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ABSTRACT

Identifying dynamical and physical mechanisms controlling variability of convective precipitation is critical

for predicting intraseasonal and longer-term changes in warm-season precipitation and convectively driven

large-scale circulations. On a monthly basis, the relationship of convective instability with precipitation is

examined to investigate the modulation of convective instability on precipitation using the Global Historical

Climatology Network (GHCN) and NCEP–NCAR reanalysis for 1948–2003. Three convective parameters—

convective inhibition (CIN), precipitable water (PW), and convective available potential energy (CAPE)—

are examined. A lifted index and a difference between low-tropospheric temperature and surface dewpoint

are used as proxies of CAPE and CIN, respectively.

A simple correlation analysis between the convective parameters and the reanalysis precipitation revealed

that the most significant convective parameter in the variability of monthly mean precipitation varies by

regions and seasons. With respect to region, CIN is tightly coupled with precipitation over summer continents

in the Northern Hemisphere and Australia, while PW or CAPE is tightly coupled with precipitation over

tropical oceans. With respect to seasons, the identity of the most significant convective parameter tends to be

consistent across seasons over the oceans, while it varies by season in Africa and South America. Results from

GHCN precipitation data are broadly consistent with reanalysis data where GHCN data exist, except in some

tropical areas where correlations are much stronger (and sometimes signed differently) with reanalysis

precipitation than with GHCN precipitation.

1. Introduction

a. The ingredients of tropical convection

Convective precipitation occurs mainly over tropical

regions and plays significant roles in the general circula-

tion of the atmosphere and global climate. Thus, identi-

fying the dynamical and physical mechanisms controlling

convective precipitation is critical for understanding and

predicting the variability of convective precipitation and

large-scale circulation on seasonal and climatic time scales.

For example, the impact of anomalous sea surface

temperature (SST) associated with El Niño–Southern

Oscillation (ENSO) on precipitation has been extensively

studied. It has been found that the interannual variability

of precipitation is greatly affected by ENSO in the western

Pacific, the Asian monsoon region, Australia, and several

continental regions (Horel and Wallace 1981; Ropelewski

and Halpert 1987; Chiang and Sobel 2002). Modulation of

deep convection constitutes the direct local impact of

ENSO as well as the mechanism by which the ENSO

signal is communicated to remoter parts of the atmo-

sphere. However, it is still difficult for general circula-

tion models (GCMs) to predict precipitation anomalies

owing to the nonlinear response of the atmosphere to

ENSO (Mason and Goddard 2001), the nonlinear inter-

actions with sea surface temperature anomalies in the

other oceans (e.g., Goddard and Graham 1999), and the

inherent unpredictability of the atmosphere.

Raymond et al. (2003) note that many atmospheric

factors are correlated with tropical deep convection, but

that understanding the thread of causality requires ini-

tial examination of those factors that directly and im-

mediately influence deep convection. In broad terms,

Raymond et al. identify those factors as the magnitude

of convective inhibition (CIN); the magnitude of local

triggering disturbances; the characteristics of the lifted

air parcel, temperature, moisture, and shear profiles of

the environment; and the environmental aerosol pop-

ulation. Other processes make their influence felt by
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altering one or more of these factors. However, this list

of direct environmental influences is too broad for our

purposes, and some winnowing is necessary.

Some guidance is available from attempts to forecast

midlatitude convection on a day-to-day basis. In this

context, three necessary ingredients for deep convection

were suggested by Doswell (1987): ample moisture in

the lower troposphere, a substantial ‘‘positive area’’ with

a steep enough lapse rate, and sufficient lifting. These

three ingredients are usually represented by high pre-

cipitable water (PW), convective instability, and large-

or small-scale lifting mechanisms, respectively.

PW generally has a positive relationship with precipi-

tation (Sato and Kimura 2003; Brenner 2004; Bretherton

et al. 2004). Higher PW indicates larger amounts of

moisture available to condense and precipitate out and

less dry air to be entrained from the midtroposphere.

High PW also tends to increase the second ingredient,

convective instability.

Convective instability may be assessed by examining

convective available potential energy (CAPE), which is

the vertical integral of parcel buoyancy between the

level of free convection (LFC) and the equilibrium level

(EL). Physically, CAPE refers to the maximum kinetic

energy per unit mass of air that can be attained by an

ideal undiluted ascending air parcel, which means that

higher CAPE implies stronger updrafts within the con-

vective towers.

For an ascending parcel to realize positive potential

energy above the LFC, it needs to overcome negative

energy through the stable layer to reach the LFC. This

negative energy is named convective inhibition. Doswell’s

(1987) third ingredient, a sufficient lifting mechanism, can

be restated as a requirement of sufficiently small CIN.

(Here, we follow the convention that CIN is positive, so

large values of CIN inhibit convection.) Because of CIN,

deep convection over oceans as well as over land may be

prevented from occurring over a wide area despite the

presence of substantial CAPE (Lanicci and Warner 1991;

Williams and Renno 1993). In such a case, the parcel

needs either sufficient kinetic energy to reach the LFC for

deep convection or sufficient large-scale ascent to pro-

duce absolute instability from potential instability.

CIN is a measure of the magnitude of the triggering

mechanism needed to initiate convection, but there may

also be variations in the magnitude of the triggering

mechanism itself. Such triggering may be relatively

uniform from day to day, as in the case of the overland

diurnal cycle and sea breezes, or it may be quite variable,

as in the case of flow over orography or tropical distur-

bances such as easterly waves.

