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ABSTRACT

New Advances in Synchronization of Digital

Communication Receivers. (December 2003)

Yan Wang, B.S., Peking University, P.R. China;

M.S., Beijing University of Posts & Telecommunications, P.R. China

Chair of Advisory Committee: Dr. Erchin Serpedin

Synchronization is a challenging but very important task in communications.

In digital communication systems, a hierarchy of synchronization problems has to

be considered: carrier synchronization, symbol timing synchronization and frame

synchronization. For bandwidth efficiency and burst transmission reasons, the former

two synchronization steps tend to favor non-data aided (NDA or blind) techniques,

while in general, the last one is usually solved by inserting repetitively known bits or

words into the data sequence and is referred to as a data-aided (DA) approach.

Over the last two decades, extensive research work has been carried out to design

nondata-aided timing recovery and carrier synchronization algorithms. Despite their

importance and spread use, most of the existing blind synchronization algorithms

are derived in an ad-hoc manner without exploiting optimally the entire available

statistical information. In most cases their performance is evaluated by computer

simulations; rigorous and complete performance analysis has not been performed yet.

It turns out that a theoretical oriented approach is indispensable for studying the

limit or bound of algorithms and for comparing different methods.

The main goal of this dissertation is to develop several novel signal processing

frameworks that enable one to analyze and improve the performance of the existing

timing recovery and carrier synchronization algorithms. As byproducts of this analy-
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sis, unified methods for designing new computationally and statistically efficient (i.e.,

minimum variance estimators) blind feedforward synchronizers are developed.

This work consists of three tightly coupled research directions. First, a general

and unified framework is proposed to develop optimal nonlinear least-squares (NLS)

carrier recovery scheme for burst transmissions. A family of blind constellation-

dependent optimal “matched” NLS carrier estimators is proposed for synchronization

of burst transmissions fully modulated by PSK and QAM-constellations in additive

white Gaussian noise channels. Second, a cyclostationary statistics based framework

is proposed for designing computationally and statistically efficient robust blind sym-

bol timing recovery for time-selective flat-fading channels. Lastly, dealing with the

problem of frame synchronization, a simple and efficient data-aided approach is pro-

posed for jointly estimating the frame boundary, the frequency-selective channel and

the carrier frequency offset.
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CHAPTER I

INTRODUCTION

When Charles V retired in weariness from the greatest throne in the world to the

solitude of this monastery at Yuste, he occupied his leisure for some weeks in trying

to regulate two clocks. It proved very difficult. One day, it is recorded, he turned to

his assistant and said: “To think that I attempted to force the reason and conscience

of thousands of men into one mold, and I cannot make two clocks agree!”

(Ellis: The Tasks of Social Hygiene)

A. Background of Digital Synchronization

Clock regulation turned out an extremely difficult task for Charles V, even though

he was such a mighty emperor that governed the people throughout half of Europe

and most of America in sixteenth century. Five hundred years passed, and now the

art of “making two clocks agree” has become the foundation of synchronous digital

communications [94], and also, the coverage of synchronization has been extended

tremendously.

Synchronization is a critical task in communications and its failure may have

catastrophic effects on the system performance [63]. In any physical communica-

tion systems, the information data sequences are first modulated to time-continuous

uniformly spaced waveforms at the transmitter and then transmitted through certain

channels. As a consequence, in addition to the data, the received signal at the receiver

depends on a group of unknown variables referred to as reference parameters, among

which some are related to the implementation of the transmitter and the receiver,

The journal model is IEEE Transactions on Automatic Control.



2

and other are generated during propagation over the channel. The ultimate task of

the receiver is to retrieve the data by means of decision devices and can be properly

performed only after these reference parameters are estimated accurately. Therefore,

synchronization is such a vital function for this measure of reference parameters [63],

[64].

During the last several decades, digital realizations of receivers are of growing

interest due to the increasing need of data transmission and the enormous progress in

semiconductor and integrated circuits technology, which allows to implement complex

algorithms into small size and low cost components in a more reliable and economical

way to achieve bit rates close to the information theoretical limits [63], [64], [83].

As a result, the digital implementation of synchronization implies that the reference

parameters mentioned above should be recovered entirely by means of digital signal

processing based only on signal samples generated at a suitable rate. Generally,

synchronization circuits possess such a large portion of the receiver hardware that

their implementation has a substantial impact on the overall costs [63]. Therefore,

there is always a great demand for developing innovative and efficient synchronization

structures for digital communications.

B. Classifications of Digital Synchronization

In digital communication systems, a hierarchy of synchronization problems has to be

considered. When passband communications and coherent demodulation are involved,

there is the problem of carrier synchronization which concerns the generation of a local

reference carrier with the phase and frequency closely matched to that of the incoming

carrier [35]. In some specific applications, other phase parameters, such as Doppler

rate, have also to be considered. Another problem is the synchronization of symbol
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timing, which is the process of synchronizing the receiver clock with the baseband

data sequence to obtain the optimum sampling times located at the “peaks” of the

signal pulse corresponding to the maximum eye opening. Clearly, the locations of the

pulse peaks must be accurately determined for reliable detection [63].

e θ  ε)
Demodulator

θ

(over)sample

Matched filter
(k;w

e-j

, f ,  ,

Timing ε

Detector
w

e π e-j2   f k

x

Freq. 
Recovery Recovery

Phase

Noise

Receiver

Timing

Correction

Estimation

Channel

Linear filter

Transmitter

Modulator
w

Fig. 1. Block diagram of a coherent communication system

The phase, frequency offset and symbol timing are the main parameters to be

concerned in this research work. The block diagram of Fig. 1 illustrates sketchily

the structure of digital communication systems and the synchronization process dis-

cussed above. In Fig. 1, the digital information data sequence {w} is modulated and

transmitted through physical channels, which in reality have different characteristics

corresponding to different applications, and generally can be mathematically mod-

eled as a linear filter with additive noise. At the end of the receiver, it is common

to first translate the received signal in frequency down to baseband (demodulation),

matched filter and sample (or oversample) the corresponding low-frequency waveform,
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and then operate on the resulting discrete-time samples [63].

Once symbol timing recovery is achieved, frame synchronization may be encoun-

tered further down the hierarchy [35], which is indispensable in systems for which

the unit of information is not a symbol, but rather a frame of symbols, hence, the

boundaries of frames have to be identified [37]. It is obvious that the prerequisite for

frame synchronization is that the symbol timing synchronization must be achieved.

However, it does not need carrier recovery to be done. Actually, in many cases, car-

rier estimation is performed after frame synchronization. A feature that distinguishes

the frame synchronization from those of carrier and symbol timing recoveries is that

it is usually solved by repetitive insertion of bits or words (training symbols) with

known special patterns into the data sequence solely for synchronization purpose [35].

Fig. 2 depicts such structure, where the bit stream is composed of sync words (shown

shaded) and useful information data. Using these known symbols, the frame synchro-

nization is performed, and in many cases, the unknown channel parameters are also

estimated in the shaded bit stream segments [64]. This data-aided (DA) approach has

the advantage of separating the task of the estimation of reference parameters from

the data detection, and makes the complexity of receiver design reduced drastically.

On the other hand, the overall efficiency of the channel is sacrificed. In addition,

burst mode transmission of digital data is currently used in many applications such

as satellite time-division multiple access (TDMA) systems and terrestrial mobile cel-

lular radio, which tends to favor non-data aided (NDA or blind) synchronization

techniques since the preambles represent wasted capacity that should be kept low or

eliminated altogether [44], [71]. Therefore, it is desirable that the carrier and symbol

timing synchronizations are established without using any training sequence, but only

based on the same signal for symbol detection.

From the operating principle point of view, two categories of synchronizers are
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Frame boundaries

Fig. 2. Frame structure

distinguished, i.e., feedback (or closed-loop) synchronizers and feedforward (or open-

loop) synchronizers [64], whose features are shown in Fig. 3(a) and (b), respectively.

Although the feedback schemes have good tracking performance, they have rather

high implementation complexity and may exhibit comparatively long acquisitions due

to hangup phenomena, which is not desirable in short burst [63], [71]. Therefore, in

this dissertation, we only concentrate on blind feedforward synchronization structures

of carrier and symbol timing recovery. On the other hand, when dealing with the

problem of frame synchronization, the DA method will be exploited.

(b)(a)

Fig. 3. Feedback and feedforward topologies

C. An Overview of the Dissertation

Over the last two decades, extensive research work has been carried out to design

nondata-aided timing recovery and carrier synchronization algorithms. These blind

methods have found applications in many areas such as digital HDTV systems and

digital cable modems, equalization of wireless GSM systems, design of bandwidth
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efficient wireless ATM networks, feedforward synchronization schemes for magnetic-

recording channels, and so on. Despite their importance and spread use, most of the

existing blind synchronization algorithms are derived in an ad-hoc manner without

exploiting optimally the entire available statistical information. In essence, these algo-

rithms are derived based on a truncated Taylor series approximation of the stochastic

(unconditional) maximum likelihood (ML) function that is further simplified to a

form that enables estimation of the unknown synchronization parameters directly

from certain second or fourth-order moments of the received data [2], [44], [61], [64].

Moreover, in most cases their performance is only evaluated by computer simulations,

and rigorous and complete performance analysis has not been reported yet. It turns

out that a theoretical oriented approach is indispensable for studying the performance

of algorithms and ascertain their relative merits.

The main goal of this dissertation is to develop several novel signal processing

frameworks that enable one to analyze and improve the performance of the existing

timing recovery and carrier synchronization algorithms. As byproducts of this anal-

ysis, unified methods for designing new computationally and statistically efficient

(i.e., minimum variance estimators) blind feedforward synchronizers are proposed.

Specifically, we seek to derive non-data aided synchronization algorithms that exploit

optimally the entire statistical information and take advantage of the structured in-

formation available: knowledge of the pulse-shape filter, input modulation, and the

cyclostationary statistics induced by oversampling of the received waveform.

This work consists of three tightly coupled research directions. First, in Chap-

ters II and III, a general and unified framework is proposed to develop optimal carrier

recovery schemes for burst transmissions. The proposed blind feedforward NLS joint

estimation set-up can be interpreted as a generalized form of the Maximum Likeli-

hood algorithm and represent an extension of the classic blind carrier phase estimator
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proposed by Andrew Viterbi and Audrey Viterbi [102] for synchronization of fully

modulated M-PSK modulations. This carrier phase estimator is referred in the liter-

ature as the Viterbi and Viterbi (V&V) algorithm [63, p. 280], [64, p. 316]. A family

of blind constellation-dependent optimal “matched” NLS carrier estimators is pro-

posed for synchronization of burst transmissions fully modulated by PSK and QAM

constellations in additive white Gaussian noise channels. Second, a cyclostationary

statistics based framework is proposed in Chapter IV for designing computationally

and statistically efficient robust blind symbol timing recovery for time-selective flat-

fading channels. Lastly, dealing with the problem of frame synchronization, Chapter

V proposes a simple and efficient data-aided approach for jointly estimating the frame

boundary, the frequency-selective channel and the carrier frequency offset.

The design of new and more efficient signal processing algorithms with improved

performance for synchronization is a lasting and challenging task. We believe that

this dissertation brings significant new advances and considerable in-depth insights,

and fill in a large number of gaps in the analysis of digital synchronizers.

D. Abbreviations and Notations

The following abbreviations are used in this dissertation:

AWGN Additive White Gaussian Noise

BPSK Binary Phase Shift Keying

CRB Cramèr-Rao Bound

CS Cyclostationary

DA Data Aided

FAP False Acquisition Probabilities

FFT Fast Fourier Transform
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FT Fourier Transform

GG Gini-Giannakis estimator [44]

GSD Ghogho-Swami-Durrani estimator [41]

i.i.d. independently and identically distributed

ISI Inter-Symbol-Interference

LHS Left Hand Side

ML Maximum Likelihood

MSCEE Mean Square Channel Estimation Error

MSE Mean Square Error

NLS Nonlinear Least Squares

NDA Non-Data Aided

O&M Oerder and Meyr estimator [75]

OPT optimal estimator

pdf probability density function

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RHS Right Hand Side

RV Random Variable

SER Symbol Error Rate

SNR Signal-to-Noise Ratio

V&V Viterbi and Viterbi estimator [102]

w.r.t. with respect to

WSS Wide Sense Stationary

Notations used throughout this dissertation are standard. Vectors and matrices
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are denoted in boldface by lowercase and capitals or calligraphic capitals, respectively.

Other symbols used are

∗ vector or matrix complex conjugate (superscript)

T vector or matrix transpose (superscript)

H vector or matrix complex conjugate transpose (superscript)

c a continuous-time signal (subscript)

:= is defined as

re{·} real part of a complex scalar, vector, or matrix

im{·} imaginary part of a complex scalar, vector, or matrix

E{·} statistical expectation

| · | modulus of a scalar, or determinant of a matrix

‖ · ‖ 2-norm of a vector

Im the m×m identity matrix

Γk,l (k, l)th-entry of matrix Γ

δd(·) Dirac delta function

δ(·) Kronecker delta function

∗ linear convolution

⊗ circular convolution

ˆ the estimate of the unknown parameter
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CHAPTER II

OPTIMAL BLIND CARRIER SYNCHRONIZATION FOR PSK/QAM

TRANSMISSIONS

A. Optimal Blind Carrier Recovery for M-PSK Burst Transmissions

1. Introduction

Burst transmission of digital data and voice is employed in time division-multiple

access (TDMA) and packet demand-assignment multiple-access (DAMA) satellite

communication and terrestrial mobile cellular radio systems. Conventionally, carrier

synchronization of burst transmissions requires a large number of overhead symbols,

which results in reduced spectral efficiency and increased transmission delays [17].

Non-data aided or blind feedforward carrier synchronization of burst M-PSK

transmissions has received much attention in the literature. A generalized form of the

Maximum Likelihood feedforward algorithm was originally proposed by A. J. Viterbi

and A. M. Viterbi as a blind carrier phase estimator with improved performance at

low and intermediate SNRs [77], [102]. This carrier phase estimator is referred to as

the Viterbi and Viterbi (V&V) algorithm [23], [51], [63, p. 280], and has been used

to design blind frequency offset estimators for burst M-PSK modulations transmitted

through AWGN channels [3], [4], [6], [7], [24]. Extensions of the V&V carrier estima-

tor for flat Rayleigh and Ricean fading channels were reported in [93] and [33]. The

V&V estimator exhibits several desirable features: its good performance at low SNRs

translates into improved bit error probability (BEP) performance in fading channels

that tend to be dominated by times when the signal experiences a deep fade (low

SNR), and its open loop operation enables fast reliable acquisitions after deep fades

[93]. Reference [23] introduces a different class of blind carrier frequency estimators
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that assume fractionally sampling of the received signal. However, the statistical

properties of the resulting estimators are partially analyzed based on certain approx-

imations [23]. A quite general blind NLS estimator for the carrier phase, frequency

offset and Doppler rate was proposed in [59]. However, the performance of the NLS-

type estimator was not analyzed and exploited to develop carrier recovery algorithms

with improved performance [59].

In this section, a family of blind feedforward joint carrier phase, frequency offset

and Doppler rate NLS estimators for carriers that are fully modulated by M-PSK

modulations is proposed based on the V&V algorithm. The corresponding thorough

and rigorous analysis of their statistical properties is presented for the cases of AWGN

and flat Ricean-fading channels to develop the optimal or “matched” nonlinear esti-

mator that achieves the smallest asymptotic (large sample) variance within the family

of blind NLS estimators. Monomial nonlinear estimators that do not require knowl-

edge of the SNR are also developed and shown to perform similarly as the matched

nonlinear estimator [110].

As we shall see, in the case of AWGN channels, the proposed family of blind NLS

estimators presents high convergence rates, provides accurate estimates for phase,

frequency offset and Doppler rate, and admits low complexity digital implementations,

without being necessary to oversample (or fractionally-sample) the received signal

faster than the Nyquist rate [23]. The performance of these algorithms coincides with

the CRB of an unmodulated carrier at medium and high SNRs, and is robust to

Ricean fading effects and timing errors.

2. Problem Formulation

Consider the baseband representation of an M-PSK modulated signal transmitted

through an AWGN channel. Assume that filtering is evenly split between transmitter
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and receiver so that the overall channel satisfies the first Nyquist condition. Filtering

the received waveform through a matched filter and sampling at the right time instants

yields:

x(n) =w(n)ejφ(n) + v(n), n = 0, . . . , N − 1, (2.1)

φ(n) = θ + 2πFeTn+ ηT 2n2 ,

where {w(n)} is the sequence of zero-mean unit variance (σ2
w := E{|w(n)|2} = 1) i.i.d.

M-PSK symbols, θ, Fe and η stand for carrier phase, frequency offset and Doppler

rate, respectively, T denotes the symbol period, and {v(n)} is a zero-mean circular

white Gaussian noise process independent of w(n) and with variance σ2
v := E{|v(n)|2}.

The Signal-to-Noise Ratio is defined as SNR:= 10 log10(σ
2
w/σ

2
v).

As depicted by (2.1), the problem that we pose is to estimate the unknown phase

parameters (θ, Fe and η) of a random amplitude chirp signal exp (jφ(n)) embedded in

unknown additive noise, assuming knowledge of the received samples {x(n)}N−1
n=0 . The

solution that we pursue consists of evaluating first certain moments of the output that

will remove the unwanted multiplicative effects introduced by the M-PSK modulated

sequence w(n). It turns out that the resulting problem reduces to the standard

problem of estimating the phase parameters of a constant amplitude chirp signal

embedded in additive noise, for which standard NLS-type estimators can be developed

and their statistical properties analyzed in a rigorous manner.

3. Nonlinear Carrier Synchronizer

Consider the polar representation of x(n):

x(n) = ρ(n)ejϕ(n) , (2.2)
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and define the process y(n) via the nonlinear transformation:

y(n) := F (ρ(n))ejMϕ(n) , (2.3)

where F (·) is a real-valued nonlinear function.

Conditioned on the M-PSK symbol w(n), x(n) is normally distributed with the

pdf f(x(n)|w(n) = exp (j2πm/M), 0 ≤ m ≤ M − 1) ∼ N (w(n) exp(jφ(n)), σ2
v).

Due to (2.2), it follows that:

f(ρ(n), ϕ(n)|w(n) = e
j2πm

M ) =
ρ(n)

πσ2
v

e−(ρ2(n)+1)/σ2
ve2ρ(n) cos[ϕ(n)−2πm/M−φ(n)]/σ2

v . (2.4)

Based on (2.4), the joint pdf of ρ(n) and ϕ(n), and the marginal pdf of ρ(n) take the

expressions:

f(ρ(n), ϕ(n))=
1

M

M−1∑

m=0

f
(
ρ(n), ϕ(n)|w(n) = exp (

j2πm

M
)
)

=
1

M

M−1∑

m=0

ρ(n)

πσ2
v

e
− ρ2(n)+1

σ2
v e

2ρ(n)

σ2
v

cos[ϕ(n)− 2πm
M

−φ(n)]
, (2.5)

f(ρ(n))=
∫ π

−π
f(ρ(n), ϕ(n))dϕ(n) =

2ρ(n)

σ2
v

e−(ρ2(n)+1)/σ2
vI0
(2ρ(n)

σ2
v

)
, (2.6)

where I0(·) stands for the zero-order modified Bessel function of the first kind [1,

eq. (9.6.16)]. Moreover, it is not difficult to find that the joint pdf of the RVs

ρ(n1), ϕ(n1), ρ(n2), ϕ(n2) satisfies the following relation for n1 6= n2:

f(ρ(n1), ϕ(n1), ρ(n2), ϕ(n2)) = f(ρ(n1), ϕ(n1)) · f(ρ(n2), ϕ(n2)) . (2.7)

Exploiting (2.5) and (2.6), some calculations, whose details are provided in the Ap-

pendix A, lead to the following relations:

E{y(n)} = E{F (ρ(n))ejMϕ(n)} = CejMφ(n) , (2.8)

C := |E{y(n)}| = E
{
F (ρ(n))

IM(2ρ(n)
σ2

v
)

I0(
2ρ(n)
σ2

v
)

}
, (2.9)
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where IM(·) denotes the Mth-order modified Bessel function of the first kind [1,

eq. (9.6.19)], the expectation in (2.9) is w.r.t. the marginal distribution of ρ(n) (2.6)

and the resulting amplitude C is a real-valued constant which does not depend on n.

Since w(n) and v(n) are i.i.d. and mutually independent, from (2.7), it follows that

u(n) := y(n)− E{y(n)} is wide sense stationary (WSS) i.i.d., too. Consequently,

y(n) = CejMφ(n) + u(n) , n = 0, 1, . . . , N − 1 , (2.10)

and y(n) can be viewed as a constant amplitude chirp signal exp (jMφ(n)) embedded

in additive WSS white noise. Note that, in general, the WSS white noise process u(n)

is neither Gaussian distributed nor circular [81].

Let ω := [ C ω0 ω1 ω2]
T = [ C Mθ 2πMFeT MηT 2]T , and introduce the

following NLS estimator (c.f. [40], [59]):

ω̂ = arg min
ω̄

J(ω̄) , (2.11)

J(ω̄)=
1

2

N−1∑

n=0

∣∣∣∣y(n)− C̄ej
∑2

l=0
ω̄ln

l

∣∣∣∣
2

. (2.12)

By equating to zero the gradient of J(ω̄), some simple algebra calculations lead to

the following expressions for the NLS estimates of ωl, l = 0, 1, 2, [40] [110]:

(ω̂1, ω̂2)= arg max
ω̄1, ω̄2

1

N

∣∣∣∣∣
N−1∑

n=0

y(n)e−j
∑2

l=1
ω̄ln

l

∣∣∣∣∣

2

, (2.13)

ω̂0 = angle
{ N−1∑

n=0

y(n)e−j
∑2

l=1
ω̂ln

l
}
.

It is well-known that estimator (2.11) is asymptotically unbiased and consistent, and

also almost asymptotically efficient at high SNR [8], [39] and [40].

Following a procedure similar to the one presented in [40], one can derive the

asymptotic variances of estimates ω̂l, l = 0, 1, 2. These calculations are established

in the Appendix B and are summarized in the following theorem [110]:
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Theorem 1 The asymptotic variances of the NLS estimates ω̂l, l = 0, 1, 2, in (2.11)-

(2.13) are given by [110]:

avar(ω̂l) =
B −D
C2

· 1

2N2l+1
· 1

2l + 1
·
[ (l + 3)!

(l!)2(2− l)!
]2
, (2.14)

B := E{|y(n)|2} = E{F 2(ρ(n))} , (2.15)

D := |E{y2(n)}| = |E{F 2(ρ(n))ej2Mϕ(n)}| = E
{
F 2(ρ(n))

I2M (2ρ(n)
σ2

v
)

I0(
2ρ(n)
σ2

v
)

}
, (2.16)

and C is defined in (2.9).

Some remarks are now in order:

Remark 1 From (2.14)–(2.16), one can observe that the asymptotic variances of

ω̂l, l = 0, 1, 2, are independent of the unknown phase parameters θ, Fe and η.

Remark 2 It is of interest to compare the asymptotic variances (2.14) with the

CRB. In [34] and [39], the CRB is derived for the case when the random amplitude

w(n) of model (2.1) is a stationary Gaussian process. In [40], the CRB is obtained

by assuming that the additive noise u(n) of model (2.10) is colored Gaussian and

circularly symmetric. Note that in our case, both models (2.1) and (2.10) do not

satisfy these assumptions. Therefore, here we adopt the CRB for an unmodulated

carrier wave (UCRB), i.e., M = 1 (c.f. [102]), which is a special case of the CRB

presented in [34], [39] and [40]:

UCRB(ω̂l) =
σ2
v

2N2l+1
· 1

2l + 1
·
[ (l + 3)!

(l!)2(2− l)!
]2
. (2.17)

Based on (2.14), one can observe that the asymptotic variances avar(ω̂l) of the NLS

estimates ω̂l, l = 0, 1, 2, decay at the same rate as the UCRB, i.e., O(1/N 2l+1).

Remark 3 Estimator (2.13) involves a two dimensional (2-D) maximization problem

which could be too intensive if a good initial estimate can not be provided. In our
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work, the initial values of Fe and η are obtained by the so-called high-order ambi-

guity function (HAF) approach, which has become a “standard” tool for analyzing

constant amplitude chirp signals since it provides a computationally efficient yet sta-

tistically accurate estimator [8]. We will briefly introduce the HAF-based estimator

in Subsection 6.

Remark 4 The estimates of phase parameters θ, Fe and η present M -fold ambiguity,

which can be counteracted by applying differential encoding [59] or unique word

decoding method [93]. The estimation range due to the ambiguity, e.g., for Fe, is

|Fe| < 1/(2MT ).

Next, we determine the optimal or “matched” nonlinearity F (·) which minimizes

the asymptotic variance avar(ω̂l). Since in (2.14), only the terms B, C, D depend on

F (·), finding an optimal F (·) resorts to solving the optimization problem:

Fmin(ρ(n)) = arg min
F (·)

B −D
C2

.

Using (2.9), (2.15) and (2.16), we obtain:

B −D
C2

=

E
{
F 2(ρ(n))

(
1−

I2M( 2ρ(n)

σ2
v

)

I0( 2ρ(n)

σ2
v

)

)}

E
{
F (ρ(n))

IM( 2ρ(n)

σ2
v

)

I0( 2ρ(n)

σ2
v

)

} .

Using Cauchy-Schwarz’ inequality, the optimum nonlinearity Fmin is given by the

following theorem:

Theorem 2 The optimal or “matched” nonlinearity Fmin(·) that minimizes the asymp-

totic variances of the proposed family of NLS estimators (2.11) is given by [110]:

Fmin(ρ(n)) = λ
IM(2ρ(n)

σ2
v

)

I0(
2ρ(n)
σ2

v
)− I2M(2ρ(n)

σ2
v

)
, (2.18)
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where λ is an arbitrary nonzero constant.

Plugging (2.18) back into (2.9), (2.15), and (2.16), and substituting these values into

(2.14), the minimal asymptotic variances of ω̂l, l = 0, 1, 2, can be expressed as:

avarmin(ω̂l) =
1

2N2l+1
· 1

2l + 1
·
[ (l + 3)!

(l!)2(2− l)!
]2 · 1

E
{

I2
M

( 2ρ(n)

σ2
v

)

I20(
2ρ(n)

σ2
v

)−I0( 2ρ(n)

σ2
v

)I2M( 2ρ(n)

σ2
v

)

} . (2.19)

4. Monomial Nonlinearity Estimators

As can be observed from (2.18), Fmin(ρ(n)) is a function that depends on the SNR.

This is not a restrictive requirement since blind SNR estimators that exhibit good

performance can be used [80]. However, if the SNR-estimation step is not desirable, we

show next that there exist optimal monomial approximations ρk(n), k = 0, . . . ,M, of

the matched nonlinearity Fmin(ρ(n)) that exhibit almost the same asymptotic variance

as (2.19) and their implementation does not require knowledge of the SNR.

Exploiting the asymptotic formula [1, eq. (9.7.1)] in (2.18), it turns out that

at high SNRs (SNR → ∞) the optimal monomial is Gh(ρ(n)) = ρ(n). Similarly,

based on [1, eq. (9.6.7)], it turns out that at low SNRs (SNR → −∞), the optimal

monomial is Gl(ρ(n)) = ρM(n). These results parallel the derivations reported in [77]

and do not depend on the value of the frequency shift or Doppler rate. In order to

obtain a better understanding, next we establish the asymptotic performance of the

monomial NLS estimators.

Define the class of processes yk(n) by means of the monomial transformations:

yk(n) = ρk(n)ejMϕ(n) , k = 0, 1, . . . ,M , (2.20)

and the zero-mean processes: uk(n) := yk(n) − E{yk(n)}, k = 0, . . . ,M . As before,

it turns out that E{yk(n)} is a constant amplitude chirp signal, and hence yk(n) =
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E{yk(n)}+uk(n) can be interpreted as a constant amplitude chirp signal embedded in

white noise. As a special case of (2.11), we introduce the following class of monomial

NLS estimators:

ω̂(k) =arg min
ω̄(k)

1

2

N−1∑

n=0

∣∣∣∣yk(n)− C̄(k)ej
∑2

l=0
ω̄

(k)
l
nl

∣∣∣∣
2

, (2.21)

whose asymptotic variances for ω̂
(k)
l , l = 0, 1, 2, are provided by the following theo-

rem:

Theorem 3 The asymptotic variances of the NLS estimates ω̂
(k)
l , l = 0, 1, 2, in

(2.21), are given by [110]:

avar(ω̂
(k)
l )=

Bk −Dk
C2
k

· 1

2N2l+1
· 1

2l + 1
·
[ (l + 3)!

(l!)2(2− l)!
]2
, (2.22)

Bk := E{|yk(n)|2} = E{ρ2k(n)} ,

Ck := |E{yk(n)}| = |E{ρk(n)ejMϕ(n)}| ,

Dk := |E{y2
k(n)}| = |E{ρ2k(n)ej2Mϕ(n)}| .

Exploiting (2.6) and [46, eq. (6.643.4)], the following relation was derived in [102,

(A17)]:

Bk =
k∑

q=0

(
k

q

)2

σ2q
v · q! . (2.23)

Using (2.5), we can obtain that:

E{yk(n)}=
∫ ∞

0

∫ π

−π
ρk(n)ejMϕ(n)f(ρ(n), ϕ(n))dϕ(n)dρ(n)

=
1

M

M−1∑

m=0

∫ ∞

0

ρk+1(n)

πσ2
v

e
− ρ2(n)+1

σ2
v

∫ π

−π
ejMϕ(n)e

2ρ(n)

σ2
v

cos[ϕ(n)− 2πm
M

−φ(n)]
dϕ(n)dρ(n)

=
1

αk
ejMφ(n)e−

γ

2

∫ ∞

0
ζk+1e−

ζ2

2 IM(αζ)dζ , (2.24)

where: α :=
√

2/σv, γ := α2 and ζ := αρ(n). Based on [46, eq. (6.643,2)] and [1,

eq. (13.1.32)], Ck can be expressed in terms of the confluent hypergeometric function
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Φ(·, ·, ·) for k = 0, 1, . . . ,M :

Ck =
Γ(k+M

2
+ 1)e−

γ
2

Γ(M + 1)σM−k
v

Φ
(k +M

2
+ 1,M + 1,

γ

2

)
. (2.25)

Similarly,

Dk =
Γ(k +M + 1)e−

γ

2

Γ(2M + 1)σ2M−2k
v

Φ
(
k +M + 1, 2M + 1,

γ

2

)
. (2.26)

It should be pointed out that when k is even (M is usually a power of two), following

a similar approach to that presented in [102] or the formula [1, eq. (13.5.1)], one can

obtain a slightly more compact expression for the confluent hypergeometric function

in (2.25):

Ck =
1

γt

[
γt

s+t∑

p=0

p!

(
s + t

p

)(
s− t+ p− 1

p

)(−2

γ

)p
+ (−1)s+t+12te−

γ
2

(2

γ

)t+1

·
s−t−1∑

p=0

(
s+ t+ p

p

)
(s+ t)!

(s− t− p− 1)!

(2

γ

)p]
, if k = 0, 2, . . . ,M − 2 ,

Ck = 1 , if k = M ,

where s := M/2 and t := k/2. Similarly,

Dk =
1

γk

[
γk

M+k∑

p=0

p!

