 + exp(−𝑥))−1                                     (11) 

 

𝑔2 (𝑥) =  𝑥                                                   (12) 
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6.3.4 Stage IV: Developing the Multi-Contextual Learning Model 

 In Stage IV, the confirmed 26-54-2 network with the sigmoid function and the 

identity function was re-trained in order to achieve more accurate and reliable learning 

model. Without re-training the confirmed learning structure, it would be difficult to 

achieve more accurate and reliable learning model because 60% of training set, 20% of 

validation set, and 20% of test set for training the model are generated by the random 

samples within the total dataset.  

To address this issue, this research phase was conducted through the same 

procedure with the learning structure search, by holding the number of hidden nodes and 

two activation functions (i.e., sigmoid and identity functions).  To improve the accuracy 

and reliability of the model that is dependent on the randomly selected three different 

datasets (i.e., training, validation, test sets), a total of five different 26-54-2 networks 

were retained for the short-list by training 100 different 26-54-2 networks completed by 

each different epoch that shows the convergence velocity. For each network, the 

maximum number of epochs was set as 1,000.  

Table 9 shows the results of the shortlisted learning model. In addition to looking 

at the validation error, it is noteworthy that the minimum value of test error served as the 

key for determining the final model because the test set aims to assess the performance 

of a fully-trained network model as well as measure the generalization ability of the 

network model. As the final model for predicting long-term traffic flow before and 

during construction, the model 26-54-2 with BFGS 646 was selected based on its test 

and validation errors. 



 

93 

 

Table 9 Shortlist for the Proposed Learning Model 

Training Algorithm / Epochs Training Error Test Error Validation Error 

BFGS 679 120809.1 145585.5 157060.3 

BFGS 646 115530.5 126502.4 137907.1 

BFGS 400 134271.3 145370.0 158250.4 

BFGS 635 110737.6 130180.9 139050.3 

BFGS 792 109440.4 131382.7 141144.8 

 

The BFGS 646 indicates the BFGS algorithm followed by 646 epochs, which 

means that this network model was found at the 646th cycle.  Figure 15 shows the 

training and testing error rates during 646 epochs. 

 

 

Figure 15 Error rates of training and test sets 
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6.3.5 Stage V: Evaluating the Learning Performance 

Stage V aims to validate the robustness of the improved learning model, by 

comparing the prediction values with the actual historical traffic data. Figure 16 and 

Figure 17 present the results of comparisons between prediction and actual values of 24-

hr traffic flow and the truck percentage at the weekly scale, respectively. 

 As shown in Figure 16 and Figure 17, there was no significant difference 

between prediction and actual values a specific time during weekdays and weekends. 

However, the comparison during holidays caused a difference between two values 

because a small number of sample size during holidays of the year resulted in limited 

learning ability through the proposed model. 

 

 

Figure 16 Comparison of prediction and actual values: traffic flow at the weekly 

temporal scale 



 

95 

 

 

Figure 17 Comparison of prediction and actual values: truck percentage at the weekly 

temporal scale 

 

To scientifically measure the learning performance, the learning outcomes 

including the long-term traffic flow and the percentage of trucks were measured by 

correlation coefficients between prediction values (i.e., outputs) and actual values (i.e., 

targets) associated with the training, validation, and test datasets, separately. The 

correlation coefficient (r) quantifies the strength of relation (i.e., the goodness of fit) 

between actual and prediction values, ranging from -1 to 1. Figure 18 shows the 

goodness of fit with the high correlation coefficients between actual and prediction 

values of hourly traffic flow. The results of the correlation coefficients ranging from 

0.954650 to 0.962356 confirmed that there exist significant relationships between actual 

and prediction values along with three different datasets.  
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Training  

Set 

 

r=0.962356 

Cross-Validation  

Set 

 

r=0.954650 

Test  

Set 

 

r=0.960077 

Figure 18 Validating the learning performance: actual versus predicted traffic flow rates 

 

Figure 19 shows the goodness of fit with the high correlation coefficients 

between actual and prediction values of the percentage of trucks within the 

corresponding traffic flow. The results of the correlation coefficients ranging from 
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0.905169 to 0.945625 confirmed that there exist significant relationships between actual 

and prediction values along with three different datasets. 

 

Training 

Set 

 

r=0.942599 

Cross-Validation  

Set 

 

r=0.905169 

Test  

Set 

 

r=0.945625 

Figure 19 Validating the learning performance: actual versus predicted truck percentages 

 

The adequacy of the proposed multi-contextual learning model was also 

validated by examining scatter plots of the standard residuals versus the predicted 
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values: 1) hourly traffic flow rates as shown in Figure 20; and 2) truck percentages in the 

corresponding traffic flows as seen in Figure 21. Looking at the scatter plots serves a 

pivotal role in detecting heteroscedasticity issue that can produce biased results by 

overestimating the goodness of fit. The scatter plots confirmed that the residuals are 

randomly spread out without any systematic patterns, which suggest that there is no 

significant evidence of heteroscedasticity in the proposed learning model. 

 

 

Figure 20 Scatter plot of standard residuals: predicted traffic flow rates 

 

 

Figure 21 Scatter plot of standard residuals: predicted truck percentages 
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6.4 Illustrative Examples: Learning Outcomes Versus Multi-Contextual Frames 

The objective of this research phase is to investigate the effect of multi-

contextual frames on the predicted traffic flow for work zones, through illustrative 

examples. In order to take comparable results, the following conditions of highway work 

zones were commonly applied to all the multi-contextual frames through the proposed 

learning model:  

 Number of lanes: 3; 

 Number of lanes to be closed: 1; 

 12 feet of lane width, having shoulders; and 

 Work zone length: 1 centerline-mile. 

Based on these common work zone conditions, the potential traffic flow and the 

percentage of trucks within the corresponding traffic flow were illustrated by looking at 

the effect of each context frame, including temporal, weather, and socio-demographic 

frames. 

 

6.4.1 Temporal Context Frame 

The temporal frame includes a season of the year and day of the week contexts. 

To avoid biased comparisons of the temporal effect, weather and socio-demographic 

contexts were fixed by holding the average value of each multi-contextual variable as 

follows:  

 Precipitation: 0.028 inches; 

 Visibility: 8.996 miles; 
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 Self-driving: 41.854%; 

 Car/vanpooling: 8.245%; and  

 Population density: 1,454 ppl/sqmi. 

 

6.4.1.1 Seasonal Context  

Figure 22 shows the seasonal context learning pattern of three-lane highway 

traffic flow and truck percentage under single lane closure.  

 

 

Figure 22 Illustrative examples of the seasonal context 

  

As shown in Figure 22, there are no significant difference among spring, 

summer, and fall seasons, whereas the winter season is significantly different from the 

other seasons. As an illustrative example, the effect of seasonal context frame was 

explored by comparing summer with winter seasons, based on the fixed condition of 6 
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am on Wednesdays. As shown in Table 10, the results revealed that the both prediction 

values were differentiated by the seasonal context, which means that there would be a 

higher potential to have heavier traffic during summer compared to the winter season.  

 

Table 10 Learning Outcomes Under the Seasonal Context 

Prediction Value Summer (June-August) Winter (December-February) 

Traffic Flow (veh/hr) 5,398.50 5,071.38 

Truck Percentage (%) 1.87 1.55 

 

6.4.1.2 Daily Context  

Figure 23 indicates the learning pattern for capturing the effect of a certain day of 

the week under single lane closure.  

 

 

Figure 23 Illustrative examples of the daily context 
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As an illustrative example to capture the effect of daily context frame, traffic flow 

and the corresponding truck percentage on Mondays and Fridays were achieved through 

the multi-contextual learning model. As shown in Figure 23 and Table 11, the learning 

pattern compared the prediction values on Monday with those on Friday 7 am during the 

summer season. The results indicate that the morning traffic flow on Friday was slightly 

higher than Monday’s traffic flow under single lane closure, while the percentage of trucks 

within the corresponding traffic flow (i.e., traffic flow rate at 7 am) on Friday was still 

much higher than those on Monday.  

 

Table 11 Learning Outcomes Under the Daily Context 

Prediction Value Monday Friday 

Traffic Flow (veh/hr) 5,047.58 5,069.44 

Truck Percentage (%) 0.75 2.02 

 

6.4.2 Weather Context Frame 

To take comparable results under the weather context frame, temporal and socio-

demographic contextual frames were fixed with the following characteristics:  

 Season: Summer; 

 Day of the week: Friday; 

 Time of the day: 6 am; 

 Self-driving: 41.854%; 

 Car/vanpooling: 8.245%; and 

 Population density: 14545 ppl/sqmi. 
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Under these common fixed conditions, the weather effect was drawn as the 

combination of precipitation and visibility contexts. These two different contextual 

variables are interdependent in general. For example, on rainy days, it would be difficult 

for road users to look further.  As illustrative examples as shown in Figure 24, among 

various combinational cases of weather contextual variables, the learning outcomes were 

focused on the comparison between the following two different weather conditions:  

 Case I: Precipitation is 0 inch, and visibility is 10 miles; and 

 Case II: Precipitation is 2 inches, and visibility is 6 miles. 

 

 

Figure 24 Illustrative examples of the weather context 

 

 As seen in Table 12, weather conditions on the aspect of precipitation and visibility 

significantly affected the traffic variations under single lane closure. In other words, the 
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bad weather condition (Case II) caused a reduction in traffic flow and the corresponding 

truck percentage, compared to Case I.  

 

Table 12 Learning Outcomes Under the Weather Context 

Prediction Value Case I Case II 

Traffic Flow (veh/hr) 5,805.90 5,261.14 

Truck Percentage (%) 1.79 1.04 

 

6.4.3 Socio-Demographic Context Frame 

The following common fixed conditions under temporal and weather context 

frames were applied to the multi-contextual learning model to investigate the prediction 

values along with the socio-demographic contextual frame:  

 Season: Summer; 

 Day of the week: Friday; 

 Time of the day: 6 am; 

 Precipitation: 0.028 inches; and 

 Visibility: 8.996 miles. 

 

6.4.3.1 Commute Mode Context 

To investigate the difference of traffic flow and the truck percentage under the 

commute mode context, 14,545 of population density was commonly used in the multi-

contextual learning model. The commute mode context included two different variables 

that serve as major commute modes on highways, such as self-driving and 
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car/vanpooling. The multi-contextual learning model compared the corresponding 

prediction results through three different combinations of commute modes as follows:  

 Case I (Baseline): 40% of self-driving and 8% of car/vanpooling; 

 Case II: 45% of self-driving and 8% of car/vanpooling; and   

 Case III: 40% of self-driving and 10% of car/vanpooling.   

Figure 25 shows the learning patterns for the commute modes during 

construction, which represent that there is slightly positive relation between the 

commute modes and the prediction variables.  

 

 

Figure 25 Illustrative examples of the commute mode context 
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As seen in Table 13, the learning outcomes of three different cases revealed that 

increasing percentage of self-driving or car/vanpooling led to heavier traffic flow. 

However, the percentage of trucks within the corresponding traffic flow overall was not 

significantly affected by the commute mode. It is noteworthy that the commute modes 

used in the learning model are focused on the passenger car, rather than trucks.  

 

Table 13 Learning Outcomes Under the Commute Mode Context 

Prediction Value Case I Case II Case III 

Traffic Flow (veh/hr) 5,836.72 5,896.03 5,871.21 

Truck Percentage (%) 1.87 1.90 1.71 

 

6.4.3.2 Population Density Context  

As noted earlier, population density used in this study represents Census track 

areas in the CBD adjacent to the traffic analysis zone. To lead comparable results if there 

would be changes in the population density, the other commute mode context variables 

were drawn as the following fixed condition, using the corresponding average values: 

 Self-driving: 41.854%; and  

 Car/vanpooling: 8.245%. 

As illustrative examples, three different population density characteristics were 

compared with each other, such as 13,500, 14,500, and 15,500 ppl/sqmi. Figure 26 

illustrates the learning pattern for the population density context, by holding the other 

socio-demographic contextual variables. As depicted in Figure 26 and Table 14, the 

learning outcomes of three different cases revealed that increasing population density 

resulted in slightly heavier traffic flow under single lane closure. However, the 
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percentage of trucks within the corresponding traffic flow was not significantly affected 

by the population density. It is considered that truck flow tends to be drawn as pass-

through traffic. In other words, increasing population density would affect traffic 

congestion due to passenger cars, rather than trucks. 

 

 

Figure 26 Illustrative examples of the population density context 

 

Table 14 Learning Outcomes Under the Population Density Context 

Prediction Value 
Population Density (ppl/sqmi) 

13,500 14,500 15,500 

Traffic Flow (veh/hr) 5,848.81 5,868.25 5,880.62 

Truck Percentage (%) 1.86 1.88 1.88 
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6.5 What-If Traffic Flow Rates and Truck Percentages Before/During Construction 

The potential long-term traffic flows before and during construction were 

achieved through the proposed learning model, starting with the lane closure filter that 

specifically aims to classify the traffic flow before and during construction. In order to 

take comparable results, 1 centerline-mile work zones for a four-lane highway in a single 

direction toward the CBD were undertaken for the what-if lane closure schemes. Three 

different lane closure schemes and highway facility functional information are illustrated 

in Figure 27.  

 

 

Figure 27 Highway facility information for what-if lane closure schemes 

 

In addition, the average values of multi-contextual variables in the weather and 

socio-demographic context frames were considered as common fixed conditions, as 

shown in Table 15.  
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Table 15 Multi-Contextual Dataset: Common Fixed Conditions and What-If Conditions 

Context Variable 
Common Fixed 

Conditions 

What-If 

Conditions 

Temporal 

Season Spring (March-May) - 

Week - 

24/7 Day - 

Time - 

Highway 

Number of lanes 4 - 

Lane width 12 feet - 

Shoulder Yes - 

Work zone length 1 centerline-mile - 

Number of lanes to be closed (N) - N=[0, 1, 2, 3] 

Lane closure filter - Yes/No 

Weather 

Precipitation 0.028 inches - 

Visibility 8.996 miles - 

Socio-

Demographic 

Population density 14,545 ppl/sqmi. - 

Self-driving 41.854% - 

Car/vanpooling 8.245% - 

 

 The results of what-if long-term traffic flows were classified into two prediction 

values: 1) 24/7 traffic flow rate before and during construction, and 2) the corresponding 

truck percentage. The prediction values were achieved simultaneously from the multi-

contextual learning model along with the number of lane closures at the daily temporal 

scale. Figure 28 and Figure 29 show the potential 24/7 traffic flow and truck percentages 

before and during construction, respectively. 
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Figure 28 24/7 traffic flow rates before and during lane closure 

 

 

Figure 29 Percentages of trucks within the corresponding traffic flow before and during 

lane closure  
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6.6 Summary of Phase II 

This research phase attempted to develop the multi-contextual learning model to 

predict benchmarking long-term traffic flow before and during lane closure 

simultaneously, by employing the multi-contextual characteristics. The validation study 

showed that the proposed multi-contextual FNN yields an accurate prediction rate of 

long-term traffic impact of CWZs, which proves that the framework is repeatable and 

verifiable to other traffic regions. Table 16 shows a summary of the five-stage process of 

developing and validating the proposed learning model via MLP FNN.  