While the ‘‘ingredients’’ approach was developed for

day-to-day precipitation variations, it is applicable on

longer time scales as well. Just as daily convective pre-

cipitation is directly controlled by such environmental

characteristics as CAPE, CIN, and PW, the same must be

true on a monthly or seasonal sense. However, the nature

of the relationships may change on multiday time scales

because the same convection that is initiated by suitable

values of the convective parameters in turn alters those

FIG. 1. The ratio of the convective precipitation to the total precipitation in the NCEP–NCAR reanalysis in (a) January,

(b) April, (c) July, and (d) October. The ratio greater than 0.7 is shaded and the contour interval is 0.2.
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convective parameters. In addition to the monthly average

values of these characteristics, the amount of precipitation

might also depend upon how much day-to-day variability

is present about these monthly mean characteristics.

b. Local and regional relationships between
convective parameters and precipitation

Several previous studies have investigated the relation-

ships between the variability of precipitation and convec-

tive instability, and the results are not entirely compatible

with each other. A significant role of CIN in regulating

initiation of deep convection is found in the southern

Amazon basin (Fu et al. 1999). Interannual variability of

precipitation is tightly linked with that of precipitable

water in the tropical Pacific (Zveryaev and Allan 2005).

DeMott and Randall (2004) found little correlation be-

tween monthly anomalies of tropical rainfall and CAPE.

Biasutti et al. (2004), using a model, found CAPE to

modulate precipitation over the tropical Atlantic. CAPE

is strongly positively correlated with precipitation over

the Eastern Mediterranean (Eshel and Farrell 2001).

In the west Pacific, the variation of convective pa-

rameters associated with intraseasonal oscillations has

been extensively studied. Convective breaks are typically

triggered by dry midtropospheric air, which increases

CIN, and the resulting suppression of convection allows

CAPE to build up while CIN in turn gradually decreases

(Sherwood 1999; Parsons et al. 2000; Agudelo et al.

FIG. 2. Magnitude (radius) and level (color) of the highest correlation coefficient between CIN and DTTD at each

grid point in (a) January, (b) April, (c) July, and (d) October. Gray dots indicate regions at which the ratio of the

convective precipitation to the total precipitation is less than 0.7.

168 J O U R N A L O F C L I M A T E VOLUME 23



2006). However, it is not clear how this evolution should

be translated into a relationship between monthly mean

precipitation and monthly mean convective parameters.

Additional insight into monthly time scales can be

gained from studies of seasonal precipitation transitions.

Over India, CAPE is present well before the onset of

monsoon rains, but the rains do not begin until CIN be-

comes sufficiently small (Bhowmik et al. 2008). Similarly,

the decrease of CIN appears to control the onset of mon-

soonal rains in West Africa (Sultan and Janicot 2003).

c. Purpose and outline

While the studies mentioned above have investigated

the relationship between precipitation and convective

instability locally or regionally, there are no previous

studies that look at convective precipitation globally

with respect to convective instability, and the individual

local or regional studies use a variety of methods. The

purpose of this study is to unify and extend previous

research by investigating the interannual variability of

precipitation and its connection to convective instability

on monthly time scales across the entire globe. This

study will quantify the significance of convective pa-

rameters such as CIN, PW, and CAPE for monthly

precipitation variations. By examining how convective

instability is associated with monthly precipitation over

all regions where convective precipitation prevails, we

will better be able to understand how precipitation

processes are sensitive to location and season. A similar

approach is useful for testing global climate models, as

their ability to simulate long-term variations in precipi-

tation amounts should depend on whether the simulated

FIG. 2. (Continued)
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precipitation is controlled by the correct large-scale en-

vironmental characteristics.

In principle, monthly variations in convection must be

controlled directly by the thermodynamic and kinematic

characteristics of the atmosphere during those months—

if there is a clear scale separation between the convec-

tion and its environment. Thus, one can say that envi-

ronmental conditions cause variations in convection. By

investigating correlations between convective parameters

and precipitation, this study seeks aspects of the ther-

modynamic structure of the atmospheric environment

that are strong candidates for exerting a controlling in-

fluence on convective precipitation in particular months

and locations, and conversely to exclude other thermo-

dynamic aspects that are not strongly correlated with pre-

cipitation and therefore must not exert a controlling

influence. Determining whether a particular correlation

represents a causal relationship between thermodynamic

structure and precipitation is beyond the scope of this study.

The paper is organized as follows. Section 2 outlines

the data and methods used in this study and discusses

sources of error. Proxies of convective parameters are

identified in section 3. The study region is defined in this

section. Section 4 investigates the characteristics of

precipitation by examining relationships of convective

parameters with precipitation. The underlying physics

and implications for the results of this study and pre-

dictability of precipitation using convective parameters

are discussed in section 5. The major results and con-

clusions of this study are summarized in section 6.

2. Data and methods

a. Observed and reanalysis precipitation

To investigate the coupling of precipitation with con-

vective parameters, two monthly precipitation datasets

were used in this study. The first dataset is global pre-

cipitation from the Global Historical Climatology Net-

work (GHCN) gridded at 58 3 58 (Chen et al. 2002). This

dataset contains monthly anomalies with respect to 1961–

90. The second dataset is the National Centers for Envi-

ronmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) reanalysis data (Kalnay et al.

1996) aggregated to 58 3 58, whose precipitation is com-

puted through model integration and is not based on

precipitation observations. The time domain for this study

covers the continuous 56-yr period from 1948 to 2003.

While GHCN is excellent in signal detection, accu-

racy, and longevity of record, it has poor coverage over

oceanic areas since it is obtained from precipitation

stations that are densely distributed over land. Con-

versely, the reanalysis precipitation is spatially complete

but is computed from a model’s data assimilation cycle

rather than from direct observations. The reanalysis

precipitation has been found to be highly correlated with

observed precipitation over the midlatitude land and

ocean in the Northern Hemisphere, the central Pacific,

and Australia, but only weakly correlated in the western

Pacific islands, central Africa, and northern South

America (Janowiak et al. 1998; Trenberth and Guillemot

1998). Despite the low correlations over the regions

described above, employing the reanalysis has the

FIG. 3. Sample comparison of CIN values with DTTD computed using (left) 700 hPa- and (right)

850-hPa temperature, subtracted from 1000-hPa dewpoint. DTTD values are in kelvins. The points

represent 0000 UTC soundings during 1980 in Singapore. Soundings with CIN undefined because of

the absence of CAPE are represented as CIN 5 210 J kg21.