(
M + k

p

)(
M − k + p− 1

p

)(−2

γ

)p
+ (−1)M+k+12ke−

γ

2

(2

γ

)k+1

·
M−k−1∑

p=0

(
M + k + p

p

)
· (M + k)!

(M − k − p− 1)!

(2

γ

)p]
, if k = 0, 1, . . . ,M − 1 , (2.27)

Dk =1 , if k = M .

Plugging (2.23), (2.25) and (2.26) back into (2.22), closed-form expressions for the

asymptotic variances avar(ω̂
(k)
l ) for k = 0, 1, . . . ,M, and l = 0, 1, 2, are obtained.

Note that at very high SNR (1/σ2
v →∞), using [1, eq. (13.1.4)], some calculations

show that:

lim
SNR→∞

Ck = 1 , (2.28)
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for any k = 0, 1, . . . ,M . Hence, based on (2.22), (2.23), (2.27) and (2.28), we obtain:

avar(ω̂
(k)
l ) ∝ M2

SNR
· 1

N2l+1
,

which does not depend on the estimator order k, i.e., it turns out that at very

high SNRs, the performance of estimators (2.21) for different nonlinearity orders

k is asymptotically the same.

We close this subsection with the following remark.

Remark 5 Assume that η = 0, i.e., the received signal is affected only by phase

offset and frequency offset. Then, the estimator (2.21) reduces to:

f̂ (k)
e =

1

M
arg max

|f̄0|<1/2

1

N

∣∣∣∣∣
N−1∑

n=0

yk(n)e−j2πf̄0n
∣∣∣∣∣ , (2.29)

θ̂(k) =
1

M
angle

{
N−1∑

n=0

yk(n)e−j2πMf̂
(k)
e n

}
,

with fe := FeT . Based on the eq. (2.29), the frequency offset estimator can be

implemented efficiently by means of the FFT algorithm applied on the sequence yk(n),

which is generally zero-padded with a sufficiently large number of zeros to achieve the

precision provided by the asymptotic (Cramer-Rao) bound (O(1/N 3)). The following

corollary is obtained directly from Theorem 3:

Corollary 1 The asymptotic variance of the class of NLS estimators (2.29) for fe is

given by:

avar(f̂ (k)
e ) =

6(Bk −Dk)
4π2M2C2

kN
3
, (2.30)

where Bk, Ck and Dk are defined in Theorem 3.

5. Extension to Flat Ricean-fading Channels

In the foregoing discussion, we assumed AWGN channels. In this subsection, we will

see that the NLS estimators (2.11) remain asymptotically unbiased and consistent in
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the presence of flat Ricean-fading channels. To simplify our derivation, we will only

concentrate on the extension of the frequency offset estimators (2.29).

Assuming a flat Ricean-fading channel model, the input-output relationship of

the channel can be expressed as:

x(n) = µ(n)w(n)ej2πFeTn + v(n) , n = 0, . . . , N − 1 , (2.31)

where µ(n) = ρµ(n) exp(jϕµ(n)) is the fading process with non-zero mean E{µ(n)} :=

ρ1 exp(jϕ1) and variance σ2
µ := E{|µ(n) − E{µ(n)}|2}. Using the Jakes model, the

second-order correlations of the fading are given by E{[µ(n)−E{µ(n)}]∗ · [µ(n+ τ)−

E{µ(n + τ)}]} = σ2
µJ0(2πfdτ), where J0(.) denotes the zero-order Bessel function of

the first kind, and fd stands for the normalized Doppler spread. The joint pdf of

ρµ(n) and ϕµ(n), and the marginal pdf of ρµ(n) are given by:

f(ρµ(n), ϕµ(n))=
ρµ(n)

πσ2
µ

e
− ρ2

µ(n)+ρ2
1−2ρµ(n)ρ1 cos(ϕµ(n)−ϕ1)

σ2
µ , (2.32)

f(ρµ(n)) =
2ρµ(n)

σ2
µ

e
− ρ2

µ(n)+ρ2
1

σ2
µ I0

(2ρµ(n)ρ1

σ2
µ

)
. (2.33)

Conditioned on the fading process µ(n) and the input symbol w(n), the joint pdf

of ρ(n) and ϕ(n) takes the form:

f
(
ρ(n), ϕ(n)|w(n) = exp(

j2πl

M
), ρµ(n), ϕµ(n)

)
=
ρ(n)

πσ2
v

e−(ρ2(n)+ρ2µ(n))/σ2
v

· e2ρ(n)ρµ(n) cos[ϕ(n)−ϕµ(n)−2π(l+Mfen)/M ]/σ2
v . (2.34)

Using (2.31) through (2.34), in a similar way to that presented in the former subsec-

tions, some straightforward but lengthy calculations lead to:

E{yk(n)} = CkejMϕ1ej2πMfen , k = 0, 1, . . . ,M ,
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Ck :=
Γ(k+M

2
+ 1)e−

γ1
2 ρM1

Γ(M + 1)σM−k
1

Φ
(k +M

2
+ 1,M + 1,

γ1

2

)
,

with σ2
1 := σ2

µ + σ2
v and γ1 := 2ρ2

1/σ
2
1. Hence, yk(n) can still be viewed as a constant

amplitude harmonic embedded in additive noise uk(n) := yk(n)− E{yk(n)}, and the

unbiasedness and consistency of estimators (2.29) hold true in the presence of flat

Ricean-fading channels. However, we should note that due to the fading effect, uk(n)

is not white any more, but a zero-mean colored process. Establishing the asymptotic

variance of estimators (2.29) in flat Ricean-fading effects for any k is generally, if

not impossible, at least very complicated for k = 0, . . . ,M − 1. In the special case

k = M , uM(n) is a circular noise process, whose autocorrelation and spectral density

are given by ruM
(τ) := E{u∗M(n)uM(n+ τ)} and SuM

(f) :=
∑
τ ruM

(τ) exp(−j2πfτ),

respectively. Therefore, the asymptotic variance of (2.29) is now given by [98]:

avar(f̂ (M)
e ) =

6SuM
(Mfe)

4π2M2C2
MN

3
. (2.35)

The calculation of the power spectral density SuM
(·) is tractable and is briefly detailed

next. Define the following variables:

c(k)v := E{|v(n)|2k} = k! · σ2k
v ,

c(k)µ := E{|µ(n)− E{µ(n)}|2k} = k! · σ2k
µ ,

r(k)
µ := E{|µ(n)|2k} = ρ2k

1 +
k∑

l=1

(
k

l

)2

ρ2k−2l
1 c(l)µ .

Some direct but lengthy calculations lead to the following expression:

SuM
(Mfe) =

∑

τ

M∑

k=1

(
M

k

)2

ρ2M−2k
1 c(k)µ Jk0 (2πfdτ) +

M∑

k=1

(
M

k

)2

c(k)v r(M−k)
µ . (2.36)

Plugging (2.36) back into (2.35), a closed-form expression of the asymptotic variance

avar(f̂ (M)
e ) in the presence of flat Ricean-fading effects is obtained.
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6. HAF-based Estimator

As mentioned in Subsection 3, a HAF-based estimator is a simple and computational

efficient approach to provide the initial estimates of NLS estimator (2.13), and com-

bines the use of the HAF in order to reduce the order of the polynomial phase φ(n)

and that of the NLS approach in order to estimate the parameters of an exponential

signal embedded in noise [8].

First, let us rewrite (2.10) as:

y(n) = Cej(Mθ+2πMFeTn+MηT 2n2) + u(n) ,

and define the following process:

y2(n; τ) := y∗(n)y(n+ τ) = C2ej(2πMFeTτ+MηT 2τ2)ej2MηT 2nτ + u′(n) , (2.37)

where τ > 0 and u′(n) is a zero-mean noise composed of noise × signal and noise

× noise terms. For a fixed τ , y2(n; τ) is an exponential signal with constant ampli-

tude C2 exp (j(2πMFeTτ +MηT 2τ 2)) embedded in additive noise u′(n). Hence, it is

natural to use an NLS estimator to obtain an estimate of η as follows:

η̂ =
1

2MT 2τ
arg max

|ω̄|<π

1

N

∣∣∣∣∣
N−1∑

n=0

y2(n; τ)e−jω̄n
∣∣∣∣∣ . (2.38)

Once η̂ is available, demodulate y(n) to obtain:

z(n) := y(n) · e−jMη̂T 2n2 ' Cej(Mθ+2πMFeTn) + u′′(n) ,

where u′′(n) combines the estimation errors in η̂ and the effect of additive noise [8].

Similarly, Fe can be obtained as:

F̂e =
1

MT
arg max

|f̄0|<1/2

1

N

∣∣∣∣∣
N−1∑

n=0

z(n)e−j2πf̄0n
∣∣∣∣∣ . (2.39)
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The HAF-based estimators (2.38) and (2.39) can decrease computational complexity

and provide good initial values for NLS estimator (2.13). Examining its performance is

beyond the scope of this work. We refer the reader to [8] for the detailed performance

analysis of HAF-based estimator.

7. Simulation Experiments

In this subsection, we study thoroughly the performance of estimators (2.11), (2.21)

and (2.29) using computer simulations. The experimental MSE results of these esti-

mators will be compared with the theoretical asymptotic bounds and the CRB-like

bounds. The experimental results are obtained by performing a number of 200 Monte

Carlo trials, the additive noise is generated as zero-mean Gaussian white noise with

variance σ2
v and unless otherwise noted, all the simulations are performed assuming

the carrier phase θ = 0.1, frequency offset FeT = 0.011 and Doppler rate ηT 2 = 0.03.

Experiment 1-Performance loss of estimators (2.20)-(2.21) w.r.t. the matched esti-

mator (2.18)-(2.11): Fig. 4 plots the loss in performance of estimators (2.20)-(2.21)

w.r.t. the optimal estimator (2.18)-(2.11) (−10 log10[avar(ω̂
(k)
l )/avarmin(ω̂l)]) in the

case of a BPSK modulation (M = 2) and QPSK modulation (M = 4), respectively.

It turns out that in almost the entire SNR region of interest, the optimal nonlinearity

Fmin(ρ(n)) can be approximated without much loss in performance by ρ(n) (BPSK)

and ρ(n) or ρ2(n) (QPSK, depending on SNR), respectively.

Experiment 2-Asymptotic variances of estimators (2.18)-(2.11) and (2.20)-(2.21) w.r.t.

the UCRB: Fig. 5 depicts the performance loss of the asymptotic variances (2.19) and

(2.22) w.r.t. the UCRB (i.e., −10 log10[avar(ω̂l)/UCRB(ω̂l)]), assuming BPSK and

QPSK modulations, respectively. It can be seen that the proposed estimators ex-

hibit good accuracy. In high SNR range they coincide with the UCRB, therefore, are

asymptoically efficient. In low SNR range (near 0 dB), monomial nonlinear estima-
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Fig. 4. Theoretical degradation of ω̂
(k)
l w.r.t. the optimal estimator

tors with improved performance can be obtained by adopting low order nonlinearities

(k = 1 and 2 for BPSK and QPSK modulations, respectively). Although the matched

nonlinear estimator is optimal in the entire SNR range, its performance improvement

relative to the monomial estimators is observable only at low SNRs. From Figs. 4–5,

we can also observe that at very high SNRs, the monomial estimators (2.20)-(2.21)

for different orders k exhibit the same asymptotic variance.
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Fig. 5. Performance loss w.r.t. the UCRB versus SNR
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Experiment 3-Comparison of the MSE of estimators (2.21) with the theoretical bounds

versus SNR: In Fig. 6, the theoretical bounds (2.22) are compared with the experi-

mental MSEs of estimators (2.21) versus SNR, assuming k = 1, N = 50 symbols and

BPSK modulation. This figure shows that for medium and high SNR, the experi-

mental results are well predicted by the asymptotic bounds derived in Subsection 4,

and the proposed estimators provide very good estimates of carrier phase, frequency

offset and Doppler rate, even when a reduced number of samples is used (N = 50).

This shows the potential of these estimators for fast synchronization of burst trans-

missions.
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Fig. 6. a) MSEs of θ̂, b) MSEs of F̂eT , c) MSEs of η̂T 2
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Experiment 4-Comparison of MSE of estimators (2.21) with the theoretical bounds

versus number of samples N : Fig. 7 displays the influence of the number of samples

N on the performance of the estimators (2.21), assuming k = 1, SNR=5 dB and a

BPSK input modulation. One can observe from this figure that even at low SNR, the

proposed NLS estimators (2.21) can approach very closely the UCRB using a small

number of samples (N = 70 or 80 samples), i.e., a lower threshold of SNR, at which

large estimation errors of frequency offset and Doppler rate begin to occur, can be

achieved with a reduced number of samples.
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Experiment 5-Performance of frequency estimators (2.29) in flat Ricean-fading chan-

nels: This experiment illustrates that the proposed frequency offset estimators (2.29)

still perform well in the presence of Ricean-fading effects. In Fig. 8, the asymptotic

variance (2.35) and the modified Cramér-Rao bound (MCRB) for NDA frequency

offset estimation in flat Ricean-fading channel are plotted versus SNR. The latter

was derived in [45], and with the notations adopted so far admits the following ex-

pression for large N : MCRB(f̂e) = 6σ2
v/[4π

2N3(ρ2
1 + σ2

µ)]. We assume that the

Ricean-fading process has a normalized energy (i.e., E{|µ(n)|2} = 1) and the Ricean

factor κ := ρ2
1/σ

2
µ = 1. The Doppler spread fd is chosen as 0.005, 0.05 and 0.5,

respectively. The transmitted symbol is BPSK and the number of samples is chosen

as N = 200. In Fig. 8, the MSE of estimator (2.29) with k = 2 and fd = 0.005 is

also plotted. From Fig. 8, it turns out that although there exists an error floor due to

the random fading effects, the accuracy of the proposed frequency offset estimators

is still satisfying at medium and high SNRs, and improves for large Doppler spreads.
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Fig. 8. MSEs of f̂e in the presence of a

flat Ricean-fading channel
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Experiment 6-Performance of frequency offset estimators (2.29) in the presence of
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timing error: Until now, we assumed a perfect timing reference at receiver. The

simulation results presented in Fig. 9 illustrate that estimators (2.29) are robust to

timing errors. In this simulation, we assume that there is a normalized timing-error

εT = 0.1, the transmit and receive filters are square-root raised cosine filters with

roll-off factor β = 0.5. The symbol modulation is BPSK, k = 2 and the number of

samples is chosen as N = 50, 200 and 300, respectively.
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Fig. 10. MSEs of f̂e

Experiment 7-Performance of frequency offset estimator with optimal nonlinearity :

For the sake of completeness, we illustrate in Fig. 10 the performance of frequency

offset estimator (2.29) with optimal nonlinearity (2.18), compared with that of k = 2.

Both theoretical bounds are shown, too. The constellation is QPSK and the number

of samples is N = 50. In stead of using fixed value, this experiment assumes that the

true frequency offset is taken randomly from the interval [-0.1, 0.1] in each simulation

run. It can be seen that Fig. 10 shows again the merit of the performance analysis

presented in this work.
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8. Conclusions

In this section, we have introduced and analyzed a family of blind feedforward joint

estimators for the carrier phase, frequency offset and Doppler rate of burst-mode M-

PSK modulations. A matched nonlinear estimator together with a class of monomial

nonlinear estimators were introduced and their performance established in closed-

form. It has been shown that the proposed estimators exhibit high convergence rates

and good accuracy, and are robust to Ricean fading effects and timing errors.

B. Optimal Blind Carrier Recovery for General QAM Modulations

1. Introduction

Quadrature amplitude modulation (QAM) is a highly bandwidth efficient transmis-

sion technique for digital communications. Currently, large quadrature amplitude

modulations are widely used in throughput efficient high speed communication appli-

cations such as digital TV and TDMA systems, and demodulation of a large QAM

constellation signal requires accurate carrier recovery at the receiver, which generally

involves the acquisition of carrier frequency and phase. Unfortunately, the conven-

tional carrier tracking schemes frequently fail to converge for large QAM.

Recently, assuming that the frequency recovery has already been achieved, a

number of blind feedforward phase estimators for square and cross QAM modulations

were reported in [12]–[14], [28], [29], [38], [63, pp. 281–282] and [67], and analyzed in

[86] and [92]. These estimators exploit the angle information contained in the fourth

or higher-order statistics of the received signal. Reference [92] has shown that the

seemingly different estimators [12], [63, pp. 281–282] and [67] are equivalent to the

standard fourth-power estimator, while the estimator [14] exhibits a larger asymp-

totic (large sample) variance than the former class [12], [67]. A so-called reduced-
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constellation (RC) fourth-power algorithm, which slightly improves the performance

of the classic fourth-power estimator, is proposed in [38]. However, it is well-known

that both the RC and the standard fourth-power estimators exhibit relatively poor

performance in the case of cross QAM transmissions [38]. Also, reference [38] in-

troduces two SNR dependent methods that outperform the performance of standard

and RC fourth-power estimators in the case of cross and square QAM constellations,

at moderate to high SNR levels, respectively. However, in the case of square QAM

constellations and low SNRs, the performance of these two methods is inferior to the

fourth-power algorithm [38]. Based on the V&V algorithm, Efstathiou and Aghvami

have introduced blind carrier phase and frequency offset estimators for 16-QAM mod-

ulated transmissions [28], [29], which are similar to the RC fourth-power algorithm

in the sense that they tend to emphasize the weight of the four corner points in the

signal constellation. Morelli et al. pointed out that this solution was unsatisfactory

with short bursts and proposed a new blind scheme with superior performance to

previous methods [70]. However, it appears that it is not straightforward to extend

this algorithm to general QAM modulations that are different from 16-QAM.

In this section, based on the fact that a QAM can be represented in terms of a set

of PSK constellations, each of them defined by a specific amplitude and phase shift,

we extend the result presented in Section A for M-PSK modulations, and introduce

the optimal NLS estimators as well as computationally efficient approximate matched

carrier estimators for general QAM modulations. Fig. 11 illustrates the example of a

16-QAM constellation consisting of four 4-QAM (QPSK) constellations.

The proposed matched estimators are constellation-dependent and are optimally

designed such that their asymptotic variance is minimized. The performance of these

matched algorithms is compared with the CRB, calculated according to [86], and

shown that the optimal matched estimator exhibits superior performance (smaller
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symbol error rate (SER)) w.r.t. the classic fourth-power estimator at any SNR level,

but significant improvements are observable especially at medium and high SNRs.

The proposed estimation techniques represent a quite general and unifying framework

to design blind carrier synchronizers with improved performance. It appears that

some of the existing synchronizers [70], [89] may be obtained as special cases of the

proposed estimation framework.
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Fig. 11. 16-QAM constellation

We consider the following model similar to (2.1):

x(n) = w(n)ejη(n) + v(n), n = 0, . . . , N − 1, (2.40)

η(n) := θ + 2πFeTn ,

where {w(n)} now is the i.i.d. input M-QAM symbol stream with zero-mean and

unit variance (σ2
w := E{|w(n)|2} = 1).

As stated in Remark 4, the estimates of θ and Fe present 4-fold ambiguities

for QAM constellation, which can be counteracted by applying differential encoding.
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Without any loss of generality, we assume that the unknown phase θ lies in the interval

(−π/4, π/4) and |fe| := |FeT | < 1/8.

2. Estimators for Square QAM Constellations

First, let us consider square QAM constellations (i.e., with sizes M = 22m, m =

1, 2, . . .). With normalized energy, w(n) takes a value from the set (1/rw){±(1+2l)±

j(1 + 2k), (l, k) ∈ AM} with AM := {(0, 1, 2, . . . , 2m−1 − 1)2} and:

r2
w :=

4

M

∑

(l,k)∈AM

[(1 + 2l)2 + (1 + 2k)2] .

a. Matched Nonlinear Carrier Synchronizer

Following the similar procedure presented in Section A, we represent x(n) in its

polar form:

x(n) = ρ(n)ejφ(n) , (2.41)

and define the process y(n) via the nonlinear transformation:

y(n) := F (ρ(n))ej4φ(n) , (2.42)

where F (·) is a real-valued non-negative arbitrary nonlinear function. It is inter-

esting to remark that the transformation (2.42) differs from the class of nonlinear

transformations introduced in Section A. This difference is due to the fact that

all QAM constellations exhibit quadrant symmetries which translate into non-zero

fourth-order moments (E{w4(n)} 6= 0), and consequently justify the special form of

the exponential factor in (2.42).

Due to (2.41), it follows that:

f
(
ρ(n), φ(n)|w(n) = ρw(n)ejφw(n)

)
=
ρ(n)

πσ2
v

e
− ρ2(n)+ρ2

w(n)

σ2
v e

2ρ(n)ρw(n) cos[φ(n)−φw(n)−η(n)]

σ2
v ,
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where ρw(n) and φw(n) denote the amplitude and phase angle of w(n), respectively,

and:

f(ρ(n), φ(n)) =
ρ(n)

Mπσ2
v

∑

(l,k)∈AM

3∑

m=0

e
− 1

σ2
v
[ρ2(n)+%2

l,k
]
e

2ρ(n)%l,k

σ2
v

cos[φ(n)−ψl,k−mπ
2
−η(n)]

, (2.43)

f(ρ(n)) =
8ρ(n)

Mσ2
v

∑

(l,k)∈AM

e−(ρ2(n)+%2
l,k

)/σ2
vI0
(2ρ(n)%l,k

σ2
v

)
, (2.44)

where %l,k :=
√

[(1 + 2l)2 + (1 + 2k)2]/rw, ψl,k := arctan((1 + 2k)/(1 + 2l)). Then,

the following NLS estimator can be introduced:

ω̂1 := 8πf̂e = arg max
ω̄1

1

N

∣∣∣∣∣
N−1∑

n=0

y(n)e−jω̄1n

∣∣∣∣∣

2

, (2.45)

ω̂0 := 4θ̂ = angle
{
−

N−1∑

n=0

y(n)e−jω̂1n
}
. (2.46)

From (2.45) and (2.46), it can be seen that the overall estimation procedure includes

two steps. First, a coarse estimate of the frequency offset fe is determined efficiently

by means of the FFT algorithm applied on the sequence y(n), which is generally zero-

padded with a sufficiently large number of zeros to achieve the precision provided

by the asymptotic (Cramér-Rao) bound (O(1/N 3)). Then, a fine frequency offset

estimate is obtained by means of interpolation or using a gradient algorithm. Finally,

a closed-form estimate of the carrier phase is obtained based on (2.46), which assumes

knowledge of the frequency estimate f̂e. As the estimator (2.11), estimators (2.45)

and (2.46) are asymptotically unbiased and consistent [98], and also asymptotically

efficient in the sense that it achieves the performance of the maximum likelihood

estimator [8], [40] and [98], if the distribution of additive noise u(n) is approximated

to be circular normal. As the simulation experiments illustrate, this approximation

holds true for small order QAM constellations (e.g., QPSK), and the departure from

circularity becomes more dominant for larger-order QAM constellations.
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The following theorems for the case of square QAM modulations can be obtained

similarly [111] and [104]:

Theorem 4 The asymptotic variances of the NLS estimates ω̂l, l = 0, 1 in (2.45)-

(2.46) are given by:

avar(ω̂l) =
B − D
C2

· 4l + 2

N2l+1
, (2.47)

B := E{|y(n)|2} = E{F 2(ρ(n))} =
∫ ∞

0
F 2(ρ(n))ξ1(ρ(n))dρ(n) , (2.48)

C := |E{y(n)}| = |E{F (ρ(n))ej4φ(n)}| =
∫ ∞

0
F (ρ(n))ξ2(ρ(n))dρ(n) , (2.49)

D := |E{y2(n)}| = |E{F 2(ρ(n))ej8φ(n)}| =
∫ ∞

0
F 2(ρ(n))ξ3(ρ(n))dρ(n) , (2.50)

where for i = 1, 2, 3 the following relations hold:

ξi(ρ(n)) := (−1)i−1 8ρ(n)

Mσ2
v

e
− ρ2(n)

σ2
v

∑

l,k∈AM

cos(4(i− 1)ϕl,k)e
−

%2
l,k

σ2
v I4(i−1)

(2ρ(n)%l,k
σ2
v

)
, (2.51)

and ϕl,k := ψmax{l,k},min{l,k}.

Theorem 5 The optimal “matched” nonlinearity Fmin(·) that minimizes the asymp-

totic variances of the proposed family of NLS estimators is given by:

Fmin(ρ(n)) = λ
ξ2(ρ(n))

ξ1(ρ(n))− ξ3(ρ(n))
, (2.52)

where λ is an arbitrary nonzero constant selected such that Fmin(·) is non-negative.

Plugging (2.52) back into (2.48)–(2.50), and substituting these values into (2.47), the

asymptotic variances corresponding to the optimal matched estimates ω̂l, l = 0, 1,

can be expressed as:

avarmin(ω̂l) =
4l + 2

N2l+1
· 1
∫∞
0

ξ22(ρ(n))

ξ1(ρ(n))−ξ3(ρ(n))
dρ(n)

. (2.53)

In [86], the CRBs for carrier phase and frequency offset estimates are derived

for fully QAM-modulated carriers, and with the notations adopted so far admit the
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following expression for large N :

CRB(ω̂l) = CRBCW(ω̂l) ·R(σ2
v) =

(4l + 2)σ2
v

N2l+1
·R(σ2

v) , (2.54)

where CRBCW corresponds to the CRB for an unmodulated carrier wave, and R(σ2
v)

denotes the constellation-dependent ratio of the true CRB to CRBCW, which can be

evaluated by means of numerical integration or Monte Carlo evaluations (MCE) [86].

In the absence of frequency offset (fe), the proposed NLS estimator reduces to

the phase estimator:

θ̂ =
1

4
angle

{
−

N−1∑

n=0

y(n)
}
, (2.55)

whose asymptotic variance is one quarter of that corresponding to the case of joint

phase and frequency offset estimation [86], and is given by:

avar(θ̂) =
B − D
32NC2 . (2.56)

b. Monomial Nonlinear Estimators

As illustrated in Section A, the conventional Viterbi&Viterbi-like nonlinearities

rely on the monomial transformations Fk(ρ(n)) = ρk(n), k = 0, . . . , 4, and exhibit

computational efficiency and simplicity when compared with the optimal matched

estimator. Following a similar approach to that presented in Section A, one can

obtain the class of monomial NLS estimators as:

ω̂(k) =arg min
ω̄(k)

1

2

N−1∑

n=0

∣∣∣∣yk(n)− µ̄(k)ej
∑1

l=0
ω̄

(k)
l
nl

∣∣∣∣
2

, (2.57)

whose asymptotic variances for ω̂
(k)
l , l = 0, 1, are provided by the following theorem

[111] and [104]:

Theorem 6 The asymptotic variances of the NLS estimates ω̂
(k)
l , l = 0, 1, in (2.57),
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are given by:

avar(ω̂
(k)
l ) =

Bk −Dk
C2
k

· 4l + 2

N2l+1
, (2.58)

Bk =
4σ2k

v

M

k∑

q=0

(
k

q

)2

q!
∑

l,p∈AM

(%2
l,p

σ2
v

)k−q
, (2.59)

Ck = −4σk−4
v Γ(k

2
+ 3)

MΓ(5)

∑

(l,p)∈AM

cos(4ϕl,p)e
−

%2
l,p

σ2
v %4

l,pΦ
(k
2

+ 3, 5,
%2
l,p

σ2
v

)
, (2.60)

Dk =
4σ2k−8

v Γ(k + 5)

MΓ(9)

∑

(l,p)∈AM

cos(8ϕl,p)e
−

%2
l,p

σ2
v %8

l,pΦ
(
k + 5, 9,

%2
l,p

σ2
v

)
. (2.61)

When k is even (M is usually a power of two), the following expressions hold:

Ck = − 4

M

∑

(l,p)∈AM

cos(4ϕl,p)H
(k
2
, 2,

%2
l,p

σ2
v

)
, if k = 0, 2 ,

Ck = − 4

M

∑

(l,p)∈AM

cos(4ϕl,p)%
4
l,p , if k = 4 ,

H
(
s, t, γ

)
:=
(σ2

v

2

)t[
γt

s+t∑

p=0

p!

(
s+ t

p

)(
s− t+ p− 1

p

)(−2

γ

)p

+ (−1)s+t+12te−
γ

2

(2

γ

)t+1
s−t−1∑

p=0

(
s + t+ p

p

)
(s+ t)!

(s− t− p− 1)!

(2

γ

)p]
.

Similarly,

Dk =
4

M

∑

(l,p)∈AM

cos(8ϕl,p)H
(
k, 4,

%2
l,p

σ2
v

)
, if k = 0, 1, 2, 3 ,

Dk =
4

M

∑

(l,p)∈AM

cos(8ϕl,p)%
8
l,p , if k = 4 .

Note that when k = 4, the phase estimator (2.55) is just the standard fourth-power

estimator [12], [63, pp. 281–282] and [67], and (2.56) coincides with the expression

established earlier in [92, eq. (13)].
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3. Extension to Cross QAM Constellations

Following a similar approach to the one presented above, one can develop an optimal

matched joint carrier phase and frequency offset estimator for general cross QAM

modulations (i.e., with sizes M = 22m+1, m = 2, 3, . . .). Observe that for general

cross QAM constellations, w(n) takes a value from the set (1/rw){±(1 + 2l)± j(1 +

2k), (l, k) ∈ AM}, with AM := {(0, 1, . . . , 3 · 2m−2 − 1)2 − (2m−1, . . . , 3 · 2m−2 − 1)2}

and rw an energy normalization constant. Therefore, we can still express the joint

and marginal pdf of ρ(n) and φ(n) as in (2.43) and (2.44). Similarly to the derivations

presented in Subsection 2, it is not difficult to find that all the estimators proposed

for square QAM modulations can be applied to cross QAM constellations, and all

the expressions for the asymptotic variances still hold true without any change. The

constants Bk, Ck, Dk are constellation-dependent and their values should be computed

accordingly, whose detailed derivations will not be presented.

Assuming the number of samples N = 500, Fig. 12 illustrates the theoretical

asymptotic variances for 16-QAM (square) and 32-QAM (cross), respectively. Since

the difference between the asymptotic variances of θ̂ and f̂e is just a constant for a

given SNR, only the variance of θ̂ (2.56) is plotted. From Fig. 12, one can observe

that at low SNRs, both the optimal estimator and the fourth-power estimator achieve

CRB, which means that at very low SNRs, the classic fourth-power estimator is always

the best choice. This is not a surprising result since the fourth-power estimator is

simply a low-SNR approximation of the ML estimator [67]. However, in the more

practical regime of medium and high SNRs, the optimum nonlinear estimator provides

a significant improvement over the class of monomial estimators while the latter

exhibits the error floor due to its self-induced noise [67], [86]. This conclusion is

different from the result presented in Fig. 4 where the optimal nonlinearity Fmin(ρ(n))
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Fig. 12. Theoretical bounds of θ̂ versus SNR

can be approximated without much loss in performance by certain monomial function

in almost the entire SNR region of interest.

4. Implementation of the Optimal Estimator

The results shown in Fig. 12 illustrate the good property of the optimal nonlinearity

(2.52) for higher-order (higher than 4) QAM modulations at medium and high SNR

ranges. As can be observed from (2.51) and (2.52), Fmin(ρ(n)) is a function that

depends on the SNR, and presents high implementation complexity, which makes

the optimal estimator impractical. Fortunately, computer simulations indicate that

the sensitivity of the optimal estimator to SNR is limited in medium and high SNR

ranges. By considering approximations of (2.52), we propose next computationally

efficient SNR-independent estimators, which will be referred to as APP-estimators.