 

Table 16 A Summary of the Developing Process of the Proposed Multi-Contextual 

Learning Model 

Stage Objective  Outcomes 

Stage I: 

Architecture 

Establish an MLP feedforward 

neural network for the proposed 

multi-contextual learning model 

 Three layered feedforward network 

 The number of input nodes (26) and 

output nodes (2) 

Stage II: 

Critical 

Components 

Identify critical components 

affecting MLP neural networks  

 Alternatives of activation functions 

 Training algorithms 

 The number of hidden nodes 

Stage III: 

Learning 

Structure 

Determine the most appropriate 

activation functions and the 

number of hidden nodes 

 BFGS quasi-Newton method for 

training the network 

 Sigmoid function for the hidden layer 

 Identity function for the output layer 

 54 hidden nodes  

Stage IV: 

Multi-

Contextual 

Learning 

Model 

Achieve more accurate and 

reliable the learning model based 

on the confirmed 26-54-2 

network’s learning structure 

 Network 26-54-2 using the BFGS 

training algorithm followed by 646 

epochs 

Stage V: 

Validation 

Assess the learning performance 

of the proposed model 

 Significant relationships between 

actual and prediction values along 

with train, test, and validation sets, 

through the correlation coefficients 
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7. PHASE III: MODELING WORK ZONE TRAVEL TIME DELAY IMPACT 

 

When this study was initially undertaken, gaps in existing body of knowledge 

were identified and underlined on the aspect of the potential long-term traffic flow that 

can be incorporated into work zone delay analysis. In addition, it was noted that accurate 

and reliable information about expected travel time is fundamental for the traveling 

public to make better-informed decisions about their trips and to find the optimal 

alternate routes, thereby improving the safety potentially and mobility directly during 

construction. However, it is still challenging to predict reliable and realistic traffic flow 

for incorporation into modeling work zone delay prediction.  

The objective of this research phase is to model the impact of nighttime 

construction in heavily trafficked urbanized downtown areas, on the aspect of travel time 

delay trend under what-if lane closure schemes. In pursuit of the objective of this 

research phase, the predicted traffic flow and truck percentages obtained from the 

proposed multi-contextual learning model were incorporated into the proposed curve 

fitting models that reinvent the Bureau of Public Roads (BPR) function in order to 

address the nighttime construction work zone delay impact.  

 

7.1 The BPR Function for Travel Time Estimation 

The BPR function is one of the most widely used volume-delay functions (VDFs, 

also known as link-congestion functions) that specify the impact of highway capacity on 

travel times or travel speeds (Mtoi and Moses 2014). The standard BPR curve was 
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originated by the freeway speed-flow curves in the 1965 HCM, which is developed by 

the BPR (now the FHWA)  (Moses et al. 2013; Mtoi and Moses 2014). The BPR 

function has been widely used in traffic demand modeling as it requires a small number 

of data input parameters having the simple mathematical form. The BPR function is 

dependent on the volume to capacity ratio, as shown in Equation (13). 

 

𝑡 = 𝑡0 ∙  [1 +  𝛼 ∙  (
𝑉

𝐶
)

𝛽
]                                                (13) 

 

Where 

𝑡: travel time on a particular link; 

𝑡0: free flow travel time on the link; 

𝑉: traffic flow rate; 

𝐶: capacity; and 

𝛼, 𝛽: parameters. 

The coefficient of the BPR function 𝛼 is often set at 0.15 and 𝛽 is often set at 4 

(Moses et al. 2013; Zheng et al. 2014).  As seen in Equation (14), free flow travel time 

(𝑡0) of the traffic over a segment of the potential work zone length (𝑙) at the free flow 

speed (𝑣0) is:  

 

𝑡0 =  𝑙 𝑣0⁄                                                                (14) 
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 This link-congestion function is robust to formulate the relationship between 

traffic flow and travel time, thereby estimating the travel time on a particular link. 

However, the BPR function cannot reveal the travel time variability during construction 

accurately, due to a lack of the capability to estimate the difference between recurrent 

congestion under normal traffic conditions and traffic congestion caused by the presence 

of a CWZ. In addition, the existing form of BPR function cannot effectively and 

efficiently represent benchmarking travel time delays under what-if nighttime 

construction alternatives, due to a lack of lane closure parameters in the formulation. 

Furthermore, the existing form of BPR function cannot generalize the potential work 

zone travel time delay as it is dependent on a particular length of roadway segment, 

which means that the current form is very project-specific. 

Therefore, in this study, the standard BPR function is transformed into the 

proposed curve fitting models that specifically aim to graphically and mathematically 

achieve the travel time delay trend under prevailing traffic conditions as well as under 

what-if lane closure schemes for nighttime construction in heavily trafficked urbanized 

downtown areas, which can be generalized. 

 

7.2 What-If Lane Closure Schemes 

A number of what-if lane closure schemes for nighttime construction of four-lane 

directional highways were established to model the travel time delay trends, as depicted 

in Figure 30.  
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Figure 30 What-if lane closure schemes for quantifying the nighttime work zone delay 

impact 

 

For the nighttime construction, the construction time period ranging from 9:00 

pm-6:00 am during weekdays (including the 8:00 pm-11:59 pm nighttime on Sundays) 

was employed. What-if lane closure schemes represent the number of lanes to be closed 

(N) ranging from 1 to 3 out of 4 lanes, while the recurrent congestion without any work 

zone (N=0) serves as the baseline to compare the work zone impact. The following 

highway facility information was considered as common fixed conditions: 1) width of 

the lane is 12.0 feet; and 2) none of the inner shoulder.  

 

7.3 Stage I: Stereotypical Traffic Volume-Adjusted Capacity Ratios 

 The highway capacity is defined as the maximum traffic service flow during a 

given time period under normal highway traffic conditions, which can be selected from 

the HCM (Choi et al. 2013; Transportation Research Board 2010). Free flow capacity 
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(i.e., basic capacity) is usually assumed that under prevailing traffic conditions capacity 

ranges from 2,200 to 2,300 passenger car per hour per lane (pcphpl), while capacity 

during construction ranges from 1,200 to 1,600 pcphpl for lane drop only (Choi et al. 

2013; Transportation Research Board 2010). The basic capacity under these two 

different traffic conditions varies due to a number of factors affecting the capacity 

(Transportation Research Board 2010): 

 Project location; 

 Percentage of heavy vehicles (H): H = 100 / [100 + P(PCE−1)], where P = 

percentage of trucks, and PCE = passenger car equivalent factor (i.e., passenger 

car / heavy vehicle); 

 Width of lanes (W): W=1.00 if width is 12.0 feet, W=0.95 if width is 11.0 feet, 

and W=0.90 if width is 0.90; 

 Shoulder and lateral clearance (S): S=1.00 if both shoulders are available, S=0.95 

if one shoulder is available, and S= 0.90 if there are no shoulders available; and  

 Number of lanes opened to traffic (𝑁′).  

Especially, in terms of the PCE, it is widely assumed that a truck equals to 1.5 

passenger cars, while setting 2.5 for rolling type or 4.5 for mountainous type of the 

project terrain (Choi et al. 2013). By taking into account the aforementioned factors, the 

basic capacity can be adjusted through Equation (15): 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑖𝑐 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐻 × 𝑊 × 𝑆 ×  𝑁′               (15) 
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Based on Equation (15), adjusted capacity before and during construction for 

incorporation into the BPR function was achieved as seen in Equations (16) and (17). 

Under normal traffic conditions 2,300 pcphpl and 1,600 pcphpl during construction for 

multi-lane directional highways were applied, along with the common fixed conditions: 

PCE = 1.5; W=1; and S=0.95. 

 

𝐶𝑛
∗ = 2,300 ×  

100

[100+𝑃∗∙(1.5−1)]
 × 1 × 0.95 × 4                            (16) 

 

𝐶𝑤
∗ = 1,600 ×  

100

[100+𝑃∗∙(1.5−1)]
 × 1 × 0.95 × 𝑁′                          (17) 

  

Where  

𝐶𝑛
∗: Adjusted capacity before lane closure (veh/hr); 

𝐶𝑤
∗ : Adjusted capacity during lane closure (veh/hr); 

𝑃∗: Predicted truck percentages obtained from the proposed multi-contextual 

learning model; and 

𝑁′: Number of lanes to be opened (𝑁′ = 1 − 𝑁, ranging from 1 to 3). 

 To capture the potential traffic demand reduction using the ratio of traffic flow 

rate to adjusted capacity before or during construction (V/C ratio), the adjusted 

capacities obtained from Equations (16) and (17) were integrated with the predicted 

long-term traffic flow rates achieved through the proposed multi-contextual learning 

model. As the result, the potential traffic volumes and adjusted capacities under 
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prevailing traffic conditions and under what-if lane closure schemes for the nighttime 

construction were illustrated as shown in Figure 31.  

 

 

Figure 31 Predicted traffic volume and capacity pattern before and during nighttime 

construction 

   

Figure 31 and Figure 32 specifically illustrate changes in traffic volume and the 

corresponding capacity on an hourly basis for the period of the nighttime construction, 

while capturing the impact of lane closures.  
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Figure 32 Comparisons of predicted traffic flow rates and the corresponding capacities 

before and during nighttime construction 

 

The changes in traffic volume and capacity represent that as the number of lanes 

closed to traffic increases the both potential traffic flow rates and the corresponding 

capacities are reduced, reflecting the traffic demand reduction due to lane closures. In 

other words, under prevailing traffic conditions (N=0) traffic flow rates are under the 

adjusted capacity before construction, whereas during lane closure (N=1, 2, and 3) traffic 

flow rates exceed the adjusted capacity during construction. 

Based on the results of traffic flow rates versus adjusted capacity (see Figure 31 

and Figure 32), Figure 33 shows the results of predicted traffic volume-capacity (V/C) 

ratios before (
𝑉𝑛

∗

𝐶𝑛
∗) and during (

𝑉𝑤
∗

𝐶𝑤
∗ ) lane closure for the time period of nighttime 

construction at daily scales (9:00 pm to 6:00 am during weekdays and 8:00 pm to 11:59 

pm on Sundays). To illustrate heavily trafficked and frequent traffic conditions before 
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and during lane closure, the maximum V/C ratios and 50% of the predictions are 

highlighted in Figure 33.  

 

 

Figure 33 Estimated V/C ratios before and during nighttime construction 

 

7.4 Stage II: Nighttime Travel Time Delays Before and During Construction 

 This research phase focuses on modeling the nighttime construction work zone 

delay impact by achieving the generalized travel time delay trend under what-if lane 

closure schemes for nighttime construction in heavily trafficked downtown areas having 

the CBDs. As stated previously (Section 7.1), there remains questionable about the 

effectiveness and efficiency of the existing VDF, especially the BPR function. In this 

research stage, the standard BPR function is transformed into the proposed curve-fitting 

models that specifically aim to graphically and mathematically achieve the travel time 

delay trend under prevailing traffic conditions as well as under what-if lane closure 

schemes for nighttime construction in heavily trafficked urbanized downtown areas. 
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When addressing the nonlinearity of parameters, curve-fitting is efficient and 

effective to achieve the most appropriate equation through various forms, such as 

exponential, power, logarithmic, trigonometric, and polynomial forms  (McDonald 

2009). Curve-fitting might or might not utilize (curvi)linear or nonlinear regression. Any 

kind of regression models is the study of the relationship between single or several 

predictors and the responses, which means that a regression model does not rely only on 

curve fitting. The term of curve-fitting in a regression model is used to denote whether 

the training data set is matched or failed to generalize for new data points. In the other 

case, if curve-fitting is not used in a regression model it specifically aims to estimate the 

forecasting formula that fits very well with the data trend line, not examining the 

statistical relationship between independent and dependent variables.  

In this regard, this research phase is centered on creating new equations by 

transforming the BPR function into the proposed curve-fitting models that can address 

the potential travel time delay trend under normal traffic conditions as well as arbitrary 

lane closure scenarios for nighttime construction work zones on multilane urban 

highways near the CBD, by utilizing the predicted values of long-term traffic flow rates 

and truck percentages that are achieved from the proposed multi-contextual learning 

model.  

 

7.4.1 Travel Time Estimation Using the BPR Function 

As the pre-process, each potential travel time before (𝑡𝑛) and during (𝑡𝑤) the 

nighttime construction was estimated by the BPR function firstly, as seen in Equations 
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(18) and (19). Free flow speed (𝑣0) data used in this study were collected from the 

multiple sensor readings via the Caltrans PeMS (Caltrans 2012), ranging from 63 to 64 

miles per hour (mph) over the study year. In addition, the coefficients of the BPR 

function were set as 𝛼 = 0.15 and 𝛽 = 4 (Moses et al. 2013; Zheng et al. 2014). 

 

𝑡𝑛 = 𝑡0 ∙  [1 +  𝛼 ∙  (
𝑉𝑛

∗

𝐶𝑛
∗)

𝛽

]                                               (18) 

 

𝑡𝑤 = 𝑡0 ∙  [1 +  𝛼 ∙  (
𝑉𝑤

∗

𝐶𝑤
∗ )

𝛽

]                                              (19) 

 

Where  𝑡0 = 𝑙 𝑣0⁄ . 

 

7.4.2 Curve-Fitting Models for Travel Time Delay Trends 

The proposed travel time delay model specifying grouping variables of the 

percentile lane closure estimates separate model parameters for each level of the 

grouping variable. To model the generalized travel time delay trend, what-if number of 

lanes to be closed in count unit was converted to that in percentage unit, and travel time 

delay in minutes was also converted to the percentile travel time delay.  

As an explanatory approach, among various curve-fitting forms such as logistic, 

polynomial, exponential growth, and Gaussian peak curves, the third-order polynomial 

(i.e., cubic) fitting was finally selected by measuring the accuracy of these alternatives of 
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fitting forms. The following is the generalized form of the proposed curve-fitting equation 

(Equation (20)):  

   

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦 (𝑡𝑑
𝑖 ) =  

𝛽0 + 𝛽1 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜) + 𝛽2 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)2 + 𝛽3 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)3       (20) 

 

Where 

i: the percentage of the number of lanes (N) to be closed to the traffic during 

nighttime construction, specifically from 9:00 pm to 6:00 am on weekdays and 

8:00 pm to 11:59 pm on Sundays: 

 If N = 0, 𝑡𝑑
𝑖 =

(𝑡𝑛−𝑡0)

𝑡0
 × 100 (%); 

 If 0 < N < 4, 𝑡𝑑
𝑖 =

(𝑡𝑤−𝑡𝑛)

𝑡𝑛
 × 100 (%); and 

𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜: the ratio of traffic flow rate to adjusted capacity before or during 

construction through the predicted outcomes from the multi-contextual learning 

model. 