TABLE 1. Surface pressure values and associated best proxy levels

for calculation of DTTD, a proxy for CIN.

Surface pressure (hPa)

Assumed best

proxy level (hPa)

,870 600

870;980 700

980;1013.25 850

.1013.25 925

170 J O U R N A L O F C L I M A T E VOLUME 23



advantages of internal consistency between the nature

of the controls and the precipitation as well as its ex-

cellent temporal and spatial extents. In fact, correlations

may underestimate accuracy owing to the existence of

random spatial noise on a gridpoint basis and removal of

real spatial variations within a basin on a basin-averaged

basis. Results using reanalysis and GHCN precipitation

are compared in section 4a.

Another convenient aspect of the reanalysis precipi-

tation dataset is its distinction between convective and

total precipitation. Convective parameters should directly

influence monthly precipitation only where convection is

the dominant mode of precipitation. Thus, this study fo-

cuses on the regions in which the ratio of mean monthly

convective precipitation to mean monthly total precipi-

tation in the reanalysis is greater than 0.7.

Figure 1 depicts the geographical distribution of this

ratio: areas with values greater than 0.7 (hereafter,

convection-preferred regions) are shaded. While the ratio

shows strong seasonal variations over land, convection-

preferred regions include most of the tropics and sub-

tropics in all seasons. They exclude some desert areas

such as the Sahara and Gobi as well as the eastern Pacific

and Atlantic subtropics where subtropical anticyclones

prevail.

b. Reanalysis convective parameters and
relationship with convection

The convective parameters studied are CIN, PW, and

CAPE or their proxies. No attempt is made to distin-

guish between low-level and midlevel moisture. Vertical

wind shear and variability of convective parameters within

months are also ignored.

The reanalysis provides monthly mean variables such

as temperature and dewpoint on 17 pressure levels and

surface temperature and dewpoint. From these variables,

various stability indices are calculated, as described in

section 3.

The physical mechanisms of precipitation controls in

the reanalysis are intimately related to the convective

parameterization in the reanalysis modeling system,

which is a simplified Arakawa–Schubert scheme based

on Grell (1993) (Kalnay et al. 1996). This scheme pre-

scribes convection in terms of a cloud work function that

depends upon cloud base buoyancy (and thus CIN) and

differences between the moist static energy of a parcel

and its environment (and thus CAPE and PW). Al-

though the scheme assumes quasi equilibrium such that

convection balances the destabilization produced by

the large-scale environment, the stability characteris-

tics of the environment are free to evolve on time scales

larger than that of convective adjustment (Arakawa and

Schubert 1974). Thus, reanalysis precipitation, although

parameterized, should be sensitive to all three environ-

mental characteristics being considered here.

c. Methods

Linear correlation analysis is performed between the

precipitation datasets and the convective parameters.

Because precipitation values are bounded by zero, they

tend to have a lognormal distribution; therefore, they

are usually transformed for linearity using the loga-

rithm. However, the GHCN precipitation values are

monthly anomalies, which permits negative values. Re-

gional tests with reanalysis precipitation showed that

correlation coefficients were not substantially affected

by a lognormal transformation of the precipitation, so

no such transformation is applied here.

In addition to the correlation analysis, we use linear

regression analysis to determine the parameters most

relevant to precipitation. The resulting Pearson correla-

tion coefficient r indicates the strength of a linear re-

lationship between the two fields. Assuming independent,

normally distributed data, 0.34 is roughly the 99% con-

fidence limit for a nonzero correlation.

d. Sources of error

Sources of error in the relationship between convec-

tive parameters and precipitation include the following:

1) Only three numeric values (PW and proxies for CIN

and CAPE) are used to represent the convective en-

vironment. This oversimplifies the environment and

underestimates the extent of environmental control.

While these three were selected because they are

believed to be most fundamental, it is possible that

in certain locations other environmental parameters

(that may or may not covary with the chosen three)

may have greater importance. Since PW is dominated

by lower-troposphere humidity, the middle- and upper-

tropospheric relative humidity would be a possible

separate variable to consider, but for major inconsis-

tencies in reanalysis humidity fields in the middle and

upper troposphere (Huang et al. 2005).

2) Random errors in the reanalysis of temperature and

moisture or in the GHCN precipitation observations,

or undersampling of precipitation within grid boxes in

the GHCN precipitation observations, would weaken

the correlations between convective parameters and

GHCN precipitation. The comparison of reanalysis

thermodynamics and precipitation has the advantage

of eliminating sampling error.

3) Systematic biases in the reanalysis of temperature

and moisture could lead to an incorrect relation-

ship between convective parameters and reanalysis

precipitation but would not affect the correlations
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between convective parameters and GHCN pre-

cipitation. For example, Trenberth and Guillemot

(1998) found discrepancies in the reanalysis moisture

budget centered around certain island rawinsonde

sites. Differences between correlations in data-rich

and data-poor areas may be evidence of such a bias.

Also, Li and Chen (2005) found unrealistic seasonal

variations of precipitable water in the NCEP–NCAR

reanalysis over the Asian and Australian monsoon

regions.

4) Time-varying biases in the reanalysis dataset would

detrimentally affect all results. The reanalysis has

a generally reasonable representation of diagnostic

variables such as evaporation, soil moisture, and sen-

sible and latent heat fluxes as well as instantaneous

variables like temperature, specific humidity, height,

and winds on a monthly time scale (Roads and Betts

2000), but exceptions exist in certain locations and

fields. Zveryaev and Chu (2003) found multidecadal

variations in precipitable water from region to region

that may have been related to the introduction of

satellite data in 1979 but are not easily separated

from natural variations.

