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ABSTRACT 

 

Nonlinear response, bifurcations and stability of rotor-fluid film bearing systems 

are studied using various numerical investigation schemes such as autonomous/non-

autonomous shooting, arc-length continuation, direct numerical integrations, Poincaré 

sections, Lyapunov exponents, etc. Two types of hydrodynamic bearings, a floating ring 

bearing (FRB) and a tilting pad journal bearing (TPJB), are employed in this study. The 

nonlinear characteristic of each bearing is analyzed as supports of a rigid rotor system as 

well as a flexible rotor system. Depending on the existence of the unbalance force on the 

rotor/disks, autonomous (free vibration) and non-autonomous responses (mass 

unbalanced excitation) are both identified, and the nonlinear reaction force produced on 

the lubricant layer is obtained using the finite element method. In addition to isoviscosity 

lubricants, thermo-hydrodynamic lubricant model is developed to investigate thermal 

effects on rotordynamic bifurcations; in the procedure, a variable viscosity Reynolds 

equation and the energy equation are solved simultaneously. For computation efficiency 

in the analytical bifurcation study, an advanced shooting algorithm, which is combined 

with the deflation theory and the parallel computing strategy, is proposed for both the 

autonomous and the non-autonomous cases. In the study with flexible rotors, the finite 

element based beam models are employed and the model reduction technique such as 

Component Mode Synthesis is utilized to condense the system degree of freedom. 

This dissertation consists of four main discussions regarding: 1) nonlinear 

response and bifurcations of a rigid rotor supported by FRBs; 2) effects of a thermo-
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hydrodynamic (THD) FRB model on rotordynamic bifurcations; 3) nonlinear response 

and bifurcations of a rigid rotor supported by TPJBs; 4) extension of study to general, 

complex, multi-mass rotor beam models. In case 1), multiple coexistent solutions and 

bifurcation scenarios are identified, and those are depended on the ratio of floating ring 

length to diameter (L/D). Numerical illustrations regarding jumps between two stable 

limit cycles and quenching large vibrations are demonstrated, and chaos is investigated 

with the aid of Lyanpunov exponent. In case 2), the Hopf bifurcation onset is strongly 

dependent on thermal conditions, and the saddle node bifurcation points are significantly 

shifted compared to the isothermal model. In addition, the unbalanced responses stability 

and bifurcation onsets are highly reliant on the lubricant supply temperature. In case 3), 

loci of bifurcations are identified, and heavily loaded bearings and/or high unbalance 

force may induce consecutive transference of response in forms of synchronous to sub-

synchronous, quasi-periodic responses and chaotic motions. The periodic doubling 

bifurcations, saddle node bifurcations and corresponding local stability are reliably 

determined by selections of pad preload, pivot offset, and lubricant viscosity sets. In case 

4), two industrial applications such as a turbocharger supported by FRBs and an eight-

stage centrifugal compressor supported by TPJBs are numerically analyzed. The 

turbocharger shows that torus appears with Neimark-Sacker bifurcation events and the 

motions are dominant in the high speed ranges (>60,000rpm). In the compressor, sub-

/super-synchronous motions are identified other than the ×1 synchronous response, and 

the appearance of each harmonic is highly depended on the selection of pad preload and 

pivot offset. 
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NOMENCLATURE 

 

Cb bearing clearance 

Ci, Co ring inner and outer clearances 

Cp pad clearance 

D bearing Diameter 

I identity matrix 

Ip polar moment of inertia of a pad about the pivot 

Jx jacobian matrix w.r.t states vector x 

Jτ jacobian matrix w.r.t time parameter τ  

L bearing Length 

M, C, K mass, damping, and stiffness matrices 

OB bearing center 

OJ journal center 

OR ring center 

Op pad center 

R bearing Radius 

T lubricant temperature 

eimb imbalance eccentricity 

eJ static eccentricity of journal position relative to housing 
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eJR static eccentricity of journal position relative to ring 

eR static eccentricity of ring position relative to housing 

h film thickness 

p fluid pressure 

t time parameter 

u, v components of fluid velocity in x, y directions  

xJ x component of journal position relative to housing 

xJR x component of journal position relative to ring 

xR x component of ring position relative to housing 

yJ y component of journal position relative to housing 

yJR y component of journal position relative to ring 

yR y component of ring position relative to housing 

Γ torque on ring 

Φm Monodromy matrix 

εD non-dimensionalized dynamic eccentricity (εD=eJ/Cb) 

εi non-dimensionalized imbalance eccentricity (εi=eimb/Cb) 

ζ Floquet multiplier 

η Gram-Schmidt orthonormalization  

θi journal angular position 

θo ring angular position 
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λ Lyapunov exponent 

µ fluid dynamic viscosity 

μo fluid dynamic viscosity at reference temperature 

ξ non-dimensional cross film distance 

τ non-dimensional time parameter 

τR journal whirling period 

τs journal spin period 

ωJ journal spin speed 

ωR ring spin speed 
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CHAPTER I  

INTRODUCTION 

 

Nonlinear Phenomena in Rotor-Fluid Bearing Systems 

Fluid film force may be the most common source of nonlinearities in rotor-

bearing systems, since various applications of fluid film bearings such as plain journal 

bearings, fixed-/tilting-pad journal bearings, squeeze film dampers, floating ring 

bearings, pressure dam bearings, etc. have been widely used in laboratory and industrial 

fields. Engineers and researchers who were dealing with turbomachinery supported by 

fluid film components have observed various nonlinear behaviors of the rotor system 

such as sub-synchronous whirls, quasi-periodic, aperiodic responses, sub- or super-

critical Hopf bifurcation, Neimark-Sacker bifurcation and even chaotic motions [1-6]. In 

addition, due to the demands of high efficient and high power capacity rotor-machinery, 

the designs for modern bearings/seals, and squeeze film dampers are facing more drastic 

specifications. These changes can induce strong nonlinearities, which make difficult to 

predict system response and stability. These trends demonstrate the importance of 

nonlinear dynamic analysis; however, today’s common analysis methods such as 

linearization of bearing coefficients or direct numerical integrations have some 

limitations to thoroughly understand the nonlinear phenomena. 
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Limitations of Linear and Transient Analyses 

In the linear analysis, stiffness and damping coefficients of a bearing are 

determined by calculating dynamic forces at static equilibrium position. The linearized 

bearing force terms are utilized to predict instability onset speed of the rotor system. The 

turbo lab in Texas A&M University is a leading group of measuring/predicting stiffness 

and damping coefficients of various fluid film bearings [7,8]. The results are still very 

important to decide system stability, but several nonlinear phenomena cannot be 

discovered. For instance, the fluid reaction force has obtained with the assumption of 

absence of imbalance of a rotor, even though it is commonly presented in real machines, 

so that more stabilized or inaccurate predictions than reality may be provided. Besides, 

the linear approach gives the stability information in terms of convergence (stable) or 

divergence (unstable) of the journal motion, thus no other detailed information can be 

provided after the instability onset speed. This prediction limits the machine’s inherent 

capability such that it is able to operate beyond the onset speed. In addition, the onset 

speed, which is also called as primary Hopf bifurcation in nonlinear theory, can have 

different stability characteristics in standpoint of nonlinear dynamics; for instance, Hopf 

can be divided sub- and super-critical, and each of them exhibits different patterns of oil 

whirls.   

For better understanding, nonlinear analysis based on the direct numerical 

integration schemes are widely used in recent studies. The transient, numerical 

integration to steady states (TNISS) is a solution approach based on initial condition 

problems for nonlinear equations, so that the response of a dynamic system is obtained 
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consecutively in time domain from the initial moment. This numerical procedure extends 

that the user can predict response states beyond the instability onset speed and the orbital 

motions induced by unbalance force. Even though vast numbers of the research rely on 

the numerical procedure [1-6, 9-14], TNISS has some limitations such that excessive 

computation time is often required to get a steady state response, especially near 

bifurcation points. In addition, users need to specify an initial condition for all degrees of 

freedom (e.g. positions and velocities) and important response states may miss on the 

initial conditions. This produces that a totally different response state may exist for the 

same speed and imbalance distribution than predicted by TNISS. In particular, unstable 

limit cycles can never obtained even though they are required for a complete picture of 

the bifurcation characteristics of the system (e.g., repelling/attracting orbital motion). 

 

Multiple Response State Prediction Methods 

Multiple response states prediction (MRSP) for rotordynamics is another 

approach based on nonlinear dynamics theory. MRSP employs an algorithm directed 

search to determine all possible coexistent response states and their stability. MRSP 

algorithm can be roughly categorized into two solution approaches.  

In the frequency based approach, the harmonic balance method (HBM) was 

applied to find synchronous/sub-synchronous response state of rotor system with stator 

rubs and squeeze-film dampers, respectively [15,16]. Some research shows that HBM is 

able to be combined with the arc-length continuation to extend solution branches over a 

varying system parameter in a rotor/stator contact problem in Ref. [17]. Trigonometric 
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collocation method (TCM) along with component mode synthesis (CMS) was used to 

calculate the periodic response of multi disk rotor system with squeeze film damper 

[18,19]. The solution approach in the frequency domain methods can be explained as an 

assumed response or nonlinear force is defined in terms of harmonics of frequency 

components then substituted into the original system equation. This approach inherently 

generates more nonlinear algebraic equations than the number of system equation 

whenever users attempt to define more precise solution form with supplementary 

frequency components. Besides, these methods may be hard to apply if nonlinear force 

model in a system is highly complicated.  

In the time domain based approach, the shooting method, which is a numerical 

approach to solve two point boundary value problems, has been used to predict response 

states of a rotor system. Here, the known boundary conditions are the beginning and the 

end states of a limit cycle, and each state contains the information of position and 

velocity at the moment. This algorithm is capable of determining stability of response, 

bifurcation scenarios and multiple response states in operations, but it also requires 

amounts of computation resources and time to obtain Jacobian matrix in the algorithm 

routines. Sundararajan and Noah developed non-autonomous shooting and arc-length 

continuation codes combined with CMS scheme for flexible rotor systems supported by 

squeeze film dampers and plain journal bearings [20,21]. Chu and Tang applied non-

autonomous shooting to a rotor-bearing system with pedestal looseness and determined 

response stability by Floquet theory [22].  
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So far, however, most research on MRSP for rotordynamics has dealt with 

nonlinear behaviors of single fluid film applications such as a plain journal bearing and a 

squeeze film damper, and fluid film force is obtained by employing infinitely short-

/long-bearing approximation. The Ocvirck and Sommerfeld models are able to reduce 

computation time due to their closed form expressions of isoviscosity Reynolds 

equation, but it is known that the prediction is only reliable for short-/long-bearing 

length to diameter ratio (L/D) and low eccentricity cases [23,24]. Besides, the 

assumption of isothermal condition of the lubricant layer restricts to investigate thermal 

effects on nonlinear response and bifurcations. Another limitation is that an extended 

application to various practical bearings such as pressure dam, fixed-, tilting-pad 

bearings may not be appropriate with the simplified force model. 

 

Research Objectives 

The present research try to understand nonlinear response and bifurcations of 

rotor-fluid film bearing systems with aids of various numerical analysis tools such as 

shooting/arc-length continuation, a direct numerical integration, Poincaré sections, 

Lyapunov exponents, etc. In this study, however, some advanced numerical algorithms 

and more accurate rotor and bearing models are applied to overcome the described 

limitations of the current other research. For case study, two types of fluid film bearings 

are selected as floating ring bearing and tilting pad journal bearing, and each bearing is 

to be combined with a rigid rotor as well as a flexible rotor. 
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Floating ring bearing (FRB) is a special type of journal bearing and has strong 

nonlinearity due to its double-layered fluid film on inner and outer ring surfaces. Though 

it is a source of instability, cost-effectiveness and high functionality for lightly loaded 

high speed rotor system provide that the FRB has been widely used for automotive 

turbochargers (TCs) and aircraft accessory equipment. Since FRB can be operated in 

extremely high speed range (e.g., 150krpm-350krpm) [9], various nonlinear phenomena 

have been reported from a number of research in terms of TNISS scheme. However, 

analytical study for the nonlinear behaviors of FRB was not thoroughly conducted 

compared to the single fluid film applications. Recently, a few works began to analyze 

FRB’s nonlinear behaviors with a MRSP method. Boyaci et al. utilized both numerical 

continuation software packages, AUTO and MATCONT, and center manifold reduction 

techniques to analyze FRB supported rotors [25,26]. They investigated bifurcations, 

coexistent solutions, and total instability with nonlinear force model based on the short 

bearing approximation.  

Tilting pad journal bearings (TPJB) are one of the most popular bearing 

applications in modern turbomachinery due to their stabilizing effects on rotor-bearing 

systems. The tiling motions of pads lead the cross-coupled stiffness terms of the bearings 

become negligible, so the bearing has stable performance than plain/fixed-pad journal 

bearings. Though considerable numerical study has been conducted to predict the 

responses and characteristics of TPJB rotor systems by means of the linear and TNISS 

approaches with the finite length of TPJB models [27-30], the analytical bifurcation 
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studies have been seldom reported yet. Thus the nonlinear behaviors related to multiple 

response states, bifurcations, repelling/attracting motions, etc. are still in vague. 

In this paper, an improved autonomous/non-autonomous shooting method for a 

rotor system is introduced to determine multiple response states of a rigid/flexible rotor 

supported by fluid film bearings. Here, the shooting is combined with the deflation 

algorithm and the parallel computing strategy. Deflation is a mathematical algorithm to 

determine solutions in a multiple roots problem [31-33]. The idea of this approach is to 

reduce needless computation time by avoiding previously found solutions while a 

nonlinear solver is seeking a new solution. To achieve the purpose, the original system 

equation is redefined once a unique solution is identified. Parallel computing has been 

increasingly adopted in recent years to reduce computation time through the full use of 

multicore processors [34]. Parallel computing strategy is also suitable to shooting and 

continuation algorithms, since the routines for obtaining of Jacobian matrix from 

perturbed initial conditions are independent procedures, so each segment of the solution 

routine can be executed simultaneously. In this work, both accelerating methods have 

significantly enhanced computation efficiency in theoretical and practical manners. 

This appears to be the first work to apply the deflation and the parallel computing 

to the MRSP technique for finding multiple responses and bifurcations in rotor 

dynamics. The solution obtained from the numerical method contains phase state and 

period of limit cycle so that the bifurcation diagram can provide orbit and period 

information along with system parameters. Since multiple orbits can coexist at the same 

operation speed and imbalance amount, response jump between two limit cycles is 
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simulated with a sudden base excitation during operation. In addition, other nonlinear 

aspects such as chaos and synchronization in the rotor-bearing systems are presented. 

Referring to the work from Adiletta et al. in Ref [4], chaotic motion is shown for the 

non-autonomous, heavily loaded case. Lyapunov exponent, strange attractor, bifurcation 

diagram, and frequency spectrum, were used to evaluate the chaos as in Ref. [35]. 

Quenching oil whirls using intentional imbalance (i.e., synchronization) is useful 

treatment in industrial fields [36]. A numerical investigation for synchronization is 

demonstrated. 

As introduced, due to the computational burden of shooting/continuation, all the 

previous work has used infinitely short bearing approximation [20-22, 25,26]. In 

contrast, the present research utilizes the finite element based bearing models by 

enduring the computational overloads with aids of the acceleration techniques: deflation 

and parallel computing. This makes possible to determine lubricant pressure 

distributions, velocity profiles and viscosity distributions during the solution routines. 

This approach is eligible to investigate thermal effect on bifurcations in a fluid film 

bearing. In order to proceed the analytical study, the finite element based variable 

viscosity Reynolds equation is coupled with the energy equation, and then it is dragged 

into the shooting and the arc‐length continuation algorithms. 

The format of the dissertation is as follows. In the next chapter, mathematical 

backgrounds of the numerical analysis methods for the nonlinear rotor-bearing system 

are introduced. In Chapter 3, nonlinear response and bifurcations of a rigid rotor 

supported by FRBs are presented. Chapter 4 describes effects of thermo-hydrodynamic 
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FRB model on rotordynamic bifurcations. In Chapter 5, nonlinear characteristics of a 

rigid rotor supported by TPJBs are analyzed. Chapter 6 extends the rotor applications to 

general, flexible, multi-mass beam models. Finally, the conclusions are reached in 

Chapter 7. 

 

Original Contributions of Research 

Advanced nonlinear dynamics algorithms are proposed: 

- Shooting combined with the deflation algorithm and the parallel computing 

- Steady state thermal solutions are included in the shooting method 

- Autonomous and non-autonomous codes are developed 

Precise computational bearing models are utilized for bifurcation study: 

- Finite element based fluid film bearing models (e.g, floating ring bearing, 

tilting pad journal bearing) in analytical study 

- Lubricant temperature distributions and viscosity are updated 

Practical/industrial rotor models are applied: 

- Turbo-charger (62 DOF) and compressor rotor (150 DOF) 

 

9 

 



 

CHAPTER II  

THEORY 

 

Shooting Method with Deflation Algorithm 

The shooting method is a numerical approach to solve two-point boundary value 

problems for identifying a periodic solution in autonomous/non-autonomous systems. In 

non-autonomous system, the period of the solution subjected to external excitation is 

assumed to be a known such as forcing period τF or a rational multiple of τF. On the other 

hand, the period is an unknown value in autonomous system since it is depended on the 

internal state of system. Then the system needs an additional constraint condition to 

remove the arbitrariness. There exists several techniques to set up the condition and 

Mees’ approach are used in this work [37,38].   

Let x0 be an initial condition for a periodic solution and xT (x0, τ0) is the state 

vector after τ0 period. If x0 is a value of x on an orbital equilibrium state of period τ0, it is 

true that  

0 0 0 0 0( , ) ( , ) 0Tτ τ= − =f x x x x   (1) 

Let x0i, τ0i be a first guess of the function f in Eq. (1), and expand in the Taylor 

series and remain the first order term in ∆x0 and ∆T0 within a tolerance limit, 

0 0 0 0
0 0 0 0

0 0

( , ) ( , )( , ) 0i i i i

i i

τ τ
τ δ δτ

τ
∂ ∂

+ +
∂ ∂



f x f xf x x
x

 

 where δ += −1
0 0 0
i i ix x x and 1

0 0 0
i i iδτ τ τ+= − .  

 

(2) 

Substitute Eq. (1) into Eq. (2) to obtain, 
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0 00 0 0 0 0( , ) 0i i i i i i i
T x ττ δ δτ − + − + = J I Jx x x x  

 where, 
0

0 0

0

( , )i i
i T
x x

τ∂
=

∂
J x x , 

0

0 0

0

( , )i i
i T
τ

τ
τ

∂
=

∂
J x x , and I is identity matrix 

  

(3) 

Since n number of system equations have n+1 unknowns in terms of x0 and τ0, it 

is necessary to define an additional constraint equation. Here, Mee’s approach is, 

δ =

0 0 0Tx x  (4) 

This assumption specifies the correction vector δx0 to be orthogonal to the vector field 

ẋ0. When Eq. (4) is included, the following Newton-Raphson (N-R) iteration form can 

be obtained for the solution search, 

0 0

1
1

0 0 0 0 0
1

0 0 0

( , )
00

i ii i i i i
x T

i i i T

τ τ
τ τ

−
+

+

−     − 
= +       

        

J I J


x x x x x
x

 

 

(5) 

This paper employs a deflation algorithm to enhance the computational 

efficiency of the shooting method. The general concept of the deflation approach is to 

avoid previously found solutions while a nonlinear solver is seeking further solutions in 

a multiple roots problem. This can be achieved by modifying the original system 

equations using “deflated” functions once a new solution is found. The deflated function 

has all of the same roots as the original function with the exception that roots that have 

already been located no longer are roots of the deflated function. The deflation function 

employed is a series product of Euclidean norms of deviations away from the initial 

states of periodic solutions previously obtained by the shooting approach. In the case of 

an autonomous system, the periods (τ0) of solution are independent of each other as well 

as the phase states (x0). In this study, for computation simplicity, the period of solution is 

selected to define the deflated function h,   
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0 0 01
( ) p i

jj
h τ τ τ

=
= −∏  

 

(6) 

where, ǁ·ǁ denotes Euclidean norm and τ0j, j=1,2,…,p is the previously found periods of 

solutions. This function is updated every time a new (unique) solution is found. The 

original system equation is modified with h appearing in the denominator in Eq. (7) so 

that previously found roots are no longer roots of the modified function. 

0 0 0 0 0
0 0

0 1 0 0

( , ) ( , )ˆ( , ) 0
( )

T
p i
j jh

τ τ
τ

τ τ τ=

−
= = =

−Π
f x x x xf x  

 

(7) 

Using Eq. (7), the first order Taylor series as in Eq. (2, 3) are redefined as in Eq. (8, 9) 

such as 

0 0 0 0
0 0 0 0

0 0

ˆ ˆ( , ) ( , )ˆ( , ) 0i i i i

i i
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(9) 

If Mees correction vectors are included, the N-R iteration form with deflation technique 

yields,  

{ } { }
0 0

1
0 0

1
0 0

1

1 2 1 0 0 0
0 0 0 0 0 0

0 0

0

( , )( ) ( ) ( , ) ( )
( )

0 0

i i

i i

i i i
i i i i i T
x T

i

i T

hh h T h
hτ

τ τ

ττ τ τ
τ τ

+

+

−

− − −

   
= +   

   

 ∂  − − − − +   ∂   
     

J I J



x x

x x xx x x

x

 

(10) 

 

12 

 



 

Arc-length Continuation 

As can be seen in Fig. 1, numerical continuations can be followed a shooting 

method to explore solution manifolds of a nonlinear system. A simple numerical 

continuation scheme such as the sequential continuation sets the previous solution vector 

as an initial guess for next step. This is intuitive and simple to use, but it may fail the 

solution guess procedure when it faces a high curvature region. 