By using the Equation (20), the proposed curve-fitting was classified into four 

different groups to address the distinct trend in travel time delay under normal traffic 

flow conditions including recurrent traffic congestion (number of lanes to be closed 

(N)=0%) and what-if lane closure schemes with N=25%, N= 50%, and N=75%. Table 

17 shows a summary of results of fit curves to these groups. 
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Table 17 Results of Fit Curves to Lane Closure Groups  

Group by Number of Lanes to be Closed (N)  Parameter Estimate 
Std. 

Error 
R2 

N=0: Normal traffic condition including 

reccurrent traffic congestion 

Intercept -0.487 0.003 

0.99 

Slope 5.733 0.024 

Quadratic -21.149 0.052 

Cubic 30.453 0.033 

N=25% 

Intercept -4.790 0.103 

Slope 27.976 0.403 

Quadratic -57.195 0.499 

Cubic 49.047 0.196 

N=50% 

Intercept -5.375 0.130 

Slope 30.160 0.514 

Quadratic -59.961 0.644 

Cubic 50.170 0.256 

N=75% 

Intercept -4.338 0.056 

Slope 26.389 0.231 

Quadratic -55.444 0.298 

Cubic 48.441 0.121 

 

As seen in Table 17, an R-squared value of 0.99 indicates a highly accurate fit 

between the estimated percentile travel time delay through the BPR function and the 

predicted percentile travel time delay through the proposed curve-fitting. The following 

four different third-order polynomial fitting equations for predicting the unique trend in 

travel time delay under what-if nighttime lane closure schemes were finally generated, 

and each of trends is illustrated in Figure 34.  
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𝑡𝑑
0 =  

−0.487 + 5.733 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜) − 21.149 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)2 + 30.453 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)3   

(21) 

  

𝑡𝑑
25 =  

−4.79 + 27.976 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜) − 57.195 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)2 + 49.047 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)3  

(22) 

 

𝑡𝑑
50 =  

−5.375 + 30.160 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜) − 59.961 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)2 + 50.170 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)3  

(23) 

 

𝑡𝑑
75 =   

−4.338 + 26.389 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜) − 55.444 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)2 + 48.441 ∙ (𝑉 𝐶⁄  𝑅𝑎𝑡𝑖𝑜)3  

(24) 

Where 

𝑡𝑑
0 : Predicted travel time delay in percentile under normal traffic conditions;  

𝑡𝑑
25: Predicted travel time delay in percentile under 25% lane closure conditions; 

𝑡𝑑
50: Predicted travel time delay in percentile under 50% lane closure conditions; 

and 

𝑡𝑑
75: Predicted travel time delay in percentile under 75% lane closure conditions. 
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Figure 34 Third-order polynomial curve-fitting models for predicting the nighttime 

construction work zone travel time delay impact  

 

7.4.3 Practicality of the Models: Quantification of Travel Time Delay Impact 

The practicality of the proposed approach to predict the nighttime work zone 

travel time delay was demonstrated through the following hypothetical example. It was 

assumed that the multilane highway construction work would occur at night between 

9:00 pm on Sunday and 6:00 am on Monday adjacent to a downtown area having the 

CBD where AADT volumes are over 250,000, while proving dynamic lane 

configuration during a certain construction time period. As seen in Table 18, a 

combination of 25%, 50%, and 75% of lane closure configurations was assumed to 

represent dynamic lane configurations. In addition, median values of estimated V/C 

ratios at a particular time on a certain day of the week were applied for demonstrating 
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the practicability of the proposed curve-fitting models. Table 18 summarizes what-if 

nighttime construction conditions and predicted percentile travel time delay at a certain 

time under the corresponding lane closure scheme.  

 

Table 18 A Hypothetical Example: Predicted Nighttime Work Zone Trave Time Delays  

Day of 

the 

Week 

Time of 

the Day 

Number of 

Lanes to be 

Closed (%) 

Predicted 

V/C ratio* 

Curve-Fitting 

Equation 

Predicted Travel Time 

Delay (%)** 

Sunday 

9:00 pm 25 1.09 Equation (22) 21.26 

10:00 pm 25 0.889 Equation (22) 9.34 

11:00 pm 50 0.648 Equation (23) 2.64 

Monday 

0:00 am 50 0.51 Equation (23) 1.06 

1:00 am 75 0.767 Equation (24) 5.14 

2:00 am 75 0.686 Equation (24) 3.31 

3:00 am 75 0.432 Equation (24) 0.62 

4:00 am 50 1.02 Equation (23) 16.25 

5:00 am 25 0.824 Equation (22) 6.87 

6:00 am 25 1.2 Equation (22) 31.37 

*: Median values of predicted V/C ratios (obtained from Figure 30) 
**: Predicted values obtained from the corresponding curve-fitting equations 

  

Figure 35 illustrates the results of the hypothetical example, in line with the 

predicted work zone travel time delays seen in Table 18. A histogram shows the 

predicted percentile travel time delay at a certain time during construction, while a line 

graph displays the cumulative percentile travel time delay (97.7%) during the overall 

construction time period. In addition, a box plot presents the statistical distribution of the 

predicted travel time delay. As depicted in Figure 35, the maximum travel time delay 
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would occur at 6:00 am on Monday by having 31.17% additional travel time due to 25% 

of lane closure for the nighttime construction, compared to the travel time under normal 

traffic conditions. On the other hand, despite 75% of lane closure, only 0.62% additional 

travel time delay would occur at 3:00 am on Monday, due to the minimum V/C ratio 

during the construction time period. As shown in the box plot, this nighttime 

construction under dynamic lane configuration would cause the traveling public to take 

the average 9.766% additional travel time due to the planned nighttime construction.  

 

 

(a) Predicted percentile travel time delays (b) Box plot 

Figure 35 Nighttime work zone delay impact prediction 

 

7.5 Stage III: Model Verification and Validation 

When creating a quantitative and predictive model, model verification and 

validation processes are essential for quantified confidence in the model’s accuracy and 

reliability (Carson 2002; Choi et al. 2016; Thacker et al. 2004). Both verification and 

validation processes provide scientifically proven evidence of the model’s accuracy or 

reliability for a specific intended use, not all possible scenarios (Thacker et al. 2004). 
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Verification aims to determine whether an established model can accurately represent 

the results obtained from its benchmark model. On the other hand, validation is 

attempted to evaluate whether an established model can accurately incorporate 

experimental or real-world situations, by comparing the end results obtained from the 

established model with those collected from the real-world situations (Carson 2002; 

Thacker et al. 2004).  

To this end, this research phase aims to scientifically verify and validate the 

proposed curve-fitting models by measuring forecasting accuracy, as shown in Figure 

36.  Model verification was performed by comparing the curve-fitting models with the 

benchmarked BPR function. The robustness of the curve-fitting models was validated 

through actual-to-predicted comparison study with three different real-world projects 

that are completed at different spatiotemporal scales.  

 

 

Figure 36 Model verification and validation 
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7.5.1 Measuring Forecast Accuracy 

The robustness of the proposed curve-fitting models to predict the potential travel 

time delay was verified and validated by measuring forecast accuracy through the most 

widely used four different methods: the Root Mean Squared Error (RMSE), the Mean 

Absolute Error (MAE), the Mean Percentage Error (MPE), and the Mean Absolute 

Percentage Error (MAPE).  

In general, a certain forecast error (𝑒𝑖) is the difference between the certain actual 

value (𝑦𝑖) and the corresponding predicted value (𝑦̂𝑖) in the same data set (𝑒𝑖 = 𝑦𝑖 −

𝑦̂𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 … 𝑛;  𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) (Hyndman 2014). Since the 

actual and predicted values are on the same scale, these errors are on the same scale, so-

called scale-dependent errors. The most commonly used scale-dependent accuracy 

measures include the RMSE based on the squared errors and the MAE based on the 

absolute errors (Hyndman 2014; Woschnagg and Cipan 2004). The RMSE represents a 

quadratic scoring rule to measure the average magnitude of the errors. As shown in 

Equation (25), the errors are squared first and then averaged over the sample. The square 

root of the average error is finally calculated. When utilizing the RMSE, its sensitivity to 

outliers is often issued because the errors are squared before they are averaged (Chai and 

Draxler 2014). In other words, the RMSE is useful for certain cases when large errors 

are particularly undesirable because the RMSE gives a higher weight to larger errors 

(Saigal and Mehrotra 2012).  

 

𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛 (𝑒𝑖
2) = √

1

𝑛
 ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                (25) 
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Alternatively, the MAE is a linear scoring rule, which means that all the errors 

are weighted equally so less sensitive to large deviations, compared to the RMSE 

(Woschnagg and Cipan 2004). The MAE is the average over the absolute values of 

errors, as seen in Equation (26). 

 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛 (|𝑒𝑖|) =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                                   (26) 

 

 As scale-independent measures, a relative measure of accuracy is also widely 

used based on percentage errors (PEs), such as the MPE and MAPE (Choi et al. 2016; 

Hyndman 2014; Makridakis et al. 2008). The MPE considers the direction of errors by 

measuring positive or negative values in order to specify the tendency of overfitting or 

underfitting, whereas the MAPE focuses on measuring the magnitude of errors incurred 

by the prediction (Makridakis et al. 2008). Measuring the MPE and the MAPE starts 

with calculating the PE, the percentile difference between the actual and predicted 

values, as seen in Equation (27).  

 

𝑃𝐸𝑖 =  (𝑦𝑖 − 𝑦̂𝑖) 𝑦𝑖⁄ × 100 (%)                                       (27) 

  

To measure the MPE, all of the percentage errors are averaged over the sample, 

as shown in Equation (28). 

 

𝑀𝑃𝐸 =  
1

𝑛
 ∑ 𝑃𝐸𝑖

𝑛
𝑖=1                                                  (28) 
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 In terms of the MAPE, all of the absolute percentage errors are averaged, as seen 

in Equation (29). 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |𝑃𝐸𝑖|𝑛

𝑖=1                                                (29) 

 

In general, the forecast accuracy based on the MAPE can be assessed by the 

following interpretation ranges that are suggested by Lewis (1982) (Choi et al. 2016; 

Ofori et al. 2012): 

 Less than 10%: Highly accurate forecasting; 

 10-20%: Good forecasting; 

 21-50%: Reasonable forecasting; and 

 51% or more: Inaccurate forecasting. 

As a way to interpret the results, the lower value of errors, the more accurate 

prediction. For model verification, 𝑦𝑖 represents the ith estimated percentile travel time 

delay obtained from the BPR function that includes the predicted traffic flow and truck 

percentages through the multi-contextual learning model, while 𝑦̂𝑖 indicates the ith 

predicted percentile travel time delay achieved from the proposed curve-fitting 

formulations (i.e., trend lines). In addition, for model validation, 𝑦𝑖 represents the ith 

actual travel time index that includes the predicted traffic flow and truck percentages 

achieved from the PeMS database, while 𝑦̂𝑖 indicates the ith predicted travel time index 

achieved from the proposed curve-fitting formulations (i.e., trend lines). 
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7.5.2 Model Verification: Curve-Fitting Models Versus BPR Function 

 At the onset of this study, the primary goal of Stage II in Phase III was to create a 

quantitative and predictive model that can effectively and efficiently represent 

benchmarking travel time delays under what-if nighttime construction alternatives and 

be independent on a particular length of roadway segment, which enable the proposed 

model to overcome drawbacks in the existing BPR function, but having the equivalent 

effect with the BPR function. To scientifically verify the accuracy of the proposed 

curve-fitting models, the predicted travel time delays achieved from the proposed 

models were compared to the estimated travel time results obtained from the 

benchmarked BPR function, by measuring forecast accuracy through RMSE, MAE, 

MPE, and MAPE.  

Table 19 summarizes the results of the forecast accuracy measures according to 

the RMSE, MAE, MPE, and MAPE. Specifically, scale-dependent errors (RMSE and 

MAE) indicates acceptable values (RMSE=0.028 and MAE=0.003), from the 

perspectives of rules of quadratic and linear scoring. The MAPE was within the limits of 

reasonable forecasting (MAPE=33.3%), while the positive 25.7% of the MPE would be 

reasonable.  

 

Table 19 Accuracy of Models: Curve-Fitting Versus BPR Function 

Scale-Dependent Errors Scale-Independent Errors (%) 

RMSE MAE MPE  MAPE 

0.028 0.003 25.7 33.3 
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7.5.3 Model Validation: Actual-to-Predicted Comparison 

The practicality of the proposed models was demonstrated and validated through 

“actual-to-predicted” comparison study with three real-world highway construction 

projects across the State of California. As depicted in Figure 37, three different nighttime 

construction projects adjacent to Downtown Sacramento, Downtown San Diego, and 

Downtown Oakland were completed at different spatiotemporal scales, compared to the 

baseline zone in this study, Downtown LA. 

 

 

Figure 37 Real-world nighttme construction projects at different spatiotemporal scales 

 

In detail, Table 20 summarizes project locations, specific lane closure IDs, and 

project durations at timely and daily scales, which were extracted from the PeMS 

database. 
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Table 20 A Summary of Nighttime Construction Projects in Large Urban Cores 

Downtown 

Location 
Construction Zone 

Closure 

ID 
Highway Project Duration 

Sacramento, 

CA 

 

C5VB I-5N 

07/25/2016 - 07/26/2016 

(Monday - Tuesday) 

 

9:00 pm - 6:00 am 

San Diego, 

CA 

 

P5BA I-5N 

03/31/2016 - 04/01/2016 

(Thursday - Friday) 

 

11:00 pm - 5:00 am 

Oakland, 

CA 

 

C880GA I-880N 

03/23/2016 - 03/24/2016 

(Monday - Tuesday) 

 

10:00 pm - 5:00am 

 

For each of these case studies, median values of estimated V/C ratios at a 

particular time on a certain day were applied to demonstrate the practicability of the 

proposed curve-fitting models. As the results, the potential percentile travel time delays 

during the corresponding lane closure were quantified. Subsequently, in order to directly 

compare with actual travel time parameter provided by PeMS (i.e., travel time index 

(TTI)), the predicted travel time delays were transformed into a form of the TTI. TTI is 

defined as the ratio of the average travel time to the free-flow travel time in a certain 
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area, and PeMS computes the TTI by applying 60 mph of the free-flow speed (The 

PeMS Forum 2009).  

