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ABSTRACT 

 

The critical need to miniaturize electronic devices has initiated a 

renaissance in the study of the electronic and magnetic properties of both discrete 

molecules and extended structures vis-à-vis their potential for high-density data 

storage devices, sensors, switches, displays and quantum computing. 

Researchers in molecular magnetism are focusing on the fundamental behavior 

of unusual paramagnetic molecules in an effort to rationally design those with 

improved properties which requires exquisite synthetic control. One strategy that 

is particularly successful is to use a linear bridging ligand, such as cyanide, that 

allows for predictive magnetic exchange between spin centers. The use of 

cyanometallates to bridge metal centers has led to interesting properties, 

including remnant magnetization above room temperature, spin-crossover (SCO), 

charge-transfer-induced-spin-transition (CTIST), photomagnetism and single 

molecule magnetic properties. 

The research described in this dissertation focuses on the synthesis of 

[RuIII(CN)6]3- and [OsIII(CN)6]3- and their incorporation into discrete, pentanuclear 

molecules, referred to as trigonal bipyramids (TBPs). TBPs are modeled after the 

well-studied Prussian blue and its analogs (PBAs) and has a general formula of 

[MII(tmphen)2]3[M’III(CN)6]2 (M3M’2), which allows for six equivalent exchange 

interactions. TBPs are the largest homologous family of cyanide materials 

reported in literature and have been shown to mimic the behaviors exhibited by 
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PBAs. The incorporation of the heavier Group VIII 4d and 5d hexacyanometallates 

into TBPs was undertaken to explore magnetic exchange through the CN- bridges 

which had been found to lead to interesting magnetic phenomena for the Fe 

analogs. 

The tools of IR spectroscopy, thermal gravimetric analysis, magnetometry, 

single X-ray crystallography and 57Fe Mössbauer spectroscopy (when 

appropriate) have been used to characterize the TBPs discussed herein. The rich 

redox behavior in the new Co3Ru2 and Co3Os2 TBPs manifested itself in the 

irreversible metal-to-metal-charge-transfer event in the Co3Ru2 and the reversible 

CTIST in the Co3Os2 TBPs. The Co3Os2 TBP is one of a very small number of 

compounds to display CTIST and is only the second Co/Os cyanide compound to 

do so, preceded only by a Co3Os2 Prussian Blue analog from the Dunbar 

laboratories. A study of the first Fe/Ru cyanide compound to exhibit CTIST is 

discussed in regard to how the identity and amount of solvent in the Fe3Ru2 TBP 

effects the CTIST events. A final study was aimed at investigating how changes 

in the π-π stacking interactions in the Fe3Co2 TBP affects the SCO behavior of 

the equatorial FeII metal centers. 
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NOMENCLATURE 

 

4-dmbpy 4,4’-dimethyl-2,2’-bipyridine 

5-dmbpy 5,5’-dimethyl-2,2’-bipyridine 

ALS Advanced Light Source 

bpy 2,2’-bypyridine (A.K.A. 2,2’-dipyridyl) 

Bs(y) Brillouin function 

C Curie constant 

CD3OD deuterated methanol 

CTIST charge-transfer induced spin transition 

CV cyclic voltammetry 

D2O deuterated water 

DCM dichloromethane 

DMF N,N’-dimethylformamide 

EA elemental analysis 

EPR electron paramagnetic resonance 

EtOH ethanol 

ge electronic g-factor (= 2.00232) 

HS high spin 

IR infrared (spectroscopy) 

LBNL Lawrence Berkeley National Laboratory 

LIESST light-induced excited spin state trapping 
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LS low spin 

m magnetic (dipole) moment 

M magnetization 

Me4Bpy 4,4’,5,5’-tetramethyl-2,2’-bipyridine 

MeCN acetonitrile 

MeOH methanol 

M–L metal–Ligand 

MMCT metal-to-metal charge transfer 

MPMS magnetic property measurement system 

N Avogadro’s number 

OECD Organisation for Economic Co-operation and Development 

OSHA Occupational Safety and Health Administration 

PB Prussian blue 

PBA Prussian blue analog 

PPh3 triphenylphoshpine 

PPN bis(triphenylphosphine)iminium 

SCO spin-crossover 

SMM single molecule magnet 

SQUID superconducting quantum interference device 

T Tesla (magnetic field unit) 

T1/2 transition temperature 

TBA tetrabutylammonium 
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TBP trigonal bipyramid 

Tc Curie temperature 

TEA tetraethylammonium 

TGA thermogravimetric analysis 

THF tetrahydrofuran 

tmbpy 4,4’,5,5’-tetramethyl-2,2’-bipyridine 

tmphen 3,4,7,8-tetramethyl-1,10-phenanthroline 

TN Néel temperature 

δ isomer/chemical shift 

ΔEQ quadrupole splitting 

ΔO octahedral ligand field splitting energy 

θ Weiss constant 

π spin-pairing energy 

χ susceptibility 

χ0
 susceptibility due to Pascal’s constants 

χD diamagnetic susceptibility 

χm molar susceptibility 

χP paramagnetic susceptibility 

χT  susceptibility multiplied by temperature  

 (temperature dependent susceptibility) 
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Figure 3-1. Asymmetric unit of the Co3Os2 TBP. Co3Ru2 is isomorphic 
and not shown. Color scheme: Green is Os, cyan is Co, blue is 
N and white is C. Hydrogen atoms have been omitted for the 
sake of clarity. .................................................................................... 113 

Figure 3-2. Dimeric unit of the Co3M2 TBPs where M = Ru/Os. The 
purple planes highlight the intermolecular interaction between 
these molecules. Interaction referred to as inter-pp. Hydrogen 
atoms are omitted for the sake of clarity. ........................................... 117 

Figure 3-3. View of the Co3M2 TBP (where M = Ru/Os) looking down the 
axial Ru/Os positions. The green planes are symmetrically 
equivalent to one another  just as the blue ones are. The 
intramolecular interactions that occur in these TBPs occur 
between the green plane and the blue plane. Interaction 
referred to as intra-gb. Hydrogen atoms omitted for the sake of 
clarity. ................................................................................................ 118 

Figure 3-4. View of the Zn3Os2 TBP stacking in a dimeric unit. The purple 
and yellow planes highlight the rings within the tmphen ligands 
that are involved in the intermolecular π-π stacking interactions 
(inter-pp and inter-py). Color code: Zn is Yellow, Os is green, C 
is white and N is blue. Hydrogen atoms omitted for clarity. The 
pink tmphen ligand is coordinated to a Zn(3) center and the 
cyan tmphen ligand is its symmetrically equivalent (due to 
inversion) tmphen ligand coordinated to the Zn(3) center on the 
neighboring TBP. These two ligands are the ones involved in 
the π-π stacking interactions. ............................................................ 122 

Figure 3-5. View of the Zn3Os2 TBP looking down the axial Os positions. 
The teal colored planes portray the intra-tt intramolecular 
interaction and the green planes depict the intra-gg 
intramolecular interaction. There is no intramolecular 
interaction between the tmphen ligands on the Zn(1) and Zn(3) 
centers, as indicated by the red arrow marked out. Hydrogen 
atoms have been omitted for clarity. .................................................. 123 

Figure 3-6. Asymmetric unit of Mn2Ru2. Thermal ellipsoids at 50% 
probability level.  Hydrogen bonds are represented with dashed 
lines. Color scheme: Mn is pink, Ru is purple, N is blue, C is 
grey, O is red and H is white. Looking down the a-axis, 
approximately. ................................................................................... 125 

Figure 3-7. Packing diagram of Mn2Ru2 looking down the a-axis. 
Hydrogen atoms are omitted for the sake of clarity. Color 
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the intermolecular π-π stacking interactions between 
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highlight the rings within the tmphen ligands that have the 
intermolecular interactions. Color code: Fe is green, Ru is 
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Figure 4-3. View of the Fe3Ru2 TBP looking down the apical 
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Figure 4-4. Asymmetric unit of the solvated Fe3Ru2 TBP (7a) at 20 K. 
Pink circles highlight the disordered tmphen and MeCN 

file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488359
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488359
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488360
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488360
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488360
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488361
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488361
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488362
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488362
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488362
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488363
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488363
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488364
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488365
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488365
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488366
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488367
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488368
file:///C:/Research/Codi's%20Project/Dissertation%20Items/Dissertation%20Corrections.docx%23_Toc458488368


 

xxi 

 

molecules within the crystal. Color code: Fe is green, Ru is 
violet, C is gray, N is blue and O is red. Oxygen atoms were 
refined without hydrogen in order to obtain convergence of the 
structure. Hydrogen from all other atoms have been omitted for 
the sake of clarity. .............................................................................. 165 

Figure 4-5. Simple packing diagram of the solvated Fe3Ru2 TBP (7a). 
Dimeric units of the TBPs are colored using the same color 
(three dimeric units shown – green, yellow and cyan). Two 
individual TBP molecules shown using the following color 
scheme: Fe is green, Ru is violet, C is gray, N is blue and O is 
red. Oxygen atoms were refined without hydrogen in order to 
obtain convergence of the structure. Hydrogen from all other 
atoms have been omitted for the sake of clarity................................. 166 

Figure 4-6. Packing diagram of the 24 hour evacuated Fe3Ru2 TBP. 
Color code: Fe is green, Ru is violet, C is gray, N is blue and O 
is red. Oxygen atoms were refined without hydrogen in order to 
obtain convergence of the structure. Hydrogen from all other 
atoms have been omitted for the sake of clarity................................. 174 

Figure 4-7. The asymmetric unit of the Fe3Ru2 TBP left in a humid 
environment for a day. The pink circle highlights the hydrogen 
bond to a terminal cyanide ligand. Color code: Fe is green, Ru 
is violet, C is gray, N is blue and O is red. The dashed lines 
represent hydrogen bonds. ................................................................ 180 

Figure 4-8. Dimeric unit of 7e at 50 K. The orange and yellow tmphen 
ligands are on opposite Fe(3) centers involved in π-π stacking. 
Water forms a hydrogen bonding network with a cyanide ligand 
on the Ru(2) center. Color code: Fe is green, Ru is violet, C is 
gray, N is blue and O is red. The orange and yellow tmphen 
ligands are the ones involved in the intermolecular interactions 
in the dimeric unit. The dashed lines represent the hydrogen 
bonds. ................................................................................................ 181 