We select 16-QAM as an example to illustrate the derivation of the constellation-

dependent APP estimator. Fig. 13 (a) plots the optimal nonlinearity (2.52) versus

the magnitude ρ of the received data at SNR= 20dB for 16-QAM modulation, while

Fig. 13 (b) depicts the optimal nonlinearity (2.52) for a set of varying SNRs. The
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curve presented in Fig. 13-a suggests that for 16-QAM a good design for the APP

estimator is a piecewise linear approximation of the following form:

FAPP16(ρ(n)) =





122.2733ρ(n) if ρ(n) ≤ 0.7 ,

331.885ρ(n)− 30.4524 if ρ(n) ≥ 1.2 ,

0 elsewhere .

(2.62)

Similarly for 32-QAM and 64-QAM, since the optimal nonlinearity (2.52) appears to

be well modeled by piecewise linear approximations, we can obtain the APP estima-

tors:

FAPP32(ρ(n)) =





206.9958ρ(n) if ρ(n) ≤ 0.5 ,

608.4586ρ(n) + 2.2689 if 0.84 ≤ ρ(n) ≤ 1.02 ,

0 elsewhere ,

FAPP64(ρ(n)) =





106.4159ρ(n) if ρ(n) ≤ 0.34 ,

321.2425ρ(n) if 0.59 ≤ ρ(n) ≤ 0.69 ,

717ρ(n) if ρ(n) ≥ 1.44 ,

0 elsewhere ,

respectively. Since FAPP(·) is constellation-dependent, we will not present the detailed

expressions of FAPP for other QAM modulations in this paper. The APP nonlineari-

ties for general QAM constellations can be obtained in a similar way. It is interesting

to observe that FAPP16 (2.62) is quite similar to the nonlinearity introduced in the

Morelli et al. estimator (V&V-SEL) [70], which takes the following expression:

FV&V−SEL(ρ(n)) =





0.4472ρ(n) if ρ(n) ≤ 0.7236 ,

1.3416ρ(n) if ρ(n) ≥ 1.1708 ,

0 elsewhere .

Careful examination of the expressions of APP nonlinearities illustrates that the in-
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Fig. 13. a) Fmin versus ρ (16-QAM constellation at SNR= 20dB) b) Fmin versus ρ

(16-QAM constellation at varying SNRs)

trinsic principle of APP estimators is to emphasize the weight of the points located

on the diagonals of the signal constellation, and discard all the off-diagonal points. It

appears also that only a subset of the points located on the diagonals is selected. This

principle was implicitly exploited by V&V-SEL estimator [70] for 16-QAM, and by

Sari and Moridi for 16-QAM and 64-QAM under quite different circumstances [89].

In the next subsection, we will present simulation experiments to corroborate the

theoretical performance analysis and to illustrate the performance of the proposed

optimal estimators for both square and cross QAM constellations.

5. Simulation Experiments

In this subsection, we study thoroughly the performance of estimators (2.45), (2.46),

(2.55) and (2.57) using computer simulations. The experimental MSE results of the

proposed estimators will be compared with the theoretical asymptotic bounds and the

CRB. The impact of the nonlinearity F (·) on SER is also assessed. The additive noise

is generated as zero-mean Gaussian white noise, the number of samples is assumed

N = 500, and the experimental results are obtained by performing a number of
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MC = 1, 000 Monte Carlo trials (Figs. 14–16) except in Figs. 17–19, where we use a

larger number MC = 100, 000 to ensure accuracy. Unless otherwise noted, the carrier

phase θ = 0.2 and frequency offset FeT = 0.05.

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

M
S

E
(θ

)

Exp.: k=4
The.: k=4
Exp.: Optimal
The.: Optimal
Exp.: V&V−SEL
CRB

Fig. 14. Comparison of MSEs of θ̂
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Experiment 1-Comparison of the MSE of the proposed estimators with the theoretical

bounds versus SNR: This experiment compares the theoretical (The.) bounds with the

experimental (Exp.) MSEs of the proposed estimators for 16-QAM (Figs. 14–15) and

32-QAM (Fig. 16) assuming no frequency offset. In Figs. 14 and 15, the performance

of V&V-SEL estimator [70] is illustrated, too, while in Fig. 16, we also plot the MSE-

result of the eighth-order statistics based phase estimator (EOE) proposed for cross

QAM in [13]. These figures show that for medium and high SNRs, the experimental

results of the optimal estimator and the fourth-power estimator are well predicted by

the asymptotic bounds derived in this paper. Note that at low SNR (0dB), the MSE

of the phase estimator (2.55) asymptotically converges toward the constant value

π2/48, which represents the variance of a uniformly distributed phase estimate over

the range [−π/4, π/4] [86], [102]. From Figs. 14 and 15, we can observe that for
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Fig. 16. Comparison of MSEs of θ̂ (32-QAM constellation)

16-QAM, the performance of the optimal estimator and the V&V-SEL estimator is

essentially identical, and both of them outperform significantly the standard fourth-

power estimator in the medium and high SNR ranges, and are very close to CRB. In

the case of cross QAM constellations, the proposed optimal phase estimator provides

considerable improvement over the fourth-power estimator and EOE.

Experiment 2-The impact of the nonlinearity on SER: In Fig. 17, we show the SER

performance of the carrier synchronizers exploiting different nonlinearities and QAM

modulations. Because the choice of nonlinearity F (·) is the same for both carrier phase

and frequency offset estimators, for simplicity we only concentrate on the carrier

phase estimator assuming the absence of frequency offset. Fig. 17 compares the

performance of the proposed optimal and APP estimators with that of the classic

fourth-power estimator, V&V-SEL estimator and EOE for 16-QAM with θ = 0.75

and 32-QAM with θ = 0.2, respectively. To show the superior performance of the

optimal estimator, we also plot as a lower bound the SER curves in the case of perfect

carrier recovery, i.e., in the case when the transmitted symbols are only corrupted by
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Fig. 17. SER curves versus SNR (16-QAM and 32-QAM)

additive white Gaussian noise. Fig. 17 indicates that the proposed optimal estimator

approaches closely this lower bound, and improves significantly the performance of the

conventional fourth-power estimator and EOE for medium and high SNRs. We can

also observe that APP is a satisfying realizable alternative to the optimal estimator.

Experiment 3-The performance of the proposed estimators in the case of higher-order

QAM modulations: Figs. 18–19 illustrate the performance of the optimal estimator

and APP for larger-order QAM modulations (64-QAM with θ = 0.75, 256-QAM and

128-QAM, respectively), compared with the existing methods. Since higher-order

QAM modulations often operate at larger SNRs, we pay special attention to the

medium and high SNRs, where the SER is in the range SER≤ 10−3. These figures

show again the merit of the proposed optimal estimator and APP, and justify again

our derivation of the asymptotic variance.

6. Conclusions and Discussions

In this section, we have introduced and analyzed a family of blind feedforward joint

carrier phase and frequency offset estimators for general QAM modulations. Based
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on a generalization of the V&V algorithm, a matched nonlinear estimator together

with a class of monomial nonlinear estimators were introduced and their performance

established in closed-form expressions. A framework for designing computationally

efficient approximations of the proposed optimal estimator without incurring much

performance loss, is also proposed. The proposed (approximate) optimal estimator

exhibits better performance when compared with the existing methods. Simulation

results indicate the merit of the performance analysis presented in this section.
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A future work may include analyzing the performance of a generalized NLS

estimator that exploits the information provided by the two spectral lines present

in the process: y(n) := F1(ρ(n))ej4φ(n) + F2(ρ(n))ej8φ(n), where F1(·) and F2(·) are

two arbitrary nonlinearities. It appears that for square QAM or small-order cross

QAM there is not too much room for improvement, a fact that is corroborated by

the SER curves depicted in Figs. 17 and 18. However, for larger-order cross QAM,

the exploitation of additional harmonics (lines) may provide some performance gains.

Another type of QAM constellatoins is star QAM modulation, which exhibit lower
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Fig. 20. Star 16QAM constellation

peak-to-average power ratio than square QAM modulations [87], [113]. Specifically,

the star 16QAM constellation consists of 16 points arranged into two rings, each of

which has 8 points uniformly spaced at π/4 intervals, and can be regarded as an

8-PSK modulation, as shown in Fig. 20. Our research work concerning the optimal

carrier recovery scheme for Star 16QAM based on V&V algorithm can be found in

[107].
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CHAPTER III

BLIND NLS FREQUENCY OFFSET ESTIMATORS FOR FADING CHANNELS

In the previous chapter, we assume AWGN channels, which are relatively stationary

and predictable, e.g., the wired channels. However, in the radio/wireless communica-

tion systems, the transmission path between the transmitter and the receiver can vary

from simple line-of-sight to one that is severely obstructed by buildings, mountains,

and foliage [84]. Therefore, in this case we have to model the channels in a more

complex way, i.e., to characterize them as flat-fading or frequency-selective fading

channels with ISI. For the characterization of fading channels, please refer to [83] and

[84].

In this chapter, we consider the carrier recovery problem for linear modulations

in the presence of flat-fading or frequency-selective fading ISI channels. To simplify

the discussion, we will concentrate only on the acquisition of carrier frequency offset.

According to the nature of the transmitted signal constellation, this chapter is com-

posed of the following two sections, each to deal with one of the following categories

of input signals: circular or non-circular constellations, where the essential difference

between them, in terms of the statistical property, is that for a non-circular signal

sequence wk, E{w2
k} 6= 0, while this relation does not hold for a circular signal. In

this dissertation, we will consider the QAM modulations as the representative class

of circular signals.
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A. Blind Feedforward NLS Carrier Frequency Offset Estimators for QAM Constel-

lations in ISI Channels

1. Introduction

The growth of mobile wireless communications systems has prompted an increased

interest in designing digital receivers operating on samples of the fractionally-sampled

(oversampled) received signal. The main reason is that oversampling gives rise to cy-

clostationarity (CS), which implies that more statistical information can be used for

designing digital receivers with improved performance, and has been extensively ex-

ploited in communication systems to perform tasks of synchronization, blind channel

identification and equalization (see e.g., [9], [17], [18], [27], [32], [42], [41], [44], [48],

[49], [60], [90], [91] and [114]). It should be pointed out that CS statistics can also

be induced by filtering the received discrete-time sequence through a nonlinear filter

without oversampling, e.g., [9], [18], [91], [114], and the fourth-order NLS estimator

proposed in Chapter II, will be rederived later on from a CS point of view.

Several carrier frequency-offset estimators for flat-fading channels that exploit

the unconjugate second-order cyclostationary statistics of the oversampled received

signal were proposed in [41, 44, 90]. A high performance blind Maximum Likelihood

(ML) framework to estimate the Doppler shift in the presence of an unknown fre-

quency selective channel was proposed in [22]. However, the proposed ML-solution

relies on an iterative Baum-Welch type algorithm, whose large numerical complexity

and possible lack of convergence prohibit its use for many practical applications [22].

Reference [99] proposed a different solution for blind joint detection and carrier recov-

ery in the presence of an unknown multipath channel using a Viterbi-like algorithm.

Since this solution relies on a critical channel identifiability condition, which may not

be always satisfied, the applicability of this algorithm is also limited [99].



49

Based on oversampled signals, this section proposes a family of blind NLS fre-

quency offset estimators for QAM modulations, that does not require knowledge of

the multipath channel, and incorporates as a particular case the frequency offset es-

timator (2.45) with the oversampling factor (or rate) P = 1. The proposed family

of synchronizers admits a feedforward structure that may be easily implemented in

digital form, does not present high computational complexity, exhibits much faster

convergence rates (O(1/N 3), N denotes the number of available data samples) than

the algorithms [41, 44, 90], whose convergence rates are O(1/N), and their conver-

gence and consistency are guaranteed even in the presence of unknown multipath

effects [106].

2. Modeling Assumptions

Suppose that a QAM signal is transmitted through a flat-fading channel. The com-

plex envelope of the received signal is affected by the carrier frequency offset and/or

Doppler shift Fe and is expressed as [44], [83, Ch. 14]:

rc(t) = ej2πFet
∑

l

w(l)h(tr)
c (t− lT − εT ) + vc(t) , (3.1)

where w(l)’s are the transmitted complex information symbols, h(tr)
c (t) denotes the

transmitter’s signaling pulse, vc(t) is the complex-valued additive noise assumed in-

dependently distributed w.r.t. the input symbol sequence w(n), T is the symbol

period, and ε is an unknown normalized timing error introduced by the channel. Af-

ter matched filtering with h(rec)
c (t), the resulting signal is (over)sampled at a period

Ts := T/P , where the oversampling factor P ≥ 1 is an integer. Under the common

assumption that the frequency offset achieves small values (FeT < 0.1), the following
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equivalent discrete-time model can be deduced:

x(n) = ej2πfen
∑

l

w(l)h(n− lP ) + v(n) , (3.2)

where fe := FeTs, x(n) := (rc(t) ∗ h(rec)
c (t))|t=nTs

, v(n) := (vc(t) ∗ h(rec)
c (t))|t=nTs

and h(n) := (h(tr)
c (t) ∗ h(rec)

c (t))|t=nTs−εT . For large frequency offset (FeT ≥ 0.1), a

very similar model to eq. (3.2) results. Indeed, from (3.1), the receiver output after

sampling can be expressed as:

x(n) := (rc(t) ∗ h(rec)
c (t))|t=nTs

=
∑

l

w(l)
∫
h(rec)
c (τ)h(tr)

c (nTs − τ − lT − εT )ej2πFe(nTs−τ)dτ + v(nTs)

= ej2πFenTs
∑

l

w(l)
∫
h(rec)
c (τ)h(tr)

c (nTs − τ − lT − εT )e−j2πFeτdτ+v(nTs)

= ej2πfen
∑

l

w(l)h
′

(n− lP ) + v(n) , (3.3)

where h
′

(n) := h
′

c(t)|t=nTs−εT and h
′

c(t) = h(tr)
c (t)∗h(rec)

c (t)exp(−j2πFet). Substituting

h(n) with h
′

(n), we observe the equivalence between the two models (3.2) and (3.3):

small and large carrier frequency offsets, respectively. Because estimation of large

and small frequency offsets can be achieved using the same estimation framework,

in what follows we restrict our analysis to the problem of estimating small carrier

frequency offsets assuming the channel model (3.2). Moreover, since no knowledge of

the timing delay is assumed, the proposed FO-estimators will apply also for general

frequency-selective channels.

In order to derive the asymptotic performance of the FO-estimators, without any

loss of generality the following assumptions are imposed:

(AS1) w(n) is a zero-mean i.i.d. sequence with values drawn from a QAM constella-

tion with unit variance, i.e., σ2
2w := E{|w(n)|2} = 1.

(AS2) vc(t) is white circularly distributed Gaussian noise with zero mean and power
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spectral density N0.

(AS3) the transmitter and receiver filters are square-root raised cosine pulses of

bandwidth [−(1 + ρ)/(2T ), (1 + ρ)/(2T )], where the parameter ρ represents the roll-

off factor (0 ≤ ρ < 1) [83, Ch. 9].

(AS4) v(n) satisfies the so-called mixing condition [10, pp. 8, 25-27], [91], [114],

which states that the kth-order cumulant of v(n) at lag τ := (τ1, τ2, . . . , τk−1), de-

noted by ckv(τ ) := cum{v(n), v(n + τ1), . . . , v(n + τk−1)}, is absolutely summable:

∑
τ |ckv(τ )| < ∞, ∀k. The mixing condition is a reasonable assumption in prac-

tice since it is satisfied by all signals with finite memory. Assumption (AS4) will

prove useful in facilitating calculation of the asymptotic performance of the proposed

estimators.

3. Carrier Frequency Offset Estimators

Estimating fe from x(n) in (3.2) amounts to retrieving a complex exponential embed-

ded in multiplicative noise
∑
l w(l)h(n− lP ) and additive noise v(n). The underlying

idea for estimating the frequency offset is to interpret the higher-order statistics of

the received signal as a sum of several constant amplitude harmonics embedded in

(CS) noise, and to extract the frequency offset from the frequencies of these spec-

tral lines. Unlike in Chapter II, we will solve this spectral estimation problem by

interpreting it from a CS-statistics viewpoint. Due to their π/2-rotationally in-

variant symmetry properties, all QAM constellations satisfy the moment conditions

E{w2(n)} = E{w3(n)} = 0, E{w4(n)} 6= 0. This property will be exploited next to

design FO-estimators based on the fourth-order CS-statistics of the received sequence.

Define the fourth-order conjugate time-varying correlations (for QAM constel-

lations, the fourth-order cumulants and moments coincide) of the received sequence
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x(n) via: c̃4x(n; 0) := E{x4(n)}, with 0 := [0 0 0]. For P = 1, it turns out that:

c̃4x(n; 0) = κ̃4e
j2π4fen

∑

l

h4(l) , (3.4)

with κ̃4 := cum{w(n), w(n), w(n), w(n)} = E{w4(n)}. Similarly, for P > 1, we

obtain:

c̃4x(n; 0) = κ̃4e
j2π4fen

∑

l

h4(n− lP ) . (3.5)

Being almost periodic with respect to n, the generalized Fourier Series (FS)

coefficient of c̃4x(n; 0), termed conjugate cyclic correlation, can be expressed for P = 1

as (c.f. [50], [73]):

C̃4x(α; 0):= lim
N→∞

1

N

N−1∑

n=0

c̃4x(n; 0)e−j2παn = C̃4x(α0; 0)δ(α− α0) , (3.6)

where C̃4x(α0; 0) = κ̃4
∑
l h

4(l) and α0 := 4fe. When P > 1, it follows that:

C̃4x(α; 0) =
P−1∑

k=0

C̃4x

(
α0 +

k

P
; 0
)
δ
(
α−

(
α0 +

k

P

))
, (3.7)

where C̃4x(α0 + k/P ; 0) = (κ̃4/P )
∑
n h

4(n) exp(−j2πkn/P ).

Thus, C̃4x(α; 0) consists of a single spectral line located at 4fe when P = 1, and

P spectral lines located at the cyclic frequencies 4fe+k/P, k = 0, 1, . . . , P − 1 when

P > 1. An estimator of fe can be obtained by determining the location of the spectral

line present in C̃4x(α; 0) (see (3.6)):

fe =
1

4

(
arg max
α̇∈(−0.5, 0.5)

∣∣∣C̃4x(α̇; 0)
∣∣∣
2
)
, (3.8)

where the variable with a dot denotes a trial value. In practice, a computationally

efficient FFT-based implementation of (3.8) can be obtained by adopting an asymp-

totically consistent sample estimate for conjugate cyclic correlation C̃4x(α; 0), which
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takes the following form:

ˆ̃C4x(α; 0) :=
1

N

N−1∑

n=0

x4(n)e−j2παn . (3.9)

Plugging (3.9) back into (3.8), we obtain the estimator [91], [114]:

f̂e =
1

4

(
arg max
α̇∈(−0.5, 0.5)

∣∣∣∣
ˆ̃
C4x(α̇; 0)

∣∣∣∣
2
)

=
1

4


arg max

α̇∈(−0.5, 0.5)

∣∣∣∣∣
1

N

N−1∑

n=0

x4(n)e−j2πα̇n
∣∣∣∣∣

2

, (3.10)

which is equivalent to (2.45) obtained in Chapter II with monomial order equal to 4.

In the case when P > 1, it is possible to design a FO-estimator that extracts

fe solely from knowledge of the location information of the spectral line of largest

magnitude (k = 0). However, this approach leads again to the estimator (3.10). A

different alternative is to extract the frequency offset by exploiting jointly the location

information of all the P spectral lines. In this case, the FFT-based FO-estimator is

obtained:

α̂N := 4f̂e = arg max
|α̇|<1/(2P )

JN(α̇) , (3.11)

JN(α̇) :=
P−1∑

k=0

∣∣∣ ˆ̃C4x

(
α̇+

k

P
; 0
)∣∣∣

2
=

P−1∑

k=0

∣∣∣∣∣
1

N

N−1∑

n=0

x4(n)e−j2π(α̇+ k
P

)n

∣∣∣∣∣

2

.

Note that the condition |FeT | ≤ 1/8 is required in (3.10) and (3.11) in order to ensure

identifiability of FeT .

In the next subsection, we will establish in an unified manner the asymptotic

performance of the proposed frequency estimators (3.10) and (3.11), and show the

interrelation between the present class of cyclic estimators and the family of NLS

estimators.
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4. Asymptotic Performance Analysis

In order to show the equivalence between the present carrier frequency offset estima-

tion problem and the problem of estimating the frequencies of a number of harmonics

embedded in noise, it is helpful to observe that the conjugate time-varying correlation

c̃4x(n; 0) can be expressed as:

c̃4x(n; 0) =
P−1∑

k=0

C̃4x

(
α0 +

k

P
; 0
)
ej2π(α0+ k

P
)n =

P−1∑

k=0

λke
j(ωkn+φk) , (3.12)

where: λkexp(jφk) := C̃4x(α0 + k/P ; 0) and ωk := (2πk/P ) + 2πα0.

Defining the zero-mean stochastic process e(n) as:

e(n) := x4(n)− E{x4(n)} = x4(n)−
P−1∑

k=0

C̃4x

(
α0 +

k

P
; 0
)
ej2π( k

P
+α0)n, (3.13)

it follows that:

x4(n) =
P−1∑

k=0

C̃4x

(
α0 +

k

P
; 0
)
ej2π( k

P
+α0)n + e(n) =

P−1∑

k=0

λke
j(ωkn+φk) + e(n) . (3.14)

Thus, x4(n) can be interpreted as the sum of P constant amplitude harmonics cor-

rupted by the cyclostationary noise e(n) [18], [91].

Consider the NLS estimator:

θ̂ := arg min
˙θ
J(θ̇) , (3.15)

J(θ̇) :=
1

2N

N−1∑

n=0

∣∣∣∣∣x
4(n)−

P−1∑

k=0

λ̇ke
jφ̇kej2π(α̇+ k

P
)n

∣∣∣∣∣

2

, (3.16)

with the vector θ̇ := [λ̇0 · · · λ̇P−1 φ̇0 · · · φ̇P−1 α̇]T. It has been shown that the

FFT-based estimator (3.11) is asymptotically equivalent to the NLS-estimator (3.15)

(see e.g., [91]). Hence, the proposed cyclic frequency offset estimator can be viewed

as the NLS-estimator and the estimate α̂N is asymptotically unbiased and consistent

[11], [47] and [91]. In order to compute the asymptotic performance of estimator
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(3.11), it suffices to establish the asymptotic performance of NLS-estimator (3.15).

The following result, whose proof is deferred to Appendix C, holds [106]:

Theorem 7 The asymptotic variance of the estimate α̂N is given by:

γ := lim
N→∞

N3E{(α̂N − α0)
2} =

3
∑P−1
l1,l2=0 RH

l1
Gl1,l2Rl2

π2(
∑P−1
l=0 RH

l Rl)2
, (3.17)

with

Rl :=



C̃4x

(
α0 + l

P
; 0
)

C̃∗
4x

(
α0 + l

P
; 0
)


 ,

Gl1,l2 :=



S2e

(
l1−l2
P

;α0 + l1
P

)
− S̃2e

(
2α0 + l1+l2

P
;α0 + l1

P

)

−S̃∗2e
(
2α0 + l1+l2

P
;α0 + l1

P

)
S∗2e

(
l1−l2
P

;α0 + l1
P

)


 ,

and S2e(α; f) and S̃2e(α; f) stand for the unconjugate and conjugate cyclic spectrum

of e(n) at cycle α and frequency f , respectively.

As an immediate corollary of Theorem 7, in the case when only the spectral line

with the largest magnitude is considered, we obtain that the asymptotic variance of

estimator (3.10) is given by:

lim
N→∞

N3E{(α̂N − α0)
2} =

3RH
0 G0,0R0

π2‖R0‖4
. (3.18)

Note that when P = 1, the autocorrelation c2e(n; τ) := E{e∗(n)e(n+τ)} depends

only on the lag τ , hence e(n) is stationary w.r.t. its second-order autocorrelation

function and the cyclic spectrum S2e(0;α0) coincides with the second-order station-

ary spectrum S2e(α0). The result (3.18) shows that the asymptotic variance of F̂eT

converges as O(N−3) and depends inversely proportionally to the SNR corresponding

to the k = 0 spectral line SNR0 := |C̃4x(α0; 0)|2/re{S2e(0;α0)− S̃2e(2α0;α0)}.

Evaluation of asymptotic variance (3.17) requires calculation of the unconju-
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gate/conjugate cyclic spectra: S2e(α; f) and S̃2e(α; f), whose closed-form expressions

will be presented in what follows.

Define the variables:

κ8 := cum{w∗(n), · · · , w∗(n)︸ ︷︷ ︸
4

, w(n), · · · , w(n)︸ ︷︷ ︸
4

} , κ̃8 := cum{w(n), · · · , w(n)︸ ︷︷ ︸
8

} ,

and the fourth and sixth-order (l = 4, 6) moments/cyclic moments of x(n) as follows:

mlx(n; 0, · · · , 0︸ ︷︷ ︸
l/2−1

, τ, · · · , τ︸ ︷︷ ︸
l/2

):=E{x∗l/2(n)xl/2(n + τ)} ,

Mlx(k; 0, · · · , 0︸ ︷︷ ︸
l/2−1

, τ, · · · , τ︸ ︷︷ ︸
l/2

):=
1

P

P−1∑

n=0

mlx(n; 0, · · · , 0︸ ︷︷ ︸
l/2−1

, τ, · · · , τ︸ ︷︷ ︸
l/2

)e−j2πkn/P.

Some lengthy calculations, whose details are illustrated in Appendix D, show that

the following results hold [106]:

Proposition 1 For P = 1, the unconjugate/conjugate cyclic spectra of e(n) are given

by:

S2e(α0) =
∑

τ

[
16m2x(τ)m6x(0, 0, τ, τ, τ) + 18m2

4x(0, τ, τ)

−144m2
2x(τ)m4x(0, τ, τ) + 144m4

2x(τ)
]
e−j2πα0τ +

κ8

κ̃2
4

|C̃4x

(
α0; 0

)
|2 ,

S̃2e(2α0;α0) =
∑

τ

[
κ̃8

∑

l

h4(l)h4(l + τ) + 16κ̃2
4

∑

l

h(l)h3(l + τ)

·
∑

l

h3(l)h(l + τ) + 18κ̃2
4

(∑

l

h2(l)h2(l + τ)
)2]

,

respectively.

Proposition 2 For P > 1, the unconjugate/conjugate cyclic spectra of e(n) are given

by:

S2e

( k
P

;α0 +
l

P

)
=
∑

τ

[16V1 + 18V2 − 144V3 + 144V4]e
−j2π(α0+ l

P
)τ

+
κ8P

κ̃2
4

C̃4x

(
α0 +

l

P
; 0
)
C̃∗

4x

(
α0 +

l − k
P

; 0
)
,
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S̃2e

(
2α0 +

k

P
;α0 +

l

P

)
=
∑

τ

[16Ṽ1 + 18Ṽ2 + C̃8x(k; τ)]e
−j2π l

P
τ ,

where:

V1 :=
P−1∑

k1,k2=0

k1+k2−k≡0 mod P

M2x(k1; τ)M6x(k2; 0, 0, τ, τ, τ) ,

V2 :=
P−1∑

k1,k2=0

k1+k2−k≡0 mod P

M4x(k1; 0, τ, τ)M4x(k2; 0, τ, τ) ,

V3 :=
P−1∑

k1,k2,k3=0

k1+k2+k3−k≡0 mod P

M2x(k1; τ)M2x(k2; τ)M4x(k3; 0, τ, τ) ,

V4 :=
P−1∑

ki=0∑
i
ki−k≡0 mod P

3∏

i=0

M2x(ki; τ) ,

Ṽ1 :=
P−1∑

k1,k2=0

k1+k2−k≡0 mod P

C̃4x1(k1; τ)C̃4x3(k2; τ) ,

Ṽ2 :=
P−1∑

k1,k2=0

k1+k2−k≡0 mod P

C̃4x2(k1; τ)C̃4x2(k2; τ) ,

C̃4xi
(k; τ) :=

κ̃4

P

∑

n

hi(n)h(4−i)(n+ τ)e−j2π
kn
P , i = 1, 2, 3 ,

C̃8x(k; τ) :=
κ̃8

P

∑

n

h4(n)h4(n+ τ)e−j2π
kn
P .

When P = 1, the discrete-time additive noise v(n) is white. Then, it is not

difficult to show that neither S2e(α0) nor S̃2e(2α0;α0) depends on fe. Therefore, the

asymptotic variance (3.18) is independent of the unknown frequency offset. The same

conclusion holds in the case of P > 1 if the SNR is large enough (N0 � 1).

5. Simulations

In this subsection, the experimental MSE results and theoretical asymptotic bounds

will be compared. The experimental results are obtained by performing a number of
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200 Monte Carlo trials assuming that the transmitted symbols are selected from a 4-

QAM constellation with σ2
2w = 1. The transmitter and receiver filters are square-root

raised cosine filters with roll-off factor ρ = 0.5, and the additive noise is generated

by passing Gaussian white noise with variance N0 through the square-root raised

cosine filter. The signal-to-noise ratio is defined as: SNR:= 10 log10(σ
2
2w/N0). All

the simulations are performed assuming the frequency offset FeT = 0.011 and unless

otherwise noted, the number of transmitted symbols is L = 128.

In all figures except Figs. 22 and 25, the theoretical bounds of estimators (3.11)

and (3.10) for P = 1 and P = 4 are represented by the solid line, dash-dot line

and dash line, respectively. Their corresponding experimental results are plotted

using solid line with squares, dash-dot line with circles, and dash line with stars,

respectively.

Experiment 1-Performance w.r.t. SNR: Assuming the timing error ε = 0.3, in Fig. 21

we compare the MSEs of the FO-estimators (3.10) and (3.11) with their theoretical

asymptotic variances and the stochastic Cramér-Rao Bound (SCRB), which is repre-

sented by the solid line with triangles and evaluated as the inverse of the stochastic

Fisher information matrix:

E{(f̂e − fe)2} ≥ J−1(fe) =
N0

8π2T 2
∑N−1
n=0 n

2
∑N−1
l=0 |h(n− l)|2

.
=

3N0

8π2T 2N3
∑M
m=0 |h(m)|2 ,

J(fe) = −EwE
{∂2ln[fX(x|w, fe)]

∂f 2
e

}
=

8π2T 2

N0

N−1∑

n=0

n2
N−1∑

l=0

|h(n− l)|2 ,

where M is the order of channel {h(m)}. It turns out that in the presence of ISI, the

performance of FO-estimator (3.10) can be significantly improved by oversampling

the output signal. This result is further illustrated by Fig. 23, where the MSE of the

FO-estimator (3.10) is plotted vs. timing error ε, assuming again two different values
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for the oversampling factor P = 1 and P = 4.

In the case of P = 4, from the comparison of the performances of estimators

(3.10) and (3.11), which estimate fe by taking into account the information provided

by only one spectral line and all the P spectral lines of C̃4x(α; 0), respectively, one

can observe that both the theoretical and experimental results depicted in Fig. 21

show that estimator (3.11) does not improve significantly the performance of (3.10),

especially in the more practical low and medium SNR ranges. In fact, the experimen-

tal MSE-results of (3.11) are even worse than those of (3.10) in the low SNR regime.