 

Table 21 Case Study: Travel Time Delay during Nighttime Construction in Large Urban 

Cores 

Construction 

Zone 

 

Time of 

the Day 

No. of 

Lanes 

Closed 

(%) 

Predicted 

V/C 

Ratio* 

Curve-

Fitting 

Equation 

Predicted 

Travel 

Time 

Delay 

(%) 

Predicted 

Travel 

Time 

Index 

Actual 

Travel 

Time 

Index 

Downtown 

Sacramento, 

CA 

 

I-5N 

9:00 pm 75 1.09 

Equation 

(24) 

21.29 1.213 0.9 

10:00 pm 75 0.915 10.50 1.110 1.2 

11:00 pm 75 0.606 2.07 1.021 0.9 

0:00 am 75 0.529 1.28 1.013 0.9 

1:00 am 75 0.899 9.77 1.100 0.9 

2:00 am 75 0.799 6.06 1.061 0.9 

3:00 am 75 0.655 2.77 1.030 0.9 

4:00 am 75 1.25 36.63 1.376 0.9 

5:00 am 75 0.933 11.36 1.114 0.9 

6:00 am 75 1.24 35.49 1.355 1.1 

Downtown 

San Diego, 

CA 

 

I-5N 

11:00 pm 25 0.734 

Equation 

(22) 

4.33 1.043 0.9 

0:00 am 25 0.672 3.07 1.037 0.9 

1:00 am 25 1.06 19.02 1.190 0.9 

2:00 am 25 0.856 8.01 1.080 0.9 

3:00 am 25 0.479 0.88 1.000 0.9 

4:00 am 25 1.05 18.31 1.183 0.9 

5:00 am 25 0.771 5.26 1.053 0.9 

Downtown 

Oakland, CA 

 

I-880N 

10:00 pm 25 0.915 

Equation 

(22) 

10.50 1.110 1 

11:00 pm 25 0.606 2.07 1.021 1 

0:00 am 25 0.529 1.26 1.013 0.9 

1:00 am 25 0.899 9.77 1.100 0.9 

2:00 am 25 0.799 6.07 1.061 0.9 

3:00 am 25 0.655 2.78 1.030 0.9 

4:00 am 25 1.25 36.61 1.370 0.9 

5:00 am 25 0.933 11.36 1.114 0.9 
*: Median values of predicted V/C ratios (obtained from Figure 30) 
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As the validation results shown in Table 3, RMSE and MAE values range from 

0.184 to 0.245, which indicate accurate measures. The negative values of MPEs ranging 

from -20.41 to -21.90% represent the overfitting, which means that the sensored TTI for 

the three different downtown areas are within the pessimistic results of predicted TTI. 

Meanwhile, the MAPEs ranging from 20.41 to 22.27% revealed that the proposed 

models are acceptable for predicting travel time delays caused by nighttime construction 

in heavily trafficked downtown areas. In a nutshell, the validation study results conveyed 

a conclusion that the proposed methodology would be repeatable to a downtown area at 

a disparate location because the observed volumes of traffic for Downtown LA are 

representative by providing pessimistic prediction results of potential travel time delay at 

CWZs in large urban cores.  

 

Table 22 Accuracy Validation of Models: Errors of Travel Time Index 

Case Study Region RMSE MAE MPE (%) MAPE (%) 

Downtown Sacramento, CA 0.235 0.207 -20.77 22.27 

Downtown San Diego, CA 0.196 0.184 -20.41 20.41 

Downtown Oakland, CA 0.245 0.190 -21.90 21.90 

 

7.6 Summary of Phase III 

This research phase aimed to model the impact of nighttime construction in 

heavily trafficked urbanized downtown areas, on the aspect of travel time delay under 

what-if lane closure schemes. As the most widely used VDF, the BPR function that 

specifies the impact of highway capacity on travel times or travel speeds has been 

widely used in traffic demand modeling as it requires a small number of data input 
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parameters having the simple mathematical form. However, it was found that the 

existing form of the BPR function cannot address the travel time variability during 

construction accurately. The BPR function does not have the capability to estimate the 

difference between recurrent congestion and non-recurrent congestion at CWZs, due to a 

lack of lane closure parameters in the formulation. In addition, the existing form of BPR 

function cannot be generalized as it is dependent on a particular length of roadway 

segment, which is very project-specific. 

This research phase were conducted through a three-stage process: 

1. As the pre-process, the adjusted capacities of highway facilities before and 

during construction were computed, which incorporates the predicted truck 

percentages obtained from the proposed multi-contextual learning model as one 

of capacity adjustment factors. By integrating the predicted traffic flow rates 

achieved from the proposed multi-contextual learning model with the predicted 

adjusted capacities, the V/C ratios at the hourly temporal scale before and during 

construction were then obtained. 

2. Using the predicted stereotypical V/C ratios, the standard BPR function was 

transformed into the proposed four different third-order polynomial curve-fitting 

models that specifically aim to graphically and mathematically achieve the 

percentile travel time delay under prevailing traffic conditions as well as under 

what-if lane closure schemes for nighttime construction in heavily trafficked 

urbanized downtown areas. The practicality of the proposed models was then 

demonstrated through a hypothetical example. 
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3. The robustness of models was statistically verified and validated by measuring 

accuracy through RMSE, MAE, MPE, and MAPE. All the accuracy measures 

confirmed that the proposed curve-fitting models are robust to predict nighttime 

work zone travel time delay on critical urban highways near heavily trafficked 

downtown areas.  
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8. SUMMARY AND CONCLUSIONS 

 

Impact assessments of highway CWZs are essential for rehabilitating and 

reconstructing aging highways, as mandated by a federal rule. This rule enforces all 

STAs to conduct traffic impact analyses in a viable way to improve safety and mobility 

during construction. For a successful TMP, impact assessments of CWZ are essential, 

but they are also very difficult to perform. Especially, these assessments are challenging 

to perform for projects located in large urban areas with relatively dense roadway 

networks. A key reason is that it is difficult to benchmark traffic patterns (i.e., traffic 

flow and/or travel time) and quantify the potential traffic impact of CWZs for planned 

future projects.  

Although many research efforts have been made to overcome this difficulty, 

most existing approaches are often univariate, project-specific, and short-term, thus 

incapable of benchmarking the potential traffic impact of CWZs for planned future 

highway infrastructure improvement projects. In addition, most existing models cannot 

reveal the travel time variability before and during construction accurately due to a lack 

of the capability to estimate the difference between recurrent traffic congestion under 

normal traffic flow conditions and traffic flow congestion caused by the presence of a 

CWZ simultaneously.  

To advance the existing body of knowledge about traffic flow prediction for the 

betterment of impact assessments of CWZs, knowledge gaps emerged from the 

extensive review of previous studies: 
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1. Many studies have endeavored to find solutions to the nonlinear complexity of 

traffic data and have reported that ML approaches are effective and efficient for 

not only analyzing large quantities of traffic data but also predicting traffic 

patterns and recommending courses of action. However, the literature search 

concludes that most previous ML studies to date were focused on predicting 

“short-term” traffic flow under a normal condition, and therefore, knowledge 

about learning the long-term impact of urban highway work zones is largely 

missing.   

2. Despite a sizeable body of research, little scientific work has been done on 

holistic approaches to obtaining the most realistic and reliable traffic flow 

patterns. Existing approaches are inadequate with regards to predicting traffic 

flow within a distinct set of clusters, because they fail to incorporate the unique 

characteristics of the particular cluster into the prediction model. These exclusive 

characteristics should be construed as multiple contexts such as spatial, temporal, 

weather, socio-demographic, and highway facility function conditions. In this 

regard, there remains a significant gap in the existing knowledge regarding the 

most effective and accurate prediction techniques for predicting potential traffic 

flows before and during lane closures and how multi-contextual characteristics 

can be effectively incorporated into the prediction models. 

3. Existing methods to perform the CWZ traffic analysis are conducted through 

either simple macroscopic or microscopic levels. Most of the simple macroscopic 

models are easy to use but complicated when it comes to determining adjustment 
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factors, and require a huge amount of detailed input information about roadway 

networks. In addition, current microscopic models cannot capture global 

descriptions of the traffic flow rate, density, and velocity because they use 

simplistic models with synthetic datasets to represent the temporal aspect of the 

road network, instead of using real-world traffic data. 

4. It is important to identify effective and efficient validation methods to test 

whether traffic data obtained from multiple sensor readings can be repeatable and 

reproducible on a certain temporal scale; this is necessary for the projection of a 

particular single cluster’s characteristics. Although many previous studies 

reported that Repeatability and Reproducibility (R&R) analyses can be used to 

determine the most accurate and precise measurement systems, very little is 

known about R&R studies for transportation applications. Especially, there is a 

lack of research on testing the robustness of collected data to investigate the 

precision of traffic sensor readings; this information is necessary for the 

management and validation of archived traffic data that must occur before a 

traffic data analysis can be conducted.  

 

To fill these gaps, this study aimed to create a decision-support analytical 

framework and test if it can reliably predict the potential impact of a CWZ under 

arbitrary construction planning and management scenarios. This study proposed a big-

data-driven decision-support model “Multi-contextual learning for the Impact of Critical 
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Urban highway work Zones” (MICUZ). MICUZ specifies three specific sub-objectives 

as follows: 

1. Testing whether traffic flows extracted from archived multiple sensor readings 

can be repeatable and reproducible, thereby validating the robustness of the 

collected sensored data whether they can represent the temporal traffic flow 

under prevailing traffic conditions and lane closure within a distinct set of spatial 

clusters. 

2. Accurately and reliably predicting long-term traffic flow under prevailing traffic 

conditions and lane closures, via the proposed multi-contextual learning model 

that employs ANN. 

3. Modeling the impact of CWZ on the aspect of travel time delay trend through the 

proposed curve-fitting models that specifically quantify and generalize travel 

time delay trends for nighttime construction in large urban cores. 

 

MICUZ specifically focused on modeling and predicting the traffic impact of 

CWZs on the aspect of travel time delays to assess the level of motorist’s inconvenience 

caused by the presence of a CWZ in heavily trafficked large urban corridors. To define 

large urban corridors, MICUZ addresses critical highways in large urban cores, where 

the Annual Average Daily Traffic (AADT) volume is over 250,000. Among various 

urban sets of heavy AADT clusters that were examined, the City of Los Angeles (LA) in 

the state of California was chosen for this study because LA has been named the city 

with the worst traffic in the United States. Therefore, the learned knowledge through the 
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case of LA would be applied to other critical urban highway systems with similar 

characteristics but where sensor data are not available. 

As the traffic flow analysis zone, Interstate highways adjacent to the Central 

Business District (CBD), simply known as “Downtown LA,” were selected for this 

study. In detail, highway directions toward the CBD including I-10 East and I-110 South 

were served as the traffic flow analysis network. In general, the CBD is characterized by 

a key urban structure type and commercial land use (i.e., retail and service business). 

CBDs commonly appear through large cities and is home to numerous economic 

activities that are significantly affected by changes in the transportation system. 

Therefore, the selected scope of this study would be applicable for analyzing the 

potential traffic impact in other large urban cores.   

A total of 17,518 traffic sensor readings on Interstate highways (I-10 East and I-

110 South) adjacent to the CBD were extracted from the PeMS database. Hourly traffic 

volumes that include the percentage of trucks within the corresponding traffic flow are 

collected during the whole year in 2014 (0:00 am on January 1 to 11:59 pm on 

December 31, 2014).  In addition to traffic sensor readings, multi-contextual datasets 

were collected in order to improve the accuracy of prediction of the proposed network 

learning model, including highway facility functional information, weather conditions, 

and socio-demographic characteristics. Highway facility functional variables were 

collected from the PeMS to capture the impact of the existing highway capacity 

condition on the traffic flow variation under normal condition as well as the potential 

traffic flow during lane closures. The weather conditions including the historical datasets 



 

145 

 

of daily precipitation and visibility in 2014 were collected from the QCLCD database 

provided by NOAA. As socio-demographic characteristics, Population density in the 

Census areas adjacent to the traffic flow analysis zone was collected from Census Tracts 

of California. In addition, percentages of main commute modes on the highways, such as 

self-driving and car/vanpooling, were collected from the LA Department of City 

Planning.  

The following are a summary of modeling process followed by the proposed 

MICUZ framework and the results of each modeling phase: 

1. Phase I attempted to test whether multiple traffic sensor readings for traffic flow 

would be applicable to spatiotemporally similar characteristics of roadway 

networks. Multiple sensor readings within a spatiotemporally distinct set of 

clusters, such as highway traffic flow variations adjacent to a CBD at a specific 

time on a particular day, would result in biased results when predicting the 

potential traffic flow under similar conditions. To tackle this issue, MICUZ 

adopted Wheeler’s HG method to determine the repeatability and reproducibility 

of temporally classified traffic flow measurements before construction (Stage I) 

and those of nighttime work zone traffic flow (Stage II) on an hourly temporal 

scale. The results confirmed that both Stage I and II analyses were scientifically 

validated by meeting with the R&R criteria and the class classification monitors 

developed by Wheeler. It was found that traffic flow measurements during lane 

closures were relatively simpler and periodical within the urbanized downtown 

area, and could then be translated into work zone characteristics. In general, work 
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zones are relatively small areas, and certain restrictions are often applied to work 

zone traffic such as no lane changing, lowered speed limits, highway patrol-

enforced traffic control, and so on. In this regard, it was concluded that work 

zone traffic flow data from urban downtown areas is more repeatable and 

reproducible than data regarding normal conditions.  

2. Through Phase II modeling process, the proposed multi-contextual learning 

model was developed and validated through the MLP FNN to predict long-term 

traffic flow and the corresponding truck percentages before and during 

construction, by employing the multi-contextual characteristics. The predicted 

outcomes were then incorporated into the proposed curve-fitting models 

specifically aiming at predicting the impact of CWZs in terms of travel time 

delay (Phase III). Phase II included a five-stage process as follows: 

1) An architecture of the proposed network learning model was created based on 

the MLP network, which is suitable for large-scale problems. As an MLP 

network, the proposed network was designed with three layers of neurons 

that are interconnected: 1) an input layer; 2) one hidden layer; and 3) an 

output layer. Multi-contextual variables used in the proposed network 

learning model consisted of a total of 26 input variables and 2 prediction 

target variables (outputs), which includes a total of 17,518 supervised data 

samples. All the multi-contextual variables (inputs) were mapped on the 

corresponding outputs, which represents the proposed learning model centers 

on the supervised learning of artificial neural networks.  
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2) To better determine the learning structure, critical components affecting the 

performance of the MLP networks were identified through previous studies 

on aspects of activation functions, training algorithms, and the number of 

hidden nodes. The learning structure for the proposed model was then 

determined on aspects of training algorithm, activation functions and the 

optimal number of hidden nodes. The performance of neural networks is 

significantly affected by the connection weights and activation functions. The 

connection weights are unknown parameters that can be estimated by a 

training algorithm. Throughout the literature review, the proposed learning 

model employed the BFGS algorithm to predict long-term traffic flow before 

and during construction near the CBD. 

3) These critical components were determined through the automated neural 

network search, resulting in 54 nodes in the hidden layer and the sigmoid 

function for the hidden layer and the identity function for the output layer as 

activation functions.  

4) In order to improve the accuracy and reliability of the determined learning 

structured model depending on the randomly selected three different datasets 

(i.e., training, validation, test sets), a total of five different 26-54-2 networks 

were retained for the short-list by training 100 different 26-54-2 networks 

completed by each different epoch showing the convergence velocity. As the 

final model, the multi-contextual learning model 26-54-2 with BFGS 646 was 

selected based on its test and validation errors. The BFGS 646 indicates the 
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BFGS algorithm followed by 646 epochs, which means that this network 

model was found at the 646th cycle. 

5) The learning outcomes, including the long-term traffic flow and the 

percentage of trucks, were measured by correlation coefficients between 

prediction values and actual values associated with the training, validation, 

and test datasets, separately. The results of the correlation coefficients, which 

ranged from 0.954650 to 0.962356, confirmed that there exist significant 

relationships between actual and prediction values from the three different 

datasets.  

