
A RECONFIGURABLE APPROXIMATE JPEG ENCODER IMPLEMENTED

ON FPGA PLATFORM

A Thesis

by

SHRIJA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Co-Chair of Committee, Duncan M. Walker
Committee Member, Peng Li

Head of Department, Miroslav M. Begovic

December 2016

Major Subject: Computer Engineering

Copyright 2016 Shrija

ABSTRACT

Approximate computing is a blooming field of research, which involves a compro-

mise of an application’s accuracy to make it more efficient. It necessarily involves

a deliberate effort to make an application imprecise in order to conserve some re-

source. While the techniques for approximation may include using approximate

functional units, approximate storage hardware, approximate network communica-

tion or executing algorithms with varying precision, in this thesis, we mainly aim to

use approximate arithmetic units in a JPEG Encoder Core.

Using imprecise arithmetic units requires an identification of the applications

which are resilient to errors. JPEG compression is inherently a lossy compression as

the degradation in image quality isn’t perceptible to the end users for a significant

compression ratio. This tolerance of JPEG compression to a loss of data is exploited

to replace the accurate computationally intensive blocks of the JPEG encoding algo-

rithm with their imprecise counterparts. The approximate hardware design proposed

in this thesis is also reconfigurable, which implies that the end user can select the

level of approximation desired based on the loss in accuracy allowed.

The reconfigurable approximate JPEG hardware is also implemented on the

FPGA platform. The FPGA emulation of the approximate and the precise ver-

sions of the JPEG Encoder core is done on the Altera DE1-SoC with Cyclone V

device and an ARM based Hard Processor System. The emulation provided a max-

imum area reduction by 45%, maximum delay reduction by 29% and a maximum

power reduction by 28% for an approximation of 8 least significant bits. For approx-

imation of more than 8 least significant bits, the peak-signal-to-noise ratio of the

decompressed image is very low, resulting in poor image quality.

ii

DEDICATION

To my Parents Mrs.& Mr. Sinha, Sneha and Vishal.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor and committee chair

Dr. Jiang Hu for his continuous guidance, untiring support and immense knowledge

and for keeping me motivated throughout the last two years. I also wish to thank

Dr. Duncan Walker and Dr. Peng Li for serving on my committee and for their

meticulous feedback on my work.

I express my deepest appreciation for the faculty at Texas A&M, who have helped

me develop a strong knowledge base and acquire the required skill set for my research

through the coursework. I also thank my family, who have always been a source of

encouragement and have inspired me to follow my dreams. Last but not the least, I

want to thank all my friends, who have been a constant support and have kept me

smiling through this entire process.

iv

NOMENCLATURE

FPGA Field Programmable Gate Array

DSP Digital Signal Processing

DCT Discrete Cosine Transform

RLE Run Length Encoding

IDCT Inverse Discrete Cosine Transform

SoC System on Chip

ARM Advanced RISC Machine

HPS Hard Processor System

BRAM Block Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

HDL Hardware Description Language

RCA Ripple Carry Adder

CLA Carry Lookahead Adder

GDA Gracefully Degrading Accuracy Configurable Adder

ACA Accuracy Configurable Adder

ALM Adaptive Logic Module

JTAG Joint Test Action Group

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Motivation Behind Approximate Computing 2
1.2 Issues and Limitations of Approximate Computing 3
1.3 Design Overview . 4

2. PREVIOUS WORK . 6

2.1 Approximate Arithmetic Units . 6
2.1.1 Approximate Adders . 7
2.1.2 Approximate Multipliers . 8

3. BACKGROUND . 9

3.1 JPEG Compression . 9
3.1.1 Color Space Transformation 11
3.1.2 Discrete Cosine Transform . 11
3.1.3 Quantization . 12
3.1.4 Entropy Coding . 13

3.2 FPGA . 15
3.3 Project Description . 16

3.3.1 Standard Cell Library . 16
3.3.2 Softwares Used . 16
3.3.3 Approach . 17

vi

4. APPROXIMATE ARITHMETIC UNIT DESIGN 21

4.1 Approximate Adder Design . 21
4.2 Approximate Multiplier Design . 22
4.3 Experimental Results . 23

5. APPROXIMATE JPEG HARDWARE DESIGN 26

5.1 Approximate DCT Design . 26
5.2 Approximate Quantizer Design . 26
5.3 Approximate Encoder Design . 27
5.4 Experimental Results . 27

6. FPGA IMPLEMENTATION . 31

6.1 FPGA Specifications . 31
6.2 IP Cores . 32

6.2.1 General Purpose Input-Output 32
6.2.2 Block RAM . 33

6.3 Implementation Details . 33
6.3.1 Image Data . 34
6.3.2 System Schematic . 34
6.3.3 Programming the FPGA . 35
6.3.4 Bitstream Capture . 36

6.4 System Validation . 36
6.4.1 Functional Verification . 36
6.4.2 Area Reduction . 37
6.4.3 Power Saving . 37
6.4.4 Delay Reduction . 38
6.4.5 Clock Speed . 39
6.4.6 PSNR Degradation . 40
6.4.7 Approximation with Different Compression Ratios 41

7. CONCLUSION AND FUTURE WORK 43

REFERENCES . 44

vii

LIST OF FIGURES

FIGURE Page

3.1 Block Diagram of JPEG Encoder . 10

3.2 Comparison of Original and Reconstructed Image 10

3.3 Horizontal and Vertical Frequencies of 2D-DCT 13

3.4 Zigzag Sequencing of the Image Components 14

3.5 Altera DE1-SoC Board with Cyclone V FPGA 15

3.6 Block Diagram of Approximate JPEG Encoder 18

4.1 Approximate Adder Design . 22

4.2 Approximate Multiplier Design . 23

4.3 Power Delay Product of Approximate Arithmetic Units Vs. Number
of Approximate LSBs . 25

5.1 Percentage Delay Reduction Vs. Number of Approximate LSBs . . . 29

5.2 Percentage Power Saving Vs. Number of Approximate LSBs 29

5.3 Percentage Area Reduction Vs. Number of Approximate LSBs 30

6.1 Internal Block Diagram of the DE1-SoC Board 31

6.2 Block Diagram of the GPIO IP Core 32

6.3 IP Blocks of Single and Dual Port RAM 33

6.4 Flow Diagram of FPGA Implementation 35

6.5 Schematic of the FPGA Implementation 36

6.6 Simulation Results . 37

6.7 Block Diagram of an ALM . 38

viii

6.8 Plot of the Comparison Metrics Vs. Number of Approximated LSBs . 40

ix

LIST OF TABLES

TABLE Page

4.1 Comparison of Accurate and Approximate Adder Design 24

4.2 Comparison of Accurate and Approximate Multiplier Design 24

5.1 Comparison of Accurate and Approximate DCT Blocks 28

5.2 Comparison of Accurate and Approximate Quantizer Blocks 28

5.3 Comparison of Accurate and Approximate Encoder Blocks 28

6.1 Area Comparison of Accurate and Approximate Designs 38

6.2 Power Comparison of Accurate and Approximate Designs 39

6.3 Delay Comparison of Accurate and Approximate Designs 39

6.4 Clock Speed Comparison of Accurate and Approximate Designs . . . 40

6.5 Comparison of PSNR Degradation for Accurate and Approximate De-
signs . 41

6.6 Comparison of PSNR Degradation with the No. of Approximate LSBs
for Different Compression Ratios . 42

x

1. INTRODUCTION

In today’s world, extensive applications like social media, scientific computing

etc. are witnessing a rapid growth with respect to user demands. Most of these

applications are computationally intensive and have an enormous storage require-

ment. It is expected that in the coming years, the rate of increase in the amount

of information being processed might far exceed the rate of increase of the avail-

able resources. As a result, the disposition of the required resources would not be

possible. With the increasing demands for performance and the scarcity of the avail-

able resources, approximate computing is an encouraging solution to the inevitable

dilemma of balancing the performance requirement and the meagre resources.