Figure 4-9. Packing diagram of 7e looking down the b-axis. Color code: 
Fe is green, Ru is violet, C is gray, N is blue and O is red. The 
dashed lines represent the hydrogen bonds. ..................................... 182 

Figure 4-10. View of the humid Fe3Ru2 TBP (7e) at 20 K stacking in a 

dimeric unit due to the intermolecular π-π stacking interactions 
between neighboring TBP molecules. The purple and yellow 
planes highlight the rings within the tmphen ligands that are 
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common between all of the structures discussed. The maroon 
plane highlights the additional interaction found only in this 
solvation state at this temperature. Color code: Fe is green, Ru 
is violet, C is gray and N is blue. Hydrogen and solvent have 
been omitted for the sake of clarity. ................................................... 183 

Figure 4-11. Graph of average Fe–N bond lengths for all temperatures 
of 7a (blue markers and lines), 7d (green markers) and 7e 
(orange markers and lines). The triangles represent the Fe(1) 
centers, the circles represent the Fe(2) centers and the squares 
represent the Fe(3) centers for each compound. ............................... 187 

Figure 4-12. Temperature-dependent susceptibility data for the Fe3Ru2 
TBP measured under MeCN (7a). The inset is the reduced 
magnetization data. ........................................................................... 192 

Figure 4-13. Temperature dependence of χT for the solvated (7a – dark 
blue circles) and filtered (7b – light blue circles) Fe3Ru2 TBPs. 
This filtered sample is easily recognized as it is measured up 
to 350 K. The inset is the reduced magnetization for the filtered 
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Figure 4-14. Temperature dependent susceptibility of the Fe3Ru2 TBP 
put under vacuum for three hours. Inset: reduced 
magnetization data for the sample. .................................................... 197 

Figure 4-15. Temperature dependent χT curve for the Fe3Ru2 TBP (7d) 
exposed to vacuum for 24 hours prior to measurement. Inset: 
reduced magnetization data for the compound. ................................. 198 

Figure 4-16. Temperature dependent susceptibility of the water-
containing Fe3Ru2 TBP (7e). The reduced magnetization for 
this humid sample can be found in the inset. ..................................... 200 

Figure 4-17. A comparison of spin-transition curves exhibited in the 
temperature dependent χT data of Fe3Ru2 TBPs with different 
levels of solvation. ............................................................................. 202 

Figure 4-18. 57Fe Mössbauer data for the solvated crystals of Fe3Ru2 
(7a) at 150 K (a) and 4.2 K (b). Spectra were obtained without 
an applied field. Orange line is the simulation using the 
parameters in Table 4-17. Percentages of iron used in 
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Figure 4-19. 57Fe Mössbauer spectra for the filtered sample (7b) at 
150 K (a) and 4.2 K (b). Measurements done in zero field. The 
red line represents the simulation of the data with the 
parameters in Table 4-18. Total iron percentages are displayed 
on the spectra for convenience. ......................................................... 210 

Figure 4-20. 57Fe Mössbauer spectra for 7c collected at 250 K (a) and 
150 K (b)  in zero field. The orange line is the simulation of the 
data with the parameters in Table 4-19. The iron percentage 
and type is displayed on the figure for convenience. ......................... 213 

Figure 4-21. 57Fe Mössbauer spectra for 7d at room temperature (a), 
150 K (b) and 4.2 K (c) in zero field. The green lines are the 
simulation of the HS FeII doublets, the blue lines are the 
simulations for the LS FeII/HS FeIII doublets and the red lines 
are the overall simulations with all parameters in Table 4-20 for 
each temperature. .............................................................................. 215 

Figure 4-22. 57Fe Mössbauer spectra for 7e at 150 K (a) and 4.2 K (b). 
The lines simulate the parameters in Table 4-21. The red lines 
are for HS FeII, the green lines simulate LS FeIII, the blue lines 
simulate the LS FeII/HS FeIII doublet and the orange line 
represents the overall simulation with the indicated parameters. 
The percentages attributed to each type of iron is displayed on 
the spectra for convenience. .............................................................. 219 

Figure 4-23. Comparison of the 57Fe Mössbauer data at 150 K for all 
solvation states (7a-7e). The HS FeII doublets are circled in 
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Figure 5-1. ChemDraw structures of the bidentate ligands used to make 
the Fe3Co2 TBPs. The number in parenthesis following the 
abbreviation of the name in bold-type font corresponds to the 
number of the compound in which the ligand is used. ....................... 228 

Figure 5-2. Asymmetric unit of the Fe3Co2 TBP looking down the axial 
metal centers. Color scheme: Co is cyan, Fe is green, N is blue 
and C is grey. Hydrogen atoms have been omitted for the sake 
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Figure 5-3. View of the dimeric unit of the Fe3Co2 TBP with tmphen 
ligands (8). The purple and yellow colored planes are the rings 
within the tmphen ligands that are involved in the intermolecular 
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Figure 5-4. Depiction of the intramolecular interactions in the Fe3Co2 
TBP with tmphen (8). Arrows indicate the interaction between 
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Figure 5-5. Packing diagram looking down the a-axis for compound 8. 
The colored planes offer perspective and help distinguish the 
packing of the dimeric unit. Color scheme: Co is cyan, Fe is 
green, N is blue and C is grey. Hydrogen atoms have been 
omitted for the sake of clarity. ............................................................ 252 

Figure 5-6. Asymmetric unit of the Fe3Co2 TBP at 100 K with 4dmbpy 
coordinated to the equatorial Fe centers. Color scheme: Co is 
cyan, Fe is green, N is blue and C is grey. Hydrogen atoms 
have been omitted for the sake of clarity. .......................................... 256 

Figure 5-7. View of intermolecular π-π stacking interactions in the 
Fe3Co2 TBP with 4dmbpy (9). The purple and yellow planes 
portray the inter-py interaction. .......................................................... 258 

Figure 5-8. View of the intramolecular interactions in the Fe3Co2 TBP 
with the 4dmbpy ligands. The teal colored planes denote the 
intra-tt interaction and the red colored planes portray the intra-
rr interaction. ...................................................................................... 259 

Figure 5-9. Packing diagram looking down the a-axis for compound 9. 
The colored planes offer perspective and help distinguish the 
packing of the dimeric unit. Color scheme: Co is cyan, Fe is 
green, N is blue and C is grey. Hydrogen atoms have been 
omitted for the sake of clarity. ............................................................ 261 

Figure 5-10. Axial view of the asymmetric unit of the Fe3Co2 TBP with 
5dmbpy  ligands coordinated to the equatorial Fe centers. Color 
scheme: Co is cyan, Fe is green, N is blue and C is grey. 
Hydrogen atoms have been omitted for the sake of clarity. ............... 264 

Figure 5-11. View looking down the axial metal positions of the 
intramolecular interactions occurring in the Fe3Co2 5dmbpy 
TBP (10). The intra-gg interaction is indicated by the green 
planes and the intra-tt interaction is shown with the teal planes. 
This TBP does not exhibit the intra-rr interaction between the 
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CHAPTER I 

INTRODUCTION TO CYANIDE MOLECULAR MAGNETISM AND SPIN-

CROSSOVER BEHAVIOR 

 

Magnetic materials are interesting topics of study for many interdisciplinary 

fields. Magnetism plays a crucial role in biology as well as human technology. For 

example it is known that some animals, especially those that are migratory in 

nature, use the earth’s magnetic field for magnetic homing, or navigation.1-4 The 

detection of a magnetic field by animals (magnetoreception) is rendered possible 

in two different ways: the animal contains magnetic nanoparticles (like in the 

abdomen of a honey bee5) able to respond to the geomagnetic field and/or 

chemical reactions that are influenced by magnetic fields occur within the animal.6 

Magnetoreception has been discovered in bacteria, mollusks, arthropods and in 

major taxonomic groups of vertebrates but not in humans. It is said that a 

cryptochrome (a flavoprotein sensitive to blue light) in the human eye could serve 

this purpose however.7 

Magnetic materials have also been utilized throughout civilization as a way 

for humans to navigate, albeit externally instead of internally as in nature. At the 

turn of the second millennium, the Chinese carved lodestone (magnetite, or 

Fe3O4) into the shape of a spoon, mounted it on a base to align its handle with the 

Earth’s magnetic field and called it a “South Pointer”.  In 1088 Shen Kuo described 

a navigational compass based on a steel needle magnetized in the Earth’s field. 
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Reinvention of this compass in Europe a century later led to the discovery of Africa 

by Cheng Ho in 1433 and the Americas by Christopher Columbus in 1492. It 

wasn’t long until some of the most brilliant minds of the past few centuries began 

to study magnets as a means for more than just their navigational ability and 

discovered the connection between electricity and magnetism. In Denmark in 

1820 Hans-Christian Oersted stumbled across this connection by showing that a 

current-carrying wire produced a field capable of deflecting a compass needle. 

The electromagnetic revolution was launched a few weeks later when André-

Marie Ampère, in Paris, wound wire into a coil and demonstrated that the current-

carrying coil was equivalent to a magnet. In 1821 Michael Faraday discovered 

electromagnetic induction and used a steel magnet, a dish of mercury and a 

current-carrying wire to demonstrate the principle of the electric motor. In 1845 he 

discovered a connection between light and magnetism with the Faraday effect. All 

of this led to the formulation of a unified theory of electricity, magnetism and light 

by James Clerk Maxwell in 1864 which is the foundation of our classical 

understanding of these fields. These impressive discoveries and advancements 

in the early history of human civilization forever changed the world and all of this 

was before the electron was discovered in 1897, a true testament to the belief 

“that fundamental understanding of the science may not be a prerequisite for 

technological progress.”8 Today, technological progress has developed into a 

ubiquitous relationship between technology and magnets, as nearly all 

electronics, motors and generators require magnetic materials. The technological 
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industry is not alone in the utilization of magnetic materials, as the cosmetics, 

electronics, energy production, health and transportation industries (just to name 

a few) all use magnets as well. These latter industries rely on permanent magnets 

as they have become the basis of many devices in modern life.  