3. Phase III aimed to model the impact of nighttime construction in heavily 

trafficked urbanized downtown areas, on the aspect of travel time delay trend 

under what-if lane closure schemes. As the pre-process, the adjusted capacities of 

highway facilities before and during construction were computed, which 

incorporates the predicted truck percentages obtained from the proposed multi-

contextual learning model as one of capacity adjustment factors. Based on the 

predicted V/C ratios (Stage I), four different third-order polynomial curve-fitting 

models were created to directly address the potential travel time delay under 

prevailing traffic conditions as well as under lane closure for the nighttime 

construction, which reinvent the existing BPR function appropriately (Stage II). 

The robustness of models was statistically verified and validated by measuring 

accuracy through RMSE, MAE, MPE, and MAPE (Stage III).  
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Table 20 summarizes the results of the proposed MICUZ modeling framework. 

 

Table 23 A Summary of Results: The Proposed MICUZ Modeling Framework  

Phase Outcomes Approach Stage Results 

Phase I: 

Robustness 

Check 

Repeatability 

and 

Reproducibility 

(R&R) of 

Collected Data 

Wheeler’s 

HG Method 

Stage I: 

Before Lane 

Closure 

 Combined R&R: 28.7% 

 Second class monitoring 

classification 

Stage II: 

During Lane 

Closure 

 Combined R&R: 2.4% 

 First class monitoring 

classification 

Phase II: 

Multi-

Contextual 

Modeling  

Predicted 

Long-Term 

Traffic Flow 

Rates and 

Truck 

Percentages 

MLP 

Feedforward 

Neural 

Networks 

Stage I: 

Architecture 

 Three layered feedforward 

network 

 Number of input nodes (26) 

and output nodes (2) 

Stage II: 

Key 

Components  

 Alternatives of activation 

functions 

 Training algorithms 

 Number of hidden nodes 

Stage III: 

Learning 

Structure 

 BFGS quasi-Newton method 

for training the network 

 Sigmoid function for the 

hidden layer; and identity 

function for the output layer 

 54 hidden nodes 

Stage IV: 

Final Model 

 Network 26-54-2 using the 

BFGS training algorithm 

followed by 646 epochs 

Stage V: 

Model 

Validation 

 Significant relationships 

between actual and predicted 

values 

Phase III: 

Travel 

Time 

Delay 

Modeling 

Nighttime 

Work Zone 

Travel Time 

Delay Trend 

Models 

Third-Order 

Polynomial 

Fitting 

Stage I:  

V/C Ratios 

 Adjusted capacities before 

and during construction 

 V/C ratios incorporate the 

outcomes from Phase II 

Stage II: 

Travel Time 

Delay Trend 

 Four different curve fitting 

models for quantifying the 

percentile travel time delays 

Stage III: 

Model 

Verification 

and 

Validation 

 Robust enough with respect 

to CWZ travel time delay 

trend prediction 

 The proposed methodology 

is repeatable to a downtown 

are at a disparate location 
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 The following are main findings of this study through Phase I to Phase III of the 

MICUZ framework: 

1. Phase I: The R&R analysis results confirmed that variability of sensored big data 

was homogeneous, which made this study possible. In general, as one of key 

characteristics of big data, controlling the variability of big data is essential and 

crucial because the inconsistency of datasets would impede the analysis process. 

In addition, the results convey the notable conclusion that highway traffic 

patterns before and during construction would be simple and periodical. 

2. Phase II: Use of multi-contextual datasets led accurate impact assessments of 

long-term traffic flow at the construction zones, based on traffic flow rates and 

truck percentages. 

3. Phase III: Error-prone impact assessments of additional travel time under 

arbitrary lane closures at the construction zones were improved, through the 

proposed curve-fitting models.  

 

The proposed MICUZ framework is unique as it models the impact of CWZ 

operations from a quantitative perspective using high-confidence real-world multi-

contextual big data.  Based on the proposed multi-contextual learning model via ANN, 

MICUZ is able to learn and generalize from a training dataset of critical urban highway 

systems and apply this knowledge to other highway systems with similar characteristics 

but where sensor data are not available.  
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In detail, the proposed multi-contextual learning model is expected to represent a 

significant leap forward in accurately and reliably predicting the long-term traffic flow 

rates before and during construction, which will serve as a baseline for incorporation into 

CWZ impact analyses that encompass travel time delay, queue length, and road user cost. 

These findings will provide a solid foundation for filling the gap between highway 

network features and the long-term benchmarking of traffic flows sourced from real-world 

traffic sensor data (with large quantities and high quality, both spatially and temporally) 

with multi-contextual characteristics. In addition, the proposed curve-fitting models have 

a potential to generalize the potential impact of nighttime work zone travel time delays by 

overcoming the hurdles inherent in the BPR function’s existing form, making them very 

intuitive and easy to use. Furthermore, this study is the first of its kind in that it tested the 

temporal and spatial periodicity present among traffic flow measurements from multiple 

traffic sensors through a measurement system analysis. The results and findings will allow 

for more efficient management of measured sensor data by assessing both repeatability 

and reproducibility. It is expected that the MICUZ framework enables repeating a similar 

approach to other real-world projects in a disparate location at a different time frame. The 

‘actual-to-prediction’ validation study performed on three disparate longitudinal 

downtown locations verified the repeatability and robustness of the proposed modeling 

framework. It conveys the fact that the proposed model would recognize how stereotypical 

regional traffic patterns react to existing CWZs and lane closure tactics, and generalize its 

understanding of those reactions to other roadway networks where work zones are planned. 

In this way, CWZ mobility impact assessment in urban roadway networks would be 
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greatly improved without the need of deploying additional sensors, both in terms of 

accuracy of results and in reducing the effort required to perform these types of analyses. 

This study conveys a notable conclusion that travelers’ inconvenience can be 

assessed into a set of distinct signature modeling patterns. The proposed MICUZ 

framework provides a rigorous theoretical basis for comparatively analyzing what-if 

construction scenarios, enabling engineers and planners to choose the most efficient 

transportation management plans much quickly and accurately. This study will assist 

STAs and the general traveling public in understanding potential traffic flow issues 

attributable to construction in heavily trafficked large urban cores (i.e., downtown areas 

with CBDs), while improving mobility in and between CWZs and positively affecting 

regional development. Moreover, the proposed multi-contextual models will also help 

state transportation agencies quantify the reasonable rate of traffic demand reduction 

under various alternative lane closure scenarios in advance, while providing the traveling 

public both pre-trip planning and en-route guidance during construction. 

The current learning model in this study forms the basis for future studies 

seeking to create novel computerized decision-support models applicable to any given 

CWZs by accurately predicting potential impacts from potential 24/7 traffic patterns, 

queue delays (time and queue length), and road user delay costs. The following areas 

should be explored in the future to fine tune the proposed model’s capabilities: 

 Expansion of the scope of the MICUZ framework to cover other types of traffic 

analysis zones, such as residential, commercial, attraction, and remote areas, in 

order to discover stereotypical traffic patterns and characterize them according to 
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a set of signature traffic pattern clusters built for different levels of traffic 

volume; 

 Expansion of the scope of the multi-contextual datasets that can represent the 

characteristics of the corresponding traffic analysis zone in several spatial 

regions; 

 Incorporation of numerous what-if construction alternatives (e.g., weekday, 

weekend, 24/7) into the MICUZ framework in order to assess the impact of 

numerous alternative construction plans; and 

 Development of an improved learning model that can more accurately predict 

potential traffic patterns and automatically predict road user costs and queue 

delays. 

 



 

154 

 

REFERENCES 

 

Abdel-Rahim, A., Cooley, H., Gould, S., and Khanal, M. (2010). "Synthesis of Research 

on Work Zone Delays and Simplified Application of QuickZone Analysis Tool." 

<http://idahodocs.cdmhost.com/cdm/ref/collection/p16293coll3/id/241107>. 

(06/20, 2016). 

Abdelmohsen, A. Z., and El-Rayes, K. (2016). "Optimal trade-offs between construction 

cost and traffic delay for highway work zones." Journal of Construction 

Engineering and Management, 142(7), 05016004. 

Abdi, J., and Moshiri, B. (2015). "Application of temporal difference learning rules in 

short‐term traffic flow prediction." Expert Systems, 32(1), 49-64. 

Abdi, J., Moshiri, B., Abdulhai, B., and Sedigh, A. K. (2012). "Forecasting of short-term 

traffic-flow based on improved neurofuzzy models via emotional temporal 

difference learning algorithm." Engineering Applications of Artificial 

Intelligence, 25(5), 1022-1042. 

Abdi, J., Moshiri, B., Abdulhai, B., and Sedigh, A. K. (2013). "Short-term traffic flow 

forecasting: Parametric and nonparametric approaches via emotional temporal 

difference learning." Neural Computing and Applications, 23(1), 141-159. 

Abouaissa, H., Fliess, M., and Join, C. (2016). "On short-term traffic flow forecasting 

and its reliability." The 8th IFAC Conference on Manufacturing Modelling, 

Management and Control (MIM 2016), Elsevier, Troyes, France, June 28-30, 

111-116. 

http://idahodocs.cdmhost.com/cdm/ref/collection/p16293coll3/id/241107


 

155 

 

Adeli, H., and Ghosh-Dastidar, S. (2004). "Mesoscopic-wavelet freeway work zone flow 

and congestion feature extraction model." Journal of Transportation 

Engineering, 130(1), 94-103. 

Ahmed, M. S., and Cook, A. R. (1979). "Analysis of freeway traffic time-series data by 

using Box-Jenkins techniques." Transportation Research Board, 722, 1-9. 

AIAG (2002). Measurement systems analysis (MSA), The Automotive Industries Action 

Group, Southfield, MI.  

AIAG (2010). Measurement systems analysis (MSA), The Automotive Industries Action 

Group, Southfield, MI.  

Al-Kaisy, A., and Hall, F. (2003). "Guidelines for estimating capacity at freeway 

reconstruction zones." Journal of Transportation Engineering, 129(5), 572-577. 

Alekseev, A., Navon, I., and Steward, J. (2009). "Comparison of advanced large-scale 

minimization algorithms for the solution of inverse ill-posed problems." 

Optimization Methods & Software, 24(1), 63-87. 

Antony, J., Knowles, G., and Roberts, P. (1999). "Gauge capability analysis: Classical 

versus ANOVA." Quality Assurance: Good Practice, Regulation, and Law, 6(3), 

173-181. 

Arciszewski, T., Bloedorn, E., Michalski, R. S., Mustafa, M., and Wnek, J. (1994). 

"Machine learning of design rules: Methodology and case study." Journal of 

Computing in Civil Engineering, 8(3), 286-308. 



 

156 

 

Awad, M., Erdmann, T. P., Shanshal, Y., and Barth, B. (2009). "A measurement system 

analysis approach for hard-to-repeat events." Quality Engineering, 21(3), 300-

305. 

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. (1995). 

"Dynamical model of traffic congestion and numerical simulation." Physical 

Review E, 51(2), 1035. 

Barros, J., Araujo, M., and Rossetti, R. J. (2015). "Short-term real-time traffic prediction 

methods: A survey." International Conference on Models and Technologies for 

Intelligent Transportation Systems (MT-ITS 2015), IEEE, Budapest, Hungary, 

June 3-5, 132-139. 

Bayraktar, M. E., and Hastak, M. (2009). "A decision support system for selecting the 

optimal contracting strategy in highway work zone projects." Automation in 

Construction, 18(6), 834-843. 

Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., and Mishalani, R. (1998). "DynaMIT: 

A simulation-based system for traffic prediction." DACCORS Short Term 

Forecasting Workshop, Citeseer, Delft University of Technology, Delft, 

Netherland, February 13. 

Bhat, C. R., Guo, J. Y., Srinivasan, S., and Sivakumar, A. (2004). "Comprehensive 

econometric microsimulator for daily activity-travel patterns." Transportation 

Research Record: Journal of the Transportation Research Board, 1894(1), 57-

66. 



 

157 

 

Bing, Q., Gong, B., Yang, Z., Shang, Q., and Zhou, X. (2015). "Short-term traffic flow 

local prediction based on combined kernel function relevance vector machine 

model." Mathematical Problems in Engineering, 2015, 1-9. 

Bissacot, A., Salgado, S., Balestrassi, P., Paiva, A., Zambroni Souza, A., and Wazen, R. 

(2016). "Comparison of neural networks and logistic regression in assessing the 

occurrence of failures in steel structures of transmission lines." The Open 

Electrical & Electronic Engineering Journal, 10(1), 11-26. 

Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2003). "A review of methods for 

measurement systems capability analysis." Journal of Quality Technology, 35(4), 

342-354. 

Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., and Sun, J. (2016). "A spatiotemporal 

correlative k-nearest neighbor model for short-term traffic multistep forecasting." 

Transportation Research Part C: Emerging Technologies, 62, 21-34. 

Caltrans (2012). "The Caltrans Performance Measurement System (PeMS)." 

<http://pems.dot.ca.gov/>. (09/15, 2013). 

Cao, H., and Han, F. (2014). "The urban arterial traffic flow forecasting based on BP 

neural network." The 4th International Conference on Instrumentation and 

Measurement, Computer, Communication and Control (IMCCC 2014), IEEE, 

Harbin, China, September 18-20, 393-397. 

Carson, J. S. (2002). "Model verification and validation." 2002 Winter Simulation 

Conference, IEEE, San Diego, CA, December 8-11, 52-58. 

http://pems.dot.ca.gov/


 

158 

 

CBS Los Angeles (2016). "Study: L.A. Has Worst Traffic In America." 

<http://losangeles.cbslocal.com/2016/03/15/study-l-a-has-worst-traffic-in-

america/>. (08/20, 2016). 

Çetiner, B. G., Sari, M., and Borat, O. (2010). "A neural network based traffic-flow 

prediction model." Mathematical and Computational Applications, 15(2), 269-

278. 

Chai, T., and Draxler, R. R. (2014). "Root mean square error (RMSE) or mean absolute 

error (MAE)?–Arguments against avoiding RMSE in the literature." 

Geoscientific Model Development, 7(3), 1247-1250. 

Chandler, R. E., Herman, R., and Montroll, E. W. (1958). "Traffic dynamics: Studies in 

car following." Operations Research, 6(2), 165-184. 

Chang, G., Zhang, Y., Yao, D., and Yue, Y. (2011). "A summary of short term traffic 

flow forecasting methods." The 11th International Conference of Chinese 

Transportation Professionals (ICCTP 2011), ASCE, Nanjing, China, August 14-

17, 1696-1707. 

Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z. (2001). "Freeway 

performance measurement system: Mining loop detector data." Transportation 

Research Record: Journal of the Transportation Research Board(1748), 96-102. 