 

 

(a) Sequential continuation                         (b) Arc-length continuation 

(x0, ω0)
(x1, ω1)

(x2, ω2)

(x0, ω0)
(x1, ω1)

(x2, ω2)
Correction
(Newton-Raphson)

Prediction

Failure

Correction(N-R)

Prediction

Success
(x3, ω3)

(xi
2, ωi

2)

(xi
3, ωi

3)

 
Fig. 1. Numerical continuation methods 

 

 

In contrast, the arc-length continuation scheme produces an initial guess for next 

step in the tangential direction with regard to the current solution curve. Thus, it is 

capable of the succession of solution search even in the middle of the high curvature. In 

order to pass the inflection point, the arc-length continuation defines the trajectory of 

solution curves as a function of arc-length (∆s). Then Eq. (1) has an additional unknown, 

ω, for the arc-length function, f(x,ω), and to constrain the parameter, an additional 

function is introduced by employing Euclidean arc-length normalization. 
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2 2

2

1d d
ds ds

ωζ  + = 
 

x  

 

(11) 

where ζ =1 (tuning parameter). 

If the initial point (x0, ω0) of the continuation was pre-defined by the shooting 

method, the prediction for next step in the tangential direction can be expressed as, 

1 1 0 0 0 0( , ) ( , ) ( , ) si iω ω ω= + ∆

x x x  
 

(12) 

where,  0 0 0 0( , ) ( , )d ds d dsω ω=

x x  

It should be noted that there is no previous point at the very beginning of 

prediction. Thus, a procedure for defining the first tangent should be needed, and it can 

be expressed as follows, 

( )0 0 0 0
0 0 0

( , ) 0
n n n

d d d d d
d d d d d ωω
ω ω ω ω= = =

= + = + =Jx f xf x f f
x

 (13) 

0 0
0n

d
d ωω =

= − ⋅Jx f  

 

(14) 

Using Eq. (11) to obtain, 
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(16) 

Using Eqs. (14, 16), 
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2
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(17) 

Then the next point (x1, ω1) can be obtained as,  
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(18) 

 

Equations (13-17) are only used for the first prediction of the continuation. Once 

the two solution points (e.g., (x0,ω0), (x1,ω1) ), are obtained, the first tangential 

prediction (xi2,ωi2) for next solution can be defined as,  

1 0
2 1 1 0

1 0
2 1 1 0

2

2

i

i

s
s

s
s

ω ω
ω ω ω ω

−
= + ∆ = −

∆
−

= + ∆ = −
∆

x xx x x x
 

 

(19) 

In most cases, the first guess in the tangential direction suggests an incorrected 

solution. Thus, a correction procedure should be incorporated, and it can be achieved by 

employing Newton’s method as in the shooting algorithm. Eq. (11) can be linearized by 

backward difference approximation such that 

2 2

1 1

2

1
i i
n n n n

s s
ω ω

ζ − −− − 
+ = ∆ ∆ 

x x  

 

(20) 

where, (xn-1,ωn-1) is the found solution for previous step (n-1) and (xin,ωin) is guess for 

current step (n).  

A function q can be defined from Eq. (11)  

( ) ( )2 2 2

1 12
( , , ) 0i i

n n n nq s sω ζ ω ω− −= − + − − ∆ =x x x  
 

(21) 

Using Taylor’s series in first order form, the functions f and q (i.e., eqns. (1, 21) 

are given by   
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(22) 

where ∂f/∂xn is p×p  matrix, ∂f/∂ωn is p×1 vector, ∂q/∂xn is 1×p  vector and ∂q/∂ωn is 

scalar. The detailed expressions for ∂qn/∂x and ∂qn/∂ω are, 
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Then the iterative form of Newton’s method    
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(24) 

The Jacobian matrices Jn and fω can be obtained numerically from perturbed initial 

condition with respect to x and ω.  

 

Floquet Theory 

The shooting and continuation procedures provide a periodic solution which may 

a result of limit cycle or harmonically forced steady state responses in a nonlinear 

system. The local stability of the periodic solution is explicitly determined by Floquet 

theory. If a dynamic equilibrium of the system is described with a set of n nonlinear, 

ordinary differential equations, 

1 1
' ( )

n n
,τ

× ×
=x g x  (25) 
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 By obtaining an approximate, time varying, periodic solution x0(τ), and solving 

the matrix differential equation 

0( , )m m

d
d

τ
τ

=Φ J Φx  

 

(26) 

with the initial condition Φm(0)=In. The solution is called the matrizant matrix.  

=(0)mΦ I  
 

(27) 

Evaluate Φm at τmin=minimum period of J 

H =  Φm (τmin) = Monodromy matrix 
 

(28) 

Eigenvalues (ξmk) of the monodromy matrix are Floquet multipliers, also called as 

characteristic numbers, which indicate system stability and bifurcation scenario as 

described in Fig. 2.  

- asymptotically stable if | ξmk | < 1 for all k 

- asymptotically unstable if | ξmk| > 1 for all k 

- marginally stable if | ξmk | = 1 for all k and  | ξmj | < 1 for all j ≠ k 

 
 
 

(a)                                        (b)                                     (c)  

   
Fig. 2. Bifurcation scenarios based on Floquet theory: (a) (+1,0)→symmetry breaking or 
pitchfork or saddle node bifurcation, (b) (-1,0)→periodic doubling bifurcation, (c) cross 

the unit circle→Secondary Hopf or Neimark bifurcation 
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Lyapunov Exponents 

In some circumstances successive bifurcations leads to chaos. Various techniques 

are used to identify the presence of chaos by implicit and explicit approaches. Lyapunov 

exponents provide a quantitative indicator by obtaining averaged rate of divergence or 

convergence of two infinitesimally close trajectories onto an attractor in state space (Fig. 

3). The neighboring solutions exhibit exponentially growth or exponentially decay (i.e., 

d(t)~d0eλt). Since n number of independent initial vectors in n dimensional space is tested 

to calculate the rate of the separation, there is a spectrum of Lyapunov exponents λi 

(i=1,2,...,n), the maximum value of the Lyapunov spectrum λmax can be a critical 

indicator to determine stability of local responses. 

 

 
Fig. 3. Concept of distance change between two neighboring trajectory for finite time 

interval 
 

 

- λmax < 0: system attracts to a fixed point or stable limit cycle (asymptotic stability) 

- λmax = 0: system is neutrally stable (Lyapunov stability) 

- λmax > 0: system is chaotic and unstable  
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The distance ∆(t) to be measured between actual attractor x(t) and perturbed 

trajectories xʹ(t) is defined, 

2 2 2
1 2( ) ( ) ( ) ( ) nt t t tδ δ δ δ′∆ = − = = + + +x x x x x x   

 

(29) 

The perturbations are determined using the linearized form of the nonlinear 

governing differential equations along with initial conditions for the perturbations. 

- Governing differential equations: ẋ = f (x) (30) 

- Linearized form of Eq. (29): η’ =A(η), where A is n×n matrix of partial 
derivatives of f (x) 

 

(31) 

Equations (30) and (31) need to be simultaneously integrated until the LEs of the 

nonlinear system has reached steady state. However, numerical integration for large t 

may cause numerical error, the integration need to be carried out in appropriate time 

interval tf and newly perturbed orthonormal vectors should be defined every time step. 

This set of orthonormalized perturbed vector can be produced using Gram-Schmidt 

procedure, 
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(32) 

After repeating the integrations in Eqs. (30, 31) and Gram-Schmidt orthonormalizations 

in Eq.(32) for r times, the Lyapunov exponent is obtained from 

( )λ
=

= ∆∑ ( )

1

1 ln ( )
r

k
i i k

kf

t
rt  

 

(33) 

where superscript k denotes the kth time step and the subscript i denotes ith vector 

element. Figure 4 shows the block diagrams for calculating Lyapunov exponents. 
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Fig. 4. Block diagram for calculating Lyapunov exponential 
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CHAPTER III  

NONLINEAR RESPONSE AND BIFURCATIONS OF A RIGID ROTOR 

SUPPORTED ON FLOATING RING BEARINGS (FRB)* 

 

Introduction to Finite FRB Modeling 

FRBs have two fluid film layers on inner and outer ring surfaces. Fig. 5 depicts 

the middle plane in axial direction (z-axis) of a FRB model and its coordinate system 

used in this paper. OB, OJ, and OR denote the center of bearing housing, the journal 

center, and the ring center, respectively. eJ and eR indicate the vector to the journal center 

and the ring center in reference coordinate OBxyz, and eJR represents the journal position 

relative to the ring center OR.  

 

 
Fig. 5. FRB middle plane and its coordinate system 

 

* Part of this chapter is reprinted with permission from “Shooting with deflation algorithm based nonlinear 

response and Neimark-Sacker bifurcation and chaos in floating ring bearing system” by Kim, S., and 

Palazzolo, A. B., 2016, Journal of Computational and Nonlinear Dynamics, doi: 10.1115/1.4034733, 

Copyright 2016 by ASME. 
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The hydrodynamic pressures acting on the inner and outer fluid film, i.e., pi and 

po, of the ring can be described by Reynolds equation for incompressible and iso-

viscosity lubricating oil, as follow, 

ω ω
θ µ θ µ θ

+   ∂ ∂ ∂ ∂∂ ∂
+ = +   ∂ ∂ ∂ ∂ ∂ ∂   

3 3

12 12 2
J J Ri Ri i i i i i

i i i i i

R Rh p h p h h
z z t

 (34a) 

3 3

12 12 2
o o o o Ro R o o

o o o o o

h p h p R h h
z z t

ω
θ µ θ µ θ

   ∂ ∂ ∂ ∂∂ ∂
+ = +   ∂ ∂ ∂ ∂ ∂ ∂   

 

 

(34b) 

where RJ and RRo represent radius of journal and floating ring. ωJ and ωR denotes the 

rotational speed of journal and ring, the subscripts i and o indicate the region of inner 

fluid film and outer fluid film, respectively. The thicknesses of inner and outer fluid film 

(hi, ho) and their time derivatives (∂hi/∂t, ∂ho/∂t) can be expressed as follow, 

i i JR i JR ih = C - x cosθ - y sinθ  (35a) 

o o R o R oh = C - x cosθ - y sinθ  (35b) 

( )∂
∂

 

i
JR i JR i

h = - x cosθ - y sinθ
t  

(35c) 

( )∂
∂

 

o
R o R o

h = - x cosθ - y sinθ
t

 
(35d) 

= +ˆ ˆ
J J Jx i y je ,  = +ˆ ˆ

R R Rx i y je ,  = + = − + −ˆ ˆ ˆ ˆ( ) ( )JR JR JR J R J Rx i y j x x i y y je  (35e) 

= +  

ˆ ˆ
J J Jx i y je ,  = +  

ˆ ˆ
R R Rx i y je ,  = + = − + −      

ˆ ˆ ˆ ˆ( ) ( )JR JR JR J R J Rx i y j x x i y y je  
 

(35f) 

where Ci and Co represent radial clearance of inner and outer fluid film. θi and θo 

indicate circumferential position of inner and outer fluid film. In this paper, the oil 

pressures on floating ring surfaces are calculated using a finite element model. Three 

node simplex, triangular type mesh is generated on the half of fluid film layer in axial 

direction with an assumption of symmetrical pressure state. The boundary conditions 

include an ambient pressure pamb at the side end, zero flow at the symmetric end, and 

22 

 



 

continuous pressure and continuous pressure gradient at the cut ends. Fig. 6 depicts the 

typical layout of the outer/inner film meshes and boundary conditions.  

 
(a) inner film (b) outer film 

  
Fig. 6. Layouts of mesh and boundary condition of finite FRB model  

 

Fluid film forces acting on the journal and ring can be obtained by integrating the 

nodal pressures throughout the inner and outer floating ring meshes and multiplying by 2 

to account for the other half. 
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The equations of motion for the journal and ring can be written as 

J J i Js JdM e F W W= + +  (37a) 

R R i o Rs RdM e F F W W= − + + +  (37b) 

R R o iI ω = Γ −Γ  
 

(37c) 

where MJ and MR are journal mass and ring mass. WJs, WJd and WRs, WRd are static and 

dynamic load on the journal and ring, respectively. The static force can be the weight of 

each component or a side load, and the dynamic force is usually due to unbalance force 

from dynamic eccentricity of the each component. The term IR is the ring mass moment 
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of inertia, and Γi and Γo are the torques applied on the inner and outer films on the 

floating ring surfaces which determine the ring rotational speed ωR.  

π

π

µ ω ω θ
θ−

 ∂
Γ = − + − 

∂ 
∫ ∫0

( )
2

iL
i i i

i J R i i i
i i

h p R R d dz
h

 (38a) 

π

π

µ
ω θ

θ−

 ∂
Γ = + 

∂ 
∫ ∫0 2

oL
o o o

o R o o o
o o

h p R R d dz
h

 (37b) 

  

A Rigid Rotor Supported by FRB 

A symmetric rigid rotor supported by two identical floating ring bearings as 

shown in Fig. 7 is utilized as test model to apply the presented numerical method. The 

rotor and FRB parameters used in this study are described in Table 1 and the boundary 

condition for FRB is defined in Table 2. In order to analyze the response characteristics 

with respect to amounts of fluid film surfaces and external force states, bearing L/D ratio 

and imbalance eccentricity (eimb) were varied in the study. 

 

Table 1. Rotor and FRB parameters 
Rigid Rotor Parameters Values 
Mass (kg) 
Young’s modulus (GPa) 
Diameter of rotor section (mm)  
Bearing Length (mm) 
Bearing Diameter (mm) 
L/D ratio 

m/2=1.63 
E=207 
d=11.490 
Lbrg=3.56, 8.90 
Dbrg=17.8 
0.2, 0.5 

FRB Parameters Inner film            Outer film 
Viscosity (cp) 
Clearance (μm)  
Diameter (mm) 
Length (mm) 
Ring mass (g) 
Ring’s polar moment of inertia 
(10-6kgm2) 

μi=13.5                 
Ci=26.5             
ID=11.543          
LR=2.49                
mR=3.38, 8.45 
IR=18.89, 47.23 
 

μo=13.5 
Co=42.5 
OD=17.722 
LB=3.56 
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Table 2. FRB boundary conditions on finite element fluid film model boundaries 
 Ambient Pressure on Pad Ambient Pressure on Ring 

Finite FRB 0 kPa 0 kPa 
 

 

 
Fig. 7. Rigid rotor supported by Floating Ring Bearing (FRB) 

 

 

Simulation Results of FRB-RGD  

Bifurcations 

The nonlinear behavior of the self-excited nature in FRBs, is demonstrated by 

considering the autonomous system (i.e, eimb=0.0), and two different areas of the fluid 

layer (i.e. L/D=0.2, 0.5). Floquet theory determines the response stability through the 

entire numerical procedure. A commercial mathematical routine for numerically 

integrating stiff equations, MATLAB® ode15s©, was utilized to obtain the Jacobian 

matrix in the correction step. 

As shown in Fig. 8, the numerical method provides two bifurcation diagrams 

such as non-dimensionalized maximum and minimum vertical displacements of the rotor 

center (i.e., max/min of yjCo/(Ci+Co)) as in Fig. 8 (a) and non-dimensionalized period of 

the limit cycle (i.e., τ/τs, where τs is spinning period, 2π) as in Fig. 8 (b) with respect to 

bifurcation parameters (i.e., rpm). As the rotor speed increased, the equilibrium position 

ik  

ok
 

ic  

oc  
ik  

ok
 

ic  

oc  

Floating 
Ring 

Bearing 

m  

25 

 



 

(EP) loses its linear stability at Hopf bifurcation and turns to a periodic (limit cycle) 

response (PS#1). PS#1 maintains stable and small amplitude before encountering the 

first saddle-node bifurcation, but the amplitude is drastically shifted along the saddle to 

saddle section (PS#2). After the second saddle-node bifurcation, the vertical motion is 

gradually increased and the high amplitude state is sustained. The numerical scheme also 

provides the exact period solution manifold associated with orbital motion as can be seen 

in Fig. 8(b). The period ratio of the response is located on 11 to 19, the range of which 

corresponded to the 30% ~ 40% of ring rotational speed. In addition, it is noted that the 

ring rotational speed highly depends on amplitude of orbits, since high amplitude whirl 

motion induces more shear stress on ring surfaces. Multiple steady state responses 

coexist in the saddle-saddle section; they can be either equilibrium position-limit cycle 

or two limit cycles depending on whether the revolution speed is located before or after 

the Hopf bifurcation. In addition, unstable limit cycles exist along with the stable 

responses (See Fig. 9 (b)); this cannot be obtained from TNISS, and it gives information 

about how the orbit repels away from the unstable state towards other attractors as 

shown in Fig. 10. Thus PS#2 acts as a border manifold which helps define the 

convergence route in phase space. 

In the L/D=0.5 case, the system has a N-S bifurcation after undergoing Hopf 

bifurcation. Since the first N-S bifurcation appears as a sub-critical type, closed orbit and 

torus orbit coexist in the overlapped range. After the first N-S bifurcation, the response 

frequently undergoes another N-S bifurcations so that additional frequency components 

are removed or emerge at each N-S. Fig. 12 depicts closed orbits at rpms among the N-S 
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bifurcations. When the orbit has another form of periodic response (i.e., closed orbit), 

the corresponding period of the solution is disconnected from the previously found 

periodic solution as in Fig. 11(b). 

 

 

(a) Revolution speed vs. max/min yj 

 
 
 
 

(b) Revolution speed vs. period ratio (τ/τs)  

 
Fig. 8. Bifurcation diagram (L/D=0.2, eimb=0.0)  
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L/D=0.2 
eimb=0.0 

Journal orbit 
(rel. to ring) 

Ring orbit 
(rel. to housing) 

Journal orbit 
(rel. to housing) Ring Speed Ratio 

(a) 
Limit cycle 

#1 
(Stable) 

 

(b) 
Limit cycle 

#2 
(Unstable) 

 

(c) 
Limit cycle 

#3 
(Stable) 

 

Fig. 9. Identified possible responses using the Shooting Method at 80,000 rpm 
(L/D=0.2): (a) limit cycle #1 (Stable*), (b) limit cycle #2 (Unstable*), (c) limit cycle #3 

(Stable*). *the stability of the responses are evaluated by Floquet theory. 
 
 
 
 

(a) LC#2 → LC#1                                         (b) LC#2 → LC#3 

 
Fig. 10. Repelling motion (Journal rel. to housing) of the unstable orbit (LC#2) 
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(a) Revolution speed vs. max/min yj 

 
 
 

(b) Revolution speed vs. period ratio (τ/τs)  

 
Fig. 11. Bifurcation diagram (L/D=0.5, eimb=0.0)  
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Fig. 12. Stable periodic solutions (journal orbit rel. to ring) among N-S bifurcations 
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Jump between coexistent orbits 

Since multiple steady state responses can coexist at the same rpm, and the same 

imbalance amount; it may be speculated that one response state could potentially switch 

to the other if a disturbance is sufficiently strong to force the original state to jump out of 

its current basin of attraction (BOA). In reality, FRBs are used in automotive 

turbochargers and aircraft accessary equipment so that a sudden disturbance, for 

instance, speed bumps on roads or turbulences in airflow, may induce response jumps in 

operation. It would be beneficial for developers/operators to anticipate the response 

uncertainty. In order to simulate this phenomenon, an impulsive, vertical base excitation 

is applied to the FRB housing over a very short period while the FRB-rotor system is 

operating within one steady state orbital state. The displacement of the FRB housing can 

be expressed with a characteristic frequency of base motion and its harmonics. 

 

 
Fig. 13. Schematics support excitation to FRB housings 

 

In the study, the maximum harmonic excitation component, n, in Eq. (39) is 

selected as 100 to establish an impulse function. And other parameters such as pulse 

amplitude Yo, pulse period Tf, and pulse time τp are described in the Table 3. 
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Table 3. Base excitation parameters 

 Yo [μm] Tf [ms] τp [ms] 
LC#1→LC#2 8.5 0.150 0.0375 
LC#2→LC#1 17.85 0.075 0.0187 

 

The sudden base movements cause external force term to the outer film, and if 

the force is enough to escape the current BOA in phase space, the orbit may converge to 

another response state. Fig. 14(a) depicts the jump phenomenon from the small 

amplitude limit cycle (LC#1 in Fig. 9 (a)) to the large amplitude limit cycle (LC#3 in 

Fig. 9 (c)) from a sudden base excitation. The jump can also occur in the opposite 

direction as shown in Fig. 14 (b). 
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(rel. to ring) 
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(rel. to housing) 

Journal orbit 
(rel. to housing) Ring Speed Ratio 

(a) 
Jump #1 

   

(b) 
Jump #2 

   
Fig. 14. Jump phenomenon between two limit cycles due to bump from FRB base at 

80,000 rpm (L/D=0.2, eimb=0.0): (a) before: limit cycle #1 (blue) → after: limit cycle #3 
(red), (b) before: limit cycle #3 (blue) → after: limit cycle #1 (red) 
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Chaos 

Nonlinear dynamic systems occasionally undergo chaotic motion. The response 

is highly random, so it is not categorized in periodic or quasi-periodic. The associated 

Poincaré map may consist of strangely patterned dots; which is referred to as a strange 

attractor. Along with the implicit method, Lyapunov exponents (LEs) provide an explicit 

approach to determine chaos. In order to confirm the nonlinear characteristics, this paper 

employed additional techniques such as frequency spectrum, bifurcation diagram, and 

orbital motion along with the implicit/explicit methods. 

