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ABSTRACT 

 

From December 2014 to June 2015, the U.S. poultry industry experienced an 

outbreak of highly pathogenic avian influenza (HPAI), resulting in massive bird 

depopulations. Both turkey and egg producers were impacted and farms affected faced 

losses from costs of bird disposal and farm repopulation. This study isolates the table 

egg subsector of the poultry industry and looks at the revenue impact of the AI outbreak 

at the wholesale level. To determine this revenue impact, a vector error correction model 

(VECM) was defined and used to generate the counterfactual revenue during the time 

period the outbreak occurred. This counterfactual revenue was compared to the actual 

revenue observed during that time period and the difference is the revenue impact due to 

the outbreak, ceteris paribus. Additionally, machine learning algorithms, using residuals 

from the VECM, allowed us to determine causal relationships in contemporaneous time 

among the variables considered within the industry. The results from this study provide 

us with a better understanding of the table egg industry based on sound econometric 

modeling and provide a basis for conducting future revenue impact studies for similar 

events. 

 Our model was developed using eight variables defined by previous studies 

including the number of hens and eggs, egg price, feed input prices, retail pork and beef 

prices, and real disposable personal income. After rigorous testing using RATS software, 

the vector error correction model for forecasting was identified with one lag and two 

cointegrating vectors. When the counterfactual revenue was compared to the actual 
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revenue from December 2014 to June 2015, a gain of about $676 million to wholesalers 

was determined to be attributed to the outbreak. Additionally, residual analysis of 

contemporaneous relationships, as shown by directed acyclic graphs, indicated that egg 

price is independent of direct production quantities, hens and eggs, but is impacted by 

production costs such as feed input costs. These results can be accounted for by various 

factors including the inelasticity of egg price and the imperfectly competitive behavior 

of the wholesalers.  Future studies can use price transmission principles to expand this 

study and identify AI outbreak impacts at the consumer and producer levels.  
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1. INTRODUCTION  

1.1 Problem Statement and Justification 

Starting in December 2014 and continuing through June 2015, the United States 

poultry industry experienced an outbreak of highly pathogenic avian influenza virus 

(HPAI). As the name suggests, this economically important poultry disease spreads 

easily and causes flu-like symptoms like lethargy and swelling in birds, while also 

presenting the hazard of being a zoonotic disease with the potential to spread to humans.   

This particular outbreak affected 211 commercial flocks comprised of egg, broiler, and 

turkey producers in 15 states throughout the western and central United States, including 

the largest and third largest egg producing states, Iowa and Indiana respectively. By the 

end of the outbreak over 50 million birds had been killed to control the spread of this 

virus, resulting in huge losses for the affected producers (USDA 2015). While broilers 

take merely six weeks to go from hatching to market, egg layers must be raised for an 

average of five months before they can produce eggs and, subsequently, the hens remain 

in the houses for about two years. Thus the extended time element involved in the layer 

industry means that individual egg producers may take longer to recover from the 

outbreak than a broiler farmer would. With the massive bird depopulation, egg 

production decreased and higher prices for table eggs were realized on the markets. 

These higher prices impact consumer purchasing decisions and disrupt desired trends 

such as the increasing per capita consumption of eggs.  While costs are typically 

discussed surrounding outbreaks, it is also interesting to consider the revenue impacts of 

these events to determine if the price increases imposed are able to offset the loss in 
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revenue that would otherwise be realized by a decrease in the number of eggs. By 

delving into this research question we will find ourselves identifying the driving forces 

within the industry along the way. Overall, the goal of this thesis is to develop an 

acceptable econometrical model for use in calculating the revenue impact of the 2015 

avian influenza outbreak on United States table egg wholesalers. 

Obtaining an estimate of revenue impact will be of interest to those reporting on 

the AI outbreak and industry leaders. Our results will also be of interest to data 

researchers, such as those with the United States Department of Agriculture Economic 

Research Service (USDA-ERS), who collect and interpret data about the table egg 

industry. Individuals interested in expanding on the results of our study or applying our 

methods to other relevant problems will want to build off or reference the model and 

methodology we implemented. For instance, researchers interested in the impacts of the 

2015 AI outbreak at the consumer, retail, and producer levels can use our model and 

results as a basis for implementing price transmission techniques. Industry leaders also 

will benefit from our research by having a method to generate reliable egg price and 

quantity forecasts which will provide even more stability to the industry as uncertainty is 

minimized. Finally, we hope that this study will encourage future studies that utilize the 

vector autoregressive or vector error correction model in not only finding the revenue 

impact due to naturally occurring events, but also in policy analysis for both proposed 

policies and retrospective analysis.  
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1.2 Objective 

The overarching goal of this thesis is to develop a sound econometric model that 

will generate a counterfactual revenue, or the revenue that would have been realized if 

the AI outbreak had not occurred, to which we can compare the actual reported revenue 

during the outbreak and obtain the revenue impact on US table egg wholesalers that is 

attributed to the AI outbreak, ceteris paribus. We outline four major objectives to ensure 

that we attain this goal and also obtain a clear understanding of relationships within the 

US table egg industry. The first objective is to identify general series characteristics for 

variables impacting the US table egg industry. This allows us to start identifying the 

specifications for a vector error correction model (VECM), or our second objective. The 

VECM is a widely accepted model for dealing with time series data and is useful for 

generating good forecasts, which is what we want to do to satisfy our third objective. 

Specifically, the third objective is essentially the primary goal of this thesis: to use our 

VECM to forecast the counterfactual revenue for US table egg wholesalers and compare 

this to their actual revenue received during the AI outbreak. This will provide us with the 

revenue impact on US table egg wholesalers due to the 2014-2015 AI outbreak, ceteris 

paribus. Our final objective is to derive additional information from our estimated model 

by analyzing the model’s residuals, also known as innovations in time series literature, to 

determine contemporaneous causal relationships between variables in the US table egg 

industry. Altogether, satisfying these four objectives will provide us with an answer to 

our research question on what the impact of the AI outbreak on US table egg wholesaler 

revenue was.  
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1.3 Organization of Thesis 

 This thesis is organized into four major sections. Section 1 introduces the 

problem and outlines specific objectives that will guide our approach to answering our 

research question on the revenue impact of AI at the US table egg wholesaler level. 

Additionally, it offers justification as to why we decided to pursue this line of research. 

Section 2 provides background on the US table egg industry and avian influenza, while 

also reviewing previous studies related to our research. Section 3 then explains the 

conceptual framework and methodology used for our research. Section 4 starts by 

describing the data used in this study and then presents the results. These results are 

further analyzed and discussed in Section 5, where suggestions for future research and 

concluding remarks can also be found. 
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2. BACKGROUND 

2.1 Brief Overview of the U.S. Layer Industry and Avian Influenza 

 Egg production can be found throughout the US, with the top five largest egg 

producing states in America being Iowa, Ohio, Indiana, Pennsylvania, and Texas, from 

first to fifth respectively. The majority of eggs produced in the US are also consumed in 

the US, although in 2014 over 350 million eggs were exported from the US (“The Egg 

Business” 2016). Eggs are an important part of the American diet, as evidenced by the 

increasing per capita consumption over the past seven years to 258 eggs in 2014, with a 

further increase to 266 eggs per person in 2016 expected (Watson 2014; “The Egg 

Business” 2016). In general, eggs are considered a necessary good with no clearly 

identified close substitutes and thus have an inelastic price, meaning that a one percent 

change in egg price will result in a less than one percent change in the quantity of eggs 

purchased.   

Egg wholesalers are defined as an intermediary between egg producers and 

retailers who ultimately sell the eggs to consumers. These wholesalers may strictly focus 

on eggs, such as S&R Fresh Eggs in Wisconsin or CMC Farms in New Jersey, or be 

major wholesalers found throughout the US dealing with a wide variety of products like 

Kroger, Costco, and Walmart. Not all eggs pass through a wholesaler, as larger egg 

producing companies such as Cal-Maine Foods have enough market power to create 

direct agreements with retailers. Smaller farms, however, may use a wholesaler to send 

their eggs down the supply chain to consumers.   
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US egg production primarily takes place in large commercial houses, with flocks 

of 75,000 or more birds representing about 99% of all layer hens in the US. Currently 

about 5.5% of US egg production is considered “cage-free” and only 4.5% of producers 

identify as organic, together a total of around 30 million birds. Layers, or hens used in 

the production of eggs, take an average of five months to begin producing eggs and are 

typically kept in production for about two years. The average rate of lay per day in the 

industry is currently 77 eggs per 100 layers, with about 286 eggs laid per hen per year 

(American Egg Board 2016, “The Egg Business” 2016). Practices like forced molting1 

allow producers to extend the productive life of their birds if it is economically 

worthwhile to do so, although at lower productivity levels than these average laying 

rates. Egg producers unaffected by the AI outbreak may have implemented this practice 

in order to gain profit from the AI-inflated egg prices. 

Highly pathogenic avian influenza (HPAI) virus is an economically important 

poultry disease that causes a variety of symptoms in poultry including lethargy, swelling, 

and sudden death in birds. Due to the highly infectious nature of the disease and its rare 

potential to spread to humans, once AI is detected on a farm all the birds must be killed 

and disposed of properly. This quickly leads to large losses of layers, as many 

commercial houses have an excess of 75,000 birds on site. Additional costs to producers 

include sanitizing houses, repopulating entire houses with birds, and the cost of having 

their facilities idle in the meantime.  

The particular AI outbreak our research focuses on was first confirmed on US 

farms in December 2014 and quickly spread to a total of 211 commercial flocks and 21 

___________________________________________________________________________________ 
1 Forced Molting: A practice where farmers can induce their birds to stop laying and lose their feathers 

for a brief time so that afterwards their laying period can be extended.  
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backyard flocks until June 16th 2015 when the last detection was reported. States with 

reported cases include the #1 and #3 egg producing states, Iowa and Indiana 

respectively, as well as California, Oregon, Washington, Idaho, Montana, North and 

South Dakota, Nebraska, Kansas, Minnesota, Wisconsin, Missouri, and Arkansas. This 

outbreak impacted layer, turkey, and some broiler production and altogether over 50 

million birds were culled (USDA 2015). To compensate these affected producers, the 

United States Department of Agriculture (USDA) paid out $190 million (McKenna 

2015). Several cost estimates of losses from this outbreak can be found in extant 

literature such as Iowa alone having total economic damages of $957 million (Fry 2015). 

According to McKenna (2015), the cost of all the culled birds in the US was $1.57 

billion and, when combined with costs to industries further down the supply chain like 

egg wholesalers and food service firms, this resulted in a total loss of $3.3 billion due to 

this particular AI outbreak. Since these authors don’t clearly explain what these cost 

estimates include and do not describe how they are modeled, these estimates primarily 

serve to paint a general picture of the negative impact that the 2014-2015 AI outbreak 

had in the US.    

2.2 Review of Previous Studies 

As a major poultry industry event, many researchers are interested in the impacts 

of the 2014-2015 avian influenza outbreak. Many of these studies, such as those by Gao, 

Richardson, and Maisashvili (2016), look at the impacts to the whole poultry industry 

including broilers, layers, and other poultry products. The current research on this AI 

outbreak also focuses more on analyzing price changes, trade impacts, welfare analysis 
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and regional impacts (Dobrowolska & Brown 2016; Seitzinger and Paarlberg 2016).  

This study will isolate table egg production, which was heavily impacted by the AI 

outbreak, and consider the revenue impact to US table egg wholesalers. By defining this 

smaller aspect of the industry, future studies will be able to expand on our model and 

results to answer larger questions about the impacts of AI on the poultry industry.  

Estimates of the US wholesale table egg revenue impacts do not seem to be 

available in the extant literature, although McKenna (2015) implied that losses from 

these wholesalers contributed to the $3.3 billion in costs to the US poultry industry as a 

whole. As mentioned previously, this article is unclear on how this estimate was derived 

and specifically what it includes, but we can still compare it with our results to see if 

table egg wholesalers did realize a revenue loss due to the outbreak.  

A paper published by Chavez and Johnson (1981) outlined a series of structural 

models that defined various aspects of the US egg industry from hatching to production 

and prices. Included was a wholesale egg price structural model with variables relevant 

to the industry today, such as feed prices and the number of hens and eggs, which we 

incorporated into the vector error correction model (VECM) we developed. We chose to 

find revenue impact using a VECM because this model tends to generate superior 

forecasts compared to structural models because of its ability to capture the dynamic 

effects of all the variables better than large structural models (Sims 1980).  The VECM 

also has a history of being utilized as a tool to determine economic impacts of animal 

diseases in other studies, such as Costa, Bessler, and Rosson (2015), although this study 

forecasted price to analyze trade disruptions from the swine flu of 2005. Additionally, 
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we use monthly data to more accurately measure the impacts of the AI outbreak 

throughout the time period it occurred, a suggestion offered by Chavez and Johnson 

(1981).  

Overall, our review of the literature indicated a lack of emphasis on research 

regarding revenue impact due to the AI outbreak and supported the methodology we 

proposed to use in our study. From understanding the literature, we were able to define 

our objectives as first identifying series characteristics and then the specifications, such 

as the number of cointegrating vectors, required for the VECM model. Using the VECM 

we will estimate the revenue impact of the AI outbreak on US table egg wholesalers by 

generating a counterfactual forecast of revenue to compare to the actual observed 

revenue during the outbreak. Finally, using the residuals from the VECM, we will 

determine causal relationships with machine learning algorithms to better understand 

how the different industry variables interact in contemporaneous time.   
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3. METHODOLOGY 

3.1 Conceptual Framework and Application2 

Current evaluations of the 2014-2015 AI outbreak have focused on costs to the 

poultry industry, rather than revenue impacts, with reported estimates unclear as to what 

they encompass and how they were derived. Additionally, past approaches modeling the 

US wholesale table egg price did not implement time series techniques; for instance, 

Chavez and Johnson (1981) developed a structural model of this sector which, as stated 

by the authors themselves, is not ideal for forecasting.  Thus a need for an updated, 

robust econometric model for wholesale table egg prices is another driving force behind 

this thesis document. We use observational data in this study, which recommends us to 

use a less structured model with relaxed dependency on the ceteris paribus assumption 

which is not as applicable to observed data, allowing us to generate better predictions of 

the real world. Therefore, this thesis focuses on using vector autoregressive (VAR) time 

series modelling techniques, specifically the VECM, to understand the effects of the 

2014-2015 US avian influenza (AI) outbreak on US wholesaler revenue for table eggs. 

Additionally, this thesis will incorporate the concepts of innovation accounting and 

directed acyclic graphs (DAGs) to highlight variable interactions due to shocks like the 

AI outbreak and identify causal relationships in the US table egg industry in terms of the 

new information discovered for each variable.  

This section on methodology opens with an introduction to the theoretical 

properties of time series modeling and a description of two widely accepted time series 

models, the VAR and VECM. This will be followed by explanations of the tests that ____________________________________________________________________________________
2This discussion follows Dharmasena (2003), Bessler & Yang (2003), and Dharmasena, Bessler, & 

Capps (2016).  
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must be conducted to define a time series model, such as stationarity tests and tests for 

cointegration. Applications of the VAR and VECM in terms of forecasting, determining 

causal relationships between variables, and innovation accounting will conclude this 

section.  

3.1.1 Introduction to Time Series 

By definition, time series analysis (TSA) studies involve data reported at specific 

intervals over a defined timeframe, with the assumption that the order of observation 

within this timeframe matters. Therefore, the variable subscript t is used to indicate the 

chronological order of observations for TSA. Stationarity is another important 

stipulation of TSA, as it ensures a series has a finite and constant mean, variance, and 

covariance. This allows us to analyze the errors, or new information found from TSA 

modeling, without interference from variations in the historical mean. Before conducting 

time series modeling on a non-stationary series, the series must be converted to a 

stationary series by taking differences as described in Section 3.1.3. 

The basic time series model is a univariate model that focuses on a single series 

of data and its movement through time. In this model, a random variable (Xt) is 

considered dependent only on past lagged values of itself, along with some error (et). In 

TSA, error is considered an innovation or new information that causes a variable in 

current time to deviate from its most recent value (Xt-1) in a way not necessarily tied to 

the historical mean value. Therefore, forecasting with the historical mean itself will not 

be as effective for generating a good forecasts. This simple model can be visualized as 

the following equation: 
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Xt = μ + β
1
Xt-1 + β

2
Xt-2 +…+ β

k
Xt-k+ et           (1) 

Where μ is a constant intercept term and the β’s are unknown parameters. The 

uncorrelated error term, et, is assumed to have a mean of zero and a variance of σe
2. This 

equation represents an autoregressive model of order k, where k is the number of lags in 

the model. Lags refer to how many observations in the past (Xt-k) one must include in a 

model to define the variable’s present value (Xt). For instance, if k=3 then the value of 

the variable in present time is considered a function of a constant (μ), the innovation 

term (et), and its values in the three periods preceding the current point in time (Xt-1, Xt-2, 

Xt-3). This univariate model provides the basis off of which we build our VAR, before 

transforming it in to a VECM to account for cointegrating vectors. These models will be 

discussed in the following section, Section 3.1.2. 