Currently, there are four main types of permanent magnets commonly 

used: NdFeB and SmCo which are rare earth magnets used in motors, 

automobiles, telephones, monitors, audio systems, credit cards, imaging devices, 

etc and AlNiCo and ferrite which are cheaper, more brittle magnets that are used 

in many household products, DC motors, MRI machines, tools, etc.9 The global 

permanent magnet industry is dominated by ferrite and AlNiCo as their raw 

materials are cheaper which leads to lower manufacturing costs. The magnetic 

materials market overall is expected to grow from a $13.4 billion industry (2015) 

to a $96 billion industry in 2020 with the growth being driven by the automotive 

industry, the modernization of infrastructure, and the development of innovative 

technologies.10 

 

Basic Magnetic Principles 

 As amply demonstrated by the aforementioned discussion, magnetic 

materials play a crucial role in modern society and the advancement of various 

technologies. As such, a basic understanding of magnetism is a fundamental 

exercise in being educated as a scientist. A brief introduction of some pertinent 

concepts and equations necessary to understand the research presented herein 
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will be given. 

 Magnetism arises from two sources: electric current and magnetic 

moments of elementary particles, the latter of which will be the focus of this 

discussion. Magnetic moments result from intrinsic properties of the spin and 

electric charge of the particles. Due to the fact that magnetic moments of protons 

are thousands of times smaller than moments of electrons, they are considered 

negligible in the discussion of magnetization of materials. The electron is a 

charged particle that has both spin and orbital angular momentum. As the charged 

electron rotates due to these motions, it creates a magnetic dipole with magnetic 

poles of equal magnitude that are opposite in polarity, akin to a small bar magnet 

that has north and south poles. In simplest terms, this magnetic dipole moment, 

m,  can be quantized with a value equal to: 

 

 

 m = g
-e

2me

L = -gμ
B

L

ℏ
 Equation 1-1 

 

 

where g is a dimensionless quantity that relates the observed magnetic moment 

to its angular momentum and a unit of magnetic moment (like the Bohr magneton, 

μB, 9.27 x 10-24 J·T-1), e is the charge of an electron (1.6 x 10-19
 C), me is the 

electron mass (9.109 x 10-31 AMU), L corresponds to angular momentum (due to 

spin and/or orbital contributions) and ℏ is Planck’s constant (1.054 x 10-34 J/s). 
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This value tends to reach unity when orbital angular momentum is ignored and ge 

≈ 2. When orbital contribution can be ignored, or any other interactions, the 

effective magnetic moment has a magnitude dependent upon the spin, S: 

 

 

 meff = g
e
S(S+1)μ

B
2  Equation 1-2 

 

 

Usually, materials have many magnetic moments and the magnetic moment per 

volume of sample is known as magnetization, M. Magnetization is proportional to 

an applied magnetic field (H) as expressed by: 

 

 

 χ
m = 

M
H⁄  Equation 1-3 

 

 

where χm is the molar susceptibility which indicates how responsive a material is 

to an applied magnetic field and χT (the susceptibility multiplied by temperature) 

is the value most often used in magnetic analysis. *Note: Any discussion of χ or 

χT in this dissertation refers to χm or χmT.* Equation 1-3 is valid when large fields 

are applied or at low temperatures. When a magnetic field (H) is applied to the 

molecules, the magnetization can either be attracted to the field as is the case in 
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paramagnetic materials (those having unpaired electrons) or repelled by the field 

as is the case with diamagnetic materials (those having no unpaired electrons).  

Diamagnetism is present in all molecules as it is intrinsic to all atoms and 

bonds but it is a minor effect in the scheme of things as it is much smaller than 

the paramagnetic form of magnetism. As it still contributes to the overall 

susceptibility of the material, it must be taken into account and corrected for so 

that the true paramagnetic susceptibility of the molecules can be obtained. This 

can be done using: 

 

 

 χ = χD + χP Equation 1-4 

 

 

where χD and χP represent the diamagnetic and paramagnetic susceptibilities, 

respectively. The former is negative and repelled by a field while the latter is 

positive and attracted by a field. The diamagnetic contribution is independent of 

temperature and applied field and includes diamagnetism that is intrinsic to the 

atoms and bonds within the material as well as any contribution to the 

susceptibility from solely diamagnetic molecules (ie: solvent). The intrinsic 

contribution can be calculated from known values called Pascal’s constants 

(usually denoted as χ0). A very nice paper from Gordon Bain and John Berry in 

the Journal of Education explains how to calculate these constants.11 



 

7 

 

Paramagnetism encompasses different behaviors: paramagnetism, 

ferromagnetism, antiferromagnetism and ferrimagnetism. When the magnetic 

moments are considered magnetically dilute, in other words there is no interaction 

between them, a material is considered to be paramagnetic throughout all 

temperatures. When a field is applied, magnetic moments tend to orient 

themselves toward the same direction of the magnetic field. However, in 

paramagnetic materials, the thermal energy is sufficient to lead to effective 

random orientations of the magnetic moments. What ensues is a magnetization 

that has an inverse dependency on temperature, known as the Curie law: 

 

 

 χ
m

 = C
T

⁄  Equation 1-5 

   

   

 C = 
NAm2

3kB

 = 
NA

3kB

g
e
2S(S+1)μ

B
2  Equation 1-6 

   

   

 χ
m

T = C ≈ 
g2S(S+1)

8
 Equation 1-7 

 

 

where C is the Curie constant and is characteristic of the atomic or molecular 

species concerned, NA is Avogadro’s number and kB is the Boltzmann’s constant 

(1.38 x 10-23 J·K-1). This is the simplest situation in magnetism when first-order 
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angular momentum effects can be neglected and a large separation in energy 

from the ground state to the first excited states exists so that there is no coupling 

between these states. The value of χT can then be calculated by solving for the 

Curie constant (Equation 1-7). Many paramagnetic materials do not obey Curie’s 

law however, because interactions between moments cannot be neglected. When 

there is short or long range interaction between the magnetic moments of 

individual atoms or molecules ferromagnetism, antiferromagnetism or 

ferrimagnetism is usually observed. Like paramagnetic substances, the magnetic 

moments tend to align with a magnetic field but have an additional tendency to 

orient themselves to each other as well due to the intrinsic field generated by each 

moment. In ferromagnetic materials the moments align themselves parallel to 

each other so that the net magnetic response is greater than in a paramagnet 

below its Curie temperature, Tc, which is the temperature at which the material 

loses its permanent magnetic properties and thermal energy causes the magnetic 

moments to revert to a state of disorder. Below the Tc, the material retains its 

magnetization once the applied field is removed. Antiferromagnetic materials are 

similar to ferromagnetic materials except that the moments align antiparallel to 

one another below the Néel ordering temperature, TN, resulting in a zero net 

magnetization. Ferrimagnetic behavior occurs from antiferromagnetic interactions 

of unequal magnitudes of the moments which results in a net magnetic moment 

that is retained below Tc once the applied magnetic field is removed. Most ferrites 

(such as magnetite) exhibit ferrimagnetic behavior. Figure 1- illustrates how the 
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magnetic moments align for each of these paramagnetic behaviors. In 1907, P. 

Weiss had postulated the existence of these internal interactions between 

localized moments, which he termed a “molecular field”, and revised the Curie law 

to explain the temperature dependence of the susceptibility exhibited by most 

paramagnetic materials to what is known as the Curie-Weiss law, given by: 

 

 

 χ = 
C

T - θ
 Equation 1-8 

 

 

where θ indicates the strength and type of interaction and is known as the Weiss 

constant or Weiss temperature. Paramagnetic materials that strictly obey Curie’s 

law have a θ = 0 while ferromagnetic materials have a positive θ and ferri- and 

antiferromagnetic materials have a negative θ. Figure 1-2 is a schematic of the 

susceptibility (top) and inverse susceptibility (bottom) versus temperature for 

paramagnetic, ferromagnetic and antiferromagnetic materials. The χ vs T plot 

shows the expected behavior in χ above and below the spontaneous ordering that 

occurs at Tc for ferromagnetic materials or TN for antiferromagnetic materials in 

comparison to a paramagnetic material. The χ-1 versus temperature plot (bottom 

of Figure 1-2) shows the expected response of the inverse susceptibility as a 

function of temperature for the different paramagnetic behaviors. The x-intercept 

of a linear fitting of the high temperature region where the material mostly obeys 
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the Curie law by acting as a paramagnet with no internal molecular interaction 

with neighboring moments gives the Weiss constants. Note the negative intercept 

of the fit line for an antiferromagnetic material that results in a negative Weiss 

constant. Ferrimagnetic materials behave similarly to ferromagnetic materials in 

these representations. As temperature dependent susceptibility (χT) is commonly 

plotted for magnetic materials, Figure 1-3 illustrates how the magnetic moments 

for these different paramagnetic behaviors respond to an applied field as a 

function of temperature. 

 
 

Figure 1-1. Illustration of how the magnetic moments align 
in paramagnetic (random), antiferromagnetic (antiparallel), 
ferromagnetic (parallel) and ferrimagnetic (antiparallel with 
unequal magnitudes) materials. 
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Figure 1-2. Representation of the expected behavior of the 
susceptibility (top) and inverse susceptibility (bottom) of 
paramagnetic (green), ferromagnetic (blue) and 
antiferromagnetic (red) materials when plotted as a function of 
temperature. 



 

12 

 

 

 

 Until now, compounds with thermally isolated ground states and void of 

orbital contributions have been considered. When considering a diamagnetic 

compound, the expected susceptibility in this case is zero. However, Van Vleck 

formulated that a paramagnetic contribution that is independent of temperature 

can arise if the ground state is mixed into excited states when a field is applied if 

the excited states are close in energy to the ground state. This contribution is 

known as temperature-independent paramagnetism (TIP) and like diamagnetism, 

is a property of all molecules. TIP is usually on the same order of magnitude as 

Figure 1-3. Schematic of the behavior of the χT vs 
temperature curves for paramagnetic (green), ferromagnetic 
(blue), antiferromagnetic (red) and ferrimagnetic (purple) 
materials. 
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diamagnetism (10-6), but of opposite sign and is not restricted to materials with a 

diamagnetic ground state. TIP also occurs in paramagnetic materials when a 

magnetic ground state couples to non-thermally populated excited states. 