Chen, L., and Chen, C. P. (2007). "Ensemble learning approach for freeway short-term 

traffic flow prediction." International Conference on System of Systems 

Engineering (SoSE'07), IEEE, San Antonio, TX, April 16-18, 1-6. 

http://losangeles.cbslocal.com/2016/03/15/study-l-a-has-worst-traffic-in-america/
http://losangeles.cbslocal.com/2016/03/15/study-l-a-has-worst-traffic-in-america/


 

159 

 

Chen, M., and Yao, Z. (2008). "Classification techniques of neural networks using 

improved genetic algorithms." The 2nd International Conference on Genetic and 

Evolutionary Computing (WGEC 2008), IEEE, Jingzhou, China, September 25-

26, 115-119. 

Chew, J. (2016). "This City Has the Worst Traffic Congestion in the U.S.", 

<http://fortune.com/2016/03/22/los-angeles-tomtom-traffic/>. (08/20, 2016). 

Choi, K., and Bae, J. (2015). "Spatiotemporal impact assessments of highway 

construction: Autonomous SWAT modeling." The 6th International Conference 

on Construction Engineering and Project Management (ICCEPM 2015), Korea 

Institute of Construction Engineering and Management (KICEM), Busan, South 

Korea, October 11-14, 294-298. 

Choi, K., Kim, Y. H., Bae, J., and Lee, H. W. (2016). "Determining future maintenance 

costs of low-volume highway rehabilitation projects for incorporation into life-

cycle cost analysis." Journal of Computing in Civil Engineering, 30(4), 

04015055. 

Choi, K., and Kwak, Y. H. (2012). "Decision support model for incentives/disincentives 

time–cost tradeoff." Automation in Construction, 21, 219-228. 

Choi, K., Kwak, Y. H., and Yu, B. (2010). "Quantitative model for determining 

incentive/disincentive amounts through schedule simulations." 2010 Winter 

Simulation Conference (WSC), IEEE, Baltimore, MD, December 5-8, 3295-3306. 

http://fortune.com/2016/03/22/los-angeles-tomtom-traffic/


 

160 

 

Choi, K., Lee, H. W., Bae, J., and Bilbo, D. (2016). "Time-cost performance effect of 

change orders from accelerated contract provisions." Journal of Construction 

Engineering and Management, 142(3), 04015085. 

Choi, K., Park, E. S., and Bae, J. (2013). "Decision-support Framework for quantifying 

the most economical incentive/disincentive dollar amounts for critical highway 

pavement rehabilitation projects." Southwest Region University Transportation 

Center, Texas A&M Transportation Institute, College Station, TX. 

Chung, Y. (2011). "Assessment of non-recurrent traffic congestion caused by freeway 

work zones and its statistical analysis with unobserved heterogeneity." Transport 

Policy, 18(4), 587-594. 

City of Los Angeles (2016). "Home-to-Work Commute Modes." 

<http://planning.lacity.org/DRU/C2K/C2KFrame.cfm?geo=cd&loc=009&sgo=ct

&rpt=H2W&yrx=dummy>. (03/15, 2015). 

Cong, Y., Wang, J., and Li, X. (2016). "Traffic flow forecasting by a least squares 

support vector machine with a fruit fly optimization algorithm." Procedia 

Engineering, 137, 59-68. 

Conley, T., and Dupor, B. (2011). "The American Recovery and Reinvestment Act: 

Public sector jobs saved, private sector jobs forestalled." 

<http://www.gop.gov/resources/library/documents/jobs/ohio-failed-

stimulus.pdf>. (03/15, 2015). 

Copeland, L. (1998). User's Manual for QUEWZ-98, Texas A&M Transportation 

Institute, College Station, TX. 

http://planning.lacity.org/DRU/C2K/C2KFrame.cfm?geo=cd&loc=009&sgo=ct&rpt=H2W&yrx=dummy
http://planning.lacity.org/DRU/C2K/C2KFrame.cfm?geo=cd&loc=009&sgo=ct&rpt=H2W&yrx=dummy
http://www.gop.gov/resources/library/documents/jobs/ohio-failed-stimulus.pdf
http://www.gop.gov/resources/library/documents/jobs/ohio-failed-stimulus.pdf


 

161 

 

Cottrell, W. D. (2001). "Empirical freeway queuing duration model." Journal of 

Transportation Engineering, 127(1), 13-20. 

Dai, H., Liu, Q., Wang, F., and Gong, C. (2015). "Investigation and prediction of traffic 

flow in holidays in Zhejiang section of Shenhai freeway." International 

Conference on Transportation Information and Safety (ICTIS 2015), IEEE, 

Wuhan, China, June 25-28, 195-201. 

Dao, V. N., and Vemuri, V. (2002). "A performance comparison of different back 

propagation neural networks methods in computer network intrusion detection." 

Differential Equations and Dynamical Systems, 10(1&2), 201-214. 

Datla, S., Sahu, P., Roh, H.-J., and Sharma, S. (2013). "A comprehensive analysis of the 

association of highway traffic with winter weather conditions." Procedia-Social 

and Behavioral Sciences, 104, 497-506. 

Davis, G. A., Nihan, N. L., Hamed, M. M., and Jacobson, L. N. (1990). "Adaptive 

forecasting of freeway traffic congestion." Transportation Research Record: 

Journal of the Transportation Research Board(1287), 29-33. 

Dell'Acqua, P., Bellotti, F., Berta, R., and De Gloria, A. (2015). "Time-aware 

multivariate nearest neighbor regression methods for traffic flow prediction." 

IEEE Transactions on Intelligent Transportation Systems, 16(6), 3393-3402. 

Demiryurek, U., Banaei-Kashani, F., and Shahabi, C. (2010). "TransDec: A 

spatiotemporal query processing framework for transportation systems." The 

26th International Conference on Data Engineering (ICDE 2010), IEEE, Long 

Beach, CA, March 1-6, 1197-1200. 



 

162 

 

Demiryurek, U., Pan, B., Banaei-Kashani, F., and Shahabi, C. (2009). "Temporal 

Modeling of Spatiotemporal Networks." The 2nd International Workshop on 

Computational Transportation Science (IWCTS 2009), Association for 

Computing Machinery (ACM), Seattle, WA, November 3. 

Dia, H. (2001). "An object-oriented neural network approach to short-term traffic 

forecasting." European Journal of Operational Research, 131(2), 253-261. 

Dixon, K., Hummer, J., and Lorscheider, A. (1996). "Capacity for North Carolina 

freeway work zones." Transportation Research Record: Journal of the 

Transportation Research Board(1529), 27-34. 

Dixon, K. K., and Hummer, J. E. (1996). "Capacity and delay in major freeway 

construction zones." Center for Transportation Engineering Studies, Dept. of 

Civil Engineering, North Carolina State University, Raleigh, NC. 

Dougherty, M. S., and Cobbett, M. R. (1997). "Short-term inter-urban traffic forecasts 

using neural networks." International Journal of Forecasting, 13(1), 21-31. 

Dudek, C. L., and Richards, S. H. (1981). "Traffic capacity through work zones on urban 

freeways." Texas Department of Transportation, Austin, TX. 

Effati, M., Thill, J.-C., and Shabani, S. (2015). "Geospatial and machine learning 

techniques for wicked social science problems: Analysis of crash severity on a 

regional highway corridor." Journal of Geographical Systems, 17(2), 107-135. 

Ekedebe, N., Yu, W., Lu, C., and Moulema, P. (2015). "An evaluation into the efficiency 

and effectiveness of machine learning algorithms in realistic traffic pattern 

prediction using field data." SPIE: Independent Component Analyses, 



 

163 

 

Compressive Sampling, Large Data Analyses (LDA), Neural Networks, 

Biosystems, and Nanoengineering XIII, International Society for Optics and 

Photonics, September 30, 94960B. 

Erdmann, T. P., Does, R. J., and Bisgaard, S. (2009). "Quality quandaries*: A gage R&R 

study in a hospital." Quality Engineering, 22(1), 46-53. 

Ermer, D. S. (2006). "Appraiser variation in gage R&R measurement." Quality 

Progress, 39, 75-78. 

Fausett, L. (1994). Fundamentals of neural networks: architectures, algorithms, and 

applications, Prentice-Hall, Inc., Upper Saddle River, NJ. 

Federal Highway Administration (2002). "Life-Cycle Cost Analysis Primer." Federal 

Highway Administration, Office of Asset Management, Washington, D.C. 

Federal Highway Administration (2006). "Work Zone Impacts Assessment – An 

Approach to Assess and Manage Work Zone Safety and Mobility Impacts of 

Road Projects." 

<http://www.ops.fhwa.dot.gov/Wz/resources/final_rule/wzi_guide/index.htm>. 

(01/30, 2016). 

Federal Highway Administration (2007). "Rule on Work Zone Safety and Mobility 23 

CFR 630 Subpart J." Federal Highway Administration, Washington, D.C. 

Federal Highway Administration (2011). "Guide on the Consistent Application of 

Traffic Analysis Tools and Methods." Federal Highway Administration, 

Washington, D.C. 

http://www.ops.fhwa.dot.gov/Wz/resources/final_rule/wzi_guide/index.htm


 

164 

 

Federal Highway Administration (2014). "6.0 Comparison of Highway Capacity Manual 

(HCM) and Simulation." 

<http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol1/sect6.htm>. (6/30, 2014). 

Federal Highway Administration (2014). "Facts and Statistics – Work Zone Mobility." 

<http://www.ops.fhwa.dot.gov/wz/resources/facts_stats/mobility.htm>. (05/30, 

2016). 

Federal Highway Administration (2014). "MAP-21: Moving Ahead for Progress in the 

21st Century." <https://www.fhwa.dot.gov/map21>. (07/05, 2014). 

Federal Highway Administration (2015). "Travel Monitoring." 

<http://www.fhwa.dot.gov/policyinformation/tables/02.cfm>. (10/30, 2015). 

Federal Highway Administration (2015). "Work Zone and Traffic Analysis Tools." 

<http://www.ops.fhwa.dot.gov/wz/traffic_analysis/tools.htm>. (11/15, 2015). 

Federal Highway Administration (2015). "Work Zone Impacts Assessment." 

<http://ops.fhwa.dot.gov/wz/resources/impact_factsheet.htm>. (1/30, 2016). 

Federal Highway Administration (2016). "Fixing America's Surface Transportation Act 

or "FAST Act"." <http://www.fhwa.dot.gov/fastact/>. (05/31, 2016). 

Fletcher, L., Katkovnik, V., Steffens, F., and Engelbrecht, A. (1998). "Optimizing the 

number of hidden nodes of a feedforward artificial neural network." 

International Joint Conference on Neural Networks Proceedings and World 

Congress on Computational Intelligence 1998, IEEE, Cambridge, MA, May 4-9, 

1608-1612. 

http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol1/sect6.htm
http://www.ops.fhwa.dot.gov/wz/resources/facts_stats/mobility.htm
https://www.fhwa.dot.gov/map21
http://www.fhwa.dot.gov/policyinformation/tables/02.cfm
http://www.ops.fhwa.dot.gov/wz/traffic_analysis/tools.htm
http://ops.fhwa.dot.gov/wz/resources/impact_factsheet.htm
http://www.fhwa.dot.gov/fastact/


 

165 

 

Gevrey, M., Dimopoulos, I., and Lek, S. (2003). "Review and comparison of methods to 

study the contribution of variables in artificial neural network models." 

Ecological Modelling, 160(3), 249-264. 

Ghosh-Dastidar, S., and Adeli, H. (2006). "Neural network-wavelet microsimulation 

model for delay and queue length estimation at freeway work zones." Journal of 

Transportation Engineering, 132(4), 331-341. 

Grant, J. L. (2014). "Short-term peak demand forecasting using an artificial neural 

network with controlled peak demand through intelligent electrical loading." 

Dissertation, University of Miami, Coral Gables, FL. 

Gu, H., Lu, J., and Liu, Q. (2015). "Traffic volume prediction based on cost factor 

optimization of support vector machine regression." The 15th COTA 

International Conference of Transportation Professionals (CICTP 2015), ASCE, 

Beijing, China, July 25-27, 621-629. 

Gutierrez-Osuna, R. (2005). "Introduction to pattern analysis." Lecture Notes, 

Department of Computer Science and Engineering , Texas A&M University, 

College Station, TX. 

Habtemichael, F. G., and Cetin, M. (2016). "Short-term traffic flow rate forecasting 

based on identifying similar traffic patterns." Transportation Research Part C: 

Emerging Technologies, 66, 61-78. 

Hamed, M. M., Al-Masaeid, H. R., and Said, Z. M. B. (1995). "Short-term prediction of 

traffic volume in urban arterials." Journal of Transportation Engineering, 121(3), 

249-254. 



 

166 

 

Hasley, A. (2013). "Washington rated the worst for traffic congestion." 

<http://www.washingtonpost.com/local/trafficandcommuting/washington-rated-

the-worst-for-traffic-congestion--again/2013/02/04/125be724-6ee3-11e2-8b8d-

e0b59a1b8e2a_story.html>. (12/02, 2013). 

Hoffa, D. W., and Laux, C. M. (2007). "Gauge R&R: An effective methodology for 

determining the adequacy of a new measurement system for micron-level 

metrology." NAIT 2007 Conference, Association of Technology, Management, 

and Applied Engineering (ATMAE), Panama City Beach, FL, November 25, 

139-145. 

Hong, H., Huang, W., Xing, X., Zhou, X., Lu, H., Bian, K., and Xie, K. (2015). "Hybrid 

multi-metric k-nearest neighbor regression for traffic flow prediction." The 18th 

International Conference on Intelligent Transportation Systems (ITSC 2015), 

IEEE, Las Palmas de Gran Canaria, Spain, September 15-18, 2262-2267. 

Hong, H., Huang, W., Zhou, X., Du, S., Bian, K., and Xie, K. (2015). "Short-term traffic 

flow forecasting: Multi-metric KNN with related station discovery." The 12th 

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 

2015), IEEE, Zhangjiajie, China, August 15-17, 1670-1675. 

Hou, Y., Edara, P., and Sun, C. (2015). "Traffic flow forecasting for urban work zones." 

IEEE Transactions on Intelligent Transportation Systems, 16(4), 1761-1770. 

Hourdakis, J., Michalopoulos, P. G., and Kottommannil, J. (2003). "Practical procedure 

for calibrating microscopic traffic simulation models." Transportation Research 

Record: Journal of the Transportation Research Board, 1852(1), 130-139. 

http://www.washingtonpost.com/local/trafficandcommuting/washington-rated-the-worst-for-traffic-congestion--again/2013/02/04/125be724-6ee3-11e2-8b8d-e0b59a1b8e2a_story.html
http://www.washingtonpost.com/local/trafficandcommuting/washington-rated-the-worst-for-traffic-congestion--again/2013/02/04/125be724-6ee3-11e2-8b8d-e0b59a1b8e2a_story.html
http://www.washingtonpost.com/local/trafficandcommuting/washington-rated-the-worst-for-traffic-congestion--again/2013/02/04/125be724-6ee3-11e2-8b8d-e0b59a1b8e2a_story.html


 

167 

 

Hu, W., Yan, L., Liu, K., and Wang, H. (2016). "A short-term traffic flow forecasting 

method based on the hybrid PSO-SVR." Neural Processing Letters, 43(1), 155-

172. 