 
Table 4. Orbit and associated LEs 

Orbit LEs 

Fixed point all LEs are negative 

Limit cycle an LE is zero and other LEs are all negative 
n-frequency quasi-periodic 

(n-torus) The first n LEs are zeros and remaining LEs are negative 

Chaotic motion at least one LE is positive 
 

Chaos tends to occur in non-autonomous system so that a dynamic eccentricity 

eimb=0.4Ci is applied to the FRB-rotor system. For the sake of reference, the dynamic 

differential equations are integrated by MATLAB® routine ode15s© for 600 revolution 

periods from 5,000 rpm to 50,000 rpm. Steady state is assumed to be subjected to the 

response was collected for the last 100 revolution. As can be seen in Fig. 15 (a), a 

bifurcation diagram, which consisted of samplings of the non-dimensional vertical 

journal motion relative to housing (xj) recorded at each revolution period with respect to 

revolution speed, shows that ×1 synchronous and ×1/3 sub-synchronous responses are 
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identified in certain operation ranges (e.g, 6krpm~12krpm, 23krpm~26krpm, 

28.5krpm~50krpm). However, the character of the other responses is somewhat 

ambiguous to be interpreted either as quasi- or aperiodic. On the other hand, LEs do 

provide further clarification as described in section 2 by means of 600 time intervals 

with 0.25 revolution per interval. As shown in the Fig. 15 (b), maximum Lyapunov 

exponents (MLEs) are determined with respect to rpm and clearly distinguish the chaos 

emerged sections from the undetermined ranges. In order to confirm the response 

characteristics, the orbital motion, Poincaré map, and frequency spectrum are added up 

for selected operation speeds such as 10krpm, 16krpm, 20krpm, and 40krpm. In Fig. 15, 

the Poincaré maps and frequency spectrum indicate ×1 synchronous response. The 

calculated LEs are all negative. In Fig. 17, the orbits looks keep wandering and 

corresponding Poincaré maps show closed limit cycles, so the motion is two period 

quasi-periodic response. Though the first two LE components remain in very small 

values (i.e, 0.004, -0.005), those are assumed to be converged to marginal value (i.e, 

zero) after all. In Fig. 18, the orbits and ring rotational speed are obviously aperiodic 

response, and the corresponding Poincaré maps have not a simple shapes such as points, 

close curves, or torus but instead have peculiar shapes like humming birds, Fig. 18 (e), 

(g) or a flower, Fig. 18 (f); The sampling dots are collected for 2000 revolution periods 

to make sure the chaotic behavior. This kind of Poincaré map is apparently a strange 

attractor. In frequency domain, broadband components are observed as in Fig. 18 (h). LE 

spectrum and positive MLE indicate the motion characteristics as chaos. In Fig. 19, the 

orbits show large amplitude whirls and corresponding Poincaré maps and frequency 
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spectrum confirm the response as ×1/3 sub-synchronous response. LE spectrum and 

negative MLE confirm the motion has periodicity.  

 

 
Fig. 15. Bifurcation (xj-poincaré vs. journal revolution speed) and corresponding maximum 

Lyapunov exponents diagrams (L/D=0.2, eimb=0.4Ci) 
 
 
 

Table 5. Response characteristics  
Revolution 

speed Poincaré map (Attractor) Max. Lyapunov 
exponent Frequency Spectrum 

10,000rpm 1 fixed point -0.1007 (Stable) ×1 synchronous 

16,000rpm Limit cycle (closed curve) 0.004 (Marginal) Multi components 

20,000rpm Strange attractor 0.0244 (Chaos) Broad band 
components 

40,000rpm 3 fixed points -0.0482 (Stable) ×1/3 sub-synchronous 
 

×1 sync 

quasi-
periodic 

CHAOS 
#1 

×1/3 sub-sync 
(Whirl) 

CHAOS 
#2 
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(a) Journal orbit 
    (rel. to ring) 

(b) Ring orbit 
    (rel. to housing) 

(c) Journal orbit 
   (rel. to housing) 

(d) Ring rotational 
speed ratio 

 

(e) Poincaré map: 
xjr vs. ẋjr 

(f) Poincaré map: 
xr vs. ẋr 

(g) Poincaré map: 
xj vs. ẋj 

(h) Frequency spectrum 
 

 

(i) Lyapunov exponents spectrum (j) Maximum Lyapunov exponent 
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Fig. 16. Nonlinear response evaluation at 10,000 rpm (L/D=0.2, eimb=0.4): (a~d) for 
orbits and ring speed, (e~g) for Poincaré maps, (h) for frequency spectrum, (i) for 

Lyapunov exponents, and (j) for Maximum Lyapunov exponent 
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(a) Journal orbit 
    (rel. to ring) 

(b) Ring orbit 
    (rel. to housing) 

(c) Journal orbit 
   (rel. to housing) 

(d) Ring rotational 
speed ratio 

 

(e) Poincaré map: 
xjr vs. ẋjr 

(f) Poincaré map: 
xr vs. ẋr 

(g) Poincaré map: 
xj vs. ẋj 

(h) Frequency spectrum 

 

(i) Lyapunov exponents spectrum (j) Maximum Lyapunov exponent 
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Fig. 17. Nonlinear response evaluation at 16,000 rpm (L/D=0.2, eimb=0.4): (a~d) for 
orbits and ring speed, (e~g) for Poincaré maps, (h) for frequency spectrum, (i) for 

Lyapunov exponents, and (j) for Maximum Lyapunov exponent 
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(a) Journal orbit 
    (rel. to ring) 

(b) Ring orbit 
    (rel. to housing) 

(c) Journal orbit 
   (rel. to housing) 

(d) Ring rotational 
speed ratio 
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(e) Poincaré map: 
xjr vs. ẋjr 

(f) Poincaré map: 
xr vs. ẋr 

(g) Poincaré map: 
xj vs. ẋj 

(h) Frequency spectrum 
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(i) Lyapunov exponents spectrum (j) Maximum Lyapunov exponent 
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Fig. 18. Nonlinear response evaluation at 20,000 rpm (L/D=0.2, eimb=0.4): (a~d) for 
orbits and ring speed, (e~g) for Poincaré maps, (h) for frequency spectrum, (i) for 

Lyapunov exponents, and (j) for Maximum Lyapunov exponent 
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(a) Journal orbit 
    (rel. to ring) 

(b) Ring orbit 
    (rel. to housing) 

(c) Journal orbit 
   (rel. to housing) 

(d) Ring rotational 
speed ratio 
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(e) Poincaré map: 
xjr vs. ẋjr 

(f) Poincaré map: 
xr vs. ẋr 

(g) Poincaré map: 
xj vs. ẋj 

(h) Frequency spectrum 
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(i) Lyapunov exponents spectrum (j) Maximum Lyapunov exponent 
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Fig. 19. Nonlinear response evaluation at 40,000 rpm (L/D=0.2, eimb=0.4): (a~d) for 
orbits and ring speed, (e~g) for Poincaré maps, (h) for frequency spectrum, (i) for 

Lyapunov exponents, and (j) for Maximum Lyapunov exponent 
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Synchronization 

In industry, engineers have observed oil/gas whirls due to the self-excited 

nonlinear characteristics of fluid film bearings. One useful treatment for the problem is 

that properly added intentional imbalance can quench the large sub-synchronous orbit, 

i.e., synchronization. A numerical investigation of the synchronization is conducted for 

the rigid rotor supported by FRB. The unbalance force amount is added with various 

eccentricities. Table 6 lists the rotor/FRB parameters used in the simulation. Fig. 20 

depicts the orbital motion and corresponding frequency spectrum for each eimb amount. 

As the imbalance eccentricity increases until eimb=0.4Ci, low frequency components are 

suppressed and the ×1 frequency component is getting extruded. After the critical point, 

the responses are returned to large amplitude sub-synchronous as shown in the Fig. 20 

(d). 

 

Table 6. Rotor and FRB parameters used for synchronization 

 

 

 

 

 

Rigid Rotor Parameters Values FRB Parameters Inner film       Outer film 

Bearing Length (mm) 
Bearing Diameter (mm) 
L/D ratio 
 

Lbrg=14.24 
Dbrg=17.8 
0.8 
 

Length (mm) 
Ring mass (g) 
Ring’s polar moment 
of inertia (10-6kgm2) 

LR=2.49           LB=3.56 
mR=13.51 
IR=75.578 
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eimb Journal orbit  
(rel. to ring) 

Ring orbit  
(rel. to housing) 

Journal orbit  
(rel. to housing) Frequency spectrum 

(a) 
0.0
Ci 

 

(b) 
0.2
Ci 

 

(c) 
0.4
Ci 

 

(d) 
0.6
Ci 

  

Fig. 20. Responses and synchronization by adding unbalance to the rotor disk at 
40,000rpm: (a): responses with no unbalance (eimb=0.0), (b): response with eimb=0.2Ci, 

(c): response with eimb=0.4Ci, (d): response with eimb=0.6Ci 
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Finite element FRB vs. infinitely short approximated FRB 

The infinitely short approximation, Ocvirk solution, assumes that the pressure 

gradient in the z direction is significantly larger than that in the x direction (i.e., 

∂p/∂x≪∂p/∂z). Pressure distribution in radial direction is negligible so that the Reynolds 

equation Eq. (40a) and Eq. (40b) become simplified as, 

ω ω
µ θ

+ ∂ ∂ ∂∂
= + ∂ ∂ ∂ ∂ 

3

12 2
J J Ri Ri i i i

i i

R Rh p h h
z z t

 
(40a) 

3

12 2
o o Ro R o o

o o

h p R h h
z z t

ω
µ θ

 ∂ ∂ ∂∂
= + ∂ ∂ ∂ ∂ 

 

 

(40b) 

The fluid forces on inner and outer surface can be expressed by direct integration 

of the simplified Reynolds equation for each surface, 

µ ω ω
     

= +             
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(41b) 

where fix, fiy, fox, and foy are non-dimensional fluid forces. The detailed process of the 

derivation is well described in studies from Adiletta et al. and Tian et al. [4,39]. This 

approach has given reasonable fluid film forces for relatively small bearing length and 

diameter ratios (L/D) below 0.25. Most recent papers related to bifurcation and stability 

analysis of FRBs are based on this approximation. However, though there are many 

papers which compared responses from the short bearing approximation and the finite 

element method for journal bearing operations, very few studies has done for FRBs. This 

study tried to compare nonlinear responses between the two FRB modeling methods for 

two different bearing length and diameter ratio (e.g. L/D=0.2, 0.5).  
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Fig. 21 (a) and (b) are bifurcation diagrams in case of L/D=0.2 (eimb=0.4), which 

consists of the journal displacement relative to housing samplings per revolution period 

in x direction (xj) vs. journal revolution speed (rpm) obtained from finite bearing method 

and short bearing approximation. Fig. 21 (c) and (d) represent the associated waterfall 

diagrams. In the diagrams, response types, bifurcations, and frequency components from 

the two methods agree with each other in the overall traversing speed range, but some 

misaligns in terms of bifurcation onset and stability are observed. In the results from 

finite element method, bifurcation from chaos to 1/3 sub-synchronous response is 

occurred at 23,000rpm, then the response goes back to chaos at 26,500rpm. However, 

results from short bearing approximation has such turning points at 23,000rpm and 

27,500rpm, respectively. The other difference of bifurcation point that while the 

responses from finite bearing theory is showing only 1/3 sub-synchronous at traversing 

speed range from 28,500rpm to 50,000rpm, the response from short bearing method 

undergoes a N-S bifurcations at 45,500rpm which is transition between periodic and 

quasi-periodic orbits. 

As can be seen in Fig. 22, journal and ring orbits and ring rotational speed ratio 

obtained from the two methods are compared at specific operation speeds. The result 

from finite element method (blue) are overlaid with the results from short bearing 

approximation (red). In overall traversing speed range, the two orbits and ring rotational 

speed ratios show good agreement, though the orbit stability from short bearing 

approximation has difference when it undergoes extremely large amplitude vibration. 
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In Fig. 23, response data obtained from the two force models is compared for the 

case of L/D=0.5 (eimb=0.4). Although the results show a good agreement in low speed 

range (5krpm ~ 40krpm), recognizable differences in terms of bifurcation onset speed 

can be observed as the rotor goes into high speed range after 55krpm.  

 

 

(a) Bifurcation diagram 
(finite bearing method) 

(b) Bifurcation diagram 
(short bearing approximation) 

 
(c) Waterfall diagram 

(finite bearing method) 
(d) Waterfall diagram 

(short bearing approximation) 

     
Fig. 21. Bifurcation diagrams and associated waterfall diagrams obtained using finite 

bearing method vs. short bearing approximation (L/D=0.2, eimb=0.4) 
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L/D=0.2 

eimb=0.4Ci 
Journal orbit 
(rel. to ring) 

Ring orbit 
(rel. to housing) 

Journal orbit 
(rel. to housing) Frequency spectrum 

(a) 
10000 
rpm 

 

(b) 
16000 
rpm 

 

(c) 
20000 
rpm 

 

(d) 
35000 
rpm 

 

(e) 
50000 
rpm 

 
Fig. 22. Comparison of orbits and ring speed ratio which are obtained by finite element 
method (blue) and short bearing approximation (red)  at (a) 10,000rpm, (b) 16,000rpm, 

(c) 20,000rpm, (d) 35,000rpm, (e) 50,000rpm in case of L/D=0.2 
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As described in Table 7, bifurcation onsets, the entries of the limit cycle #1 and 

#2, are different from the two methods. In addition, N-S bifurcation can be clearly 

observed in the finite element model so that the response lose/obtain an additional 

frequency component at 159krpm and 171krpm. Due to the difference of onset, 

amplitudes at certain speed range show big difference from short approximation. For 

example, Fig. 24 and Fig. 25 represent the orbit and frequency spectrum from the two 

methods at 60krpm and 120krpm, respectively. And the results show significantly 

different orbital motion and frequency components. 

 

(a) Bifurcation diagram (finite brg.) (b) Bifurcation diagram (short brg.) 

 

(c) Waterfall diagram (finite brg.) (d) Waterfall diagram (short brg.) 

 
Fig. 23. Bifurcation diagrams and associated waterfall diagrams obtained using finite 

bearing method vs. short bearing approximation (L/D=0.5, eimb=0.4Ci) 
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Table 7. Bifurcation onset speed differences between finite and short bearing methods 
(L/D=0.5, eimb=0.4Ci) 

Differences Finite Short 

Response types ×1 sync, ×1/2 sync, Limit cycle #1, Limit cycle #2 

Bifurcation 
onset 

speeds 

×1 sync 
×1/2  sync 

×1 sync  
limit cycle #1 

→ 
→ 
→ 
→ 

×1/2 sync 
×1 sync  

 limit cycle #1 
limit cycle #2 

11,000 rpm 
24,000 rpm 
55,000 rpm 

141,000 rpm 

11,000 rpm 
23,000 rpm 
61,000 rpm 

119,000 rpm 
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Fig. 24. Orbits and frequency spectrum at 60,000 rpm from finite and short bearing 

methods (L/D=0.5, eimb=0.4Ci) 
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rpm 
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Fig. 25. Orbits and frequency spectrum at 120,000 rpm from fintie and short bearing 
methods (L/D=0.5, eimb=0.4Ci) 

 

 

Summary of Results 

The improved numerical shooting/arc-length continuation approach is developed 

by including a deflation algorithm. Nonlinear behaviors of the autonomous FRB-rigid 

rotor system has been analyzed with the numerical scheme, and phase states and periods 

of the solution manifold are obtained. In the FRB-rotor system, primary Hopf, and 

secondary Hopf (i.e., N-S) bifurcations are identified depending on L/D ratio of the 

FRB. Higher L/D ratio tends to have N-S bifurcation in low rpm, and the response 

repeatedly switches between periodic and quasi-periodic following N-S bifurcations. It is 

confirmed that two coexistent steady state responses can jump to each other in identical 
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operation condition upon a sudden base excitation. This has an important consequence 

for machinery that encounters sudden base motions, since response amplitude and ring 

rotational speed can drastically jump at the event. Chaos was quantitatively confirmed 

for a non-autonomous case, with low L/D ratio in the FRB-rotor system. A positive LE 

component and strange attractor confirm the characteristics in explicit and implicit 

manners. It was also confirmed that an appropriate intentional imbalance suppressed 

high amplitude sub-synchronous frequency components and entrained the response to 

synchronous. In this numerical study, fluid film forces on FRB were calculated using 

finite element method. From the comparison with short bearing approximation, it was 

shown that predictions of bifurcation onset speed can differ significantly as L/D ratio 

increased.  
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CHAPTER IV  

EFFECTS OF THERMO-HYDRODYNAMIC (THD) FRB MODLE ON 

ROTORDYNAMIC BIFURCATIONS 

 

Introduction to THD FRB Model  

The literature provides many examples of fluid film bearing force induced 

nonlinear behavior such as bifurcations, sub-synchronous whirl, and quasi-periodic, 

aperiodic, and coexistent responses in rotor-bearing systems [1,4,5]. Computational 

advancement has enabled more accurate modeling by including thermal effects in the 

lubricant film. Gadangi et al. [28,29] utilized a nonlinear, time transient approach, 

including a variable viscosity Reynolds and static energy equation fluid film model, to 

predict the response of a rotor supported on tilting pad journal bearings to a sudden mass 

balance, such as a blade or deposit loss occurrence. Suh and Palazzolo [30] developed a 

high fidelity, nonlinear Morton effect (i.e., thermal induced synchronous instability) 

simulation incorporating 3D structural finite elements for the shaft and pads, and 

variable viscosity Reynolds fluid film model with a transient energy equation. Clarke et 

al. presented a steady state thermal model with π oil films for floating ring bearings 

(FRBs) systems. They considered a heavily loaded power generating system and 

compared the results with isothermal cases [40]. San Andres et al. proposed an advanced 

lumped parameter thermal model for a lightly loaded turbocharger rotor to improve 

modeling accuracy, and compared their predictions with experimental data [41].  
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The majority of the previous thermo-hydrodynamic (THD) bearing literature 

focused on improving the accuracy of rotordynamic response prediction obtained with 

direct, transient numerical integration. In contrast, the THD bearing – rotordynamic 

response literature is pauce for treatment with numerical algorithms that directly obtain 

coexisting, steady state nonlinear responses and bifurcation occurrences and types. Some 

methods that are typically used for this objective include harmonic balance, shooting and 

continuation. This approach replaces “brute force” numerical integration with selected 

initial conditions, with more complex search-based numerical approaches that repeatedly 

evaluate Jacobian matrices. Limitations in computational resources have restricted 

earlier modeling efforts to rotorbearing systems of small order supported by bearings 

that were modeled with isoviscous and short bearing approximations [20,21,25,26]. 

An objective of the present study is to identify the effects of lubricant film 

temperature distribution on rotordynamic bifurcation. A finite element based variable 

viscosity Reynolds equation is simultaneously solved with the energy equation and 

viscosity-temperature relation to obtain a thermohydrodynamic based pressure 

distribution in the lubricant film.  The integrated pressure forces are transferred into the 

rotor governing equations during the shooting and arc-length continuation based solution 

procedure. The computational task is accelerated by employing efficient numerical 

approaches including deflation and parallel computing. 

Deflation is a mathematical approach that is utilized in solving multiple root 

problems [31-33]. The function that is being searched for roots is redefined each time a 

root is located in the deflation procedure. The benefit deflation provides is the avoidance 
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of previously located roots while searching for all roots, which accelerates the root 

finding process. Parallel computing has been increasingly adopted in recent years to 

reduce computation time through the full use of multicore processors [34]. Parallel 

computing strategy is suitable for shooting and continuation algorithms, since the 

routines for obtaining Jacobian matrices from perturbed initial conditions are 

independent procedures, so each segment of the solution routine can be executed 

simultaneously. Deflation and the use of parallel computing both play significant roles in 

accelerating the computationally intensive search for coexisting steady state solutions 

and bifurcation points for rotordynamic systems with THD modeled floating ring 

bearings.  

A rigid rotor model is employed to illustrate how the double layered fluid films 

on the inner and outer ring surfaces of a FRB may induce strongly nonlinear behavior. 

This situation is exacerbated by the very high speed range that turbochargers supported 

by FRBs operate over, providing greater possibilities for bifurcation, whirl and 

coexisting response events [25,26].  

General contributions of this paper include: 

• A comparison of the effects of iso-viscosity vs. variable viscosity lubricant 

models on bifurcation and response behaviors 

• A development of the autonomous and non-autonomous shooting and arc-

length continuation algorithms with THD solutions for fluid film bearings 

• Flow diagram for computationally based solution and simulation based 

response results for a FRB rotordynamic system 
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Shooting Method with THD Solutions 

An overall flow chart of the combined THD - “shooting with deflation” process 

is shown in Fig. 26. It follows the framework of the conventional shooting method, i.e. 

the solver generates n guesses for finding initial conditions of orbital equilibrium states 

(i.e., periodic responses) and the Newton-Raphson based updating procedure is 

performed for each guess. However, the Jacobian matrices are obtained based on a 

steady state THD-rotordynamics solution in the iterative solution search, which is 

detailed in the next section. The computation flow also contains both parallel computing 

and deflation to accelerate completion of execution as indicated by the shaded portions 

in Fig. 26.  

Thermo-hydrodynamic solution for temperatures, viscosities and pressures in the 

thin fluid layer is governed by the variable viscosity Reynolds equation and the energy 

equation. The two equations are coupled with each other since the Reynolds equation 

provides the pressure and velocity distributions to the energy equation which in turn 

provides the updated viscosity information to the Reynolds equation. 