5) As noted above, the reanalysis precipitation is not

based directly on observations but is a consequence

of model integration. Without corroborating evi-

dence, correlations between reanalysis precipitation

and reanalysis convective parameters should be

FIG. 4. Optimized best proxy levels based on Table 1 (triangles) and observations (circles) in (a) January, (b) April,

(c) July, and (d) October.
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interpreted as diagnostic of the model behavior

rather than of the behavior of the real atmosphere.

The results are more likely to represent atmospheric

behavior where the results from reanalysis pre-

cipitation and GHCN precipitation agree and are in

similar climatological settings around the globe.

3. Proxies of CIN and CAPE

CIN and CAPE are the most direct measures of con-

vective instability and inhibition to convection. How-

ever, on days when convective instability is absent, both

CAPE and CIN are undefined. In areas only marginally

supportive of convection, even monthly means might

occasionally have undefined CAPE and CIN. Conversely,

CIN is uniformly zero whenever convective inhibition is

absent. These properties make CAPE and CIN un-

suitable for correlation analysis. Needed are indices

that vary continuously and are always defined. In this

section, proxies for CIN and CAPE will be tested and

determined.

a. CAPE

Some controversy exists over the proper way of com-

puting CAPE in the tropics (Williams and Renno 1993;

Thompkins and Craig 1998; Frueh and Wirth 2007), ow-

ing to potential influences of water loading and freezing.

Fortunately for our purposes, these factors affect the

absolute magnitude of CAPE, but interannual varia-

tions in monthly mean CAPE should be insensitive to

FIG. 4. (Continued)
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the specific algorithm used as long as it is applied con-

sistently. Also, monthly averaging should smooth out

random details in the vertical stability profile, allowing

buoyancy at a representative level to serve as a proxy for

the integrated buoyancy CAPE.

The lifted index (LI) is the temperature difference

between an air parcel lifted pseudoadiabatically and the

temperature of the environment at a particular pres-

sure in the midtroposphere, 500 hPa. When the value is

positive (negative), the atmosphere is stable (unstable).

Therefore, LI is generally expected to be negatively

correlated with CAPE. We find that the correlation

between LI and CAPE at each grid point for which

CAPE is defined for all 56 years is generally between

20.8 and 21.0, confirming that LI can be used as a proxy

of CAPE.

b. CIN

A proxy analogous to LI would be useful for CIN,

but we are not aware that any have been proposed.

In principle, CIN should depend on the temperature and

dewpoint at the surface [T(s) and Td(s), respectively]

and the virtual temperature [here, for simplicity, tem-

perature T(inv)] at some level just above the mixed layer

or within a capping or trade wind inversion.

An exploration of the relationships between these

three variables and CIN was performed for summertime

monthly-mean conditions in Texas, taking 700 hPa as

a reasonable level for T(inv). An excellent correlation

(0.98) was found between CIN and T(inv) 2 Td(s).

Physically, Td(s) is strongly correlated with the moist

pseudoadiabat along which a surface parcel will ascend,

FIG. 5. Parameter (color) and magnitude (radius) of the highest correlation using GHCN precipitation in

(a) January and (b) July. CIN (pink), PW (blue), and CAPE (green). Correlations whose signs are consistent with

convective instability theory are represented as circles, and the opposite relationships are represented as triangles.
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and 700 hPa is typically just above the planetary bound-

ary layer (PBL) in Texas in summertime, so T(inv) 2

Td(s) correlates with the lifted index of a parcel measured

close to the capping inversion. Details of this analysis

will be reported in Myoung and Nielsen-Gammon (2010,

manuscript submitted to J. Climate).

The example of Texas suggests that the difference

between the temperature in the lower troposphere above

the PBL and surface dewpoint may be a good proxy for

CIN. Since the height of the PBL varies by location, the

proper pressure level in general is unknown. Therefore,

we seek to find the lower-troposphere level at which

the temperature minus surface dewpoint correlates most

strongly with CIN at each grid point.

Using the monthly mean reanalysis data, surface dew-

point is subtracted from temperatures at various lev-

els (surface, 1000, 925, 850, 700, 600, and 500 hPa),

and the correlation coefficients between these differ-

ences and CIN were calculated at each grid point. This

analysis was performed only at the grid points where

CIN was defined in at least 20 out of 56 years for a given

month.

Figure 2 illustrates with colors the lower-tropospheric

level for which the correlation coefficient r between

T(inv) 2 Td(s) and CIN is highest at each grid point, and

the value of r is given by the size of the color-coded

circle. Low values of r are often found in grid points at

the margin of the convection-preferred regions, which

may be due to a lack of samples. The pressure levels of

925 and 850 hPa are generally the best levels for T(inv)

over the ocean. While 850 hPa produces the highest

correlations over the western Pacific, central Indian

Ocean, Caribbean, and western Atlantic, 925 hPa is the

dominant level over the northeastern and southeastern

Pacific, south Indian Ocean, and southeastern Atlantic.

Grid points over land are generally associated with pres-

sure levels at least as high in altitude as 850 hPa. These

patterns are consistent in all months with slight seasonal

variations in the transition zones.

In Fig. 2, three noteworthy features are 1) r values

exceeding 0.6 are nearly ubiquitous over the analysis

region; 2) only rarely is the surface the best level for

T(inv), which would represent a correlation between

surface dewpoint depression and CIN; and 3) the best

level is dependent of location. The second is consistent

with the results in Texas, implying that low-tropospheric

temperature is more significant to the variation of CIN

than temperature at the surface. Overall, the generally

high correlations indicate that there is a specific pressure

level at which the temperature minus surface dewpoint is

highly correlated with CIN at each grid point, suggesting

that the difference between this temperature and the

surface dewpoint (DTTD) is a good proxy for CIN.