Hyndman, R. J. (2014). "Measuring forecast accuracy." Forecasting: principles and 

practice, OTexts, Melbourne, Australia. 

Ilonen, J., Kamarainen, J.-K., and Lampinen, J. (2003). "Differential evolution training 

algorithm for feed-forward neural networks." Neural Processing Letters, 17(1), 

93-105. 

Ingraham, C. (2015). "Where America’s worst roads are — and how much they’re 

costing us." <https://www.washingtonpost.com/news/wonk/wp/2015/06/25/why-

driving-on-americas-roads-can-be-more-expensive-than-you-think/>. (11/01, 

2015). 

Innamaa, S. (2000). "Short-term prediction of traffic situation using MLP-neural 

networks." The 7th World Congress on Intelligent Transport Systems, ITS World 

Congress, Turin, Italy, November 6-9, 6-9. 

Jain, A. K., Mao, J., and Mohiuddin, K. (1996). "Artificial neural networks: A tutorial." 

Computer(3), 31-44. 

Jeffery, D., Russam, K., and Robertson, D. (1987). "Electronic route guidance by 

AUTOGUIDE: The research background." Traffic Engineering & Control, 

28(10), 525-529. 

https://www.washingtonpost.com/news/wonk/wp/2015/06/25/why-driving-on-americas-roads-can-be-more-expensive-than-you-think/
https://www.washingtonpost.com/news/wonk/wp/2015/06/25/why-driving-on-americas-roads-can-be-more-expensive-than-you-think/


 

168 

 

Jiang, H., Zou, Y., Zhang, S., Tang, J., and Wang, Y. (2016). "Short-term speed 

prediction using remote microwave sensor data: Machine learning versus 

statistical model." Mathematical Problems in Engineering, 2016, 1-13. 

Jiang, X., and Adeli, H. (2004). "Object‐oriented model for freeway work zone capacity 

and queue delay estimation." Computer‐Aided Civil and Infrastructure 

Engineering, 19(2), 144-156. 

Jiang, Y.-P., Guo, J.-L., and Zhao, J.-W. (2013). "Short-term traffic flow's forecasting by 

fusing wavelet neural network and historical trend model." Modern Computer, 3, 

26-29. 

Jin, F., and Sun, S. (2008). "Neural network multitask learning for traffic flow 

forecasting." International Joint Conference on Neural Networks and World 

Congress on Computational Intelligence 2008, IEEE, Wan Chai, Hong Kong, 

June 1-6, 1897-1901. 

Joubert, J. W., and Meintjes, S. (2015). "Repeatability & reproducibility: Implications of 

using GPS data for freight activity chains." Transportation Research Part B: 

Methodological, 76, 81-92. 

Kachroo, P., and Özbay, K. M. (2012). Feedback control theory for dynamic traffic 

assignment, Springer Science & Business Media, Berlin, Germany. 

Kalman, R. E. (1960). "A new approach to linear filtering and prediction problems." 

Journal of Basic Engineering, 82(1), 35-45. 

Kamarianakis, Y., and Prastacos, P. (2003). "Forecasting traffic flow conditions in an 

urban network: Comparison of multivariate and univariate approaches." 



 

169 

 

Transportation Research Record: Journal of the Transportation Research 

Board(1857), 74-84. 

Kamarianakis, Y., and Prastacos, P. (2005). "Space–time modeling of traffic flow." 

Computers & Geosciences, 31(2), 119-133. 

Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J., and Rajabi, M. J. (2014). 

"Advantage and drawback of support vector machine functionality." 

International Conference on Computer, Communications, and Control 

Technology (I4CT 2014), IEEE, Langkawi, Malaysia, September 2-4, 63-65. 

Kargah-Ostadi, N. (2014). "Comparison of machine learning techniques for developing 

performance prediction models." Computing in Civil and Building Engineering 

(2014), ASCE, Orlando, FL, June 23-25, 1222-1229. 

Karim, A., and Adeli, H. (2003). "CBR model for freeway work zone traffic 

management." Journal of Transportation Engineering, 129(2), 134-145. 

Karim, A., and Adeli, H. (2003). "Radial basis function neural network for work zone 

capacity and queue estimation." Journal of Transportation Engineering, 129(5), 

494-503. 

Karlaftis, M., and Vlahogianni, E. (2011). "Statistical methods versus neural networks in 

transportation research: Differences, similarities and some insights." 

Transportation Research Part C: Emerging Technologies, 19(3), 387-399. 

Kaysi, I., Ben-Akiva, M., and Koutsopoulos, H. (1993). "An integrated approach to 

vehicle routing and congestion prediction for real-time driver guidance." 

Intelligent Vehicle Highway Systems(1408), 66-74. 



 

170 

 

Kazerouni, A. M. (2009). "Design and analysis of gauge R&R studies: Making decisions 

based on ANOVA method." World Academy of Science, Engineering and 

Technology, 52, 31-35. 

Ke, J., and Liu, X. (2008). "Empirical analysis of optimal hidden neurons in neural 

network modeling for stock prediction." Pacific-Asia Workshop on 

Computational Intelligence and Industrial Application (PACIIA 2008), IEEE, 

Wuhan, China, December 19-20, 828-832. 

Keay, K., and Simmonds, I. (2005). "The association of rainfall and other weather 

variables with road traffic volume in Melbourne, Australia." Accident analysis & 

prevention, 37(1), 109-124. 

Kim, C., and Hobeika, A. G. (1993). "A short-term demand forecasting model from real-

time traffic data." Conference on Infrastructure Planning and Management, 

ASCE, Denver, CO, June 21-23, 540-550. 

Knowles, G., Antony, J., and Vickers, G. (2000). "A practical methodology for 

analysing and improving the measurement system." Quality Assurance: Good 

Practice, Regulation, and Law, 8(2), 59-75. 

Krammes, R. A., Dudek, C. L., and Memmott, J. L. (1987). "Computer model for 

evaluating and scheduling freeway work-zone lane closures." Transportation 

Research Record: Journal of the Transportation Research Board(1148), 18-24. 

Krammes, R. A., and Lopez, G. O. (1994). "Updated capacity values for short-term 

freeway work zone lane closures." Transportation Research Record: Journal of 

the Transportation Research Board(1442), 49-56. 



 

171 

 

Kumar, A. (2016). "Practical on artificial neural networks." 

<http://cabgrid.res.in/cabin/publication/smfa/Module%20IV/4.Practical%20on%

20Artificial%20Neural%20Networks%20%20_Amrender%20Kumar.pdf>. 

(02/01, 2016). 

Kumar, K., Parida, M., and Katiyar, V. K. (2015). "Short term traffic flow prediction in 

heterogeneous condition using artificial neural network." Transport, 30(4), 397-

405. 

Lahmiri, S. (2011). "A comparative study of backpropagation algorithms in financial 

prediction." International Journal of Computer Science, Engineering and 

Applications (IJCSEA), 1(4), 15-21. 

Larsen, G. A. (2003). "Measurement system analysis in a production environment with 

multiple test parameters." Quality Engineering, 16(2), 297-306. 

Ledoux, C. (1997). "An urban traffic flow model integrating neural networks." 

Transportation Research Part C: Emerging Technologies, 5(5), 287-300. 

Lee, E. B., and Choi, K. (2006). "Part 1: Pavement rehabilitation: Fast-track construction 

for concrete pavement rehabilitation: California urban highway network." 

Transportation Research Record: Journal of the Transportation Research Board, 

1949(1), 3-10. 

Lee, E. B., Choi, K., and Lim, S. (2008). "Streamlined strategies for faster, less traffic-

disruptive highway rehabilitation in urban networks." Transportation Research 

Record: Journal of the Transportation Research Board, 2081(1), 38-45. 

http://cabgrid.res.in/cabin/publication/smfa/Module%20IV/4.Practical%20on%20Artificial%20Neural%20Networks%20%20_Amrender%20Kumar.pdf
http://cabgrid.res.in/cabin/publication/smfa/Module%20IV/4.Practical%20on%20Artificial%20Neural%20Networks%20%20_Amrender%20Kumar.pdf


 

172 

 

Lee, E. B., and Ibbs, C. (2005). "Computer simulation model: Construction analysis for 

pavement rehabilitation strategies." Journal of Construction Engineering and 

Management, 131(4), 449-458. 

Lee, S., and Fambro, D. (1999). "Application of subset autoregressive integrated moving 

average model for short-term freeway traffic volume forecasting." 

Transportation Research Record: Journal of the Transportation Research 

Board(1678), 179-188. 

Legal Information Institute (2004). "23 CFR 630.1004-Definitions and Explanation of 

Terms." <https://www.law.cornell.edu/cfr/text/23/630.1004>. (04/07, 2016). 

Levin, M., and Tsao, Y.-D. (1980). "On forecasting freeway occupancies and volumes 

(abridgment)." Transportation Research Record(773), 47-49. 

Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to 

exponential smoothing and curve fitting, Butterworth Scientific London, UK. 

Li, D.-M., and Liu, B. (2014). "Modeling and prediction of highway traffic flow based 

on wavelet neural network." 2014 International Conference on Machine 

Learning and Cybernetics (ICMLC), IEEE, Lanzhou, China, July 13-16, 675-

679. 

Lighthill, M. J., and Whitham, G. B. (1955). "On kinematic waves. II. A theory of traffic 

flow on long crowded roads." Proceedings of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences, 229(1178), 317-345. 

Lin, L., Wang, Q., and Sadek, A. (2013). "Short-term forecasting of traffic volume: 

evaluating models based on multiple data sets and data diagnosis measures." 

https://www.law.cornell.edu/cfr/text/23/630.1004


 

173 

 

Transportation Research Record: Journal of the Transportation Research 

Board(2392), 40-47. 

Lingras, P., and Mountford, P. (2001). "Time delay neural networks designed using 

genetic algorithms for short term inter-city traffic forecasting." Engineering of 

Intelligent Systems, Springer, Berlin, Germany, 290-299. 

Liu, Z., Guo, J., and Huang, W. (2016). "Artificial neural networks for short term traffic 

flow forecasting: Effects of training algorithms." Transportation Research Board 

95th Annual Meeting, Transportation Research Board, Washington, D.C., 

January 10-14, 1-17. 

Lv, Y., Duan, Y., Kang, W., Li, Z., and Wang, F.-Y. (2015). "Traffic flow prediction 

with big data: A deep learning approach." Intelligent Transportation Systems, 

IEEE Transactions on, 16(2), 865-873. 

Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y. (2015). "Long short-term memory 

neural network for traffic speed prediction using remote microwave sensor data." 

Transportation Research Part C: Emerging Technologies, 54, 187-197. 

Makridakis, S., Wheelwright, S. C., and Hyndman, R. J. (2008). Forecasting methods 

and applications, John Wiley & Sons, Hoboken, NJ. 

May, A. (1990). Traffic flow fundamentals, Prentice Hall Inc., Upper Saddle River, NJ. 

Mazaré, P.-E., Dehwah, A. H., Claudel, C. G., and Bayen, A. M. (2011). "Analytical and 

grid-free solutions to the Lighthill–Whitham–Richards traffic flow model." 

Transportation Research Part B: Methodological, 45(10), 1727-1748. 



 

174 

 

Maze, T., Agarwai, M., and Burchett, G. (2006). "Whether weather matters to traffic 

demand, traffic safety, and traffic operations and flow." Transportation Research 

Record: Journal of the Transportation Research Board(1948), 170-176. 

McCulloch, W. S., and Pitts, W. (1943). "A logical calculus of the ideas immanent in 

nervous activity." The Bulletin of Mathematical Biophysics, 5(4), 115-133. 

McDonald, J. H. (2009). Handbook of biological statistics, Sparky House Publishing, 

Baltimore, MD. 

Memmott, J. L., and Dudek, C. L. (1984). "Queue and user cost evaluation of work 

zones (QUEWZ)." The 63rd Annual Meeting of the Transportation Research 

Board (TRB)(979), 12-19. 

Mohammadi, N., and Zangeneh, M. (2016). "Customer credit risk assessment using 

artificial neural networks." International Journal of Information Technology and 

Computer Science (IJITCS), 8(3), 58-66. 

MoreSteam (2015). "Measuremt System Analysis (MSA)." 

<https://www.moresteam.com/toolbox/measurement-system-analysis.cfm>. 

(04/27, 2015). 

Moses, R., Mtoi, E., McBean, H., and Ruegg, S. (2013). "Development of speed models 

for improving travel forecasting and highway performance evaluation." Florida 

State University, Florida Department of Transportation, Tallahassee, FL  

Mtoi, E. T., and Moses, R. (2014). "Calibration and evaluation of link congestion 

functions: Applying intrinsic sensitivity of link speed as a practical consideration 

https://www.moresteam.com/toolbox/measurement-system-analysis.cfm


 

175 

 

to heterogeneous facility types within urban network." Journal of Transportation 

Technologies, 4(2), 141-149. 

Nam, D. H., and Drew, D. R. (1998). "Analyzing freeway traffic under congestion: 

Traffic dynamics approach." Journal of Transportation Engineering, 124(3), 

208-212. 

Napolitan, F., and Zegras, P. C. (2008). "Shifting urban priorities?: Removal of inner 

city freeways in the United States." Transportation Research Record: Journal of 

the Transportation Research Board, 2046(1), 68-75. 

NeuroDimension Inc (2010). "NeuroSolution Help." 

<http://www.neurosolutions.com/documentation/NeuroSolutions.pdf>. (03/23, 

2016). 

Nilsson, I. M., and Smirnov, O. A. (2016). "Measuring the effect of transportation 

infrastructure on retail firm co-location patterns." Journal of Transport 

Geography, 51, 110-118. 

Ofori, T., Ackah, B., and Ephraim, L. (2012). "Statistical models for forecasting road 

accident injuries in Ghana." International Journal of Research in Environmental 

Science and Technology, 2(4), 143-149. 

Oh, S., Byon, Y.-J., Jang, K., and Yeo, H. (2015). "Short-term travel-time prediction on 

highway: A review of the data-driven approach." Transport Reviews, 35(1), 4-32. 

Okutani, I., and Stephanedes, Y. J. (1984). "Dynamic prediction of traffic volume 

through Kalman filtering theory." Transportation Research Part B: 

Methodological, 18(1), 1-11. 

http://www.neurosolutions.com/documentation/NeuroSolutions.pdf


 

176 

 

Orndoff, C., and Papkov, G. (2011). "Effect of the 2009 American recovery and 

reinvestment act (ARRA) on civil engineering." Journal of Professional Issues in 

Engineering Education & Practice, 138(1), 2-9. 

Osma, A. (2011). "An assessment of the robustness of gauge repeatability and 

reproducibility analysis in automotive components." Proceedings of the 

Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 

0954407011401504. 

Pamuła, T. (2011). "Road traffic parameters prediction in urban traffic management 

systems using neural networks." Transport Problems, 6(3), 123-128. 

Pan, B., Demiryurek, U., and Shahabi, C. (2012). "Utilizing real-world transportation 

data for accurate traffic prediction." The 12th International Conference on Data 

Mining 2012, IEEE, Brussels, Belgium, December 10, 595-604. 