3.1.2 Vector Autoregressive Model and Vector Error Correction Model 

 Expanding on the univariate model to account for the array of interacting 

variables found in the real world, multivariate vector autoregressive (VAR) models are 

useful in analyzing and summarizing the regularities in several series of observational 

data over time. The VAR is a non-structural model, allowing the researcher to choose 

variables relevant to his or her specific problem rather than being constrained by pre-

determined models based on an overarching prior theory. The unrestricted VAR, with no 

constant, is shown below:  

Xt = ∑ α(k)Xt-k
k
k=1 + δt        (2) 

  



 

 

13 

In this equation, Xt is an (mx1) matrix of variables, α(k) is an (mxm) matrix, and 

δt is an (mx1) matrix with m being the number of variables in the model. The δt term 

represents innovations which are uncorrelated through time but often contemporaneously 

correlated, making them useful for determining contemporaneous causal relationships 

between variables. The unknown parameter to be estimated from the observed data in 

the model is α. Lag length, denoted as k in VAR analysis, is commonly derived using 

statistical loss functions where the lag with a minimum Schwartz Information Criteria 

(SIC) value is selected. This function seeks to identify a parsimonious model by 

considering the tradeoff between the number of variables in the model and the number of 

lags. SIC is calculated using the following equation:  

SIC = log|Σ̂k| + ( log T) m2k/T                 (3) 

Here, |Σ̂k| is the determinant of the residual variance-covariance matrix for the 

VAR(k) model, m is the number of variables, and T is the number of effective 

observations.  

 The VAR is converted to a vector error correction model if cointegration is found 

between series. Extra vectors accounting for the cointegrating relationships are added to 

the formula and the VAR portion is reduced to k-1 lags, while the error term remains 

untouched. As an equation, with an adjustment for seasonality, this would be: 

ΔXt = ΠXt-1 + ΨSt+ ∑ ΓiΔXt-i
k-1
i=1 + et              (4) 

Where ∆Xt = (X
t
 - Xt-1). In this equation, Xt is an (mx1) vector of variables, Γi is 

an (mxm) matrix of short run dynamics coefficients, and et is an (mx1) vector of 

innovations representing contemporaneous time. Ψ is an (mx11) matrix of coefficients 
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for the St (11x1) vector of monthly dummy variables. Π is an (mx[m+1]) matrix of 

coefficients corresponding to an ([m+1]x1) vector of variables and a constant. Π = αβ
'
 

and the rank of Π is r, the number of cointegrating vectors. α is a coefficient matrix 

representing the short run adjustment to return to equilibrium after a shock to the system, 

whereas β’ is the transposed cointegration matrix representing the long-run relationships 

between variables (Bessler & Yang 2003). Note that a VECM converted from a VAR 

with one lag would be lacking the ∑ ΓiΔXt-i
k-1
i=1  portion of the model (Magee 2008). 

Overall, the VECM allows for some interesting analysis because the long run, short run, 

and contemporaneous structures can be isolated and further analyzed.  

3.1.3 Tests of Nonstationary 

By definition, a non-stationary series is comprised of data points that move away 

from their historical mean for extended periods of time. This results in a series with 

infinite variance that, when modeled, can lead to faulty conclusions from reported 

significance. For this reason, data series (Xt’s) used in autoregressive models are 

expected to be stationary and differences should be taken until this condition is satisfied, 

with first differences represented as ∆Xt = (X
t - Xt-1). If a non-stationary series is 

differenced once and is then stationary, it is said to be integrated to order 1, or I(1). 

Therefore, a naturally stationary series is considered to be integrated to order 0, or I(0).  

A common test to determine if a series is stationary is the Dickey-Fuller (DF) 

test. In this test, ∆Xt = (X
t - Xt-1), or first differences, are regressed on a constant (α0) plus 

the non-differenced variable lagged one period (α1Xt−1):  
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 ΔXt = α0 + α1Xt−1                     (5) 

The null hypothesis is that the series is non-stationary (α1=0). If the ordinary 

least squares estimate of α1 in this equation has a t-statistic more negative than the t-

statistic at the 5% level of -2.89, then this null hypothesis is rejected. For instance, if a 

calculated t-statistic value of -3.5 is found, based on the ratio between the estimated 

coefficient and the standard error of the estimated coefficient, then you can reject the 

null hypothesis and state that the series is stationary.  

To account for possible autocorrelation in the estimated residuals, it is 

recommended that one also expands the DF test into an augmented Dickey-Fuller test 

(ADF) when testing if a series is stationary. The ADF test has the same null hypothesis 

and critical value at the 5% level as the DF test, but adds an additional term to the basic 

DF test formula: 

  ∆Xt = α0+ α1Xt-1+ ∑ β
i
∆Xt-i

k
i=1                 (6) 

Where k is the lag length selected to “whiten” or remove the autocorrelation from 

the residuals. The ideal lag length can be found by minimizing Schwarz Information 

Criterion (SIC), as described in Section 3.1.2. 

Likelihood ratio (LR) tests can also be used to test if a series is stationary using 

the following formula: 

L(X) = 
p(H0|X)

p(H1|X)
                 (7) 

Where p represents the probability of the hypothesis occurring. Unlike the DF 

test, the null hypothesis (H0) is that a series is stationary. Therefore, H1 represents the 

alternative hypothesis that the series tested is non-stationary. The statistic is distributed 
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chi-squared under the null hypothesis with p-r degrees of freedom, where r is the rank of 

the cointegrating vector which will be discussed further in section 3.1.4.  The chi-

squared test statistic is calculated as:  

 C(X) = Σ
(H1 - H0)2

H0
                  (8) 

If the calculated chi-squared values are greater than the chi-square critical value 

at the 10% significance level, then the null hypothesis is rejected and the series would be 

considered non-stationary.   

3.1.4 Cointegration and Rank of Π 

If series are found to be I(1), or non-stationary, there is a possibility that these 

I(1) series are co-integrated, meaning that they move together in a random walk. A 

random walk is where the best prediction of a variable’s value tomorrow (Xt+1) is its 

value today, along with some white noise (et+1):  

Xt+1 = Xt  +  et+1              (9) 

When cointegrating series are differenced from each other, the results will be 

stationary, or I(0). Cointegration in a set of series requires one to develop a vector error 

correction model to avoid “spurious” regression and correlation. 

Recall that Π with a rank of r cointegrating vectors is the product of the 

transposed matrix of cointegrating relationships (β′) and the matrix of adjustment 

coefficients (α). If r=0 there is no Π matrix and a VAR in first differences can be 

modeled. If r=m, where m is the number of variables in the model, Π has full rank and 

there is no cointegration so a VAR in levels can be done. If Π has a reduced rank, where 
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r<m, cointegration exists and both α and β are (mxr) matrices with a rank of r. 

Therefore, there are at most m-1 cointegrating vectors. 

Testing for cointegration is done using the Johansen (1991) trace test, which is a 

likelihood ratio test with a null hypothesis of r=0 and an alternative hypothesis of r0 < 

rank(Π) < m. If this null hypothesis is rejected, then the test proceeds stepwise, such that 

the next null hypothesis is r0 + 1 and the alternative hypothesis is r0 +1 < rank(Π) < m  

(Dwyer 2015). The value of r at the first failure to reject the null hypothesis, using 

provided critical values, is the rank of Π. The trace test statistic is calculated as:  

λtrace(r) = -T ∑ ln(1 - λ̂i)
m
i=r+1                     (10) 

Where λ̂ represents the estimated values of the characteristic roots obtained from 

the estimated Π and T represents the number of observations. The Johansen trace test is 

an accepted method for identifying the rank of Π, especially when working with data 

sets comprised of more than two variables.   

3.1.5 Forecasting and Calculating Revenue Impact 

Forecasting is a major application of the VAR and VECM models and forecasts 

for any t+h horizon can be computed using the chain rule of forecasting. Based on a 

VAR(1) model, which has one lag, the h-step ahead forecast is equal to: 

X̂t+h|t = Φ1
hXt          (11) 

Where Φ simply represents the estimated parameters and h is how far in the 

future you are forecasting. 𝑋̂𝑡 represents an out-of-sample estimated value, or the 
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forecast. Future errors are assumed to be zero, thus they are not shown here. The true 

observation for t+h for a VAR(1) model would be:  

Xt+h  = Φ1Xt+h-1 + (et+h) = Φ1
hXt + (et+h) + Φ1et+h-1         (12) 

Since we want to avoid contamination in our forecasts from AI influenced data, 

we chose to do a 12-step ahead forecast for our counterfactual forecast. These forecasts 

were evaluated on their performance compared to a random walk using the Theil U 

statistic, calculated as:  

Ut=RMSt/RMSNCFt                (13) 

 Where RMS is the root mean square error for our model forecasts and RMSNCF 

is the root mean square error for the no-change forecasts, or the random walk model. A 

Thiel U statistic less than one is an indication of good forecast performance, in which 

our model forecasts better than a random walk (Dharmasena 2003).  

After developing and using the VECM to forecast counterfactual egg quantities 

and price over the time period that the AI outbreak occurred, a simple revenue 

calculation was done for both the counterfactual and actual data at each month during 

the outbreak by multiplying the price of eggs per dozen and the number of dozens of 

eggs. The difference between these two revenue amounts at each month of the outbreak 

represents revenue change due to the AI outbreak, ceteris paribus.  

3.1.6 Contemporaneous Time Analysis 

Since we are using observational data from a non-experimental setting, ceteris 

paribus does not hold true and we find ourselves in a system with many unknown, 

omitted variables and no specific economic theory to tell us the relationships among our 
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variables. Thus enters the concept of DAGs, proposed by Pearl (1995), which possess 

the ability to find causal relationships among the variables in our model by simply using 

the correlation, or variance-covariance, matrix from the residuals of the VECM.  

A directed graph is a comprised of an ordered triple, <V,M,E>, where V is a non-

empty set of vertices, or variables, and M is a non-empty set of symbols attached to the 

end of undirected edges, such as an arrow. E is a set of ordered pairs and each member is 

an edge, with vertices connected by an edge being considered adjacent. A directed 

acyclic graph is a graph with an arrow on at least one edge of E and which contains no 

directed cyclic paths, where one vertex causes a variable than in turn causes the original 

vertex. Directed acyclic graphs represent conditional independence given by the 

recursive product decomposition: 

 Pr (X1, X2, X3,…, Xn)=∏ Pr(Xi
n
i=1 |Pai)                 (14) 

Where Pr is the joint probability of vertices X1, X2, X3,…., Xn and Pai is the realization of 

some subset of the variables that precede, in a causal sense, Xi in the order (X1, X2, X3,…. 

Xn). If the DAGs are made so that the variables corresponding to Pai are the direct 

causes, or parents of Xi, then the conditional independencies given by ΠPr can be 

derived from the graph using the concept of directional separation (d-separation). D-

separation is defined as the blocking, or screening off, effect which allows us to 

determine the direction of causal flow in a set of variables.  

There are several main causal relationships that can be described. For simplicity, 

consider three variables, X, Y and Z. A causal fork is where X is a common cause for 

both Y and Z such that Y←X→ Z. If X is not considered when studying Y and Z you will 
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find a non-zero correlation between Y and Z, meaning they are correlated and are 

directionally connected (d-connected). By introducing knowledge of X, the association 

between the joint effects will be d-separated and the correlation between Y and Z will be 

zero (Bessler & Lee 2002).  

Another possibility is an inverted causal fork where Y and Z are joint causes of X, 

or Y→X←Z. Here the unconditional correlation between Y and Z is zero, and 

conditioning on X would cause their correlation to be non-zero. Therefore, common 

effects don’t screen off association between their joint causes, but rather makes them d-

connected. Expanding on this, if X is also the parent of a variable, W, then by 

conditioning on W rather than the collider X we will be able to d-connect Y and Z.  

The final main scenario is a simple causal chain, which would be defined as X 

causing Y which causes Z, such as X→Y→Z. If we condition on Y, then we block the 

information flow between the endpoints and X and Z would have zero correlation. 

However, if only X and Z are considered, their unconditional association will be non-

zero and these endpoints would be d-connected.   

There are several computer algorithms one can use to build DAGs and we used 

the Peter-Clark (PC) Algorithm and Greedy Equivalence Search (GES) Algorithm in 

TETRAD V to identify causal relationships in our model. TETRAD software is freely 

provided by research workers at Carnegie Mellon University and only requires the 

correlation matrix, or the variance-covariance matrix, of the variables and the number of 

observations to build the DAGs. Knowledge of the problem area can be incorporated 

into the graphs by putting expected exogenous variables in the top tier of the knowledge 
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structure and more endogenous variables in the lower tiers (Spirtes, Glymour, & 

Schenies 1993). 

For the PC algorithm, the software starts with a completely undirected graph, 

where all variables are connected to all others with an edge with no arrow, and 

systematically uses correlation and conditional correlations to remove the edges between 

variables with significantly zero edges. All edges that pass this first test are then 

assigned arrows by applying the concept of d-separation, as described above.  

The GES algorithm starts with a DAG with no edges, meaning all variables are 

independent, and begins to add edges between variables from equivalent classes, which 

are comprised of multiple DAGs that have the same probability distribution and 

independence constraints.  It searches stepwise, scoring each graph with the Bayesian 

Information Criterion (BIC) metric which considers the tradeoff between model fit and 

parsimony: 

B(G,D) = ln p(D|θ̂, G
h
) - 

d

2
ln m           (15) 

Where d is the number of free parameters in graph G, θ̂ is the maximum-

likelihood estimate of the unknown parameters, and m is the number of observations in 

the data D. lnp(D|θ̂, Gh) represents model fit and the rest of the function represents 

model parsimony. The equivalence class that increases the score most is chosen for the 

next step in this first phase until no new replacement can increase the score. In the 

second phase of GES, single edges are deleted and the scores of DAGs in equivalence 

classes are repeatedly compared until a local maximum is reached, which is considered 

the optimal solution (Dharmasena, Bessler & Capps 2016). 
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The models generated by these algorithms in TETRAD V also are evaluated by 

several statistical measures including chi-squared testing, comparative fit index (CFI), 

and root mean square error of approximation (RMSEA). The chi square test assumes a 

minimized maximum likelihood function over the measured variables and has a null 

hypothesis that the population covariance matrix is equal to the estimated covariance 

matrix for all measured variables. A good fit is indicated by values close to zero. The 

degrees of freedom for this test are calculated as m(m + 1) / (2 – d), where d is the 

number of linear coefficients, variance terms, and error covariance terms that are not 

fixed in the model.  

The CFI statistic assumes that all latent variables are uncorrelated and compares 

the sample covariance matrix with this null model, while also adjusting for sample size. 

Values range from 0 to 1, with larger values indicating better fit. RMSEA is an 

indication of how well the model would fit the covariance matrix of the population and 

will favor a more parsimonious model. RMSEA also ranges from 0 to 1, however here a 

value closer to zero is an indication of good fit. As a note, goodness-of-fit is important to 

consider, however it doesn’t mean that a poor fitting model is necessarily bad or 

completely useless.  

There are three main assumptions to consider when deciding on the edges of 

DAGs. The first is to assume there are no omitted variables that cause two or more of the 

variables in the algorithm, known as the causal sufficiency condition. The second is the 

causal Markov condition, where one only conditions on the parents of a variable to fully 

capture its joint probability distribution. In the case of the causal chain previously 
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described, the underlying probability distribution under this condition would be 

Pr(X,Y,Z)=Pr(X)Pr(Y|X)Pr(Z|Y). The last condition is the faithfulness condition which 

states that if there is zero or partial correlation between variables it is not due to 

cancellations of parameters in the model, but rather only occurs because their correlation 

is not significantly different from zero. Especially with observational data, these three 

conditions may not be met so care must be taken when interpreting the DAGs generated 

by TETRAD software, particularly if you want to apply the results to policy.  

3.1.7 Innovation Accounting 

The coefficients obtained from a VAR model are difficult to interpret and 

analyze on their own, so further analysis is often done based on the moving average 

representation of the VAR. The moving average matrix at lag zero contains information 

on the relationships between series in current time, t.  However, the VAR can only tell us 

if series are contemporaneously correlated based on the i,j element of Σ, the variance- 

covariance matrix, and gives no insight on the direction of causal behaviors. To solve 

this problem, we utilize Bernanke factorization. For this, innovations are assumed 

orthogonal and can be written in matrix form as:  

[

u1,t

u2,t

u3,t

] = [

1 a12 a13

a21 1 a23

a31 a32 1

] [

e1,t

e2,t

e3,t

]          (16) 

Where ei,t are observed innovations from the VAR and ui,t are orthogonal 

innovations. Lagged relationships are assumed unrestricted.   

One benefit of using Bernanke factorization over alternative methods, such as 

Choleski factorization, is that we don’t need to know how to order the factorization. 
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Bernanke lets us arbitrarily impose a particular causal ordering on variables, allowing for 

a better view of unknown causal flows (Bessler 2015). We can use directed acyclic 

graphs to assign zeros to certain ai,j’s which allows us to identify causal relationships 

between series. Bernanke factorization can also be used to transform a VAR into: 

AXt=ΣkAΦXt-k+Aut             (17) 

Where A is the matrix of a’s from the previous equation. Using this equation, we 

can decompose each series into their historical shocks or look at their simulated 

responses to a particular shock over time. Analyzing these decompositions is a common 

form of VAR analysis known as “innovation accounting.”  

Impulse response functions show us how the X vector responds over time to a 

one-time shock in a single series, found in the error term (δ
t
). For this we set the error of 

the shocked variable equal to one and all the other variable’s errors to zero, so that we 

can focus on how Xt+h evolves throughout the periods following the shock. This equation 

is known as the “impulse response function:” 

 Xt+h= θ(B)δt+h          (18) 

Where just the ith element of δt+h=1 and all other elements are zero when h=0 

and all elements are zero when h≠0. Once again, h represents the number of future 

periods being considered.  

The θ(B) elements are derived from simulating the estimated VAR to a series of 

one time only shocks in each series’ innovation term. Impulse responses are often shown 

as graphs and can indicate the elasticity of variables in the model; for instance, a variable 

the returns to its equilibrium level within a few periods after a shock would be 
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considered inelastic. They also highlight relationships between variables, in terms of 

how much a series decreases or increases in response to a one-time shock to another 

variable.  