By exploring the applications that are tolerant to error and don’t have strict

requirements of accurate results, approximate computing can be employed to facili-

tate resource savings. However, this also implies that suitable quality metrics should

be used to estimate the degradation in quality weighed against the improvement in

system parameters. Only a level of accuracy can be compromised to get an improve-

ment in the efficiency of the application. This necessitates the critical evaluation

of the errors introduced in the application due to approximation. So, approximate

computing is a multi dimensional area of research and each and every aspect has to

be given its due importance.

This section is a short introduction to the work presented in this thesis. Initially,

the need for the growth of approximate computing as a field of research is presented,

followed by the challenges faced in developing an approximate system. The last

section describes a brief overview of the design implemented in this thesis.

1

1.1 Motivation Behind Approximate Computing

The motivation for approximate computing comes from the fact that in many

applications, like, multimedia, signal processing, machine learning, etc., the amount

of accuracy being provided by the computing system is more than the amount of

accuracy required by the user. Hence, instead of performing exact computations and

using excessive resources, it is possible to introduce a small approximation and save

resources, while maintaining the quality of service at the acceptable level.

Many of the real time applications have an intrinsic scope of approximation.

Some applications are prone to noisy input or frequent breakdown of the hardware.

Yet others have unequal loading at different points of time. All these applications

present an alluring platform to use approximate computing. In these applications,

loss of accuracy is anyways unavoidable. Using approximation, however, facilitates

resource saving at the cost of imprecise results.

There are some applications, which are resilient to loss of accuracy due to the

inability of the humans to percieve the difference between an accurate and an in-

accurate computation. Such applications, like multimedia applications, have a lot

of scope for approximation. Even if the results are inaccurate, human senses might

not be able to percieve the difference and the quality of service might be acceptable.

Most of these applications use computationally intensive DSP blocks, hence, using

approximate hardware would provide a lot of resource savings.

Another property of the applications which provides a scope for approximation

is redundancy. If the results of the application are correlated, either with respect to

time or with respect to space, approximation can be used to increase the efficiency.

Memoization is a well known technique which stores the results of an expensive

computation or function call to be returned later if the same input vectors are applied.

2

Other software approaches can also be used to optimize the application.

Some applications don’t have a single correct result but multiple correct results

are returned, for example, in search engines. Other applications can save a lot of

resource by employing precision scaling and skipping some iterations of the loop. All

these applications provide the motivation for approximate computing.

1.2 Issues and Limitations of Approximate Computing

Approximate computing helps save resources, however, it also comes with some

challenges. There are issues which are to be addressed before the practicability of

any application employing approximate computing.

The first limitation of approximate computing is that not all applications have

a scope of approximation. Some applications, like, real time tracking systems, high

accuracy measurement systems, etc. have a demand for high accuracy, as a result,

using approximate computations might be catastrophic. Also, not all approximation

strategies provide a good range of approximation. Some strategies have a very limited

range of approximation and hence cannot be used in many applications.

Using approximate computing also necessitates the use of proper quality metrics

to weigh the loss of accuracy introduced. If suitable quality metrics aren’t used,

there is a chance that the output quality may be degraded beyond the acceptable

level, however, it isn’t sampled properly due to the use of an improper metric. For

example, an approximate image processing hardware might give a bad image quality

if only the power consumption and not the PSNR is used as a metric to measure the

performance.

Another challenge is that using approximation may introduce a lot of overhead.

For example, the approximate reconfigurable adder proposed by [27] has a smaller

delay as compared to the accurate adder, however, the extra combinational logic

3

in the design to achieve a smaller delay leads to an overhead in area and power

consumption. The overhead may also be in the form of the amount of effort required

to design an approximate system.

Also, the strategies used for approximation are very specific to the type of appli-

cation they can be used on. Hence, a lot of background work is required to determine

the suitable technique for approximation. Using an approximate version of an appli-

cation would also require a continuous monitoring of the output quality. The errors

introduced due to approximation, hence, should be within acceptable bounds, else,

the output would fall below the acceptable level of degradation and would result in

poor quality of service. So, a lot of factors have to be kept in mind before developing

an application with approximation.

1.3 Design Overview

As mentioned above, the error-resilience of applications provides a scope for ap-

proximation. The work presented in this thesis aims at using the error-resilience of

JPEG compression algorithm to develop a reconfigurable approximate hardware for

JPEG compression, which can be reconfigured for different levels of approximation.

The reconfigurable hardware is also implemented on FPGA platform.

JPEG compression is a lossy compression algorithm, and is hence resilient to a

loss of accuracy. As proposed in [24], a PSNR value of 30dB or greater is considered

acceptable. The most computationally intensive step in JPEG compression is the

Discrete Cosine Transform (DCT) , which expresses data points as the sum of cosine

functions oscillating at varying fundamental frequencies. The DCT step uses a large

number of arithmetic units to perform the computations. After DCT, the next

step is quantization, which aims at mapping a large set of data to smaller set, thus

reducing the file size. The Quantizer block in JPEG compression also requires a lot

4

of arithmetic units.

The idea presented in this thesis is to use approximate arithmetic units instead

of the accurate ones in the DCT and the Quantizer blocks of JPEG compression and

hence reduce the delay of the compression as well as have power and area savings.

Also, the approximate arithmetic units, namely, the approximate adder and approx-

imate multiplier are made reconfigurable, which implies that the user can choose

the level of approximation and the degradation in the output quality that can be

tolerated.

The approximate arithmetic units introduce some error in the least significant

bits of the result, as the least significant bits carry lesser weight than the most

significant bits. So, small errors in the LSBs can be introduced without causing much

difference in the result. The adders and the multipliers are reconfigurable in the sense

that the number of LSBs of the result that would be computed approximately can

be configured by the user based on the level of output degradation allowed or the

required amount of reduction in delay.

The reconfigurable hardware designed is then implemented on the Altera DE1-

SoC FPGA. Different versions with different levels of approximation are implemented

and the output is verified. The FPGA emulation also validates the reduction in la-

tency, increase in the clock frequency and the savings in the area and power of the

approximate version as compared to the accurate version. The FPGA implemen-

tation of the approximate version can be used as a platform for characterization of

new approximate arithmetic units as well as for further research in using approximate

computing to optimize performance.

5

2. PREVIOUS WORK

The earliest works in approximate computing can be traced back to the Floating

Point computations, where the results are frequently rounded-off to reduce the stor-

age costs while compromising the accuracy. Since that time, numerous works have

been done to develop an approximate system to trade-off accuracy for the improve-

ment of some other parameter.

The works on approximate computing can be broadly grouped into two catagories,

namely software approaches to approximate computing and hardware approaches to

approximate computing. The salient techniques for approximation used by the soft-

ware approaches are executing an imprecise version of an algorithm in the program,

altering the precision of the intermediate computations to reduce storage cost, re-

ducing computational cost by skipping some loop iterations, memoization and using

many imprecise versions of a program. The techniques used for hardware approaches

to approximation, as dicussed in [22] are mainly using faulty or inaccurate hardware,

using voltage scaling, approximate memory structures, skipping memory accesses,

approximations in neural networks and SIMD architectures, etc. The work pre-

sented in [1] partitions the application into error-resilient and error-sensitive parts

and then uses approximation models for the error-resilient part of the application.