Figure 3 compares the relationship between CIN and

two possible CIN proxies for a sample year at Singa-

pore, using daily rawinsonde observations. Undefined

values of CIN are plotted as zeroes. This is a more

stringent test of the CIN proxy than the reanalysis

comparisons above because the potential correlation

between CIN and its proxy is negatively affected by

small-scale details in vertical structure that would be

smoothed out in monthly, grid-square-averaged in-

formation.

Even at daily time resolution, the correlation between

CIN and T850 2 Td(s) is 0.73. This excludes seven

sounding days when CIN was undefined because CAPE

was zero, most of which occurred with T850 2 Td(s) .

238C (in Fig. 3, these cases are indicated with CIN

values of 210 J kg21). The proxy is able to represent the

full range of stability conditions, while CIN is not. In ad-

dition, it can be seen that CIN has a highly skewed non-

Gaussian distribution, while the proxy is much closer to

normally distributed. For both reasons, the CIN proxy is

more appropriate than CIN itself for the present analysis.

The finding in Fig. 2 that T850 2 Td(s) is more tightly

coupled to CIN at this location than T700 2 Td(s) is con-

firmed here with sounding data, as the scatter of points is

much broader and the correlation is lower for T700 2 Td(s).

At grid points for which CIN is defined so infrequently

that a correlation analysis would be unreliable, it is neces-

sary to specify the level for computing T(inv). To estimate

the best proxy level over those grid points, we are in-

terested in the physical factor(s) that determine this level.

The differences in the best proxy level not only between

ocean and land, but also within ocean or land areas, seem to

be closely associated with surface pressure patterns. For

example, within the Pacific, while 850 hPa is the best proxy

level in the western Pacific, the 925-hPa level dominates the

northeastern and southeastern Pacific where subtropical

highs and associated subsidence prevail. Over land, high

terrain corresponds to a higher altitude for the top of the

PBL, and thus a higher best proxy level. In general, over

both land and oceans, the higher the surface pressure, the

higher the pressure value of the best proxy level.

Based on statistical analysis of the relationship be-

tween surface pressure and the best proxy level, Table 1

shows the proxy levels to be used at those grid points

where an insufficient number (,20) of years of CIN data

were available to calculate the best proxy level directly.

Figure 4 depicts observed (circle) and assumed (tri-

angle) best proxy levels. The optimized levels are in good

spatial agreement with the observed levels. For example,

assumed best proxy levels of 925 hPa are adjacent to ob-

served best proxy levels of 925 hPa over the southern

Indian Ocean, North Pacific, southeastern Pacific, and

North and South Atlantic. Over land, grid points with an
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assumed best proxy level of 600 hPa are near observed

best proxy levels of 600 hPa over the Rocky Mountains

and the periphery of the Tibetan Plateau in July (Fig. 4c).

These features indicate that the estimation of the best

proxy level based on the surface pressure is successful and

that DTTD, the difference between the temperature at the

best proxy level indicated in Fig. 4 and surface dewpoint at

a given grid point, can be used as a good proxy of CIN.

FIG. 6. Parameters (color) and magnitudes (radius) of the highest, middle, and lowest correlations using reanalysis in

(a) January, (b) April, (c) July, and (d) October. CIN (pink), PW (blue), and CAPE (green). Correlations whose signs

are consistent with convective instability theory (circles) and the opposite relationships (triangles) are represented.
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4. Most significant parameter for precipitation

a. Comparison of GHCN with reanalysis
precipitation

In this subsection, the results of the correlation anal-

ysis of the convective parameters with GHCN and pre-

cipitation of the reanalysis are shown. Although we

continue to refer to the physical quantities CIN and

CAPE, the difference between temperature in the lower

troposphere and surface dewpoint, DTTD, and the lif-

ted index, LI, were used as proxies of CIN and CAPE,

respectively.

FIG. 6. (Continued)
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Figure 5 identifies those parameters with the highest

correlations with GHCN in January and July over the

convection-preferred regions, while the top panels of

Figs. 6a and 6c do the same for reanalysis precipitation.

Correlations are only plotted if data are available for all

56 years, so GHCN correlations are rather sparse. The

identity of the convective parameter with the largest r

(CIN, PW, or CAPE) is indicated by the dot color (pink,

blue, and green, respectively), and the r value is in-

dicated by the radius of the dot. According to convective

FIG. 6. (Continued)

178 J O U R N A L O F C L I M A T E VOLUME 23



instability theory, low CIN, high PW, and high CAPE

are likely to increase the chances and amounts of pre-

cipitation, which would result in negative, positive, and

positive correlations of precipitation with CIN, PW, and

CAPE, respectively (negative with respect to the CAPE

proxy, LI). Correlations whose signs are consistent with

expectations are represented as circles in this and future

figures, and the opposite relationships (positive for CIN,

negative for PW, and negative for CAPE) are repre-

sented as triangles.

In January (Figs. 5a and 6a), the correlations generally

agree. In Australia, agreement is excellent for both the

FIG. 6. (Continued)
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best parameter and correlation magnitude, if allowance

is made for minor spatial differences in the patterns.

Similarly good agreement is found at islands in the Pa-

cific and Atlantic Oceans and near the Mediterranean

Sea. In central Africa and the Caribbean, the agreement

is poor. In South Africa, South Asia, and South and

Central America, the proper parameter is often identi-

fied, but reanalysis correlations are higher than observed

correlations.

In July (Figs. 5b and 6c), both GHCN and reanaly-

sis precipitation are in excellent agreement over North

America, Europe, and Siberia. The best parameter is

consistently identified in Europe, Asia, and North

America, except for some points in the United States,

while correlations are higher with the reanalysis pre-

cipitation. The agreement is fair to poor in Central

Africa, South Asia, eastern Australia, and much of South

America.