This is due to the fact that the additional harmonics that are exploited in (3.11)

have small magnitudes and their location information can be easily corrupted by the

additive noise. Fig. 22 shows the magnitudes of these harmonics versus the cyclic

frequency. Thus, taking into account all the harmonics appears not to be justifiable

from a computational and performance viewpoint.
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Fig. 21. MSEs of F̂eT versus SNR
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Fig. 22. Amplitudes of harmonics

Experiment 2-Performance w.r.t. timing error ε: In Fig. 23, the theoretical and

experimental MSEs of the FO-estimator (3.10) are plotted versus the timing error ε,
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assuming the following parameters: SNR= 15 dB, and two oversampling factors P =

1 and P = 4. It turns out once again that oversampling of the received signal helps to

improve the performance of symbol-spaced estimators and a significant improvement

is achieved (several orders of magnitude) in the presence of large timing offsets (ε ≈

0.5). Moreover, the oversampling-based FO-estimator is quite robust against the

timing errors.
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Fig. 23. MSEs of F̂eT versus ε
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Fig. 24. MSEs of F̂eT versus L

Experiment 3-Performance w.r.t. the number of input symbols L: In Fig. 24, the

theoretical and experimental MSEs of the FO-estimator (3.10) are plotted versus the

number of input symbols L, assuming SNR= 15 dB, and timing delay ε = 0.3. It

can be seen that when the number of input symbols L increases, the experimental

MSE-results are well predicted by the theoretical bounds derived above. This plot also

shows the potential of these estimators for fast synchronization of burst transmissions

since the proposed frequency estimator with P > 1 provides very good frequency

estimates even when a reduced number of symbols are used (L = 60÷ 80 symbols).

Experiment 4-Performance w.r.t. the oversampling factor P : In this experiment, we
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study more thoroughly the effect of the oversampling rate P on FO-estimators. By

fixing SNR=15dB, ε = 0.3 and varying the oversampling rate P , we compare the

experimental MSEs of estimator (3.10) with its theoretical variance. The result is

depicted in Fig. 25. It turns out that increasing P does not improve the performance

of the FO-estimator as long as P ≥ 2. This is a pleasing property since large sampling

rates result in higher implementation complexity and hardware cost, which are not

desirable for high-rate transmissions.

Experiment 5-Performance w.r.t. SNR in frequency-selective channels: Fig. 26 shows

the results when the FO-estimator (3.10) is applied assuming a two-ray frequency-

selective channel. Assuming the baseband channel impulse response h(ch)
c (t) = 1.4δ(t−

0.2T )+0.6δ(t−0.5T ), we compare the experimental MSEs with the theoretical asymp-

totic variances for estimator (3.10) in two scenarios: P = 1 and P = 4, respectively.

Fig. 26 shows again the merit of the FO-estimator with P > 1.
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Fig. 25. MSEs of F̂eT versus oversam-

pling factor P
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Fig. 26. MSEs of F̂eT versus SNR in fre-

quency-selective channels
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6. Conclusions

This section analyzed the performance of a class of non-data aided feedforward carrier

frequency offset estimators for linearly modulated QAM-signals. It is shown that this

class of cyclic frequency offset estimators is asymptotically a family of NLS-estimators

that can be used for signals transmitted through unknown flat-fading or frequency-

selective channels. The asymptotic performance of these estimators is established in

closed-form expression and compared with the stochastic CRB. It is shown that this

class of FO-estimators exhibits a high convergence rate, and in the presence of ISI-

effects, its performance can be improved significantly by oversampling the received

signal with a small oversampling factor (P = 2). This proposed work can be extended

straightforwardly to other types of modulations (M-PSK, MSK).

B. On a Blind Fractionally-sampling Based Carrier Frequency Offset Estimator for

Non-circular Transmissions

1. Introduction

This section shows that the estimation of the carrier frequency offset estimation can

be significantly simplified when the constellation is non-circular (e.g., real-valued con-

stellation such as BPSK), and accordingly, the performance analysis admits tractable

forms due to the relatively simpler constellation structure compared with circular

modulations [20].

In this section, the frequency offset estimator is designed in an optimized manner

by exploiting efficiently all the conjugate second-order statistics that are present in

the received waveform. We will prove rigorously the minimum MSE of the resulting

carrier estimator invariant w.r.t. the oversampling factor P as soon as P ≥ 2. Thus,

selecting a low oversampling factor (e.g., P = 2) leads to an optimal carrier recovery
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scheme that requires a low complexity receiver. From this perspective, the present

carrier synchronizer represents a generalization of the estimators reported earlier by

the authors in [18] and [112], which exploit only a subset of the received signal’s

conjugate second-order CS statistics.

We remark also that [21] represents a different extension of the results reported

in [18], which proposes a unifying carrier frequency estimation framework that can be

used for systems employing linear block precoders at the transmitter. However, only

CDMA and OFDM modulation schemes are analyzed within this unifying transmitter

precoding set-up [21].

Since the operation of oversampling the received waveform may be interpreted

as a transmitter precoding scheme, the theoretical asymptotic performance analysis

framework in [18] and [21] is exploited herein to design optimized frequency recovery

schemes that operate on asynchronous signal samples taken at a rate faster than the

symbol rate.

2. Proposed Estimator

We focus on single-carrier and single-user wireless communications channels. The

continuous-time base-band received signal yc(t) can be expressed as follows :

yc(t) = (
∑

k∈Z

skhc(t− kT ))e2iπFet + wc(t),

where the symbol sequence {sk} transmitted at the baud rate 1/T is assumed to be

non-circular (i.e., E[s2
k] 6= 0), i.i.d. with zero-mean and unit-variance. The filter hc(t),

with the FT Hc(F ), which is assumed to be time-limited and causal, and results from

the convolution of the multipath propagation channel and the shaping filter, supposed

of bandwidth [−(1+ρ)/2T, (1+ρ)/2T ], with the roll-off factor ρ ∈ [0, 1]. The additive

noise wc(t) is assumed to be white circularly and normally distributed with power
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spectral density 2N0. Finally, Fe stands for the analog carrier frequency offset, which

may be induced by the local oscillator drifts and Doppler effects.

In general, the parameters Fe and hc(t) are unknown and have to be estimated in

order to detect the transmitted data sk. This section proposes an optimized frequency-

offset compensator that does not require knowledge of the channel impulse response

or training sequence. The proposed frequency estimator is implemented digitally and

assumes at the front end of the receiver an anti-aliasing filter (AAF) gc(t), whose

output is sampled at the rate 1/Ts = P/T , where the oversampling factor P is

an integer (see e.g., [63, p. 139]). The AAF is assumed to be an ideal low-pass

filter (although less stringent conditions on the frequency response of the AAF may

be adopted ) with bandwidth B sufficiently large in order to preserve all the signal

components at the filter output. The output of the AAF, denoted by zc(t), is sampled

so that Nyquist’s condition is satisfied 1/Ts = 2B (i.e., B = P/2T ). Since zc(t) :=

gc(t) ∗ yc(t), the following discrete-time channel model is obtained:

z(k) := zc(kTs) =

(
L∑

m=0

lmvk−m

)
e2iπfek + n(k), (3.19)

where {vk} stands for the sequence obtained by padding P − 1 zeros between any

two consecutive symbols {sk}. Define also: l(z) :=
∑L
m=0 lmz

−m, with lm := (gc(t) ∗

hc(t))|t=mTs
, the digital frequency offset fe := FeTs, and the discrete-time white noise

sequence n(k) := (gc(t) ∗ wc(t))|t=kTs
of variance σ2 := E[|n(k)|2] = 2N0/Ts.

Since the channel model (3.19) works as if one has transmitted the block sequence

[vkP , · · · , vkP+P−1] = kTsn, with k = [1, 01,P−1]
T, (3.19) can be interpreted as a

linearly precoded system. Consequently, we can use the frequency offset estimator [21]

that holds for general linear precoders, described by a tall matrix K. Let r̃(n, τ) :=

E[z(n + τ)z(n)] denote the conjugate correlation at lag τ of z(n), and define α0 :=
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(2fe modulo 1). Considering a Fourier series expansion of r̃(n, τ), we obtain:

r̃(n, τ) =
P−1∑

p=0

r̃(α0+p/P )(τ)e2iπ(α0+p/P )n, (3.20)

where r̃(α)(τ) stands for the conjugate cyclic correlation at lag τ and cyclic frequency

α. Let A0 be a compact set included in (0, min(1/2, 1/P )). According to (3.20), we

get

∀α ∈ A0, α 6= α0, ∀τ, ∀p, r̃(α+p/P )(τ) = 0.

Then, an asymptotically unbiased and consistent estimate α̂N of α0 is obtained as

follows:

α̂N :=arg max
α∈A0

JN (α), JN (α) :=
P−1∑

p=0

∣∣∣
∣∣∣r̂(α+p/P )
c,N

∣∣∣
∣∣∣
2

Wp

where r̂
(α)
c,N := [r̂

(α)
c,N(−M), · · · , r̂(α)

c,N(M)]T, M denotes a positive integer (M ≥ L), and

{Wp}P−1
p=0 is a sequence of positive-definite Hermitian matrices1. The term r̂

(α)
c,N(τ) :=

(1/N)
∑N−1
n=0 z(n)z(n + τ)e−2iπαn denotes a sample estimate of r̃(α)(τ), assuming N

observations available.

A few observations are now in order. The introduced estimate is an extension of

the estimator [112], which exploits only one cyclic correlation lag (M = 0). Second,

the introduced estimator may be interpreted as a special case of the estimators pro-

posed in [21], which are associated with different precoding schemes. Nevertheless,

the design and analysis of the new estimator reported herein remain of interest and

have not been reported in the literature.

By exploiting the results of [21], the consistency and asymptotic normality of

α̂N can be established. In addition, a closed-form expression for the asymptotic

1If x and W denote a vector and a positive Hermitian matrix, respectively, then
by definition ||x||2

W
:= xHWx.
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covariance defined as:

γ := lim
N→∞

N3E[(α̂N − α0)
2] , (3.21)

may be obtained. Furthermore, in order to minimize the asymptotic variance γ, it

can be shown that it is optimal to consider M = L and Wp = δ(p)I2L+1 [21]. Simply

stated, the extraction of the frequency offset should be performed based solely on

the harmonic α0 + p/P with p = 0, and all the cyclic correlation lags have to be

taken into account. These results may be derived using similar techniques as the

ones presented in [18] and [21], and will not be detailed herein. In the sequel, we

focus on the estimate associated with such an optimal design setting and analyze its

asymptotic performance.

3. Influence of the Oversampling Factor

As M = L and Wp = δ(p)I2L+1, the closed-form expression of γ given in [21] can be

reduced to

γ =
3Pσ2

π2a2
(Pσ2a+ 2b) ,

with: a :=
∫ 1/2
−1/2 |l(e2iπf )|2|l(e−2iπf )|2df, and b :=

∫ 1/2
−1/2 |l(e2iπf )|4|l(e−2iπf)|2df.

To properly study the influence of the oversampling factor P on the performance

of frequency estimator α̂N , we evaluate the following term:

EP = E[(FeT − F̂eT |P,Ns
)2] , (3.22)

with F̂eT |P,Ns
:= α̂NP/2 and Ns := N/P . In fact, EP represents the theoretical

mean-square error of the analog frequency offset estimate normalized with the symbol

duration, assuming that the duration of the observation window is NsT . From (3.21)

and (3.22), it turns out that:

EP =
γ

4PN3
s

. (3.23)
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After some quite straightforward but very long calculations based on Poisson’s for-

mulae, (3.23) can be expressed as [20]:

EP =
3N0

π2N3
s ζ

(1)2

P

(N0Tζ
(1)
P + ζ

(2)
P ) ,

with: 



ζ
(1)
1 :=

∫ 1/2T
−1/2T |Hc(F )|2|Hc(−F )|2dF

ζ
(2)
1 :=

∫ 1/2T
−1/2T |Hc(F )|4|Hc(−F )|2dF

for P = 1,

and 



ζ
(1)
P :=

∫ 1/T
−1/T |Hc(F )|2|Hc(−F )|2dF

ζ
(2)
P :=

∫ 1/T
−1/T |Hc(F )|4|Hc(−F )|2dF

for P ≥ 2.

As soon as P ≥ 2, ζ
(1)
P and ζ

(2)
P do not depend on P . Thus, the theoretical mean-square

error is independent of P , a result which has been shown for QAM modulations by

computer simulations in Fig. 25 and intuitively might be predicted based on Shannon’s

interpolation theorem, and is equal to zero in the noiseless case (N0 = 0) (i.e., an

asymptotically jitter-free timing recovery scheme).

4. Simulations

The Signal-to-Noise Ratio is expressed regardless of the oversampling factor as SNR :=

∫
R |Hc(F )|2dF/2N0. We fix also ρ = 0.2, fe = 0.05, T = 3µs, and the circularly dis-

tributed noise n(k) is assumed white and Gaussian. The theoretical and experimental

MSE of the frequency estimator are obtained by averaging EP and ||FeT − F̂eT |P,Ns
||2

over MC = 100 Monte-Carlo trials, respectively. At each trial, a (slow Rayleigh)

fading multipath propagation channel with three paths is adopted. The complex am-

plitudes of the paths are normally distributed and the timing delays assume uniform

distributions in [0, 3T ]. As it is usually performed, we proceed in two steps to obtain

the frequency offset estimate: first, a coarse search step is performed to maximize
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the criterion JN(α) via a FFT. Then, a fine search step is performed based on a

gradient algorithm, initialized with the estimate provided by the coarse search step.

Since the asymptotic analysis studies the behavior of the criterion around the true

point α0, this analysis does not provide any relevant information on the performance

of the first step, which optimizes the criterion over an FFT grid of frequencies spread

on the entire interval [0, 1/P ]. The performance of the first step can be relevantly

evaluated by means of the occurrence probability of a wrong detection of the peak,

which normally should occur around α0. Figure 27 depicts the number of samples Ns

with respect to SNR for which the probability of failure is less than 1%. In fact, the

amplitude of the spectral line localized at frequency α0 depends on the terms ζ
(k)
P ,

k = 1, 2. We have observed that the false detection occurs whenever the terms ζ
(k)
P ,

k = 1, 2, are numerically weak, in general smaller than the noise variance.
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In the sequel, we only consider the trials which succeeded to detect the right

peak. Figure 28 plots the MSE versus Ns. We observe that the MSE is proportional

to O(1/N 3
s ). For the remaining simulations, we fix Ns = 500. Figure 29 plots the
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MSE versus SNR, and shows that the performance of the baud-rate estimator is

worse than the performance of the oversampled estimator. In Figure 30, we depict

the MSE versus ρ. For P ≥ 2, the performance is quite the same with respect to ρ.

On the contrary, for P = 1, the theoretical and experimental performances slightly

degrade as ρ increases. Indeed, as the roll-off factor increases, the loss of information

becomes more important. Judicious exploitation of the entire statistical information

requires to select P > 1. In all the figures, one can observe that the performance

is independent of the oversampling factor P as soon as P ≥ 2. In addition, the

estimation performance corresponding to the oversampled case (P ≥ 2) is always

better than the baud-rate case (P = 1).
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5. Conclusions

We have investigated the theoretical and experimental MSE-performances of a blind

frequency offset estimator based on the conjugate cyclostationary statistics of the

oversampled received signal. In perfect agreement with Shannon’s interpolation the-

orem, we deduced that for optimum performance the oversampling factor does not

need to be larger than two. Consequently, receivers with reduced sampling rates

(complexity) may be designed without any loss in performance.
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CHAPTER IV

BLIND FEEDFORWARD CYCLOSTATIONARITY-BASED TIMING

ESTIMATION FOR LINEAR MODULATIONS

Timing recovery is a challenging but very important task for reliable detection in syn-

chronous receivers. To implement the receiver in a fully digital way, it requires the

output waveform of the matched filter to be over-sampled by a free-running oscillator

at a fixed rate faster than the symbol rate, and all further processing to be performed

digitally based on these samples [75]. This means that the timing recovery consists of

two distinct operations: timing estimation and timing correction, where the timing

correction serves to provide the decision device with optimum decision metrics gen-

erated from the given samples by some sort of interpolation, which is controlled by

the result of timing estimation [63], [75].

For bandwidth efficiency reasons, non-data aided or blind timing estimation ar-

chitectures have received much attention during the last decade. Up until recently, a

lot of blind timing estimators have been proposed for linear modulations transmitted

through time non-selective flat-fading channels [41], [44], [63], [66], [71], [75], [78], [85]

and [90]. In [85], feedback schemes are proposed. However, it is known that feedback

schemes have good tracking performance and exhibit comparatively long acquisitions

due to hangup phenomena, which is not desirable in short bursts [63], [71]. Therefore,

blind feedforward hangup-free schemes have received considerable attention [41], [44],

[63], [71], [75], [78] and [90].

Originally in [75], Oerder and Meyr proposed a blind feedforward square timing

recovery technique for digital data transmission by linear modulation schemes, which

we refer to as the O&M estimator. Several extensions as well as estimators similar in

form to the O&M estimator were later reported in [41], [44] and [90]. It is not difficult
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to observe that a subclass of blind feedforward timing estimators proposed in [41], [44]

and [90] reduces to the O&M estimator provided that the timing lag is fixed to τ = 0

in [41, Eq. 6], [44, Eq. 11] and [90, Eq. 2.18]. These estimators, along with the methods

presented in [66], employ a second-law nonlinearity (SLN) on the received samples,

and exhibit weak performance when operating with narrowband signaling pulses [58]

and [71]. With the assumption of low SNR and PSK constellations, [71] proposes

an ad hoc feedforward SNR-dependent ML-based timing estimator that assumes a

logarithmic nonlinearity (LOGN) and is shown to exhibit better performance than the

SLN (O&M) estimator. However, good estimates are obtained by fixing the SNR value

to 5 dB. Moreover, since its performance analysis is not fully investigated, no thorough

conclusions may be drawn [71]. Reference [78] proposes an approximate performance

analysis of the SLN, fourth-law (FLN), and absolute value (AVN) nonlinearities based

estimators assuming BPSK modulations and a stationary statistics framework.

Irrespective of the nonlinearity function used, one of the common features of all

the above mentioned blind feedforward timing estimators is the exploitation of the

cyclostationary (CS) statistics induced by oversampling the received signal. The role

of cyclostationarity in synchronization was clearly acknowledged in [5] and [35], and

a general CS framework for timing estimation was introduced by Gini and Giannakis

in [44]. In this chapter, first we will analyze by exploiting the CS-statistics of the

received signal the asymptotic performance of the estimators [41] and [44], which

were proposed to estimate jointly the symbol timing and carrier frequency offset, then

propose a CS-based general framework to develop efficient estimators, and rigorous

and thorough performance analysis set-ups for the existing blind timing estimators.

Several important and novel conclusions will be drawn. Finally, we will present

an alternative two-sample-per-symbol based timing estimator, which exhibits very

low computational complexity. This study relies on the novel cyclostationary signal
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processing techniques developed in [19], [103].

A. Performance Analysis of Blind Frequency Offset and Symbol Timing Estimators

GG and GSD

1. Introduction

The goal of this section is to analyze the performance of the feedforward non-data

aided carrier frequency offset and symbol timing delay estimators [41] and [44] w.r.t.

the pulse shape bandwidth and the oversampling factor. The theoretical asymptotic

performance of the Gini-Giannakis (GG) [44] and Ghogho-Swami-Durrani (GSD) [41]

estimators is established, and it is shown that the performance of these estimators

does not improve by selecting a large value for the oversampling factor (P > 3), and

the accuracy of the timing delay estimators can increase by choosing pulse shapes with

larger bandwidths. By properly taking into account the aliasing effects, it is shown

that the expressions of the symbol timing delay estimators take a slightly different

form than the expressions reported in [41] and [44] when P = 2.

2. Modeling Assumptions

Consider the baseband representation of a linearly modulated signal transmitted

through a flat-fading channel. The receiver output is expressed as (see e.g., [41]

and [44]):

xc(t) = µc(t)e
2iπFet

∑

l

w(l)hc(t− εT − lT ) + vc(t) , (4.1)

where µc(t) is the fading-induced noise, {w(l)} is a sequence of zero-mean unit vari-

ance i.i.d. symbols, hc(t) denotes the convolution of the transmitter’s signaling pulse

and the receiver filter, vc(t) is the complex-valued additive noise, T is the symbol

period, Fe and ε stand for carrier frequency offset and symbol timing delay, respec-
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tively, and represent the parameters to be estimated by exploiting the second-order

cyclostationary-statistics of the received waveform.

By fractionally oversampling the received signal xc(t) with the sampling period

Ts := T/P (P ≥ 2), the following discrete-time channel model is obtained:

x(n) = µ(n)e2iπFeTn/P
∑

l

w(l)h(n− lP ) + v(n) , (4.2)

with x(n) := xc(nTs), µ(n) := µc(nTs), v(n) := vc(nTs), and h(n) := hc(nTs − εT ).

In order to derive the asymptotic performance of estimators [41], [44], without any

loss in generality we assume the following:

(AS1) w(n) is a zero-mean i.i.d. sequence with values drawn from a linearly modu-

lated complex constellation with unit variance, i.e., σ2
w := E{|w(n)|2} = 1.

(AS2) µ(n) is a constant fading-induced noise with unit power. Later on, this as-

sumption will be relaxed by considering that µ(n) is a time-selective fading process.

(AS3) v(n) is a complex-valued zero-mean Gaussian process independent of w(n),

with variance σ2
v , which satisfies the mixing conditions [26], [44].

(AS4) the combined filter hc(t) is a raised cosine pulse of bandwidth [−(1+ρ)/2T, (1+

ρ)/2T ], where the roll-off factor ρ satisfies (0 ≤ ρ < 1) [83, Ch. 9].

(AS5) frequency offset Fe is small enough so that the mismatch of the receive filter

due to Fe can be neglected [44]. Generally, the condition FeT < 0.2 is assumed. This

assumption is required to ensure the validity of channel models (4.1), (4.2).

Based on these assumptions, in the ensuing subsection we introduce the non-data

aided estimators of Fe and ε proposed in [44] (GG) and [41] (GSD).

3. Frequency Offset and Symbol Timing Estimators for Time-invariant Channels

a. Usual Definitions
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The time-varying correlation of the nonstationary process x(n) is defined as

r2x(n; τ) := E{x∗(n)x(n + τ)},

where τ is an integer lag. By exploiting Eq. (4.2) and taking into account the as-

sumptions (AS1)–(AS3), straightforward calculations lead to

r2x(n; τ) = r2x(n+ P ; τ) , ∀n, τ.

Being periodic, r2x(n; τ) admits a Fourier Series expansion

r2x(n; τ) =
P−1∑

k=0

R2x(k; τ)e
2iπ kn

P ,

whose Fourier’s coefficients, also termed cyclic correlations, are given for k = 0, . . . , P−

1 by the following expression [41], [44]:

R2x(k; τ) :=
1

P

P−1∑

n=0

r2x(n; τ)e−2iπ kn
P .

The frequencies k/P (or simply k), for k = 0, . . . , P − 1, are referred to as cyclic

frequencies or cycles [43]. Furthermore, from these cyclic correlations, it is usual to

define a cyclic spectrum for each cyclic frequency k, as follows:

S2x(k; f) :=
∑

τ

R2x(k; τ)e
−2iπτf . (4.3)

We also define the conjugate second-order time-varying correlation of x(n) as

r̃2x(n; τ) := E{x(n)x(n + τ)}.

It is easy to check that r̃2x(n; τ) can be expressed as

r̃2x(n; τ) =
P−1∑

k=0

R̃2x(k; τ)e
2iπ

(k+2FeT )n
P ,

and the conjugate cyclic correlation R̃2x(k; τ) can be obtained by the generalized
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Fourier Series expansion [43]:

R̃2x(k; τ) := lim
N→∞

1

N

N−1∑

n=0

r̃2x(n; τ)e−2iπ
(k+2FeT )n

P .

Similarly to Eq. (4.3), we can define the conjugate cyclic spectrum S̃2x(k; f) as the

FT of the sequence {R̃2x(k; τ)}τ .

In practice, the cyclic correlations R2x(k; τ) have to be estimated from a finite

number of samples N , and the standard sample estimate of R2x(k; τ) is given by (see

e.g., [25], [43], [44]):

R̂2x(k; τ) =
1

N

N−τ−1∑

n=0

x∗(n)x(n+ τ)e−2iπ kn
P , τ ≥ 0 ,

which, under (AS3), is asymptotically unbiased and mean square sense (m.s.s.) con-

sistent.

b. Closed-form Expressions for the Second-order Statistics

We now focus on the closed-form expressions of the second order statistics of the

received signal obeying the model (4.2).

According to Eq. (4.2), we obtain

R2x(k; τ) =
σ2
w

P
e2iπ

FeTτ
P

(∑

n

h∗(n)h(n + τ)e−2iπ kn
P

)
+ σ2

vhrc(τ)δ(k) , (4.4)

where hrc(n) := hc(t)|t=nTs
. In order to show the dependency of R2x(k; τ) on the

timing delay ε, which is hidden in the expression of the discrete-time channel h(n),

an alternative expression forR2x(k; τ) is next derived, based on the Parseval’s relation.

First, the sum in (4.4) can be rewritten as

∑

n

h∗(n)h(n + τ)e−2iπ kn
P =

∫ 1
2

− 1
2

H∗(f)H(f +
k

P
)e2iπ(f+ k

P
)τdf,
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where H(f) denotes the FT of h(n). In a similar way (see Eq. (4.4)), we obtain:

R̃2x(k, τ) =
σ2
c,w

P
e2iπ

FeTτ
P

(∑

n

h(n)h(n + τ)e−2iπ kn
P

)
,

with σ2
c,w := E{w2(n)}.

In order to point out the influence of the oversampling factor, we wish to express

the cyclic correlations w.r.t. the continuous-time filter hc(t). Since the bandwidth of

hc(t) is less than 1/T and the oversampling rate is equal to or larger than 2/T , the

oversampling does not introduce any aliasing for Fourier transform of h(n). Therefore,

thanks to Poisson’s sum, it follows that for |f | ≤ 1/2 [76, Ch. 3]:

∀P ≥ 2, H(f) =
1

Ts
Hc

(
f

Ts

)
e−2iπfPε , (4.5)

where Hc(F ) stands for the FT of hc(t). As shown in [41] and [44], we can also express

H(f + k/P ) for |f | ≤ 1/P and k = ±1 (the cycle k = −1 is equivalent to k = P − 1

by periodicity) as follows:

∀P ≥ 3, H(f + k/P ) =
1

Ts
Hc

(
f + k/P

Ts

)
e−2iπ(f+ k

P
)Pε. (4.6)

Based on the previous equations, we can obtain the following formula [44]:

∀P ≥ 3, R2x(k; τ) =
σ2
w

P
e2iπ

FeTτ
P eiπ

kτ
P e−2iπkεG(k; τ) + σ2

vhrc(τ)δ(k), (4.7)

where

G(k; τ) :=
P

T

∫ 1/2T

−1/2T
Hc(F −

k

2T
)Hc(F +

k

2T
)e2iπ

τTF
P dF .

Unlike [41] and [44], we have observed that Eq. (4.6) cannot be used in the case

when P = 2. Indeed, if P = 2, then the aliasing effects due to frequency-shifting

have to be taken into account. Therefore, Eq. (4.7) does not hold anymore except for
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k = 0. For P = 2 and |f | ≤ 1/2, the Poisson’s sum leads to

H(f + 1/2)=
1

Ts

[
Hc

(
f + 1/2

Ts

)
e−2iπε +Hc

(
f − 1/2

Ts

)
e2iπε

]
· e−4iπfε.

For P = 2 and k = 1, it follows that:

R2x(k; τ) = σ2
we

iπ(FeT+1)τ cos
[
2π
(
ε +

τ

4

)]
G(k; τ). (4.8)

Due to the symmetry property of the raised-cosine function hc(t), one can notice

that Hc(F ) is a real-valued even function [83, p. 546]. Then, it is easy to check that

G(k; τ) is a real-valued function. Moreover, due to the band-limited property of the

filter hc(t), G(k; τ) is nonzero only for cycles k = 0, ±1. In the same way, since x(n)

is given by the Eq. (4.2), it is well known that the cyclic spectrum of x(n), can be

expressed for k 6= 0 as (c.f. [100]):

S2x(k; f) =
σ2
w

P
H(f − FeTs)H∗(f − FeTs − k/P ). (4.9)

It follows that the supports of the functions f → H(f−FeTs) and f → H∗(f−FeTs−

k/P ) are disjoint as far as the cycles |k| > 1, which leads to no cyclic correlation

information (|S2x(k; f)| = 0, ∀ f , and hence |R2x(k; τ)| = 0, for |k| > 1). In a similar

way, the conjugate cyclic spectrum can be expressed as follows:

S̃2x(k; f) =
σ2
c,w

P
H(f − FeTs)H(FeTs + k/P − f).

c. The GG and GSD Estimators

The GG estimator determines the frequency offset Fe and the timing delay ε
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based on the following equations [44, Eqs. (24), (25)]





f̂e = P
4πTτ

arg{R̂2x(1; τ)R̂2x(−1; τ)}, for P ≥ 2 ,

ε̂ = − 1
2π

arg{R̂2x(1; τ)e−2iπ(f̂eT+1/2)τ/P }, for P ≥ 3 ,

ε̂ = 1
2π

arccos
{
re
(
R̂2x(1;τ)e−iπ(f̂eT+1)τ

σ2
wG(1;τ)

)}
− τ

4
, for P = 2 .

(4.10)

The last equation in the array (4.10) represents the right form of the GG symbol

timing delay estimator in the case when P = 2, and its expression follows directly

from the Eq. (4.8).

Note that the estimator presented in [90] can be obtained by choosing τ = P

in (4.10). For sake of clarity, throughout this section, we choose τ = 1 for the GG

estimator. In this case, one can see that the GSD frequency offset estimator [41,

Eq. (7)] coincides with the GG algorithm. Consequently, it is sufficient to analyze the

GG frequency offset estimator. In contrast, the timing delay estimator corresponding

to the GSD algorithm [41, Eq. (8)] is different than the GG symbol timing delay

estimator and is given by the following equations





ε̂=− 1
2π

arg{R̂2x(1; 0)}, for P ≥ 3,

ε̂= 1
2π

arccos
{
re
(
R̂2x(1;0)
σ2

wG(1;0)

)}
, for P = 2.

(4.11)

In the next subsection, we establish the asymptotic variances of estimators (4.10)-

(4.11), which are defined as follow:

γFe
:= lim

N→∞
NE{(F̂e − Fe)2}, γε := lim

N→∞
NE{(ε̂− ε)2}.

4. Performance Analysis for Time-invariant Channels

In order to establish the asymptotic variance of the asymptotically unbiased and

consistent estimators (4.10)-(4.11), it is necessary to evaluate the normalized uncon-

jugate/conjugate asymptotic covariances of the cyclic correlations which are defined
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as:

Γ(k,l)
u,v = lim

N→∞
NE{(R̂2x(k; u)−R2x(k; u))(R̂2x(l; v)−R2x(l; v))

∗},

Γ̃(k,l)
u,v = lim

N→∞
NE{(R̂2x(k; u)−R2x(k; u))(R̂2x(l; v)−R2x(l; v))}.