Our research is limited to the use of approximate arithmetic units, so, in the rest

of this section, the previous works on the approximate arithmetic units is discussed.

2.1 Approximate Arithmetic Units

A number of works have proposed using approximate arithmetic units, namely,

adders and multipliers, in place of the accurate ones in computationally intensive

applications. As the least significant bits carry less weight than the most significant

6

bits, it is feasible to introduce approximation in the least significant bits of the

result. The following subsections list some prior works on approximate adders and

multipliers respectively.

2.1.1 Approximate Adders

One of the earliest works in approximate adder design, [16], comprises of the re-

duction in error introduced in a Ripple Carry Adder due to voltage scaling. Four dif-

ferent voltages are supplied to the RCA to reduce the switching power, while making

sure that the critical path isn’t violated. The adder proposed by [26] deterministi-

cally produces inaccurate results for specific input vectors. The work presented in [5]

introduces various configurations of imprecise multi bit adders comprising full adder

cells, namely simplified Mirror Adder (MA), MA Approximation 1, MA Approxima-

tion 2 and MA Approximation 3, which have a simpler transistor level schematic,

and hence have lesser delay and significant power and area savings with a negligible

loss of accuracy. With the advent of approximate as well as probabilistic adders,

new metrics were required to prove the potency of these adders. [18] proposes Mean

Error Distance (MED), Normalised Error Distance (NED) and Sequential Probabil-

ity Transition Matrices (SPTMs) as the new metrics to evaluate the approximate

and probabilistic adders. A logic to reduce the errors due to approximation, known

as the conditional bound logic for the least significant bits is proposed in [21]. An-

other work on imprecise adders with reduced transistor level complexity is [6], which

proposes five approximate versions of the conventional Mirror Adder.

While most of the works listed above have a fixed bit-width approximation, there

are some works on reconfigurable approximate adders as well. [15] proposes an

accuracy configurable adder, which can operate in both precise and approximate

modes owing to the facility of configuring the accuracy of the results at runtime.

7

[27] also proposes a gracefully degrading accuracy configurable adder, which can be

configured at runtime. A critical evaluation of all the approximate adders is discussed

in [14], while [8] presents a comprenensive evaluation of the energy efficiency of

approximate computing paradigm.

2.1.2 Approximate Multipliers

The work proposed in [7] introduces an approximate multiplier design by using

approximate adders which have shorter critical paths as their carry propagation is

limited to a single stage. The approximate multiplier has lesser power consumption

and shorter delay and also has an error recovery mechanism. The approximate mul-

tiplier proposed by [19] is a modified Wallace Tree Multiplier with reduced number

of partial product stages. Another approximate multiplier for low power DSP ap-

plications is the one proposed by [4], which uses a broken booth multiplier. The

proposed multiplier replaces all the least significant bits of the partial products upto

the vertical breaking level to zero.

The above section outlines the prior work done in the approximate arithmetic

unit design. However, there are many more facets to approximate computing than

just circuit design. [23] lays an emphasis on some meta functions that are inherently

error resilient and hence are fluently scalable under voltage over-scaling when imple-

mented in hardware. Approximate computing has been widely adopted in memory

architecture as well, like in [17], the fidelity of the stored data in an SRAM is traded

off for a reduction in power consumed to retain the data .

8

3. BACKGROUND

This chapter contains some relevant background which is needed to understand

the work presented in this thesis. The main focus of this thesis is to develop a

platform for reconfigurable approximate application. The platform used is the Al-

tera De1-SoC FPGA and the application inculcating approximation is the JPEG

Encoder. The section 3.1 covers a description of the JPEG Compression algorithm

and the major steps involved in the encoding scheme. The next section gives a brief

description of the FPGA platform and the IP cores used in the implementation of

the approximate hardware. The methodology of the project has been discussed in

the last section.

The HDL used in the description of the JPEG hardware is Verilog [12]. Verilog is

a hardware description language, standardized as IEEE 1364 and is used in the mod-

elling and verification of electronic circuits. The description of the JPEG Encoder

core [20] is done at the register transfer level of abstraction. This level of abstraction

models the circuits in terms of the flow of data between the hardware registers and

the logical and arithmetic operations performed on the data. The description of the

hardware in Verilog is synthesizable, which means that the design can be physically

realized by using some synthesis softwares.

3.1 JPEG Compression

JPEG stands for Joint Photographic Expert Group, which is the name of the

committee that created JPEG as well as other still picture coding standards. The

first JPEG standard was issued by the committee in the year 1992. The block

diagram of the baseline JPEG Encoder is shown in Figure 3.1. The rest of this

section explains the various blocks of the JPEG Compression.

9

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Transform
Cosine

Discrete

Transform

Color
Space Quantization

Image Data

JPEG Bitstream
Tables

Quantization
Tables

Huffman

JPEG ENCODER

Coding
Entropy

Figure 3.1: Block Diagram of JPEG Encoder

JPEG Compression is inherently lossy in nature, which implies that there is some

loss of pixel data in the compression process and the reconstructed image doesn’t

have the same pixel values as the original image. As a result, JPEG can’t be used

in the images in which a sharp contrast between the neighboring pixels can change

the image information. JPEG should also not be used in cases where an exact

reproduction of images is required. The Figure 3.2 shows the comparison between

the original and the reconstructed images.

(a) Original Image (b) Reconstructed Image

Figure 3.2: Comparison of Original and Reconstructed Image

10

3.1.1 Color Space Transformation

The first step in the JPEG compression algorithm is the color space transforma-

tion. In this step, the image is transformed from the RGB color space to a different

color space, called the YCbCr space. The Y component represents the brightness

of the pixels and the Cb and Cr components represents the chrominance, which is

the color information of a picture. This transformation is done as it provides greater

image compression without a significant loss in the perceptual image quality. The

brightness information is confined to a single channel, which makes the compression

more efficient as the image quality is governed by the brightness information. After

the conversion to YCbCr space, the spatial resolution of the Cb and Cr components

is reduced, in a process called “Downsampling” or “Chroma Sampling”.

3.1.2 Discrete Cosine Transform

After the color space transform, the image is broken to blocks of 8X8 pixels

and each 8X8 block of each component is then transformed into frequency domain

representation, by using normalized 2D-Discrete Cosine Transformation. The DCT

operation transforms the data points to a sum of cosine signals of varying fundamen-

tal frequencies. The DCT is used in the compression algorithm as it has a very strong

energy compaction property, which means that it redistributes the signal energy into

a very small number of coefficients, owing to the way its basis function is formed.

The following formula is used for 2D-DCT:

Xk =

N−1
∑

n=0

xncos(
π

N
(n+

1

2

)k) (3.1)

Prior to the computation of DCT, each 8X8 block has to be centered around 0. Since

each data point lies in the interval [0,255], 128 has to be subtracted from each data

11

point to center the values around 0. For the 8X8 matrix, the DCT is performed by

the following formula:

DY = T ∗ Y ∗ T−1 (3.2)

where, T is the DCT matrix and T−1 is its inverse. Y is the matrix representation

of the 8x8 pixel block. DY is the resultant matrix after the 2D DCT. The top-left

entry of the 8X8 block is the DC coefficient and it represents the basic hue of the

entire block. The rest of the 63 coefficients are the AC coefficients. The DCT stage

confines most of the signal to one corner of the result. This stage also increases the

bit-depth of the data, however, this isn’t a major concern, since only a small subset

of the image data is in the DCT stage at a given time. The Figure 3.3 shows the

combination of the horizontal and vertical frequencies of a 2D-DCT.