The variable viscosity Reynolds equation is a statement of mass conservation 

expressed in terms of pressures via use of the momentum equations, and has the form; 

( ) ( )1 2 0hC p C
t

∂
∇ ⋅ ∇ + ∇ ⋅ + =

∂
u  (42) 
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0

0

0 0

0

1 10 0 0 0

1

2 1

1
h

h

h z

h

dh z h z

d

d dz

d

C d dz d dz

C

ζ ζ
µ

ζ
µ

ζ
µ

ζ
µ

ζ ζ ζ
µ µ

∫
= −

∫

∫ ∫
=

∫

∫ ∫ ∫ ∫
 

(43) 
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 The Reynolds equation is solved by using simplex, three node finite elements to 

interpolate pressure. Reynolds cavitation boundary conditions are employed in the model 

for sake of illustration. The pressure distributions in the inner and outer films are 

integrated over the ring and bearing areas to obtain the fluid reaction forces, Fi, Fo. The 

viscosity in each lubricant layer may vary strongly with film temperature, and is 

determined from the empirical formula 

( )oT T
oe

βµ µ − −=  
 

(44) 

The temperature distribution in each fluid layer is determined by solving the 

energy equation, which is a statement of conservation of energy and is given by 

( )
2 2

p

T u wC k
y y

ρ µ
    ∂ ∂

∇ = ∇ ⋅ ∇ + +    ∂ ∂     

D T
Dt

 

 

(45) 

where the total derivative is defined as 

T T T
t

∂
= + ⋅∇
∂

D u
Dt

 

 

(46) 

Numerical experiments conducted by the authors revealed that the temporal term 

(∂T/∂t) is negligible due to the small thermal mass. This converts Eq. (46) into 

essentially a steady state problem. 
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Fig. 26. Flow chart of THD-shooting method with deflation algorithm 

 

 

The energy equation for the inner and outer lubricant films is further simplified 

to a one dimensional form to further reduce the computation time. The shaft and bearing 

temperatures are assumed to be constant and equal to the lubricant supply temperature 

for sake of illustration (i.e. Ts=Th=Tsup). The heat conduction equation is solved with 
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appropriate boundary conditions to obtain the temperature distribution in the floating 

ring. 

0T∇ ⋅∇ =  
 

(47) 

Lubricant temperatures at discrete locations around the circumference are 

obtained by utilizing the Trigonometric Collocation Method TCM, which is a numerical 

solution method for nonlinear differential equations with periodicity boundary 

conditions [42]. The assumed form of the solution has harmonics of sinusoidal functions 

that exhibits continuity of the temperature and the heat flux at the connected nodes in 

circumferential direction (i.e, beginning and end nodes on the inner and the outer 

lubricant layers). 

1 1

cos sin
m m

n n
n n

T a n b nξ ξ
= =

= +∑ ∑  

 

(48) 

Fig. 27 shows a flow chart of the steady state THD solution approach which was 

utilized in [28,29].The temperature distributions for the lubricants are determined 

through iterative calculations between the Reynold equation and the energy equation for 

a certain time segment Δt, where the time segment is set equal to 1/30 of the shaft 

whirling period (τR). The journal position and velocity are confirmed once the 

temperature distributions and the corresponding lubricant viscosity distributions are 

converged. These conditions are then utilized as initial condition for the next time 

segment iteration. 

The steady state THD solution procedure is embedded in the shooting algorithm 

(Fig. 26), and is simultaneously solved along n paths in the parallel computing approach. 
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The parameter n is the number of states in the model, and therefore the number of 

perturbations required to form the Jacobian matrix in the shooting method. 

 

 

Initial Condition

Update Viscosity

Solve Variable Viscosity Reynolds Eqn.
Evaluate Pressure and Fluid Force

 Solve Rotor Dynamics for ∆t Segment

Solve 1D Energy Equation in Fluid Film
Find Temperature Distribution

Confirm Journal Position and Velocity

Has Temperature Dist.
Converged?

t > tmax

END

t = t + ∆t

Yes

Yes

No

No

 
Fig. 27. Flow chart of steady state THD solution approach 

 

 

 

Simulation Results of FRB-RGD with THD Solutions 

A symmetry rigid rotor supported by two identical FRBs is considered as 

mechanical model to apply the THD numerical algorithms for analytical bifurcation 

study, and the detailed parameters for the FRB and the lubricant are defined in Table 8. 
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The non-autonomous case corresponds to an imbalanced rotor which causes a 

periodic force with frequency equal to the spin frequency. The imbalance eccentricity is 

set equal to (ε=0.3Ci) for the non-autonomous case. In the autonomous case, the rotor is 

considered to be fully balanced, Three different lubricant supply temperatures 

(Tsup=29°C, 39°C, 49°C) are used to analyze thermal effects on nonlinear phenomena 

and stability. The responses from the current FE based THD bearing model are 

compared with those from a simplified bearing model (isothermal solutions from short 

bearing theory) which was widely utilized in related studies. 

 

Table 8. FRB and lubricant parameters 

FRB Parameters [Units] Values 

Clearance [μm] 
Diameter [mm] 
Length [mm] 
Rotor mass [g] 
Ring mass [g] 
Ring polar moment of inertia [10-6kgm2] 
Ring thermal conductivity [W/m°C] 

Ci=26.5,      Co=42.5 
Di=11.543, Do=17.722 
Li=2.493,    Lo=3.561 
MJ/2=814.9 
MR=3.38 
IR=18.89 
klub=0.13 

Lubricant Parameters [Units] Values 

Supply temperature [°C] 
Viscosity exponent  [1/°C] 
Viscosity @ 29°C, 39°C, 49°C [cP] 
Specific heat [J/kg°C] 
Thermal conductivity [W/m°C] 
Convection coefficient [W/m2°C] 
Density [kg/m3] 

Tsup=29, 39, 49 
β=0.0155 
μ=12.0, 10.3, 8.8 
Cp=2000 
klub=0.13 
hlub=500 
ρ=860 
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Autonomous systems 

 Multiple response states 

Fig. 28 shows the coexisting multiple steady state responses determined by the 

autonomous shooting method at a speed of 65 krpm with the lubricant supply 

temperature Tsup=39°C. The three periodic solutions (PS) are identified using the THD-

autonomous shooting method, and the equilibrium position (EP) is obtained with a 

Newton-Raphson search. The stability of each response is determined utilizing the 

Floquet theory, i.e. a monodromy matrix eigenvalue magnitude greater than 1 implies 

instability. These results imply that the two unstable solutions (PS 2 and EP) will 

ultimately be attracted to one of the stable solutions (PS 1 or PS 3). Fig. 29 represents 

temperature distributions of FRB in cross section plane at specific time instants of PS 3, 

which include temperature variations of inner and outer films as well as the ring area. 

 

Bifurcation diagram 

The arc-length continuation algorithm is applied to determine the THD case 

response manifold and stability in traversing a speed range (e.g, 10krpm to 100krpm). 

Fig. 30 shows the maximum and minimum values of the non-dimensionalized vertical 

displacements, yj/(Ci+Co), as well as the corresponding non-dimensionalized response 

periods, τ/τs, of the autonomous system with Tsup=39°C are plotted on the bifurcation 

diagrams. 
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(a) Coexistent Response #1 (PS, τR=13.246τS, Stable*) 
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(b) Coexistent Response #2 (PS, τR=12.859τS, Unstable*) 
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(c) Coexistent Response #3 (PS, τR=11.805τS, Stable*) 
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(d) Coexistent Response #4 (EP, Unstable*) 
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Fig. 28. Multiple response states (orbits and ring rotational speed ratio) at 65000rpm 
(Tsup=39°C). *Stability of the response is determined by the Floquet theory 
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(a) τ = 0.0τS (b) τ = 2.2τS 

  

(c) τ = 6.18τS (d) τ = 9.27τS 

  

Fig. 29. Temperature distribution of coexistent response #3 at specific time instants 
 

In Fig. 30(a), the stable equilibrium position, EP, which is dominant in low 

revolution speeds, becomes unstable after crossing the Hopf bifurcation near 60 krpm. 

At that point, a stable periodic solution (PS 1) emerges in the arc length continuation and 

enlarges in orbit size with increasing rpm to the first saddle node (SN 1). The arc length 

continuation then identifies an unstable orbit (PS 2), which rapidly expands as rpm 

decreases until it reaches the second saddle node (SN 2). The response (PS 3, stable) 

then slowly approaches the clearance limit as rpm increases. Multiple coexisting 

response states exist in the speed range between the two saddles (i.e, 53krpm to 

70krpm). The repeller limit cycle forces the response away from itself while a pair of 

competing attractors determine the final steady state limit cycle depending on initial 

T[°C] T[°C] 

T[°C] T[°C] 

Ring 

Outer film 

Inner film 
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conditions. This exhibits a potentially dangerous operating condition of the machine 

since an impulse load may cause the system to jump from the small limit cycle to the 

large limit cycle while operating at a fixed speed. 

The corresponding period ratios of the responses are represented in Fig. 30 (b) 

where τ is the limit cycle period and τs is the shaft spin period. The EP is a fixed 

equilibrium point so it does not have a period, and therefore only the periods for PS 1-3 

are shown in the diagram. The periods for all PS fall in the range between 10 and 14. 

This range corresponds to 30% ~ 50% of the ring rotational frequency, which is in the 

expected range for oil whirl of the ring in the FRB system. 

 

(a) Local max/min displacements in y axis            (b) Response period ratio (τ/τs) 

 
Fig. 30. Analytical bifurcation diagrams (Tsup=39°C): (a) max/min yj/(Ci+Co) (b) 

response period ratio τ/τs 

 

 

A comparison of Figures 31(a), 31(b) and 31(c) reveals that the speed range 

between the saddle nodes is enlarged and shifted with the THD model as compared to 

the isothermal lubricant model (μo=8.8cP, 10.3cP, 12.0cP) results. This implies a wider 

speed range of coexistent solutions and uncertainty of jumps from possibly benign to 
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potentially destructive vibration levels, between the bifurcation speeds. The THD based, 

autonomous solutions also exhibit a much higher sensitivity to the lubricant supply 

temperature than the assumed isoviscous model results. 

 

 

(a) THD bifurcation diagrams 

  

(b) Isothermal (FEM) bifurcation diagrams 

  

(c) Isothermal (short brg. approx.) bifurcation diagrams 

  

Fig. 31. Comparison of analytical bifurcation diagrams (THD vs. Isothermal)  
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Non-Autonomous Systems 

A transient numerical integration (TNI) study was performed with varying levels 

of imbalance to aid in discerning appropriate levels of disk mass imbalance to utilize in 

the non-autonomous coexistent solution/ bifurcation point search. Fig. 32 shows some 

results of this study in the form of bifurcation diagrams, constructed from a series of 

Poincaré sections vs. rpm, for imbalance eccentricity ranging from 0.02Ci to 0.3Ci. The 

response with small unbalance is similar to the autonomous (0.0Ci ) results, though the 

instability onset shifts slightly higher with the small added imbalance.  

 

(a) eimb=0.0Ci (b) eimb=0.02Ci 

  

(c) eimb=0.1Ci (d) eimb=0.3Ci 

  

Fig. 32. Bifurcation (Poincaré) Diagrams w.r.t. Imbalance Eccentricity (isothermal) 
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In contrast, the Poincaré sections with large unbalance, for example eimb=0.3Ci 

shows the oil whirl type bifurcation onset is significantly raised in rpm level. This 

quenching effect of the subsychronous whirl is referred to as synchronization, and has 

been reported in large industrial machinery [36]. 

The larger imbalance also causes the emergence of a small amplitude 

subsynchronous whirl over a short range of lower speeds (i.e, 20kpm ~ 30krpm). As 

expected the larger imbalance case shows a greater distinction with the autonomous case 

and is thus examined in the coexistent response/bifurcation study. 

 

Multiple response states 

The THD non-autonomous shooting algorithm is employed in searching for nτ 

periodic responses for each lubricant temperature (Tsup=29°C, 39°C, 49°C), and the TNI 

method is utilized for obtaining possible quasi periodic responses. Fig. 33 shows the 

predicted multiple response states when the algorithm is applied at 22000 rpm with 

Tsup=39°C. The journal orbits relative to the ring and the corresponding Poincaré 

sections are shown for each response state: 1× synchronous, 1/2× sub-synchronous, and 

quasiperiodic. The Floquet monodromy matrix eigenvalues determine that the two 

periodic responses are unstable repellers, so that trajectories slightly perturbed from 

these response states diverge and evolve into a quasi-periodic response. Transient 

numerical integration is utilized to demonstrate this evolution from the 1× synchronous 

state to the quasi-periodic state at a speed of 22000rpm. Fig. 34 shows the trajectory 

initially repelled from the 1× state to the 1/2× state and ultimately progressing to full 
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quasiperiodic motion, as evidenced by the closed locus Poincare maps. Fig. 35 shows the 

transition event in time domain. 

 

(a) Quasi-periodic 

    

 

 
(b) 1/2× sub-synchronous (unstable) 
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(c) 1.0× synchronous (unstable) 
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Fig. 33. Coexistent responses at 22000 rpm (eimb=0.3Ci, Tsup=39°C) 
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(a) Orbits at relative position 

    Journal rel. to ring                    Ring rel. to housing                  Journal rel. to housing 
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(b) Poincaré sections at relative position 

 
Fig. 34. Repelling motion from 1× sync to quasi-periodic at 22000rpm (eimb=0.3Ci, 

Tsup=39°C) 
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Fig. 35. Time events from 1× sync to quasi-periodic at 22000rpm (eimb=0.3Ci, 
Tsup=39°C) 
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Bifurcations 

The bifurcation diagrams in Fig. 36 are obtained by applying the method of 

THD, non-autonomous, arc-length continuation. The maximum and minimum vertical 

displacements of journal relative to ring, max./min. |xjr/Ci|, are plotted vs. the spinning 

speed for 3 lubricant temperatures. The emergence of the 1/2× sub-synchronous 

response occurs between 18 krpm and 30 krpm independent of the lubricant temperature. 

The high speed range (70kpm ~ 100krpm) instability onset speed increases markedly 

with oil supply temperature. This also occurs in the autonomous system. Fig. 37 shows a 

zoomed segment of the THD model’s bifurcation diagram in Fig. 36 for Tsup=39°C and 

its counterpart from the isothermal case model. In these figures, for conciseness, the 

maximum amplitudes of journal relative to ring, max. ejr/Ci, are plotted vs. the spinning 

speed. The figure shows that the stable 1× synchronous becomes unstable at BF 1, and 

two additional response states emerge; an unstable 1/2× sub-synchronous response and a 

quasi-periodic response. The 1/2× sub-synchronous response becomes stable at BF 2, 

and the large amplitude quasi-periodic response is emerged near the bifurcation point. 

The periodic response bifurcates again at BF 3, with the 1/2× sub-synchronous 

disappearing and a stable 1× synchronous returning. Fig. 38 (a) shows the coexisting 

attractors at 27000rpm for both the quasi-periodic and 1/2× sub-synchronous, and its 

respective orbits can be seen in Fig. 38 (b). 

The THD and isothermal cases have very similar responses in the spin speed 

range studied. The isothermal amplitudes are slightly smaller and the bifurcations occur 

at a slightly lower speed than in the THD results. This similarity can be explained since 
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the dynamic eccentricities (εD) are relatively small (0.2<εD<0.4), so that the viscosity is 

not significantly changed from the isoviscosity value. 

 

 
  

(a) 
Tsup=29°C 

 

(b) 
Tsup=39°C 

 

(c) 
Tsup=49°C 

 
Fig. 36. Bifurcation diagrams w.r.t. lubricant supply temperature (eimb=0.3Ci) 
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 (a) THD (Tsup=39°C)  

 

 

                             (b) Isothermal (μo=10.3cP)  

 

 

Fig. 37. Bifurcation diagrams: ranges from 15krpm to 34krpm (eimb=0.3Ci , Tsup=39°C) 
 

 

(a) Attractors (journal rel. to ring) (b) Orbits (journal rel. to ring) 

  

Fig. 38. Coexisting attractors at 28000rpm (eimb=0.3Ci , Tsup=39°C) 
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Summary of Results 

The THD shooting/arc-length continuation algorithm for analyzing thermal 

effects on bifurcations of fluid film bearings was developed and illustrated for FRBs. 

Both free vibration (autonomous) and imbalance excited (non-autonomous) cases are 

examines and illustrated for a FRB-rigid rotor system. The autonomous case results 

showed the co-existence of multiple response states and the presence of Hopf and two 

saddle node bifurcations. Although increasing the lubricant supply temperature delays 

the onset of a Hopf bifurcation with increasing speed, it adversely widens the speed 

range over which a sudden jump from a benign limit cycle to a large limit cycle may 

occur. In general the THD bifurcation curves are seen to be more sensitive with regard to 

changes in speed and supply temperature than the isothermal responses.  

The non-autonomous system results clearly indicate significant increase in the oil 

whirl onset speed as the level of imbalance is increased. This is a good example of 

synchronization in nonlinear dynamical systems. The quenching effect of this 

synchronization extends the stability of the upper spin speed range, however it also 

results in a bifurcation from synchronous response to a small amplitude whirl in the 

lower speed range. The stability of the 1/2× sub-synchronous and quasi-periodic 

responses in the low speed ranges are strongly dependent on the lubricant supply 

temperature. Comparison of the THD and isothermal models show good agreement for 

small dynamic eccentricities as expected. Future work in THD bearing modelling for 

coexistent steady state solutions and bifurcations include flexible, multi mass rotor 

models and other bearing types such as pressure dam, tilting pad, etc. 
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CHAPTER V  

NONLINEAR RESPONSE AND BIFURCATIONS OF A RIGID ROTOR 

SUPPORTED ON TILTING PAD JOURNAL BEARINGS (TPJB) 

 

Introduction to TPJB-Rotor Systems 

Modern rotating machinery, such as gas/steam turbines, generators, compressors, 

gearboxes, pumps, etc. experience higher performance and efficiency as the number of 

stages and speed increase. However this change tends to increase the propensity of the 

machines for rotordynamic instability. Tilting pad journal bearings (TPJBs) have been 

selected in such machines due to their stabilizing effects on the rotor systems; the tilting 

motions of pads greatly suppress the cross-coupled stiffness coefficients and thus 

enhance rotor stability. Nonetheless, a survey of the literature reveals that TPJBs do not 

always perform successfully. 

Pagano et al. [43] and Brancati et al. [44] used numerical integration to determine 

that an unbalanced rotor supported by TPJBs may experience sub-synchronous motions 

with one-half or one-quarter components under certain operating conditions. Abu-

Mahfouz and Adam [6] used numerical integration to determine that an unbalanced rotor 

supported by three-pad TPJBs may experience quasi-periodic and chaotic responses. 

Cao, Dimond, and Allaire [45] used numerical integration to determine that a complex 

flexible rotor, 8-stage centrifugal compressor, supported by TPJBs, exhibited strong 

nonlinear behaviors such as sub- and super-synchronous responses. Gadangi, Palazzolo, 

et al. [28,29] indicated that large, multi-harmonic orbital motions occur in TPJB 
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supported machines with high levels of unbalance, and are affected by pad deformations 

and fluid thermal effects. Suh and Palazzolo [30] investigated thermally induced 

synchronous instability, i.e, Morton effect, in TPJBs using 3D structural finite elements 

models for the shaft and pads, a variable viscosity Reynolds equation and the 3D energy 

equation. So far, a considerable amount of numerical studies have been conducted to 

predict instability and nonlinear dynamic characteristics of TPJB-rotor systems, most of 

them rely on transient numerical integrations. 

Steady state, nonlinear dynamics, search-based approaches such as harmonic 

balance, trigonometric collocation, shooting/continuation, etc. have seldom been used 

for the analyzing the nonlinear response of TPJB supported rotors. These approaches use 

numerical integration to iteratively determine initial states of all coexistent periodic 

responses, their local stability, and bifurcation onsets. However, the use of this approach 

requires an extensive amount of computations to evaluate Jacobian matrices iteratively 

in the solution procedure.  This limited previous studies to considering Jeffcott type rotor 

models supported on simple geometry bearings  [17-21, 25-26, 46], for instance, floating 

ring bearings, squeeze film dampers and plain journal bearings, which are suitable for 

providing fluid film forces obtained from infinitely short-/long- bearing theories. 

In the present paper, an improved non-autonomous shooting/arc-length 

continuation method is employed to analyze nonlinear behaviors of rotors supported on 

TPJBs. An objective of this research is to identify bifurcations and coexistent responses 

including both stable and unstable solutions. In addition, effects of pad preload, pivot 

offset, and lubricant viscosity on rotordynamic bifurcations are investigated. Due to the 
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geometrical and dynamical complexity of TPJBs, simplified fluid film models have 

limitation to evaluate fluid film pressure on the pads so that a finite element based TPJB 

model with rigid rocker pivots is developed for the bifurcation study. Efficient execution 

algorithms such as deflation and parallel computing are employed in order to reduce the 

corresponding computation time. 

 

 

Fig. 39. TPJB (5-pad, LOP) schematics and its respective coordinates in x-y plane 

 

Finite Element TPJB Modeling 

Fig. 39 depicts the middle plane in the axial direction of a TPJB model and its 

coordinate system. The film thickness distribution for a given pad is dependent on the x 

and y components of the journal center and on the pad angle δj, as given by the formula: 

( ) ( ) ( )( ) cos( ) sin( ) cos sinPj Pj B Pj j Pjh C X Y C C Rθ θ θ θ θ δ θ θ= − − − − − − −  (49) 
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where h(θ) is film thickness at angular location θ, CPj  is the radial pad clearance of pad 

j, CB  is the radial bearing clearance, X, Y are x and y components of the journal’s 

displacement relative to bearing center OB, δj is the rotation angle of pad j, R is the 

journal radius and θPj is value of θ at the pivot of pad  j. 

The hydrodynamic pressure on the fluid film of each pad, p, can be determined from 

Reynolds equation for an incompressible and iso-viscosity lubricating oil model, as 

follows, 

3 3

12 12 2
h p h p R h h

z z t
ω

θ µ θ µ θ
   ∂ ∂ ∂ ∂ ∂ ∂

+ = +   ∂ ∂ ∂ ∂ ∂ ∂   
 

(50) 

where z is the axial direction of the bearing, μ is dynamic viscosity and ω denotes the 

rotational speed of journal. The solution of  Reynolds equation is obtained using a finite 

element model, which consists of a three-node simplex, triangular type mesh generated 

on half of fluid film layer in the axial direction with an assumption of a symmetrical 

pressure state. Fluid reaction force between a pad and the journal is obtained by 

integrating the pressure throughout the mesh and multiplying by 2 to account for the 

other half of the bearing. 