As the estimators (4.10)-(4.11) are dealing only with the cyclic correlations at cycles

k = ±1, we concentrate, in the sequel, on the derivation of the asymptotic covariances

of the cyclic correlations for k, l = ±1. According to [15], we obtain:

R2x(k; τ) = e2iπ kτ
P R∗

2x(−k;−τ),

which implies that

Γ̃(k,l)
u,v = e2iπ

lv
P Γ

(k,−l)
u,−v . (4.12)

Thus, it is sufficient to evaluate Γ since Γ̃ can be obtained directly based on

Eq. (4.12). In [19], Γ(1,1) and Γ̃(1,1) are obtained only for circular input sequences (i.e.,

input sequences which satisfy the condition E{w(n)w(n + τ)} = 0). The following

proposition, which is an extension of the results presented in [19], is established in

the Appendix E.

Proposition 3 The asymptotic variances of the cyclic correlation estimates are given

by:

Γ(1,1)
u,v =

P−1∑

k=0

e2iπ
kv
P

∫ 1

0
S2x(k; f)S∗2x(k; f −

1

P
)e2iπ(u−v)fdf

+
P−1∑

k=0

e−2iπ
(1+k+2FeT )v

P

∫ 1

0
S̃2x(k; f)S̃∗2x(k; f −

1

P
)e2iπ(u+v)fdf + κPR2x(1; u)R∗

2x(1; v) ,

Γ(1,−1)
u,v =

P−1∑

k=0

e2iπ
kv
P

∫ 1

0
S2x(k; f)S∗2x(k − 2; f − 1

P
)e2iπ(u−v)fdf

+
P−1∑

k=0

e2iπ
(1−k−2FeT )v

P

∫ 1

0
S̃2x(k; f)S̃∗2x(k − 2; f − 1

P
)e2iπ(u+v)fdf+κPR2x(1; u)R∗

2x(−1; v) ,
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Γ(−1,1)
u,v = Γ∗(1,−1)

v,u , Γ(−1,−1)
u,v = e2iπ

(v−u)
P Γ

(1,1)
−v,−u ,

and κ denotes the kurtosis of w(n).

In the above proposition, some terms within the sums may cancel out. Indeed, since

the filter hc(t) is band-limited, the cyclic spectra at cycles |k| > 1 are zero. This

remark implies, for example, that if P > 2, then only the terms driven by the index

k = 0 remain in the expression of Γ(1,1) and k = 1 in Γ(1,−1). When P = 2, only Γ(1,1)

is needed since R2x(1; τ) = R2x(−1; τ).

a. Performance Analysis of the GG Estimator

The asymptotic performance of the GG estimator is established in the Appendix

E. The following proposition sums up the expressions of the asymptotic variance of

the GG frequency offset estimator.

Proposition 4 For P ≥ 3, the asymptotic variance of the frequency offset estimator

(4.10) is given by:

γFe
=
P 4

(
ΨTΓΨ∗ − re{e−4iπFeT/PΨT Γ̃Ψ}

)

32π2T 2σ4
wG

2(1; 1)

where

Ψ = [ψ, ψ∗]T , ψ = e2iπ(ε−1/2P ) ,

Γ =




Γ
(1,1)
1,1 Γ

(1,−1)
1,1

Γ
(−1,1)
1,1 Γ

(−1,−1)
1,1


 ,

and Γ̃ is defined in a similar way as Γ.

For P = 2, the asymptotic variance of the frequency offset estimator (4.10) is

given by:

γFe
=

1TΓ1− re{e−2iπFeT1T Γ̃1}
8π2T 2σ4

w sin2 (2πε)G2(1; 1)
,
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with 1 = [1, 1]T .

The closed-form expression of the GG timing symbol delay estimator is drawn

in the following proposition.

Proposition 5 For P ≥ 3, the asymptotic variance of the timing delay estimator

(4.10) is given by:

γε =
P 2re{e−4iπFeT/P Γ̃

(1,−1)
1,1 − ψ2Γ

(1,−1)
1,1 }

8π2σ4
wG

2(1; 1)
+
T 2

P 2
γFe

.

For P = 2, the asymptotic variance of the timing delay estimator (4.10) is given

by:

γε =
Γ

(1,1)
1,1 + re{e−2iπFeT Γ̃

(1,1)
1,1 }

8π2σ4
w cos2(2πε)G2(1; 1)

.

b. Performance Analysis of the GSD Estimator

When compared with the GG algorithm (4.10), the symbol timing delay estima-

tors corresponding to the GSD algorithm are obtained from Eqs. (4.11) and by fixing

τ = 0. Note that such a choice of τ decouples the symbol timing delay estimators

from the frequency offset estimator in the sense that the estimation of ε does not

require an initial estimate of Fe [41]. The following result holds.

Proposition 6 For P ≥ 3, the asymptotic variance of the timing delay estimator

(4.11) is given by:

γε =
P 2

(
Γ

(1,1)
0,0 − re{e4iπεΓ̃

(1,1)
0,0 }

)

8π2σ4
wG

2(1; 0)
.

For P = 2, the asymptotic variance of the timing delay estimator (4.11) is given

by:

γε =
Γ

(1,1)
0,0 + re{Γ̃(1,1)

0,0 }
8π2σ4

w sin2(2πε)G2(1; 0)
.
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We note that analyzing theoretically the influence of the system parameters such

as oversampling factor or excess bandwidth factor from the equations displayed in the

previous propositions is quite difficult. Therefore, we need numerical illustrations to

highlight the contribution of each parameter to the performance. These simulation

experiments show that selection of larger values for the oversampling factor P does

not improve the performance of estimators (4.10)-(4.11). In addition, we also notice

that the convergence rate of all the estimators (the mean-square error) decreases

proportionally to 1/N , where N stands for the number of available observations.

In particular, the frequency offset estimators (4.10)-(4.11) converge slower than the

estimator described in [18] and the previous two chapters, which exploits the conjugate

cyclostationary statistics of the received waveform.

5. Extension to Time-selective Channels

Due to the assumption (AS2), the foregoing discussion applies only to time-invariant

channels. In this subsection, we will see that the results obtained above can be

extended to the case of time-selective fading effects as long as the fading distortion

µc(t) is approximately constant over a pulse duration or, equivalently, the Doppler

spread BµT is small, where Bµ denotes the bandwidth of µc(t) [44].

Assuming now that µ(n) is a stationary complex process with autocorrelation

rµ(τ) := E{µ∗(n)µ(n+ τ)} [44], we can rewrite Eq. (4.4) for k = ±1 as:

R2x(k; τ)=
σ2
w

P
rµ(τ)e

2iπ FeTτ
P

∑

n

h∗(n)h(n + τ)e−2iπ kn
P . (4.13)

Based on Eq. (4.13), it is not difficult to find that all the previous estimators (Eqs. (4.10)

and (4.11)) still hold true except that for P = 2 they take the form:

ε̂=
1

2π
arccos

{
re
(R̂2x(1; 1)e−iπ(f̂eT+1)

σ2
wG(1; 1)rµ(1)

)}
− 1

4
,
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ε̂=
1

2π
arccos

{
re
( R̂2x(1; 0)

σ2
wG(1; 0)rµ(0)

)}
, (4.14)

respectively.

Compared with the performance analysis reported in the previous subsection, the

exact asymptotic variance of GG and GSD estimators in the case of time-selective

channels supports several modifications. Introduce now an additional assumption on

the fading channel:

(AS6): the land-mobile channel is a Rayleigh fading channel, which means that µ(n)

is a zero-mean complex-valued circular Gaussian process [83].

For general land-mobile channel models, the autocorrelation of µ(n) is propor-

tional to the zero-order Bessel function, i.e., rµ(τ) ∝ J0(2πBµτ) (c.f. [84]). Based on

the assumption (AS6), r̃2x(n; τ) = 0 and the higher-order cumulants of x(n) are also

zero. Therefore, following the steps of Appendices E and E, one can find that in the

presence of time-selective fading effects, the performance analysis can be established

in a similar way as in the case of time-invariant fading channels. In fact, consider-

ing the assumption (AS6), only the first terms of Γ(1,1)
u,v and Γ(1,−1)

u,v in Proposition 1

survive, and the asymptotic variances γFe
and γε for the GG and GSD estimators in

Propositions 2-4 still hold true except that some constants related to rµ(1) or rµ(0)

should be added. For example, when P = 2, based on Eq. (4.14), we now obtain the

following expressions for the asymptotic variances corresponding to the GG and GSD

timing delay estimators:

γε =
Γ

(1,1)
1,1 + re{e−2iπFeT Γ̃

(1,1)
1,1 }

8π2σ4
w cos2(2πε)G2(1; 1)r2

µ(1)
,

γε =
Γ

(1,1)
0,0 + re{Γ̃(1,1)

0,0 }
8π2σ4

w sin2(2πε)G2(1; 0)r2
µ(0)

,

respectively.
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In closing this subsection, it is interesting to remark that for implementing the

GG and GSD frequency-offset estimators no information regarding the time-varying

fading process µ(n) is required. If the oversampling factor satisfies P ≥ 3, then

the implementation of the GG and GSD timing delay estimators does not require

any knowledge of µ(n), too. However, when P = 2 knowledge of the second-order

statistics rµ(0) and rµ(1) is required for implementing the GG and GSD timing delay

estimators (4.14). However, simulation experiments, reported in the next subsection,

show that from a computational complexity and performance viewpoint the best value

of the oversampling factor is P = 3. Thus, estimation of parameters rµ(0) and rµ(1)

can be avoided by selecting P > 2.

6. Simulation Experiments

In this subsection, the experimental MSE results and theoretical asymptotic bounds

of estimators (4.10)-(4.11) are compared. The experimental results are obtained by

performing a number of 400 Monte Carlo trials assuming that the transmitted symbols

are i.i.d. linearly modulated symbols with σ2
w = 1. The transmit and receive filters are

square-root raised cosine filters, and the additive noise v(n) is generated by passing a

Gaussian white noise through the square-root raised cosine filter to yield a discrete-

time noise sequence with autocorrelation sequence rv(τ) := E{v∗(n)v(n + τ)} =

σ2
vhrc(τ) [44]. The signal-to-noise ratio is defined as: SNR:= 10 log10(σ

2
w/σ

2
v). Exper-

iments 1 to 4 assume BPSK symbols transmitted through time-invariant channels,

while Experiments 5 to 6 are performed assuming time-selective Rayleigh fading and

QPSK constellations. In our simulations, the Doppler spread is set to BµT = 0.005

(very slow fading), µ(n) is created by passing a unit-power zero-mean white Gaussian

noise process through a normalized discrete-time filter, obtained by bilinearly trans-

forming a third-order continuous-time all-pole filter, whose poles are the roots of the
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equation (s2 + 0.35ω0s+ ω2
0)(s+ ω0) = 0, where ω0 = 2πBµ/1.2.

In all figures, the theoretical bounds of GG and GSD estimators are represented

by the solid line and the dash line, respectively. The experimental results of GG and

GSD estimators are plotted using dash-dot lines with stars and squares, respectively.

Since the frequency offset estimators of GG and GSD are equivalent, only the former

will be presented.
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Fig. 31. MSE of F̂eT and ε̂ vs. P for BPSK and time-invariant channel

Experiment 1 : Performance versus the oversampling rate P for BPSK constella-

tion. By varying the oversampling rate P , we compare the MSE of GG and GSD

estimators with their theoretical asymptotic variances. The number of symbols is set

to L = 200, the roll-off factor of the pulse shape is ρ = 0.5, and SNR=10dB. The nor-

malized frequency offset and timing delay are FeT = 0.05 and ε = 0.37, respectively.

The results are depicted in Figure 31. It turns out that increasing the oversampling

rate does not improve performance of the frequency offset and timing delay estimators

as long as P ≥ 3. This is a result which may be predicted by Shannon interpolation

theorem, and since the estimators (4.10)-(4.11) exploit the second order statistics of

the received signal x(n), an oversampling rate larger than 2 is necessary to make the
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cyclic spectra alias-free [50], [73]. Moreover, although more samples are collected as

P increases, their correlation increases too, which is known to increase the variance

of the estimators [44].
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Fig. 32. MSE of F̂eT and ε̂ vs. ρ for BPSK and time-invariant channel

Experiment 2 : Performance versus the filter bandwidth for BPSK constellation.

Figure 32 depicts the MSE of the estimators versus the roll-off factor ρ assuming

oversampling rate P = 4, L = 200 transmitted symbols, SNR=10 dB, FeT = 0.1

and ε = 0.37. It can be seen that with ρ increasing, the performance of the timing

delay estimators improves. This is an expected property, since physically, wideband

pulses have comparatively short duration and, therefore, are better “seen” in the

presence of noise [63, p. 65]. From another viewpoint, based on (4.9) and since hc(t)

is bandlimited, it follows that as the bandwidth decreases, the second-order cyclic

spectra are numerically weak, i.e., less cyclic correlation information is available.

Experiment 3 : Performance versus the number of input symbols L for BPSK

constellation. In Figure 33, the theoretical and experimental MSE of the frequency

offset and symbol timing delay estimators are plotted versus the number of symbols

L, assuming the following parameters: P = 4, ρ = 0.5, SNR= 10 dB, FeT = 0.05
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Fig. 33. MSE of F̂eT and ε̂ vs. L for BPSK and time-invariant channel

and ε = 0.37. Figure 33 shows that the experimental MSE of all the estimators are

well predicted by the theoretical bounds derived in Subsection 4.
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Fig. 34. MSE of F̂eT and ε̂ vs. SNR for BPSK and time-invariant channel

Experiment 4 : Performance versus SNR for BPSK constellation. Figure 34 depicts

the experimental and theoretical MSE of the GG and GSD estimators versus SNR,

assuming the parameters P = 4, ρ = 0.9, L = 500, FeT = 0.05 and ε = 0.37. The

simulation results of timing estimators for high SNR range are supposed to agree with
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the theoretical bounds when the number of samples N is sufficiently large to make

the self noise negligible (c.f. [63, ch. 6]).

Experiment 5 : Performance versus the oversampling rate P in time-selective chan-

nels for QPSK constellation. We repeat the Experiment 1 by assuming QPSK symbols

passing through a time-selective channel. The number of symbols is set to L = 400,

the roll-off factor of the pulse shape is ρ = 0.5, SNR=10dB, FeT = 0.2 and ε = 0.37.

The results are depicted in Figure 35. It turns out again that when P ≥ 3, the per-

formance of GG and GSD estimators does not depend on the oversampling factor P .

So larger oversampling factors (P = 4, · · · , 8) are not justifiable from a computational

and performance improvement viewpoint.
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Fig. 35. MSE of F̂eT and ε̂ vs. P for QPSK and time-selective channel

Experiment 6 : Performance versus the filter bandwidth in time-selective channels

for QPSK constellation. Figure 36 depicts the MSE of the estimators versus the roll-

off factor ρ in the presence of time-varying fading effects, assuming oversampling rate

P = 4, L = 400 transmitted symbols, SNR=10dB, FeT = 0.2 and ε = 0.37. Both the

theoretical and experimental results corroborate again the conclusion of Experiment

2: pulse shapes with larger bandwidths can improve the performance of the timing
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Fig. 36. MSE of F̂eT and ε̂ vs. ρ for QPSK and time-selective channel

delay estimators.

7. Conclusions

In this section, we have analyzed the asymptotic performance of the blind carrier

frequency offset and timing delay estimators introduced in [41] and [44]. Such esti-

mators rely on the second-order cyclostationary statistics generated by oversampling

the output of the receive filter. We have derived the asymptotic variance expressions

of F̂e and ε̂ and shown that a smaller oversampling rate (P = 3) can improve the

estimation accuracy as well as reduce the computational complexity of the estimators.

By properly taking into account the aliasing effects, we have shown that when

P = 2 the timing delay estimators take a different form than the expressions reported

in [41] and [44]. which, however, exhibit unsatisfying performance (see Fig. 31 and

35). An alternative estimator with P = 2 and improved performance will be derived

later in this chapter.
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B. Blind Feedforward Symbol Timing Estimators: Further Results

1. System Model and Assumptions

Assuming in the absence of the frequency offset, the standard baseband system model

(4.2) turns to:

x(n) =
∑

l

w(l)h(n− lP ) + v(n) . (4.15)

In addition to (AS1)–(AS5), we invoke the following assumptions [109]:

(AS7) To keep the presentation length to a minimum, the input modulating sequence

w(l) is also assumed circular (i.e., E{w2(l)} = 0). These assumptions are not at all

restrictive since all the derivations can be extended to non-circular modulations and

symbol streams that assume arbitrary correlations.

(AS8) In [41], [44], [63], [71] and [75], the oversampling rate P ≥ 4 is adopted to

avoid certain aliasing effects. It was pointed out in the last section that when P = 2,

the aliasing effects have to be taken into account, and a different form for the SLN

timing estimator results. To avoid any overlapping, we assume P ≥ 3.

All the assumptions are not stringent, therefore, the results presented here are

quite general and suitable for many applications of practical interest.

Fig. 37 illustrates the common structure of the popular blind feedforward tim-

ing estimators mentioned above, which consists of filtering the received samples

{x(n)}N−1
n=0 through a nonlinearity that removes the modulation effects introduced

by w(l) and generates a data sequence y(n) that contains spectral components whose

phase information is exploited to recover the unknown timing epoch ε.

In the next subsection, first we briefly introduce a general form for the blind

feedforward SLN timing estimators proposed in [41], [44], [75] and [90], and then

propose a unifying ML-framework that will enable to establish some interesting links

with some of the existing estimators and to analyze their asymptotic performance.
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Fig. 37. Common structure of blind feedforward timing estimators

2. Second-Order CS Statistics-based Timing Estimators

a. SLN Timing Estimators

Let us rewrite Eq. (4.7) in a more compact form without frequency offset:

R2x(k; τ) =
1

P
eiπ

kτ
P e−2iπkεG(k; τ) + σ2

vhrc(τ)δ(k). (4.16)

Some straightforward calculations lead to the following explicit relations for

G(k; τ) [109]: G(−1; τ) = G(1; τ),

G(1; τ) =





ρP
8

if τ = 0 ,

ρP
16

if τ = ±P
ρ
,

P 4 sin πτρ

P

8πτ(P 2−τ2ρ2)
elsewhere ,

(4.17)

G(0; τ) =





(4−ρ)P
4

if τ = 0 ,

2ρP
π

(π
4

sin π
2ρ
− 1

3
cos π

2ρ
) if τ = ± P

2ρ
,

ρP
π

(1
3
sin π

ρ
− π

8
cos π

ρ
) if τ = ±P

ρ
,

2P
π

{
P
2τ

[5
8
sin (1−ρ)πτ

P
+ 3

8
sin (1+ρ)πτ

P
]

+
τρ2P (sin

(1+ρ)πτ

P
+sin

(1−ρ)πτ

P
)

P 2−4ρ2τ2 + 1
16

τρ2P (sin
(1−ρ)πτ

P
−sin

(1+ρ)πτ

P
)

P 2−ρ2τ2

} elsewhere .

Observe also that between the set of second-order time-varying correlations

{r2x(n; τ)}, ∀n, τ , and the set of cyclic correlation coefficients {R2x(k; τ)}, ∀k, τ ,

there is a one-to-one mapping, i.e., either of the two sets describes completely the

second-order statistical properties of the received signal x(n). Since R2x(k; τ) =
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exp{2iπkτ/P}R∗
2x(−k;−τ), based on (4.16), it follows that only the subset {R2x(1; τ)},

∀τ , represents all the second-order statistics that may be used for estimating the un-

known timing epoch ε. Note that the subset {R2x(0; τ)}, ∀τ , assumes the knowledge

of SNR and does not convey any information for estimating ε.

Based on Eq. (4.16), the following general SLN timing estimator may be pro-

posed:

ε̂ = − 1

2π
arg{R̂2x(1; τ)e−iπτ/P} . (4.18)

The second-order CS-based timing estimators proposed in the literature choose dif-

ferent values for the timing lag τ in Eq. (4.18) (estimators [41] and [75] select τ = 0,

[44] assumes τ = 1, and [90] considers τ = P ). The asymptotic performance of

timing estimators [41] and [44] is derived and compared in the last section. Next,

a ML-framework is proposed to analyze the performance of the general SLN timing

estimator (4.18) and to possibly design improved performance estimators by exploit-

ing the entire information provided by all the second-order statistics of the received

signal.

b. ML Framework

Define the vector of correlations: R2x := [R2x(1;−τm), . . . , R2x(1; τm)]T, where

τm denotes an arbitrary non-negative integer. Denote the sample estimate of R2x by

R̂2x. According to [26], the sample cyclic correlation estimates {R̂2x(1; τ)}, ∀τ , are

asymptotically jointly complex-valued and normally distributed. Thus,
√
N [R̂2x −

R2x] is asymptotically jointly complex normal with zero-mean 0 := [0, . . . , 0]T, and

its covariance and relation matrices are given by:

Γ =lim
N→∞

NE{(R̂2x −R2x)(R̂2x −R2x)
H}, Γ̃ =lim

N→∞
NE{(R̂2x −R2x)(R̂2x −R2x)

T},

respectively. Let Γu,v denote the (k, l)th-entry of Γ, u, v = −τm, . . . , τm. The closed-
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form expressions of Γ and Γ̃ are established in Proposition 3, and with the assumption

(AS7), can be expressed as:

Γu,v =
∫ 1

2

− 1
2

S2x(0; f)S∗2x(0; f − 1

P
)e2iπ(u−v)fdf + κPR2x(1; u)R∗

2x(1; v) , (4.19)

Γ̃u,v =
∫ 1

2

− 1
2

S2x(1; f)S∗2x(−1; f − 1

P
)e2iπ(u+v)fdf + κPR2x(1; u)R2x(1; v) ,(4.20)

where for |k| ≤ 1 (c.f. Eq. (4.9)):

S2x(k; f) =
1

P
Hrc(f)Hrc(f − k/P )e−2iπkε + σ2

vHrc(f)δ(k), (4.21)

where Hrc(f) denote the discrete-time FT of hrc(n).

Next, we transform the complex Gaussian pdf CN (0,Γ, Γ̃) into its equivalent al-

gebraic form of the real Gaussian pdf fε(Û2x) by defining the (4τm+2)×1-dimensional

vectors: U2x :=[re(R2x)
T im(R2x)

T]T and Û2x :=[re(R̂2x)
T im(R̂2x)

T]T. Simple cal-

culations show that the covariance matrix of Û2x is given by:

Λ := lim
N→∞

NE{(Û2x −U2x)(Û2x −U2x)
T} =

1

2




re(Γ + Γ̃) im(Γ̃− Γ)

im(Γ̃ + Γ) re(Γ− Γ̃)


 .

Generally, Λ depends on the unknown timing epoch ε. Now define the error vector

e := Û2x −U2x and consider the following nonlinear regression model:

Û2x = U2x(ε) + e , (4.22)

where both Û2x and e depend on the number of samples N , and U2x is a function

of the unknown timing ε. The ABC estimator of ε for the above nonlinear regression

problem is given by the nonlinear least-squares estimator weighted by the inverse of

the asymptotic covariance matrix of the error vector e, and takes the form [82, ch. 3],
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[95, pp. 91–95]:

ε̂ = arg min
ε̇
J(ε̇) , (4.23)

where

J(ε̇) =
1

2
[Û2x −U2x(ε̇)]

TΛ(ε̇)−1[Û2x −U2x(ε̇)] , (4.24)

and ε̇ means the trial value of ε. Using Eqs. (4.19), (4.20), and Parseval’s relation,

Γ and Γ̃ can be expressed only in terms of R2x(k; τ). Hence, a consistent estimate

Λ̂ for Λ(ε̇) can be obtained by using consistent sample estimates for R2x(k; τ). In

addition, it is well known that the replacement of Λ(ε̇) in (4.24) by Λ̂ does not change

the asymptotic properties of the resulting estimate ε̂ [82, p. 84]. Hence, the following

reduced complexity estimator may be considered

ε̂ = arg min
ε̇

{
1

2
[Û2x −U2x(ε̇)]

TΛ̂−1[Û2x −U2x(ε̇)]
}
, (4.25)

which is asymptotically equivalent to (4.23) [82]. As e is asymptotically normally

distributed, one can observe that the ABC estimator (4.25) is nothing else than the

asymptotic ML estimator of ε̂ in terms of the observations contained in the vector

Û2x.

c. Asymptotic Performance Analysis

The ABC estimator is computationally very intensive and may suffer from pos-

sible local convergence problems. Next, we derive an efficient way to implement the

ABC estimator. By exploiting (4.16), U2x(ε) takes the following expression [109]:

U2x(ε) = Φ · θ ,
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where θ := [θ0 θ1]
T = [cos(2πε) sin(2πε)]T, and

Φ :=
1

P




G(1;−τm) cos(−πτm
P

) G(1;−τm) sin(−πτm
P

)

...
...

G(1; τm) cos(πτm
P

) G(1; τm) sin(πτm
P

)

G(1;−τm) sin(−πτm
P

) −G(1;−τm) cos(−πτm
P

)

...
...

G(1; τm) sin(πτm
P

) −G(1; τm) cos(πτm
P

)




.

Hence, (4.22) can be rewritten as:

Û2x = Φ · θ + e , (4.26)

which means that the determination of the ABC-estimate of ε reduces to finding a

Best Linear Unbiased Estimation (BLUE) of θ for the linear model (4.26). It follows

that in this case the BLUE estimator of θ admits the closed-from expression [52,

ch. 6], [95, ch. 4]:

θ̂ = (ΦTΛ−1Φ)−1ΦTΛ−1Û2x , (4.27)

and the corresponding 2-by-2 asymptotic covariance matrix of θ̂ is given by:

Θ := lim
N→∞

NE{(θ̂ − θ)(θ̂ − θ)T} =




Θ0,0 Θ0,1

Θ0,1 Θ1,1


 = (ΦTΛ−1Φ)−1 . (4.28)

Given the BLUE-estimate of θ, according to [52, Theorem 7.4], the ABC-estimate

of ε can be expressed as:

ε̂ =
1

2π
arctan

(
θ̂1

θ̂0

)
. (4.29)

Considering a Taylor series expansion of the right-hand side of (4.29) and neglecting

the terms of magnitude higher than o(1/
√
N), one can derive the asymptotic variance

of ε̂, which is summarized in the result:
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Theorem 8 The asymptotic variance of the timing epoch estimator (4.29) is given

by:

avar(ε̂):= lim
N→∞

NE{(ε̂ − ε)2} =
sin2(4πε)

16π2

{
Θ0,0

cos2(2πε)
+

Θ1,1

sin2(2πε)
− 4Θ0,1

sin(4πε)

}
.(4.30)

It turns out that the O&M estimator is just a special case of the general estimator

(4.23)-(4.29) with τm = 0. Indeed, in this case: Û2x = [re(R̂2x(1; 0)) im(R̂2x(1; 0))]T,

and

Φ =
G(1; 0)

P




1 0

0 −1


 , Λ =

1

2




Γ0,0 + re(Γ̃0,0) im(Γ̃0,0)

im(Γ̃0,0) Γ0,0 − re(Γ̃0,0)


 .

Eq. (4.27) leads to θ̂ = (P/G(1; 0))[re(R̂2x(1; 0)) − im(R̂2x(1; 0))]T and

ε̂ = − 1

2π
arctan

{
im(R̂2x(1; 0))

re(R̂2x(1; 0))

}
, (4.31)

which is just the estimator (4.18) with τ = 0 (i.e., the O&M estimator). Also, based

on Theorem 8, the asymptotic variance of the O&M estimator can be expressed as:

avar(ε̂) =
P 2

8π2G2(1; 0)
[Γ0,0 − re(e4iπεΓ̃0,0)] , (4.32)

which coincides with the expression established earlier in Proposition 6.

As can be seen from the above derivations, the O&M estimator is an ABC-

estimator, i.e., asymptotically an ML-estimator that exploits only one cyclic corre-

lation (R̂2x(1; 0)). An additional feature of the O&M estimator regards its reduced

computational complexity, by exploiting the information provided by the cyclic corre-

lation R̂2x(1; 0), the problem of estimating Λ is bypassed, which is a pleasing property

for practical uses. Similar conclusions can be drawn on the other types of SLN timing

estimators [41], [44] and [90].
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Now it is of interest to ask whether the performance of the O&M estimator

can be improved by exploiting additional second-order statistical information, i.e.,

whether exploiting additional cyclic correlations R̂2x(1; τ) at lags τ 6= 0 improves the

performance. Surprisingly, from the plots shown in Figs. 38(a) and (b), the answer is

no. In Figs. 38(a) and (b), we evaluate the theoretical MSE of SLN-estimate ε̂, which

asymptotically takes the following form:

MSE(ε̂) := E{(ε̂− ε)2} =
avar(ε̂)

N
,

for different values of τm in the case of rolloff factors ρ = 0.2 and ρ = 0.9, respectively,

assuming QPSK input symbols, the oversampling rate P = 4, the normalized timing

epoch ε = 0.3, and the number of samples N = 400 (i.e., the observation length

L = 100 symbols). The modified CRB (MCRB) is adopted as a benchmark, and

takes the expression MCRB(ε̂) = 1/(8π2LξSNR) , where the parameter ξ, in the case

of raised-cosine pulses, is given by [63, p. 65]: ξ = (1/12) + ρ2(0.25− 2/π2).
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Fig. 38. Theoretical performance of SLN-estimate ε̂ for different values of τm with (a)

ρ = 0.2 and (b) ρ = 0.9

To explain that the performance of the SLN timing epoch estimators for dif-
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ferent τm’s is asymptotically the same, let us study the asymptotic behavior of

the cost function J(ε̇) (4.24). Consider the following two random vectors Û0 :=

[re(R̂2x(1; 0)) im(R̂2x(1; 0))]T and Û1 := [re(R̂2x(1; 1)) . . . re(R̂2x(1; τm)) im(R̂2x(1; 1))

. . . im(R̂2x(1; τm))]T, which correspond to the two sets of cyclic observations {R̂2x(1; 0)}

and {R̂2x(1; 1) . . . R̂2x(1; τm)}, respectively. Let Û2 := C · Û0 denote the orthogonal

projection of Û1 onto the subspace spanned by Û0, and define Û⊥
0 := Û1− Û2 as the

error vector. According to the Projection Theorem, the following relation holds:

cov{Û⊥
0 , Û0} = 0 ,

from which, the projection matrix C can be obtained and expressed in terms of the

entries of Λ (cf. [52, ch. 12]). Since the sets {Û0 Û1} and {Û0 Û⊥
0 } contain the

same statistical information for estimating ε, and asymptotically Û0 and Û⊥
0 are

independent and normally distributed, the cost function (4.24) decomposes into the

sum of two terms as follows:

J(ε̇) =
1

2
[Û0 −U0(ε̇)]

TΛ0(ε̇)
−1[Û0 −U0(ε̇)]

︸ ︷︷ ︸
J1(ε̇)

+
1

2
[Û⊥

0 −U⊥
0 (ε̇)]TΛ⊥

0 (ε̇)−1[Û⊥
0 −U⊥

0 (ε̇)]
︸ ︷︷ ︸

J2(ε̇)

,

where U0, Λ0, U⊥
0 and Λ⊥

0 stand for the means and covariance matrices of Û0 and

Û⊥
0 , respectively. Choosing τm = 10, Fig. 39 depicts the shapes of the cost functions

J1(ε̇), J2(ε̇) and J(ε̇) for QPSK input symbols, assuming the following parameters:

P = 4, ε = 0.3, ρ = 0.9, SNR= 20dB and L = 2, 000. It can be seen that the function

J2(ε̇) is much flatter than J1(ε̇), and the cost function J(ε̇) is totally dominated

by J1(ε̇), which corresponds to the SLN timing estimator that relies only on the

cyclic correlation R̂2x(1; 0) (i.e., the O&M estimator). Furthermore, it turns out

that the same conclusion holds true irrespective of the pulse shape excess bandwidth,

oversampling factor, timing epoch and SNR. Therefore, it appears that w.r.t. the set
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{R̂2x(1; 0)}, the set of cyclic observations {R̂2x(1; 1) . . . R̂2x(1; τm)} does not convey

any additional information for estimating ε. Moreover, due to the normal distribution

of the error vector e, the BLUE is also the MVU estimator [52], which means that

asymptotically, the O&M estimator achieves the best performance in the class of all

estimators that exploit the second-order statistics of the received signal. This result

justifies the following conclusion [109]: The performance of all blind feedforward SLN

timing estimators which exploit the second-order statistics of the received signal is

asymptotically the same as long as the statistical information at timing lag τ = 0

(R̂2x(1; 0)) has been considered.
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Fig. 39. Cost function of SLN estimator (ρ = 0.9, SNR=20dB)

d. Influence of the Oversampling Rate P

Now we analyze the effect of the oversampling rate P on the SLN timing esti-

mators. Due to the conclusion obtained above, we only focus on the O&M estimator,

whose asymptotic variance is given by (4.32). To properly inspect the influence of

P , we need to evaluate the theoretical MSE of ε̂. Since the pulse shape hc(t) is ban-

dlimited in [−(1 + ρ)/2T, (1 + ρ)/2T ] with 0 < ρ ≤ 1, according to [103], under the
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assumption of P ≥ 3, the following expressions hold [109]:

Hrc(f) =
1

Ts
Hc

(
f

Ts

)
=
P

T
Hc(F ) ,

Hrc(f + k/P ) =
1

Ts
Hc

(
f + k/P

Ts

)
=
P

T
Hc

(
F +

k

T

)
, for |f | ≤ 1/P and k = ±1 .