3.1.3 Quantization

Quantization is the next step in the JPEG encoding algorithm. The basis of

this step is the inability of the human eye to percieve the exact strength of a high

frequency brightness variation. This encourages the reduction of the signal strength

of the high frequency components in the image matrix. In this step, each high

frequency component is divided by a particular constant that is specific to that

component. The division makes the value smaller and then the result is rounded

off to the nearest integer. Most of the values are reduced to zero, and the rest are

reduced to small positive integers. This step is a lossy step, as once a value has been

rounded off to an integer or reduced to zero, it can’t be reverted to the original value.

Hence, some of the image information is lost in this step. Both the previous steps,

the DCT and the color transformation are completely reversible and the data can

be fully recovered. The quantization step makes the compression algorithm lossy in

12

Figure 3.3: Horizontal and Vertical Frequencies of 2D-DCT

nature. The quantization step makes the entropy coding easier as well, since, the

greater the recurrence of the data, the easier it is to encode it.

3.1.4 Entropy Coding

The final step of the JPEG compression is the Entropy Coding step, which is again

a lossless compression step. The entropy coding step employs zigzag sequencing of

the image components, followed by the run length encoding, after which, the data is

compressed by applying Huffman Coding.

3.1.4.1 Zigzag Sequencing

This step involves arranging the image components in a zigzag sequence. The

figure 3.4 shows the sequence in which the image components are arranged.

13

Figure 3.4: Zigzag Sequencing of the Image Components

3.1.4.2 Run Length Encoding

Run Length Encoding is a form of encoding in which the similar data are grouped

together. In this process, the number of similar data points are counted and then

the group of similar data points are stored just as a single data and the count value.

3.1.4.3 Huffman Coding

Huffman Coding step involves the use of Huffman tables, which is derived from

the probability and the frequency of occurence of each value. It creates a binary

tree of nodes, along with their probabilities. In the subsequent stages, two nodes of

smallest frequency are grouped together, until only a single node is left, which is the

Huffman Tree. This stage produces the encoded JPEG bitstream.

The JPEG decoder in turn inverses all the above stages to finally produce the

image pixel data in the RGB space. However, some image data is lost in the com-

pression process, so, the actual image data can’t be recovered.

14

3.2 FPGA

FPGA stands for Field Programmable Gate Array. It is an integrated circuit,

which can be configured by the user to implement the design of their choice. The

system description is done in an HDL, either Verilog or VHDL. The FPGA used in

the hardware implementation for this thesis is the Altera DE1-SoC board [11] with

Cyclone V device [2] and Arm cortex-9 dual core hard processor system. Figure 3.5

shows the picture of how the DE1-SoC board looks like.

The FPGA is fabricated on a 28 nm technology and has a large number of well

defined hard IP cores. All the peripherals and the connectors of the FPGA is labelled

in the figure 3.5.

Figure 3.5: Altera DE1-SoC Board with Cyclone V FPGA

15

3.3 Project Description

This section provides a description of the project implementation as well as the

resources used in the development of the approximate hardware. The approximate

design is first implemented in ASIC and then on the FPGA. The ASIC implemen-

tation of the approximate JPEG hardware is done using the 45 nm standard cell

library and the FPGA implementation is done on the Altera DE1-SoC board having

28 nm fabric.

3.3.1 Standard Cell Library

The standard cell library used in the synthesis and the timing analysis of the

accurate as well as the approximate JPEG hardware is the Nangate 45 nm Open

Cell Library. It is based on the NCSU FreePDK45 process kit. It is an open-source

and non-manufacturable process technology, which represents the actual geometry

design rules of the technology.

3.3.2 Softwares Used

This section gives a brief introduction of the softwares used in the development

of the entire system.

3.3.2.1 Design Compiler

Design Compiler [9] is a synthesis tool developed by Synopsys. It optimizes the

high level description of a design and syntesizes it to the gate level netlist. It can

synthesize both Verilog and VHDL HDLs. It has the following four steps:

• Analyze : This step checks for the syntax of the HDL files.

• Elaborate : This step checks the whole design to make sure that the code is

synthesizable, the sub-designs are connected correctly and there are no erroneous

implied circuits.

16

• Compile : This step creates the gate level netlist from the HDL files.

• Save : This step saves the generated netlist.

Also, this tool reports the area and the power consumed by the design. Both

dynamic and leakage power are reported.

3.3.2.2 PrimeTime

PrimeTime [10] is a Synopsys tool to perform the static timing analysis on a

gate level description of a design. The accuracy of the timing reports generated by

PrimeTime is comparable to HSPICE simulations.

3.3.2.3 Quartus Prime

Quartus Prime [3] is a design software for Altera FPGAs and SoCs. The software

performs all the steps from the design entry to simulation and verification, advanced

synthesis and optimization, place and route and generation of the programing files.

3.3.2.4 Modelsim

Modelsim is an HDL simulation environment developed by Mentor Graphics. It

is used to simulate the designs described in both Verilog and VHDL HDLs.

3.3.3 Approach

The RTL of the precise JPEG hardware in verilog is first synthesized using the

45nm Nangate Open Cell Library using Synopsys Design Compiler.The synthesis

helps in the characterization of the design in terms of area and power. The synthe-

sized gate level netlist is then analyzed in PrimeTime to get the delay of the critical

path. After characterization of the precise hardware, the approximate hardware is

first implemented and then characterized.

17

3.3.3.1 Implementation of Approximate Hardware

For the implementation of approximate JPEG hardware, the adders and multi-

pliers in the precise design are replaced by the approximate adders and multipliers

respectively. In the JPEG compression algorithm, the DCT and the Quantizer blocks

present the scope of approximation. Figure 3.6 shows the implementation of the ap-

proximate JPEG encoder block.

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Transform

Color
Space

Image Data

Transform
Cosine

Discrete
Approximate

Quantization
Approximate

Coding
Entropy

Tables
Quantization

Tables
Huffman

JPEG Bitstream

Approximate Computational Blocks

JPEG ENCODER

Figure 3.6: Block Diagram of Approximate JPEG Encoder

• Approximate Adder : The approximate adder used is based on the reconfigurable

adders proposed in [27],with the difference that the number of approximate LSBs

are variable, as used in [25]. So, the number of LSBs of the result to be approx-

imated can be configured in the RTL and the resulting adder has area, power and

delay characteristics proportional to the number of bits approximated. If a greater

reduction in area, power and delay is required, more number of least significant bits

in the result should be approximated.

• Approximate Multiplier : The approximate multiplier used comprises of variable

number of approximated bits. The multiplier can be configured to have n number

18

of approximate LSBs. Based on the number of bits to be approximated, the result

of the multiplication is truncated and the rest of the LSBs are replaced by 0. This

method, hence reduces the effort required in the computation of the LSBs of the

multiplier result in precise mode. Based on the reduction in delay and the induced

inaccuracy, the multiplier can be set to approximate a specific number of LSBs.

Each color space component has a DCT and a quantizer block. Each DCT block has

73 32X32 bit multipliers and 64 32 bit adders. Every quantizer block has 64 32X32

bit multipliers. So, the entire encoder part has 411 32X32 bit multipliers and 192 32

bit adders, which need to be replaced by approximate multipliers and adders. Also,

every individual multiplier and adder can be separately configured to approximate a

specified number of LSBs of the result.