/2

0
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y j
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p y d dz

F
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θ
θ θ

θ
  −   =   −    

∫ ∫  
(51) 

The total, lubricant film force on the journal is 

1

pN
x jx

y jy j

FF
FF =

    =   
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∑  
(52) 

The pressure distribution on pad j induces a moment on the pad about its pivot; 

74 

 



 

/2

0

cos( )
2 ( , )

sin( )
Ej

Bj

L

Pj jM p y Rd dz
θ

θ

θ
θ θ

θ
 

= ×  
 

∫ ∫
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(53) 

where r is the vector from the pivot contact point on pad j to the location of the 

differential force on pad j. Fig. 40 shows the finite element TPJB model used in this 

study and an example of pressure distributions on pads. 

 
Fig. 40. Finite element TPJB model and an example of pressure distributions on pads 

 

Model Verification 

Code verification works are conducted with two previous studies on TPJBs: 

Gadangi et al. in Ref. [28] and Someya et al. in Ref. [47]. The calculated pressure fields 

on pads of the TPJBs are used to solve dynamic and static states of the rotors whether 

the existence of unbalance force. 

 

Comparison with Someya Table (without unbalance) 

 Static state results from two specific bearing geometries in Someya table, e.g. 

No.49 and No.50, are compared with those from the developed TPJB codes and the 

equilibrium positions, altitude angles and respective synchronized reduced bearing 

coefficients agrees well with each other as in Fig. 41. 
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Fig. 41. Comparisons of Bearing Coefficients with Someya Table 
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Comparison with Gadangi’s results (with imbalance) 

Gadangi et al. [28] investigated dynamics of a TPJB-rotor system under sudden 

unbalance forces those are assumed to be induced by blade loss events. The detailed 

TPJB parameters in the study are listed in the Table 9, and a schematic view for the pad 

position (LBP) and clearances are shown in Fig. 42. Table 10 describes amounts of 

imbalance eccentricities in the study; two different unbalance force (low and high) are 

applied to the rotor system. 
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b

 
Fig. 42. Four-Pad TPJB model in Ref. [28] 

 

Table 9. TPJB specifications in Ref. [28]  
Bearing parameter Value [unit] Pad parameter Value [unit] 

Journal diameter 0.1 m Num. of pads 
(arclength) 4 (75°, LBP) 

Bearing length 0.07 m Preload 0.47 
Rotor speed 209.44 rad/s Offset 0.5 
Rotor mass 1000 kg Pad clearance 148 μm 
Static load 20 kN Pad thickness 0.02 m 

 
 

Table 10. Unbalance parameters in Ref. [28] 

spin speed 
209.44 rad/s (2000rpm) 

imbalance eccentricity 
(eimb) 

ratio between dynamic and 
static loads (Fd/Fs) 

Low unbalance case 100 μm  (1.27Cb) s=0.147 

High unbalance case 570 μm  (7.26Cb) s=0.838 
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As can be seen in Fig. 43 and Fig. 44, the orbits from the current code agree well 

with the Gadangi’s results. 

                                                       
     (a) Gadangi et al. [28]† (b) Current 
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Fig. 43. Comparison of low unbalance orbits (eimb=100μm, s=0.147) 
 

      (a) Gadangi et al. [28]† (b) Current 

 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

NOMALIZED X (X/CLR)

N
O

M
A

LI
Z

E
D

 Y
 (

Y
/C

LR
)

 
Fig. 44. Comparison of high unbalance orbits (eimb=570μm, s=0.838) 

 
 

† Fig. 43 (a) and Fig. 44 (a) are reprinted with permission from “Transient analysis of plain and tilt pad 

journal bearings including fluid film temperature effects” by Gadangi, R.K., and Palazzolo, A. B., 1996, 

Journal of Tribology, doi: 10.1115/1.2831319, Copyright 1996 by ASME. 
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 In the Gadangi’s paper, only one spin speed is assigned to the investigation (e.g. 

209rad/s or 2000rpm). To see how the response changes with regard to the spin speed, 

increased rpms are applied to the system as show in the Fig. 45.  As results, the 

responses do not have much of a variety, but the response keeps expending to the 

catastrophic limit as rpm increased. 

 

Imbalance 
eccentricity 2000rpm 4000rpm 12000rpm 

eimb=100μm 

   

eimb=570μm 

  

out of clearance 

Fig. 45. Limit cycles of 4 pad TPJB wrt spin speeds 
 

 

A Rigid Rotor Supported by TPJB 

 A “Jeffcott” type symmetric rigid rotor supported by 5-pad tilting pad journal 

bearings (TPJB-RGD) is set to as a mechanical model for investigation of nonlinear 

response and bifurcation behaviors as can be seen in Fig. 46. The bearing specification 

and parameter ranges are specified in Table 11. Spin speeds and rotor mass are varied in 

the TPJB-RGD system model for the parametric study. 
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Fig. 46. Symmetric TPJB support – rigid rotor system 

 

 The equations of motion for the journal and pads can be written as, 

J x dx sx

J y dy sy

pj pj pj

M x F W W
M y F W W

I Mδ

= + +
= + +

=







 
(54) 

where MJ is the journal mass, Ip is the pad inertia, Ws, Wd are static and dynamic load on 

the journal, Mp is the integrated moments on pad. The static force can be the weight of 

rotor/disc or side loads, and the dynamic force is usually due to unbalance force, Fimb, 

from imbalance eccentricity, eimb, on rotor/disc. 

 

Table 11. TPJB specification and parameter ranges 
Bearing Parameter Value [unit] Pad parameter Value [unit] 

Journal diameter (D) 0.1016 [m] Num. of pads 
(arclength) 5 (60°, LOP) 

Bearing length (L) 0.0508 [m] Preload (mp) 1/2, 2/3 

Spin speed 1 ~ 20 [krpm] Offset (α/β) 0.5, 0.6 

Bearing load (W) 4.9, 9.8, 19.6 [kN] Bearing clearance (Cb) 88 [μm] 

Lubricant viscosity (µ) 10.3, 13.8, 27.0 [cP] Pad clearance (Cp) 162 [μm] 

Amounts of imbalances 
on disc (eimb) 

0.05Cb ~ 0.3Cb Pad thickness 0.02 [m] 
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Simulation Results and Discussion 

 In order to investigate bifurcations and nonlinear behaviors of TPJB-RGD 

system, both the direct numerical integration (NI) and shooting/arc-length continuation 

are applied with various operation conditions. 

 

Bifurcation analysis with Direct NI 

 Use of direct NI can provide bifurcation diagrams consisting of consecutive 

collections of Poincaré dots with regard to an operation control parameter. Although this 

method provides only an incomplete picture regarding multiple, coexisting responses 

and their stability, it is still useful for providing a “brute force” means to view some 

possible responses and rotordynamic bifurcations. For the transient responses, the 

dynamic differential equations are integrated using the MATLAB® routine ode15s, for 

300 revolution periods, and steady state is assumed to occur during the last 100 

revolutions. As can be seen in Fig. 47, a bifurcation diagram, which shows the non-

dimensional vertical journal motion, y/Cb, at each spin period, is plotted vs. rpm. This 

presentation is conducted for different parameters of imbalance eccentricity and bearing 

load. 

As a result, lightly loaded and low unbalance cases generally show stabilized 

vibrations such as synchronous response over all the traversed speed range. In contrast, 

heavily loaded and high unbalance cases exhibit period doubling bifurcations and sub-

synchronous responses at high speed ranges; all the sub-synchronous responses emerge 

after the dynamic unbalance force exceeds the static force (i.e., Fimb/W > 1). 
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The cases of Fig. 47 (c), with W=19.6kN, have various response types such as 

synchronous, sub-synchronous and quasi-/aperiodic motions. For this reason, this 

bearing load is selected to conduct further analyses such that the bifurcation diagrams 

are made with different imbalance amounts ranging from 0.02Cb to 0.4Cb. 

Combining all the bifurcation diagrams with regards to imbalance eccentricity 

and spin speed yields the loci of bifurcations diagram in Fig. 48. In the diagram, it can 

be seen that the rotor system has only 1τ periodic response under 8krpm regardless of the 

amount of imbalance on the rotor. In contrast, various responses are expected at 

operation speeds above 8krpm. For instance, if the rotor system has a constant operating 

speed of 15krpm, and it accumulates unbalance due to deposits on the rotor, the system 

may exhibit various responses in the consecutive forms of 1τ → 2τ → 4τ→ quasi-

periodic/aperiodic as the accumulated unbalance force increases. 

It should be noted that this result is obtained from the direct NI method so that 

multiple responses near the bifurcation locus are not considered. This means that the loci 

of bifurcations in the figure are not the only solution map for this system, but only one of 

the multiple possible solution maps. On the other hand, bifurcation diagrams from the 

shooting/arc-length continuation may provide further regions such as coexistent 

solutions, response stability and bifurcation scenarios. 
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Fig. 48. Loci of bifurcation diagram 

 

 

Bifurcations on run-up/run-down 

The introduced shooting/arc-length continuation methods are applied to the 

TPJB-RGD system. The control parameter of the numerical continuation is the rotor 

revolution speed (rev/min), and it is incremented for each harmonic solution that is 

identified by the shooting method. 

To illustrate the results, the maximum and minimum values of the non-

dimensional vertical displacements, y/Cb, of the periodic solutions are plotted in Fig. 49. 

Here, the imbalance eccentricity of the disc (eimb) is set as 0.3Cb. The small windows 

connected to the bifurcation diagram show the orbital states of solutions at the specific 

sections. In case coexistent solutions are identified, all the solution states are plotted, and 

the stability of each solution is determined by the Floquet theory. 
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Fig. 49. Bifurcation diagram and coexistent solutions with regard to rotor revolution 

speed - shooting/continuation (eimb=0.3Cb, mp=1/2, α/β=0.5, µ=13.8cP) 
 

 

Over the low spin speed range, the journal maintains a stable 1× synchronous 

response and is statically located near the minimum clearance area. A periodic doubling 

bifurcation occurs at 8.7krpm, and at the same time the 1× synchronous response loses 

its stability and a stable ½ sub-synchronous response appears. The orbit of ½ sub-

synchronous gradually enlarges as rpm increases until 14.1krpm. Stability of the ½ sub-

synchronous changes to unstable with the appearance of aperiodic motion, but it returns 

at 14.8 krpm and the aperiodic motion disappears. Then a stable ¼ sub-synchronous 

emerges with the ½ sub-synchronous (unstable), and the states last up to 18.2krpm. 
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Eventually, the two motions converge at 18.2krpm, and a stable ½ sub-synchronous orbit 

emerges. The unstable 1× sync persists over the entire speed range above the 1st 

bifurcation. 

 

Bifurcations on accumulating imbalance of rotor 

The balance condition of a rotor system may change over time of operation due 

to blade erosion or distortion, shaft bowing, misalignment, etc. [36][48]. Stopping the 

operation of a plant in order to balance a machine is always a very costly decision in 

terms of lost product. On the other hand, failure of a machine due to excessive vibration 

may lead to an even costlier scenario. Prediction of responses with accumulating 

unbalance force, during long-term operation, can provide a valuable tool for deciding if a 

machine should be immediately balanced or repaired.   

 In order to understand bifurcation scenarios with respect to accumulated 

imbalance eccentricity, the control parameter of the numerical continuation is set to 

imbalance eccentricity on the disc with the spin speed fixed at 16000rpm. Fig. 50 shows 

the responses in the low imbalance eccentricity (eimb<0.06Cb) range maintain a stable 1× 

sync state, and then bifurcate into a new ½ sub-synchronous response with the stability 

of the 1× sync switched to unstable. The orbital motion of ½ sub-synchronous gradually 

enlarges as imbalance increases until 0.21Cb, which is the onset of a stable ¼ sub-

synchronous. The ½ sub-synchronous response has several saddle node bifurcations in 

the high imbalance condition (eimb >0.27Cb) so that additional orbital equilibrium states 

are generated. For example, when the imbalance eccentricity become eimb=0.28Cb, six 
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periodic responses: one 1× sync (unstable), four ½ sub-synchronous (stable/unstable) 

and one ¼ sub-synchronous (stable) coexist at the identical operating condition. The 

sub-synchronous responses bifurcate into an aperiodic motion after 0.38Cb, and the 

unstable 1× sync persists throughout the unbalance range, following the 1st bifurcation. 

 

 

 

Fig. 50. Bifurcation diagram and coexistent solutions with regard to imbalance 
eccentricity on disc - shooting/continuation (rpm=16000, mp=1/2, α/β=0.5, µ=13.8cP) 
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Effects of pad preload and pivot offset on bifurcations 

In addition to the current pad preload and pivot offset parameters, i.e, case1: 

mp=1/2, α/β=0.5, three pad-pivot geometrical sets: case2: mp=1/2, α/β=0.6, case3: 

mp=2/3, α/β=0.5, case4: mp=2/3, α/β=0.6, are chosen for investigating their effects on 

bifurcations of TPJB-RGD system. Fig. 51 depicts the geometry of the respective pad 

preload and pivot offset cases. 

Fig. 52 represents the results of the shooting/continuation with the pad-pivot 

parameter sets. In case2 (mp=1/2, α/β=0.6) shown in Fig. 52 (a), it is observed that 

significant delay of bifurcation onset to the oil whirl (½ sub-synchronous), which 

occurred at 0.07Cb with the original set, i.e. case 1, moves to 0.14Cb. In addition, the 

emergence of a 1/4 sub-synchronous response that came out of the 1/2 sub-synchronous 

with periodic doubling bifurcation at 0.21Cb , disappears over the entire unbalance 

range. In case3 (mp=2/3, α/β=0.5) shown in Fig. 52 (b), it can be seen that the bifurcation 

onset to oil whirl shifts only by a small amount, i.e, from 0.07Cb to 0.085Cb, so the 

increased preload over 1/2 seems to have only a minor stabilizing effect. However, the 

1/4× sub-synchronous response is observed over an extended range of unbalance, and 

the high vibration region of ½ sub-synchronous, which was located from 0.275Cb in the 

original set, occurs at a lower amount of imbalance eccentricity. In case 4 (mp=2/3, 

α/β=0.6) shown in Fig. 52 (c), the overall bifurcation scenarios are very similar with 

parameter set 2, but the high vibration states of the ½ sub-synchronous response is close 

to the results from parameter set 3. In that regard case 4 appears to act qualitatively 

similar to a combination of sets 2 and set 3. 
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Based on this overview, the pivot location plays a major role in determining the 

system’s response states and bifurcation behavior, The preload has a significant effect on 

the location and existence of stable, high vibrations of the 1/2 sub-synchronous near 

eimb=0.25 ~ 0.3Cb.  

 

(a) (b) 

  

(c) (d) 

  

Fig. 51. Geometrical schematics of the pad-pivot parameter sets 
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(a) mp=1/2, α/β=0.6 

 
 

(b) mp=2/3, α/β=0.5 

 
 

(c) mp=2/3, α/β=0.6 

 
 

Fig. 52. Bifurcation diagrams with regards to pad preloads (mp) and pivot offset (α/β): 
(a) case2 (mp=1/2, α/β=0.6), (b) case3 (mp=2/3, α/β=0.5), (c) case4 (mp=2/3, α/β=0.6) 
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Effects of lubricant viscosity 

In addition to the lubricant viscosity parameter, μ=13.8cP, utilized for all 

previous cases two additional viscosity values μ=27.0cP and 10.3cP, are utilized for 

investigating the lubricant viscosity effect on the TPJB-RGD system. The oil is assumed 

to be ISO VG 22 and a corresponding temperature is 45°C (@ μ=27.0cP), 65°C (@ 

μ=13.8cP) and 75°C (@ μ=10.3cP), respectively. Fig. 53 shows the bifurcation diagrams 

with the viscosity parameters; here, rpm=16k. 

The result with high viscosity, i.e, μ=27.0cP shown in Fig. 53 (a), shows a more 

stabilized response behavior over all the unbalance operation range, such that the ¼ sub-

synchronous responses have disappeared, and only 1× synchronous and ½ sub-

synchronous remain. In addition, the period doubling bifurcation from 1× synchronous 

to ½ sub-synchronous is significantly delayed from 0.07Cb to 0.155Cb. The appearance 

span of the ½ sub-synchronous is also reduced. In contrast, the low viscosity case holds 

the ¼ sub-synchronous response and extends its appearance span. The stability of the ¼ 

sub-synchronous turns to unstable after 0.18Cb, and at the same unbalance level the other 

periodic solutions, 1× synchronous and ½ sub-synchronous, also become unstable even 

up to high imbalance eccentricity (although a stable ½ sub-synchronous is identified in 

short range from 0.31Cb to 0.33Cb ). This means that a quasi-periodic response 

dominates above the imbalance amount (0.18Cb). Table 12 compares the responses for 

the 3 viscosity cases. 
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 (a) µ=27.0cP 

 
 

(b) µ=10.3cP 

 
 

Fig. 53. Bifurcation diagrams with regards to lubricant viscosity: 
(a) μ=27.0cP, (b) μ=10.3cP 

 

 

Table 12. Bifurcation events for lubricant viscosity 
Bifurcation events µ=27.0cP µ=13.8cP µ=10.3cP 

onset  
1× sync → ½ sub-sync. 0.155Cb 0.07Cb 0.045Cb 

appearance of ¼ sub-
sync. 

- 
(disappeared) 

0.21Cb ~0.37Cb 
(net: 0.16Cb) 

0.16Cb ~ 0.395Cb 
(net: 0.235Cb) 

1st saddle node of ½ sub-
sync. 0.295Cb 0.38Cb 0.41Cb 
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Quasi-periodic / aperiodic motions 

As indicated by the above results the rotor-bearing system response may lose its 

periodicity and the response becomes either quasi-periodic or aperiodic. Shooting and 

arc-length continuation are numerical algorithms for identifying the periodic solutions, 

so a separate device such as Lyapunov exponents is needed to quantitatively determine 

the existence of quasi-periodic or chaotic motions. Based on the bifurcation diagram 

from the direct numerical integrations of the heavily loaded and high unbalance force in 

Fig. 47 (c) with eimb=0.3Cb, the system loses its solution periodicity at high spin speed 

ranges, which is revealed through the accumulated Poincaré dots on the bifurcation 

diagram (not shown as single or a few numbers).  To examine the character of the 

aperiodic motions, the maximum Lyapunov exponents (MLEs) are compared with the 

bifurcation diagram as can be seen in Fig. 54.  Here, steady state is assumed to occur 

after 600 revolution periods, after which the MLEs are obtained by means of 600 time 

intervals with 0.25 revolution per interval. The MLEs are negative values for  ×1 

synchronous and ×1/2 sub-synchronous responses. Figure 13 shows that in certain 

operating ranges (e.g., 14.5krpm~15.5krpm and 18.5krpm), the MLEs exceed or are very 

close to the stability limit and the values provide further clarification to be interpreted 

either as quasi- or aperiodic. 

Three samples at 14.5krpm, 15.5krpm, and 18.5krpm are examined in Fig. 55, 

which displays orbital motions, frequency spectra and Poincaré maps along with 

Lyapunov exponent spectra as in Ref. [35]. This approach is very helpful for identifying 

the response types. As can be seen in Fig. 55 (a), which was selected as a chaotic state 
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based on the MLE (λmax = +0.008), the orbit is obviously an aperiodic response, the 

corresponding Poincaré dots form a strange shape, and broadband components are 

observed in the frequency spectrum. In Fig. 55 (b) though the MLE is slightly above the 

critical boundary; λmax = +0.0008 and which implies very low chaos. It is assumed that 

the MLE eventually converge to zero, since the respective orbit and Poincaré represent a 

quasi-periodic motion. In Fig. 55 (c), the response which has λmax = -0.005 represents 

periodic motion, and it is also confirmed as an n-periodic response by the other response 

displays. 

 

 
Fig. 54. Bifurcation diagram (Poincaré sections) vs. MLE (λmax) with regard to spin speed 

(W=19.6kN, eimb=0.3Cb, μ=13.8cP) 
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Fig. 55. Orbits, attractors and frequency spectra: (a) rpm=14.5k, 
(b) rpm=15.5k, (c) rpm=18.5k 

 

 

Summary of Results 

The nonlinear response and bifurcations of a rotor supported by five-pad TPJBs 

are examined utilizing highly efficient computational algorithms. TPJBs are well known 

as highly stable when vibration responses are small, but the numerical study shows sub-

synchronous-, aperiodic- motions, bifurcations and coexistent solutions can occur under 

heavily statically loaded and highly dynamically unbalanced conditions. Application of 
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non-autonomous shooting/continuation algorithms implemented with deflation and 

parallel computing for execution acceleration, exhibited various nonlinear behaviors 

with regards to imbalance eccentricity and spin speed variations. A parametric study 

with pad geometry confirmed that the pivot location significantly influences nonlinear 

aspects such that periodic doubling bifurcations and high vibration states are suppressed 

by locating the pivot point a little after the mid-plane of the pads (i.e., α/β>0.5). On the 

other hand, the pad preload influences onsets of stable high amplitude ½ sub-

synchronous responses. Simulations confirmed that lubricant viscosity has a major role 

on overall response behavior such that higher viscosity tends to suppress the appearance 

of sub-synchronous responses and lower viscosity tends to cause quasi-periodic motion. 