Therefore, based on (4.20) and (4.21), we can write:

Γ̃0,0 =
∫ 1

2

− 1
2

S2x(1; f)S∗2x(−1; f − 1

P
)df + κPR2x(1; 0)R2x(1; 0)

=
1

P 2
e−4iπε

∫ 1
2

− 1
2

H2
rc(f)H2

rc(f −
1

P
)df + κP

ρ2

64
e−4iπε

=
P

T 3
e−4iπε

∫ P
2T

− P
2T

H2
c (F )H2

c (F −
1

T
)dF + κP

ρ2

64
e−4iπε

=
P

T 3
e−4iπε

∫ ρ
2T

− ρ
2T

H2
c (F +

1

2T
)H2

c (F −
1

2T
)dF + κP

ρ2

64
e−4iπε = Pe−4iπεζ2 ,

where for the second equality we made use of (4.16) and (4.17), and

ζ2 :=
1

T 3

∫ ρ

2T

− ρ
2T

H2
c (F +

1

2T
)H2

c (F −
1

2T
)dF +

κρ2

64
.

Similarly, we can obtain Γ0,0 = Pζ1, where:

ζ1 := ζ2 +
2σ2

v

T 2

∫ ρ

2T

− ρ
2T

H2
c (F +

1

2T
)Hc(F −

1

2T
)dF

+
σ2
v

T

∫ ρ

2T

− ρ
2T

Hc(F +
1

2T
)Hc(F −

1

2T
)dF .

Then, by exploiting (4.17) and (4.32), it yields that:

MSE(ε̂) =
8(ζ1 − ζ2)
π2ρ2L

. (4.33)

Since ζ1 and ζ2 do not depend on P , MSE(ε̂) is independent of P whenever P ≥ 3,

which was shown in the previous section by computer simulations . One can observe
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that in the noiseless case (σ2
v → 0), ζ1 = ζ2, therefore, the asymptotic variance of the

O&M estimate is equal to 0, which means that asymptotically in SNR and N , the

variance of the O&M estimate converges to zero faster than O(1/N). We remark that

this result was first reported in [75] using a different analysis and certain approxima-

tions. Later in the next subsection, after introducing some necessary definitions, we

will show further that the rate of convergence to zero of the asymptotic variance of

the O&M estimate is even faster than O(1/N 2) in the absence of additive noise.

3. Joint Second and Fourth-Order CS-based Timing Estimator

Pulses with small rolloff factors are of interest with bandwidth efficient modulations

[71]. SLN timing epoch estimators exhibit bad performance with small rolloffs due

to the lack of CS-information and their large self noise, especially in high SNR range

[58], [63] and [103]. Hence, when dealing with strongly bandlimited pulses, nonlin-

earities other than the SLN may be considered to improve the performance of timing

estimators. The most common used one is the FLN nonlinearity. Next, we briefly

review the FLN-based timing estimator.

a. FLN Timing Estimator

The fourth-order time-varying correlation of x(n) is defined as:

r4x(n; τ1, τ2, τ3) := E{x∗(n)x∗(n + τ1)x(n + τ2)x(n+ τ3)} .

Consider only the case τ1 = τ2 = τ3 = 0, and based on [82, eq. 10.2.9], r4x(n; 0, 0, 0)

can be alternatively expressed as:

r4x(n; 0, 0, 0)= cum(x∗(n), x∗(n), x(n), x(n)) + 2r2
2x(n; 0)

= κ
∑

l

h4(n− lP ) + 2r2
2x(n; 0) .

It is not difficult to find that r4x(n; 0, 0, 0) is also periodic with respect to n with
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period P , and its Fourier’s coefficient at cycle k = 1 is given by:

R4x(1; 0, 0, 0):=
1

P

P−1∑

n=0

r4x(n; 0, 0, 0)e−2iπ n
P =

κ

P

∑

n

h4(n)e−2iπ n
P +2R2x(k; 0)⊗R2x(k; 0)|k=1

=
κ

P

∑

n

h4(n)e−2iπ n
P + 4R2x(0; 0)R2x(1; 0) , (4.34)

where ⊗ stands for the circular convolution. Note that the following FT pairs hold:

h(n)←→ Hrc(f)e−2iπfεP , h2(n)←→ e−2iπfεPH(2)
rc (f) , H (2)

rc (f) := Hrc(f) ∗Hrc(f) .

Based on Parseval’s relation and (4.16), (4.34) can be expressed as:

R4x(1; 0, 0, 0)=
{
κ

P

∫ 1/2

−1/2
H(2)
rc (f)H (2)

rc (f +
1

P
)df

+
4

P
G(1; 0)

( 1

P
G(0; 0) + r2v(0)

)}
e−2iπε = Q(1; 0)e−2iπε ,

where the factor contained within braces, denoted by Q(1; 0), is real-valued. There-

fore, a timing estimator similar to (4.31) can be expressed as:

ε̂ = − 1

2π
arg{R̂4x(1; 0, 0, 0)} , (4.35)

and whose asymptotic variance can be established in a similar expression to (4.32).

b. A New Optimal ABC Timing Estimator

Although the FLN estimator has a better performance than SLN in medium and

high SNR ranges with small rolloffs, it is inferior to the latter at low SNRs. Estimators

(4.31) and (4.35) suggest designing a new optimal (OPT) ABC timing estimator of

the following form

ε̂ = − 1

2π
arg{αTR̂x} , α := [1 α1]

T , R̂x := [R̂2x(1; 0) R̂4x(1; 0, 0, 0)]T, (4.36)

to improve the performance of both SLN and FLN estimators. The real-valued pa-

rameter α1 is to be chosen so that the asymptotic variance of ε̂ in (4.36) is minimized.
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Since the cyclic moment estimates R̂2x(1; 0) and R̂4x(1; 0, 0, 0) are asymptotically

complex normal, so is any linear combination of them. By adopting the derivation

presented in the previous subsection, we can obtain the following expression for the

asymptotic variance of ε̂ in (4.36):

avar(ε̂) =
αT[Π− re(e4iπεΠ̃)]α

8π2|αTβ|2 , (4.37)

where:

Π := lim
N→∞

NE{[R̂x −Rx][R̂x −Rx]
H} , Π̃ := lim

N→∞
NE{[R̂x −Rx][R̂x −Rx]

T} ,

Rx := [R2x(1; 0) R4x(1; 0, 0, 0)]T , β :=
[G(1; 0)

P
Q(1; 0)

]T
.

Hence, finding α1 resorts to the standard Rayleigh quotient problem, whose solution

is given by (c.f. [98, ch. 5]):

α̂
(OPT)
1 =

[0 1] · [Π− re(e4iπεΠ̃)]−1β

[1 0] · [Π− re(e4iπεΠ̃)]−1β
. (4.38)

Plugging (4.38) back into (4.37), we obtain [109]:

avar(ε̂(OPT)) =
1

8π2βT[Π− re(e4iπεΠ̃)]−1β
.

Now let us evaluate the entries of the asymptotic covariance matrices Π and

Π̃. Obviously, the first entries of Π and Π̃ are given by Π0,0 = Γ0,0, Π̃0,0 = Γ̃0,0,

respectively. Define the following mean-compensated stochastic processes:

e2(n) := x∗(n)x(n)− r2x(n; 0) , e4(n) := x∗(n)x∗(n)x(n)x(n) − r4x(n; 0, 0, 0) ,

and let r2e2(n; τ) := E{e∗2(n)e2(n + τ)} and R2e2(k; τ) denote the time-varying and

cyclic correlations of e2(n), respectively. In Appendix E, it was proved that Γ0,0 =

S2e2(0; 1/P ), Γ̃0,0 = S2e2(2; 1/P ), whose expressions are given in (4.19) and (4.20).
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Here we present a new method which makes use of the circular convolution of cyclic

correlations of x(n) in an iterative way and can be applied to more general cases.

Observe

r2e2(n; τ) = E{x∗(n)x(n)x∗(n+ τ)x(n + τ)} − r2x(n; 0)r2x(n + τ ; 0)

= cum(x∗(n), x(n), x∗(n+ τ), x(n + τ)) + r2
2x(n; τ)

= κ
∑

l

h2(n− lP )h2(n + τ − lP ) + r2
2x(n; τ) ,

and

R2e2(k; τ) =
1

P

P−1∑

n=0

r2e2(n; τ)e−2iπ kn
P =

κ

P

∑

n

h2(n)h2(n + τ)e−2iπ kn
P

+R2x(k; τ)⊗ R2x(k; τ) .

Thus, we obtain:

S2e2(k; f) =
∑

τ

( κ
P

∑

n

h2(n)h2(n+ τ)e−2iπ kn
P +R2x(k; τ)⊗ R2x(k; τ)

)
e−2iπτf ,

which can be used for accurately evaluating the matrices Γ0,0 and Γ̃0,0.

Similarly, the following expressions hold true:

Π0,1 = Se4e2(0; 1/P ) , Π1,0 = Se2e4(0; 1/P ) , Π1,1 = S2e4(0; 1/P ) ,

Π̃0,1 = Se4e2(2; 1/P ) , Π̃1,0 = Se2e4(2; 1/P ) , Π̃1,1 = S2e4(2; 1/P ) .

The evaluation of the above expressions is similar to that of Γ0,0 and Γ̃0,0, but involves

the computation of higher-order (larger than second-order) cumulants and moments

of x(n), which is straightforward but exhibits too lengthy formulas, and therefore,

will not be shown in this dissertation.

From (4.38), one can find that the OPT-estimate of α̂1 requires the knowledge

of the operating SNR and the value (or estimate) of timing epoch ε, which makes
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the OPT estimator impractical. Fortunately, for most applications of interest, this

difficulty can be circumvented with very little performance penalty, by fixing α1 to a

constant. Next, we present a case study which illustrates how to select α1.

c. Example (QPSK with Flat-fading Channel)

Consider an i.i.d. QPSK modulated symbol sequence transmitted through a time

non-selective flat-fading channel corrupted by additive circular white Gaussian noise

with variance σ2
v . Assuming the rolloff factor ρ = 0.1, P = 4 and the normalized

timing epoch ε = 0.3, the OPT-estimate α̂1 in (4.38) is given in Table I (A) for

various SNR levels. Table I (B) shows the optimal value of α̂1 versus the timing

epoch ε, assuming SNR= 20dB.

The results presented in Table I (A)–(B) and extensive simulation experiments

suggest that in this application, we can always fix α1 to a value in the range [−0.13, −

0.17] for implementing the estimator (4.36) without incurring any performance loss.

This conclusion will be further corroborated by the simulation results shown later.

Table I. (a) OPT-estimate of α̂1 versus SNR and (b) OPT-estimate of α̂1 versus ε

SNR(dB) 0 5 10 15 20
α̂1 −0.0386 −0.0880 −0.1326 −0.1559 −0.1649

SNR(dB) 25 30 35 40
α̂1 −0.1680 −0.1692 −0.1700 −0.1717

(A)

ε 0.1 0.2 0.3 0.4 0.5
α̂1 −0.1649 −0.1649 −0.1649 −0.1649 −0.1649
ε 0.6 0.7 0.8 0.9
α̂1 −0.1649 −0.1649 −0.1649 −0.1649

(B)

d. Further Results on the Convergence Rate of the O&M Estimator
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Before ending this subsection, let us study further the asymptotic behavior of

O&M estimator in the noiseless case. Define the asymptotic variance of O&M estimate

normalized by N 2 as:

avar2(ε̂) := lim
N→∞

N2E{(ε̂− ε)2} .

Based on (4.31), following a procedure similar to the one exploited in deriving Theo-

rem 8, one can obtain the following expression for avar2(ε̂):

avar2(ε̂) =
P 3

8π2G3(1; 0)
re
{
e6iπεS3e2

(
3;

1

P
,

1

P

)
− e2iπεS3e2

(
1;

1

P
,

1

P

)}
,

where

S3e2(k; f1, f2) :=
1

P

P−1∑

n=0

∑

τ1,τ2

r3e2(n; τ1, τ2)e
−2iπf1τ1e−2iπf2τ2e−

2iπkn
P ,

r3e2(n; τ1, τ2) := E{e∗2(n)e2(n + τ1)e2(n+ τ2)} ,

denote the third-order cyclic spectrum and time-varying correlation of e2(n), respec-

tively.

Note that in the noiseless case, x(n) =
∑
l w(l)h(n − lP ) = x0(n − εP ), where

x0(n) :=
∑
l w(l)hrc(n− lP ) represents the oversampled output signal of the matched

filter in the absence of timing epoch ε. Then, it is not difficult to find that the

following relation holds:

S3e2(k; f1, f2) = S
(0)
3e2(k; f1, f2) · e−2iπkε ,

where S
(0)
3e2(k; f1, f2) stands for the third-order cyclic spectrum of e2(n) corresponding

to x0(n), and is independent of ε. After some lengthy and tedious manipulations, we

can obtain the following expressions for both S
(0)
3e2(1; 1/P, 1/P ) and S

(0)
3e2(3; 1/P, 1/P ):

S
(0)
3e2(1; 1/P, 1/P ) = S

(0)
3e2(3; 1/P, 1/P ) = P 2κ6H3

1 + 6P 2κH1H2 + 2P 2H3 ,
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where κ6 := cum(w(l), w(l), w(l), w∗(l), w∗(l), w∗(l)) and

Hl :=
1

T 2l−1

∫ ρ
2T

− ρ

2T

H l
c(F +

1

2T
)H l

c(F −
1

2T
)dF , l = 1, 2, 3 .

Therefore, it turns out that avar2(ε̂) is also equal to 0, which means that the

O&M estimate exhibits a rate of convergence faster than O(1/N 2) when the number

of samples N and SNR are large enough. Finding the exact convergence rate of the

O&M estimator in the absence of additive noise appears computationally very tedious

and remains open.

4. Simulation Experiments

In this subsection, we conduct computer simulations to confirm the analysis presented

above and to illustrate the performance of the proposed OPT estimator. All the

experimental results are obtained by performing a number of 106 Monte-Carlo trials

assuming QPSK constellation, the normalized timing epoch ε = 0.3, and the additive

noise v(n) is generated by passing a Gaussian white noise through the square-root

raised cosine filter to yield a discrete-time noise sequence with autocorrelation rv(τ) =

σ2
vhrc(τ).

Experiment 1-Comparison of asymptotic variances of estimators (4.31), (4.35) and

(4.36) w.r.t. the MCRB: Fig. 40(a) and (b) depicts the asymptotic variances of the

SLN (4.31), FLN (4.35), and OPT estimators (4.36), and MCRB, in two extreme

cases: a strongly bandlimited pulse shape ρ = 0.1 and a pulse with large bandwidth

ρ = 0.9. The performance of a practical implementation of (4.36) with fixed αT =

[1 −0.165]T, which is just an approximation of the OPT estimator, therefore termed

APP, is also illustrated in Fig. 40(a) and (b). It can be seen that when dealing

with narrowband pulse shapes, FLN is superior to SLN in medium and high SNR

ranges, but worse than the latter at low SNRs. The OPT estimator outperforms
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Fig. 40. Comparison of asymptotic variances versus SNR with (a) ρ = 0.1 and (b)

ρ = 0.9

both SLN and FLN estimators, and is closer to MCRB. As expected, APP is a

satisfying realizable alternative to OPT except at very low SNRs. In the case of large

rolloffs, FLN is always inferior to the SLN estimator, while the latter is good enough

to approach the performance of the OPT estimator. Fig. 41 shows the improvement

exhibited by the OPT estimator w.r.t. the SLN estimator versus rolloff factor ρ

assuming SNR= 20dB. It appears that the improvement is negligible when ρ ≥ 0.6.

Experiment 2-Comparison of the MSE of estimators versus SNR: In Fig. 42(a) and

(b), the experimental MSE of the proposed APP estimator is compared with those

of the existing methods (SLN (τm = 0), FLN, AVN [78] and LOGN [71]), assuming

ρ = 0.1, L = 400, and ρ = 0.9, L = 100, respectively. These figures corroborate the

results of Experiment 2 and show again the merit of the proposed APP estimator.

5. Conclusions

In this section, we have established a rigorous CS statistics-based ML-framework to

design and analyze a class of blind feedforward timing estimators. We have shown
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Fig. 41. Improvement of OPT over SLN versus ρ (SNR= 20dB)

that these estimators can be asymptotically interpreted as ML estimators and the

O&M estimator achieves asymptotically the best performance in the class of SLN

estimators, whose performance is insensitive to the oversampling rate P as long as

P ≥ 3. In the noiseless case, it has been shown that the rate of convergence is faster

than O(1/N 2). The asymptotic variance of these ML estimators is derived and can

be employed as a benchmark for evaluating the system performance of the CS-based

timing estimators proposed in the literature. The proposed analysis framework of

timing estimators can be extended straightforwardly to the case of correlated symbol

streams and time-selective flat-fading channels, and provides a systematic method

to design optimal ML timing recovery schemes. Moreover, in this section, based on

the proposed performance analysis, we have introduced an efficient estimator (OPT),

which fully exploits the second and the fourth-order CS statistics of the received sig-

nal, that improves significantly the performance of the existing methods, when dealing

with narrowband signaling pulses. One may ask whether the performance of timing

estimators may be further improved if higher-order nonlinearities (i.e., higher than
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Fig. 42. Comparison of MSEs with (a) ρ = 0.1 and (b) ρ = 0.9

the fourth-order) are considered. We conjecture that the improvement is negligible,

a fact that is corroborated by the plots depicted in Fig. 42 for the AVN and LOGN

estimators, whose Taylor series expansions involve higher order terms.

C. An Alternative Blind Feedforward Symbol Timing Estimator Using Two Samples

per Symbol

1. Introduction

Most of the methods mentioned previously require a sampling frequency of at least

three times larger than the symbol rate [41], [44], [63], [71] and [75]. However, such

high sampling rates are not desirable for high-rate transmissions, since the hardware

cost of the receiver depends heavily on the required processing speed [115].

The two-sample-per-symbol based timing estimator (4.10) is shown to exhibit

poor performance by simulations. Recently, Lee proposed a new blind feedforward

timing estimation algorithm that requires only two samples per symbol. Compared

with other two-samples per symbol based timing estimators [63] and [115], Lee’s es-
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timator has the advantage that it does not necessitate any low pass filters. Lee’s

estimator exhibits a reduced computational complexity comparable with that of the

SLN estimator [75], which is known to be the simplest among the estimators us-

ing four samples per symbol and admits a very suitable digital implementation [55],

[115]. However, Lee’s estimator is asymptotically biased and its performance has

not been analyzed thoroughly. The goal of this section is to analyze and evaluate

the performance of Lee’s estimator and to propose a new unbiased timing estimator

with improved MSE performance. It is also shown that the proposed new estima-

tor exhibits the same computational complexity as Lee’s estimator, and significant

MSE-improvements are observable especially in the case of pulse shapes with moder-

ate and large excess bandwidth. The asymptotic (large sample) MSEs of these two

estimators, together with the asymptotic bias of Lee’s estimator, are established in

closed-form. Computer simulations illustrate the merits of the proposed new timing

estimator.

2. A New Blind Feedforward CS-based Symbol Timing Estimator

With P = 2, the system model (4.15) becomes:

x(n) := xc(nTs) = ejφ
∑

l

w(l)h(n− 2l) + v(n) , n = 0, . . . N − 1 . (4.39)

Based on the above model, Lee’s estimator takes the following form (c.f. [55,

Eq. (2)]):

ε̂Lee :=
1

2π
arg

{ N−1∑

n=0

|x(n)|2e−jnπ +
N−2∑

n=0

Re{x∗(n)x(n + 1)}e−j(n−0.5)π
}
. (4.40)

Based on (4.8), we obtain:

Rx(1; τ) = ejπτ cos
[
2π
(
ε+

τ

4

)]
G(1; τ). (4.41)



113

Note that G(1; τ) and Rx(1; τ) are real-valued functions, since ejπτ = (−1)τ . Some

straightforward calculations lead to the following more explicit expressions:

G(1; 0) =
ρ

4
and G(1; 1) =

2 sin πρ
2

π(4− ρ2)
.

From the expression of R̂2x(k; τ), one can observe that Lee’s estimator (4.40) can

be expressed as

ε̂Lee =
1

2π
arg

{
R̂x(1; 0) + jRe{R̂x(1; 1)}

}
,

and its asymptotic mean is given by:

ε0 := lim
N→∞

E{ε̂Lee} =
1

2π
arg

{
Rx(1; 0) + jRx(1; 1)

}
. (4.42)

Based on (4.41) and (4.42), and for ε ∈ [0, 1/4], ε0 can be expressed as:

ε0 =
1

2π
arctan

{
Rx(1; 1)

Rx(1; 0)

}
=

1

2π
arctan

{
G(1; 1)

G(1; 0)
tan(2πε)

}

=
1

2π
arctan {g(ρ) tan(2πε)} ,

with g(ρ) := G(1; 1)/G(1; 0). Obviously, ε0 is not equal to the true value of the timing

delay ε except for several special values of ε, since in general g(ρ) 6= 1 whenever

ρ ∈ (0, 1]. Now, it is not difficult to compute the asymptotic bias of Lee’s estimator

as:

abias(ρ, ε) := ε− ε0 =
1

2π

(
arctan{tan(2πε)} − arctan{g(ρ) tan(2πε)}

)

=
1

2π
arctan

{
1− g(ρ)

cot(2πε) + tan(2πε)g(ρ)

}
. (4.43)

When ε assumes values other than [0, 1/4], the asymptotic bias of Lee’s estimator can

be obtained in a similar way and takes the same expression as (4.43). Fig. 43 plots

abias(ρ, ε) versus ε for several values of ρ, which is similar to the plot [55, Fig. 2],
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obtained by means of more laborious numerical calculations. From Fig. 43, it can be

seen that the asymptotic bias is tolerable for small roll-off factors, but increases with

ρ (bias is on the order of 10% of the timing epoch ε for ρ = 0.9).

The above derivation suggests that by compensating the term g(ρ), we can design

a new blind asymptotically unbiased feedforward symbol timing estimator of the

following form:

ε̂=
1

2π
arg

{
g(ρ) · R̂x(1; 0) + jRe{R̂x(1; 1)}

}

=
1

2π
arg

{
g(ρ) ·

N−1∑

n=0

|x(n)|2e−jnπ +
N−2∑

n=0

Re{x∗(n)x(n + 1)}e−j(n−0.5)π
}
. (4.44)

Note that this new estimator (4.44) has the same implementation complexity as

that of Lee’s estimator (4.40). In the next subsection, we establish in closed-form

expressions the asymptotic MSEs of estimators (4.40) and (4.44), which are defined

as follows:

γLee := lim
N→∞

NE{(ε̂Lee − ε)2}, γnew := lim
N→∞

NE{(ε̂− ε)2}.

3. Performance Analysis for Estimators

Following the steps similar to that presented in Appendix E, one can obtain the

asymptotic MSEs of the estimators (4.40) and (4.44) as [108]:

Theorem 9 The asymptotic mean-square errors of the symbol timing delay estima-

tors (4.44) and (4.40) are given by:

γnew =
1

4π2G2(1; 1)

{cos2(2πε)(Γ1,1 − Γ1,−1)

2
+ g2(ρ) sin2(2πε)Γ0,0 − g(ρ) sin(4πε)Γ1,0

}
,

γLee =
sin2(4πε0)

sin2(4πε)
γnew +N · abias2(ρ, ε) ,

respectively.
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A direct analytical comparison between γLee and γnew seems intractable. There-

fore, in the next subsection we will resort to numerical illustrations.

4. Simulation Experiments
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Fig. 43. Asymptotic bias of ε̂Lee
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Fig. 44. MSEs versus SNR (ρ = 0.1)

To corroborate the proposed asymptotic performance analysis, we conduct com-

puter simulations to compare the theoretical bounds of estimators (4.40) and (4.44)

(i.e., γLee and γnew normalized with the number of samples N) with the experimen-

tal MSE-results. The performance of conventional four-samples/symbol-based blind

feedforward symbol timing delay estimators: SLN [75], LOGN [71], FLN and AVN

[78], is also illustrated. The experimental results are obtained by performing a num-

ber of 800 Monte Carlo trials assuming that the transmitted symbols are drawn from

a QPSK constellation, the number of symbols L = 512 and the value of ε = 0.35.

Figs. 44–46 show the simulation results for the roll-off factors ρ = 0.1, ρ = 0.35, and

ρ = 0.5, respectively. From these figures, the following conclusions can be drawn:

• The experimental MSE of the estimators (4.40) and (4.44) are well predicted
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by the theoretical bounds derived above.

• The improvement of the proposed new estimator (4.44) over Lee’s estimator

(4.40) in medium and high SNR ranges is more and more significant when the

roll-off factor ρ increases.

• At small roll-offs, both (4.40) and (4.44) outperform the SLN estimator, and

are inferior to FLN, AVN and LOGN estimators, which however, exhibit much

higher computational load than estimators (4.40) and (4.44), which require only

two samples per symbol.

• With ρ increasing, the difference of the estimation accuracy between the pro-

posed algorithm (4.44) and FLN, AVN and LOGN decreases, and further sim-

ulation results show that at large roll-offs (ρ > 0.5), the estimator (4.44) out-

performs FLN, AVN and LOGN estimators.
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5. Conclusions

In this section, we have analyzed Lee’s symbol timing delay estimator using a cy-

clostationary statistics framework. Although, Lee’s estimator presents the attractive

property of a low computational load, it is asymptotically biased. To remedy this

disadvantage, we have proposed a new unbiased estimator which outperforms signif-

icantly Lee’s estimator at medium and high SNRs for large roll-off factors (ρ > 0.5),

and which exhibits the same computational complexity as the latter. Moreover, the

asymptotic MSEs of these two estimators, together with the asymptotic bias of Lee’s

estimator, are established in closed-form expressions. Computer simulations corrob-

orate the theoretical performance analysis, and illustrate the merits of the proposed

new timing delay estimator.
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CHAPTER V

CONTINUOUS-MODE FRAME SYNCHRONIZATION FOR

FREQUENCY-SELECTIVE CHANNELS

A. Introduction

As mentioned in Chapter I, the problem of frame synchronization may arise in some

specific applications after the symbol timing is obtained. In the past decades, there

has been much research into continuous-mode frame synchronization, and the most

widely used methods concentrate on locating a fixed frame synchronization pattern

or “sync word” inserted periodically into the continuous data stream [16], [36], [37],

[56], [57], [68], [74] and [88]. The optimum Maximum Likelihood (ML) rule for frame

synchronization in AWGN channels with BPSK signaling was originally proposed by

Massey [57]. Nielsen subsequently reported that this ML rule and its high Signal-

to-Noise Ratio (SNR) approximation (high SNR ML rule) provided several dB im-

provement over the well-known correlation rule [74]. Many years later, Liu and Tan

extended these results to M -ary PSK modulations and corroborated the conclusion

of Nielsen [56]. Recently, based on ML rule, frame synchronization algorithms for flat

fading channels were derived in [36] and [88].

Although it has been studied extensively for AWGN and flat fading channels,

the problem of continuous-mode frame synchronization in the presence of frequency-

selective channels has received much less attention. In [68], an ML-based frame

synchronizer was derived assuming a binary pulse amplitude modulated system and

known static dispersive intersymbol interference (ISI) channels. However, in many

applications of interest, the channel is time varying and a priori unknown. This

problem becomes further complicated in the presence of frequency offset, which is
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the case due to the fact that frame synchronization sometimes has to be achieved

before carrier recovery is performed [16]. The objective of the present chapter is to

contribute filling this gap [105].

Generally, in the presence of other unknown variables (e.g., channel coefficients

and frequency offset), two possible approaches may be derived to estimate the frame

boundary according to the ML criterion. One is the Bayesian approach, which consists

of modeling other unknowns as random variables with certain pdf and computing the

average of joint likelihood function with respect to their pdfs to produce the marginal

likelihood of the frame boundary, from which the ML estimate of frame boundary

can be obtained (see e.g., [16], [36]). Another method aims at jointly estimating the

frame boundary and other unknown variables [30], [53]. In this chapter, following

the latter approach, we propose a computationally efficient synchronization scheme

for joint frame synchronization, channel acquisition, and frequency offset estimation

by exploiting the ML rule. Computer simulations show that the proposed algorithm

exhibits low implementation complexity and good performance [105].

It is interesting to note that the problem of frame synchronization over unknown

frequency-selective channels is well covered for the scenario of asynchronous or sponta-

neous packet transmission (“one-shot” or burst-mode synchronization) [30], [31], [53]

and [54], where the sync word is prefixed to the data stream and is itself preceded

by no signal or by a sequence of symbols to perform other synchronization tasks (a

clock recovery sequence or an unmodulated sequence for carrier estimation) [57], [62].

There are two essential differences between the methods dealing with the “one-shot”

synchronization and those of continuous-mode frame synchronization. First, the ob-

servation sequence of “one-shot” synchronization is chosen long enough to contain the

complete frame sync word [62], while for the latter, an N -signal span of the received

sequence, where N denotes the frame length [57], is usually processed. Second, for
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the synchronization of spontaneous packet transmissions, it is always assumed that

the position of the data packet is known up to an uncertainty in a finite interval which

is centered about a coarse frame sync flag generated by the preceding automatic gain

control unit [30], [53], [62]. This assumption guarantees that the frame sync word is

contained entirely in the observation sequence and assumes its initial order. When

tackling the problem of continuous-mode frame synchronization, it is generally as-

sumed that the sync word is a priori equally likely to begin in any of the N positions

of the received sequence (see e.g., [56], [57]).

After introducing the system model, an ML scheme for joint frame synchroniza-

tion and channel acquisition is developed. Then, an extension of the proposed ML

scheme to frequency-selective channels affected by Doppler shift/carrier frequency off-

set is presented. Finally, the performance of the proposed algorithms is demonstrated

through computer simulations.