Another form of innovation accounting are forecast error variance 

decompositions, which consider how much of the error variance of a series is caused by 

the error variance of specific variables in the VAR. Standing at time t, we fully expect 

all future innovations (δt+h) to equal zero. This means that when we take the difference 

of the expected (X̂t+h) from the actual (Xt+h) to see the forecast error at horizon h we are 

left with these future innovations as the forecast error (FEt+h):  

FEt+h = ∑ θh-1δt+h
h
h=1                  (19) 

Here θh-1 is an (mxm) matrix that tells us how the forecast error in the future 

depends on innovation in the past and δt+h is a vector of the innovations at horizon h 

periods ahead. For any particular element of vector FEt+h, its variance is composed of 

the corresponding elements of each θ matrix and each variance term. An example of the 

variance (V) of the forecast error (FE) at h steps ahead is:  

V(FEt+h)=V(δ1t+h) + θ11
2

(1)V(δ1t+h-1) + θ12
2

(1)V(δ2t+h-1) + … 

…+ θ11
2

(h+1)V(δ1t+1) + θ12
2

(h+1)V(δ2t+1)                                  (20) 

This equation allows us to summarize the relative influence of each series on 

every other series in the VAR, including itself. By taking the variances associated with a 

particular series and dividing by the full variance of the forecast error we are able to 

obtain the percentage of variation in a series due to historical shocks in either its own 

series or shocks in another series (Franses, Djik, & Opschoor 2014).  
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4. ANALYSIS AND RESULTS 

4.1 Description of Data 

We considered both prior theory and previously developed models, like Chavez 

and Johnson’s 1981 wholesale egg price model, and chose eight variables to use in our 

VECM. The number of table egg layers in the US are included because the premise of 

this study is that AI severely decreased the number of hens in the US and this lead to 

fewer eggs and higher egg prices. Since we plan to conduct innovation accounting and 

determine causal relationships within the industry, this is an important variable to 

include in our model even though it is not used for calculating revenue. The number of 

eggs produced in the US and the wholesale price of NYC Grade A Large Table Eggs are 

linchpins in our VECM, as they are used to calculate revenue. For the purposes of this 

study we assumed that all table eggs produced in the US pass through a wholesaler and 

the prices we used in our counterfactual forecast are actual monthly prices of Grade A 

Table eggs to volume buyers, store door delivery, in the NY metropolitan area. Soybean 

meal and cornmeal prices are included as value-adding input costs of producing eggs. To 

account for factors influencing egg demand, especially for causal analysis, we 

incorporated the retail prices of beef and pork as suggested by Chavas and Johnson 

(1981). These were adjusted using the non-seasonally adjusted Consumer Price Index for 

All Urban Consumers (CPI-U) since seasonality is accounted for in the model using 

dummy variables. Finally, the model’s token macro variable is seasonally-adjusted real 

disposable personal income (RDI), as monthly data was not available for non-seasonally 

adjusted RDI. Altogether, our model is well-rounded by encompassing supply and 
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demand-side variables, the crucial table egg industry variables, and a relevant macro 

variable.  

Monthly data from March 1986 to May 2016 was collected for each variable 

from various government and online sources for a total of 363 observations. The VECM 

developed was identified using data from March 1986 to October 2014, providing a 

large sample size of 344 observations which strengthens the model and our confidence in 

the results.  Truncating the full data set allows us to define a model that has not seen the 

effects of the 2014-2015 US AI outbreak, resulting in a counterfactual forecast that will 

better represent the revenue that would have been seen if the outbreak had not occurred.  

The full data set is provided in Appendix C. This data was analyzed and the 

model estimated using Regression Analysis for Time Series software (RATS) and 

Cointegration Analysis for Time Series (CATS). Directed graphs were generated using 

TETRAD V software. Software input programs are located in Appendix D. 

4.1.1 Summary Statistics 

Summary statistics on the full data set and the truncated set for defining the 

VECM are shown in Table 1B. This information allows us to understand the historical 

characteristics of the data, which may need to be accounted for by the model. For 

instance, the mean provides an overall sense of the magnitude of different series values 

in relation to others. The amount of standard error, a form of standard deviation 

representing the accuracy of the sample compared to what is actually found in the 

industry, may be attributed to the evolution of the industry over the 30 year timeframe 

we summarized. For example, production methods in the 1980s may not have allowed 
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for as many hens as there are on a commercial farm today, thus advancements and trends 

in the industry can correlate to a larger deviation in egg production. A useful descriptive 

statistic summarizing the mean and standard deviation of a series is the coefficient of 

variance (CV), a unit-less measure that represents the percent of dispersion around a 

series’ mean. The higher the CV, the greater the dispersion; for instance, in both the 

estimated and full model data sets egg price had the highest CV at a 51% and 57% 

respectively, indicating more volatility in this series. Hens had the smallest CV (9%), 

followed by egg production (13%). 

There is some skewness and kurtosis in the series, as expected from observed 

data, with both the estimated model series and the full data set returning similar results. 

However, there is a large, significant jump in kurtosis for egg price in the full data set, 

suggesting that the AI outbreak resulted in outliers that created a fat-tailed distribution 

for egg price. While normality is often favored in analysis, it is not a requirement for the 

VECM. Considering we have three decades of agricultural data, it is likely that these 

statistics represent structural changes in the industry due to shifts in demand and 

production. While it is important to acknowledge fat tails and deviations from normality, 

no adjustments were made to the data to account for these characteristics since they 

should not have a major impact on the model we are creating. 

An analysis of the maximum and minimum data points and their corresponding 

dates was conducted to see if the results were within the relevant timeframe. Before the 

AI outbreak in 2015, the highest egg price at the wholesale level in the 30 year timespan 

had been in March of 2008 during the beginnings of the Great Recession. However, 
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when looking at the full data set statistics, the highest egg price was realized in August 

2015, or two months after the last reported AI case for this outbreak. Prior to the 

outbreak, the number of layers and egg production had both reached their 30 year 

maximum in December 2014. Overall, these summary statistics highlight some of the 

impacts the outbreak appears to have had on the variables in the model.  

Graphs of the historical data, shown in Figures 4A and 5A, provide a visual 

analysis of trends in the various series. For example, both the number of hens and egg 

production trend upward before significantly dropping in 2015. These series also show 

signs of the seasonality expected in an agricultural production setting, which can be 

accounted for in the model using monthly dummy variables.  Additionally, the plots of 

cornmeal and soybean meal price tend to move together, suggesting that we should test 

for possible cointegration. Finally, all series appear to have the potential for being non-

stationary series which will be officially tested using DF and LR tests.  

4.1.2 Stationary Tests and the Number of Lags  

The Dickey-Fuller test and augmented Dickey-Fuller tests were initially used to 

determine if a series was stationary and the results are found in Table 2B. The DF test 

indicted that both the egg production and egg price series are stationary, although this 

result is not clear from the historical graphs. The ADF was run through 6 lags to see 

where SIC was minimized, with the results indicating that the number of hens, egg 

production, and egg price series require more lags to whiten their residuals, while the 

other supplementary variables require fewer. Based on the minimum SIC for each series, 
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the ADF returned the same conclusion as the DF test, while also finding the number of 

hens series stationary. 

Since the Dickey-Fuller tests did not agree and we want to consider cointegration 

in our model, we also conducted likelihood ratio tests on the series based on the rank of 

Π. When r=2, all series were non-stationary I(1) series which is what we expect based 

on the length of time the data covers and the historical graphs plots (see Table 3B). 

The number of lags for the VECM was selected based on comparing the SIC for 

scenarios including a levels VAR with a constant, trend or no trend, seasonality or no 

seasonality, and lags or no lags. Each scenario considered can be seen in Table 4B and 

we found that one lag will provide us with a parsimonious model ideal for forecasting, as 

SIC increases with additional lags.  

4.1.3 Cointegration Results 

I(1) cointegration analysis using CATS in RATS shows Johansen trace test 

results which suggest that, at the 90% confidence level, there are three cointegrating 

vectors (r=3). However, the SIC value suggests the presence of one cointegrating vector 

(see Table 5B). Therefore, we assume there is a minimum of one and a maximum of 3 

co-integrating vectors possible in this model. Since our objective is to forecast with our 

model, we generated forecast statistics for r=1, r=2, and r=3 to determine which 

forecasts best for both egg production and egg price, which are the variables for 

calculating revenue. When the model was run at each level, r=2 had the “best” forecasts, 

based on a Theil U statistic less than 1.0 at each step during the AI outbreak for both 

series. Selecting a rank of two ensures that we account for enough cointegration in the 
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model to avoid spurious results, while also maintaining a parsimonious model ideal for 

forecasting.  

Tests for variable exclusion and weak exogenetity were also conducted and the 

results for two cointegrating vectors can be seen in Table 6B and 7B, respectively. For 

the exclusion test, a decision to reject indicates that the series is part of the co-integrating 

space. In our case, all series except pork and beef price are in the co-integrating space at 

a 95% confidence level. The test of weak exogeneity given two cointegrating vectors 

shows that, except for RDI being weakly exogenous within the cointegration vector, all 

other series respond and make adjustments toward the estimated long run relationship 

(Bessler & Yang 2003). These tests provide insight into the composition of the 

cointegrating vector we are including in our model.  

4.2 Estimated VECM 

Based on the cointegration tests, we needed to develop a vector error correction 

model to account for the two cointegrating vectors in our data set. Since the LR test at 

r=2 indicated that the series were all non-stationary, we took the first differences of each 

series to make them stationary. The following variables are used in the model: number of 

hens (X1), number of eggs (X2), egg price (X3), soybean meal price (X4), corn meal price 

(X5), retail beef price (X6), retail pork price (X7), and real disposable personal income 

(X8). Seasonal dummy variables for January to November (D1 to D11) are also included 

in the model.  

In the vector error correction model, lagged first differences are shown in the 

long-run series with the cointegrating vectors. Only one lag was included in the model, 
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therefore the short run VAR portion, with k-1 lags, becomes zero. This results in a 

simpler model with the following VECM equation: 

 ΔXt = ΠXt-1 + ΨSt+ et                 (21) 

With et representing innovations in contemporaneous time and the constant 

accounted for in the Π matrix. The results of this estimated VECM model are shown 

below: 

 

 

Figure 1. Estimated VECM Model 

 

 

In Figure 1, Xt is an (8x1) vector of variables, Π is a (9x8) vector of coefficients 

corresponding to a (9x1) vector of Xt-1 lagged variables, which includes a constant. et is 

(8x11) Seasonal Matrix 

(8x1) 

(11x1) 

(8x9 Π matrix) 

(8x1) 
(9x1) 
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an (8x1) vector of innovations, which were found to be stationary and not autocorrelated. 

The t-statistic values and the components of Π, α and β’ are shown in Figure 6A. Using 

et, innovation accounting is conducted to provide insight on what the model tells us 

about contemporaneous relationships.  

4.2.1 Forecasts 

We generated a 12-step ahead forecast for the number of eggs and egg price to 

avoid the influence of the AI outbreak on the counterfactual revenue. These are point 

forecasts, which are typically reported for major events, providing us with a definite 

amount of revenue change. These forecasts can be considered reliable because they are 

better than a random walk, as shown by Thiel U statistics less than one at each forecast 

step in Table 8B. Forecasts were calculated by first converting the number of eggs from 

millions of eggs to dozens of eggs using the equation (X*106)/12. The number of dozens 

of eggs was then multiplied by egg price, converted from cents per dozen to dollars per 

dozen using (X/100), to obtain the revenue at each time period. This was done for both 

the actual data set values and the forecasts generated by the VECM from October 2014 

to October 2015. This particular AI outbreak “officially” started in December 2014 and 

ended in June 2015 so the revenue for each month in this period was summed and the 

difference between the realized and counterfactual revenue was obtained (see Figure 7A 

and Table 9B). Our results showed that the realized revenue during the AI outbreak was 

higher, at $6.76 billion, compared to the counterfactual revenue which was only about 

$6.08 billion. Thus, ceteris paribus, the 2015 AI outbreak allowed wholesalers to gain 
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about $676 million in revenue between December 2014 and June 2015. These results 

will be further discussed in Section 5.  

4.2.2 Directed Acyclic Graphs 

Both the GES and PC Algorithms were run in TETRAD V software using the 

estimated VECM residual covariance matrix and the number of observations as input. 

Knowledge for these graphs was given as income, soybean meal and cornmeal price in 

the top tier, pork and beef price in the second tier, eggs and hens in the third tier, and egg 

price in the fourth tier.  The PC Algorithm was run with α=0.4 and the GES was run with 

a 0.15 penalty discount so that we could create a complete directed acyclic graph. The 

two models agreed on the contemporaneous relationships of the variables by finding the 

same edges.  The graph we developed, shown in Figure 2, has a BIC score of 31.59, a 

CFI score of 0.57, and a RMSEA of 0.14, indicating that this is a fairly good fitting 

model.  

The graph has no bi-directed edges, indicating that no major variables are 

missing in the model. We find that the number of eggs and egg price are endogenous 

variables in this system, while the number of hens are weakly exogenous. The significant 

edges, at the .05 level, in both graphs are found going from pork price to beef price, 

soybean meal price to egg price, and the number of hens to eggs (see Table 10B). Pork 

and beef are expected to have a causal relationship, as they are considered substitutes for 

each other. We found that a higher pork price yields a higher beef price, meaning that 

when the price of pork increases consumers switch to beef, pushing the beef demand 

curve rightward so that the same quantity they purchased of beef before now costs more. 
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Inputs like soybean meal add value to the number of eggs, which is manifested in their 

price. For example, a higher soybean meal price yields a higher egg price as the cost of 

the input is passed down the supply chain. Finally, eggs literally come from hens, so it 

would have been surprising if the DAG did not pick up on this positive relationship of an 

increase in the number of hens yielding a larger amount of eggs. 

 

 

 

 

It is interesting to note is that neither the number of hens nor egg production is 

connected to egg price. Rather than these direct production factors impacting egg price, 

it appears from the DAG that cornmeal price is a common cause between the number of 

Figure 2. Directed Acyclic Graph Generated by Both the PC Algorithm and the 

Greedy Equivalence Search Algorithm 
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eggs and egg price, thus indirectly connecting them. Although cornmeal price has no 

significant relationships in the graph it does have the positive non-significant 

relationship with egg price and production we expect from an input, as well as having an 

indirect impact through pork and beef which require the same inputs as eggs production. 

Retail beef price is nearly significant with a significance of p= 0.0569, highlighting that 

the prices of commodities using similar inputs can appear causally related based on this 

common point. Unless otherwise noted, all of these results are for significant 

contemporaneous time relationships between the variables in the VECM we estimated. 

4.2.3 Innovation Accounting 

Impulse response functions, shown in Figures 8A and 9A, look at all the 

variable’s responses to a one-time shock in one series. For the estimated model series, 

hens never really recovered from the shock, meaning they remained at the shocked 

amount even at two years following the shock. This is a logical result based on current 

production methods where layer houses are typically filled all at once and the hens 

remain there throughout their approximately two year productive cycle. As the DAGs 

indicate, a positive shock in hens elicits an increase in the number of eggs and, since the 

average rate of lay will not change drastically in the short run, the number of eggs is 

constant over the two years following a shock. Egg price decreases minimally following 

a shock in hens and levels out within about three months. This corroborates the 

economic theory of demand that the larger the quantity of a commodity for sale, in this 

case stemming from a supply shock in hens, the lower the price. 
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The supply of eggs decreases to a constant level higher than its original amount 

by about six months after a shock to itself, with the slope suggesting that the supply is 

inelastic. A shock in eggs also generates a positive response in hens that levels out 

around six months, or approximately the length of time it takes for a hen to start 

producing eggs, providing further evidence of the relationship between these two 

variables. The decrease in egg price due to a shock in the number of eggs is even smaller 

than it was for a shock in the number of hens, suggesting that egg price is relatively 

indifferent to shocks in these series. All other series estimated by the VECM have a 

positive response to shocks in the number of eggs and hens. These increases reflect that 

when there are more hens and eggs, more inputs are necessary for production which 

increases their prices. As these inputs are also used in beef and pork production, the 

retail prices for these commodities will absorb these costs and increase as well. As the 

prices of commodities increase, real personal disposable income should increase to cover 

the new norm. A shock in hens realizes smaller increases in these variables compared to 

a shock in eggs, as both the number of eggs and the other variables lie further on the 

demand side of the industry and thus interact and have a greater influence on each other 

than a supply variable like hens.  

Approximately six months following a shock in egg price, egg prices level out at 

a higher level than where they started.  The slope of egg price’s response to a shock to 

itself suggests price inelasticity, which is expected of a necessary good and may explain 

some of its independence from its direct inputs: hens and eggs. The number of hens 

increase for a couple months before stabilizing following a shock in egg price, likely as 
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an effort to generate a larger egg supply to benefit from the higher price. The number of 

eggs decrease slightly, possibly to due to the effects of changing production, then rise 

when hens stabilize. The egg price series also induces more positive responses from 

other series starting immediately after the shock, with cornmeal price having the largest 

response by stabilizing at 50% from its baseline by around six months. The responses 

from these other variables support the concept that prices are more sensitive and 

responsive to other price changes, rather than changes in production.  

Forecast error variance decompositions, shown in Table 11B, consider what 

contributes to the variability in a series after a shock. Immediately after a shock, the 

variability in the number of hens is almost entirely due to itself and as time passes other 

variables, such as the number of eggs and input prices begin to have an impact on the 

variability in hens. Supporting the DAG’s finding of hens causing eggs, a 20% influence 

of hens on eggs in the first period after a shock in eggs is observed. This influence 

increases to 45% over the period of two years as the contribution of eggs to itself falls to 

30%. Feed input prices gradually impact the number of eggs more over time.  