Lyapunov exponents can explicitly differentiate n-periodic-, quasi-periodic, chaotic 

responses in TPJBs. Future investigation for analytical bifurcations and nonlinear 

behaviors in TPJB systems will include a flexible, multi mass rotor models with a modal 

reduction technique. 
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CHAPTER VI  

NUMERICAL NONLINEAR ANALYSIS OF FLEXIBLE, MULTI MASS ROTOR 

BEAM MODELS 

 

Introduction to Large Order Rotor Systems 

Most of the rotating machineries in industry are not sample as a “Jeffcott” rotor 

but are consisted of multiple shafts and multiple discs, therefore, the structural vibrations 

and gyroscopic effects should be taken into consideration for the motions of the 

machine. The finite element based rotor beam model with lumped masses and lumped 

rotational inertias in the finite nodes is typical approach to illustrate the general, flexible, 

multi-mass rotor shaft for numerical analysis. Nonlinear analysis of large-order systems 

usually demands lots of computation time and resources to incorporate the large number 

of state condition in both the rotor-beam and bearing models. Hence, it becomes 

necessary to combine with a model condensation technique such as real-/complex- 

eigenvector modal reduction, component mode synthesis and Guyan reduction, which 

give computational advantages by choosing important modes out of total degree of 

freedom (DOF).[7]  

Component Mode Synthesis (CMS) method has been introduced as one very 

suitable model reduction scheme for nonlinear system with the sense that 1) CMS lends 

itself for transient analysis, 2) it can be directly applied to multiple shafts with multiple 

interconnections, 3) it can be associated with the finite element method [49]. In the 

procedure, it remains nonlinear associated dynamic components (i.e. constrained normal 
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modes) in physical coordinate and transfer the other components (i.e. static modes) to 

modal coordinate and substantially reduce degree of freedom of the modal elements. In a 

series of research from Nelson et al. [50-52] and Craig et al. [53,54], CMS had been 

proven as an accurate dimension reduction method for stability and transient analysis. 

Meanwhile, Sundararajan and Noah [21] first attempted to combine CMS and 

shooting/continuation methods to analyze a large order nonlinear rotor-bearing system. 

In their study, a six-node shaft beam model supported on plain journal bearings was used 

as a mechanical model; the model has 24 DOF and the fluid film pressures on supports 

are obtained using the short bearing approximation. They obtained the results of 

unbalance response amplitude with respect to spin speed and determined local stability 

based on Floquet theory. Although they have introduced the algorithm that is capable of 

identifying multiple response states and their stability analysis, another related research, 

which is following their approach, is seldom reported yet. The objective of this study is 

to extend the capability of the introduced numerical algorithms (shooting/continuation 

with Deflation and the parallel computing) to industrial applications such as 

turbochargers and steam turbine compressors as described in Table 13. 

 

Table 13. Mechanical models of large order system 
 Example 1 Example 2 

Rotor beam F.E. turbocharger rotor with 14 nodes F.E. eight-stage compressor with 35 nodes 

Bearing F.E. Two floating ring bearings F.E. two tilt pad journal beairngs 

Total DOF 56 + 6 = 62 DOF 140 + 10 = 150 DOF 

Total state 
element 112 + 10 = 122 state elements 280 + 20 = 300 state elements 
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Shooting Method with a Model Reduction Technique 

In this research, fixed-interface CMS is employed to condense the large-order 

systems. The CMS is applied to both the numerical integration and the shooting and 

continuation methods. The followings are mathematical formulations for model 

reduction steps prior to apply the shooting method; the mathematical derivations widely 

refers to Sundararajan’s dissertation [49]. 

 

Step 1: System Condensation 

From finite element formulation, rotor system may have an equation in a form of, 

+ + = M C K Fx x x  
 

(55) 

Equation (55) can be divided and re-ordered with boundary (nonlinear) 

coordinate xb, and interior (static) coordinate, xi 

,

,

bb               
+ + = +              

               

 

 

ns bbb bi b bi b bb bi b b

ns iib ii i ib ii i ib ii i i

FM M C C K K F
FM M C C K K F

x x x
x x x

 

 

(56) 

where xb is boundary (nonlinear) coordinate, xi is interior (static) coordinate, Fb 

is nonlinear force, Fi is force acting at interior coordinate (e.g. unbalance force). Fns,b 

and Fns,i are non-symmetric element forces from bearing, seal, damping, and other 

properties at boundary and interior coordinate, respectively. Since real mode CMS is 

utilized in this study, any non-symmetric terms in matrix C and K are located in right 

hand side of Eq. (56). 

By selecting interior coordinate components and then obtaining the free-vibration 

problem. 
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+ + =  0ii i ii i ii ix x xM C K  
 

(57) 

Note that all element in Mii, Cii, Kii matrices are symmetric, and Cii is zero since system 

does not have linear damping component.  

The normal modes of interior coordinates can be represented with eigenvector 

matrix A and modal vector q, 

_ =i normal iAx q  
 

(58) 

The static modes of interior coordinates can be represented as, 

1
_

−= −i static ii ib bK Kx x  
 

(59) 

Then, transformation of the coordinates can be expressed as, 

       
= =      

       
b bb bi b b

i ib ii i i

I O
D

B A
x x x
x q q

 

 

(60) 

Using a transformation matrix D in Eq. (59) and pre-multiplying DT, the system 

equation yields, 

11 12 11 12 11 12 1

21 22 21 22 21 22 2

b b b            
+ + =            

            

M M C C K K F
M M C C K K F

 

 

x x x
q q q

 

 

(61) 

q q q+ + =M C K F x x x  (62) 

By selecting important modes, which is normally low natural frequency related 

modes, total degree of freedom of the system equation can be remarkably reduced. The 

reduced DOF consists of number of nonlinear forces and retained number of modes. 

First order form can be expressed as, 
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(63) 

+ =A B
h h F  (64) 

For numerical integration of Eq. (64), it can be re-written as, 

θ− −= − + 

     

1 1( , , , ) ( , , , ) ( , , , )b b b bh x q x q h x q x q F t x xA B A  
 

(65) 

 
Step 2: Non-dimensionalization 

Non-dimensionalize Eq. (65) along with, 

 / , / ,b b b b j
d dC C
dt d

ω
τ

= = =x x q q   

to obtain, 

2

2
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(66) 
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In order to obtain the force vector ( , , , )t θ

F x x  during numerical integrations, the 

state vector ( , , , )b b


x q x q  in the condensed coordinate should be converted to physical 

coordinate ( , , , )

x xθ θ  at each time segment. 

 
 
Step 3: Initial Guess of Generation Production 

The initial state vector for shooting is consist of two different domains such as 

physical coordinate and modal coordinate. In physical coordinate, position and velocity 

of rotor at nonlinear bearing locations, ,b b
x x  are randomly produced guesses within the 

clearance of each bearing. In addition to this, modal coordinate state vector , q q is also 

randomly generated, but it has a post process, which reorders q  elements associated 

with higher modes to be decremented. 

 
 
Step 4: Begin Shooting-CMS Procedure 

Using a group of initial guess, shooting and continuation with CMS can begin the 

solution search procedure. 
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Numerical Example 1: Turbocharger Supported by FRBs 

 
Model Description 

 A turbocharger is a very popular rotor-bearing application for down-sized 

automotive engines; it collects exhaust gas to compress intake air and supplies the high 

pressurized air to the engine combustor. Automotive turbochargers normally run in very 

high speeds condition (e.g, 150krpm to 350 krpm) that is far beyond first critical speed 

so that limit cycles and various nonlinear oscillations are assumed to be observed in 

operations. This study employs a set of turbocharger parameters used in Ref. [55] and 

Fig. 56 depicts the schematic of the turbocharger rotor. In order to model the single-

stage turbocharger, a 14-station Euler beam with the lumped masses and inertias is built 

based on the mechanical parameters in  

Table 14 and Table 15. Fig. 57 depicts the finite element rotor model. Since the 

reference did not provide FRB parameters, a set of FRB parameters is employed from 

other reference [41]; the bearing diameter is not aligned to the shaft diameter, the values 

are modified proportionally to the shaft diameter. Table 16 shows the FRB parameters 

used in this study.  

Compressor stage           FRB#1    FRB#2        Turbine stage 

 
Fig. 56. Schematics of turbocharger rotor model in Ref. [55] 
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Table 14. Parameters of the rotor shaft 
  Inner Shaft Outer Shaft 

# Length 
[mm] 

Diameter 
[mm] 

Density 
[kg/m3] 

Young’s 
modulus 

[GPa] 

Diameter 
[mm] 

Density 
[kg/m3] 

Young’s 
modulus 

[GPa] 
1 10.0 4.1 7800 200    
2 4.5 4.1 7800 200 6.0 2700 - 
3 15.2 4.1 7800 200 10.0 2700 - 
4 6.0 4.1 7800 200 25.0 2700 - 
5 7.1 8.0 7800 200    
6 9.5 6.2 7800 200    
7 12.65 6.0 7800 200    
8 12.5 6.0 7800 200    
9 6.65 6.0 7800 200    

10 11.2 9.9 7800 200    
11 6.6 14.2 7800 200    
12 9.6 11.0 7800 200    
13 5.0 7.0 7800 200    
14 0.0 0.0 7800 200    

 

Table 15. Parameters of the rigid disks 

 station # Mass [kg] Transverse Inertia 
moment IT [kgm2] 

Polar inertia moment 
Ip [kgm2] 

Impeller 4 0.013328 1.2740 ×10-6 2.1560 ×10-6 

Turbine 12 0.043414 3.1360 ×10-6 5.8800 ×10-6 
 

 

 
Fig. 57. F.E. Turbo-charger model with 14 stations 
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 Table 16. Floating Ring Bearing Dimensions 

 

 Parameter mm 

A Journal diameter 6.000 

B Ring Inner Diameter 6.018 

C Ring Outer Diameter 9.239 

D Bearing Diameter 9.289 

E Inner Film Length 4.588 

F Outer Film Length 5.891 

Fig. 58. Schematics of floating ring 
bearing    

 

 

Response from Reduced System (Verification with Full DOF) 

Instead of the full DOF turbocharger beam model, a reduced DOF model utilized 

in the numerical investigation. To rely on the reduced DOF model, a comparison with 

the results from full DOF is conducted; the reduced turbocharger beam retains 10 DOF 

out of 56 DOF for the beam elements, here, 4 DOF is associated to lateral and vertical 

movements of shaft at bearing positions, and the other 6 DOF exists in the modal 

coordinate. Besides, the nonlinear coordinates associated three ring movements (i.e., 

vertical, lateral and rotational) are remained at each bearing position. Hence, the reduced 

finite turbocharger model has total 16 DOF. The direct numerical integrations are 

performed with the two different DOF conditions (Full: 62 DOF vs. Reduced: 16 DOF). 

For the transient response, the dynamic differential equations are integrated using a 

A    B    C    
 

E 
 

F 
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commercial software, MATLAB® routine ode15s, for 400 revolution periods, and the 

response was collected for last 100 revolutions; here, the spin speed is 30,000rpm. Fig. 

59 shows the time transient numerical integration results from the two systems, and the 

result agrees well with each other. Other calculated results, not presented in this paper, 

confirm the reliability of the reduced system. 

            
           Compressor Turbine 
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Fig. 59. Orbits comparison at compressor and turbine: Full DOF (62 DOF) vs. CMS (16 

DOF)  
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Autonomous Shooting with CMS  

Turbocharger rotors commonly combine with fully-/semi- floating ring bearings. 

As discussed in Chapter 3, self-excited nature in FRBs has strong nonlinearity, so 

various nonlinear behaviors are observed. In this study, the finite turbocharger model is 

assumed as fully balanced, so the structural vibrations incorporated with the nonlinear 

bearing force are to be focused; i.e. autonomous responses. 

Fig. 60 shows the coexisting multiple steady state responses at compressor and 

turbine stages determined by the autonomous shooting method at a speed of 28 krpm 

with CMS. The stability of each response is determined using the Floquet theory; three 

periodic solutions (PS) are identified such as one unstable (PS 2) and two stables (PS 1 

and PS 3). These results imply that the one unstable solutions (PS 2) will ultimately be 

attracted to one of the stable solutions (PS 1 or PS 3).  

 

Bifurcations Results using Arc-Length Continuation with CMS 

As shown in Fig. 61, the numerical continuation provides a bifurcation diagram, 

which presents non-dimensionalized maximum and minimum vertical positions of the 

shaft center at FRB #2 (i.e., max/min of yjCo/(Ci+Co)) with respect to the bifurcation 

parameter (i.e., rpm) as in Fig. 61(a) and corresponding non-dimensionalized period of 

the limit cycle (i.e., τ/τs, where τs is spinning period 2π) as in Fig. 61(b). As the rotor 

speed increased, the equilibrium position (EP) loses its linear stability at Hopf 

bifurcation and turns to a periodic (limit cycle) response. The system has an N-S 

bifurcation after undergoing the Hopf bifurcation. After the first N-S bifurcation, the 
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response frequently undergoes another N-S bifurcations so that additional frequency 

components are removed or emerge at each N-S. When the orbit has a form of periodic 

response (i.e., closed orbit), the period of solution is disconnected from the previously 

found periodic solution as in Fig. 61(b). Fig. 62 depicts the coexistent periodic responses 

and their stability at 10,600 rpm.  
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Fig. 60. Whirl Orbits at Compressor and Turbine 
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Fig. 61. Bifurcation diagram: maximum/minimum of vertical displacement at FRB #2  

 
 
 

PS #1 (Unstable) PS #2 (Unstable) PS #3 (Unstable) PS #4 (Stable) 

    

Fig. 62. Identified journal orbits (rel. to housing) at FRB #2 (106000rpm) 
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Jump between Multiple Responses Due to Base Excitation 

Since multiple steady state responses can coexist at the same rpm, and the same 

imbalance amount; it may be speculated that one response state could potentially switch 

to the other if a disturbance is sufficiently strong to force the original state to jump out of 

its current basin of attraction (BOA). In reality, turbochargers are used in automobiles so 

that a sudden disturbance, for instance, speed bumps on roads, may induce response 

jumps in operation. It would be beneficial for developers/operators to anticipate the 

response uncertainty. 

In order to simulate this phenomenon, an impulsive, vertical base excitation is 

applied to the two FRB housings over a very short period while the turbocharger is 

operating within one steady state orbits. Fig. 63 depicts the scenario of sudden bump to 

the turbocharger. The sudden base movements cause external force term to the outer 

film, and if the force is enough to escape the current BOA in phase space, the orbit may 

converge to another response state.  

 

 
 

Fig. 63. Illustration of a sudden bump 
 

 

The displacement of the FRB housing can be expressed with a characteristic 

frequency of base motion and its harmonics. 

BUMP 
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Jump phenomenon between two stable responses was tested as shown in Fig. 64; 

blue colored orbits represent initial states before the bump and red colored orbits 

represent response states after the bump. 
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Fig. 64. Jump phenomenon between stable orbits: response before bump (blue) → 

response after bump (red) 
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Synchronization 

In industry, engineers have observed oil/gas whirls due to the self-excited 

nonlinear characteristics of fluid film bearings. One useful treatment for the problem is 

that properly added intentional imbalance can quench the large sub-synchronous orbit, 

i.e., synchronization. A numerical investigation of the synchronization is conducted for 

the turbocharger supported by FRBs. The imbalance amount (eimb) is added with various 

eccentricities on the compressor stage. Fig. 65 depicts the orbital motion and 

corresponding frequency spectrum at 30,000rpm for each eimb amount. As the imbalance 

eccentricity increases, the limit cycle changes to 1× synchronous at eimb=0.1Co, then it 

goes into a quasi-periodic response. As can be seen in Fig. 66, low frequency 

components are suddenly disappeared at eimb=0.1Co and only the ×1 frequency 

component is remained. The orbital motions in Fig. 67 also describe the sudden 

transition between the quasi-periodic at eimb=0.09Co and the synchronous at eimb=0.1Co 

due to synchronization effect. 

 

Chaotic Motion in Turbo-Charger 

From the previous study on rigid rotor supported by FRB, chaotic motion has 

occurred in case of low rates of the L/D ratio. The TC rotor was tested with the condition 

of 0.25 L/D ratio and eimb=0.1Co, as a results, chaotic motions are found near 20,000rpm. 

In Fig. 68, the chaotic orbits and ring speed ratio are plotted in Fig. 68 (a) and 

corresponding strange attractor are shown in Fig. 68 (b) 
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Fig. 65. Responses at FRB #1 with respect to different imbalance eccentricity (@ 

30,000rpm) 
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Fig. 66. Waterfall diagram w.r.t imbalance eccentricity (eimb: 0.02Co ~ 0.12Co) 
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Fig. 67. Bifurcation onset from imbalance eccentricity (@ 30,000rpm) 
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(a) Orbits and Ring speed ratio: 1000τ~4000τ spin period 
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(b) Strange Attractor: 1000τ~4000τ spin period  
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Fig. 68. Chaotic motion in Turbo-charger rotor model (L/D=0.25) 
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Numerical Example 2: Eight-Stage Compressor Supported by TPJBs 

Model Description 

In addition to the turbocharger rotor supported on FRBs, another industrial rotor 

model is considered. The geometry of the rotor model basically follows the eight-stage 

centrifugal compressor rotor model as shown in Fig. 69, which was introduced by 

Wilson and Barrett in Ref. [56]. The compressor rotor is modeled with a 35-station finite 

element beam and built based on the mechanical cross-sectional parameters in Table 17. 

Here, the added properties at nodes (i.e. weight, transverse moment of inertia and polar 

moment of inertia) has three times increased values than the original data to exaggerate 

nonlinear behaviors; according to the results of Chapter 3, it was shown that a heavily 

loaded rotor has higher possibility of various nonlinear responses such as sub-/super-

synchronous, quasi-periodic, chaotic vibrations. The compressor is supported on two 

identical five-pad TPJBs and the TPJB specification is shown in Table 18. Since a TPJB 

is a highly stabilized bearing application, external excitations induced by imbalance on 

the fourth compressor disc (i.e. 16th node) are applied to have orbital motions in the 

system. Table 19 describes the imbalance distributions for the nonlinear study. 

 

 
Fig. 69. Schematic of eight-stage compressor 
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Table 17. Sectional data of the eight-stage compressor 

Station 
number 

Length 
[m] 

Outside 
diameter 

[m] 

E*I 
[Nm2] 

Added polar 
moment of 

inertia 
[kgm2] 

Added 
transverse 
moment of 

inertia [kgm2] 

Added mass 
[kg] 

1 0.0345 0.0698 0.1558×106 0.0000 0.0000 217.8434 
2 0.1712 0.1107 0.9843×106 0.0000 0.0000 30.5823 
3 0.0381 0.1270 1.7047×106 0.0000 0.0000 38.7783 
4 0.0434 0.1270 1.7047×106 0.0000 0.0000 19.7489 
5 0.0881 0.1651 4.8787×106 0.0000 0.0000 41.8211 
6 0.0544 0.1681 5.2231×106 0.0000 0.0000 53.0737 
7 0.0897 0.1580 4.0751×106 0.0000 0.0000 51.8275 
8 0.0864 0.1824 7.2319×106 0.0000 0.0000 69.5893 
9 0.0625 0.1702 5.4813×106 0.0000 0.0000 63.1890 

10 0.0787 0.1702 5.4813×106 0.5415 0.2712 137.7147 
11 0.0625 0.1702 5.4813×106 0.0298 0.0156 61.1294 
12 0.0787 0.1702 5.4813×106 0.5415 0.2712 137.7147 
13 0.0625 0.1702 5.4813×106 0.0298 0.0156 61.1294 
14 0.0787 0.1702 5.4813×106 0.5415 0.2712 137.7147 
15 0.0625 0.1702 5.4813×106 0.0298 0.0156 61.1294 
16 0.1600 0.1702 5.4813×106 0.5415 0.2712 169.4969 
17 0.1600 0.1702 5.4813×106 0.0000 0.0000 125.0924 
18 0.0721 0.1702 5.4813×106 0.5415 0.2712 172.7563 
19 0.0909 0.1702 5.4813×106 0.0431 0.0238 72.1343 
20 0.0721 0.1702 5.4813×106 0.5415 0.2712 146.5431 
21 0.0909 0.1702 5.4813×106 0.0431 0.0237 72.1343 
22 0.0721 0.1702 5.4813×106 0.5415 0.2712 146.5431 
23 0.0909 0.1702 5.4813×106 0.0431 0.0238 72.1343 
24 0.1273 0.1702 5.4813×106 0.5415 0.2712 167.9352 
25 0.0734 0.1702 5.4813×106 0.1439 0.1062 105.0318 
26 0.0587 0.1778 6.5432×106 0.0000 0.0000 53.5920 
27 0.0902 0.1681 5.2231×106 0.0000 0.0000 58.4511 
28 0.0544 0.1681 5.2231×106 0.0000 0.0000 54.8367 
29 0.0876 0.1651 4.8787×106 0.0000 0.0000 52.8098 
30 0.0434 0.1270 1.7047×106 0.0000 0.0000 41.6933 
31 0.0381 0.1270 1.7047×106 0.0000 0.0000 18.1165 
32 0.1445 0.1189 1.3086×106 0.0000 0.0000 35.2563 
33 0.0475 0.0950 0.5338×106 0.0000 0.0000 44.9676 
34 0.1400 0.0935 0.4993×106 0.0000 0.0000 43.5297 
35 0.0000 0.0935 0.4993×106 0.0000 0.0000 25.4281 
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Table 18. TPJB specification and parameter ranges 
Bearing Parameter Value [unit] Pad parameter Value [unit] 

Journal diameter (D) 0.1272 [m] Num. of pads 
(arclength) 5 (60°, LOP) 

Bearing length (L) 0.0636 [m] Preload (mp) 1/2, 2/3 

Spin speed 1 ~ 20 [krpm] Offset (α/β) 0.5, 0.6 

Lubricant viscosity (µ) 7.0, 13.8, 27.0 [cP] Bearing clearance (Cb) 101.6 [μm] 

Pad thickness 12.7 [mm] Pad clearance (Cp) 203.2 [μm] 

 

 

 

Fig. 70. F.E compressor model supported by two F.E TPJB at the ends 
 

 

Table 19. Imbalance position and amounts in the eight-stage compressor  
Position of imbalance Amounts of imbalance on disc (eimb) 

4th disc (16th node) 0.0Cb ~ 0.4Cb 
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Response from Reduced System (Verification with Full DOF) 

Instead of the use of full DOF eight-stage compressor beam model, a reduced 

DOF model is utilized in the numerical investigation; here, component mode synthesis 

(CMS) is applied again to reduce this rotor model. The reduced compressor beam retains 

12 DOF out of 140 DOF for the beam elements, here 4 DOF is associated to lateral and 

vertical movements of shaft at bearing positions, and the other 8 DOF exists in the 

modal coordinate. On the other hand, the nonlinear coordinates that associated to five 

pad rotational movements are entirely remained at each bearing position. Hence, the 

reduced finite compressor model has total 22 DOF. The direct numerical integrations are 

performed with the two different DOF conditions (Full: 150 DOF vs. Reduced: 22 DOF) 

to compare the result from each DOF condition. For the transient response, the dynamic 

differential equations are integrated using a commercial software, MATLAB® routine 

ode15s, for 300 revolution periods, and the response was collected for last 100 

revolutions; here, three different unbalance condition such as no unbalance, small 

unbalance and large unbalance. Fig. 71, Fig. 72 and Fig. 73 show the time transient 

numerical integration results from the two DOF conditions; the results agree well with 

each other. Other calculated results, not presented in this paper, confirm the reliability of 

the reduced system. 