B. System Model

We consider a linear modulation (e.g., PSK or QAM) transmitted through a slow time-

varying frequency-selective channel, whose coefficients h = [h0, h1, . . . , hL−1]
T are as-

sumed to remain constant over the duration of the observed sequence and L represents

the channel memory. The frame of transmitted data consists of N symbols, where the

first Ns symbols form a fixed frame synchronization pattern s = [s0, s1, . . . , sNs−1]
T

followed by P := N −Ns random data symbols d = [d0, d1, . . . , dP−1]
T (see Fig. 47-a

and b). We assume that the data symbols dk are zero-mean i.i.d. with unit average

energy per symbol, i.e., σ2
k := E{|dk|2} = 1, and the training symbols sk are selected

from the same set as that of data symbols dk, so that no restriction is made on the

frame structure to prohibit the replication of the frame synchronization pattern in
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the portion of random data [56], [74]. It is generally desirable to choose a sync word

with good autocorrelation property satisfying the condition

(s0, s1, . . . , sj−1) 6= (sNs−j, sNs−j+1, . . . , sNs−1), j = 1, 2, . . . , Ns − 1 ,

which ensures the number of replications of the sync word amid random data to be

minimized [56], [62], [74].

The transmitted signal is passed through the channel h, and sampled at the

symbol period. It is reasonable to assume P ≥ L and Ns ≥ L. The outputs of the

channel corresponding to the i-th frame are modeled as (see Fig. 47-c)

x
(i)
k =

L−1∑

l=0

wk−lhl , k = 0, 1, . . . , N − 1 , (5.1)

where

wk =





d
(i−1)
P+k , if −(L− 1) ≤ k ≤ −1 ,

sk , if 0 ≤ k ≤ Ns − 1 ,

d
(i)
k−Ns

, if Ns ≤ k ≤ N − 1 .

Based on (5.1), the positions of x
(i)
0 , − ∞ < i < ∞, are defined as the frame

boundaries in the channel outputs, where the first training symbol s0 is involved in

the first path h0 of the channel.

In the absence of a priori information, the received signal is a linear shift of the

sequence x
(i)
k with an arbitrary delay µ ∈ [0, 1, . . .N − 1], rather than x

(i)
k itself, and

hence the frame boundaries may appear in any of the N positions (i.e., the location

N − µ modulo N) with equal probability in an arbitrarily selected N -signal span

r = [r0, r1, . . . , rN−1]
T of the observed sequence (Fig. 47-d) [36], [56], [57]. Therefore,

the frame synchronization problem that we pose resumes to estimating the index

µ from the selected segment r of channel output observations. Defining the linear



122

N -1
i( -1)

N -1
i+1( )i( )x0

i+1( )x0

−1µ
(i

x......i(xµ
) +1)

N -1..... ..... .....

c) Received sequence

b) Transmitted sequence

sN P

N

-1)-th -th i +1)-th

...... ...... ......

(i (

    with perfect sync.

d) Practical observed sequence

Sync Word

x

a) Frame structure

N -1 x i( )x

i

Random Data

0
-1)i(x

µ

0r r

Fig. 47. Frame synchronization model

shift operator as T (x(i)) := [x
(i)
1 , x

(i)
2 , . . . , x

(i)
N−1, x

(i+1)
0 ]T, we can express the received

segment as

r = T µ(x(i)) + n , (5.2)

where n := [n0, n1, . . . , nN−1]
T and the components nk are independent complex

Gaussian random variables with zero-mean and variance N0. Note that when deal-

ing with the problem of frame synchronization in AWGN and flat-fading channels,

authors prefer to use (left) cyclic shift operator, which is defined by Tlc(x
(i)) :=

[x
(i)
1 , x

(i)
2 , . . . , x

(i)
N−1, x

(i)
0 ]T, instead of T (x(i)), since these two operations are statisti-

cally equivalent and the former makes the derivation more compact. However, this

equivalence does not hold true in the case of frequency-selective channels. From (5.1),

it is not difficult to find that Tmlc (x(i)) and Tm(x(i)) do not always involve the same

set of unknown random data when m varies, hence they exhibit different statistical

properties due to the memory of the channel. For simplicity, we will omit the dummy

variable i in the ensuing derivation.
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C. Joint Frame Synchronization and Channel Acquisition

From (5.2), the optimum maximum-a-posteriori (MAP) algorithm maximizes the pos-

terior probability Λ1 = p(m|r), 0 ≤ m ≤ N − 1, which by the Bayes’ theorem [79,

p. 84] becomes Λ1 = f(r|m) · p(m)/f(r), where f(r) stands for the pdf of r. Since

p(m) = 1/N for all m, the MAP algorithm reduces to the ML estimator which max-

imizes

Λ2 = f(r|m) =
∑

all dm

f(r|m, dm)·p(dm) =
∑

all dm

1

(πN0)N
e
− 1

N0
(r−Tm(x))H·(r−Tm(x))·p(dm) ,

(5.3)

where dm represents the set of unknown data involved in the operation Tm(x). Note

that the probability p(dm) depends on the size of the symbol alphabet and the syn-

chronization position m. Moreover, the averaging over all possible data vectors of

length varying with m, whose complexity increases exponentially with the channel

memory, is complicated enough to escape even an approximation, and hence the

optimal estimator (5.3) appears computationally prohibitive. To circumvent this dif-

ficulty, next we propose a suboptimal but computationally efficient algorithm, which

does not necessitate the averaging over the unknown data.

Exploiting (5.1), it is easy to observe that the subset xs := [xL−1, xL, . . . , xNs−1]
T

can be expressed as

xs = S · h , S :=




sL−1 sL−2 . . . s0

sL sL−1 . . . s1

...
...

. . .
...

sNs−1 sNs−2 . . . sNs−L




, (5.4)

and is affected by the sync word s only and not by the random data. Define the

(right) cyclic shift of the observed signals r as r(m) := Tmrc (r), where Trc(r) :=
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[rN−1, r0, . . . , rN−2]
T, and choose a subwindow of length Ns − L + 1 of r(m), namely

r(m)
s := [r

(m)
L−1, r

(m)
L , . . . , r

(m)
Ns−1]

T. Under the assumption that m is the correct position

of frame boundaries, r(m)
s can be expressed in terms of the frame synchronization pat-

tern s as in (5.4). A reduced-complexity ML-based estimator of µ that exploits the

information provided by r(m)
s can be obtained by maximizing the likelihood function

Λ3 =
1

(πN0)Ns−L+1
e
− 1

N0
(r

(m)
s −xs)H·(r(m)

s −xs) ,

or equivalently the log-likelihood function

µ̂ = arg min
0≤m≤N−1

(r(m)
s − S · h)H · (r(m)

s − S · h) . (5.5)

For a fixed m, the ML estimate of h is given by (see e.g., [30], [53], [72])

ĥ(m) = (SHS)−1SHr(m)
s . (5.6)

Substituting (5.6) into (5.5), we can obtain the following estimator equivalent to (5.5)

µ̂ = arg max
0≤m≤N−1

Λ4(m) , Λ4(m) = rH(m)
s (B− I)r(m)

s , (5.7)

where I is the (Ns − L + 1) × (Ns − L + 1) identity matrix and B := S(SHS)−1SH

denotes the projection matrix.

In summary, the proposed frame synchronization algorithm is as follows [105]:

Step 1. Select an arbitrary length-N signal segment r of the received signal.

Step 2. For each m ∈ [0, N − 1], choose the subwindow of observation r(m)
s and

compute the metric Λ4(m).

Step 3. Find a value µ̂ such that the corresponding metric achieves the the maximum

among the metrics (5.7).

Step 4. The channel estimate is given by (5.6) with m = µ̂.

Note that if Ns − L = L − 1 (i.e., Ns = 2L − 1), S is an L × L square matrix
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and nonsingular, then one can see that B = I. In this condition, Λ4(m) is always 0

and the estimator (5.7) is meaningless [72]. Therefore, the length of sync pattern has

to be chosen as Ns ≥ 2L. Physically, this means that the first L − 1 symbols of the

sync pattern are guard symbols which prevent the remaining sync symbols from being

affected by random data, and at least L + 1 uncorrupted sync symbols are required

to estimate the L+ 1 unknown parameters (µ, h).

The proposed synchronizer (5.7) is based on one frame length of channel ob-

servations. For certain applications where the constraint on the processing delay is

not stringent, we may improve the performance of (5.7) by using multiple frames of

channel observations to estimate the index µ. One method is to make individual

estimates based on single-frame observations for K successive frames and then to use

a majority decision rule which decides the estimate of µ on the majority of these K

independent estimates (e.g., [56]). Another approach, which we will present here, is

to jointly exploit the K successive frames of observations rK := [r0, r1, . . . , rKN−1]
T

to obtain a single estimate of µ.

Assuming that the channel coefficients h remain constant during the consecutive

K frames of channel observations and following the procedure used to derive (5.7),

one can obtain the K-frame based synchronizer, which takes a similar expression to

(5.7) as

µ̂ = arg max
0≤m≤N−1

r
H(m)
Ks (BK − IK)r

(m)
Ks , (5.8)

where IK is the K(Ns − L + 1)×K(Ns − L + 1) identity matrix and

BK := SK(SH
KSK)−1SH

K , SK := [ST, ST, . . . ,ST

︸ ︷︷ ︸
K

]T ,

r
(m)
Ks = [r

(m)
K (L− 1), . . . , r

(m)
K (Ns − 1), r

(m)
K (N + L− 1), . . . , r

(m)
K (N +Ns − 1),

. . . , r
(m)
K ((K − 1)N +Ns − 1)]T , r

(m)
K := Tmrc (rK) .
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D. Synchronization in the Presence of Frequency offset

We now consider that there is a residual frequency offset in the received signal. Hence,

the channel model (5.2) becomes

r = ΩT µ(x) + n , Ω := diag{ω} , ω := [1, ej2πfe, . . . , ej2π(N−1)fe ]T , (5.9)

where fe stands for the unknown frequency offset normalized to the symbol rate.

Defining Ω(m)
s := diag{ω(m)

s } with ω(m)
s chosen as the subwindow [L−1, L, . . . , Ns−

1] of ω(m) := Tmrc (ω), and adopting the procedure presented in the last section, we

can obtain the following ML-based estimator for µ

µ̂ = arg min
0≤m≤N−1

(r(m)
s −Ω(m)

s Sh)H · (r(m)
s −Ω(m)

s Sh) . (5.10)

Similar to (5.6), the ML estimate of h now takes the expression

ĥ(m, fe) = (SHS)−1SHΩH(m)
s r(m)

s , (5.11)

and the estimates of µ and fe can be obtained by maximizing

Λ5(m, fe) = rH(m)
s (Ω(m)

s BΩH(m)
s − I)r(m)

s . (5.12)

To proceed, we derive an estimate of fe as a function of m. Note that Λ5(m, fe) can

be expressed in the form

Λ5(m, fe) = 2re




Ns−L∑

i=0

Ns−L∑

j=i

ω(m)
s (i)ω∗(m)

s (j)Bi,jr
∗(m)
s (i)r(m)

s (j)



−

Ns−L∑

i=0

(Bi,i+1)|r(m)
s (i)|2,

(5.13)

where Bi,j is the (i, j)-entry of B. The second term of the right hand side (RHS) of

(5.13) is independent of fe, and based on the definition of ω(m)
s , the first term of the
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RHS of (5.13) can be rewritten for 0 ≤ m ≤ L− 1 or Ns ≤ m ≤ N − 1 as

2re




Ns−L∑

k=0

Ns−L−k∑

i=0

Bi,i+kr
(m)
s (i+ k)r∗(m)

s (i)e−j2πkfe



 = 2re

{
N−1∑

k=0

ρ1(k)e
−j2πkfe

}
,

where

ρ1(k) :=





∑Ns−L−k
i=0 Bi,i+kr

(m)
s (i+ k)r∗(m)

s (i) , if 0 ≤ k ≤ Ns − L ,

0 , if Ns − L < k ≤ N − 1 .
(5.14)

When m is in the range [L,Ns − 1], defining q := m − (L − 1), lengthy and tedious

algebra manipulations lead to the following expressions for the first term of the RHS

of (5.13)

2re

{
N−1∑

k=0

(ρ1(k) + ρ2(k))e
−j2πkfe

}
,

where

ρ1(k) = ρ11(k) + ρ12(k) , (5.15)

ρ11(k) :=





∑q−1−k
i=0 Bi,i+kr

(m)
s (i+ k)r∗(m)

s (i) , if 0 ≤ k ≤ q − 1 ,

0 , if q ≤ k ≤ N − 1 ,
(5.16)

ρ12(k) :=





∑Ns−L−k
i=q Bi,i+kr

(m)
s (i+ k)r∗(m)

s (i) , if 0 ≤ k ≤ Ns − L− q ,

0 , if Ns − L− q < k ≤ N − 1 ,
(5.17)

ρ2(k) :=





0 , if 0 ≤ k < P + L ,

ρ∗3(N − k) , if P + L ≤ k ≤ N − 1 ,
(5.18)

ρ3(k) :=
q−1∑

i=0

Ns−L∑

j=q

j−i=k

Bi,jr
(m)
s (j)r∗(m)

s (i) , 1 ≤ k ≤ Ns − L . (5.19)

Obviously, for each fixed m, f̂e(m) can be estimated by

f̂e(m) = arg max
fe

{
re
{ N−1∑

k=0

(ρ1(k) + ρ2(k))e
−j2πkfe

}}
, (5.20)
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where ρ2(k) is equal to 0 or given by (5.18) depending on the value of m. It is easy

to find that the estimator (5.20) can be efficiently implemented by FFT methods (see

e.g., [53], [72]), and the estimation range of fe is |fe| ≤ 1/2, the maximum range that

can be expected for any frequency offset estimator operating on baud rate samples

[72]. Finally, plugging (5.20) back into (5.12), the ML estimate of µ can be obtained

µ̂ = arg max
0≤m≤N−1

Λ6(m) , Λ6(m) = rH(m)
s

(
Ω(m)
s (f̂e(m))BΩH(m)

s (f̂e(m))− I
)
r(m)
s .

(5.21)

The proposed algorithm in the presence of frequency offset can be summarized

as follows [105]:

Step 1. Select an arbitrary length-N signal segment r of the received signal.

Step 2. For each m ∈ [0, N − 1], choose the subwindow of observation r(m)
s and

• if m ∈ [0, L − 1] or m ∈ [Ns, N − 1], compute the term ρ1(k) according to

(5.14) and set ρ2(k) = 0.

• otherwise, compute the terms ρ1(k) and ρ2(k) according to (5.15)–(5.19).

Step 3. For each m, estimate fe according to (5.20) and compute the metric Λ6(m)

based on (5.21).

Step 4. Find a value µ̂ such that the corresponding metric achieves the maximum

among the metrics.

Step 5. The frequency offset is obtained by (5.20) with m = µ̂.

Step 6. The channel estimate is given by (5.11) with m = µ̂ and fe = f̂e(µ̂).

Exact theoretical analysis of frame synchronization algorithms does not generally

appear to be tractable for the decision rules other than the correlation rule even for

AWGN channels [56], [88]. Therefore, next we resort to computer simulations to

evaluate the performance of the proposed synchronizers.
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E. Simulation Results

In computer simulations, the false acquisition probabilities (FAP, i.e., µ̂ 6= µ) and

the mean square channel estimation error (MSCEE) E{‖ĥ − h‖2} of the proposed

joint frame synchronization and channel estimation algorithms are evaluated. In the

presence of frequency offset, the mean square error (MSE) of f̂e (i.e., MSE(f̂e) =

E{(f̂e − fe)2}) is investigated, too. All experiments are performed assuming 100,000

Monte Carlo trials, the transmitted symbols {dk} are taken from a QPSK constel-

lation, the additive noise n is generated as white Gaussian noise with variance N0

and SNR is defined as SNR:= 10 log10(σ
2
k/N0). The frequency-selective channel coef-

ficients are modeled as i.i.d. complex Gaussian random variables with zero mean and

variance 1/L.
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Fig. 48. FAP vs. SNR with fixed N
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Fig. 49. MSCEE vs. SNR with fixed N

Experiment 1-Performance of the proposed synchronizer with fixed length N : Fixing

the total length of frame N = 64, we plot the FAP and MSCEE of the synchronizer

(5.7) versus SNR in Figs. 48 and 49, respectively, where two different channel orders

L = 2 and L = 4 are assumed. The frame synchronization patterns used are the
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7-symbol Barker sequence {1, 1, 1, 1, 1, 1,−1}, the 13-symbol Neuman-Hofman

sequence { 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1}, and the midamble with length

Ns = 16 adopted in the GSM system, i.e.,

{ 1, − j, 1, j, 1, − j, − 1, − j, − 1, j, − 1, − j, − 1, j, − 1, − j } .

The results presented in Figs. 48 and 49 show that the performance of the proposed

algorithm deteriorates when channel memory L increases or the length of sync words

Ns decreases. The failure of (5.7) with Ns = 7 in the case of channel memory L = 4

is due to the fact that the condition of Ns ≥ L is not satisfied in this scenario.

Experiment 2-Performance of the proposed synchronizer with varying length N : Figs.

50 and 51 plot FAP and MSCEE versus SNR assuming 13-symbol Neuman-Hofman

sequence and 16-symbol GSM midamble, channel memory L = 4, and different values

of frame length N . It can be seen that the performance of the proposed synchronizer

is not sensitive to the frame length, especially at medium and high SNRs, which is

a pleasing property in the sense that we can increase the length P of useful data

sequence to obtain a high transmission efficiency.
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Fig. 50. FAP vs. SNR with varying N
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Experiment 3-Multiple-frame synchronization: In Figs. 52 and 53, we compare the

performance of multiple-frame synchronizer (5.8) (K = 2) with that of the single-

frame based algorithm (5.7), assuming the following parameters: Ns = 13 and Ns =

16, L = 4 and N = 128. One can find that the former can provide 2 or 3 dB

improvement over the latter with the price of a larger processing delay.
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Fig. 52. Improvement of FAP with mul-

tiple-frame synchronization
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Fig. 53. Improvement of MSCEE with

multiple-frame synchronization

Experiment 4-Performance of the proposed synchronizer in the presence of frequency

offset: Fixing L = 4, Ns = 16 and N = 64, Figs. 54–56 illustrate the FAP, MSCEE

and MSE(f̂e) of the proposed algorithm in the presence and absence of frequency

offset, respectively. In each simulation run, the frequency offset is selected randomly

from the interval [−f0, f0], assuming a uniform distribution. Two values of the upper-

bound f0, f0 = 0.25 (large frequency offset) and f0 = 0.05 (small frequency offset),

are used. Fig. 54 illustrates that the proposed frame acquisition algorithm is quite

robust to frequency offsets, while Figs. 55-56 show that the proposed channel and

frequency offset estimators exhibit almost the same performance in the presence of

large and small frequency offsets.
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Fig. 54. FAP in the presence of fe
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Fig. 55. MSCEE in the presence of fe
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F. Conclusion

We have proposed an ML synchronizer for joint frame, channel and frequency offset

acquisition for continuous mode linearly modulated transmissions through frequency-

selective channels affected by Doppler shift/carrier frequency offset. The proposed

algorithms are computationally efficient, robust to frequency offsets, do not necessi-

tate detection of the unknown data symbols, and exhibit good performance.
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CHAPTER VI

SUMMARY

In this dissertation, several novel signal processing frameworks have been established

to analyze and improve the performance of the existing synchronization algorithms

for digital receivers. Moreover, unified methods for designing new computationally

and statistically efficient feedforward synchronizers are developed for timing recovery,

carrier estimation and frame synchronization. The topic of this dissertation covers

most directions of synchronization problem, and it brings significant contribution and

in-depth insights from both the performance analysis and design methodology points

of view.
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APPENDIX A

DERIVATION OF EQUATIONS (2.8) AND (2.16)

Using (2.5), we can express E{y(n)} as follows:

E{y(n)} = E{F (ρ(n))ejMϕ(n)}

=
1

M

M−1∑

m=0
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0
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dρ(n) , (A.1)

where in deriving the third equality we made use of the definition of IM(·) [1,

eq. (9.6.19)]. Then, by exploiting (2.6), equations (2.8) and (2.9) follow. Similar

to (A.1), the following expression can be derived:

E{y2(n)} = E{F 2(ρ(n))ej2Mϕ(n)}

= ej2Mφ(n)
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0
F 2(ρ(n))
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dρ(n) ,

which proves (2.16).
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APPENDIX B

PROOF OF THEOREM 1

In order to establish the Theorem 1, let us first study the second-order statistics of

additive noise u(n). From (2.10), u(n) can be expressed as:

u(n) := y(n)− E{y(n)} = F (ρ(n))ejMϕ(n) − E{F (ρ(n))ejMϕ(n)} .

Define the second-order unconjugate/conjugate autocorrelations of u(n) as:

ru(n; τ) :=E{u∗(n)u(n+ τ)} = E
{
F (ρ(n))e−jMϕ(n)F (ρ(n + τ))ejMϕ(n+τ)

}

− E
{
F (ρ(n))e−jMϕ(n)

}
E
{
F (ρ(n + τ))ejMϕ(n+τ)

}
,

r̃u(n; τ) :=E{u(n)u(n+ τ)} = E
{
F (ρ(n))ejMϕ(n)F (ρ(n + τ))ejMϕ(n+τ)

}

− E
{
F (ρ(n))ejMϕ(n)

}
E
{
F (ρ(n + τ))ejMϕ(n+τ)

}
,

respectively. Due to (2.7), it turns out that ru(n; τ) and r̃u(n; τ) are both equal to

zero if τ 6= 0. Hence, we obtain from (2.9), (2.15) and (2.16) the following relations:

ru(n; τ) =
[
E
{
F 2(ρ(n))

}
−
∣∣∣E
{
F (ρ(n))ejMϕ(n)
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2
]
δ(τ) = (B − C2)δ(τ) , (B.1)

r̃u(n; τ) =
[
E
{
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}
− E2

{
F (ρ(n))ejMϕ(n)

}]
δ(τ)

= (D − C2)ej2Mφ(n)δ(τ) . (B.2)

Next, we begin the derivation of the Theorem 1. Considering the Taylor series

expansion of Ĉ exp (j
∑2
l=0 ω̂ln

l) in the neighborhood of the true value [ C ω0 ω1 ω2]
T ,

we can write:

Ĉej
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l=0
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= Cej
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where rem stands for the high-order remainder terms which asymptotically as N →

∞ can be neglected. Thus, we can approximate (2.12) by:

J(ω̂)
.
=

1

2

N−1∑

n=0

∣∣∣y(n)−Cej
∑2

l=0
ωln

l−(Ĉ − C)ej
∑2

l=0
ωln

l−j
2∑

k=0

nk(ω̂k − ωk)Cej
∑2

l=0
ωln

l
∣∣∣
2
.

Setting the derivatives of J(ω̂) w.r.t. ω̂ to 0, we obtain:

N−1∑

n=0

re
{
u(n)e−jMφ(n)

}
−N(Ĉ − C) = 0 ,

N−1∑

n=0

nkim
{
u(n)e−jMφ(n)

}
− C

2∑

l=0

(ω̂l − ωl)
N−1∑

n=0

nk+l = 0 , k = 0, 1, 2 .

We normalize the above equations by N 1/2 and Nk+1/2, k = 0, 1, 2, respectively,

and obtain that asymptotically (N →∞) the following relations hold (c.f. [40]):

1√
N

N−1∑

n=0

re
{
u(n)e−jMφ(n)

}
=
√
N(Ĉ − C) , (B.3)

1√
N

N−1∑

n=0

( n
N

)k
im
{
u(n)e−jMφ(n)

}
= C

2∑

l=0

N l+1/2(ω̂l − ωl)
(

1

N

N−1∑

n=0

( n
N

)k+l
)

=
2∑

l=0

C
k + l + 1

N l+1/2(ω̂l − ωl) , k = 0, 1, 2 , (B.4)

where in deriving the last equality, we made use of the well-known limit [47]:

lim
N→∞

1

N

N−1∑

n=0

(
n

N

)k
=

1

k + 1
.

Next, we express the equations (B.3) and (B.4) in the matrix compact form

equation:

KN(ω̂ − ω) = Λ−1ε , (B.5)

KN :=




N
1
2 0 0 0

0 N
1
2 0 0

0 0 N
3
2 0

0 0 0 N
5
2




,



152

Λ :=




1 0 0 0

0 C C
2

C
3

0 C
2

C
3

C
4

0 C
3

C
4

C
5




,

ε :=




1√
N

∑N−1
n=0 re

{
u(n)e−jMφ(n)

}

1√
N

∑N−1
n=0 im

{
u(n)e−jMφ(n)

}

1√
N

∑N−1
n=0

(
n
N

)
im
{
u(n)e−jMφ(n)

}

1√
N

∑N−1
n=0

(
n
N

)2
im
{
u(n)e−jMφ(n)

}




. (B.6)

Since in (B.5) only ε is random, the asymptotic covariance matrix of ω̂ can be

expressed as:

Σω̂ := lim
N→∞

E
{
KN(ω̂ − ω)(ω̂ − ω)TKN

T
}

= lim
N→∞

E
{
Λ−1εεTΛ−1

}
= Λ−1RεΛ−1 ,

where Rε := limN→∞ E{εεT}.

Observe that:

Rε(1, 1) = lim
N→∞

1

N
E

[(N−1∑

n=0

re{u(n)e−jMφ(n)}
)2
]

= lim
N→∞

1

4N

N−1∑

n1,n2=0

E
{[
u(n1)e

−jMφ(n1) +u∗(n1)e
jMφ(n1)

][
u(n2)e

−jMφ(n2) +u∗(n2)e
jMφ(n2)

]}
.

Using (B.1) and (B.2), Rε(1, 1) can be written as:

Rε(1, 1) = lim
N→∞

1

2N

N−1∑

n=0

(D + B − 2C2) =
1

2
(D + B − 2C2) .

Similarly, we obtain Rε(1, k) = 0, k = 2, 3, 4, which means that the NLS estimators

of the amplitude and phase parameters are asymptotically decoupled.
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To evaluate the asymptotic variance of ω̂l, l = 0, 1, 2, we need to compute for

k,m = 0, 1, 2:

Rε(2 + k, 2 +m)= lim
N→∞

1

N

N−1∑

n1,n2=0

(
n1

N

)k(n2

N

)m

· E
[
im{u(n1)e

−jMφ(n1)}im{u(n2)e
−jMφ(n2)}

]
.

Using the same technique as for Rε(1, 1), we obtain:

Rε(2 + k, 2 +m) =
1

2(k +m+ 1)
(B − D) , k,m = 0, 1, 2 .

Thus, the matrix Rε can be expressed as:

Rε =
1

2



B +D − 2C2 0

0 (B − D)H


 , (B.7)

where H := {1/(k + l + 1)}2k, l=0 is the so-called Hilbert matrix [65]. Note that:

Λ−1 =



1 0

0 C−1H−1


 .

Therefore, the asymptotic covariance matrix of ω̂ is obtained as:

Σω̂ =Λ−1RεΛ−1

=
1

2



B +D − 2C2 0

0 (B − D)C−2H−1


 , (B.8)

where the inverse of the Hilbert matrix H is given by [65]:

H−1(k, l) = (−1)k+l
(k + 3)!(l + 3)!

(k!)2(l!)2(2− k)!(2− l)!(k + l + 1)
. (B.9)

Based on (B.8) and (B.9), some direct computations lead to the sought asymptotic

variances (2.14). This concludes the proof of Theorem 1.
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APPENDIX C

DERIVATION OF THEOREM 7

Considering the Taylor series expansion of
∑P−1
k=0 λ̇k exp(jφ̇k + j2π(α̇ + k/P )n)

in the neighborhood of the true value θ := [λ0 · · · λP−1 φ0 . . . φP−1 α0]
T , we can

write:

P−1∑

k=0

λ̇ke
jφ̇kej2π(α̇+ k

P
)n =

P−1∑

k=0

λke
jφkej2π(α0+ k

P
)n +

P−1∑

k=0

(λ̇k − λk)ejφkej2π(α0+ k
P

)n

+ j
P−1∑

k=0

(φ̇k − φk)λkejφkej2π(α0+ k
P

)n +j2πn(α̇− α0)
P−1∑

k=0

λke
jφkej2π(α0+ k

P
)n+rem,

where rem is the high-order remainder term which can be neglected. Then we can

approximate (3.16) by:

J(θ̇)
.
=

1

2N

N−1∑

n=0

∣∣∣x4(n)−
P−1∑

k=0

λke
jφkej2π(α0+ k

P
)n −

P−1∑

k=0

(λ̇k − λk)ejφkej2π(α0+ k
P

)n

− j
P−1∑

k=0

(φ̇k − φk)λkejφkej2π(α0+ k
P

)n −j2πn(α̇− α0)
P−1∑

k=0

λke
jφkej2π(α0+ k

P
)n
∣∣∣
2
. (C.1)

Setting ∂J(θ̂)/∂λ̇k = 0 for k = 0, . . . , P − 1, we obtain:

λ̂k = re

{
1

N

N−1∑

n=0

x4(n)e−jφke−j2π(α0+ k
P

)n

}
−

P−1∑

l=0
l 6=k

λ̂lre

{
1

N

N−1∑

n=0

ej(φk−φl)ej2π
k−l
P
n

}

+
P−1∑

l=0
l 6=k

λ̂l(φ̂l − φl)im
{

1

N

N−1∑

n=0

ej(φk−φl)ej2π
k−l
P
n

}

+ 2πN(α̂− α0)
P−1∑

l=0
l 6=k

λ̂lim

{
1

N

N−1∑

n=0

n

N
ej(φk−φl)ej2π

k−l
P
n

}
. (C.2)

To compute the individual factors in the R.H.S. of (C.2), the following well-known

result will be used extensively [47]:
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Lemma 1. With k denoting a positive integer and δ(ω) denoting Kronecker delta, it

holds that:

lim
N→∞

1

N

N−1∑

n=0

(
n

N
)kej(ωn+φ) =

ejφδ(ω)

k + 1
. (C.3)

Using (C.3), we can further approximate (C.2) by:

λ̂k =
1

Nλk
re

{
N−1∑

n=0

x4(n)λke
−jφke−j2π(α0+ k

P
)n

}
. (C.4)

Following the same procedure, i.e., by setting:

∂J(θ̂)

∂φ̇k
= 0 , k = 0, . . . , P − 1,

∂J(θ̂)

∂α̇
= 0 ,

and using Lemma 1, the following expressions can be obtained:

φ̂k − φk =
1

Nλk
im

{
N−1∑

n=0

x4(n)e−jφke−j2π(α0+ k
P

)n

}
− πN(α̂− α0) , (C.5)

N(α̂− α0) =
3

2πNΛ2
im

{
N−1∑

n=0

n

N
x4(n)

P−1∑

l=0

λle
−jφle−j2π(α0+ l

P
)n

}

− 3

4πΛ2

P−1∑

l=0

λ2
l (φ̂l − φl) , (C.6)

where Λ2 :=
∑P−1
k=0 λ

2
k. Solving (C.5) and (C.6), we can express φ̂k, k = 0, . . . , P − 1

and α̂ in terms of the true value θ and x4(n) by:

φ̂k − φk =
1

Nλ2
k

im

{
N−1∑

n=0

x4(n)λke
−jφke−j2π(α0+ k

P
)n

}

+
3

NΛ2
im

{
N−1∑

n=0

x4(n)
P−1∑

l=0

λle
−jφle−j2π(α0+ l

P
)n

}

− 6

NΛ2
im

{
N−1∑

n=0

n

N
x4(n)

P−1∑

l=0

λle
−jφle−j2π(α0+ l

P
)n

}
, (C.7)

N(α̂− α0) =
6

πNΛ2
im

{
N−1∑

n=0

n

N
x4(n)

P−1∑

l=0

λle
−jφle−j2π(α0+ l

P
)n

}

− 3

πNΛ2
im

{
N−1∑

n=0

x4(n)
P−1∑

l=0

λle
−jφle−j2π(α0+ l

P
)n

}
. (C.8)
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Next, let us write the above expressions in matrix form1:

θ̂ − θ = m + Hb , m := [−λ0 · · · − λP−1 0 · · · 0]T ,

H :=




1
λ0

0 0 . . . 0 0 . . . . . . . . . 0 0

0 1
λ1

0 . . . 0 0 . . . . . . . . . 0 0

...
...