Pan, T., Sumalee, A., Zhong, R.-X., and Indra-Payoong, N. (2013). "Short-term traffic 

state prediction based on temporal–spatial correlation." IEEE Transactions on 

Intelligent Transportation Systems, 14(3), 1242-1254. 

Pan, Y., Wang, D., Li, X., and Xiao, Z. (2015). "Error correction and wavelet neural 

network based short-term traffic flow prediction." International Conference on 

Computer Science and Intelligent Communication (CSIC 2015), Atlantis Press, 

Zhengzhou, China, July 18-19, 83-86. 

Passow, B. N., Elizondo, D., Chiclana, F., Witheridge, S., and Goodyer, E. (2013). 

"Adapting traffic simulation for traffic management: A neural network 



 

177 

 

approach." The 16th International Conference on Intelligent Transportation 

Systems (ITSC 2013), IEEE, The Hague, Netherlands, October 6-9, 1402-1407. 

Portugal, I., Alencar, P., and Cowan, D. (2016). "A survey on domain-specific languages 

for machine learning in big data." arXiv preprint arXiv:1602.07637. 

Resop, J. P. (2006). "A comparison of artificial neural networks and statistical regression 

with biological resources applications." MS Thesis, University of Maryland, 

College Park, MD. 

Richards, P. I. (1956). "Shock waves on the highway." Operations Research, 4(1), 42-

51. 

Rizwan, J. M., Krishnan, P. N., Karthikeyan, R., and Kumar, S. R. (2016). "Multi layer 

perception type artificial neural network based traffic control." Indian Journal of 

Science and Technology, 9(5), 1-3. 

Roh, H.-J., Sharma, S., and Sahu, P. K. (2015). "Modeling snow and cold effects for 

classified highway traffic volumes." KSCE Journal of Civil Engineering, 1-12. 

Sadegh, A., Radwan, A. E., and Rouphail, N. M. (1988). "ARTWORK: A simulation 

model of urban arterial work zones." Transportation Research Record(1163), 1-

3. 

Saigal, S., and Mehrotra, D. (2012). "Performance comparison of time series data using 

predictive data mining techniques." Advances in Information Mining, 4(1), 57-

66. 

Santos, R., Ruppb, M., Bonzi, S., and Filetia, A. (2013). "Comparison between 

multilayer feedforward neural networks and a radial basis function network to 



 

178 

 

detect and locate leaks in pipelines transporting gas." Chem. Eng. Trans, 

32(1375), e1380. 

Sarle, W. S. (1994). "Neural networks and statistical models." The 19th Annual SAS 

Users Group International Conference (SUGI 19), SAS Institute Inc., Dallas, 

TX, April 10-13, 1-13. 

SAS Institute (2007). "JMP User Guide, Release 7." SAS Institute, Cary, NC. 

Scriba, T., and Seplow, Jennifer (2006). "Rule on Work Zone Safety and Mobility." 

Public Roads, 69(4). 

Shahsavari, B., and Abbeel, P. (2015). "Short-term traffic forecasting: Modeling and 

learning spatio-temporal relations in transportation networks using graph neural 

networks." Department of Electrical Engineering and Computer Sciences, 

University of California at Berkeley, Berkeley, CA. 

Shane, J. S., Kandil, A. A., and Schexnayder, C. J. (2012). A guidebook for nighttime 

construction: Impacts on safety, quality, and productivity, Transportation 

Research Board, Washington, D.C. 

Sheela, K. G., and Deepa, S. (2013). "Review on methods to fix number of hidden 

neurons in neural networks." Mathematical Problems in Engineering, 2013. 

Simovici, D. (2015). "Intelligent data analysis techniques—machine learning and data 

mining." Artificial Intelligent Approaches in Petroleum Geosciences, Springer, 

Berlin, Germany, 1-51. 

Smith, B. L., and Demetsky, M. J. (1994). "Short-term traffic flow prediction: neural 

network approach." Transportation Research Record(1453), 98-104. 



 

179 

 

Smith, B. L., and Demetsky, M. J. (1997). "Traffic flow forecasting: Comparison of 

modeling approaches." Journal of Transportation Engineering, 123(4), 261-266. 

Smith, R., McCrary, S. W., and Callahan, R. N. (2007). "Gauge repeatability and 

reproducibility studies and measurement system analysis: A multimethod 

exploration of the state of practice." Journal of Industrial Technology, 23(1), 2-

12. 

Sommer, M., Tomforde, S., and Haehner, J. (2015). "A Systematic study on forecasting 

of traffic flows with artificial neural networks." The 28th International 

Conference on Architecture of Computing Systems (ARCS 2015), VDE, Porto, 

Portugal, March 24-27, 1-8. 

Stamm, S. (2013). "A comparison of gauge repeatability and reproducibilty methods " 

Dissertation, Indiana State University, Terre Haute, IN. 

State of California (2016). "Census Tracts of California." 

<http://gis.oshpd.ca.gov/atlas/places/tract>. (01/04, 2016). 

Statthopoulos, A., and Karlaftis, M. (2003). "A multivariate state space approach for 

urban traffic flow modeling and predicting." Transportation Research Part C, 

11, 121-135. 

Stephanedes, Y. J., Michalopoulos, P. G., and Plum, R. A. (1981). "Improved estimation 

of traffic flow for real-time control (discussion and closure)." The 60th Annual 

Meeting of the Transportation Research Board (TRB)(795), 28-39. 

Stewart, O. T., Carlos, H. A., Lee, C., Berke, E. M., Hurvitz, P. M., Li, L., Moudon, A. 

V., and Doescher, M. P. (2016). "Secondary GIS built environment data for 

http://gis.oshpd.ca.gov/atlas/places/tract


 

180 

 

health research: Guidance for data development." Journal of Transport & Health, 

3(4), 529-539. 

Su, H., Zhang, L., and Yu, S. (2007). "Short-term traffic flow prediction based on 

incremental support vector regression." The 3rd International Conference on 

Natural Computation (ICNC 2007), IEEE, Haikou, China, August 24-27, 640-

645. 

Subramanian, N., Yajnik, A., and Murthy, R. S. R. (2004). "Artificial neural network as 

an alternative to multiple regression analysis in optimizing formulation 

parmaeters of cytarabine liposomes." AAPS PharmSciTech, 5(1), 11-19. 

Sun, J. (2012). "Learning algorithm and hidden node selection scheme for local coupled 

feedforward neural network classifier." Neurocomputing, 79, 158-163. 

Tan, H., Wu, Y., Shen, B., Jin, P. J., and Ran, B. (2016). "Short-term traffic prediction 

based on dynamic tensor completion." IEEE Transactions on Intelligent 

Transportation Systems, 1-11. 

Tang, J., Xu, G., Wang, Y., Wang, H., Zhang, S., and Liu, F. (2013). "Traffic flow 

prediction based on hybrid model using double exponential smoothing and 

support vector machine." The 16th International Conference on Intelligent 

Transportation Systems (ITSC 2013), IEEE, The Hague, Netherlands, October 6-

9, 130-135. 

Taubenböck, H., Klotz, M., Wurm, M., Schmieder, J., Wagner, B., Wooster, M., Esch, 

T., and Dech, S. (2013). "Delineation of central business districts in mega city 



 

181 

 

regions using remotely sensed data." Remote Sensing of Environment, 136, 386-

401. 

Texas A&M Transportation Institute (2012). "2012 Urban Mobility Report." TTI's 

Annual Urban Mobility Report, Texas A&M Transportation Institute, College 

Station, TX. 

Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and 

Rodriguez, E. A. (2004). "Concepts of model verification and validation." Los 

Alamos National Lab., Los Alamos, NM. 

The PeMS Forum (2009). "The PeMS Glossary." 

<http://pemsforum.dot.ca.gov/?page_id=79>. (10/20, 2016). 

Tiefeng, W. (2010). "Study of improved BP neural network on forecasting city traffic 

flow." Transportation Science & Technology, 242(5), 92-94. 

Transportation Research Board (2010). Highway Capacity Manual, National Research 

Council, Washington, D.C. 

Trenn, S. (2008). "Multilayer perceptrons: Approximation order and necessary number 

of hidden units." IEEE Transactions on Neural Networks, 19(5), 836-844. 

TRIP (2014). "California Transportation by the Numbers: Meeting the State's Need for 

Safe and Efficient Mobility." 

<http://www.tripnet.org/docs/CA_Transportation_by_the_Numbers_TRIP_Repo

rt_Sep_2014.pdf>. (05/25, 2016). 

http://pemsforum.dot.ca.gov/?page_id=79
http://www.tripnet.org/docs/CA_Transportation_by_the_Numbers_TRIP_Report_Sep_2014.pdf
http://www.tripnet.org/docs/CA_Transportation_by_the_Numbers_TRIP_Report_Sep_2014.pdf


 

182 

 

Ullman, G. (1996). "Queuing and natural diversion at short-term freeway work zone lane 

closures." Transportation Research Record 1529, Transportation Research 

Board, Washington, D.C., 19-26. 

Vadakpat, G., Stoffels, S., and Dixon, K. (2000). "Road user cost models for network-

level pavement management." Transportation Research Record: Journal of the 

Transportation Research Board, 1699(1), 49-57. 

Van Der Smagt, P. P. (1994). "Minimisation methods for training feedforward neural 

networks." Neural Networks, 7(1), 1-11. 

Van Lint, J., Hoogendoorn, S., and Van Zuylen, H. (2002). "Freeway travel time 

prediction with state-space neural networks: Modeling state-space dynamics with 

recurrent neural networks." Transportation Research Record: Journal of the 

Transportation Research Board, 1811(1), 30-39. 

Vijayalakshmi, B., and Sugumar, R. (2016). "Design of a predictive model for 

congenital heart disease using neural networks." Middle-East Journal of 

Scientific Research, 24(1), 120-127. 

Vlahogianni, E. I., Karlaftis, M. G., and Golias, J. C. (2005). "Optimized and meta-

optimized neural networks for short-term traffic flow prediction: A genetic 

approach." Transportation Research Part C: Emerging Technologies, 13(3), 211-

234. 

Vovsha, P., and Bradley, M. (2006). "Advanced activity-based models in context of 

planning decisions." Transportation Research Record: Journal of the 

Transportation Research Board, 1981(1), 34-41. 



 

183 

 

Wei, D., and Liu, H. (2013). "An adaptive-margin support vector regression for short-

term traffic flow forecast." Journal of Intelligent Transportation Systems, 17(4), 

317-327. 

Weingroff, R. F. (1996). "Creating the Interstate System." Public Roads, 60(1), 10-17. 

Wheeler, D. (2006). EMP (evaluating the measurement process) III: Using imperfect 

data, Statistical Process Control (SPC) Process, Knoxville, TN. 

Wheeler, D. J. (2006). "An honest gauge R&R study." 2006 ASQ/ASA Fall Technical 

Conference, Statistical Process Control (SPC) Process, Columbus, OH, October 

12, 1-19. 

Whittaker, J., Garside, S., and Lindveld, K. (1997). "Tracking and predicting a network 

traffic process." International Journal of Forecasting, 13(1), 51-61. 

Williams, B. M., Durvasula, P. K., and Brown, D. E. (1998). "Urban freeway traffic flow 

prediction: Application of seasonal autoregressive integrated moving average and 

exponential smoothing models." Transportation Research Record: Journal of the 

Transportation Research Board, 1644(1), 132-141. 

Woschnagg, E., and Cipan, J. (2004). "Evaluating forecast accuracy." 

<http://homepage.univie.ac.at/robert.kunst/procip.pdf>. (08/13, 2016). 

Xu, S., and Chen, L. (2008). "A novel approach for determining the optimal number of 

hidden layer neurons for FNN’s and its application in data mining." The 5th 

International Conference on Information Technology and Applications (ICITA 

2008), IEEE, Cairns, Queensland, Australia, June 23-26, 23-26. 

http://homepage.univie.ac.at/robert.kunst/procip.pdf


 

184 

 

Xu, Y., Kong, Q.-J., and Liu, Y. (2013). "Short-term traffic volume prediction using 

classification and regression trees." 2013 Intelligent Vehicles Symposium (IV) 

IEEE, Gold Coast City, Australia, June 23-26, 493-498. 

Yao, Y.-f., and Cao, F. (2006). "Short-time traffic flow prediction based on ARIMA." 

Technology & Economy in Areas of Communications, 35(3), 105-107. 

Yu, C., and Lam, K. C. (2014). "Applying multiple kernel learning and support vector 

machine for solving the multicriteria and nonlinearity problems of traffic flow 

prediction." Journal of Advanced Transportation, 48(3), 250-271. 

Yu, H., Xie, T., Paszczynski, S., and Wilamowski, B. M. (2011). "Advantages of radial 

basis function networks for dynamic system design." IEEE Transactions on 

Industrial Electronics, 58(12), 5438-5450. 

Yu, Z., Sun, T., Sun, H., and Yang, F. (2015). "Research on combinational forecast 

models for the traffic flow." Mathematical Problems in Engineering, 2015, 1-10. 

Zanobini, A., Sereni, B., Catelani, M., and Ciani, L. (2016). "Repeatability and 

reproducibility techniques for the analysis of measurement systems." 

Measurement, 86, 125-132. 

Zhang, H. (2000). "Recursive prediction of traffic conditions with neural network 

models." Journal of Transportation Engineering, 126(6), 472-481. 

Zhang, Y., and Ye, Z. (2008). "Short-term traffic flow forecasting using fuzzy logic 

system methods." Journal of Intelligent Transportation Systems, 12(3), 102-112. 



 

185 

 

Zhang, Y., Zhang, Y., and Haghani, A. (2014). "A hybrid short-term traffic flow 

forecasting method based on spectral analysis and statistical volatility model." 

Transportation Research Part C: Emerging Technologies, 43, 65-78. 

Zheng, H., Nava, E., and Chiu, Y.-C. (2014). "Measuring networkwide traffic delay in 

schedule optimization for work-zone planning in urban networks." IEEE 

Transactions on Intelligent Transportation Systems, 15(6), 2595-2604. 

Zheng, Z., and Su, D. (2014). "Short-term traffic volume forecasting: A k-nearest 

neighbor approach enhanced by constrained linearly sewing principle component 

algorithm." Transportation Research Part C: Emerging Technologies, 43, 143-

157. 

Zhu, J. Z., Cao, J. X., and Zhu, Y. (2014). "Traffic volume forecasting based on radial 

basis function neural network with the consideration of traffic flows at the 

adjacent intersections." Transportation Research Part C: Emerging 

Technologies, 47, 139-154. 

Zhu, Y., and Ahmad, I. (2008). "Developing a realistic-prototyping RUC evaluation tool 

for FDOT." Florida International University, Florida Department of 

Transportation, Miami, FL. 

Zhu, Y., Ahmad, I., and Wang, L. (2009). "Estimating work zone road user cost for 

alternative contracting methods in highway construction projects." Journal of 

Construction Engineering and Management, 135(7), 601-608. 

 

 