 

Table 20. Coordinate values of equilibrium positions 
Equilibrium 

Position 
TPJB #1 TPJB #2 

xbrg1/Cb ybrg1/Cb xbrg2/Cb ybrg2/Cb 
CMS (22 DOF) 0 -0.418 0 -0.400 

FULL (150 DOF) 0 -0.418 0 -0.400 
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CMS 
(22 

DOF) 

 

FULL 
(150 

DOF) 

 
Fig. 71. Comparison of equilibrium positions between Reduced DOF and Full DOF: 

without unbalance (imbalance force to bearing load ratio: 0.00) 
 

 

CMS 
(22 

DOF) 

 

FULL 
(150 

DOF) 

 
Fig. 72. Comparison of low eccentricity orbits between Reduced DOF and Full DOF: 

with small unbalance (imbalance force to bearing load ratio: 0.60) 
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CMS 
(22 

DOF) 

 

FULL 
(150 
DOF) 

 
Fig. 73. Comparison of high eccentricity orbits between Reduced DOF and Full DOF: 

with large unbalance (imbalance force to bearing load ratio: 1.60) 
 

Transient Numerical Integrations with CMS 

Using the direct NI, bifurcation diagrams consisted of consecutive collections of 

Poincaré dots with regard to an operation control parameter can be obtained. Though the 

method is a kind of brute and incomplete sense of multiple responses and stability, it is 

useful as an instant tool to examine responses and rotordynamic bifurcations. For the 

transient responses, the dynamic differential equations are integrated using a commercial 

software, MATLAB® routine ode15s, for 300 revolution periods, and steady states is 

assumed to be achieved for last 100 revolutions and the data is collected for analysis. As 

can be seen in Fig. 74 and Fig. 75, bifurcation diagrams, which records the non-

dimensional vertical journal motion, y/Cb, at each spin period (2π), show that 

synchronous, ½ sub-synchronous and quasi-periodic/aperiodic responses as the spin 

speed increases. 
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eimb=1.0Cb

@16th node TPJB #1 TPJB #2 

(a) 
Bifurcation 

diagram 
 

 
  

(b) 
orbit rotor beam motion orbit at TPJB #1 orbit at TPJB #2 

5000rpm 

 

13,000rpm 

 
Fig. 74. Bifurcation diagrams wrt spin speed and orbits at specific rpms (mp=1/2, 

α/β=0.5) 
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eimb=1.5Cb

@16th node TPJB #1 TPJB #2 

(a) 
Bifurcation 

diagram 
 

 

  
(b) 

orbit rotor beam motion orbit at TPJB #1 orbit at TPJB #2 

5000rpm 

 

13,000rpm 

 
Fig. 75. Bifurcation diagrams wrt spin speed and orbits at specific rpms (mp=1/2, 

α/β=0.5) 
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Non-autonomous Shooting with CMS 

Referring to the results from NI, the non-autonomous shooting method is applied 

in searching for nτ periodic responses (e.g. ½×, 1/3×, ¼×, 2×, 3×, …) at an operation 

condition (13,000rpm, eimb=1.5Cb@16th node and µ=13.8cP). As a result, three 

coexistent response states are identified as shown in Fig. 76: 1× synchronous (stable), 

½× sub-synchronous (unstable) and 2× super-synchronous (unstable) responses. 

 

                     rotor beam motion                      orbit at TPJB #1       orbit at TPJB #2 

1× sync 
(stable) 

 

½× sub-
sync  

(unstable) 

 

2× super-
sync 

(unstable) 

 
Fig. 76. Coexistent periodic responses at 13,000rpm (eimb=1.5Cb@16th node and 

µ=13.8cP, mp=1/2, α/β=0.5)  
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Bifurcations Results from Arc-Length Continuation with CMS 

Control parameter: rotor spin speed ω[rad/sec]  

 The bifurcation diagrams are obtained by apply the method of non-autonomous, 

arc-length continuation. The control parameter of the numerical continuation is selected 

as the rotor revolution speed (rev/min), and it proceeds for each harmonic solution that is 

identified by the shooting method; here, the imbalance eccentricity on 4th disc (16th 

node) is set as eimb=1.5Cb. To illustrate the results, the maximum and minimum values of 

the non-dimensional vertical displacements, y/Cb, of periodic solutions are plotted in Fig. 

77. 

 

 
        Bifurcations at TPJB #1                                                Bifurcations at TPJB #2 

      
Fig. 77. Bifurcation diagrams with regard to spin speed (using continuation): eimb=1.5Cb 

(@16th node), µ=13.8cP, mp=1/2 and α/β=0.5 
 

 

125 

 



 

 

 1× periodic (unstable) ½ × periodic (unstable) 
ro

to
r b

ea
m

 m
ot

io
n 

  

or
bi

ts
 a

t b
ea

rin
g 

po
si

tio
ns

 

  
 

 2× periodic (unstable) 

ro
to

r b
ea

m
 m

ot
io

n 

 

or
bi

ts
 a

t b
ea

rin
g 

po
si

tio
ns

 

 

 

Fig. 78. Multiple response states at 1300 rad/sec with eimb=1.5Cb (@16th node) 
µ=13.8cP, mp=1/2 and α/β=0.5 
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In low spin speeds, the journal maintains a stable 1× synchronous response and it 

locates near the bearing clearance area. After undergoing a resonance near 550 rad/s, a 

critical bifurcation occurs at 1060 rad/s, which causes the 1× synchronous response loses 

its stability and an unstable ½× sub-synchronous response appeared; since all periodic 

solutions are unstable, quasi-periodic motion roles as an attractor of all motions. Both 

periodic solutions converge at 1550 rad/s, and then separate again at 1650 rad/s. 

Meanwhile, the 2× super-synchronous response appears as unstable all along the 

operation condition; though it is unstable over the control parameter ranges, this result 

may explain that a rotor system with TPJB supports can shortly exhibit super-

synchronous by any condition of disturbance during operations. 

 

Control parameter: imbalance eccentricity (eimb) 

The control parameter of the numerical continuation is selected as the amount of 

imbalance eccentricity on 4th disc. The maximum and minimum vertical displacements 

of journal, max./min. yj/Cb, at each TPJB are plotted vs. the imbalance eccentricity on 4th 

disc in Fig. 79. The 1× synchronous response is the primary form of unbalance response. 

The first emergence of the 1/2× sub-synchronous response occurs near 0.75Cb, and it 

initially appears as stable but it become unstable near 1.4Cb; at the same condition, the 

other branch of 1/2× sub-synchronous response emerged from the 1× synchronous 

response. Then, all the periodic responses turn to unstable so that it can be assumed that 

quasi-periodic motion roles as an attractor of all motions. The unstable 1/2× sub-

synchronous response is eventually disappeared at 2.3Cb and 2.5Cb, respectively. In case 
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of 2× super-synchronous response, it appears as unstable all along the operation 

condition. Fig. 80 represents an example of multiple response states those are located at 

eimb=2.0Cb. 

 

 

 
       Bifurcations at TPJB #1                                              Bifurcations at TPJB #2 

 

     
Fig. 79. Bifurcation diagrams with regard to imbalance eccentricity (13,000rpm, 

µ=13.8cP, mp=1/2 and α/β=0.5) 
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Fig. 80. Multiple response states at 13,000rpm and eimb=2.0Cb (@16th node), µ=13.8cP, 

mp=1/2 and α/β=0.5 
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Effects of Pad Preload and Pivot Offset 

 In addition to the current pad preload and pivot offset parameters, i.e., case1: 

mp=1/2, α/β=0.5, three additional pad-pivot geometrical sets such as case 2: mp=2/3, 

α/β=0.5, case 3: mp=1/2, α/β=0.6 and case 4: mp=2/3, α/β=0.6, are chosen for 

investigating their effects on bifurcations of the eight-stage compressor.  

Fig. 81 (a), (b), (c) and (d) show the bifurcation diagrams obtained using the 

numerical continuations with regard to spin speed for each pad-pivot parameter set. In 

contrast, corresponding bifurcation diagrams using transient NI are represented in series 

of Fig. 82, and the results can provide for non-periodic responses. In case2 (mp=2/3, 

α/β=0.5) shown in Fig. 81 (b), it is seen that the subcritical type of bifurcation sudden 

jump to ½× sub-synchronous near 1050 rad/s changes to supercritical type (i.e., sudden 

jump → smooth transition), and sub-synchronous and quasi-periodic responses are 

remained. In case3 (mp=1/2, α/β=0.6) shown in Fig. 81 (c), notable changes are observed 

such that: 1) the ½ sub-synchronous response is almost disappeared, 2) the overall 

responses persist relatively small dynamic eccentricity on their orbits, 3) quasi-periodic 

motions and N-S bifurcation onsets significantly reduced. In case4 (mp=2/3, α/β=0.6) 

shown in Fig. 81 (d), the overall bifurcation scenarios can be interpreted as combined 

result of case 2 and case 3, which shows sub-synchronous and quasi-periodic 

significantly suppressed. 

In contrast, the bifurcation diagrams in Fig. 83 show the pad-pivot effects on 

nonlinear behaviors with standpoint of imbalance eccentricity as a control parameter; 

Fig. 84 shows the corresponding results of transient NI. These results distinguish the 
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addressed effects in previous more clearly such that appearance of ½ sub-synchronous 

and stability highly incorporates with the pad-pivot parameters. Table 21 describes the 

summary of their effects on bifurcations. 

The results of pad-pivot parametric study is consistent with the TPJB-rigid rotor 

system such that the pivot location is major factor to determine system’s whole response 

states and bifurcation scenario and the preload has effects on location and existence of 

sub-synchronous; here, ½× sub-synchronous near eimb=0.7 ~ 2.5Cb. 

 

 
Table 21. Summary of pad preload (mp) and pivot offset (α/β) effects on bifurcations 

case 1 case 2 case 3 case 4 

    
• sub-synchronous and 
quasi-periodic 
motions at high 
imbalance and spin 
speed 

• reduce sudden jump 
(i.e, subcritical 
bifurcations), but sub-
synchronous and 
quasi-periodic 
responses are 
remained 

Minor improvement 

• reduce overall 
amplitudes 

• almost disappeared 
sub-synchronous 

• significantly reduce 
quasi-periodic 
motions and N-S 
bifurcation onsets 

Significant 
improvement 

• combined results of 
case 2 and case 3 

 

• reduce sub-
synchronous and 
quasi-periodic 

 

 

 

mp=1/2, 
α/β=0.5 

mp=2/3, 
α/β=0.5 

mp=1/2, 
α/β=0.6 

mp=2/3, 
α/β=0.6 
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 (a) mp=0.5, α/β=0.5 

 
(b) mp=0.67, α/β=0.5 

 
(c) mp=0.5, α/β=0.6 

 
(d) mp=0.67, α/β=0.6 

 
Fig. 81. Bifurcation diagrams with regard to spin speed (using continuation): (a) mp=0.5, 

α/β=0.5, (b) mp=0.67, α/β=0.5, (c) mp=0.5, α/β=0.6, (d) mp=0.67, α/β=0.6 
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Pad geometry          Bifurcation diagram @ TPJB #1                  Bifurcation diagram @ TPJB #2 
(a) 

 

 

(b) 

 
 

(c) 

 
 

(d) 

 
 

Fig. 82. Bifurcation diagrams with regard to spin speed (using transient NI): (a) mp=0.5, 
α/β=0.5, (b) mp=0.67, α/β=0.5, (c) mp=0.5, α/β=0.6, (d) mp=0.67, α/β=0.6 
 

 

 

mp=0.5 
α/β=0.5 

mp=0.67 
α/β=0.5 

mp=0.5 
α/β=0.6 

mp=0.67 
α/β=0.6 
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(a) mp=0.5, α/β=0.5 

 
(b) mp=0.67, α/β=0.5 

 
(c) mp=0.5, α/β=0.6 

 
(d) mp=0.67, α/β=0.6 

 
Fig. 83. Bifurcation diagrams with regard to imbalance eccentricity (using continuation): 

(a) mp=0.5, α/β=0.5, (b) mp=0.67, α/β=0.5, (c) mp=0.5, α/β=0.6, (d) mp=0.67, α/β=0.6 
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Pad geometry          Bifurcation diagram @ TPJB #1                  Bifurcation diagram @ TPJB #2 
(a) 

 
 

(b) 

 

 
(c) 

 

 
(d) 

 

 

Fig. 84. Bifurcation diagrams with regard to imbalance eccentricity (using transient NI): 
(a) mp=0.5, α/β=0.5, (b) mp=0.67, α/β=0.5, (c) mp=0.5, α/β=0.6, (d) mp=0.67, α/β=0.6 

 

 

 

mp=0.5 
α/β=0.5 

mp=0.67 
α/β=0.5 

mp=0.5 
α/β=0.6 

mp=0.67 
α/β=0.6 
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Effects of Lubricant Viscosity 

In addition to the current lubricant viscosity parameter, i.e., μ=13.8cP, two 

additional viscosity values such as μ=27.0cP and 7.0cP, are applied for investigating 

lubricant effect on the eight-stage compressor; the oil is assumed an ISO VG 22 and a 

corresponding temperature is 45°C (@ μ=27.0cP), 65°C (@ μ=13.8cP) and 82°C (@ 

μ=7.0cP), respectively.  

Fig. 85 shows the bifurcation diagrams using the numerical continuation with 

regard to spin speed for each lubricant viscosity; here, eimb=1.5Cb and the supplemental 

diagrams using transient NI is shown in Fig. 86. The result with high viscosity, i.e, 

μ=27.0cP in Fig. 85 (a), shows stabilized responses overall operation ranges such that 

½× sub-synchronous responses are disappeared; only 1× synchronous remained, so 

dynamic eccentricity is not drastically enlarged as the spin speed increases. In contrast, 

low viscosity, i.e, μ=7.0cP in Fig. 85 (c), loses the response stability in low rpm region, 

so it sooner get into quasi-periodic motions. The ½× sub-synchronous is remained and 

appeared as unstable. 

Fig. 87 shows the bifurcation diagrams using the numerical continuation with 

regard to imbalance eccentricity for each lubricant viscosity; here, rpm=16k and Fig. 88 

is corresponding results from transient NI. The results show similar manner with the 

previous approach such that low viscosity holds 1/2 sub-sync; they are mostly unstable 

solutions, so quasi-periodic responses are dominant under high speed/high imbalance. 
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Lubricant 
viscosity Bifurcation diagram @ TPJB #1                          Bifurcation diagram @ TPJB #2 

(a) 
μ=27.0cP 

(high) 

 

(b) 
μ=13.8cP 

 

 (c) 
μ=7.0cP 

(low) 

 

Fig. 85. Bifurcation diagrams with regard to spin speed (using continuation): (a) 
µ=27.0cP, (b) µ=13.8cP, (c) µ=7.0cP 
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Lubricant 
viscosity         Bifurcation diagram @ TPJB #1                           Bifurcation diagram @ TPJB #2 

(a) 
μ=27.0cP 

(high) 

 

(b) 
μ=13.8cP 

 

(c) 
μ=7.0cP 

(low) 

 

 

Fig. 86. Bifurcation diagrams with regard to spin speed (using transient NI): (a) 
µ=27.0cP, (b) µ=13.8cP, (c) µ=7.0cP 
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Lubricant 
viscosity Bifurcation diagram @ TPJB #1                          Bifurcation diagram @ TPJB #2 

(a) 
μ=27.0cP 

(high) 

 

(b) 
μ=13.8cP 

 

(c) 
μ=7.0cP 

(low) 

 

 

Fig. 87. Bifurcation diagrams with regard to imbalance eccentricity (using continuation): 
(a) µ=27.0cP, (b) µ=13.8cP, (c) µ=7.0cP 
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Lubricant 
viscosity         Bifurcation diagram @ TPJB #1                           Bifurcation diagram @ TPJB #2 

(a) 
μ=27.0cP 

(high) 

 

(b) 
μ=13.8cP 

 

(c) 
μ=7.0cP 

(low) 

 

Fig. 88. Bifurcation diagrams with regard to imbalance eccentricity (using transient NI): 
(a) µ=27.0cP, (b) µ=13.8cP, (c) µ=7.0cP 

 
 
 

 

NI aborted NI aborted 
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CHAPTER IV  

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

Nonlinear response, stability and bifurcations of rotor systems supported by 

nonlinear fluid film bearings such as floating ring bearings (FRBs) and tilting pad 

journal bearings (TPJBs) were studied using the improved shooting and continuation 

methods along with the conventional numerical investigation approaches (e.g. transient 

numerical integrations, Lyapunov exponents, etc). The employment of mathematical 

deflation and the parallel computing provided that the numerical algorithms could 

incorporate with the finite element bearing models, while other related research has 

utilized the approximated bearing models. The use of the finite element bearing models 

promised to construct complex bearing geometry and to provide accurate oil pressure 

distributions. 

In the dissertation, there were four discussions addressed regarding 1) nonlinear 

response and bifurcations of a rigid rotor supported by FRBs, 2) effects of a thermo-

hydrodynamic (THD) FRB model on rotordynamic bifurcations, 3) nonlinear response 

and bifurcations of a rigid rotor supported by TPJBs, 4) applications to general, 

complex, multi-mass rotor beam models. The specific contributions and results are the 

followings: 
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Rigid rotor supported by floating ring bearings 

1) The bifurcation type of response highly depends on bearing length to 

diameter (L/D) ratio; shorten L/D ratio tends to have subcritical type of 

primary Hopf bifurcation, but higher L/D ratio has supercritical type of  Hopf 

and then undergoes several secondary Hopf bifurcations, i.e. Neimark-

Sacker.  

2) It was confirmed that two coexistent steady state responses can jump to each 

other in the identical operation condition upon a sudden base excitation. This 

has an important consequence for machinery that encounters sudden base 

motions, since response amplitude and ring rotational speed can drastically 

jump at the event. 

3) Chaotic motions were quantitatively confirmed for a non-autonomous case, 

with low L/D ratio in the FRB-rotor system. A positive LE component and 

strange attractor confirmed the characteristics in explicit and implicit 

manners. 

4) In order to quench/reduce the sub-synchronous oil whirls, synchronization 

through an intended unbalance was studied. Numerical investigation for 

determining imbalance eccentricity and position achieved significant 

amplitude reductions. 

5) Comparison between the results from the finite bearing model and short 

bearing model for L/D=0.5 exhibited significant differences of bifurcation 

onsets in high speed condition over 120krpm.  
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Effect of thermo-hydrodynamic (THD) FRB model on bifurcations 

1) In the model, the temperature distributions of the inner and outer lubricant 

layers and ring cross section area were kept updated for a certain time 

segment (i.e. Δt ≈ τR/30). The solution of the shooting and the continuation 

should consent its periodicity for temperature distributions in the FRB 

components as well as for dynamics states of the journal and ring. 

2) In the autonomous case, the obtained THD periodic solutions and THD 

bifurcation diagrams showed that the lubricant supply temperature delays the 

onset of a Hopf bifurcation with increasing speed. However, it adversely 

widens the speed range over which a sudden jump from a benign limit cycle 

to a large limit cycle may occur. In general, the THD bifurcation curves are 

seen to be more sensitive with regard to changes in speed and supply 

temperature than the isothermal responses. 

3) In the non-autonomous case, the simulation results with large unbalance has 

confirmed that the bifurcation event to the oil whirls further delayed due to 

the synchronization. The quenching effect extends the stable regions in high 

spinning speeds; however, it also brings the bifurcations and the multiple 

response states in low speed areas. The stability of the 1/2× sub-synchronous 

and the quasi-periodic responses in the low speed ranges highly depends on 

the lubricant temperature. The comparison with the isothermal case in the 

low speed ranges shows that the bifurcation onsets generally agree well with 

each other due to the small dynamic eccentricities. 
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Rigid rotor supported by tilting pad journal bearings 

1) Results of successive numerical integrations with regards to spin speed vs. 

unbalance force, Loci of bifurcations of the TPJB-rigid rotor were obtained. 

If the bearing gets heavily loaded and highly unbalanced, the response 

exhibited non-synchronous and aperiodic motions other than the classical oil 

whirls; for instance, when W=19.6kN and rpm=15k, the system showed 

various responses in the consecutive forms of 1τ → 2τ → 4τ→ quasi-

periodic/aperiodic as accumulating unbalance force on the disc 

2) Results of the non-autonomous shooting/continuation algorithms discovered 

nonlinear nature of TPJB; in particular, when the unbalance force to bearing 

load ratio (Fu/W) became 5 to 8, the system located under many numbers of 

coexistent response states due to multiple onsets of saddle node bifurcations 

from ½ sub-synchronous responses.  