The agreement between the correlations of GHCN

and reanalysis indicates that the relationship between

the convective parameters and reanalysis precipitation

is reliable over most land areas except for the tropical

continents, and is at least partially consistent with ob-

served precipitation over the oceans. Note that the rean-

alysis precipitation is solely model dependent, because no

precipitation observation datasets are assimilated into

the reanalysis system. The r values with reanalysis pre-

cipitation are slightly higher than with GHCN precip-

itation, as expected since both reanalysis precipitation

and reanalysis convective indices are required to be in-

ternally consistent and representative of gridpoint-mean

conditions. Thus, we now proceed to a global statistical

analysis of precipitation and convective indices using re-

analysis precipitation values, recognizing that we are di-

agnosing numerical model behavior and comparing with

previous observational studies.

b. Correlation of the convective parameters
with reanalysis

The parameters with the highest, middle, and lowest

correlation with reanalysis precipitation at each grid

point are shown in Fig. 6. The presence of circles in most

regions in Fig. 6 indicate that couplings of precipitation

to the convective parameters or their proxies bear the

expected sign, while the opposite relationships are found

at several grid points with respect to the least strongly

correlated convective parameter.

In January (Fig. 6a), PW or CAPE are most tightly

coupled with precipitation over the oceans while the

correlation with CIN is weaker. Within the oceanic

areas, PW is dominant over the western tropical Pacific

and CAPE is dominant over the central Indian Ocean

and the Atlantic. The patterns over the oceans are not

closely related to sea surface temperature; at larger

distances from the equator where sea surface tempera-

tures are cooler, many examples of either PW or CAPE

being most strongly coupled can be found.

The importance of CAPE over the tropical Atlantic

in January, and to a lesser extent in other seasons, is

consistent with Biasutti et al. (2004); conversely, while

CAPE is important over the Eastern Mediterranean, in

agreement with the findings of Eshel and Farrell (2001),

CIN is found to be even more important. Employing

a time series of seasonal anomalies, Zveryaev and Allan

(2005) also found a high correlation of precipitable water

with observed precipitation in the tropical Pacific and

moderate correlations in central Africa and South Amer-

ica in January. Precipitation is most strongly coupled with

CIN over southern Africa and Australia and some parts

of South America.

An analogous picture is manifest for April (Fig. 6b).

Some major seasonal differences are shown over land in

the Northern Hemisphere. In particular, CIN becomes

dominant in northern Africa, southern Europe, western

Asia, and southern North America. The high correlation

with CIN over India is consistent with Bhowmik et al.

(2008).

In July (Fig. 6c), the CIN correlation is pronounced

over most of the continents in the Northern Hemisphere.

While PW and CAPE are still dominant over the oceans,

the pattern is different from that in January: PW, instead

of CAPE, is most strongly coupled in the southwestern

Indian Ocean and CAPE is less tightly coupled with

precipitation in the Atlantic. The transition in West

Africa from high CIN correlations in April to high PW

correlations in July is consistent with the hypothesis of

Sultan and Janicot (2003) that CIN controlled the onset

of the monsoon, but after monsoon onset moisture trans-

port became the key.

The pattern in October (Fig. 6d) is similar to that in

April except that CIN is dominant in South America and

CAPE (PW) prevails over the northern (central) Atlantic.

In all seasons when convection is the dominant mode

of precipitation, precipitation and CIN are strongly

coupled over most of the continental regions such as

Europe, central and northern Asia, North America, and

Australia. In contrast, CIN is least tightly correlated

with precipitation over oceanic areas. This contrast is

more clearly represented in Fig. 7, which shows histo-

grams of the correlation between CIN and precipitation

over ocean and over land. Unlike the histogram for

ocean areas, the histogram over land is strongly skewed

toward negative values, and the typical magnitude of r is

much greater over land than over ocean. The mean r

value over land is significantly different from that over

ocean at the 99% confidence level. Factors causing this
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dramatic difference between land and ocean may be

associated with different roles of surface boundaries,

atmospheric circulations, and physical and dynamical

processes of precipitation over ocean and land. Those

factors will be discussed in section 6.

Meanwhile, the correlation analysis in Fig. 6 has shown

that there are several regions where seasonal differ-

ences in the parameter with the highest r2 are negligible:

these are the central Pacific (PW), southeastern Asia/

the western Pacific (PW), and the central Indian Ocean

(CAPE). However, the parameter with highest r2 dra-

matically changes with season in South America, and

there are strong spatial variations as well. This indicates

that atmospheric circulations and modification of con-

vective instability can vary significantly by season and

location.

In Fig. 8, all of the parameters were overlaid with the

parameter with the highest r2 plotted first and the pa-

rameter with the lowest r2 overlaid last. As in Fig. 5, the

size of each dot is proportional to the magnitude of r.

This shows the relative significance of all parameters at

each grid point. If the three parameters have commen-

surate r2 values, the color of the least significant pa-

rameter will be prominent. If two colors are prominent,

the central dot represents the parameter with the small-

est r2 and the surrounding color represents the parameter

with either the middle or the highest r2 value (Fig. 6 can

be used to distinguish these two possibilities).

According to Fig. 8, precipitation tends to be strongly

coupled with all three parameters in certain areas, such as

central and southern Africa (all months), northern Aus-

tralia (all months except July), southern South America

(January), central South America (July and October),

India (April and October), the equatorial central Pacific

(July and October), and the northern Amazon (January

and April). Note that in many of these areas, correla-

tions with respect to GHCN precipitation were sub-

stantially different (see section 4a). Scatter diagrams

(convective parameters versus precipitation) are shown

for four of these regions in July in Figs. 9a–d: central

Africa, the eastern Maritime Continent, the equatorial

central Pacific, and central Amazonia, respectively. The

relationships between the convective parameters and

precipitation are roughly linear except for over the

Amazon (Fig. 9d). In all four regions, the convective

parameters are also strongly correlated with each other

(not shown). In these regions, physical and dynamical

mechanisms are likely to control CIN, PW, CAPE, and

precipitation simultaneously.