Thus far, the classical magnetism discussed has been in the limit of 

considering angular momentum that arises from the spin of the electron while 

neglecting any orbital angular momentum. Often, the use of spin-only values 

(especially when considering some 3d metals) is a good approximation for most 

materials. However, orbital angular momentum cannot be ignored for some metal 

ions (particularly lanthanides), as the orbital momentum of the electrons is not 

quenched. This results in deviations of the χT values from the expected spin-only 

ones. These differences are expressed in the magnitude of the g-factor in 

Equation 1-7. An anisotropic value of g that deviates from the isotropic, spin-only 

ge = 2.00232 is a direct indication of orbital angular contributions. Typically, 

transition metals with less than five electrons will have g values less than 2 while 

transition metals with more than 5 electrons typically have g values greater than 

2. 

As mentioned before, the susceptibility relates the magnetization with the 

applied field, as long as H/kBT ≪ 1. In magnetism, to determine the electronic 

ground state of a compound experimentally, a sample is measured at the lowest 

temperature possible (usually 1.8 K) to prevent the thermal population of excited 

states between fields of 0 – 7 Tesla (T). The molar magnetization can be 

calculated with the help of the Brillouin function: 
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 M = NAgμBSBs(y) Equation 1-9 

   

   

 y =
gμ

B
SH

kBT
 Equation 1-10 

   

   

 Bs(y) = 
2S+1

2S
cot (

2S+1

2S
y) – 

1

2S
cot (

1

2S
y) Equation 1-11 

 

 

where Bs(y) is the Brillouin function (Equation 1-11). When H/kBT is small the Curie 

law holds and χ = M/H. However, when H/kBT becomes large (like it does during 

these experimental measurements as the field is increased while the temperature 

remains constant), Bs(y) tends to unity and M tends to saturate at the Ms value: 

 

 

 Ms = NAgμBS Equation 1-12 

 

 

In other words, assuming an isotropic g-factor, if there is one unpaired electron in 

the ground state, a saturation of the magnetization occurs near 1 μB. If there are 

two unpaired electrons in the ground state, then the magnetization occurs near 2 

μB etc... Figure 1-4 shows a plot depicting magnetization at 1.8 K that follows a 
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Brillouin function with an isotropic g-factor for S = 1∕2, S = 1 and S = 3∕2 ground 

states. Deviations from this curve can be due to several factors, the simplest of 

which is the population of low lying excited states and dipolar interactions as well 

as anisotropic effects. For a more in-depth explanation of the basic magnetic 

concepts presented above as well as to gain a more comprehensive knowledge 

of magnetism, refer to several books cited here.8,12-16  

 

 

 

  

Figure 1-4. Theoretical magnetization curves (in Bohr magnetons) at 1.8 K for 
ground states of S = ½, S = 1 and S = 3∕2 systems that follow a Brillouin function. 
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Molecular Magnetism 

The previously discussed applications rely on classical, or bulk magnets 

that involve metals such as Fe, Co, Ni, rare earths (or a combination thereof) or 

metal oxides such as magnetite, Fe3O4. These metallic and ionic materials remain 

magnetized above room temperature after the magnetizing field has been 

removed, hence their status as permanent magnets. They are usually prepared 

by a method called Powder Metallurgy which involves pulverizing the materials 

into a fine powder, aligning the particles just before compacting them and then 

heating the powder in an induction melting furnace at high temperatures to cause 

densification through liquid phase sintering. In the case of the SmCo and Nd 

magnets, the pulverized powder must be protected from oxygen as it is chemically 

reactive and capable of igniting spontaneously in air.17  

Since 1955, data storage devices have relied on a medium of iron oxide 

particles coated on a platter commonly made of aluminum or glass. Currently, they 

rely on a thin film of magnetic material made of a Co alloy. These materials are 

reaching a density limit and as technology advances, modern society requires 

high-density data storage devices capable of storing the massive amounts of data. 

To overcome these limitations a new approach to the design of low-dimensional 

magnetic materials that retain their magnetization above room temperature is 

required. This approach has helped usher in the transitioning from 

magnetochemistry (referred to by Carlin12 as a branch of chemistry which uses 

physical measurements to obtain structural information on simple paramagnetic 
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systems with the use of magnetic techniques) to the recent field of study (early 

1980s) in molecular magnetism (referred to by Kahn15 as an interdisciplinary field 

driven by the collaboration of chemists and physicists to design, synthesize and 

model phenomenological properties of magnetic materials of increasing 

complexity).16 The first step towards the realization of room temperature ordered 

materials in molecular magnetism was achieved by Kahn’s and Verdaguer’s 

groups when they reported the first molecular ferrimagnet based on CuII-MnII 

derivatives.18 In 1991, Miller’s group made the first major breakthrough in 

preparing high temperature (Tc = 350 K) magnets with the first room temperature 

ferrimagnet based on VII with TCNE (TCNE = tetracyanoethylene) being 

isolated.19  

Other than the obvious advantage of lower density in molecular over solid 

state materials, other advantages include easier synthetic processes as they are 

generally prepared at lower temperatures, they have higher solubility for 

processing into films or nanostructures and allow for easier synthetic tuning of 

their intrinsic properties. Discrete molecules are also advantageous because their 

size allows for a simplification of theoretical models which can guide synthetic 

chemists in the preparation of high temperature magnets. 

Molecular magnetism has also been shown to have potential applications 

in spintronics. Since the invention of the silicon-based integrated circuits in 1959, 

the demand to miniaturize electronic devices has grown exponentially as well as 

the demand for smaller, high-density data storage devices. In 1965 Gordon Moore 
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made a 10-year prediction known as Moore’s Law, that states the number of 

transistors in an integrated circuit should double every two years20 This law has 

remained relevant and the minimum size of the transistor has decreased from 

10,000 nm in 1971 with the Intel C4004 microprocessor to 14 nm in their current 

technology as of 2016.21 However, the technological and physical limitations of 

the materials currently used in these devices are rapidly approaching.22-24 

Although main-stream devices based on molecular materials have not been 

realized yet, the field has demonstrated that molecular magnetic materials hold 

promise for the advancement of technology due to behaving as high temperature 

magnets,25-28 molecular switches,29-31 single molecule magnets (SMMs)32-34 and 

molecular logic gates,35,36 to name a few. These findings have led to additional 

goals for the field of molecular magnetism of preparing materials that exhibit other 

interesting magnetic and electrical phenomena that are not observed in classical 

magnets, such as spin-crossover (SCO), charge-transfer-induced-spin-transition 

(CTIST), photomagnetism and multifunctionality.37 

 

Molecular Bistability 

 The underlying principle behind molecular magnetism for applications such 

as information storage and processing is molecular bistability which is the ability 

of a molecule to exhibit two stable states within a range of external perturbations 

(ie: temperature, pressure, light, magnetic field, etc…). In this respect, the 

discovery of the first SMM in 1991 (fully characterized and defined in 1993), 
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[Mn12O12(O2CCH3)16(H2O)4]·4H2O·2CH3CO2H,38-40 brought a surge of renewed 

focus to the field of molecular magnetism due to the ability of SMMs to exhibit 

magnetic hysteresis of a molecular origin below a certain blocking temperature 

without requiring long-range ordering of the magnetic moments, unlike 

conventional and molecule-based magnets.41 Currently, the highest blocking 

temperature achieved for SMMs is 20 K for a mononuclear DyIII molecule in a 

trigonal bipyramidal geometry, [Dy(Cy3PO)2(H2O)5]Br3·2(Cy3PO)·2H2O·2EtOH 

(Cy3PO = tricyclohexyl phosphine oxide) and was reported in 2016.42 Previously, 

the record of 14 K was reported for a radical-bridged diterbium complex, 

{[(Me3Si)2N]2(THF)Tb}2(μ η2:η2-N2)-, in 2011.43 Although SMMs remain of great 

interest to the molecular magnetic community due to their interesting properties, 

their potential use in household devices will remain theoretical until the blocking 

temperatures can be increased to more practical temperatures. This is where 

materials that exhibit other forms of bistability may have an advantage over SMMs 

for data storage and spintronics as their switching behavior can occur closer to 

room temperature.44 

 

Spin-crossover (SCO) 

 SCO is a thriving area of study in molecular magnetism with many 

subcategories of interest.45-48 Active areas of SCO research include studies that 

aim to tune the transition temperature,49,50 prepare guest-dependent SCO,51-54 

pressure-induced SCO55-57 and multi-functional SCO compounds.58-60 Much of the 



 

20 

 

focus in SCO revolves around preparing compounds that exhibit wide61-63 and 

multi-step hysteresis loops64 that span room temperature because these materials 

have the potential to be used in memory devices. Many books65-69 and reviews70-

77 have been written about SCO since its discovery in 1931;78 a testament to the 

importance of this phenomenon.65,66 The design, rather than trial and error, of 

SCO materials that exhibit useful technological properties remains a challenge for 

researchers as SCO behavior is extremely sensitive to subtle changes. Prediction 

of SCO behavior through experimental and theoretical studies is a major goal in 

the field of SCO. Much of the work presented in this dissertation focuses on SCO 

and how chemical and physical perturbations affect the transition behavior in 

pentanuclear, cyanometallate-containing compounds. 