3) A parametric study with pad-pivot geometry confirmed that the pivot location 

significantly influences nonlinear aspects such that periodic doubling 

bifurcations and high vibration states are significantly suppressed by locating 

the pivot point a little after the mid-plane of the pads (i.e., α/β>0.5). On the 

other hand, the pad preload steers onsets of stable high amplitude ½ sub-

synchronous responses.  

4) It has confirmed that lubricant viscosity has a major role to determine overall 

response behaviors such that higher viscosity (i.e., viscid) tend to suppress 

appearance of sub-synchronous responses and lower viscosity tends to get 

144 

 



 

into quasi-periodic motion. Lyapunov exponents can explicitly differentiate 

n-periodic-, quasi-periodic, chaotic responses in TPJBs. 

 

Extension of study to flexible, multi-mass rotor systems 

1) The improved shooting and continuation methods were combined with the 

model reduction technique, i.e., Component Mode Synthesis (CMS), to deal 

with general, flexible, multi-mass rotor system (i.e., large order system): two 

examples of industrial rotors such as a turbocharger with FRBs and an eight-

stage compressor with TPJBs were studied. 

2) The finite element 14-station turbocharger system that has total 62 DOF was 

reduced to 16 DOF with the aid of CMS. Multiple response states and 

bifurcation diagrams were obtained using the autonomous shooting-CMS 

method. The jump phenomenon between coexistent stable responses at an 

identical operation condition had simulated with a pulse type excitation that 

depicted a sudden bump on the road. Intended imbalance mass on a 

rotor/disk, here, eimb=0.1Co on compressor stage, exhibited the significant 

reduction of the oil whip type orbit to the synchronous orbit in small dynamic 

eccentricity at 30krpm; it was a good example of synchronization. Chaos was 

observed in turbocharger when the L/D ratio of FRB became low rates, for 

instance, below 0.25, under unbalance response.  

3) The finite element 35-station eight-stage compressor system that has total 

150 DOF was reduced to 22 DOF with the aid of CMS. The non-autonomous 
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shooting/continuation-CMS methods applied independently for nτ period, and 

1× synchronous, ½× sub-synchronous and 2× super-synchronous responses 

are identified. A parametric study with pad-pivot geometry confirmed that the 

pivot location plays the main role to determine appearances of sub-

synchronous and quasi-periodic responses in the larger order system. In 

contrast, the amount of preload had influence on stability of the responses at 

high speed ranges. It was reconfirmed that the higher lubricant viscosity 

greatly suppressed the emergence of sub-synchronous and quasi-periodic 

responses. 

 

Recommendations for Further work 

Development of a thermo-hydrodynamic (THD) TPJB model 

With the use of the THD-FRB model, it was discovered that how the thermal 

condition in FRB components influences the bifurcation in a FRB-rotor system. As an 

extension of this work, the development of a THD TPJB model would be 

recommendable, since many of modern turbomachinery install various types of TPJBs. 

The finite element based TPJB models should consider the energy equation and thermal 

conduction equation to calculate thermal property change in 1) shaft to lubricant layers, 

2) lubricant layers on pads and 3) pads to pivots. The steady state THD solution 

procedure would also be utilized for identify the thermal condition in TPJB components. 
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Extension of nonlinear bearing applications 

The introduced improved shooting/continuation methods proved the efficiency 

and adaptability for analysis of finite element based general, complex nonlinear bearing 

models. The incorporation of the algorithms with extended bearing applications such as 

squeeze film dampers (SFDs), SFDs in series with TPJBs, pressure dam, offset bearing, 

seals, etc. would provide original contributions to nonlinear dynamics study of rotor-

bearing systems.  

 

High fidelity finite element bearing models 

The use of high fidelity bearing models to the shooting/continuation would be 

able to specify a detailed source of nonlinear nature in fluid film bearings. In other 

words, modeling of thermos-hydrodynamic fluid elements, thermo-elastic (i.e. 

deformable) solid elements, fluid inertia components and bifurcation study with the 

finite element model would provide information of key factors of nonlinear behaviors of 

hydrodynamic bearings; with engineer’s stand point, this would give useful treatments 

when they encounter an instability.  

 

Nonlinear phenomena due to accumulated unbalance distributions 

Many of industrial turbomachinery are required to consistently operate in years. 

Over a period of time, however, the rotor machinery may develop an unbalance 

condition due to various aspects came from turbine blade erosion/defects, couplings, 

misalignment and generator bowing. A numerical study regarding nonlinear phenomena 
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due to evenly or unevenly accumulated unbalance distributions on rotors/discs would 

give a useful reference for long-term operations. 

 

Development of an algorithm to quench/reduce of large oil whirls (i.e. synchronization)  

A numerical algorithm to identify optimal position and amount of unbalance 

force for quenching a large orbit in a rotor system would be useful reference those who 

involved in shop/field rotor-balancing.  

 

Development of new/improved algorithm for identifying coexistent solutions 

Harmonic balance method, trigonometric collocation method, and shooting 

method, etc. have been using in identifying multiple response states in nonlinear 

rotordynamic systems. It would be meaningful to develop a new/improved algorithm 

other than the conventional approaches. In that sense, Genetic algorithm (GA) recently 

has been utilized as a nonlinear dynamic solver while it is usually employed in optimal 

design study. A preliminary work for “a modified GA for nonlinear rotordynamic 

system” is described Appendix C. 

 

Analytical investigation for routes to chaos of rotor systems 

Chaos can be categorized as a non-periodic steady-state solutions arising in a 

deterministic dynamic system that exhibits a sensitive dependence on initial conditions. 

In the current study, the determinations of chaotic motions in the rotor-bearing systems 

were evaluated in four separate approaches such as Lyapunov exponents, strange 
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attractor, bifurcation diagram, and frequency spectrum. In addition to this, the 

investigation of the transition routes to chaos can be another important aspect to 

understand nonlinear stability of the rotor-bearing systems. A route to chaos can be 

occurred in various ways such as the period-doubling sequence or the intermittency 

mechanisms or quasi-periodic sequence or blue-sky catastrophe, etc.[37]. Identification 

of a chaos route and parametric study with a control parameter would shed light on 

nonlinear causality of the bounded solution from an equilibrium point or a periodic 

solution or a quasiperiodic solution. Besides, analytical predictions of chaos occurrence 

can also be recommendable; for instance, the use of Melnikov’s criterion, which derives 

a function to describe the first order distance between perturbed stable and unperturbed 

manifolds, can provide a global analysis of the heteroclinic or the homoclinic 

bifurcations.  

 

 
Fig. 89. The period-double route to chaos in a Logistics map function 
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Development of a test rig and experimental study 

So far, analytical and numerical methods have been provided the nonlinear 

phenomena in rotor-bearing systems. However, the simulations always face a challenge 

to verify the validity of results so that test data from an open literatures or a test rig 

would be an inevitable step for further work. Furthermore, the experiment results may 

provide another important but missed parameters (e.g. friction, rub, etc.) in the numerical 

modeling of rotor-bearing system. 

In order to construct a test rig, a set of equipment such as a DC motor, rotor, 

stator, pedestal, concrete foundation, lubricating system, coupling, gearbox, eddy-current 

transducers, control box, data acquisition-analysis system, etc. should be considered and 

assembled for experimental purposes. 

 

 
Fig. 90. An example of a rotor-bearing test rig 
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APPENDIX A 

COMPUTATIONAL EFFICIENCY OF DEFLATION ALGORITHM AND 

PARALLEL COMPUTING 

 

The efficiency of deflation and parallel computing is examined by solving a 

nonlinear dynamic problem with nine dynamic state elements; three multiple roots exists 

at a specific parameter set. Four different combinations of the two acceleration 

techniques are arranged as in the following table, 

 

Table A.1. Application sets of the numerical acceleration techniques 
 set #1 set #2 set #3 set #4 

Deflation off on off on 
Parallel computing off off on on 

 

 

Intel xeon 2.5GHz, E5-2670V2 processors of Ada system at Texas A&M 

University supercomputing center is utilized as the computation platform, and 

MATLAB® 2015a is the program language of the shooting algorithm. Two different 

multiple core sets, 6 cores and 12 cores, are applied for overviewing efficiency of the 

parallel computing. The numbers of generated initial guess for the shooting method are 

40, 80, and 120, and the solution procedures are repeated 5 times to average the 

execution time. As can be seen in Fig. A.1-1 and Table A.1-2, the applications of the 

both techniques can eventually accelerate 5 to 8 times faster than the conventional 
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shooting with 6 cores of CPU and 12 to 15 times with 12 cores of CPU. The shooting 

method utilizes both the techniques, and arc-length continuation only employs parallel 

computing since it is a path-following of a current solution.  

 

Table A.1. Computation time with the numerical acceleration techniques 

6 Cores w/o deflation 
w/o parallel 

w deflation 
w/o parallel 

w/o deflation 
w parallel 

w deflation 
w parallel 

40 shoots 564 sec 288 sec 117 sec 69.2 sec 
80 shoots 1128 sec 631 sec 330 sec 228 sec 

120 shoots 1911 sec 865 sec 558 sec 376 sec 
     

12 Cores w/o deflation 
w/o parallel 

w deflation 
w/o parallel 

w/o deflation 
w parallel 

w deflation 
w parallel 

40 shoots 562 sec 288 sec 77.2 sec 43.6 sec 
80 shoots 1124 sec 622 sec 151 sec 87.5 sec 

120 shoots 1902 sec 857 sec 236 sec 126 sec 
 

 

 
Fig. A.2. Computation time of shooting method for solving a three-multiple root 

nonlinear equation problem with acceleration techniques 
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APPENDIX B 

AUTONOMOUS SHOOTING/CONTINUATION TO A COMPLEX, MULTI-MASS 

ROTOR SUPPORTED ON FIXED PAD JOURNAL BEARING 

 

Finite element fixed pad journal bearing 

The eight-stage compressor is supported by fixed pad journal bearings that have 

the following description: 

Table B.1. Parameters of fixed pad journal bearing 

5 pads 
 
viscosity = 0.0134 Ns/m2 
 
bearing length = 0.127m 
 
Pivot offset = 0.5 

Pad arc length 60 degrees 
 
shaft diameter = 0.127 m 
 
radial clearance=0.0106 ×10-3 
 
preloads = 0.0, 0.5, 0.75 

 

Different amount (Mp=0.0, 0.5, 0.75) are applied for case study with bearing preloads 

such as relation between the preloads and rotor stabilities including bifurcation. 

 

Shooting and Continuation 

The shooting and the arc-length continuation algorithms have applied to the 

compressor rotor system, the bearing has 0.75 preloads. Fig. B.1. depicts the bifurcation 

diagram of orbit maximum and minimum displacement in y-direction and corresponding 

response period. It is shown that system has sub-critical Hopf bifurcation near 8100 rpm 

and then approximate 1/2 sub-synchronous whirl orbit is emerged (Figs. B.2 and B.3). 
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Fig. B.1. Orbital motion of multiple response at 7700rpm (Mp=0.75) 

 

 

  (a) Stable LC                    (b) Unstable LC                 (c) Stable EP 

 
Fig. B.2. Orbital motion of multiple response at 7700rpm (Mp=0.75) 
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(a) Attraction to stable LC                              (b) Attraction to stable EP 

                   
Fig. B.3. Attraction from unstable response to stable response 

 

Multiple response state of the compressor supported by fixed pad bearing has 

studied with respect to different pad preloads (Mp). The shooting and arc-length 

continuation applied to the rotor system with three different bearing preloads condition 

(i.e., Mp = 0.0, 0.5, 0.75). The bifurcation diagrams from the results show that bearing 

preload has a relation with Hopf bifurcation of the system. In the Fig. B.4, preload 

increases system stability so that instability onset speed has increased along with amount 

of preload, and it also changes Hopf bifurcation types from super-critical to sub-critical 

(Table B.2).  Figure B.4 (c) clearly show that multiple response can exist near the 

bifurcation point. 

 

Table B.2. Fixed pad bearing characteristics in eight stage compressor w.r.t. pad preload 

Pad preload (Mp) Instability onset speed 
(Jump from EP to LC) 

Multiple steady state 
response region Hopf type 

0.0 5740 rpm - super-critical 

0.5 6530 rpm 6520 ~ 6530 rpm sub-critical 

0.75 8100 rpm 7660 ~ 8100 rpm sub-critical 
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(a) Mp = 0.0 

 

(b) Mp = 0.5 

 

(c) Mp = 0.75 

 
Fig. B.4. Transition of Hopf bifurcation (Super →  Sub-critical) due to bearing pad 

preload (Mp) 
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Jump phenomenon at same speed 

From the bifurcation diagram of Mp=0.75 case, there is a region that multiple 

steady state response coexist. A simulation which depicts sudden house impact when 

response is located in the equilibrium position shows that orbit jump to the other steady 

state response (Fig. B.5). It is shown that the orbit first attracted an unstable limit cycle 

but it eventually converges to the stable limit cycle. Thus, in this case, operator may 

observe two amplitude jumps sequentially after the sudden impact. Similar jump 

phenomenon may be occurred the multiple steady state coexistence region. 

 
(a) Stable response #1 

(limit cycle) 
(b) Stable response #2 
(equilibrium position) 

(c) Jump from response #2 
(EP) to response #1 (LC) 
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Fig. B.5. Jump between two stable response (EP to LC) at 7900rpm (Mp=0.75) 

 

 

Synchronization 

Synchronization for the compressor rotor model is studied. Prior to determine 

imbalance position and amount, the transient numerical integrations apply to obtain three 

dimensional rotor beam motion at 8000rpm, which represents the data collected between 

390 ~ 400 revolution periods (See Fig. B.6).  
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Fig. B.6. (a) 3D orbits from time transient numerical integration at 8000 rpm (no 
imbalance, 390-400rev), (b) Frequency spectrum of bearing #1 

 

In order to identify an appropriate position of imbalance for synchronization, 

various position and amount of imbalance are tested with transient numerical integration 

method as shown in Table B.3. and Fig. B.7. From the results, middle of the rotor is 

assumed to be most influential position for imbalance. 

 

Table B.3. Run cases for synchronization 

Station # 
(imbalance position) 

imbalance eccentricity (eimb),  
ratio of unbalance force to weight of 

the rotor(n) 
phase angles 

#17 (center) 

eimb =2.0Cb,  n=0.64 

0°, 45°, 90° eimb =3.0Cb,  n=0.96 

eimb =4.0Cb,  n=1.28 

#7(first stage),  
#28(last stage) 

eimb =2.0Cb,  n=0.64 

0°, 45°, 90° eimb =3.0Cb,  n=0.96 

eimb =4.0Cb,  n=1.28 
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Fig. B.7. Responses with different imbalance amounts on 17th node (using transient 
numerical integrations) 
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Fig. B.8. Responses with different phase angles on 17th node (using transient numerical 
integrations) 
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Synchronous response from Shooting 

Shooting method is also utilized to identify synchronous response under 

unbalance force. As a result, Shooting found an initial condition for stable synchronous 

response which could not obtained from numerical integration method. From this result, 

better amount of imbalance force (eimb=4Cb → eimb=3Cb) are identified. In future, 

Shooting-Genetic combined algorithm will be developed to provide optimal position and 

amount of imbalance force for synchronization. 
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Fig. B.9. Synchronization result obtained from Shooting method. 
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APPENDIX C 

DEVELOPMENT OF A DIRECT SOLUTION SEARCH SOLVER FOR NONLINEAR 

OSCILLIATIONS BASED ON GENETIC ALGORITHM 

 

Generic algorithm (GA) is a method for solving both constrained and 

unconstrained optimization problems based on a natural selection process that mimics 

biological evolution. The algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm randomly selects individuals from the 

current population and uses them as parents to produce the children for the next 

generation. Over successive generations, the population "evolves" toward an optimal 

solution. In the case of rotordynamics, this may correspond as follows, 

 

Table C.1. Genetic algorithm creatures vs. Correspondences for rotor-dynamics 
Creatures  Rotor-dynamics 

Population ⇔  State vector 

Genetic objectives ⇔  Min (0) ( )x x T−  

 

Moreover, crossover reproduction process is not appropriate for the state vector 

GA.  This may be explained that the crossover of two different equilibrium points (EPs) 

doesn’t make improvement or another EP.  Instead of crossover, random reproduction 

will be applied to maintain diversity of possible solution.  The following flow chart in 

Fig. C.1. represents a genetic process for multiple steady state responses for nonlinear 

dynamic system. 
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Fig. C.1. Flow chart of genetic process 
 

Duffing System (Non-autonomous) 

For a trial test, relatively simple nonlinear dynamic equation such as a Duffing 

system is tested. As a result, though the GA missed two initial conditions compared to 

the shooting method (Table C.2 and Fig. C.2), GA also could find all possible orbits in 

the system. 

( )ξ ε δ ω τ′′ ′+ + + =32 cosSL Rx x x x  (C 1) 

′ =x y  (C 2) 

ξ ω ε δ= = = =.005, 3.2, .5, .5R SL  (C 3) 

Randomly create N initial conditions 
(0)x   

Numerical integration of each initial 
condition for one period (T) 

Calculation of the norm (i.e. ∆X=║x(0)-x(T) ║) 
& 

Select M lowest initial conditions 

Three reproduction techniques for survived (parent) initial conditions 
- Mutation (inbreed): slightly changed state vectors 

- Crossover (random): randomly produced state vectors 
- Clone: a successor who maintain parent state vector 

Solutions 

∆X < converge limit 

No 

Yes 

Next 
Generation 

170 

 



 

Table C.2. Coexistent solutions identified by Genetic algorithm vs. Shooting method 
 Genetic Algorithm Shooting Method Note 

Harmonic 
solution (τ=TR) i (-0.054119   0.000599) (-0.054118   0.000599) response 1 

Sub-harmonic 
solution 

(τ=1/3TR) 

i (-0.054107   0.000593) (-0.054106   0.000593) response 1 
ii (-0.175030  -0.636609) (-0.173977  -0.636687) 

response 2 iii - ( 0.400286   0.402331) 
iv - (-0.607937   0.232897) 
v ( 0.037171  -0.610530) ( 0.037034  -0.610908) 

response 3 vi (-0.516674   0.445559) (-0.516940   0.445090) 
vii ( 0.529551   0.219957) ( 0.529795   0.219361) 
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Fig. C.2. Time events and phase portraits of solutions 
 

 

Van Der Pol system (Autonomous) 

To solve an autonomous system, the Genetic algorithm treats the response period 

(T) as one more unknown parameter, and the other process is same as the non-

autonomous system. As a result, GA could find two (stable) responses and missed one 

(unstable) response compared to the Shooting method (Table C.3. and Fig C.3).  
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 ( , ) 0x x h x yε′′ + + =  
where, ( )3 5 7( , ) 31.83 51.89 11.84 0.566 /1000h x y x x x x′ ′ ′ ′= − + − +  

5ε =  

(C 4) 

  

Table C.3. Coexistent solutions identified by Genetic algorithm vs. Shooting method 
 Genetic Algorithm Shooting Method Note 

Limit 
cycles 

i x0= [-0.29775  -0.94243] 
T0= 1.00122 

x0= [-0.418664  0.924055] 
T0= 1.00126 response 1 

ii x0= [-5.30223   0.02069] 
T0= 1.12177  

x0=  [-1.520554  4.001426] 
T0=1.12178 response 2 

iii - x0= [-0.260788  2.410471] 
T0=1.00634 response 3 
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Fig. C.3. Phase paths, time events, and frequency spectra of solutions 
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Genetic Algorithm to Floating Ring Bearing System 

Genetic algorithm code has been developing to solve the floating ring bearing 

system introduced in Chapter 3.  The cross-over reproduction process in the GA 

approach now uses two-states vector while single DOF systems such as Duffing and Van 

Der Pols has one. This process slightly increased convergence rate to find steady state 

responses. It is shown that the reproduction process highly affects the efficiency of the 

solution search.  

First, current version of GA code has applied to autonomous FRB system at 36 

krpm and 140 krpm. As a result, a single response of the journal and ring is identified as 

shown in Fig C.4. In contrast, two different limit cycles are identified at 65krpm by GA. 

Current version of the GA is not faster than the shooting method, but one big advantage 

of the GA is able to find multiple solutions independently and simultaneously. 

 

 (a) Identified solution at 36krpm by Genetic algorithm 
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Fig. C.4. Solution identified by Genetic algorithm: (a) 36 krpm, (b) 140 krpm 
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(b) Identified solution at 140krpm by Genetic algorithm 
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Fig. C.4. Continued 

 

 
Each limit cycle is the result of revolutions; Figure C.6 (a) and (b) show the 

revolution of response generation by generation. 

 (a) Limit cycle #1  
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 (b) Limit cycle #2  
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Fig. C.5. Multiple response states (two stable limit cycles) identified by GA 
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(a) Limit cycle #1: Orbit Changed by Generation 
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 (b) Limit cycle #2: Phase Path Changed by Generation 
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Fig. C.6. Revolution of the responses by Genetic algorithm  
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APPENDIX D 

FORMULATIONS OF FLUID FILM FORCE BASED ON INFINITELY SHORT 

BEARING APPROXIMATION 

 

( ) ( )
1/22 2

2 2

2 2 3 ( , , ) sin ( , , ) 2cos ( , , )
3 ( , , ) cos ( , , ) 2sin ( , , )1

α α α α α
α α α α α

 ′− + + − −    = −   + −− −   

x

y

x y y xf xV x y G x y S x y
f xV x y G x y S x yx y

 

where,  

 ( )2 2atan sign sign 2
2 2 2 2

π πα
′ ′   + + ′= − − +   ′ ′− −   

y x y x y x
x y x y

 

 ( )
2 2

2 cos sin ( , , )
( , , )

1
α α α

α
+ −

=
− −

y x G x y
V x y

x y
 

 

( ) ( )2 .52 2 .5 2 2

cos sin 2 cos sin( , , ) , ( , , ) atan
(1 ) 21 cos sin 1
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