The variability in egg price is essentially independent of its direct inputs, eggs 

and hens, which have less than a 0.5% impact combined on egg price even after two 

years. In the first period after a shock, egg price itself contributes about 96% to its own 

variability with feed input prices explaining about 3% of the rest of the changes in egg 

price. By six months cornmeal price begins to have a large impact on egg price and this 

influence increases to 44% over two years as the contribution on egg price variability on 

itself decreases to 50%. A relationship between cornmeal price and egg price can also be 
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seen in the DAG generated from the residuals of our model, which were discussed in 

Section 4.2.2.  
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5. DISCUSSION AND CONCLUSIONS 

 

At the beginning of this paper we set an overarching goal to develop a sound 

econometric model that will allow us to obtain the revenue impact on US table egg 

wholesalers that is attributed to the 2014-2015 AI outbreak, ceteris paribus. The first 

objective in attaining this goal was to identify series characteristics for the model 

variables, which was done using summary statistics like CV and by plotting the 

historical values over the past 30 years to identify trends and possible cointegration. 

From this visual analysis we began to conduct tests to determine factors necessary for a 

VECM, such as identifying if series are stationary, how many lags to include in our 

model, and if cointegration is present. To satisfy our second objective of identifying a 

VECM, we were able to define an eight variable VECM for the US table egg industry 

with one lag and two cointegrating vectors. This was used to fulfill the third objective 

and primary goal of this research: to generate counterfactual point revenue forecasts over 

the time period the 2014-2015 AI outbreak occurred and compare these forecasts to 

actual revenue received to pinpoint revenue impact. This led us to a positive revenue 

impact of $676 million during this AI outbreak.  Finally, we satisfied our fourth 

objective of determining contemporaneous relationships within the industry though 

DAGs, impulse response functions, and charts of forecast error variance decompositions. 

Overall, our key finding is that while the 2014-2015 AI outbreak had a negative 

impact on many farms throughout the US, table egg wholesales were actually able to 

capture nearly $676 million in increased revenue from this event. This can be explained 
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by looking at the revenue curves in Figure 3 for these wholesalers, who are operating in 

an imperfectly competitive market.  

 

 

Figure 3. Marginal, Average and Total Revenue Graphs 

  

 

 

In Figure 3, P and Q represent egg price and egg quantity, respectively. MR is 

marginal revenue, which when price equals zero is where total revenue (TR) is 

maximized. AR is average revenue, or the firm’s demand curve, with the lower portion 

of the AR curve being inelastic where egg price would lie. Table egg wholesalers 

operate in this inelastic portion of their demand function, such that when the quantity of 
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eggs decreases, their total revenue is actually increasing and a revenue gain of $676 

million can be realized. Using similar logic, producers would be found operating in the 

left-hand portion of the TR curve so that they would have experienced a revenue loss 

during the outbreak. In this way, we can conceptualize how wholesalers can see a 

positive effect on revenue from the AI outbreak, while the general table egg industry can 

still be said to have faced heavy losses. Additional considerations on the wholesaler’s 

ability to gain from the outbreak, include the fact that the direct impact of the AI 

outbreak was at the farm level and wholesalers did not face the costs associated with 

handling AI infected birds. Additionally, some of the burden of cost from the production 

level is often passed down the supply chain to the retail and consumer levels such that 

the wholesalers may not absorb much, if any, of the cost.  

To summarize our findings on contemporaneous relationships within the 

industry, one interesting result was that egg price does not appear causally related to the 

supply of eggs or the number of hens. This may be the result of feed input prices, such as 

cornmeal price, being a causal fork d-separating the number of eggs and hens from the 

egg price. Additionally, results from innovation accounting support the relationship of 

egg price to the prices of feed inputs by indicating that variability in egg price following 

a shock, aside from itself, is largely due to cornmeal price. This does not mean that egg 

prices and the number of hens and eggs do not respond to shocks in the other’s series, as 

our impulse response functions do show they respond to each other.  

Based on our results, should another large-scale outbreak occur, one could 

consider implementing policies that allow for the revenue gains to be captured by those 
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most effected by losses. This could possibly be done by ensuring that wholesalers share 

a certain amount of the cost burden that is passed down the supply chain. Additionally, 

because of the relationships input prices have with a host of other variables, policies 

regarding these commodities need to consider cross-industry impacts. These studies can 

consider revenue impacts using methods similar to those outlined in this thesis.  

 Future studies could try to regionalize the impacts of the AI outbreak, rather than 

looking at it from a U.S. macroeconomic standpoint. Exports and imports were also not 

considered in this study, but may be interesting to consider in future evaluations of AI 

outbreaks. Expanding on this study, one could use price transmission techniques to look 

at the consumer and retailer levels, or even the farm level revenue impact from the 

outbreak both on a macro or regionalized scale. Overall, we hope that this study will 

encourage the implementation of the VECM to calculate revenue loss and industry 

impacts due to either naturally occurring events, like the avian flu, or policies impacting 

an industry in future studies. 
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APPENDIX A 

FIGURES 

 
3Hen and egg numbers are quantities in thousands and millions, respectively. Egg prices are the 

wholesale price of NYC Grade A Large Table Eggs, expressed in cents per dozen. Soybean meal prices, in 

dollars per metric ton, represent Chicago soybean meal futures, first contract forward, for minimum 48% 

protein meal. All prices are in US currency. These graphs represent 30 years of series data.  

Figure 4A. Historical Charts for United States Hens, Eggs, Egg Price and Soybean 

Meal Price from March 1986 to May 20163 
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4Corn Meal Price represents the 60% protein corn gluten meal Midwestern US wholesale price, in dollars 

per ton. Both beef and pork price, in cents per pound for the retail weight equivalent, are retail prices 

adjusted using the non-seasonally adjusted consumer price index for all urban consumers (CPI-U), 

indexed at 1982-1984=100. Real disposable personal income per capita is the chained 2009 dollars 

seasonally adjusted annual rate. All series are in US currency. These graphs represent 30 years of series 

data. 

 

Figure 5A. Historical Charts for United States Cornmeal Price, Retail Beef & Pork 

Prices, and Real Personal Disposable Income from March 1986 to May 20164 
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_____________________________________________________________________________________ 
5Our 8 variable VECM has a Π matrix of 2 cointegrating vectors lagged one period, generated by 

multiplying the transposed beta matrix with the alpha matrix, and a matrix for the 11 seasonal dummy 

variables in current time with December as the intercept. The constant is held within the cointegrating 

vector. t-statistics are reported at the α=0.05 level based on the critical value of 1.960 with ∞ degrees of 

freedom for a two-tailed test. See Figure 1 for actual Π and seasonal dummy matrix values. 

Figure 6A. VECM Matrices and test-statistics5 
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6The counterfactual revenue forecast generated from the VECM, which we would have expected to see if 

the AI outbreak had not occurred, is shown as the dotted line. This was calculated by forecasting a 12-step 

ahead forecast of the egg price and number of eggs separately, then using these values to calculate revenue 

from December 2014 to June 2015 when outbreak officially started and ended.  

Figure 7A. Realized and Counterfactual Forecast for United States Wholesale Table 

Egg Revenue 2010-20156 



 

 

51 

 
Figure 8A. Impulse Response Functions to Innovations in Eggs and Hens7 

 

 
7The graphs represent the responses of series to a one time shock in the innovation series. The horizontal 

axis represents the number of months after a shock, during which a series is trying to recover or stabilize, 

set to 24 months or 2 years in this case. The vertical axis represents the magnitude and direction of a 

shock, from -0.25 to 1.0. Series are wholesale egg price and the number of hens and eggs in the US.  
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8The graphs represent the responses of series to a one time shock in the innovation series. The horizontal 

axis represents the number of months after a shock, during which a series is trying to recover or stabilize, 

set to 24 months or 2 years in this case. The vertical axis represents the magnitude and direction of a 

shock, from -0.25 to 1.0. Series are US wholesale egg price, number of hens and eggs, cornmeal price, 

soybean meal price, retail beef price, retail pork price, and real disposable personal income.  

Figure 9A. Impulse Response Functions to Innovations in Egg Price8 
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APPENDIX B 

 

TABLES 

 

Table 1B. Series Summary Statistics9 
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Series Mean 

Std. 

Error CV10 S K 

Max 

Date11 Min 

Hens Numbers 

(Thousands) 
264854 23287 0.088 -0.039 -1.378 

313019 Oct 

2014 226283 

Egg Production 

(Millions) 
5897 724 0.126 0.155 -1.090 

7539 Oct 

2014 4495 

Egg Price 

(Cents/Dozen) 
85 25 0.512 1.061 0.339 

162 Mar 

2008 51 

Soybean Meal 

(Dollars/Metric Ton) 
257 99 0.457 1.273 0.742 

586 Aug 

2012 143 

Corn Meal 

(Dollars/Ton) 
341 135 0.450 1.206 0.504 

784 Apr 

2014 81 

Retail Beef Price 

(Cents/Pound) 
219 20 0.176 0.004 -0.451 

276 Sep 

2014 178 

Retail Pork Price 

(Cents/Pound) 
164 15 0.205 1.031 0.502 

208 Dec 

2009 140 

Real Disposable Personal 

Income, Per Capita 

(Chained 2009$, seasonally 

adjusted annual rate) 

30866 4568 0.149 -0.095 -1.550 
38639 

Dec 

2012 
23015 
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Hens Numbers 

(Thousands) 
266423 23820 0.089 -0.070 -1.324 

313019 Dec 

2014 226283 

Egg Production 

(Millions) 
5956 753 0.130 0.130 -1.076 

7731 Dec 

2014 4495 

Egg Price 

(Cents/Dozen) 
89 32 0.568 1.794 4.433 

261 Aug 

2015 51 

Soybean Meal 

(Dollars/Metric Ton) 
262 99 0.449 1.122 0.380 

586 Aug 

2012 143 

Corn Meal 

(Dollars/Ton) 
351 139 0.449 1.015 -0.048 

784 Apr 

2014 81 

Retail Beef Price 

(Cents/Pound) 
221 23 0.188 0.308 -0.168 

280 Dec 

2014 178 

Retail Pork Price 

(Cents/Pound) 
164 14 0.198 1.014 0.573 

208 Dec 

2009 140 

Real Disposable Personal 

Income, Per Capita 

(Chained 2009$, seasonally 

adjusted annual rate) 

31250 4739 0.152 -0.128 -1.504 

38849 
May 

2016 
23015 

 

______________________________________________________________________________________________________________________________________________ 

9Bold values indicate significance at the .05 level for skewness (S) and kurtosis (K). Bold values in the Max/Min 

column are for max and min values in the series that occurred in the past decade, or since 2006. The full data 

set includes the raw data from when the AI outbreak occurred, whereas the model was estimated using data that 

stops before the outbreak to avoid AI contaminated values from influencing the counterfactual forecast. 
10Coefficient of Variance, standard deviation divided by mean, is a measure of the volatility of a series.   
11Date corresponds to the date of the bold value for max/min for that series.  
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Table 2B. Dickey-Fuller and Augmented Dickey-Fuller Tests for Stationarity12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________________________________________________________________________________________________________________ 

12The null hypothesis for both tests is that a series is non-stationary. If the t-statistic value is less than the 

5% level critical value of -2.89, then the null hypothesis is rejected. Bold values indicate significance at 

the α=.05 level. The Augmented Dickey-Fuller test is used to correct for autocorrelation in the estimated 

residuals by adding lags, selected by minimizing the SIC value, to “whiten” the errors. For the ADF test, 

the t-statistic and SIC values are associated with the particular lag listed, which had the smallest SIC 

value. For the order of integration, I(0) represents a stationary series and I(1) represents a non-stationary 

series.  
13SIC values decreased to lag 4 (2nd lowest SIC, I(0) here), increased for lag 5, then was lowest at lag 6.  
14SIC values increased from the first lag (2nd lowest SIC, I(0) here), then fluctuated up and down with lag 

6 having the lowest SIC.  

    Dickey-Fuller Test Augmented Dickey-Fuller Test 

Series t-stat. 

Order of 

Integration 

Lag 

(k) 

Schwarz 

Information 

Criteria 

(SIC) Value t-stat. 

Order of 

Integration 

Hens 0.647 I(1) 6 13.74213 -5.520 I(0) 

Egg Production -3.535 I(0) 6 10.550 -3.936 I(0) 

Egg Price -4.111 I(0) 6 4.80214 -4.634 I(0) 

Soybean Meal 

Price 
-1.666 I(1) 1 5.909 4.389 I(1) 

Corn Meal Price -1.999 I(1) 1 6.944 1.857 I(1) 

Retail Beef Price -0.263 I(1) 1 2.472 3.744 I(1) 

Retail Pork Price -1.400 I(1) 1 1.665 4.524 I(1) 

Real Disposable 

Personal Income 
-0.798 I(1) 3 11.133 -2.830 I(1) 
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Table 3B. Likelihood Ratio Test for Stationarity Based on a Rank of Π of Two15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________________________________________________________________________________________________________________ 

15The null hypothesis for this test is that a series is stationary. This test uses a chi-squared test statistic, 

with 14.07 being the critical value based on seven degrees of freedom. The p-values correspond with the 

chi-values given a 95% confidence interval. The Decision column represents the decision to reject (R) or 

fail to reject (F) the null hypothesis.  

Series Chi-Value r=2 p-value Decision 

Hens 46.05 0.000 R 

Egg Production 45.76 0.000 R 

Egg Price 45.52 0.000 R 

Soybean Meal Price 46.14 0.000 R 

Corn Meal Price 44.63 0.000 R 

Retail Beef Price 48.54 0.000 R 

Retail Pork Price 47.63 0.000 R 

Real Disposable Personal Income 45.69 0.000 R 
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Table 4B. Model Lag Determination Using Schwarz Information Criteria (SIC)16 

Lags Nothing Seasonals 

Only 

Seasonals 

& Lags 

Seasonals, 

Trend, & 

Lags  

Lags Only Trend & 

Lags 

0 76.47 75.39 ------- ------- ------- ------- 

1 ------- ------- 55.42 55.25 57.99 57.93 

2 ------- ------- 55.57 55.50 57.62 57.51 

3 ------- ------- 56.19 56.14 58.10 57.91 

4 ------- ------- 56.90 56.88 58.69 58.50 

5 ------- ------- 57.66 57.67 59.19 59.15 

6 ------- ------- 58.43 58.41 59.80 59.72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

16Schwarz Information Criteria evaluates the trade-off between the number of variables in a model and the 

number of lags, in an attempt to find the most parsimonious model. This table shows the SIC results for 

different scenarios of a levels VAR with a constant, with the bold value being where SIC is minimized.   
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Table 5B. Trace Tests for Model Rank and Cointegration17 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

17Trace tests for determining the rank of Π were described by Johansen (1991) and have a null hypothesis 

of r cointegrating relations, shown in the first column. This test is done in a step-wise fashion starting 

from the top of the table and ends at the first failure to reject (F#), which is where the trace test indicates 

the rank of Π is at. The decision column indicates the decision to reject (R) or fail (F) the null hypothesis 

at the 90% confidence level. Results are associated with a constant in the co-integrating space. T is the 

calculated test statistic and C(10%) is the chi-squared critical value at the 90% confidence interval. The 

minimum Schwarz Information Criteria value from the residual analysis is in bold.  

r T C(10%) Decision SIC 

=0 294.70 159.74 R 55.44 

<1 180.85        126.71 R 55.02 

<2 113.96        97.17 R 55.06 

<3 62.51        71.66 F# 55.11 

<4 34.79 49.92 F 55.20 

<5 19.15        31.88 F 55.29 

<6 7.41        17.79 F 55.36 

<7 2.62        7.50 F 55.42 
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Table 6B. Exclusion Test Results for Two Cointegrating Vectors18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

18The null hypothesis for the exclusion test is that the series is not in the co-integrating space. This test 

uses a chi-squared test statistic, with 5.99 being the critical value based on two degrees of freedom. The p-

values correspond with the given chi-values given a 95% confidence interval. The D column represents the 

decision to reject (R) or fail to reject (F) the null hypothesis. 

Series Chi-Value r=2 p-value D 

Hens 15.72 0.000 R 

Egg Production 20.43 0.000 R 

Egg Price 47.39 0.000 R 

Soybean Meal Price 8.80    0.012 R 

Corn Meal Price 30.45 0.000 R 

Retail Beef Price 5.74     0.057 F 

Retail Pork Price 1.89   0.389 F 

Real Disposable Personal Income 21.23 0.000 R 

Constant 13.00  0.002 R 
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Table 7B. Weak Exogeneity Test Results for Two Cointegrating Vectors19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

19The null hypothesis for this test is that the series is weakly exogenous with respect to perturbations in the 

co-integrating vector. This test uses a chi-squared test statistic, with 5.99 being the critical value based on 

two degrees of freedom. The p-values correspond with the given chi-values given a 95% confidence 

interval. The Decision column represents the decision to reject (R) or fail to reject (F) the null hypothesis. 