 SCO is a reversible electronic transition between a low-spin (LS) electronic 

state and a high-spin (HS) electronic state due to application of an external 

stimulus such as heat, light and/or pressure. SCO typically occurs in 3d transition 

metals in an octahedral coordination environment with 4 to 7 electrons and is 

dependent upon the interplay between the strength of the ligand field (Δ) and the 

spin pairing energy (π) of the electrons. If the strength of the ligand field is less 

than the pairing energy (Δ ≪ π), then it is energetically favorable to comply with 

Hund’s rule and the configuration with the most unpaired electrons will result, 

known as the HS state. If the strength of the ligand field is more than the pairing 

energy (Δ ≫ π), then it is energetically favorable for the electrons to pair so that 
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the least number of unpaired electrons results, known as the LS state. Figure 1-5 

illustrates the interplay between Δ and π and Figure 1-6 illustrates the change in 

electronic configuration for the SCO in an octahedral FeII metal ion. When Δ and 

π have similar values that allow for SCO, the difference in energy between the LS 

and HS states is of the order of magnitude of the thermal energy (kBT). During the 

transition, the pairing energy changes very little unlike the splitting energy of the 

ligand field. The strength of the ligand field varies for several reasons with the 

main one being the identity of the ligands. The spectrochemical series gives 

insight into the strength of the ligand field and whether or not SCO behavior is 

expected. With regards to some of the main ligands in the series: 
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Figure 1-5. Schematic of the interplay between ligand field strength (Δ) and spin-
pairing energy (π) on the spin state of an octahedral metal ion. 
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Ligand field strength also increases with increasing oxidation number (~700 – 

3000 cm-1 for divalent species and 1200 – 3500 cm-1 for trivalent species) and 

upon moving down a group in the periodic table (~50% from 3d to 4d and ~25% 

from 4d to 5d metals).79 The latter fact, in conjunction with the fact that spin pairing 

energies decrease for 4d and 5d metals is why SCO is not observed for 4d and 

5d transition metal complexes. The former fact in addition to the requirement of 

needing a d4 to d7 electronic configuration is why SCO is only observed in divalent 

and trivalent metal centers. The most studied metal ion in SCO is FeII as it not 

only has the most favorable ligand field for SCO when surrounded by a nitrogen 

coordination environment, but it also undergoes the most drastic change in 

electronic configuration. The LS FeII (t2g
6 → 1A1g, S = 0) is diamagnetic and acts 

as an “off” state whereas the HS  FeII (t2g
4eg

2 → 5T2g, S = 2) is paramagnetic and 

acts as an “on” state, in terms of technological applications. Other metals that 

Figure 1-6. Depiction of the electron configuration for the LS and HS states of an 
FeII metal center in an octahedral coordination environment that undergoes SCO 
upon an external stimulus. 
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commonly exhibit SCO include FeIII and CoII. To a lesser extent CrII, MnII and MnIII 

compounds have shown thermal SCO in a few cases but most exist in the HS 

state.80 Even fewer examples of SCO exist in CoIII complexes as only one type of 

CoIII complex based on two tridentate oxygen tripod ligands has been shown to 

be capable of SCO.81 Other CoIII compounds exist solely as either LS or HS 

depending on the ligands’ position in the spectrochemical series. 

 

SCO Characterization Methods 

 Some of the physical methods that can be utilized to characterize SCO 

species are: SQUID magnetometry due to the change in magnetic moment, X-ray 

crystallography to monitor the change in M–L bond lengths, 57Fe Mössbauer to 

probe the spin and oxidation states of Fe-containing compounds, differential 

scanning calorimetry (DSC) due to the evolution of heat, electronic absorption 

spectroscopy due to color changes and EPR spectroscopy. The dielectric 

constant and electrical resistance of the compound is also affected by the LS ↔ 

HS transition in SCO materials. For the sake of brevity, only the techniques 

discussed in the chapters of this dissertation will be discussed in detail. There are 

several reviews and books already referenced that lend insight into the myriad of 

changes that occur at the metal center with SCO and the techniques used to probe 

these changes. 
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SQUID Magnetometry 

 Several changes to the metal center occur as a result of SCO and are 

monitored by different characterization methods. Due to the changes in the 

number of unpaired electrons, the most common technique utilized to monitor 

thermal SCO behavior is magnetometry and the use of a Superconducting 

Quantum Interference Device (SQUID). A SQUID contained within a magnetic 

property measurement system (MPMS) allows for the measurement of magnetic 

materials between 1.8 – 400 K (most common temperature range) and in applied 

fields between 0 – 7 Tesla. SCO behavior is generally categorized by the type of 

cooperativity as depicted in Figure 1-7, ie: (a) gradual, (b) abrupt, (c) with 

hysteresis, (d) step-wise or multi-step and (e) incomplete.68 The plots are given in 

terms of the molar fractions of HS molecules γHS as a function of temperature. The 

point where half of the molecule exists in the LS and HS states is marked by T1/2 

and is known as the transition temperature. More commonly, SCO behavior is 

represented with χT vs T plots as the expected value of χT can be estimated 

according to Equation 1-7. The shapes of the χT vs T plots are similar to the 

curves shown in Figure 1-7 for the same degree of cooperativity. Extrapolating 

molar fractions can be difficult for gradual or incomplete SCO so the data are 

usually displayed at χT vs T. 
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X-ray Crystallography 

Another common technique used to monitor the SCO event in compounds 

is temperature dependent X-ray crystallography due to the characteristic 

lengthening of the M–L bonds as the metal transitions from the LS to the HS state 

which results in an expansion of the octahedral coordination sphere as depicted 

in Figure 1-8. These changes are expected as there is a greater population of 

electrons in the antibonding eg* orbitals when in the HS state. This effect is more 

Figure 1-7. Types of SCO behavior categorized in terms of cooperativity: (a) 
gradual, (b) abrupt, (c) with hysteresis, (d) step-wise or muti-step and (e) 
incomplete. Plots are given as molar fractions of HS molecules γHS as a function 
of temperature. Reprinted with permission of Springer; copyright 2004, Springer 
Berlin Heidelberg. Adapted from reference 85. 
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apparent for the FeII compounds coordinated to N in an octahedral environment 

(ΔS = 2). The LS state has FeII–N bond lengths (~1.8 – 2.0 Å) that are usually 

~10% shorter than in the HS state (~2.0 – 2.2 Å) which typically results in a change 

of bond lengths in the range of  ~0.14 - 0.24 Å.79,82 The typical range is ~0.11 – 

0.15 Å for FeIII (ΔS = 2) and ~0.09 – 1.1 Å for CoII (ΔS = 1).79 This effect can be 

seen with the diagram in Figure 1-9. At low temperatures the metal center is in 

the LS state, but increasing temperature leads to the population of excited 

vibrational levels up to the crossing point of the LS and HS energy curves where 

the geometry of both metal states are the same. The enthalpy gap that exists 

between the stronger M–L bonds (shorter) in the LS state and the weaker M–L 

bonds (longer) in the HS form must be overcome by the entropy of the system 

(ΔE < TΔS) for SCO to occur.79 
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Figure 1-8. Depiction of the change in the octahedral 
coordination sphere of an FeII metal center upon 
SCO. The compound in the LS state is usually more 
intensely colored as compared to the HS state. 
Reproduced from reference 77; published by The 
Royal Society of Chemistry. 
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Figure 1-9. Depiction of vibrational components within 
the energy curves for the LS and HS states in a SCO 
system.  
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57Fe Mössbauer Spectroscopy 

 57Fe Mössbauer spectroscopy is a powerful tool for characterizing 

compounds containing iron and is particularly useful when there are different spin 

or oxidation states of Fe present within one compound. Ultimately, electron 

density at the nucleus differs for the LS and HS states of Fe and two of the most 

important parameters derived from a Mössbauer spectrum (isomer shift, δ, and 

quadrupole splitting, ΔEQ) differ significantly between the LS and HS states of 

FeII.83 The isomer shift results from electric monopole interactions (Coulomb 

interactions) due to differences in the s-electron environment between the source 

(usually 57Co embedded in Rh metal) and the absorber (sample being 

measured).84 The shift in the resonance energy of the transition that is produced 

can be either positive or negative and is quoted relative to a known absorber, like 

alpha-iron at room temperature. The isomer shift is particularly useful for 

determining oxidation states due to the different s-electron density at the nucleus 

because of the screening effects of the d-electrons.85 For example, FeII has less 

s-electron density at the nucleus which results in a larger positive isomer shift than 

FeIII ions.83 Figure 1-10 depicts an isomer shift between the source and absorber. 

Electric quadrupole interaction results if at least one of the nuclear states involved   
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has a non-zero quadrupole moment, (a non-symmetric charge distribution as is 

the case for nuclei with spin I > ½ as in the case of 57Fe), and if the electric field 

at the nucleus is inhomogeneous (non-cubic valence electron distribution).86 

Electric quadrupole interaction in the absence of magnetic dipole interaction (no 

magnetic field present) produces a doublet where the separation of the two 

resonance lines are equal to the energy of the quadrupole interaction (ΔEQ) which 

is proportional to the electric field gradient and the quadrupole moment. The 

splitting gives useful information about the oxidation state, spin state and local 

symmetry of the atom.87 Figure 1-10 shows this effect for the I = 3∕2 excited state 

of 57Fe and the splitting of the resonance that is observed in the spectrum. Figure 

1-11 illustrates isomer shift and quadrupole splitting parameters as observed in a 

spectrum. 
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Figure 1-10. Schematic of the nuclear energy levels for the source and absorber 
illustrating the isomer shift and quadrupole splitting of the absorber. An example 
of the doublet that occurs due to quadrupole splitting in the absence of a magnetic 
field is shown. The splitting is equivalent to the energy difference between the 
excited mI substates. 
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Vibrational Spectroscopy 

 Upon transition from HS to LS, there is an electron redistribution that occurs 

from the antibonding eg orbitals to the slightly bonding t2g orbitals. Consequently, 

a strengthening of the M–L bonds occurs which results in higher vibrational energy 

in the bond. This can be observed in the vibrational spectrum between ~250 – 

500 cm-1 where the M–L stretching frequencies of transition metals typically 

appear. Reporter ligands, such as CN- (where the N end is coordinated), have 

also been shown to be susceptible to changes in spin state of the metal atom and 

Figure 1-11. Schematic illustrating isomer shift and quadrupole 
splitting parameters for a Mössbauer spectrum. Adapted from lecture 
notes by Phillip Gütlich from the University of Mainz. 
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allow for easier assignment of the spin-state since these peaks appear in an 

uncluttered region of most spectra. As expected, the LS form exhibits an increase 

of the cyanide stretching frequency (~2100 – 2140 cm-1) as compared to the HS 

form (~2060 – 2090 cm-1).77,85 This technique is particularly useful when samples 

are measured as the temperature is varied. This results in intensity changes of 

the vibrational bands associated with the LS and HS species which could allow 

for a spin-transition curve as a function of molar fraction and temperature to be 

derived.88 

 

Influences on SCO Behavior 

 One of the multiple challenges of crystal engineering in the SCO field is 

having a detailed understanding of how the strength and dimensionality of 

intermolecular interactions in a crystal control the phase transition in SCO 

compounds. This is complicated by the fact that generalizations about the 

structure-function relationship can rarely be made due to the many subtle 

interactions that can occur within these compounds and influence the transition 

behavior in different ways. This facet is a testament as to why a phenomenon that 

was discovered over 80 years ago is still intensely studied to this day. 

Fundamental studies are needed to gain a better understanding of the underlying 

factors that influence SCO so compounds that exhibit enhanced properties can 

be rationally designed for the advancement of technology. Discussion of the 

factors that influence SCO will be very limited here as a comprehensive coverage 
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of the topic is not feasible for a dissertation. Specifically, pressure and light effects 

will not be discussed. 