The approximate hardware is then synthesized and the timing analysis is done to

characterize the design in terms of area, delay and power consumption. The results

obtained are then compared to the results obtained from the precise hardware.

3.3.3.2 FPGA Implementation

The precise and approximate designs are implemented on the Altera DE1-SoC

FPGA, which has Cyclone V device, with ARM based dual core Cortex-A9 embedded

processor.The FPGA fabrication is done on 28 nm technology. The specification and

development of the design is done using the Quartus II software.

• System Specification and Development : The RTL for the JPEG encoder is im-

ported as a block. A fractional PLL present on the board is used to generate the

clock of the desired frequency. Since the design is in a single clock domain, no syn-

chronizer circuits are required. To input the image data, the data input pins are

mapped to a single port RAM, where, the image data is stored in form of a mem-

ory initialization file. The rest of the input pins are mapped to the GPIO pins or

19

the on-board pushbuttons and switches. The output of the encoder block, is again

mapped to a single port RAM, to write the encoded bitstream in the memory. The

rest of the outputss are mapped to the GPIO pins or the on-board LEDs.

• System Validation : The input and output of the system can be read by probing

the memory units. Once, the precise and the approximate designs are implemented

on the FPGA, the area, delay and power comparision between the accurate and the

approximate systems is done based on the resource utilization report from the FPGA

and the power analyzer tools.

20

4. APPROXIMATE ARITHMETIC UNIT DESIGN

This section explains the design of the basic approximate arithmetic units used

in this thesis. As mentioned in section 2, there has been a lot of work in the design

of approximate adders and the approximate adders have been used to design the

approximate multipliers as well, as multiplication requires the addition of the partial

products. The approximate adder circuit used in this thesis has been borrowed from

[27] and the approximate multiplier used is designed by the truncation of the the

original product term.

4.1 Approximate Adder Design

The approximate adder, as presented in [27] is an accuracy configurable adder

which gracefully degrades the accuracy of the adder. The adder is named as GDA

or the Gracefully Degrading Accuracy Configurable Adder. The idea behind this

adder is that it consists of sub-adders. Each sub-adder unit is a k -bit adder. The

reconfiguration property comes from the idea that the bit length of the sub-adders

are configurable. Between each sub-adder unit, there are multiplexers, which choose

the carry-in to the next sub-adder unit. So, the multiplexer can either choose the

carry-in from the carry-out of the previous sub-adder unit, like the traditional ripple

carry adder, or take the carry-in prediction.

The carry-in prediction is based on the Generate and Propagate bits generation

from a Carry Lookahead Adder. Preceding t bits are observed for carry in prediction.

If the carry-in predicted is correct, the result is accurate, other wise the result is

inaccurate, as the carry-in prediction is assumed to be ‘0’. The reason of making

the carry-in prediction to be ‘0’ is that as large numbers of bits are observed for

making the carry-in prediction, the carry-in propagates to the carry-in prediction

21

only if the Propagate bits of all the bits being observed is ‘1’. For large number of

bits being observed, the probability of all the Propagate bits being ‘1’ is low, hence,

the carry-in can be assumed to be ‘0’. The figure 4.1 shows the schematic diagram

of the approximate adder.

Prediction
Carry−in

Adder
Unit

Prediction
Carry−in

Adder
Unit

Prediction
Carry−in

Adder
Unit

Prediction
Carry−in

Adder
Unit

B1 A3 B2B3 A5 B4B5 A7 B7

A8..A31 B8..B31

Adder
Unit

A1 B0A0 A2 A4 A6 B6

Figure 4.1: Approximate Adder Design

4.2 Approximate Multiplier Design

As mentioned earlier, the approximate multiplier is the truncated form of the

accurate multiplier. The reconfiguration comes from the idea that the number of

bits required to be approximated can be fed to the design and the all the LSBs till

the number of bits to be approximated are replaced by ‘0’. The multiplier and the

multiplicand are truncated first to implement this multiplier.

If there are 2n bits to be approximated, and the multiplier and the multiplicand

have ma and mb bits respectively, they are truncated to contain ma-n and mb-n bits

respectively and then the multiplication is performed. The product obtained is then

retained in the ma+mb-2n MSBs and the 2n LSB positions are filled with ‘0’. This

way, the maXmb multiplication is replaced to ma-nXmb-n bit multiplication. The

next section presents the results of characterization of the approximate adder and

multiplier units. The figure 4.2 explains the algorithm of the approximate multiplier.

22

�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
����
��
��
��
��
��
��
��

�
�
�
�
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�

���� ������

���� ������

���������������������� ����������������������

���������������������� ����������������������

�������������������������� ���������������������� ��

1 1 0 1 1 1 1 1 0 0

0 1 1 1 0 10 1 1 0

n bits

n bits

ma bits

mb bits

(ma−n) bits

(mb−n) bits

multiplier

1 0 1 0 1 1 1 1 0 00

ma+mb−2n bits 2n bits

zeros

Figure 4.2: Approximate Multiplier Design

4.3 Experimental Results

This section presents the results of characterization of the approximate adder

and multiplier units. Table 4.1 shows the comparison of the area reduction, power

savings and delay reduction of the accurate and the approximate adder designs with

different number of bits approximated. Table 4.2 shows the similar comparison for

accurate and approximate multiplier designs.

In the approximate adder, the power consumption increases with the increase in

the number of approximated bits. However, the delay reduces. In the approximate

multiplier, the power and delay both reduce with the increase in the number of

approximated bits. To quantify the effectiveness of the approximate circuits in the

reduction of delay and power, power-delay product is used as a metric for comparison.

The power delay product is defined by the following formula:

PDP = PD ∗ tp (4.1)

23

where, PD is the dynamic power consumed by the circuit and tp is the propagation

delay. Figure 4.3 shows the graph of the power delay product vs. the number of

approximated bits for both approximate adder and approximate multiplier circuits.

No. of Bits
Approximated

Area
(in µm2)

Leakage Power
(in µW)

Dynamic Power
(in µW)

Delay
(in ns)

0 1567.90 45.99 93.51 4.71

2 1632.89 47.56 96.32 4.68

4 1665.33 48.11 99.56 4.53

6 1712.96 49.03 103.42 4.35

8 1753.04 51.19 107.98 4.11

Table 4.1: Comparison of Accurate and Approximate Adder Design

No. of Bits
Approximated

Area
(in µm2)

Leakage Power
(in µW)

Dynamic Power
(in µW)

Delay
(in ns)

0 2700.43 47.01 117.52 5.03

2 2372.99 41.28 101.51 4.79

4 2065.76 35.93 87.18 4.54

6 1778.74 30.91 73.43 4.29

8 1513.54 26.31 61.18 4.08

Table 4.2: Comparison of Accurate and Approximate Multiplier Design

24

0 2 4 6 8
0

100

200

300

400

500

600

Number of Approximate LSBs

P
ow

er
D
el
ay

P
ro
d
u
ct
(i
n
fJ
) approximate adder

approximate multiplier

Figure 4.3: Power Delay Product of Approximate Arithmetic Units Vs. Number of Ap-
proximate LSBs

25

5. APPROXIMATE JPEG HARDWARE DESIGN

This section describes the design of the approximate JPEG hardware. After the

approximate adder and multiplier units are designed, the DCT and the quantizer

blocks of the JPEG encoder need to have their adders and multipliers replaced by

the approximate ones to develop the approximate JPEG encoder core. We first

discuss the design of the approximate DCT block, followed by the design of the

approximate quantizer block and then the design of the approximate encoder core.