. . .
...

...
...

. . .
. . .

. . .
...

...

0 0 . . . 0 1
λP−1

0 0 . . . . . . 0 0

0 0 . . . 0 0 1
λ2
0

+ 3
Λ2

3
Λ2 . . . . . . 3

Λ2 − 6
Λ2

0 0 . . . 0 0 3
Λ2

1
λ2
1

+ 3
Λ2

3
Λ2 . . . 3

Λ2 − 6
Λ2

...
...

. . .
...

...
...

...
. . .

...
...

...

0 0 . . . 0 0 3
Λ2

3
Λ2 . . . 3

Λ2
1

λ2
P−1

+ 3
Λ2 − 6

Λ2

0 0 . . . 0 0 − 3
πΛ2 − 3

πΛ2 . . . − 3
πΛ2 − 3

πΛ2
6

πΛ2




,

b :=




1
N

re
{∑N−1

n=0 x
4(n)λ0e

−jφ0e−j2πα0n
}

1
N

re
{∑N−1

n=0 x
4(n)λ1e

−jφ1e−j2π(α0+ 1
P

)n
}

...

1
N

re
{∑N−1

n=0 x
4(n)λP−1e

−jφP−1e−j2π(α0+P−1
P

)n
}

1
N

im
{∑N−1

n=0 x
4(n)λ0e

−jφ0e−j2πα0n
}

1
N

im
{∑N−1

n=0 x
4(n)λ1e

−jφ1e−j2π(α0+ 1
P

)n
}

...

1
N

im
{∑N−1

n=0 x
4(n)λP−1e

−jφP−1e−j2π(α0+P−1
P

)n
}

1
N

im
{∑N−1

n=0
n
N
x4(n)

∑P−1
l=0 e−jφle−j2π(α0+ l

P
)n
}




. (C.9)

Using (3.12) and Lemma 1, it is straightforward to verify that limN→∞ E{b} =

[λ2
0 λ2

1 . . . λ
2
P−1 0 . . . 0]T , hence the asymptotic unbiasedness of θ̂ follows, i.e.,

limN→∞ E{θ̂ − θ} = 0.

1In the following we replace α̂ and α0 by Nα̂ and Nα0 in θ̂ and θ, respectively.
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Since in (C.9) only b is random, the asymptotic covariance matrix of θ̂ can be

simplified as:

Σ := lim
N→∞

Ncov(θ̂) = H lim
N→∞

[Ncov(b)]HT := HBHT . (C.10)

There are (2P + 1)× (2P + 1) entries Σk,l, k, l ∈ [0, 2P ], but we are only interested

in γ = Σ2P,2P . Due to the special structure of H, it is not difficult to find that:

γ = uTB(s)u , u := [− 3

πΛ2
− 3

πΛ2
. . .− 3

πΛ2

6

πΛ2
]T , (C.11)

B(s) := lim
N→∞

[Ncov(bs)] ,

bs :=




1
N

im
{∑N−1

n=0 x
4(n)λ0e

−jφ0e−j2πα0n
}

1
N

im
{∑N−1

n=0 x
4(n)λ1e

−jφ1e−j2π(α0+ 1
P

)n
}

...

1
N

im
{∑N−1

n=0 x
4(n)λP−1e

−jφP−1e−j2π(α0+P−1
P

)n
}

1
N

im
{∑N−1

n=0
n
N
x4(n)

∑P−1
l=0 e−jφle−j2π(α0+ l

P
)n
}




.

The entries B
(s)
l1,l2

, l1, l2 ∈ [0, P − 1] of matrix B(s) can be expressed as:

B
(s)
l1,l2

= lim
N→∞

Ncov
(

1

N
im
{ N−1∑

n=0

x4(n)λl1e
−jφl1e−j2π(α0+

l1
P

)n
}
,

1

N
im
{ N−1∑

n=0

x4(n)λl2e
−jφl2e−j2π(α0+

l2
P

)n
})

= lim
N→∞

1

2N

{
re
{
cov

(N−1∑

n=0

x4(n)λl1e
−jφl1e−j2π(α0+

l1
P

)n,

N−1∑

n=0

x∗4(n)λl2e
jφl2ej2π(α0+

l2
P

)n
)}

−re
{
cov

(N−1∑

n=0

x4(n)λl1e
−jφl1e−j2π(α0+

l1
P

)n,

N−1∑

n=0

x4(n)λl2e
−jφl2e−j2π(α0+

l2
P

)n
)}}

. (C.12)
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From (3.13), we can obtain the following time-varying covariances:

cov{x4(n1), x
4(n2)}= E{e(n1)e(n2)} = c̃2e(n2;n1 − n2) , (C.13)

cov{x4(n1), x
∗4(n2)}= E{e(n1)e

∗(n2)} = c2e(n2;n1 − n2) . (C.14)

Since v(n) satisfies the mixing condition (AS4), w(n) has finite moments and h(n)

has finite memory, it follows that e(n) (defined in (3.13)) also has finite moments,

i.e., c̃2e(n; τ) <∞ and c2e(n; τ) <∞. Substituting (C.13) and (C.14) into (C.12), we

can express the first term of the R.H.S. of (C.12) as follows:

lim
N→∞

1

2N

{
re
{
cov

(N−1∑

n=0

x4(n)λl1e
−jφl1e−j2π(α0+

l1
P

)n,

N−1∑

n=0

x∗4(n)λl2e
jφl2ej2π(α0+

l2
P

)n
)}

=re
{

lim
N→∞

1

2N

N−1∑

n1=0

N−1∑

n2=0

λl1λl2e
−j(φl1

−φl2
)e−j2π[α0(n1−n2)+

l1n1−l2n2
P

]c2e(n2;n1 − n2)
}

=re
{

lim
N→∞

1

2N

N−1∑

τ=−(N−1)

N−1−|τ |∑

n=0

λl1λl2e
−j(φl1

−φl2
)e−j2π(α0+

l1
P

)τe−j2π
l1−l2

P
nc2e(n; τ)

}

=
1

2
re
{
λl1λl2e

−j(φl1
−φl2

) lim
N→∞

N−1∑

τ=−(N−1)

[ 1

N

N−1−|τ |∑

n=0

c2e(n; τ)e−j2π
l1−l2

P
n
]
e−j2π(α0+

l1
P

)τ
}

=
1

2
re
{
λl1λl2e

−j(φl1
−φl2

) lim
N→∞

N−1∑

τ=−(N−1)

C2e

( l1 − l2
P

; τ
)
e−j2π(α0+

l1
P

)τ
}

=
1

2
re
{
λl1λl2e

−j(φl1
−φl2

)S2e

( l1 − l2
P

;α0 +
l1
P

)}

=
1

2
re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃4x

(
α0 +

l2
P

; 0
)
S2e

( l1 − l2
P

;α0 +
l1
P

)}
,

where we have replaced the double sum over n1 and n2 by the double sum over n := n2

and τ := n1−n2, and used the Lemma 1. C2e(α; τ) stands for the unconjugate cyclic

correlation of e(n). Similarly, the second term of the R.H.S. of (C.12) can be expressed
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as:

lim
N→∞

1

2N

{
re
{
cov

(N−1∑

n=0

x4(n)λl1e
−jφl1e−j2π(α0+

l1
P
n),

N−1∑

n=0

x4(n)λl2e
−jφl2e−j2π(α0+

l2
P

)n
)}

=
1

2
re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃∗

4x

(
α0 +

l2
P

; 0
)
S̃2e

(
2α0 +

l1 + l2
P

;α0 +
l1
P

)}
.

Therefore, for l1, l2 ∈ [0, P − 1], we obtain:

B
(s)
l1,l2

=
1

2
re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃4x

(
α0 +

l2
P

; 0
)
S2e

( l1 − l2
P

;α0 +
l1
P

)}

−1

2
re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃∗

4x

(
α0 +

l2
P

; 0
)
S̃2e

(
2α0 +

l1 + l2
P

;α0 +
l1
P

)}
.

Using similar arguments, the following expression can be derived for l ∈ [0, P − 1]:

B
(s)
P,l = B

(s)
l,P =

1

4

P−1∑

k=0

{
re
{
C̃∗

4x

(
α0 +

l

P
; 0
)
C̃4x

(
α0 +

k

P
; 0
)
S2e

( l − k
P

;α0 +
l

P

)}

−1

4

P−1∑

k=0

re
{
C̃∗

4x

(
α0 +

l

P
; 0
)
C̃∗

4x

(
α0 +

k

P
; 0
)
S̃2e

(
2α0 +

l + k

P
;α0 +

l

P

)}}
,

and

B
(s)
P,P =

1

6

P−1∑

k,l=0

{
re
{
C̃∗

4x

(
α0 +

l

P
; 0
)
C̃4x

(
α0 +

k

P
; 0
)
S2e

( l − k
P

;α0 +
l

P

)}

−1

6

P−1∑

k,l=0

re
{
C̃∗

4x

(
α0 +

l

P
; 0
)
C̃∗

4x

(
α0 +

k

P
; 0
)
S̃2e

(
2α0 +

l + k

P
;α0 +

l

P

)}}
.

Based on (C.11), after some lengthy calculations, we express γ as:

γ =
3

2π2Λ4

P−1∑

l1,l2=0

{
re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃4x

(
α0 +

l2
P

; 0
)
S2e

( l1 − l2
P

;α0 +
l1
P

)}

−re
{
C̃∗

4x

(
α0 +

l1
P

; 0
)
C̃∗

4x

(
α0 +

l2
P

; 0
)
S̃2e

(
2α0 +

l1 + l2
P

;α0 +
l1
P

)}}
,

and when the above expression is rewritten in matrix form, the equation (3.17) follows.
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APPENDIX D

DERIVATION OF PROPOSITIONS 1 AND 2 (SKETCH)

Our purpose is to evaluate the unconjugate/conjugate cyclic spectra S2e(α; f) and

S̃2e(α; f) corresponding to two oversampling factors P = 1 and P > 1, respectively.

According to the definition of the additive noise e(n) (3.13), we can express its

unconjugate/conjugate time-varying correlations as:

c2e(n; τ) := E{e∗(n)e(n + τ)}

= E
{
[x4(n)− c̃4x(n; 0)]∗[x4(n+ τ)− c̃4x(n + τ ; 0)]

}

= 16m2x(n; τ)m6x(n; 0, 0, τ, τ, τ) + 18m2
4x(n; 0, τ, τ)

−144m2
2x(n; τ)m4x(n; 0, τ, τ) + 144m4

2x(n; τ)

+cum{x∗(n), · · ·x∗(n)︸ ︷︷ ︸
4

, x(n+ τ), · · ·x(n + τ)︸ ︷︷ ︸
4

} , (D.1)

c̃2e(n; τ) := E{e(n)e(n + τ)}

= E
{
[x4(n)− c̃4x(n; 0)][x4(n + τ)− c̃4x(n+ τ ; 0)]

}

= 16E{x(n)x3(n + τ)}E{x3(n)x(n + τ)}+ 18E2{x2(n)x2(n+ τ)}

+cum{x(n), · · ·x(n)︸ ︷︷ ︸
4

, x(n+ τ), · · ·x(n + τ)︸ ︷︷ ︸
4

} , (D.2)

respectively.

Case 1. Evaluation of S2e(α0) for P = 1

Note that when P = 1, the moments mlx are independent of the time index n

and:

cum{x∗(n), · · ·x∗(n)︸ ︷︷ ︸
4

, x(n + τ), · · ·x(n + τ)︸ ︷︷ ︸
4

} = κ8e
j2πα0τ

∑

l

h∗4(l)h4(l + τ) ,
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then S2e(α0) in Proposition 1 can be obtained by plugging the above expression into

(D.1) and taking the Fourier transform of the sequence {c2e(τ)}τ .

Case 2. Evaluation of S̃2e(2α0;α0) for P = 1

The following expressions can be derived due to the circularity of the transmitted

signal w(n):

E{x(n)x3(n+ τ)} = cum{x(n), x(n + τ), x(n+ τ), x(n + τ)}

= κ̃4e
j2πfe(4n+3τ)

∑

l

h(l)h3(l + τ) ,

E{x3(n)x(n+ τ)} = cum{x(n), x(n), x(n), x(n + τ)}

= κ̃4e
j2πfe(4n+τ)

∑

l

h3(l)h(l + τ) ,

E{x2(n)x2(n+ τ)} = cum{x(n), x(n), x(n + τ), x(n + τ)}

= κ̃4e
j2πfe(4n+2τ)

∑

l

h2(l)h2(l + τ) ,

cum{x(n), · · ·x(n)︸ ︷︷ ︸
4

, x(n+ τ), · · ·x(n + τ)︸ ︷︷ ︸
4

} = κ̃8e
j2πfe(8n+4τ)

∑

l

h4(l)h4(l + τ) .

Then, the conjugate cyclic correlation C̃2e(2α0; τ) can be obtained as:

C̃2e(2α0; τ) := lim
N→∞

1

N

N−1∑

n=0

c̃2e(n; τ)e−j4πα0n

= ej2πα0τ
[
κ̃8

∑

l

h4(l)h4(l + τ) + 16κ̃2
4

∑

l

h(l)h3(l + τ) ·
∑

l

h3(l)h(l + τ)

+18κ̃2
4

(∑

l

h2(l)h2(l + τ)
)2]

.

Finally, the expression of S̃2e(2α0;α0) follows by taking the Fourier transform of the

sequence {C̃2e(2α0; τ)}τ at the frequency α0.

Case 3. Evaluation of S2e(k/P ;α0 + l/P ) for P > 1

When P > 1, the last term of (D.1) can be expressed as:

cum{x∗(n), · · ·x∗(n)︸ ︷︷ ︸
4

, x(n + τ), · · ·x(n+ τ)︸ ︷︷ ︸
4

}



162

= κ8e
j2πα0τ

∑

l

h∗4(n− lP )h4(n+ τ − lP ) .

The cyclic correlation coefficient at cycle k/P and the cyclic spectrum at fre-

quency α0 + l/P of e(n) can be expressed as:

C2e

( k
P

; τ
)

=
1

P

P−1∑

n=0

c2e(n; τ)e−j2π
kn
P ,

S2e

( k
P

;α0 +
l

P

)
=

∑

τ

C2e

( k
P

; τ
)
e−j2π(α0+ l

P
)τ .

Since mlx(n; τ ) =
∑P−1
k=0 Mlx(k; τ )exp(j2πkn/P ) for l = 4, 6, we obtain:

C2e

( k
P

; τ
)

= 16V1 + 18V2 − 144V3 + 144V4

+
κ8

P
ej2πα0τ

∑

n

h∗4(n)h4(n+ τ)e−j2π
kn
P ,

where Vi, i = 1, . . . , 4, are defined as in Proposition 2. Hence, we obtain:

S2e

( k
P

;α0 +
l

P

)
=
∑

τ

(16V1 + 18V2 − 144V3 + 144V4)e
−j2π(α0+ l

P
)τ

+
∑

τ

κ8

P
ej2πα0τ

∑

n

h∗4(n)h4(n + τ)e−j2π
kn
P e−j2π(α0+ l

P
)τ . (D.3)

Note that the last term of (D.3) can be expressed as:

∑

τ

κ8

P
ej2πα0τ

∑

n

h∗4(n)h4(n+ τ)e−j2π
kn
P e−j2π(α0+ l

P
)τ

=
κ8

P

∑

τ

∑

n

h∗4(n)h4(n+ τ)e−j2π
kn
P e−j2π

l
P
τ

=
κ8

P

∑

τ1

h4(τ1)e
−j2π l

P
τ1
∑

n

h∗4(n)e−j2π
(k−l)n

P

=
κ8P

κ̃2
4

C̃4x

(
α0 +

l

P
; 0
)
C̃∗

4x

(
α0 +

l − k
P

; 0
)
,

then, S2e(k/P ;α0 + l/P ) in Proportion 2 is obtained.

Case 4. Evaluation of S̃2e(2α0 + k/P ;α0 + l/P ) for P > 1
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Following the similar procedure presented in Case 2, it is not difficult to show:

lim
N→∞

1

N

N−1∑

n=0

E{x(n)x3(n+ τ)}e−j2π(α0+ k
P

)n = ej6πfeτ C̃4x1(k; τ) ,

lim
N→∞

1

N

N−1∑

n=0

E{x2(n)x2(n + τ)}e−j2π(α0+ k
P

)n = ej4πfeτ C̃4x2(k; τ) ,

lim
N→∞

1

N

N−1∑

n=0

E{x3(n)x(n + τ)}e−j2π(α0+ k
P

)n = ej2πfeτ C̃4x3(k; τ) ,

lim
N→∞

1

N

N−1∑

n=0

cum{x(n), · · ·x(n)︸ ︷︷ ︸
4

, x(n+ τ), · · ·x(n + τ)︸ ︷︷ ︸
4

}e−j2π(2α0+ k
P

)n

= ej8πfeτ C̃8x(k; τ) ,

where C̃4xi
(k; τ), i = 1, 2, 3, and C̃8x(k; τ) are defined as in Proposition 2.

Based on (D.2) and the above equations, the conjugate cyclic spectrum S̃2e(2α0+

k/P ;α0 + l/P ) of Proposition 2 can be established.
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APPENDIX E

DERIVATION OF PROPOSITION 3

In [19], a powerful approach has been developed for calculating the asymptotic

covariance matrices of the cyclic correlation estimates. In order to derive Γ(1,1) and

Γ(1,−1), we strongly refer to the method introduced in the afore-mentioned reference.

Define the mean-compensated (2Υ + 1)-dimensional stochastic process:

e2(n) = x2(n)− rx(n) ,

where

x2(n) = [x(n− Υ)x∗(n), . . . , x(n + Υ)x∗(n)]T ,

and

rx(n) = [r2x(n;−Υ), . . . , r2x(n; Υ)]T .

Let re2(n, τ) := E{e2(n+ τ)eH
2 (n)} be the time-varying correlation where the super-

script H denotes complex-conjugation and transposition. Furthermore, let Re2(k, τ)

and Se2(k; f) represent the cyclic correlation and cyclic spectrum of e2(n), respec-

tively. In [19], it is shown that

Γ(1,1) = Se2(0; 1/P ).

Based on similar arguments as the ones developed in [19], it is not difficult to prove

that

Γ(1,−1) = Se2(2; 1/P ).

Next, we will only concentrate on the derivation of Γ(1,1). The derivation of Γ(1,−1)

can be done similarly. First, we characterize the cyclic spectrum of the process e2(n).
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For a general noncircular input, the time-varying correlation of e2(n) can be expressed

as:

[re2(n; τ)]u,v = r2x(n+ v; τ + u− v)r∗2x(n; τ)

+cum{x(n+u+ τ), x∗(n+τ), x∗(n+ v), x(n)}+ r̃2x(n; τ + u)r̃∗2x(n+ v; τ − v) ,

where (u, v) ∈ {−Υ, . . . ,Υ}2. Let the notation [M ]u,v stand for the (u, v)th-entry of

an arbitrary matrix M . It follows that the cyclic correlations of e2(n) at the cyclic

frequency k = 0 are given by

[Re2(0; τ)]u,v =
P−1∑

k=0

R2x(k; τ + u− v)R∗
2x(k; τ)e

2iπkv/P + C2x(0; u+ τ,−τ,−v)

+
P−1∑

k=0

R̃2x(k; τ + u)R̃∗
2x(k; τ − v)e−2iπ(k+2feT )v/P ,

where the cyclic cumulant sequence C2x(k; τ ), τ :=[τ1, τ2, τ3], can be expressed as:

C2x(k; τ ) :=
∫ 1/2

−1/2
S4,x(k; f)e

2iπτ fT

df ,

where S4,x(k; f) stands for the cyclic trispectrum of the discrete-time signal x(n) at

cyclic frequency k/P and frequency f := [f1, f2, f3].

Thus:

Γ(1,1)
u,v = [Se2 (0; 1/P )]u,v =

P−1∑

k=0

Rk,u,v + Cu,v +
P−1∑

k=0

R̃k,u,v,

with:

Rk,u,v = e2iπkv/P
∑

τ∈Z

R2x(k; τ + u− v)R∗
2x(k; τ)e

−2iπτ/P ,

Cu,v =
∑

τ∈Z

C2x(0; u+ τ,−τ,−v)e−2iπτ/P ,

R̃k,u,v = e−
2iπ(k+2feT )v

P

∑

τ∈Z

R̃2x(k; τ + u)R̃∗
2x(k; τ − v)e−

2iπτ
P .
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It remains to express Cu,v. We recall that

Cu,v =
∫ 1

2

− 1
2

S4,x(0; f1, f2, f3)
∑

τ∈Z

e2iπ(f1(u+τ)−f2τ−f3v)e−2iπτ/Pdf1df2df3. (E.1)

Let S4,xc
(k/T ;F) be the cyclic trispectrum of xc(t) at cyclic frequency k/T and fre-

quency F := [F1, F2, F3]. From [50], [73] and [97], S4,x(k; f) can be expressed in terms

of S4,xc
(k/T ;F) by the following relation:

S4,x(k; f) =
1

T 3
s

∑

l∈Z

∑

µ∈Z3

S4,xc

(
l

T
;
f − µ

Ts

)
δ(
k − l
P

mod 1),

for all (f1, f2, f3) ∈ (−1/2, 1/2]3. The notation (a mod b) denotes a modulo b, and by

convention, (a mod b) belongs to (−b/2, b/2].

Since xc(t) is given by Eq. (4.1), it is well known that ([19, Appendix C], [96]):

S4,xc
(
k

T
;F) =

κ

T
Hc(F1 − fe)H∗

c (F2 − fe)

·H∗
c (F3 − fe)Hc(

k

T
− F1 + F2 + F3 − fe)e−2iπkε , (E.2)

with Hc(F ) representing the FT of hc(t). As hc(t) is bandlimited in [−(1+ρ)/2T, (1+

ρ)/2T ] with 0 ≤ ρ < 1, S4,xc
(k/T ;F) will be nonzero only for cycles {k/T, |k| ≤ 3}.

We deduce that

S4,x(k; f)=
1

T 3
s

3∑

l=−3

∑

µ∈Z3

S4,xc

(
l

T
;
f − µ

Ts

)
δ(
k − l
P

mod 1) , (E.3)

for all (f1, f2, f3) ∈ (−1/2, 1/2]3.

According to Eqs. (E.1) and (E.3), we obtain that for P ≥ 3

Cu,v =
1

T 3
s

3∑

l=−3
l=(0 mod P )

∫ 1
2

− 1
2

S4,xc

(
l

T
;
f1

Ts
,
f1 − 1/P

Ts
,
f3

Ts

)
e2iπ(f1u−f3v)df1df3.
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Replacing the cyclic spectra of xc(t) with their expressions given by Eq. (E.2)

and then expressing Hc(F ) in terms of H(f) by means of Eq. (4.5) leads to

Cu,v =
κTs
T

∫ 1
2

− 1
2

H(f1 − feTs)H∗(f1 −
1

P
− feTs)

·H∗(f3 − feTs)H(f3 −
1

P
− feTs)e2iπ(f1u−f3v)df1df3.

Using Eq. (4.9), we obtain finally:

Cu,v =
κT

Ts

∫ 1
2

− 1
2

S2x(1; f1)e
2iπf1udf1

∫ 1
2

− 1
2

S∗2x(1; f3)e
−2iπf3vdf3 =

κT

Ts
R2x(1; u)R∗

2x(1; v).

The expressions in the case of P = 2 can be obtained using a similar approach.
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APPENDIX F

PROOF OF PROPOSITION 4

We establish next the asymptotic performance of the GG estimators for P ≥ 3.

For τ = 1, Eq. (4.10) can be rewritten as:

f̂e =
P

4πT
arg{R̂2x(1; 1)R̂2x(−1; 1)} =

P

4πT
arctan

{
α̂1

iβ̂1

}
, (F.1)

where

α̂1 := R̂2x(1; 1)R̂2x(−1; 1)− R̂∗
2x(1; 1)R̂∗

2x(−1; 1) ,

β̂1 := R̂2x(1; 1)R̂2x(−1; 1) + R̂∗
2x(1; 1)R̂∗

2x(−1; 1) .

For convenience, we define the following:

α1 := R2x(1; 1)R2x(−1; 1)−R∗
2x(1; 1)R∗

2x(−1; 1),

β1 := R2x(1; 1)R2x(−1; 1) +R∗
2x(1; 1)R∗

2x(−1; 1),

and ∆α1 := α̂1 − α1, ∆β1 := β̂1 − β1. Eq. (F.1) can be equivalently expressed as:

f̂e =
P

4πT
arctan

(
α1

iβ1
·
1 + ∆α1

α1

1 + ∆β1

β1

)
. (F.2)

According to [19], ∆α1 and ∆β1 are on the order of o(1/
√
N). Considering a Taylor

series expansion of the RHS of (F.2) and neglecting the terms of magnitude higher

than o(1/
√
N), it follows that:

f̂e=
P

4πT


arctan

(
α1

iβ1

)
+
α1

iβ1

1

1 + ( α1

iβ1
)2

(
∆α1

α1
−∆β1

β1

)
. (F.3)
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Simple manipulations of (F.3) lead to:

γfe
= ζ2

1 lim
N→∞

NE

(
∆α1

α1
− ∆β1

β1

)2

= ζ2
1

(
V11

α2
1

+
V12

β2
1

− 2V13

α1β1

)
,

where

ζ1 := P tan(4πTfe/P )/[4πT (1 + tan2(4πTfe/P ))],

V11 := lim
N→∞

NE{(∆α1)
2}, V12 := lim

N→∞
NE{(∆β1)

2}, V13 := lim
N→∞

NE{∆α1∆β1}.

Since R̂2x(k; τ) = R2x(k; τ) + o(1/
√
N), the previous terms can be easily computed

as follows:

V11 = 2re{RT (1)Γ̃R(1)−RT (1)ΓR∗(1)} ,

V12 = 2re{RT (1)Γ̃R(1) + RT (1)ΓR∗(1)} ,

V13 = 2iim{RT (1)Γ̃R(1)} ,

with R(1) := [R2x(−1; 1) Rx(1; 1)]T . According to Eq. (4.7), one can check also that:

α1 = 2i
σ4
w

P 2
sin(4πfeT/P )G2(1; 1) ,

β1 = 2
σ4
w

P 2
cos(4πfeT/P )G2(1; 1) ,

which enables us to conclude the derivation of γfe
, after some simple algebra manip-

ulations of the Eq. (4.7).

The derivation of the asymptotic performance of ε̂ is more complicated because

the expression (4.10) depends on the estimate of fe when τ is not equal to 0. Similarly

to the derivation presented in Eqs. (F.1) and (F.2), we obtain

ε̂ = − 1

2π
arctan

(
α2

iβ2
·
1 + ∆α2

α2

1 + ∆β2

β2

)
,
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where

α2 = R2x(1; 1)e−2iπ(feT+1/2)/P − R∗
2x(1; 1)e2iπ(feT+1/2)/P ,

β2 = R2x(1; 1)e−2iπ(feT+1/2)/P +R∗
2x(1; 1)e2iπ(feT+1/2)/P ,

∆α2 = R̂2x(1; 1)e−2iπ(f̂eT+1/2)/P − R̂∗
2x(1; 1)e2iπ(f̂eT+1/2)/P

− R2x(1; 1)e−2iπ(feT+1/2)/P +R∗
2x(1; 1)e2iπ(feT+1/2)/P ,

∆β2 = R̂2x(1; 1)e−2iπ(f̂eT+1/2)/P + R̂∗
2x(1; 1)e2iπ(f̂eT+1/2)/P

− R2x(1; 1)e−2iπ(feT+1/2)/P − R∗
2x(1; 1)e2iπ(feT+1/2)/P .

Then, the asymptotic variance of ε̂ can be expressed as:

γε = ζ2
2 lim
N→∞

NE

(
∆α2

α2
− ∆β2

β2

)2

= ζ2
2 ·
(
V21

α2
2

+
V22

β2
2

− 2V23

α2β2

)
, (F.4)

with

ζ2 := tan(2πε)/[2π(1 + tan2(2πε))] ,

V21 := lim
N→∞

NE{(∆α2)
2} ,

V22 := lim
N→∞

NE{(∆β2)
2} ,

V23 := lim
N→∞

NE{∆α2∆β2} .

The term V21 can be re-written as:

V21 = lim
N→∞

NE
{[
e−2iπ(f̂eT+1/2)/P δ1 − e2iπ(f̂eT+1/2)/P δ∗1

+ e−i
π
P R2x(1; 1)δ2 − ei

π
P R∗

2x(1; 1)δ∗2
]2}

with

δ1 = R̂2x(1; 1)−R2x(1; 1) ,
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and

δ2 = e−2iπf̂eT/P − e−2iπfeT/P .

A first-order Taylor series expansion implies further:

δ2 = −2iπT

P
e−2iπfeT/P (f̂e − fe) = −2iπT

P
e−2iπfeT/P ζ1

(∆α1

α1
− ∆β1

β1

)
.

After defining the intermediary variables:

λ1 :=
2iπT

P
ζ1λe

2iπfeT/P ,

λ2 := −2iπT

P
ζ1λe

−2iπfeT/P ,

and

λ :=

(
1

α1
− 1

β1

) [
R2x(1; 1)Γ̃

(1,−1)
1,1 +R2x(−1; 1)Γ̃

(1,1)
1,1

]

−
(

1

α1

+
1

β1

) [
R∗

2x(1; 1)Γ
(1,−1)
1,1 +R∗

2x(−1; 1)Γ
(1,1)
1,1

]
,

it follows that:

V21 =2re
(
e−4iπ(feT/P+1/2P )Γ̃

(1,1)
1,1

)
−2Γ

(1,1)
1,1 + 4re

(
e−2iπ(feT/P+1/P )λ2R2x(1; 1)

)

−4re
(
e−2iπfeT/Pλ1R

∗
2x(1; 1)

)
−4im2

(2iπT

P
e−2iπ(feT/P+1/2P )R2x(1; 1)

)
γfe
.(F.5)

The expressions of V22 and V23 as well as the remaining parts of the other propositions

can be derived using similar arguments. Moreover, according to Eq. (4.7), we obtain

that

α2 = −2i
σ2
w

P
sin(2πε)G(1; 1) , (F.6)

and

β2 = 2
σ2
w

P
cos(2πε)G(1; 1). (F.7)
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Finally, plugging Eqs. (F.6), (F.7), and (4.7) back into (F.5) and (F.4) concludes the

proof.
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