 The most obvious way to influence SCO is by altering the strength of the 

ligand field which can be achieved through ligand exchange and ligand substituent 

effects.88 Ligand substitution is one of the many ways researchers have altered 

SCO behavior. Both steric and electronic effects from ligand substituents have 

been shown to alter or suppress the SCO in many mononuclear FeII compounds 

with substituted bipyridine and phenanthroline ligands. Generally, it appears that 

adding substituents to adjacent positions of the donor atoms results in a steric 

destabilization of the LS state to the point where the singlet state is no longer 

accessible if electron-withdrawing groups are adjacent to the donor atoms. This 

effect was observed for [FeII(phen)3]2+ which does not exhibit SCO until a methyl 

group is incorporated into the 2-position of the phenanthroline ligand. The LS state 

became completely inaccessible, however, upon incorporation of an electron-

withdrawing chloro substituent. Studies that evaluate the addition of substituents 

of the phenanthroline ring in positions further from the donor N atoms show very 

little change in SCO behavior most likely as a result of little to no steric barrier to 

coordination.85 

 Anion,89-91 guest species51,52,54 and solvate effects50,63,92-96 are more subtle 

influences that have been shown to alter SCO behavior. These changes have 

resulted in variations of transition temperature and complete suppression of the 

transition. The effects of these perturbations are not consistent from one system 
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to another though and are not easily predicted. Modification of the transition is 

expected upon replacement of anions, solvent and guest species however as they 

modify the crystal packing geometry and the strength of the intermolecular forces. 

One generalization that is usually made is that incorporation of a hydrogen 

bonding network will increase the transition temperature due to the stabilization of 

the LS state and that cooperativity generally increases as an effective network of 

hydrogen bonding allows for better communication between spin centers 

throughout the lattice. 

 Metal dilution studies have also been shown to influence the cooperativity 

of SCO compounds where an increase in dilution tends to suppress the 

cooperativity of the transition indicating the importance of cooperative elastic 

interactions between spin centers. Usually, the most cooperative spin-transitions 

occur when the structural changes at the molecular level are effectively 

transmitted between spin centers in the bulk material.97 Crystal packing and π-π 

stacking interactions play an important role in this regard.98-100 

 In general, cooperative spin transitions are usually associated with large 

structural changes between LS and HS states of a compound. This is elegantly 

demonstrated by the fact that cooperative transitions are reasonably common for 

FeII compounds, rare in FeIII compounds and relatively unknown for compounds 

containing other metal centers capable of SCO.101 Overall, the backdrop of 

extensive fundamental studies over the course of several decades has led to the 

realization that cooperative interactions between spin centers are of utmost 
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importance for the SCO behavior in solid compounds. Three synthetic strategies 

have been devised to engender and strengthen cooperativity within SCO 

compounds: i) incorporation of hydrogen bonding networks, ii) incorporation of 

moieties capable of π-π stacking interactions and iii) coordination of bridging 

ligands (to increase nuclearity).83 

 

Charge-Transfer-Induced-Spin-Transition (CTIST) 

 CTIST couples an electron transfer with a SCO event and has only recently 

been discovered in materials as a purely metal-based phenomenon. About 30 

years ago, a change in oxidation state of CoII to CoIII due to an electron charge 

transfer between the metal and the complexed radical dbSq (dbSq = 3,5-di-

tertbutylsemiquinonate) was followed by a change in spin state as well. The 

paramagnetic HS CoII ion (S = 3/2) became a diamagnetic LS CoIII ion (S = 0) as 

a function of decreased temperature.102 This phenomenon was classified as a 

CTIST and is the result of the interaction between a radical ligand and the metal 

however. The first purely metal-based CTIST was not known until 1996 when 

Hashimoto and coworkers reported this behavior for a Prussian blue type 

compound, K0.2Co1.4[Fe(CN)6]·6.9H2O.103,104 The behavior was a result of the 

conversion of a diamagnetic LS–CoIII/LS–FeII pair to a HS–CoII/LS–FeII pair 

(illustrated in Figure 1-12). It was found that CTIST in this compound could be 

reversibly triggered with both temperature and light. 

 This finding spurred interest in finding new compounds that could exhibit   
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Figure 1-12. Schematic depiction of the conversion between paramagnetic (top) 
LSFeIII–CN–HSCoII and diamagnetic LSFeII–CN–LSCoIII electronic configurations 
due to CTIST triggered by thermal and/or photoirradiation. 
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this type of switchable redox isomerism and made cyanometallate-containing 

compounds a prime candidate. Since this discovery in 1996, several other Co/Fe 

cyanometallate compounds (both discrete molecules and extended networks) 

have been shown to exhibit this behavior and comprise the majority of research 

in this field.70,105-114 Other metal combinations that have been reported to undergo 

CTIST in cyanometallate-based compounds where the M’ in M/M’ refers to the 

cyanometallate are: Co/Os,115 Fe/Os,116 Co/W117-119 and FeCo/W.120,121 From 

these few compounds that exhibit metal-to-metal charge transfer (MMCT) coupled 

with a spin state transition, it is clear that the CoII/CoIII couple dominates and is by 

far the most prevalent in CTIST compounds. The only other metal to undergo a 

spin-transition concomitantly with a MMCT in cyanometallate-containing 

compounds is FeII/FeIII  

Many of the physical methods discussed for SCO are valid techniques for 

characterizing CTIST compounds as well. The spin and oxidation states of 

compounds can usually be discerned by examining a combination of the crystal 

structures, magnetism, IR and Mössbauer spectra (where applicable) as a 

function of temperature and light irradiation. X-ray crystallography remains a 

useful tool in determining M–L bond lengths which gives insight into the spin state 

of the transition metal. There is no significant change in bond length attributed to 

a change in oxidation state, however. For example, LS FeII has very similar Fe-N 

bond distance as LS FeIII and the same can be said for the HS forms of these 

oxidation states as well. That being said, crystallography alone cannot 
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conclusively determine whether a metal center is undergoing a spin-transition due 

to SCO or a CTIST event. This is where a chemist must reach into their toolbox 

to find another tool that can do the job, such as SQUID magnetometry or 57Fe 

Mössbauer, if applicable. SQUID magnetometry is no different for the 

characterization of CTIST compounds but again, cannot always determine 

whether a SCO or CTIST occurs due to the phenomena having very similar χT 

values in some compounds as a consequence of orbital contributions. 57Fe 

Mössbauer is particularly useful in this regard when Fe is present in the sample 

for reasons discussed earlier. A very useful technique used in deciphering 

oxidation states of cyanometallates is IR spectroscopy because cyanide 

stretching frequencies (νC≡N) are governed by the i) electronegativity, ii) oxidation 

state and iii) coordination number of the complexed metal.122 The sensitivity of the 

νC≡N to oxidation state is primarily derived from the σ-donating and π-accepting 

nature of CN-. Upon increasing the valency of the metal coordinated to CN-, σ-

donation of the CN- increases and the π-backbonding of the metal decreases. The 

increased σ-donation removes electrons from the 5σ orbital of CN- (which is 

weakly anti-bonding) resulting in higher νC≡N. Also, a decrease in backbonding 

corresponds to weaker M–C bonds and a decrease of electrons in the antibonding 

π* orbitals of the CN-. While the M–C bond becomes weaker with higher oxidation 

states, the C≡N bonds become stronger which results in higher νC≡N.123  
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Cyanide Chemistry and Prussian Blue Analogs 

 Prussian blue analogs have been briefly mentioned above as they have 

exhibited many of the magnetic phenomena discussed already but have not been 

discussed in any detail. Historically, the Berlin artist Diesbach had accidentally 

prepared an insoluble dark blue solid during his efforts to prepare a red dye in 

1703 by mixing soluble salts of FeIII and [FeII(CN)6]4-.124,125 This resulted in the first 

coordination compound, FeIII
4[FeII(CN)6]3·14H2O, which came to be known as 

Prussian blue (PB) (Figure 1-13) and was used as a paint pigment initially.126 

Today, Prussian blue (and its analogs) have an extensive list of applications that 

range from technological devices26,27 discussed earlier to MRI contrast agents127 

to the first FDA approved treatment of internal radioactive contamination (Cs or 

Tl) as a countermeasure to “dirty” or radioactive bombs.128-130 

It wasn’t until over 250 years after its first discovery that Bell Labs (1956) 

found PB orders ferromagnetically at a Tc of 5.6 K.131 Finding that the 

paramagnetic FeIII centers participate in magnetic exchange through the 10.28 Å 

diamagnetic –N≡C–FeII–C≡N– bridge ushered in a new era for the study of 

magnetic materials. This study showed that a linear, diamagnetic bridge could 

effectively allow magnetic exchange interactions between metal centers through 

valence delocalization in the ground state between the FeII and FeIII sites.132 

Cyanometallate-containing magnetic materials has been widely studied since 

1956 and several Prussian blue analogs (PBA) have been found to be high 

temperature magnets. A few of these PBAs and their ordering temperatures can 
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be found in Table 1-1. Theorists have studied PBAs also and have made 

predictions about their potential ordering temperatures and exchange interactions 

which can guide synthetic chemists to experimentally realizing a new high 

temperature magnet. These predictions are summarized in Table 1-1. In addition 

to being new high temperature magnets, PBAs have exhibited magnetic bistability 

with magnetic phenomena such as SCO, CTIST and photomagnetic behavior as 

discussed earlier. The rich chemistry exhibited by Prussian blue analogs has been 

an inspiration for chemists in the field of cyanide molecular magnetism in their 

quest for designing discrete molecules that show interesting magnetic behavior. 

 

Figure 1-13. 3D structure of Prussian blue. Color 
scheme: Cyan is FeII, green is FeIII, gray is C, blue is N, 
red is O and white is H. 
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Table 1-1. Experimental and theoretical ordering temperatures reported for PBAs where 
M = free metal ion and M’ = hexacyanometallate. 