Series Chi-Value r=2 p-value Decision 

Hens 6.87 0.032 R 

Egg Production 11.91    0.003 R 

Egg Price 26.17 0.000 R 

Soybean Meal Price 8.57 0.014 R 

Corn Meal Price 24.87 0.000 R 

Retail Beef Price 7.89 0.019 R 

Retail Pork Price 8.25 0.016 R 

Real Disposable Personal Income 5.74 0.057 F 
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Table 8B. Theil U-Statistic to Evaluate Forecast Performance20 

Step 

Number of Eggs 

(Millions) 

Egg Price 

(Cents/Dozen) 

Number of 

Observations 

1 0.370 0.939 13 

2 0.504 0.958 13 

3 0.547 1.009 13 

4 0.589 0.935 13 

5 0.686 0.929 13 

6 0.674 0.934 13 

7 0.750 0.907 13 

8 0.758 0.905 13 

9 0.769 0.901 12 

10 0.752 0.918 11 

11 0.714 0.945 10 

12 0.805 0.943 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________________________________________________________________________________________________________________________ 

20Theil’s U-statistic is the ratio between the vector error correction model’s forecast root mean square 

error and a random walk’s forecast root mean square error. A value less than 1.0 indicates a model that 

forecasts better than a random walk. The step column is the number of steps ahead the model forecasts 

and the number of observations are those available for each step ahead forecast.  
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Table 9B. Revenue Calculations21 

Date Realized Revenue Counterfactual Revenue 

2014-12-01 1,215,184,350 998,313,465 

2015-01-01 787,607,333 1,032,262,106 

2015-02-01 809,219,250 691,581,641 

2015-03-01 1,061,901,533 907,501,990 

2015-04-01 732,096,583 890,371,289 

2015-05-01 993,284,500 666,604,645 

2015-06-01 1,158,175,150 894,403,187 

Sum Total 6,757,468,700 6,081,038,323 

Difference 676,430,377  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________________________________________________________________________________________________________________________ 

21A 12-step ahead forecast was generated for the number of eggs and the egg price using a vector error 

correction model with one lag, two cointegrating vectors, and seasonal dummies. From the forecasted 

values, the counterfactual revenue was calculated and compared to the realized revenue, or the revenue 

that was reported by the industry. Both the realized and counterfactual revenue was calculated and 

summed over the official months the outbreak occurred, from December 2014 to June 2015. The difference 

of the counterfactual revenue taken from the realized revenue is in the Difference row and represents the 

revenue impact the avian influenza outbreak had on the industry at the wholesale level, ceteris paribus.  
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Table 10B. Greedy Equivalence Search (GES) and PC Algorithm (PC) Machine 

Learning Edge Statistics22 

Edge 
Edge 

Coefficient 
t-statistic P 

PPR —> BPR 0.1973 3.7160 0.0002 

RDI —> HENS 0.0819 1.5194 0.1296 

PPR —> HENS -0.0507 -0.9397 0.3480 

HENS —> EGGS 0.4473 9.2297 0.0000 

SMP —> EPR 0.1535 2.5952 0.0099 

CMP —> PPR -0.0553 -1.0232 0.3069 

BPR —> EPR 0.1012 1.9105 0.0569 

CMP —> HENS -0.0848 -1.572 0.1169 

CMP —> EPR 0.0876 1.4804 0.1397 

CMP —> EGGS -0.0542 -1.1182 0.2643 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

22The t-statistic and p-value are for a null hypothesis that the edge is zero.  The PC Algorithm was run 

with α=0.55 and the GES was run with a 0.1 penalty discount. The PC algorithm starts with a completely 

undirected graph and tests edges to remove those with significantly zero edges. The GES algorithm starts 

with no edges at all and scores graphs with the Bayesian Information Criterion (BIC) metric. Any edges 

found have an edge coefficient, with its significance shown with a t-statistic and associated p-value. Both 

searches generated the same results. 
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Table 11B. Percent Forecast Error Variance Decomposition for Hens, Eggs, and 

Egg Price23 
N

u
m

b
e
r 

o
f 

H
en

s Month HENS EGGS EPR SMP CMP BPR PPR RDI 

1 98.40 0.00 0.00 0.00 0.67 0.00 0.26 0.67 

6 92.74 4.11 0.57 0.07 2.07 0.00 0.21 0.23 

12 89.91 6.78 0.59 0.20 2.19 0.01 0.19 0.14 

18 88.83 7.87 0.56 0.27 2.18 0.01 0.18 0.10 

24 88.29 8.43 0.54 0.31 2.17 0.01 0.18 0.09 

N
u

m
b

e
r 

o
f 

E
g

g
s Month HENS EGGS EPR SMP CMP BPR PPR RDI 

1 19.68 79.30 0.00 0.00 0.83 0.00 0.05 0.13 

6 33.57 59.29 0.11 3.86 1.22 0.07 0.21 1.67 

12 40.32 43.29 0.84 9.79 2.41 0.17 0.34 2.84 

18 43.15 34.99 1.44 13.20 3.20 0.22 0.41 3.39 

24 44.71 30.23 1.81 15.18 3.68 0.25 0.45 3.70 

E
g
g

 P
ri

ce
 

Month HENS EGGS EPR SMP CMP BPR PPR RDI 

1 0.00 0.00 95.82 2.38 0.76 1.00 0.04 0.00 

6 0.13 0.02 74.83 1.45 21.95 1.19 0.18 0.26 

12 0.22 0.04 59.99 2.36 35.51 1.19 0.25 0.45 

18 0.26 0.04 53.62 2.80 41.29 1.18 0.27 0.54 

24 0.28 0.05 50.21 3.04 44.38 1.18 0.29 0.58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________________________________________________ 

23Forecast error variance decompositions are found by taking the forecast error variances associated with 

one series and dividing by the full forecast error variance. From this we can see how much of the error 

variance in a shocked series is due to itself and other series over time, in months, after a one-time shock. 

The 8 series considered are number of hens (HENS), number of eggs (EGGS), egg price (EPR), soybean 

meal price (SMP), cornmeal price (CMP), retail beef price (BPR), retail pork price (PPR), and real 

disposable personal income (RDI). 
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APPENDIX C 

INPUT DATA 

 

1C. Data for Regression Analysis for Time Series (RATS) Software24 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

Mar-86 246348 5287 80.8 175.93 198.75 231.26 179.18 23571 

Apr-86 244527 5057 65.7 169.15 192.90 226.27 174.04 23649 

May-86 242831 5182 65.2 165.23 210.60 224.70 173.10 23661 

Jun-86 241247 5016 59.2 164.13 216.90 223.82 177.04 23631 

Jul-86 241323 5116 73.0 167.45 211.50 223.72 194.23 23742 

Aug-86 242073 5125 72.8 167.67 206.25 225.85 200.94 23760 

Sep-86 243398 4997 72.6 168.41 208.00 225.52 204.25 23765 

Oct-86 246548 5222 69.6 163.29 222.50 225.05 204.16 23731 

Nov-86 248396 5162 77.2 165.29 230.60 227.08 201.25 23732 

Dec-86 249569 5377 75.5 158.84 241.50 227.84 199.80 23760 

Jan-87 250796 5331 67.1 159.03 232.20 228.26 195.30 23812 

Feb-87 250549 4809 65.2 159.00 206.25 224.22 191.76 23925 

Mar-87 249689 5409 62.0 155.27 208.50 223.78 186.95 23934 

Apr-87 246853 5191 62.4 166.05 213.10 225.80 183.59 23015 

May-87 244570 5226 55.6 184.11 226.40 231.43 187.96 23930 

Jun-87 243234 5010 58.7 194.45 267.80 236.45 191.40 23878 

Jul-87 243612 5173 59.1 186.47 268.75 234.39 196.76 23929 

Aug-87 245226 5183 63.2 177.45 240.60 230.81 198.64 24012 

Sep-87 247812 5088 68.3 189.72 259.50 229.81 198.40 23992 

Oct-87 250079 5325 60.2 196.54 278.75 229.34 195.32 24122 

Nov-87 251051 5217 60.5 218.22 305.60 230.20 190.10 24196 

Dec-87 250074 5400 56.9 227.64 313.50 228.96 186.48 24398 

Jan-88 248302 5348 55.9 206.32 309.40 226.35 185.83 24436 

Feb-88 246878 5004 52.7 201.56 283.75 228.40 182.75 24557 

Mar-88 244283 5346 56.4 208.33 287.00 229.61 182.27 24637 

Apr-88 241899 5086 52.1 218.75 275.60 230.03 181.02 24707 

May-88 239098 5142 50.9 245.04 278.75 231.97 181.03 24725 

Jun-88 235807 4908 56.8 320.55 355.50 237.45 184.76 24799 

Jul-88 235184 5054 73.7 292.11 380.00 236.46 183.92 24878 

Aug-88 236703 5089 69.5 294.76 310.00 234.63 181.72 24930 

Sep-88 238647 4945 75.6 295.28 309.40 235.73 180.63 24943 

Oct-88 240214 5169 66.0 281.67 313.75 233.12 176.76 25060 

Nov-88 239442 5040 65.3 277.51 293.00 234.86 172.77 25052 

Dec-88 236540 5154 70.4 276.26 277.50 233.85 171.72 25174 
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1C. Continued 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

Jan-89 235016 5062 72.0 280.23 281.00 236.50 174.82 25273 

Feb-89 234336 4538 71.1 263.39 288.10 236.23 173.56 25338 

Mar-89 232357 5060 92.2 264.55 280.60 243.29 174.75 25450 

Apr-89 230448 4864 76.6 247.61 275.60 244.29 174.87 25298 

May-89 229449 4968 73.7 238.93 272.00 244.90 172.06 25161 

Jun-89 229446 4793 75.2 233.79 270.63 245.57 173.05 25208 

Jul-89 229337 4926 76.5 236.36 271.25 246.30 176.62 25285 

Aug-89 229473 4900 84.2 216.78 257.00 244.48 178.04 25324 

Sep-89 230677 4777 83.8 216.57 267.00 241.56 177.04 25365 

Oct-89 231885 4969 84.8 206.34 313.00 240.25 178.22 25458 

Nov-89 232455 4878 93.4 203.73 298.75 241.30 181.70 25465 

Dec-89 232234 5066 99.5 200.26 280.00 243.80 183.07 25453 

Jan-90 231888 4984 92.4 191.31 81.00 246.76 185.63 25593 

Feb-90 231752 4495 79.6 182.27 260.90 242.83 186.29 25639 

Mar-90 231827 5065 91.5 184.33 238.75 243.09 185.93 25611 

Apr-90 230881 4895 82.4 191.06 238.10 246.58 188.60 25735 

May-90 228826 4968 67.9 199.97 240.50 250.75 192.89 25651 

Jun-90 226779 4773 73.6 192.49 215.60 248.55 203.30 25679 

Jul-90 226283 4931 70.9 193.97 222.00 245.96 206.58 25741 

Aug-90 227475 4961 80.3 192.70 223.75 245.28 207.99 25558 

Sep-90 228640 4811 82.2 198.24 229.40 244.00 203.14 25524 

Oct-90 230229 5038 86.5 200.76 232.00 245.19 204.81 25291 

Nov-90 231702 4958 86.5 192.01 231.90 252.69 204.36 25269 

Dec-90 232810 5141 92.5 189.54 240.60 255.89 204.63 25383 

Jan-91 233428 5102 87.6 180.40 247.00 254.88 197.61 25274 

Feb-91 233135 4610 78.3 183.51 239.40 252.16 196.55 25290 

Mar-91 231574 5135 91.8 184.07 247.50 253.56 194.25 25309 

Apr-91 229598 4876 74.9 190.37 236.70 253.71 191.27 25369 

May-91 229379 4973 67.0 189.32 226.90 252.00 192.06 25341 

Jun-91 230072 4849 69.0 190.08 230.00 247.80 192.41 25443 

Jul-91 230745 5045 79.6 184.68 236.20 243.38 194.37 25361 

Aug-91 231833 5076 76.3 199.19 254.60 239.83 190.44 25377 

Sep-91 233435 4917 75.5 212.96 269.40 233.81 187.14 25420 

Oct-91 235449 5121 74.5 203.19 292.50 230.62 182.82 25431 

Nov-91 236313 5019 75.8 198.68 296.25 233.58 180.38 25454 

Dec-91 236940 5232 80.0 191.53 287.50 231.87 176.39 25662 

Jan-92 235933 5135 66.6 193.36 267.50 230.14 173.60 25913 

Feb-92 235175 4788 61.7 192.56 275.60 232.32 173.84 26019 

Mar-92 235064 5209 63.1 194.94 272.00 233.52 171.46 26029 

Apr-92 233550 5017 65.0 192.28 247.50 233.63 166.91 26077 
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1C. Continued 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

May-92 231931 5069 58.9 199.53 246.25 230.86 167.84 26178 

Jun-92 231721 4889 62.0 201.30 248.50 231.35 168.04 26259 

Jul-92 232041 5095 58.6 192.64 243.75 228.14 170.61 26207 

Aug-92 232548 5125 64.6 190.18 242.75 224.80 170.16 26262 

Sep-92 235496 5004 70.5 194.99 266.00 227.28 168.94 26099 

Oct-92 238442 5246 65.3 199.87 269.40 227.39 167.12 25901 

Nov-92 239781 5132 75.3 199.12 266.90 228.04 165.04 25886 

Dec-92 239916 5340 73.6 204.84 287.00 227.84 164.70 26776 

Jan-93 238913 5237 71.7 203.32 283.10 226.37 162.77 26250 

Feb-93 238669 4701 69.9 195.97 294.40 228.52 160.27 26317 

Mar-93 238155 5260 85.2 199.39 295.50 229.60 159.40 26205 

Apr-93 237533 5065 77.8 204.27 284.40 232.04 157.10 26299 

May-93 237030 5172 67.6 211.56 276.90 235.45 159.52 26227 

Jun-93 236919 5003 74.7 210.53 276.50 229.33 160.04 26146 

Jul-93 237742 5171 68.9 250.73 300.60 227.53 162.43 26178 

Aug-93 238635 5209 72.8 239.49 314.50 221.05 159.75 26185 

Sep-93 239883 5096 67.2 219.99 305.60 217.33 160.73 26088 

Oct-93 241321 5331 70.9 211.49 296.20 216.10 159.45 25919 

Nov-93 241964 5244 71.5 227.76 305.75 217.49 159.81 25967 

Dec-93 241985 5407 72.2 223.82 316.25 215.40 159.02 26827 

Jan-94 240692 5292 68.0 217.13 309.40 213.08 158.15 26307 

Feb-94 240293 4774 72.1 215.25 296.25 211.35 156.89 26344 

Mar-94 240633 5404 74.4 213.48 288.50 213.56 157.84 26403 

Apr-94 239634 5176 65.0 207.52 278.10 212.35 155.49 26384 

May-94 238184 5248 61.9 210.81 263.50 212.46 155.11 26676 

Jun-94 237376 5084 62.9 216.99 263.75 208.31 154.81 26597 

Jul-94 237097 5268 66.2 199.92 263.75 205.65 155.75 26591 

Aug-94 239256 5336 68.0 192.50 252.30 203.81 154.21 26600 

Sep-94 242496 5218 66.7 186.32 235.60 204.08 152.15 26682 

Oct-94 244495 5445 63.8 179.34 226.90 202.26 151.92 26901 

Nov-94 246380 5371 68.5 175.45 232.50 203.34 149.72 26867 

Dec-94 247818 5584 69.3 173.45 239.40 202.61 144.54 26967 

Jan-95 246655 5443 65.2 172.51 230.50 204.63 146.63 27056 

Feb-95 245556 4884 64.3 170.29 221.25 205.12 144.96 27094 

Mar-95 244886 5530 66.2 177.20 215.60 204.38 146.97 27137 

Apr-95 243500 5283 66.7 184.07 206.25 203.37 144.56 26904 

May-95 241421 5326 59.5 185.63 196.50 202.00 144.65 27142 

Jun-95 239040 5115 64.8 189.85 208.10 202.14 142.63 27196 

Jul-95 237331 5240 75.6 199.36 218.75 204.56 144.13 27221 

Aug-95 237361 5246 72.8 194.64 232.00 201.85 148.15 27213 
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1C. Continued 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

Sep-95 238910 5106 77.1 209.81 250.00 200.64 148.25 27270 

Oct-95 240992 5338 79.4 219.23 290.50 201.20 151.01 27273 

Nov-95 244478 5331 91.1 230.54 326.90 201.69 149.61 27321 

Dec-95 246272 5565 91.8 249.43 331.90 200.21 150.76 27331 

Jan-96 245921 5431 91.3 258.36 351.00 197.41 149.20 27353 

Feb-96 245247 5049 85.7 253.71 342.50 194.83 153.93 27542 

Mar-96 245382 5523 91.8 251.40 341.25 192.06 154.50 27608 

Apr-96 244673 5309 85.6 274.40 336.50 193.96 153.26 27424 

May-96 242827 5367 76.5 271.62 343.10 191.82 156.72 27747 

Jun-96 242335 5229 79.4 264.25 315.00 191.34 163.02 27884 

Jul-96 244133 5478 81.0 272.55 308.50 192.24 165.37 27780 

Aug-96 245653 5487 86.9 281.53 295.00 194.13 169.08 27816 

Sep-96 246860 5319 90.0 294.05 329.40 193.45 170.77 27851 

Oct-96 248909 5561 86.7 260.90 344.00 193.48 169.19 27817 

Nov-96 250580 5487 102.5 255.55 340.00 196.09 168.06 27862 

Dec-96 251044 5706 100.9 258.24 342.50 197.05 167.77 27935 

Jan-97 249923 5577 86.3 260.66 336.25 192.68 168.40 28003 

Feb-97 249435 4997 82.0 273.45 335.60 189.91 166.81 28062 

Mar-97 249343 5595 86.3 301.17 340.00 187.57 164.52 28165 

Apr-97 248055 5350 75.6 309.33 342.50 189.28 162.58 28157 

May-97 246382 5475 72.3 324.99 355.75 190.03 164.26 28245 

Jun-97 245069 5285 68.4 300.66 349.40 187.57 167.06 28305 

Jul-97 244569 5434 81.9 284.33 337.00 188.14 165.90 28387 

Aug-97 245694 5489 74.7 279.81 345.60 188.59 167.58 28500 

Sep-97 249095 5374 82.4 277.95 355.00 189.42 166.21 28546 

Oct-97 251689 5630 77.0 245.04 343.75 186.62 166.24 28650 

Nov-97 254381 5576 97.4 259.68 351.25 185.70 163.47 28800 

Dec-97 255919 5802 90.3 241.42 350.50 187.64 160.29 28936 

Jan-98 255085 5724 72.5 217.84 321.90 183.17 165.28 29174 

Feb-98 255991 5154 81.5 207.11 295.00 180.25 164.41 29341 

Mar-98 256720 5801 71.6 188.89 270.50 180.38 158.78 29487 

Apr-98 254152 5559 60.5 176.48 238.10 183.15 155.10 29555 

May-98 251887 5588 67.3 171.40 236.25 182.26 158.08 29647 

Jun-98 252014 5437 73.3 178.42 225.60 182.75 159.41 29785 

Jul-98 251881 5677 77.7 188.04 252.50 182.62 160.72 29808 

Aug-98 252291 5658 77.0 152.85 245.00 182.73 160.24 29873 

Sep-98 254787 5484 78.9 143.22 210.00 178.98 159.73 29933 

Oct-98 258578 5759 83.6 151.25 227.50 178.92 157.58 29953 

Nov-98 262410 5715 82.7 160.32 313.10 182.29 156.90 30047 

Dec-98 264187 5989 75.8 160.90 291.50 184.76 155.11 30071 
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1C. Continued 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