The last section presents the results of characterization of the DCT and quantizer

block and the encoder core in general.

5.1 Approximate DCT Design

As explained earlier, the JPEG block comprises of the color space transformation

block. After the color space transformation from RGB to YCbCr, each channel has

a DCT block. Each DCT block has 64 32-bit adders, 64 32X32 bit multipliers and

9 32X8 bit multipliers. In total, one DCT block has 73 multipliers and 64 adders.

As there are three channels, hence, in total, there are 192 adders and 219 multipliers

in the DCT block. Each of these adders and multipliers have to be replaced by the

approximate adders and mutipliers respectively.

The adders and multipliers are all reconfigurable. Also, each adder and each

multiplier cell can be configured independent of each other to have different levels of

approximation, depending on the level of approximation required.

5.2 Approximate Quantizer Design

After the DCT block, the quantizer block is approximated. Each DCT block is

succeeded by a quantizer block. So, there are three quantizer blocks in the encoder

26

core. Each quantizer has 64 32X32 bit multipliers, therefore, the quantizer block has

a total of 192 32X32 bit multipliers. All these multipliers are replaced with the ap-

proximate multiplier units. All these multipliers too, can be configured independent

of each other to have different levels of approximation.

5.3 Approximate Encoder Design

After the DCT and the quantizer blocks are approximated, the entire approximate

encoder core is developed by connecting the blocks as per the algorithm. The encoder

core has a total of 192 approximate adders and 412 approximate multipliers. The

approximate encoder core has area and delay reduction and power savings, which is

presented in the next sction.

5.4 Experimental Results

In this section, we discuss the results of characterization of the DCT and the

quantizer blocks and the encoder core. The synthesis is done by Design Compiler

and the timing analysis is done in PrimeTime using the 45nm Nangate Open Cell

Library.

Table 5.1 shows the comparison of the area reduction, power savings and delay

reduction of the accurate and the approximate DCT blocks. The same comparison

metrics are tabulated for the accurate and approximate quantizer blocks in table 5.2.

The table 5.3 shows the results when both the quantizer and the DCT blocks are

replaced for the entire encoder core. However, only the result for the accurate design

and the design with 8 LSBs approximated is shown here.

The figure 5.1 shows the percentage reduction in delay plotted against the number

of approximated LSBs, figure 5.2 shows the percentage savings in power verses the

number of approximated LSBs and the figure 5.3 elaborates the percentage reduction

in area with the number of approximated LSBs.

27

No. of Bits
Approximated

Area
(in µm2)

Leakage Power
(in mW)

Dynamic Power
(in mW)

Delay
(in ns)

0 162023.24 2.58 1.89 5.05

2 143882.05 2.24 1.69 4.91

4 123509.38 2.01 1.64 4.87

6 107925.77 1.78 1.55 4.71

8 93536.50 1.56 1.46 4.53

Table 5.1: Comparison of Accurate and Approximate DCT Blocks

No. of Bits
Approximated

Area
(in µm2)

Leakage Power
(in µW)

Dynamic Power
(in µW)

Delay
(in ns)

0 17280.15 366.19 700.32 4.76

2 16058.41 339.49 657.55 4.72

4 14832.69 313.46 617.76 4.66

6 13609.36 286.66 569.12 4.65

8 12390.27 259.73 519.12 4.63

Table 5.2: Comparison of Accurate and Approximate Quantizer Blocks

No. of Bits
Approximated

Area
(in µm2)

Leakage Power
(in mW)

Dynamic Power
(in mW)

Delay
(in ns)

0 629971.78 10.79 11.73 5.67

8 417035.32 7.48 9.84 5.29

Table 5.3: Comparison of Accurate and Approximate Encoder Blocks

28

Figure 5.1: Percentage Delay Reduction Vs. Number of Approximate LSBs

Figure 5.2: Percentage Power Saving Vs. Number of Approximate LSBs

29

Figure 5.3: Percentage Area Reduction Vs. Number of Approximate LSBs

30

6. FPGA IMPLEMENTATION

This chapter describes the FPGA implementation of the JPEG hardware in detail.

The first section presents the specifications of the FPGA board, the next section

details the IP cores of the FPGA, the next section presents the implementation

details and finally, we have the results of the system validation.

6.1 FPGA Specifications

The FPGA prototyping of the JPEG hardware has been done on the Altera DE1-

SoC board having Cyclone V device and ARM Cortex-9 dual core processor. It has

457 GPIO pins and around 33000 Adaptive Logic Modules (ALMs). It also has

M10K internal memory blocks. The figure 6.1 shows the internal block diagram of

the DE1-SoC board.

Figure 6.1: Internal Block Diagram of the DE1-SoC Board

31

6.2 IP Cores

The Intellectual Property core, or an IP core refers to a block of logic which can

be re-used in a design as it is. Here, the IP cores being discussed are the property

of Altera and are used in the FPGA implementation.

6.2.1 General Purpose Input-Output

There are 457 GPIO pins available in the Cyclone V device, which are highly

configurable. They have a weak pull up and programmable bus hold. The differential

output voltage and the pre-emphasis are also programmable. The components of the

GPIO IP core are the DDIO (Double Data Rate Input Output), that can double or

half the data rate of the chaannel, the Delay Chains to introduce delays and help

in timing closure and the I/O buffers to connect the pads to the FPGA.Figure 6.2

shows the internal block diagram of the GPIO IP core.

Figure 6.2: Block Diagram of the GPIO IP Core

32

6.2.2 Block RAM

Block RAMs are the dedicated two port memories present in the FPGA which

contain several kilobits of memory. The Altera DE1-SoC has multiple blocks of

RAM, which can be used to perform read and write operations or else can just be

used as a ROM. The Altera IP cores have single port as well as dual port RAMs.

In a single port RAM, read and write operations share the address, whereas, in a

dual port RAM, the read and write operations, each have a dedicated address port.

Figure 6.3 shows the difference in the IP block of the single and dual port RAMs.

(a) Single Port RAM (b) Dual Port RAM

Figure 6.3: IP Blocks of Single and Dual Port RAM

6.3 Implementation Details

This section elaborates the actual system implementation of the FPGA. Fig-

ure 6.4 shows the flow diagram of the FPGA implementaion. After the design has

been specified in verilog, it is compiled to implement on the program the FPGA.

The compilation has the following steps:

• Analysis and Synthesis: This step runs a syntax check as well as synthesizes the

33

design, i.e., creates a gate level netlist of the design.

• Functional Verification: This step takes the input vectors from the testbench and

then produces the output which has to be verified to be correct. If the output is not

as expected, a change in the design logic might be required.

• Fitter: This function takes the pin assignments as the input and runs the place

and route operation on it.

• Assembler: This operation creates a pattern of bits out of the program to be

downloaded onto the FPGA.

• Timing Analysis: This operation performs the timing analysis and gives the details

about the maximum clock frequency and timing closure.

6.3.1 Image Data

The 512X512 pixel data of the image is broken into 8X8 blocks and each com-

ponent value (RGB) of 8 bits each are concatenated into a 24 bit data. The data

is then stored in a Block RAM configured as a ROM. An address counter is used

to generate a new ROM address every clock cycle for the data input to the JPEG

encoder.

6.3.2 System Schematic

The system schematic is a block description file or a .bdf, which comprises of

a PLL to geenerate the clock, a ROM to input the data, the address counter, the

JPEG encoder core and a dual port RAM where the generated bitstream is dumped.

There is only a single global clock in the design, so, no synchronizers are needed.