Meanwhile, there are regions in which only one or

two parameters are tightly coupled with precipitation. For

example, CIN is predominantly linked with precipitation

in central Asia, western Europe (Fig. 9e), and central

North America (Fig. 9f), and other convective parameters

are not, implying that the variability of precipitation is

explained primarily by variability of CIN in those areas.

A noteworthy feature is that relatively small cor-

relations are found in the western Pacific (08–308N,

1358E–1808), the subtropical South Pacific convergence

zone (STCZ; 58–258S, 1608E–1408W), central Africa

FIG. 7. Histograms of correlations between reanalysis precipitation and CIN over

(a) ocean and (b) land.
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(158S–108N, 58–208E; January and April), the Indian

Ocean (58S–108N, 68–908E; July and October), and the

Caribbean and tropical Atlantic (58–258N, 858–408W;

July and October). These poor correlations in July are

illustrated in Figs. 9g and 9h for the northern Indian

Ocean and western Pacific, respectively. Many of these

areas are locations of precipitation maxima. In those

regions, the roles of CIN, PW, and CAPE in regional

precipitation variability are small, implying that other

parameters or processes are more significant.

5. Tropical CAPE

In general, the correlation between CAPE and

precipitation in the tropics in Figs. 6 and 8 is much

higher than would be expected from the analysis of

DeMott and Randall (2004). Only part of this differ-

ence is due to the use of reanalysis precipitation in-

stead of GHCN precipitation (Fig. 5). The remainder

may be due to sampling issues associated with DeMott

and Randall’s use of point values for CAPE and (not

FIG. 8. Parameters (color) and magnitudes (radius) of the highest, middle, and lowest correlations overlaid in (a) January, (b) April, and

(c) July with specific locations indicated for Fig. 9, and (d) October.
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necessarily collocated) precipitation, with those point

stations necessarily being on islands rather than over

open water.

Over land, Ramage (1971, 101–106) showed that

seasonal variations of the lapse rate in India were

negatively correlated with rainfall. While CAPE is

not the dominant convective parameter for reanalysis

precipitation in the present analysis, its correlation is

still relatively large and positive (Fig. 6c). The two re-

sults are not directly comparable since mechanisms for

variations from season to season do not necessarily

align with mechanisms for interannual variation. Also,

lapse rate variations do not necessarily align with

CAPE variations (DeMott and Randall 2004). None-

theless, the conflicting nature of the results is cause for

concern.

FIG. 8. (Continued)
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To further investigate the relationship between CAPE

and precipitation, we consider Singapore where the

correlation between CAPE and reanalysis precipita-

tion is large and the correlation between CAPE and

GHCN precipitation is weak. Singapore is located in an

area of land and water, and variations in both sound-

ings and rain gauge precipitation might be expected

to be representative of the horizontal scale inherent in

the reanalysis. Convective indices computed from the

Singapore data, using 1000 hPa as an initial parcel

level, do not exhibit any obvious inhomogeneities

during the period chosen for examination, January 1971

through April 2009. The convective indices are compared

to unadjusted monthly precipitation anomalies from

seven GHCN rain gauges in nearby portions of the Malay

Peninsula and Sumatra (08–58N, 958–1058E) that have at

least 20 years of precipitation data available during the

period of examination.

Precipitation in the region reaches a maximum in late

fall and a secondary maximum in spring (Fig. 10), and

average precipitation exceeds 10 cm at most stations

and most months. Kuantan and Mersing, on the eastern

coast of the Malay Peninsula, exhibit a marked December

precipitation maximum, an example of the important

role of wind direction and orography in controlling pre-

cipitation in the presence of conditional instability. PW at

Singapore, here estimated as the 850-hPa dewpoint to

avoid irregularities in the reporting of dewpoint in the

middle and upper troposphere, also has maxima in spring

and late fall. CAPE and CIN, inferred from LI and

DTTD, follow a quite different annual cycle, with great-

est instability and weakest inhibition during the summer

FIG. 9. Scatterplots of the convective parameters with precipitation (at the grid point) in (a)

central Africa, (b) the eastern Maritime Continent, (c) the equatorial central Pacific, (d) central

Amazonia, (e) western Europe, (f) central North America, (g) the northern Indian Ocean, and

(h) the western Pacific in July.
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and weakest instability and greatest inhibition during

the winter.

Correlations between the convective parameters and

median monthly precipitation among the seven stations

are shown in Fig. 11. In general, correlations with in-

dividual station precipitation values are weaker than

correlations with the median. Correlations achieve 0.95

statistical significance at 0.28. The signs of the correlations

FIG. 9. (Continued)

FIG. 10. Annual cycle of convective parameters in rawinsonde observations for Singapore

(lines) and precipitation at nearby GHCN stations (symbols).
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are presented so that positive correlations imply the in-

dices are favorable for convection. Statistically significant

correlations are present during most months in fall, win-

ter, and spring. The proxy for PW is positively correlated

with precipitation throughout the year and is strongly

correlated during the period December–May. CAPE (LI)

and CIN (DTTD) also strongly favor convection during

the December–March period, but are weakly or nega-

tively correlated during other times of the year.