Experimental Theoretical 

MM’ Compound Tc (K) Reference MM’ Tc (K) 

VIICrIII KV[Cr(CN)6]·2H2O 376 133 MnIIIVII 480 

VII/VIIICrIII K0.058V[Cr(CN)6]0.79(SO4)0.058 372 134 MoIIIVII 552 

 K0.50V[Cr(CN)6]0.95·1.7H2O 350 134 CrIIIMoII 355 

 V[Cr(CN)6]0.86·2.8H2O 315 27 VIIIVII 344 

 V[Cr(CN)6]0.69(SO4)0.23·3H2O 315 135 CrIIIVII 315 

CrIICrIII [Cr5(CN)12]·10H2O 240 26 CrIIIMoII 185 

MnIIVII (Et4N)0.5Mn1.25[V(CN)5]·2H2O 230 136 MoIIICrII 308 

    MnIIICrII 147 

    CrIIICrII 116 

 

 

Trigonal Bipyramidal Molecules (TBPs) 

 A set of discrete polynuclear molecules with trigonal bipyramidal (TBP) 

geometries have been prepared over the years in the Dunbar laboratories to 

mimic the behavior of PBAs including strong exchange interactions, SCO, CTIST, 

linkage isomerism and photomagnetic behavior (Figure 1-, on right). TBPs have 

been of considerable interest to theorists due to their small size and high 

symmetry which allows for a simplification of calculations.137-142 The general 

formula of TBPs is [MII(tmphen)2]3[M’III(CN)6]2 (hereafter denoted as M3M’2 or MM’; 

tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) with three divalent metal ions 

in the equatorial positions and two trivalent hexacyanometallate ions in the axial, 
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or apical, positions which results in a neutral, pentanuclear molecule with six 

identical exchange interactions. This geometry can engender strong magnetic 

anisotropy as evidenced by the Mn3Mn2 TBP which was the first cyanide molecule 

to exhibit SMM behavior.137,138,143 Among these molecules is also the remarkable 

VII
3MoIII

2 TBP reported in 2014 which holds the record for antiferromagnetic 

coupling in a 3d/4d cyanide-bridged compound (J = -114 cm-1: the previous record 

was -61 cm-1 for a VII
4MoIII molecule).144 Many of the TBPs exhibit thermal or 

photo-induced magnetic bistability as a result of SCO111,145,146 or CTIST.111,116,146-

148 The TBPs that have been reported in the literature by the Dunbar group to 

display these bistable behaviors contain either Fe or Co in the equatorial positions 

and Co, Fe or Os hexacyanometallates in the apical positions. 

 

Figure 1-14. General reaction scheme for preparing TBPs. 
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 Most of the TBP syntheses are conducted by a general procedure of 

preparing the equatorial precursor in situ by mixing a divalent chloride salt with 

two equivalents of 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) in 

acetonitrile and combining this solution in a 1:1 ratio with an acetonitrile solution 

of the hexacyanometallate (Figure 1-). Most TBPs crystallize in the monoclinic 

P21/c space group wherein a dimeric unit of two TBPs form through the π-π 

stacking of symmetry equivalent tmphen ligands. Figure 1-15 is a typical unit cell 

for a TBP in the P21/c space group which highlights the symmetry elements and 

how the TBP forms the dimeric unit. The gray TBP is the asymmetric unit. The 

green lines represent the 21 screw axes, the orange dots represent inversion 

centers and the pink planes represent glide planes. The orange TBP is equivalent 

to the gray one by inversion, as the green is equivalent by a 21 screw rotation and 

the purple one is related by a glide. 
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Figure 1-15. Typical unit cell for TBPs that crystallize in the P21/c space 
group. Colors correspond to symmetry elements within the space group. 
Green represents a 21 screw axis, orange represents inversion and pink 
represents glides. The gray TBP is the asymmetric unit. 



 

45 

 

The study of TBPs by the Dunbar group constitutes the largest body of 

work for a homologous family of cyanide compounds known in the literature (Table 

1-2). The boxes that contain a checkmark are the TBPs that have been reported 

in literature to date. The highlighted boxes are metal combinations that are the 

focus of this dissertation. It is a goal for our group to continue the extensive study 

on TBPs as we strive to prepare other metal combinations guided by theoretical 

predictions. The incorporation of [RuIII(CN)6]3- and [OsIII(CN)6]3- into TBPs along 

with the study of their magnetic behavior is one of the main focuses of the 

research presented here. TBPs offer a great scaffold for fundamental studies of 

the effect of chemical and/or physical perturbations on magnetic behavior. The 

influence of solvation and π-π stacking interactions on the SCO and CTIST events 

in the Fe3Ru2 and Fe3Co2 TBPs is another focus point of the research presented 

here. 
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Table 1-2. Table illustrating the homologous family of TBPs reported by the Dunbar group (denoted with a ). 
Highlighted boxes are the TBPs that are the focus of the work presented in this dissertation. 

  [MIII(CN)6]3- 

  TiIII VIII CrIII MnIII FeIII CoIII MoIII RuIII OsIII 

[M
II
(t

m
p

h
e
n

) 2
]2

-  

TiII          

VII          

CrII          

MnII          

FeII          

CoII          

NiII          

ZnII          

RuII          

OsII          
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CHAPTER II 

STRAIGHTFORWARD SYNTHETIC ROUTES TO PURE 

HEXACYANOMETALLATE ANION SALTS OF TRIVALENT RUTHENIUM 

AND OSMIUM 

 

Background 

 Cyanide chemistry has a very rich history beginning with the synthesis of 

the very first coordination compound Prussian blue FeIII
4[FeII(CN)6]3·xH2O (x = 14-

16) by Dippel and Diesbach in 1703.124 The discovery of magnetic exchange 

occurring in this extended network149 launched later studies aimed at 

incorporating other cyanometallates into molecular magnetic materials. First row 

transition cyanometallates have been widely studied, the most prolific of these 

being based on ferrocyanide, [FeIII(CN)6]3-.150,151 Hexacyanoferrate(III) is easily 

prepared and is well documented to be highly stable.152-155 To date, there are 

relatively few investigations of homoleptic 4d and 5d cyanometallates owing to 

synthetic difficulties and generally lower stabilities. Heavier transition metal 

cyanide building blocks reported are usually seven-, or eight-coordinate owing to 

the tendency of these metals to exist in higher oxidation states which supports the 

presence of additional cyanide ligands. Studies support the presence of increased 

orbital overlap between cyanide ligands and 4d/5d metals due to increasing orbital 

diffuseness which leads to enhanced magnetic exchange interactions as 

compared to 3d transition metals156. In addition to enhanced magnetic exchange, 
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heavier elements have increased anisotropy due to larger spin-orbit coupling 

constants. For example, spin-orbit coupling constants (λ) for Fe, Ru and Os are 

reported as 460 cm-1 for Fe157, 880 and 1180 cm-1 for Ru12,157,158 and 3000 cm-1 

for Os.12,159 Their intrinsic properties of larger, more diffuse orbitals and increased 

anisotropy make 4d and 5d cyanometallates attractive targets for their potential to 

enhance magnetic exchange interactions.160 High yield syntheses of 4d/5d 

congeners of 3d cyanometallates are therefore of high priority in the cyanide 

magnetic community so that families of related compounds can be prepared and 

their properties compared. One of the most appealing groups in the periodic table 

to offer this comparison is Group 8 because both divalent and trivalent 

hexacyanometallates of Fe, Ru and Os are known to exist. Unlike [FeIII(CN)6]3-, 

which is well studied and incorporated into a multitude of compounds, there are 

only a few compounds that incorporate the Ru and Os congeners although they 

have been known for decades.161,162 A perusal of the literature makes it clear that 

this situation is due to the synthetic challenges presented by their instability in 

aqueous media.161 These trivalent precursors are usually obtained through the 

oxidation of the divalent, alkali metal analog which makes the oxidation of the 

divalent Ru and Os hexacyanometallates difficult to conduct in non-aqueous 

media. The first isolation of a [RuIII(CN)6]3- salt was reported in 1990 by Fischer 

using both tetrabutylammonium (TBA)+ and tetraethylammonium (TEA)+ as 

cations,163 thirty-two years after the first isolation of the (TBA)3[OsIII(CN)6] salt. 

This fact speaks to the increased difficulty in obtaining a stable trivalent 
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hexacyanoruthenate salt as compared to its Os cousin. In fact, several studies 

focused on the difficulty in oxidizing ruthenocyanide and the likely decomposition 

products of the cyanometallate upon oxidation.161,164  

 Although the first isolation of a [OsIII(CN)6]3- salt was in 1968, the 

incorporation of the anion into a molecular compound did not occur until 2008, 

when our group reported the Ni3Os2 TBP and Prussian blue phase, which exhibit 

enhanced anisotropic magnetic exchange.141,165 The next molecular compounds 

to include this anion were in 2010 and by the Dunbar group as well, namely the 

Fe3Os2, TBP116 which exhibits CTIST, and the Co3Os2 Prussian blue analog,115 

also reported to exhibit CTIST and photomagnetic behavior. That same year, a 

linear, trinuclear compound of formula (Net4)[MnIII
2(5-

Brsalen)2(MeOH)2OsIII(CN)6] (Net4 = tetraethylammonium and 5-Brsalen = N,N’-

ethylenebis(5-bromosalicylidene-iminate) was reported to exhibit single molecule 

magnetic behavior (SMM) by Bendix and coworkers.159 Since then, a 

[MnIII
6OsIII](ClO4)3 complex with a triplesalen ligand,166 a 

(Ph4P)2[MnIII(acacen)OsIII(CN)6](H2O)1.5(C3H7O)0.7 chain167 and a 

(PPN){[MnIII(salphen)(MeOH)]2[OsIII(CN)6] trinuclear compound168 have emerged, 

all showing SMM behavior. This situation is in stark contrast to the incorporation 

of the [RuIII(CN)6]3- anion into molecular materials. Although it was first isolated in 

1990, the first report of its incorporation into a compound was in 2011 by Bendix 

and coworkers who demonstrated that the (Net4)[MnIII
2(5-

Brsalen)2(MeOH)2RuIII(CN)6] trinuclear molecule exhibits SMM behavior.158 The 
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next time the [RuIII(CN)6]3- anion was reported in a compound was in 2015 by the 

Dunbar group, which is when they reported the family of linear, trinuclear 

compounds of formula (PPN){[MnIII(salphen)(MeOH)]2[MIII(CN)6] where M = Fe, 

Ru, Os and Co, all of which (with the exception of the Co congener) are SMMs.168  

 The relative lack of molecular magnets containing [RuIII(CN)6]3- is a 

consequence of its facile redox chemistry and the difficulty in preparing the anion. 