The figure 6.5 shows the high level schematic of the interconnections between the

different blocks for the FPGA implementation.

34

Specification
RTL

Verification
Functional

Place & Route

Programming
Device

Analysis
Timing

Description (*.v)
Verilog

Testbench(*.v)

Pin Assignments

Constraints (*.sdc)
Timing

(*.sof)

Figure 6.4: Flow Diagram of FPGA Implementation

6.3.3 Programming the FPGA

After the description of the system schematic in .bdf, the system is compiled

and after the place and route operation, the object file is created, which contains

the bitsream to program the FPGA. The SRAM object file, or the .sof file is then

downloaded on the FPGA to program it.

35

PLL
Counter
Address ROM

JPEG

Core
Encoder

clock

data_in

address_in

RAM

JPEG_Bitstream

Figure 6.5: Schematic of the FPGA Implementation

6.3.4 Bitstream Capture

After the program is downloaded to the FPGA, the block RAMs are probed to

read the loaded image data. The system is then emulated on the FPGA and the

generated JPEG bitstream is captured by probing the dual port RAM.

6.4 System Validation

After the implementation on FPGA, the design is then validated to check for the

functional correction, area and delay reduction and power savings.

6.4.1 Functional Verification

The pre-silicon functional verification is done by simulating the system on Mod-

elsim and observing the waveforms to verify the desired working of the FPGA. The

post implementation testing is done by probing the block RAM units to read the

generated bitstream and check for its correctness. Figure 6.6 shows the results from

a simulation run.

36

Figure 6.6: Simulation Results

6.4.2 Area Reduction

Area occupied by a design over FPGA is estimated by the number of ALMs

(Adaptive Logic Modules) used in the implementation of the design over the FPGA.

Cyclone V devices use a 28nm ALM as the basic building block of the logic fabric.

It uses an 8-input fracturable LUT, with 4 dedicated registers to improve the timing

closure of the circuit.The figure 6.7 shows the block diagram of an ALM. The different

accurate and approximate versions of the JPEG encoder core was implemented on

the FPGA.The table 6.1 shows the results obtained by the implementation on the

FPGA.

6.4.3 Power Saving

The power consumed by the design over the FPGA is reported by the PowerPlay

tool, which is the power analysis and optimization tool in Quartus II design soft-

ware. It takes the clock assignments and the placement and routing details of the

design as input and then gives the power consumption by a design on the FPGA. It

37

Figure 6.7: Block Diagram of an ALM

Area Elements Accurate Design
No. of Approximate LSBs in Approximate Design

2 4 6 8

No. of ALMs Used 32398 29365 26714 23511 17780

No. of Registers Used 33249 30271 28833 27100 25339

No. of DSP Blocks Used 112 87 56 34 0

Table 6.1: Area Comparison of Accurate and Approximate Designs

gives a report on the total dynamic power and static power consumed by the design

implementation. The total power dissipation is the sum of the total dynamic and

static power along with the I/O power consumption. The results obtained are shown

in the table 6.2.

6.4.4 Delay Reduction

Delay comparison is obtained by the worst case delay of the critical path by the

timing constraints, clock frequency and the slack reports from the timing analysis.

The timing analysis is done over two timing models and the results are shown in

38

Power Elements Accurate Design
No. of Approximate LSBs in Approximate Design

2 4 6 8

Core Dynamic Power Dissipation
(in mW)

611.58 537.22 439.06 371.36 318.06

Core Static Power Dissipation
(in mW)

418.94 418.47 418.49 417.50 417.35

Total Power Dissipation
(in mW)

1042.47 967.81 870.10 788.86 747.53

Table 6.2: Power Comparison of Accurate and Approximate Designs

table 6.3.

Timing Model Accurate Design
No. of Approximate LSBs in Approximate Design

2 4 6 8

1100 mV 85 C Model (in ns) 9.273 9.112 8.830 8.241 6.592

1100 mV 0 C Model (in ns) 9.164 9.102 8.751 8.008 6.522

Table 6.3: Delay Comparison of Accurate and Approximate Designs

6.4.5 Clock Speed

The TimeQuest Timing Analyzer tool, which is the timing analysis tool in the

Quartus II software, reports the maximum allowable clock speed for a design. The

background calculation is based on the setup and hold time analysis between the

source and the destination ports/registers in the same clock domain. It takes the

netlist of the design as well as the placement and routing details as inputs with the

time constraints mentioned by the user. Table 6.4 enlists the comparison of the clock

speeds between the accurate and approximate designs.

The figure 6.8 shows all the comparison metrics plotted against the number of

LSBs approximated.

39

Timing Model Accurate Design
No. of Approximate LSBs in Approximate Design

2 4 6 8

1100 mV 85 C Model (in MHz) 88.71 94.73 102.68 109.64 120.86

1100 mV 0 C Model (in MHz) 89.57 95.33 102.81 111.06 121.05

Table 6.4: Clock Speed Comparison of Accurate and Approximate Designs

2 4 6 8

20

40

60

80

100

Number of Approximate LSBs

C
om

p
ar
is
on

M
et
ri
cs

Percent Area Reduction

Percent Power Savings

Percent Delay Reduction

Percent Increase in Clock Speed

Figure 6.8: Plot of the Comparison Metrics Vs. Number of Approximated LSBs

6.4.6 PSNR Degradation

The output stored in the RAM can be read out to a .hex file. The .hex file can then

be imported in MATLAB [13] to compare the error in terms of peak-signal-to-noise-

ratio (PSNR) between the accurate and the approximate designs. Table 6.5 shows

the comparison of the PSNR degradation between the accurate and the approximate

designs.

40

No. of Approximate LSBs
PSNR (in dB)

ja.jpg lena.jpg peppers.jpg

0 42.35 32.40 39.85

2 32.68 28.75 27.93

4 29.45 25.11 24.56

6 22.77 22.98 21.87

8 18.78 15.17 17.91

Table 6.5: Comparison of PSNR Degradation for Accurate and Approximate Designs

6.4.7 Approximation with Different Compression Ratios

As mentioned previously, some of the image data is lost in the process of quanti-

zation. Quantization involves the division of each frequency component after DCT

in the 8X8 pixel block with their respective constants in the 8X8 quantization ma-

trix, represented by Q, and then rounding off the result. The compression ratio is

controlled by the elements of the quantization matrix, as, larger values in the quan-

tization matrix produce greater compression ratios and smaller PSNR values. The

quantization matrix most widely used in standard JPEG compression corresponds

to a compression ratio of 15:1 and is shown below:

Q =













































16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99













































41

To obtain larger compression, we need to increase the value of the coefficients of

Q. The quantization matrix shown below, for example, produces a compression ratio

of 46:1.

Q =













































80 55 50 80 120 200 255 305

60 60 70 95 130 290 300 275

70 65 80 120 200 285 345 280

70 85 110 145 255 435 400 310

90 110 185 280 340 545 515 385

120 175 275 320 405 520 565 460

245 320 390 435 515 605 600 505

360 460 475 490 560 500 515 495













































Table 6.6 shows the comparison of the PSNR degradation with the number of

approximated LSBs for different compression ratios.