Jan-99 264211 5917 69.6 150.15 257.50 180.76 151.17 30162 

Feb-99 264382 5312 75.5 143.06 222.50 179.47 152.94 30238 

Mar-99 263708 5963 60.2 144.45 198.00 177.84 152.28 30248 

Apr-99 262589 5731 59.3 146.51 192.50 181.64 150.22 30162 

May-99 261960 5848 54.9 145.24 201.25 180.84 152.75 30195 

Jun-99 261611 5673 68.7 150.37 209.50 183.28 153.92 30267 

Jul-99 261289 5819 67.4 143.26 241.25 184.27 155.61 30268 

Aug-99 262371 5897 62.4 154.13 252.50 183.73 156.90 30364 

Sep-99 264984 5816 56.9 161.68 258.13 183.37 157.25 30310 

Oct-99 268182 6059 67.2 166.01 265.00 186.61 154.58 30468 

Nov-99 270902 5987 65.4 164.45 250.00 189.16 154.27 30655 

Dec-99 271295 6218 65.6 161.50 234.00 190.26 155.17 30879 

Jan-00 271006 6092 62.2 172.43 236.25 185.25 154.42 31111 

Feb-00 271776 5655 67.1 180.47 248.50 183.98 157.25 31208 

Mar-00 272078 6133 60.7 185.63 243.13 186.17 158.01 31260 

Apr-00 269758 5933 68.5 187.86 246.25 190.63 159.49 31363 

May-00 267250 5993 53.5 200.98 240.00 192.87 160.05 31454 

Jun-00 266759 5745 64.2 191.49 223.75 194.35 162.39 31498 

Jul-00 267605 5977 61.9 175.93 218.75 193.14 163.42 31635 

Aug-00 268837 6042 72.5 171.07 211.00 192.74 165.20 31776 

Sep-00 270736 5843 67.1 188.03 225.00 194.18 164.39 31747 

Oct-00 273196 6087 73.0 186.00 247.00 192.96 162.22 31770 

Nov-00 275636 6014 81.4 194.33 263.75 192.12 160.55 31722 

Dec-00 276204 6234 94.9 211.81 273.13 192.23 162.77 31735 

Jan-01 276471 6157 76.2 197.59 284.50 198.86 161.26 31886 

Feb-01 277703 5543 71.5 178.71 267.50 206.43 161.54 31928 

Mar-01 278639 6252 79.6 169.52 253.75 206.11 163.64 32004 

Apr-01 278780 6043 74.4 169.02 228.75 211.20 162.05 31907 

May-01 276503 6143 58.1 178.07 231.00 211.19 163.97 31814 

Jun-01 274532 5936 57.3 185.04 237.50 213.28 166.19 31789 

Jul-01 274414 6126 59.8 194.23 205.50 211.64 165.73 32239 

Aug-01 275772 6170 62.8 189.10 263.75 207.67 169.11 32771 

Sep-01 278442 6028 61.5 183.94 268.13 206.37 169.98 32502 

Oct-01 280490 6306 66.1 177.63 260.00 206.08 168.55 31968 

Nov-01 281479 6204 71.3 177.99 258.13 205.87 165.40 32019 

Dec-01 282339 6391 67.1 166.50 257.50 201.54 165.62 32074 

Jan-02 281179 6210 69.7 169.58 236.00 201.33 164.79 32733 

Feb-02 279727 5619 60.7 165.45 221.88 200.89 165.18 32744 

Mar-02 279236 6354 76.9 174.29 219.38 199.86 163.82 32707 

Apr-02 277842 6057 55.8 175.93 217.00 200.66 160.46 32776 
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1C. Continued 

Date 

Number 

of Hens 

Number 

of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

May-02 276403 6197 53.3 179.90 217.38 200.69 162.38 32821 

Jun-02 276848 6075 66.1 185.83 230.00 198.53 160.42 32866 

Jul-02 278323 6296 64.6 204.24 254.00 197.27 158.47 32736 

Aug-02 279556 6314 67.3 201.12 275.00 200.18 159.55 32681 

Sep-02 281501 6145 64.0 200.25 272.50 196.17 155.83 32670 

Oct-02 282959 6394 65.2 185.35 268.50 193.71 155.14 32716 

Nov-02 283412 6259 84.0 183.88 256.25 198.48 153.97 32765 

Dec-02 283325 6406 77.1 181.98 255.90 200.69 154.84 32837 

Jan-03 282983 6322 77.4 184.87 239.75 201.27 152.94 32828 

Feb-03 281983 5691 74.1 192.42 234.00 204.92 154.66 32739 

Mar-03 280697 6333 80.0 191.36 230.40 208.39 152.94 32832 

Apr-03 278805 6121 77.1 200.26 226.20 212.96 154.03 33019 

May-03 276767 6220 67.7 214.18 235.00 210.72 150.71 33249 

Jun-03 276027 6046 76.9 210.61 230.40 212.04 153.38 33335 

Jul-03 276475 6337 81.0 200.44 223.50 211.45 154.13 33682 

Aug-03 277520 6318 93.8 199.30 226.90 216.13 156.62 33861 

Sep-03 277883 6118 94.9 218.14 246.90 213.50 156.94 33442 

Oct-03 279104 6403 100.0 245.71 239.48 226.04 155.44 33557 

Nov-03 281735 6319 122.9 262.96 321.88 247.97 156.33 33778 

Dec-03 281659 6487 109.3 255.64 337.50 243.85 154.03 33814 

Jan-04 279983 6320 114.3 278.48 360.63 228.74 153.79 33830 

Feb-04 280283 5894 107.5 286.39 371.25 226.90 153.04 33880 

Mar-04 282021 6451 122.9 331.41 383.00 225.36 153.01 33979 

Apr-04 282720 6280 89.6 343.71 390.38 229.32 153.38 34065 

May-04 282532 6393 73.5 331.65 344.10 228.19 155.45 34214 

Jun-04 283497 6223 75.9 311.68 332.50 234.43 158.97 34188 

Jul-04 284372 6484 69.8 291.01 332.50 235.43 160.42 34213 

Aug-04 285182 6472 63.4 212.15 267.50 231.72 162.56 34284 

Sep-04 286172 6304 65.3 182.69 256.88 228.95 162.51 34255 

Oct-04 287013 6588 57.9 171.44 241.25 226.26 162.48 34257 

Nov-04 286869 6447 71.1 170.13 238.00 228.70 158.46 34149 

Dec-04 287630 6647 75.1 175.72 253.63 230.93 157.71 35370 

Jan-05 289304 6538 64.9 175.18 245.63 230.64 160.01 34164 

Feb-05 289802 5925 67.8 178.55 232.50 232.15 159.73 34156 

Mar-05 288013 6626 60.9 207.64 240.50 235.69 157.25 34240 

Apr-05 284738 6333 56.2 210.27 246.25 236.66 158.46 34282 

May-05 283103 6462 54.6 218.01 274.60 236.98 160.88 34398 

Jun-05 281823 6273 56.8 241.22 322.13 232.59 159.00 34469 

Jul-05 281001 6468 63.7 238.80 334.25 221.72 157.71 34527 

Aug-05 282032 6450 60.1 217.60 327.70 220.89 156.12 34548 
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Date 
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of Hens 
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of Eggs 

Egg 

Price 

Soybean 

Meal Price 

Cornmeal 

Price 

Retail 

Beef 

Price 

Retail 

Pork 

Price 

Real Disposable 

Personal Income 

Sep-05 284135 6302 76.1 193.57 294.75 216.81 156.13 34341 

Oct-05 286265 6587 62.8 186.58 300.00 219.30 154.02 34477 

Nov-05 289160 6478 76.8 192.15 319.00 221.66 152.79 34686 

Dec-05 292077 6736 85.5 209.58 319.75 224.45 154.01 34844 

Jan-06 293010 6674 75.6 201.96 303.75 223.95 152.06 35286 

Feb-06 293200 6030 59.0 198.43 259.38 221.67 152.72 35412 

Mar-06 293688 6784 79.6 192.43 263.75 217.76 150.00 35451 

Apr-06 292290 6519 65.9 190.55 250.63 218.74 152.13 35379 

May-06 289261 6575 56.4 193.25 251.70 215.33 150.74 35321 

Jun-06 287482 6393 65.8 196.26 250.00 213.47 152.38 35370 

Jul-06 286523 6609 56.6 187.27 240.00 210.87 154.55 35330 

Aug-06 286950 6616 68.0 175.91 229.25 215.38 154.39 35292 

Sep-06 289003 6438 67.3 177.59 237.50 212.00 155.62 35476 

Oct-06 290701 6662 71.4 194.12 272.20 213.34 154.93 35650 

Nov-06 292414 6561 100.0 214.23 306.25 214.80 151.50 35747 

Dec-06 292908 6740 95.7 205.69 314.31 212.74 150.20 35813 

Jan-07 291592 6594 113.9 221.79 333.00 212.72 151.32 35819 

Feb-07 290851 5973 100.2 244.10 346.88 217.49 150.23 35887 

Mar-07 289892 6706 102.0 239.53 361.50 223.27 150.73 35970 

Apr-07 287262 6400 93.9 221.75 363.33 227.91 149.65 35936 

May-07 284035 6510 95.6 227.67 344.00 227.26 151.96 35891 

Jun-07 282107 6300 86.4 249.16 352.75 222.18 153.34 35820 

Jul-07 282434 6495 115.2 252.57 398.50 218.73 155.04 35870 

Aug-07 283385 6497 112.3 251.83 404.38 219.47 154.69 35859 

Sep-07 283744 6329 129.9 288.78 414.38 222.59 153.03 35918 

Oct-07 285303 6628 113.8 300.43 472.50 216.33 153.45 35822 

Nov-07 286884 6481 148.7 315.25 495.63 217.75 149.92 35759 

Dec-07 285930 6664 160.6 351.22 540.79 216.13 150.26 35883 

Jan-08 283595 6492 157.4 376.33 545.00 215.01 149.74 35961 

Feb-08 281931 6028 157.3 396.71 543.13 218.26 147.30 35999 

Mar-08 280925 6512 161.8 379.70 561.88 217.54 146.57 36049 

Apr-08 279705 6251 123.4 375.32 547.00 214.38 146.89 35887 

May-08 279114 6407 103.8 369.37 529.00 218.18 149.35 37585 

Jun-08 278647 6258 124.9 436.91 524.38 220.85 150.77 36564 

Jul-08 277289 6470 105.4 452.19 554.50 222.11 151.57 35958 

Aug-08 277057 6434 119.0 388.40 505.00 230.43 153.62 35640 

Sep-08 277321 6274 119.1 363.78 495.50 226.79 152.22 35650 

Oct-08 278499 6547 119.2 290.84 464.13 226.47 151.45 35799 

Nov-08 282330 6458 123.8 292.76 406.25 224.34 151.95 36022 

Dec-08 285167 6723 124.8 292.94 389.00 223.13 152.70 35867 
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Jan-09 285120 6618 126.9 338.50 469.38 217.86 151.10 35993 

Feb-09 284368 5932 100.7 320.89 539.38 219.32 149.03 35646 

Mar-09 284268 6663 101.5 315.37 424.38 215.02 147.27 35624 

Apr-09 283652 6436 107.7 349.57 443.13 211.85 144.61 35795 

May-09 280815 6534 80.7 408.05 564.38 213.51 145.88 36326 

Jun-09 277630 6315 80.6 441.78 630.00 210.57 145.58 35683 

Jul-09 276960 6521 91.3 385.85 532.50 204.85 145.32 35531 

Aug-09 277737 6541 96.9 397.30 495.00 206.96 143.88 35415 

Sep-09 279430 6373 96.2 342.18 508.50 204.03 143.22 35433 

Oct-09 281628 6662 105.4 328.54 606.25 205.42 142.72 35260 

Nov-09 283863 6576 123.5 337.63 595.00 213.61 139.84 35317 

Dec-09 285232 6804 124.2 345.58 573.50 212.14 139.74 35416 

Jan-10 283998 6657 126.8 325.85 582.50 206.14 142.17 35331 

Feb-10 283428 5971 116.4 303.66 594.94 205.68 143.35 35246 

Mar-10 284913 6769 134.9 292.60 541.70 209.58 141.92 35303 

Apr-10 283896 6536 92.5 308.05 492.13 214.63 141.22 35544 

May-10 282226 6644 78.3 305.74 455.63 214.31 146.34 35761 

Jun-10 282999 6450 77.6 314.32 445.00 214.62 148.96 35753 

Jul-10 282896 6637 85.4 335.09 441.25 211.95 152.92 35758 

Aug-10 283576 6685 107.4 339.14 451.50 209.34 155.43 35842 

Sep-10 282914 6482 86.6 334.06 464.38 211.89 158.26 35772 

Oct-10 280880 6639 97.2 353.75 501.88 214.30 160.94 35834 

Nov-10 283352 6556 138.4 376.04 518.00 213.55 157.95 35915 

Dec-10 286323 6866 134.2 387.51 520.00 210.94 151.80 36145 

Jan-11 285012 6756 108.4 412.07 524.06 214.20 153.56 36312 

Feb-11 282713 6046 109.4 410.16 533.75 216.49 155.09 36394 

Mar-11 283457 6765 99.6 393.93 543.30 221.26 157.24 36321 

Apr-11 283099 6559 120.0 388.22 556.25 223.18 157.18 36205 

May-11 280041 6673 99.2 388.26 556.00 223.29 160.83 36165 

Jun-11 280087 6464 100.5 391.54 567.50 218.46 159.09 36297 

Jul-11 281585 6700 104.3 389.29 556.25 216.70 157.57 36418 

Aug-11 282760 6715 131.9 393.80 559.00 222.19 160.29 36367 

Sep-11 284823 6564 116.9 381.85 550.63 224.32 162.79 36236 

Oct-11 286485 6836 124.4 347.45 524.38 227.54 160.14 36244 

Nov-11 289155 6709 125.3 329.09 487.00 234.82 165.27 36185 

Dec-11 290239 7035 144.0 320.68 441.25 237.29 164.62 36441 

Jan-12 289631 6912 108.2 347.60 433.50 239.41 165.53 36673 

Feb-12 289746 6361 102.5 364.49 448.75 236.02 164.69 36857 

Mar-12 290722 6934 115.6 405.23 487.50 235.72 164.07 36933 

Apr-12 290214 6690 102.1 440.62 498.75 231.77 162.23 37011 
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May-12 289203 6852 92.0 459.42 533.00 230.14 159.36 37028 

Jun-12 288308 6622 105.0 464.02 579.00 226.89 157.49 37087 

Jul-12 287696 6832 125.1 552.54 629.00 231.15 159.48 36962 

Aug-12 289250 6922 135.5 585.75 718.75 227.69 163.39 36869 

Sep-12 291763 6727 135.2 559.56 721.88 227.48 162.40 37016 

Oct-12 295347 7046 121.7 519.91 753.50 231.46 161.18 37209 

Nov-12 299793 7022 135.1 490.60 716.25 236.17 160.79 37679 

Dec-12 300166 7263 131.7 489.69 673.34 235.13 158.68 38639 

Jan-13 298678 7160 128.3 456.81 599.50 240.24 159.27 36139 

Feb-13 299686 6437 117.8 469.16 584.38 238.95 161.06 36185 

Mar-13 300399 7198 134.4 467.95 581.88 241.85 161.61 36230 

Apr-13 298071 6954 104.8 446.36 540.50 239.62 160.86 36242 

May-13 296590 7124 122.6 476.74 480.63 239.53 162.83 36399 

Jun-13 296942 6878 102.4 503.56 550.00 241.98 165.92 36448 

Jul-13 297353 7085 115.0 528.34 591.00 244.53 169.52 36416 

Aug-13 299442 7186 121.6 470.99 565.63 245.09 172.11 36489 

Sep-13 300095 7028 120.4 490.19 573.75 242.37 173.60 36554 

Oct-13 301104 7300 121.8 460.83 601.25 244.83 174.17 36401 

Nov-13 304497 7172 151.2 461.65 631.25 247.19 172.58 36490 

Dec-13 307126 7471 156.1 495.00 638.13 244.57 171.61 36492 

Jan-14 307221 7417 128.1 473.75 625.00 242.74 170.63 36608 

Feb-14 306665 6667 148.5 499.36 668.13 251.93 168.40 36774 

Mar-14 307713 7449 151.3 506.69 744.38 255.97 171.41 36879 

Apr-14 308303 7256 150.0 533.63 784.00 261.05 175.63 36899 

May-14 307596 7433 130.0 542.78 761.25 261.69 181.41 36934 

Jun-14 307037 7185 123.9 519.27 694.50 262.13 182.33 37042 

Jul-14 308198 7501 137.1 451.02 574.00 263.43 182.67 37048 

Aug-14 309581 7497 127.7 447.82 572.88 275.43 185.38 37160 

Sep-14 310357 7230 123.3 409.10 587.50 275.74 185.80 37167 

Oct-14 310740 7539 128.0 378.82 549.38 275.62 183.22 37279 

Nov-14 312700 7465 171.5 423.25 581.88 278.61 179.63 37477 

Dec-14 313019 7731 188.6 418.09 613.50 279.60 176.86 37654 

Jan-15 309465 7504 126.0 379.04 632.50 279.40 176.01 37774 

Feb-15 308069 6685 145.3 374.25 631.25 275.40 173.11 37820 

Mar-15 308050 7517 169.5 364.86 613.00 275.02 168.89 37708 

Apr-15 303568 7198 122.1 349.71 575.63 278.23 163.82 37881 

May-15 286793 6942 171.7 340.47 549.38 279.00 160.82 37946 

Jun-15 274176 6402 217.1 353.90 571.60 279.17 161.38 38014 

Jul-15 275146 6630 223.7 394.64 560.00 277.82 164.53 38086 

Aug-15 276561 6656 260.7 370.41 550.63 274.68 166.43 38178 
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Sep-15 278923 6467 222.7 342.96 525.00 269.23 169.37 38232 