These results are consistent with the reanalysis cor-

relations with GHCN precipitation in Fig. 5, which show

CIN and PW moderately positively correlated during

January, and only a very weak PW correlation during

July. They are inconsistent with respect to correlations

with reanalysis precipitation, which are positive for all

parameters and months examined and are large for all

except CIN in April and October (Fig. 6). This suggests

that the correlations with reanalysis precipitation, while

informative with respect to the reanalysis model perfor-

mance characteristics, should only be taken as reflective

of physical relationships present in the atmosphere where

they can be independently validated with GHCN pre-

cipitation or by other means.

6. Discussion

The most striking result from this study, found in both

GHCN and reanalysis precipitation, is that precipitation

responds to its environment differently over land and

ocean. The high correlation coefficient between CIN and

precipitation over land suggests that CIN may be the

primary environmental causal mechanism for monthly

precipitation variability over land. Over the ocean, vari-

ability of precipitation tends to be associated with that of

PW or CAPE. It is known that the magnitude of CIN is

relatively large over land compared over the ocean

(Williams and Renno 1993). First, soil moisture amplifies

variations of surface dewpoint depression through flux

partitioning at the surface (Rowntree and Bolton 1983;

Garratt 1993; Betts et al. 1996) and affects CIN greatly

over land compared to over ocean. Second, while the

vertical profile of temperature in the lower troposphere is

diverse over land, horizontal temperature gradients and

variance of the vertical temperature profile are exceed-

ingly weak in the free troposphere over the deep tropics,

owing to the weak constraints of rotation and the con-

sequent nonlocal nature of dynamical and convective

adjustments (Charney 1963, 1969; Manabe and Strickler

1964; Manabe and Wetherald 1967; Held and Hou 1980;

Bretherton and Smolarkiewicz 1989; Nakajima et al.

1992; Folkins and Braun 2003). Thus, over land the ex-

istence of a large amount of CIN tends to inhibit the ini-

tiation of convection despite substantial PW and CAPE,

while over the ocean this rarely happens, and PW and

CAPE are more likely to be strongly correlated with

precipitation.

If precipitation is controlled by convective parameters

on monthly time scales, these variables might be effective

parameters for predicting precipitation on a monthly or

seasonal basis. The correlation coefficients in Fig. 5 can

be also considered as correlation coefficients of a re-

gression model using a convective parameter as an in-

dependent variable. For example, when the correlation

coefficient between CAPE and precipitation is r 5 0.6 at

a grid point, r2 5 36% of the variation in precipitation is

explained by CAPE. While the predictability of in-

terannual variability of convective precipitation is low in

the tropics and subtropics on a monthly time scale, even

in the ENSO-dominant regions (Brankovic and Palmer

2000; Kang et al. 2004), tight couplings of convective

parameters and precipitation in most of the convection-

preferred regions in this study suggest potential applica-

tions of convective parameters as a tool for predicting the

intensity of monthly convective precipitation. The use of

a two-parameter regression model produces even higher

correlations over parts of the oceans (not shown), though

not as high as the raw correlation coefficients would imply

because the convective parameters are also in general

correlated with each other (Emanuel et al. 1994; DeMott

and Randall 2004).

7. Summary and conclusions

This study has examined the relationship of convec-

tive instability to precipitation over the regions where

convective precipitation is preferred, and has discussed

the modulation of convective instability on precipitation

on a monthly basis. Three thermodynamic properties

obtained or computed from reanalysis data were ex-

amined: CIN, PW, and CAPE. The lifted index (LI) and

the difference between lower-tropospheric temperature

FIG. 11. Correlation between convective parameters in Singa-

pore 0000 UTC soundings and mean precipitation at the seven

stations shown in Fig. 10. The sign of the correlation is assigned to

be consistent with any expected causal relationship between the

convective indices and the precipitation.
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and surface dewpoint (DTTD) were used as proxies of

CAPE and CIN, respectively.

Correlations were examined with respect to both

GHCN and reanalysis precipitation. The results are

in general agreement over North America, Europe,

central Asia, southern Africa, summertime Australia,

and, in Janaury, the tropical Pacific. Larger differences

are found in central Africa, India, parts of Southeast

Asia and South America, and the tropical Pacific in

July. A closer examination of precipitation character-

istics in one particular location of disagreement con-

firmed that the correlations with observed precipitation

were more robust than the correlations with reanalysis

precipitation.

A simple correlation analysis revealed that the most

significant convective parameter varies by location, that

is, CIN over the summer continents in the Northern

Hemisphere and Australia and PW or CAPE over the

ocean and most tropical rainforests. The difference in

CIN correlation over land versus over oceans is statis-

tically significant at the 99% level. The factors driving

CIN variability, and the relative importance of surface

moisture and lower-tropospheric temperature, will be

the subject of future investigation.

Over the ocean, the correlations tend to be rather

consistent with season. However, over Africa and South

America they vary substantially by season, implying that

precipitation mechanisms are changing substantially as

well.

In the reanalysis data, monthly mean precipitation is

strongly correlated with all three parameters in parts of

Africa, Australia, South America, India, the equatorial

central Pacific, and the Amazon (implying, in turn, that

the convective parameters are correlated among them-

selves), while only one or two parameters are signifi-

cantly correlated with precipitation in other places.

Over the western Pacific, central Africa, Indian Ocean,

Caribbean, and the tropical Atlantic, all three parame-

ters are poorly correlated with precipitation. Over those

regions, the variability of monthly mean precipitation

does not seem to be captured with simple convective

indices. Intraseasonal variations or other aspects of the

environment may play a significant role there in initi-

ating and modulating convection.

This type of analysis of convective variability may

also be useful for understanding long-term and fu-

ture trends in convective precipitation, in both models

(Chou and Neelin 2004) and observations (DeMott and

Randall 2004). Although those aspects of this study

based solely on model-derived reanalysis precipitation

must be interpreted with caution, especially over the

tropics, overall this study provides a useful starting

point for the diagnosis of the source of monthly vari-

ability of precipitation in terms of convective instability

theory.
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