No. of Approximate LSBs
PSNR (in dB) for Different Compression Ratios

2.5:1 15:1 46:1

0 42.35 29.53 20.71

2 32.68 20.12 11.81

4 29.45 17.34 9.15

6 22.77 15.20 7.23

8 18.78 12.97 4.50

Table 6.6: Comparison of PSNR Degradation with the No. of Approximate LSBs for
Different Compression Ratios

42

7. CONCLUSION AND FUTURE WORK

An approximate reconfigurable JPEG encoder was designed and implemented

on the FPGA platform in this thesis. The experimental results show a marked

improvement in the area, power and delay metrics of the approximate application

over the accurate application. However, the PSNR keeps reducing with the increasing

the number of approximated bits. So, the value of PSNR ratio required should

be carefully weighed against the amount of area and power savings and the delay

reduction. Also, as the approximation discussed in this thesis is not dependent on

the image, some images might not show a huge PSNR degradation even for a large

number of approximated bits and vice versa. Different variations of the number

of bits approximated for each individual adder and multiplier units too might be

required for better PSNR depending on the image.

The current work has just been done in the JPEG compression, the future scope

of the work is to extend it to the motion picture or the MPEG encoding algorithm.

An extension to MPEG would be applying the JPEG approximation to each and

every frame of the motion picture to achieve the desired signal level with efficient

resource usage. Also, the work discussed in this thesis is concerned with the image

independent approximation. As mentioned above, different images might have differ-

ent scope for approximation. So, image dependent approximation techniques should

be explored. As the discrete cosine transform block is the most computationally in-

tensive step, the other applicatons that use the DCT can also be optimized by using

the approximate DCT computation instead of the accurate one. Also, the FPGA

platform could be interfaced to a VGA monitor to have a display of the images in

real time to make the PSNR degradation more intuitive for the user.

43

REFERENCES

[1] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghu-

nathan. Analysis and characterization of inherent application resilience for ap-

proximate computing. In Proceedings of the 50th Annual Design Automation

Conference, DAC ’13, pages 1–9. IEEE, 2013.

[2] Altera Corporation. Altera Documentation. https://www.altera.com/en_US/

pdfs/literature/hb/cyclone-v/cv_51001.pdf. [Accessed: June 10, 2016].

[3] Altera Corporation. Quartus Prime Standard Edition Handbook. https://www.

altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf. [Ac-

cessed: October 31, 2015].

[4] Farzad Farshchi, Muhammad Saeed Abrisham, and Sied Mehdi Fakhraie. New

approximate multiplier for low power digital signal processing. In 17th CSI

International Symposium on Computer Architecture and Digital Systems, CADS

’13, pages 42–47. IEEE, 2013.

[5] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan,

and Kaushik Roy. IMPACT: Imprecise adders for low-power approximate com-

puting. In Proceedings of the 17th IEEE/ACM International Symposium on

Low-power Electronics and Design, ISLPED ’11, pages 409–414. IEEE Press,

2011.

[6] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy.

Low-power digital signal processing using approximate adders. Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137,

2013.

44

[7] Jie Han, Cong Liu, and Fabrizio Lombardi. A low-power, high-performance

approximate multiplier with configurable partial error recovery. In Proceedings

of the Conference on Design, Automation & Test in Europe, DATE ’14, pages

1–4. EDAA, 2014.

[8] Jie Han and Michael Orshansky. Approximate computing: An emerging

paradigm for energy-efficient design. In Proceedings - 2013 18th IEEE Euro-

pean Test Symposium, ETS ’13, pages 1–6. IEEE, 2013.

[9] Synopsys Inc. Design Vision User Guide. http://beethoven.ee.ncku.edu.

tw/testlab/course/VLSIdesign_course/course_96/Tool/Design_Vision_

User_Guide.pdf. [Accessed: September 15, 2005].

[10] Synopsys Inc. PrimeTime. http://www.synopsys.com/tools/

implementation/signoff/documents/primetime_ds.pdf. [Accessed: March

2, 2016].

[11] Terasic Technologies Inc. DE1-SoC User Manual. ftp://ftp.altera.com/

up/pub/Altera_Material/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf. [Ac-

cessed: March 14, 2014].

[12] The IEEE Inc. IEEE Standard Verilog Hardware Description Language. https:

//inst.eecs.berkeley.edu/~cs150/fa06/Labs/verilog-ieee.pdf. [Ac-

cessed: September 28, 2001].

[13] The MathWorks Inc. MATLAB Documentation. http://www.mathworks.com/

help/matlab/. [Accessed: September 5, 2014].

[14] Honglan Jiang, Jie Han, and Fabrizio Lombardi. A comparative review and

evaluation of approximate adders. In Proceedings of the 25th Edition on Great

Lakes Symposium on VLSI, GLSVLSI ’15, pages 343–348. ACM, 2015.

45

[15] Andrew B. Kahng and Seokhyeong Kang. Accuracy-configurable adder for ap-

proximate arithmetic designs. In Proceedings of the 49th Annual Design Au-

tomation Conference, DAC ’12, pages 820–825. ACM, 2012.

[16] Zvi M. Kedem, Vincent J. Mooney, Kirthi Krishna Muntimadugu, and Kr-

ishna V. Palem. An approach to energy-error tradeoffs in approximate ripple

carry adders. In Proceedings of the 17th IEEE/ACM International Symposium

on Low-power Electronics and Design, ISLPED ’11, pages 211–216. IEEE Press,

2011.

[17] Animesh Kumar. SRAM Leakage-Power Optimization Framework: a System

Level Approach. PhD thesis, University of California at Berkeley, 2008.

[18] Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the reli-

ability of approximate and probabilistic adders. Transactions on Computers,

62(9):1760–1771, 2013.

[19] Chia-Hao Lin and Ing-Chao Lin. High accuracy approximate multiplier with

error correction. In 31st International Conference on Computer Design, ICCD

’13, pages 33–38. IEEE, 2013.

[20] David Lundgren. JPEG Encoder Core. http://opencores.org/project,

mkjpeg. [Accessed: September 25, 2014].

[21] Jin Miao, Ku He, Andreas Gerstlauer, and Michael Orshansky. Modeling and

synthesis of quality-energy optimal approximate adders. In Proceedings of the

International Conference on Computer-Aided Design, ICCAD ’12, pages 728–

735. IEEE, 2012.

[22] Sparsh Mittal. A survey of techniques for approximate computing. ACM Com-

puting Surveys, 48(4):1–33, 2016.

46

[23] Debabrata Mohapatra, Vinay K Chippa, Anand Raghunathan, and Kaushik

Roy. Design of voltage-scalable meta-functions for approximate computing. In

Design, Automation & Test in Europe Conference & Exhibition, DATE ’14,

pages 1–6. IEEE, 2011.

[24] Abbas Rahimi, Andrea Marongiu, Rajesh K. Gupta, and Luca Benin. A

variability-aware OpenMP environment for efficient execution of accuracy-

configurable computation on shared-FPU processor clusters. In Proceedings

of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, CODES+ISSS ’13, pages 1–10. IEEE Press,

2013.

[25] Farhana Sharmin Snigdha, Deepashree Sengupta, Jiang Hu, and Sachin S. Sap-

atnekar. Optimal design of JPEG hardware under the approximate computing

paradigm. In Proceedings of the 53rd Annual Design Automation Conference,

DAC ’16, pages 1–6. ACM, 2016.

[26] Ajay K. Verma, Philip Brisk, and Paolo Ienne. Variable latency speculative

addition: A new paradigm for arithmetic circuit design. In Design, Automation

& Test in Europe Conference & Exhibition, DATE ’08, pages 1250–1255. ACM,

2008.

[27] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On

reconfiguration-oriented approximate adder design and its application. In Pro-

ceedings of the International Conference on Computer-Aided Design, ICCAD

’13, pages 48–54. IEEE, 2013.

47