Oct-15 281677 6744 166.0 338.21 509.38 269.36 171.74 38324 

Nov-15 285491 6673 209.1 320.34 477.50 269.86 170.15 38370 

Dec-15 289726 6986 147.2 303.86 482.25 260.09 167.50 38495 

Jan-16 293069 7024 133.5 297.18 452.50 259.47 164.71 38645 

Feb-16 298555 6759 130.6 291.37 457.50 257.83 161.01 38702 

Mar-16 302464 7363 100.6 296.18 445.50 267.34 161.53 38791 

Apr-16 302374 7095 75.3 327.70 434.00 262.55 163.38 38843 

May-16 301963 7361 63.4 407.50 464.10 261.05 162.31 38849 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________________________________________________________________________________ 

24The vector error correction model was estimated using the data from above the double-black line, ending in October 

2014; the altosdata.txt file for the RATS programs provided. The highlighted portion indicates the period of time that 

the flu occurred. In the RATS programs, this full data set is beef&pork.txt.  
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2C. TETRAD V Input Data 

/covariance 
       

343 Observations 
      

HENS EGGS EPR SMP CMP BPR PPR RDI 

1.000 
       

0.452 1.000 
      

0.026 0.011 1.000 
     

-0.058 -0.023 0.196 1.000 
    

-0.082 -0.091 0.151 0.446 1.000 
   

0.001 -0.003 0.102 0.034 -0.046 1.000 
  

-0.046 -0.052 0.026 -0.018 -0.055 0.197 1.000 
 

0.082 0.068 -0.037 -0.004 0.003 -0.033 -0.005 1.000 
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APPENDIX D 

REGRESSION ANALYSIS FOR TIME SERIES (RATS) INPUT PROGRAMS  

 

 

1D. Summary Statistics for the Estimated Model: March 1986 to October 201425 

calendar 1986 1 12 

allocate 500 2016:6 

eqv 1 to 8 

 hens eggs eggprice soymealp cornmealp beefprice prkprice inc 

********* 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

************************************************* 

 

Table 

 

EXTREMUM(print) hens 1986:3 2014:10 

EXTREMUM(print) eggs 1986:3 2014:10 

EXTREMUM(print) eggprice 1986:3 2014:10 

EXTREMUM(print) soymealp 1986:3 2014:10 

EXTREMUM(print) cornmealp 1986:3 2014:10 

EXTREMUM(print) beefprice 1986:3 2014:10 

EXTREMUM(print) prkprice 1986:3 2014:10 

EXTREMUM(print) inc 1986:3 2014:10 

 

STATISTICS(print) hens 1986:3 2014:10 

STATISTICS(print) eggs 1986:3 2014:10 

STATISTICS(print) eggprice 1986:3 2014:10 

STATISTICS(print) soymealp 1986:3 2014:10 

STATISTICS(print) cornmealp 1986:3 2014:10 

STATISTICS(print) beefprice 1986:3 2014:10 

STATISTICS(print) prkprice 1986:3 2014:10 

STATISTICS(print) inc 1986:3 2014:10 

 

End 

 

 

 

 

 

 

 

 

_______________________________________________________________________ 
25For the full data set, all 2014:10 dates are replaced with 2016:5 and the data file is changed to beef&pork.txt. 
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2D. Plots of Data for the Estimated Model Data Set26 

calendar 1986 1 12 

allocate 500 2016:12 

 

eqv 1 to 8 

 hens eggs eggp smp cmp beefp porkp inc 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

 

compute neqn = 8 

Compute nlags = 1 

compute nsteps = 24 

 

DECLARE RECT PATTERN(8,8) 

compute p=8 

declare rect A 

declare rect[series] impblk(neqn,neqn) 

declare vect[series] scaled(neqn) 

declare vect[labels] implabel(neqn) 

declare vect[strings] mplabel(neqn) 

 

seasonal seas 1986:1 2016:12 12 1986:12 

 

system 1 to 8 

vars 1 to 8 

lags 1 to 1 

det constant seas{0 to 10}  

end(system) 

 

estimate(noprint,ftests,outsigma=v) 1986:4 2014:10  21 

vcv(matrix=v) 1986:4 2014:10 

#  21 22 23 24 25 26 27 28 

 

Input implabel 

  hens eggs eggp smp cmp bp pp inc 

 

list ieqn = 1 to neqn 

smpl 1 nsteps 

do I=1,neqn 

   impulse(noprint) neqn nsteps I V 

   Cards ieqn impblk(ieqn,I) 1 ieqn 

   Display(store=header) "Plot of responses to" implabel(I) 

    Do J=1,neqn 

     set scaled(J) = (impblk(J,I))/sqrt(v(J,J)) 

     Labels scaled(J) 

     # implabel(J) 

   End do J 

   Graph(header=header, key=right, number=0) neqn 

   cards scaled(ieqn) 

End do I 

********************************************* 
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Do I=1,neqn 

  Display(store=header) 'Plot of responses of' implabel(I) 

  Do J=1,neqn 

    labels impblk(I,J) 

    # implabel(J) 

  end do J 

  Graph(header=header, key=right, number=0) neqn 

  cards impblk(I,ieqn) 

End do I 

 

 open plot grfeggplots.rgf 

 

 spgraph(vfields=4,hfields=2) 

 

 set grid 2014:12 2014:12 = (T==2014:12) 

set grid 2015:6 2015:6 = (T==2015:6) 

 

 graph(patterns,header=" Hen Numbers", grid=grid, VLABEL="Thousands of Hens",VTICKS=4) 1 

 # 1 1986:3 2014:10 

 graph(patterns,header=" Egg Numbers",grid=grid, VLABEL="Million of Eggs",VTICKS=4) 1 

 # 2 1986:3 2014:10 

 graph(patterns,header=" Egg Price",grid=grid,VLABEL="Cents per Dozen",VTICKS=4) 1 

 # 3 1986:3 2014:10 

 graph(patterns,header=" Soy Meal Price", grid=grid, VLABEL="Dollars per Metric Ton",VTICKS=4) 1 

 # 4 1986:3 2014:10 

 graph(patterns,header=" Corn Meal Price", grid=grid, VLABEL="Dollars per Ton",VTICKS=4) 1 

 # 5 1986:3 2014:10 

graph(patterns,header=" Beef Price",grid=grid, VLABEL="Cents per Pound",VTICKS=4) 1 

 # 6 1986:3 2014:10 

 graph(patterns,header=" Pork Price", grid=grid, VLABEL="Cents per Pound",VTICKS=4) 1 

 # 7 1986:3 2014:10 

 graph(patterns,header=" Personal Income", grid=grid, VLABEL="Dollars",VTICKS=4) 1 

 # 8 1986:3 2014:10 

 

spgraph(done) 

 

ERRORS(impulses) 8 24 v 

# 1 * * 1 

# 2 * * 2 

# 3 * * 3 

# 4 * * 4 

# 5 * * 5 

# 6 * * 6 

# 7 * * 7 

# 8 * * 8 

 

End 

 

 

 

 

_____________________________________________________________________________________ 
26For the full data set, all 2014:10 dates are replaced with 2016:5 and the data file is changed to beef&pork.txt. 
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3D. Generating Impulse Graphs 

 
calendar 1986 1 12 

allocate 100 2018:12 

 

eqv 1 to 8 

 hens eggs eggprice soymealp $ 

 cornmealp beefprice prkprice inc  

 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

 

***p is no of series 

compute p=8 

***def by hui 

dec rect pi 

dec rect const 

dec rect a1 

 

dec rect ta1 tc1 

dec vect[vect] coeflag1(p) 

 

dec vect[vect] c1(p) 

dec vect[vect] coef(p) 

 

dec vect sd 

dec symmetric sd2 corr 

dec rect v(p,p) 

********** 

DECLARE RECT PATTERN(p,p) 

declare rect A 

declare rect[series] impblk(p,p) 

declare vect[series] scaled(p) 

declare vect[labels] implabel(p) 

declare vect[strings] mplabel(p) 

 

source(noecho) c:\rats\bernanke.src 

 

compute pi=$ 

      ||-0.0459404, 2.2848594, 6.6781304, -0.7811818, -1.6747604, -2.6320198, 0.8016778, -0.0927614| $   

         0.0053911, -0.2480674, -0.0988423, 0.2005225, 0.0194677, 0.1897341, -0.1925349, 0.0077431| $   

        -0.0001190, -0.0009969, -0.2188126, -0.0395529, 0.0567087, 0.0342552, 0.0360228, 0.0008431| $    

        -0.0002821, 0.0187640, 0.2025944, 0.0208862, -0.0520625, -0.0442718, -0.0183082, -0.0013111| $    

         0.0003245, 0.0073714, 0.7554459, 0.1330897, -0.1956881, -0.1210308, -0.1210543, -0.0030277| $   

        -0.0000268, 0.0022636, 0.0356298, 0.0045872, -0.0091818, -0.0070566, -0.0040937, -0.0001998| $    

        -0.0000182, 0.0015685, 0.0252950, 0.0032906, -0.0065195, -0.0049827, -0.0029388, -0.0001407| $     

        -0.0067638, 0.3628017, 1.8843918, 0.0282192, -0.4795738, -0.5442817, -0.0115259, -0.0177925||    

 

compute const= $ 

||2231.0308989|-265.5906547|7.0830910|12.8083881|-20.1885862|1.1276006|0.7586982|323.5058842|| 

 

compute A1=%identity(p)+pi 
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*write 'A1' a1 

compute ta1=tr(a1) 

compute tc1=tr(const) 

 

do i=1,p 

 overlay ta1(1,i) with coeflag1 (i) (p) 

 

 overlay tc1(1,i) with c1 (i) (1) 

 end do i 

 

*write 'coeflag1' coeflag1 

*write 'c1' c1 

 

do i=1,p 

 compute coef(i) = ||coeflag1 (i) (1),coeflag1 (i) (2), $ 

 coeflag1 (i) (3), coeflag1 (i) (4), coeflag1 (i) (5), $ 

 coeflag1 (i) (6), coeflag1 (i) (7), coeflag1 (i) (8), $ 

 c1 (i) (1)|| 

 write 'coef(i)' coef(i) 

 end do i 

 

system 1 to p 

do i=1,p 

 equation i i 

 # 1{1} 2{1} 3{1} 4{1} 5{1} 6{1} 7{1} 8{1}  $ 

   constant 

 associate i coef(i) 

 end do i 

end(system) 

 

compute sd= $ 

||990.411219,54.837581,8.868870,17.902268,28.666248,3.141017,2.245612,254.012694|| 

 

compute %nobs= 243 

 

compute sd2= sd*tr(sd) 

*write 'sd2' sd2 

 

compute corr= $ 

 || 1.000000 | $ 

  0.451690,  1.000000 | $ 

  0.025955,  0.011419,  1.000000 | $ 

 -0.057876, -0.023389,  0.195906,  1.000000 | $ 

 -0.081763, -0.090757,  0.151336,  0.445795,  1.000000 | $ 

  0.000559, -0.002518,  0.102352,  0.033568, -0.046054,  1.000000 | $ 

 -0.046389, -0.052483,  0.026267, -0.017751, -0.055323,  0.197276,  1.000000 | $ 

  0.081827,  0.067730, -0.037270, -0.003514,  0.003150, -0.033081, -0.004596,  1.000000|| 

 

dec rect v(p,p) 

ewise v(i,j)=sd2(i,j)*corr(i,j) 

write 'v' v 
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INPUT PATTERN 

1 0 0 0 1 0 1 1  

1 1 0 0 1 0 0 0 

0 0 1 1 1 1 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 1 0  

0 0 0 0 1 0 1 0 

0 0 0 0 0 0 0 1 

 

nonlin A23 A35 A36 

*declare rect A 

compute A23=-.1, A35=-.1, A36=-.1 

 

compute A=%Identity(p) 

find min -2*log(%det(A))+%sum(%log(%mqformdiag(v,TR(A)))) { 

 compute A(2,3)=A23, $ 

         A(3,5)=A35, $ 

         A(3,6)=A36 

                  } 

  end find 

 

@BERNANKE(initial=A,TEST,PRINT) v pattern factor 

ERRORS(DECOMP=FACTOR,Impulses) 8 24 

# 1 

# 2 

# 3 

# 4 

# 5 

# 6 

# 7 

# 8 

 

 compute neqn = 8 

compute implabel=||'Hens','Eggs','Egg Price','Soybean Meal Price','Cornmeal Price','Beef Price','Pork 

Price','Income'|| 

list ieqn = 1 to 8 

compute mplabel=||'Hens','Eggs','Egg Price','Soybean Meal Price','Cornmeal Price','Beef Price','Pork 

Price','Income'|| 

 

 impluse(noprint,decomp=factor) 8 24 1 

 card ieqn impblk(ieqn,1) 1 ieqn 

 

  set scaled(1) = (impblk(1,1))/sqrt(v(1,1)) 

  set g11 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,1))/sqrt(v(2,2)) 

  set g21 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 
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  set scaled(3) = (impblk(3,1))/sqrt(v(3,3)) 

  set g31 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,1))/sqrt(v(4,4)) 

  set g41 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,1))/sqrt(v(5,5)) 

  set g51 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,1))/sqrt(v(6,6)) 

  set g61 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,1))/sqrt(v(7,7)) 

  set g71 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,1))/sqrt(v(8,8)) 

  set g81 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

 impluse(noprint,decomp=factor) 8 24 2 

 card ieqn impblk(ieqn,2) 1 ieqn 

 

  set scaled(1) = (impblk(1,2))/sqrt(v(1,1)) 

  set g12 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,2))/sqrt(v(2,2)) 

  set g22 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,2))/sqrt(v(3,3)) 

  set g32 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,2))/sqrt(v(4,4)) 

  set g42 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 
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  set scaled(5) = (impblk(5,2))/sqrt(v(5,5)) 

  set g52 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,2))/sqrt(v(6,6)) 

  set g62 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,2))/sqrt(v(7,7)) 

  set g72 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,2))/sqrt(v(8,8)) 

  set g82 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

 impluse(noprint,decomp=factor) 8 24 3 

 card ieqn impblk(ieqn,3) 1 ieqn 

 

  set scaled(1) = (impblk(1,3))/sqrt(v(1,1)) 

  set g13 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,3))/sqrt(v(2,2)) 

  set g23 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,3))/sqrt(v(3,3)) 

  set g33 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,3))/sqrt(v(4,4)) 

  set g43 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,3))/sqrt(v(5,5)) 

  set g53 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,3))/sqrt(v(6,6)) 

  set g63 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 
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  set scaled(7) = (impblk(7,3))/sqrt(v(7,7)) 

  set g73 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,3))/sqrt(v(8,8)) 

  set g83 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

  impluse(noprint,decomp=factor) 8 24 4 

 card ieqn impblk(ieqn,4) 1 ieqn 

 

  set scaled(1) = (impblk(1,4))/sqrt(v(1,1)) 

  set g14 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,4))/sqrt(v(2,2)) 

  set g24 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,4))/sqrt(v(3,3)) 

  set g34 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,4))/sqrt(v(4,4)) 

  set g44 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,4))/sqrt(v(5,5)) 

  set g54 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,4))/sqrt(v(6,6)) 

  set g64 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,4))/sqrt(v(7,7)) 

  set g74 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,4))/sqrt(v(8,8)) 

  set g84 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 
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  impluse(noprint,decomp=factor) 8 24 5 

  card ieqn impblk(ieqn,5) 1 ieqn 

 

  set scaled(1) = (impblk(1,5))/sqrt(v(1,1)) 

  set g15 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,5))/sqrt(v(2,2)) 

  set g25 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,5))/sqrt(v(3,3)) 

  set g35 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,5))/sqrt(v(4,4)) 

  set g45 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,5))/sqrt(v(5,5)) 

  set g55 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,5))/sqrt(v(6,6)) 

  set g65 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,5))/sqrt(v(7,7)) 

  set g75 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,5))/sqrt(v(8,8)) 

  set g85 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

  impluse(noprint,decomp=factor) 8 24 6 

  card ieqn impblk(ieqn,6) 1 ieqn 

 

  set scaled(1) = (impblk(1,6))/sqrt(v(1,1)) 

  set g16 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,6))/sqrt(v(2,2)) 

  set g26 = scaled(2) 
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  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,6))/sqrt(v(3,3)) 

  set g36 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,6))/sqrt(v(4,4)) 

  set g46 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,6))/sqrt(v(5,5)) 

  set g56 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,6))/sqrt(v(6,6)) 

  set g66 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,6))/sqrt(v(7,7)) 

  set g76 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,6))/sqrt(v(8,8)) 

  set g86 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

  impluse(noprint,decomp=factor) 8 24 7 

  card ieqn impblk(ieqn,7) 1 ieqn 

 

  set scaled(1) = (impblk(1,7))/sqrt(v(1,1)) 

  set g17 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,7))/sqrt(v(2,2)) 

  set g27 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,7))/sqrt(v(3,3)) 

  set g37 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,7))/sqrt(v(4,4)) 

  set g47 = scaled(4) 



 

 

86 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,7))/sqrt(v(5,5)) 

  set g57 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,7))/sqrt(v(6,6)) 

  set g67 = scaled(6) 

  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,7))/sqrt(v(7,7)) 

  set g77 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,7))/sqrt(v(8,8)) 

  set g87 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

  impluse(noprint,decomp=factor) 8 24 8 

  card ieqn impblk(ieqn,8) 1 ieqn 

 

  set scaled(1) = (impblk(1,8))/sqrt(v(1,1)) 

  set g18 = scaled(1) 

  labels scaled(1) 

  #implabel(1) 

 

  set scaled(2) = (impblk(2,8))/sqrt(v(2,2)) 

  set g28 = scaled(2) 

  labels scaled(2) 

  #implabel(2) 

 

  set scaled(3) = (impblk(3,8))/sqrt(v(3,3)) 

  set g38 = scaled(3) 

  labels scaled(3) 

  #implabel(3) 

 

  set scaled(4) = (impblk(4,8))/sqrt(v(4,4)) 

  set g48 = scaled(4) 

  labels scaled(4) 

  #implabel(4) 

 

  set scaled(5) = (impblk(5,8))/sqrt(v(5,5)) 

  set g58 = scaled(5) 

  labels scaled(5) 

  #implabel(5) 

 

  set scaled(6) = (impblk(6,8))/sqrt(v(6,6)) 

  set g68 = scaled(6) 
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  labels scaled(6) 

  #implabel(6) 

 

  set scaled(7) = (impblk(7,8))/sqrt(v(7,7)) 

  set g78 = scaled(7) 

  labels scaled(7) 

  #implabel(7) 

 

  set scaled(8) = (impblk(8,8))/sqrt(v(8,8)) 

  set g88 = scaled(8) 

  labels scaled(8) 

  #implabel(8) 

 

grparm(nobold,font='time new roman') hlabel 8 matrixlabels 8 $ 

                                     header * vlabel * 

spgraph(vfields=p,hfields=p,header='Innovation to',$ 

        xlabels=mplabel,ylabels=mplabel,vlabel='Response of',$ 

        xpos=both,ypos=both) 

 

 

dofor i = g11 g21 g31 g41 g51 g61 g71 g81 $ 

          g12 g22 g32 g42 g52 g62 g72 g82 $ 

          g13 g23 g33 g43 g53 g63 g73 g83 $ 

          g14 g24 g34 g44 g54 g64 g74 g84 $ 

          g15 g25 g35 g45 g55 g65 g75 g85 $ 

          g16 g26 g36 g46 g56 g66 g76 g86 $ 

          g17 g27 g37 g47 g57 g67 g77 g87 $ 

          g18 g28 g38 g48 g58 g68 g78 g88 

 

   open plot grf2.rgf 

 

   graph(number=0,min=-0.250,max=1.00) 1 

    # i 

 

end dofor 

spgraph(done) 

 

END 
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4D. Dickey Fuller & Augmented Dickey Fuller Test 

 
calendar 1986 1 12 

allocate 500 2016:6 

eqv 1 to 16 

 hens eggs eggprice soymealp cornmealp beefprice prkprice inc $ 

 HEN PDXN EPR SMP CMP BPR PPR RDI  

************************************************ 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

************************************************* 

 

do i=1,8 

diff i 1986:4 2014:10 i+8 1986:4 

end do i 

 

do i=9,16 

linreg i 1986:5 2014:10 

# constant (i-8){1} 

************************************** 

compute schwarz = log(%seesq) + ((%nreg))*log(%nobs)/%nobs 

compute akaike = log(%seesq) + 2*((%nreg)*8)/%nobs 

compute phi = log(%seesq) + ((%nreg))*2.1*log(log(%nobs))/%nobs 

display @10 ##### %nreg schwarz @+10 ####.#### phi @+10 #####.#### akaike @+10 #####.#### 

************************************** 

end do i 

 

do i=9,16 

do j=1,12 

linreg i 1987:5 2014:10 

# constant (i-8){1} i{1 to j} 

********************************************************* 

compute schwarz = log(%seesq) + ((%nreg))*log(%nobs)/%nobs 

compute akaike = log(%seesq) + 2*((%nreg)*8)/%nobs 

compute phi = log(%seesq) + ((%nreg))*2.1*log(log(%nobs))/%nobs 

display @10 ##### %nreg schwarz @+10 ####.#### phi @+10 #####.#### akaike @+10 #####.#### 

 

end do j 

end do i 

 

end 
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5D. Stationarity, Weak Exogeneity, and Exclusion Tests 

 
calendar 1986 1 12 

allocate 500 2016:6 

eqv 1 to 8 

 hens eggs eggprice soymealp cornmealp beefprice prkprice inc  

************************************************ 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

************************************************* 

set ser1 = hens 

set ser2 = eggs  

set ser3 = eggprice  

set ser4 = soymealp  

set ser5 = cornmealp  

set ser6 = beefprice  

set ser7 = prkprice  

set ser8 = inc  

 

open copy upCIres.tsp.txt 

source CATS\CATSMAIN.SRC 

 

@CATS(proc=tsprop,season=12,lags=1,dettrend=cimean) 1986:3 2014:10 

# hens eggs eggprice soymealp cornmealp beefprice prkprice inc  

 

end 
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6D. Determining the Presence of Cointegration and Residual Analysis for the 

Estimated Model 

 
calendar 1986 1 12 

allocate 500 2016:6 

eqv 1 to 8 

 hens eggs eggprice soymealp cornmealp beefprice prkprice inc  

************************************************ 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

************************************************* 

set ser1 = hens 

set ser2 = eggs  

set ser3 = eggprice  

set ser4 = soymealp  

set ser5 = cornmealp  

set ser6 = beefprice  

set ser7 = prkprice  

set ser8 = inc  

 

open copy upci1.txt 

source CATS\CATSMAIN.SRC 

 

@CATS(proc=i1, season=12, lags=1,dettrend=cimean) 1986:3 2014:10 

# hens eggs eggprice soymealp cornmealp beefprice prkprice inc  

 

End 
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7D. Determining the Number of Lags in the VAR Estimated Model 

 
calendar 1986 1 12 

allocate 500 2016:6 

 

eqv 1 to 8 

 hens eggs eggprice soymealp cornmealp beefprice prkprice inc 

open data altosdata.txt 

data(format=free,org=obs) 1986:3 2014:10 1 to 8 

 

DECLARE RECT PATTERN(8,8) 

compute p=8 

declare rect A 

declare rect[series] impblk(p,p) 

declare vect[series] scaled(p) 

declare vect[labels] implabel(p) 

declare vect[strings] mplabel(p) 

 

seasonal seas 1986:1 2016:12 12 1986:12 

set trend 1986:1 2016:1 = t 

 

display @10 "levels VAR constant and  no lags, no seasonals, no trend " 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

det constant 

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 

compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

 

display @10 "levels VAR constant and seasonals, no lags " 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

det constant seas{0 to 10} 

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 

compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

 

display @10 "levels VAR constant, seasonals and lags " 

do i=1,6 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

lags 1 to i 

det constant seas{0 to 10} 

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 
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compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

end do i 

 

display @10 "levels VAR constant,  seasonals and lags and trend " 

do i=1,6 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

lags 1 to i 

det constant seas{0 to 10} trend 

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 

compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

end do i 

 

display @10 "levels VAR constant, no seasonals, no trend  and lags " 

do i=1,6 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

lags 1 to i 

det constant  

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 

compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

end do i 

 

display @10 "levels VAR constant,  lags and trend " 

do i=1,6 

system 1 to 8 

variables   1 2 3 4 5 6 7 8 

lags 1 to i 

det constant  trend 

end(system) 

estimate(noprint,noftests,outsigma=vsigma) 1987:6 2014:10 

compute schwarz = log(%det(vsigma)) + ((%nreg)*8)*log(%nobs)/%nobs 

compute akaike = log(%det(vsigma)) + 2*((%nreg)*8)/%nobs 

compute phi =  log(%det(vsigma)) + ((%nreg)*8)*(2.01)*log(log(%nobs))/%nobs 

display @10 ####.#### schwarz @20 ####.#### phi @30 ####.#### akaike 

end do i 

 

end 
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8D. Forecasting with the Model27 
calendar 1986 1 12 

allocate 100 2018:12 

  

eqv 1 to 16 

 hens eggs eggprice soymealp $ 

 cornmealp beefprice prkprice inc $ 

 dHEN dPDXN dEPR dSMP dCMP dBPR dPPR dRDI 

 

open data beef&pork.txt 

data(format=free,org=obs) 1986:3 2016:5 1 to 8 

 

*print 1986:3 2016:5 1 2 3 4 5 6 7 8 

 

do i=1,8 

diff i 1986:4 2016:5 i+8 1986:4 

end do i 

 

*print 1986:3 2016:5 9 10 11 12 13 14 15 16 

seasonal seas 1986:1 2018:12 12 1986:12 

 

dec sym M00 M11 Mkk S00 Skk iM11 MM 

dec rect M01 M0K S0k Sk0 

dec rect alfa beta pi tpi 

dec rect ms st VV 

dec vect test(i) Lmax(i) trace(i) 

 

dec rect GAMMA tGAMMA 

dec vect[vect] iGAMMA(i) 

 

dec vect[vect] ipi(i) 

 

dec rect piXt1 tpiXt1 

dec vect[vect] coefXt1(i) 

dec vect[vect] COEF(i) 

 

Theil(setup) 16 12 2016:5 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 

do date = 2013:10,2014:10 

 

make(trans) DZ0 1986:6 date N p0 

#  9 10 11 12 13 14 15 16 

make(trans) DDZ1 1986:6 date N p1 

# seas{-10 to 0} 

make(trans) Zk 1986:6 date N pk 

# 1{1} 2{1} 3{1} 4{1} 5{1} 6{1} 7{1} 8{1} constant 

 

compute [integer] r = 2 

*** set the rank of cointegrating space *** 

compute [integer] N1 = N 

compute [real] invN = 1.0/N1 
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compute [integer] p = pk 

************************************************** 

compute M00 = (DZ0*tr(DZ0))*invN 

compute M01 = (DZ0*tr(DDZ1))*invN 

compute M0k = (DZ0*tr(Zk))*invN 

compute M11 = (DDZ1*tr(DDZ1))*invN 

compute M1k = (DDZ1*tr(Zk))*invN 

compute Mkk = (Zk*tr(Zk))*invN 

compute iM11 = inv(M11) 

*write 'iM11' iM11 

compute S00 = M00 - M01*iM11*tr(M01) 

compute S0k = M0k - M01*iM11*M1k 

compute Sk0 = tr(S0k) 

compute Skk = Mkk - tr(M1k)*iM11*M1k 

compute ms = %decomp(Skk) 

compute st = inv(ms) 

compute MM = st*Sk0*inv(S00)*S0k*tr(st) 

eigen MM D V 

 

******** CALCULATE LAMDAMAX AND TRACE TESTS ******** 

compute sld = 0.0 

        do i=p0,1,-1 

************************************************** 

        compute test(i) = D(i) 

        compute Lmax(i) = - N1*(log(1-D(i))) 

        compute trace(i) = sld + Lmax(i) 

        compute sld = trace(i) 

*       write 'test(i)' test(i) 

*       write 'Lmax(i)' Lmax(i) 

*        write 'trace(i)' trace(i) 

        end do i 

 

******** CALCULATE ALFA BETA PI AND GAMMA ******** 

overlay V(1,1) with beta(pk,r) 

compute VV = tr(st)*V 

compute beta = tr(st)*beta 

compute alfa = S0k*beta 

compute pi = alfa*tr(beta) 

compute GAMMA = (M01 - pi*tr(M1k))*iM11 

 

 *write '#OBS' N 

 *write 'EIGENVALUE' D 

 *write 'EIGENVECTORS' VV 

 *write 'BETA' beta 

 *write 'ALFA' alfa 

 *write 'PI' pi 

**write 'GAMMA' GAMMA 

 

******** CALCULATE AND STORE COEFF'S FOR FORECASTING ******** 

*compute tp+i = tr(pi) 

*write 'PI TRANSPOSED' tpi 

************************** 

compute [rect] BBB = ||1,0,0,0,0,0,0,0,0|$ 
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                       0,1,0,0,0,0,0,0,0|$ 

                       0,0,1,0,0,0,0,0,0|$ 

                       0,0,0,1,0,0,0,0,0|$ 

                       0,0,0,0,1,0,0,0,0|$ 

                       0,0,0,0,0,1,0,0,0|$ 

                       0,0,0,0,0,0,1,0,0|$ 

                       0,0,0,0,0,0,0,1,0|| 

 

compute piXt1 = pi + BBB 

*compute piXt1 = pi + %identity(p0) 

compute tpiXt1 = tr(piXt1) 

 

  do i=1,p0 

************************************************** 

  overlay tpiXt1(1,i) with coefXt1(i)(pk) 

  *write 'COEFFICIENTS ON X(t-1)' coefXt1(i) 

  end do i 

 

 compute tGAMMA = tr(GAMMA) 

 *write 'GAMMA' GAMMA 

 **write 'GAMMA TRANSPOSED' tGAMMA 

 

     do i=1,p0 

 ************************************************** 

     overlay tGAMMA(1,i) with iGAMMA(i)(p1) 

     *write 'GAMMA(i)' iGAMMA(i) 

     end do i 

 

   do i=1,p0 

 ************************************************** 

   compute COEF(i) = ||coefXt1(i)(1),coefXt1(i)(2), coefxt1(i)(3),coefxt1(i)(4),coefxt1(i)(5), $ 

           coefxt1(i)(6),coefxt1(i)(7),coefxt1(i)(8), coefxt1(i)(9), $ 

           iGAMMA(i)(1),iGAMMA(i)(2),  igamma(i)(3),igamma(i)(4),  igamma(i)(5),igamma(i)(6), $ 

           igamma(i)(7),igamma(i)(8),  igamma(i)(9),igamma(i)(10), igamma(i)(11) || 

 

*** each element between ',' in ||.,.,|| must be a singleton**** 

*write 'COEF(i)' COEF(i) 

 end do i 

 

  equation 1 1 

  # 1{1}  2{1}  3{1}  4{1} 5{1}  6{1}  7{1}  8{1} constant $ 

    seas{-10 to 0} 

  associate 1 COEF(1) 

 

 equation 2 2 

  # 1{1}  2{1}  3{1}  4{1} 5{1}  6{1}  7{1}  8{1} constant $ 

  seas{-10 to 0} 

 associate 2 coef(2) 

 

equation 3 3 

  # 1{1}  2{1}  3{1}  4{1} 5{1}  6{1}  7{1}  8{1} constant $ 

    seas{-10 to 0} 

  associate 3 COEF(3) 
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 equation 4 4 

  # 1{1}  2{1}  3{1}  4{1} 5{1}  6{1}  7{1}  8{1} constant $ 

     seas{-10 to 0} 

 associate 4 coef(4) 

 

equation 5 5 

 # 1{1}  2{1}  3{1}  4{1} 5{1}  6{1}  7{1}  8{1} constant $ 

 seas{-10 to 0} 

associate 5 COEF(5) 

 

equation 6 6 

 # 1{1}  2{1}  3{1}  4{1}  5{1}  6{1}  7{1}  8{1} constant $ 

 seas{-10 to 0} 

 associate 6 coef(6) 

 

equation 7 7 

 # 1{1}  2{1}  3{1}  4{1}  5{1}  6{1}  7{1}  8{1} constant $ 

 seas{-10 to 0} 

associate 7 COEF(7) 

 

equation 8 8 

 # 1{1}  2{1}  3{1}  4{1}  5{1}  6{1}  7{1}  8{1} constant $ 

    seas{-10 to 0} 

 associate 8 coef(8) 

 

equation 9 9 

 # 1 1{1} 

 associate 9 

 # 1 -1 

 

equation 10 10 

 # 2 2{1} 

 associate 10 

 # 1 -1 

 

equation 11 11 

 # 3 3{1} 

 associate 11 

 # 1 -1 

 

equation 12 12 

 # 4 4{1} 

 associate 12 

 # 1 -1 

 

equation 13 13 

 # 5 5{1} 

 associate 13 

 # 1 -1 

 

 

equation 14 14 
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 # 6 6{1} 

 associate 14 

 # 1 -1 

 

equation 15 15 

 # 7 7{1} 

 associate 15 

 # 1 -1 

 

equation 16 16 

 # 8 8{1} 

 associate 16 

 # 1 -1 

 

system 1 to 16 

end(system) 

 

 forecast 16 12 date+12 

 # 1  31 

 # 2  32 

 # 3  33 

 # 4  34 

 # 5  35 

 # 6  36 

 # 7  37 

 # 8  38 

 # 9  39 

 # 10  40 

 # 11  41 

 # 12  42 

 # 13  43 

 # 14  44 

 # 15  45 

 # 16  46 

 

 Theil date+12 

 end do date 

 

 Theil(dump) 

 

print 2014:10  2015:10  31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 

 

 

end 

 

 

_____________________________________________________________________________________ 
27This program was adapted from the original RATS program written by former Texas A&M graduate student 

Thanapat Chaisantikul.  