Since its isolation in 1990, several papers on the topic of the synthesis of the anion 

have been published163,169,170 with all of the authors claiming that the initial 

synthesis was unreliable and led to green decomposition products. The work 

conducted during the course of the research in this chapter verified these 

conclusions, despite claims made by the authors to have made stable, pure 

precursors with no sign of decomposition.  

 In this chapter, a straightforward method to the isolation of pure crystals of 

(PPN)3[RuIII(CN)6] and (PPN)3[OsIII(CN)6] (PPN = bis(triphenylphosphine)iminium 

chloride) are reported from oxidation of K4[MII(CN)6] (M = Ru, Os) with CeIV(SO4)2 

in aqueous media. The detailed procedure discussed herein affords crystalline 

material of both the Ru and Os trivalent cyanometallates that are soluble in 

organic media. The procedure is carried out under very mild conditions within 1-2 

hours of bench work, unlike previously reported procedures. The characterization 

and magnetic properties will be discussed in addition to the first structural 

characterization of these trivalent (PPN)+ salts. 
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Experimental Details 

Materials 

All chemicals and solvents were of ACS reagent grade or higher and used 

as received. Reagents for the synthesis of bis(triphenylphosphine)iminium 

chloride (PPNCl): triphenylphosphine (PPh3, flake, 99%, Alfa Aesar), chlorine 

(Cl2, gas, 99.5%, Sigma Aldrich), hydroxylamine hydrochloride (NH2OH·HCl, 

hygroscopic powder, 96%, Alfa Aesar), 1,1,2,2-tetrachloroethane (C2H2Cl4, liquid, 

98.5%, Acros Organics) and potassium hydroxide (KOH, hygroscopic pellets, 

85+%, EMD Millipore). Reagents for the synthesis of K4[MII(CN)6] where MII = 

Ru, Os: potassium hydroxide (KOH, hygroscopic pellets, 85+%, EMD Millipore), 

potassium cyanide (KCN, hygroscopic powder, 97+%, Alfa Aesar), ruthenium(III) 

trichloride trihydrate (RuIIICl3·3H2O, hygroscopic powder, 40% metal, Pressure 

Chemical Company) and osmium(VIII) tetroxide (OsVIIIO4, volatile solid, 75% 

metal, Pressure Chemical Company). Reagents for the synthesis of 

(PPN)3[MIII(CN)6] where MIII = Ru, Os: cerium(IV) sulfate anhydrous (CeIV(SO4)2, 

powder, 97%, Alfa Aesar). Solvents used: propyl alcohol (Macron Fine 

Chemicals), acetone (EMD Millipore), ethyl acetate (Macron Fine Chemicals), 

N,N-dimethylformamide (DMF) (EMD Millipore), acetonitrile (MeCN) (Fisher 

Scientific), tetrahydrofuran (THF) (EMD Millipore) and diethyl ether (EMD 

Millipore) were used as received from Texas A&M University’s chemistry 

stockroom. All water used was distilled by Texas A&M University. All reactions  

 



 

52 

 

were performed in an aerobic environment in the fume hood, unless otherwise 

noted.  

 

Syntheses 

K4[RuII(CN)6]·nH2O 

CAUTION: This reaction uses KCN which can react with water to form HCN 

gas. According to OSHA (Occupational Safety and Health Administration), 

exposure times in air to concentrations of 109 ppm (119.2 mg/m3) for one hour, 

182 ppm (200.2 mg/m3) for 10 minutes or 364 ppm (400.4 mg/m3) for 2 minutes, 

are fatal.171 KCN should be opened in a fume hood so that any HCN(g) that has 

collected in the container can be liberated safely. Cyanide can be absorbed 

through the skin with similar adverse health effects so it is prudent that proper 

safety attire is worn and that WORK IS CONDUCTED IN AN EFFICIENT 

CERTIFIED FUME HOOD ONLY! 

The compound K4[RuII(CN)6] was prepared similarly to reported 

procedures.172,173 In a 125 mL Erlenmeyer flask outfitted with a long, rod-shaped 

stir bar, RuCl3·3H2O (1 g, 3.9 mmol) was dissolved in water (~50 mL). A large 

excess of KOH (2 g, 35.6 mmol) was added to the dark-brown solution and after 

five minutes of stirring, KCN (6 g, 92.8 mmol) was added to the dark-brown/black 

solution. The solution was gently heated to dryness. *NOTE: Heating to excessive 

temperatures will cause white, water-insoluble by-products, so care should be 

taken to heat the solution just to the point that the water evaporates. During the 
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heating process, the reaction changed colors from dark brown, to black, to dark 

brown again, to dark green and then to maroon. Once the water has evaporated 

and the solid continues to bake on the hot plate, the color of the solid gradually 

lightens and becomes white. As the color of the dry solid changed from maroon 

to white, small amounts of water were added to the flask and boiled off several 

times until the solid is entirely white in color. The white solid was dissolved in water 

(~50 mL) and the solution was allowed to cool to room temperature. Any insoluble 

white particles were removed by gravity filtration to give a clear, colorless solution. 

The product was precipitated with the addition of methanol (~75 mL), collected by 

filtration on a medium (M) frit and washed with methanol (30 mL x 3). The 

recovered product was re-dissolved in water (~50 mL), gravity filtered to remove 

more water-insoluble impurities and re-precipitated with methanol (~75 mL) at 

least two more times. The final product was recovered and rinsed in the same 

manner as before, but with an additional rinse of diethyl ether (30 mL x 3). The 

product was dried in air with an aspirator for approximately 10 minutes; typical 

yield is 1.4 g (79%). Infrared spectroscopy (IR) reveals cyanide stretching 

frequencies, ν(C≡N), at 2110 (w, sp), 2084 (s, sp), 2075 (m, sp), 2052 (vs, b),  and 

2038 cm-1 (vs, b) where w = weak, m = medium, s = strong, vs = very strong, b = 

broad and sp = sharp. Below 75 °C, thermogravimetric analyses (TGA) exhibit 

ranges of mass losses from 0 - 11.2% which corresponds to 0 - 52.3 g/mol of 

solvent loss. This mass loss can be attributed to up to three water molecules. TGA 

confirms that all solvent can be removed from the product if it is placed in an oven 
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for several hours. Refer to page twenty-three in notebook three for a 

representative, in-depth description of the procedure and detailed observations 

for the synthesis. 

 

K4[OsII(CN)6]·nH2O 

CAUTION: OsO4 is VERY TOXIC, especially to the lungs and nervous 

system! It is extremely hazardous if ingested or inhaled, can permeate skin and 

cause blindness.174 The acute toxicity, or the adverse health effects a substance 

imposes within 14 days due to either a single exposure or repeated exposure 

within 24 hours,175 has been determined to have an oral LD50 of 162 mg/kg of 

body weight in mice.174 The LD50 is the amount of a substance determined to be 

lethal to 50% of the test subjects. According to the Organisation for Economic Co-

operation and Development (OECD), the LD50 limit guidelines rank OsO4 as 

harmful with an LD50 falling within the range of 50 – 500 mg/kg.176 OsO4 purchased 

from Pressure Chemicals Inc. is sold in 1g ampules and is a volatile solid, which 

will sublime in air when the ampule is opened. WORK WITH THIS IN A FUME 

HOOD ONLY! As with the synthesis of K4[RuII(CN)6], this reaction utilizes KCN 

and the same concerns and practices are valid. The LD50 for inhalation of HCN is 

100-300 ppm and will result in death within 10-60 minutes, while the LD50 for 

ingestion is 1-3 mg/kg of body weight.171 

The K4[OsII(CN)6] salt can be prepared in an analogous manner to the 

K4[RuII(CN)6] congener but here we discuss a slightly different method that was 
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found to result in higher yields than the method previously reported.172 

Into a 125 mL Erlenmeyer flask outfitted with a large rod-shaped stir bar, 

KOH (2.9 g, 51.1 mmol) was added to 50 mL of water. The solution was stirred 

slowly to dissolve the KOH completely. In the hood, the ampule containing the 

OsO4 (1.0 g, 3.934 mmol) was broken open inside the tissue paper it was wrapped 

in from the manufacturer. The entire ampule was then immediately put into the 

flask containing the clear, colorless, aqueous KOH solution. The color of the clear, 

colorless solution changed to yellow and then to dark orange. After 15 minutes of 

stirring, KCN (13.3 g, 204.3 mmol) was SLOWLY added to the solution. The KCN 

was added scoop by scoop; each scoop was added only when the previous scoop 

of KCN had dissolved completely. Upon addition of the KCN, the solution 

immediately became a clear, dark-reddish-orange-brown color. The pieces of the 

ampule were fished out with a scoopula and rinsed with water into the reaction 

flask to ensure all of the brown solution was out of the ampule. The ampule was 

placed back into the plastic container it was shipped in, capped and then disposed 

of into a solid waste container. The reaction flask was heated to a gentle boil while 

stirring slowly. Within one hour, the solution changed to a clear, dark-green/black 

color. A small amount of white water-insoluble particles had precipitated. After two 

additional hours, the solution changed to a clear, dark-brown color with the 

insoluble particles still present. Once the solution had been concentrated to about 

30 mL, a recrystallization dish was used to cover the flask in order to keep the 

reaction from going to dryness. After three additional hours of heating and stirring, 
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the solution color was a lighter brown with a greater amount of precipitate present. 

Water was added until the solution reached ~50 mL in total volume in order to 

redissolve most of the solid. Gentle heating continued until the solution color was 

light brown. Additional KCN (5.0 g) and KOH (1.1 g) was added to the heating 

reaction. The volume of the solution was kept at ~50 mL with continued heating 

for another hour with the vessel still being covered. After this time, the flask was 

uncovered and the solution was heated to dryness with stirring until a sludge 

remained, after which time stirring was ceased and heating continued. Small 

amounts of water were added to the dry, light-tan solid and then allowed to bake 

off again until the dry solid that remained was a white powder. Once the reaction 

had become a homogenous white solid, the flask was removed from heat and 

allowed to cool completely. Water (~60 mL) was added to the cooled flask and the 

solution was stirred briefly. The light-blue solution was filtered to remove the white 

insoluble impurities and then heated again to dryness. Once the solution had gone 

to dryness, it was removed from heat and allowed to cool again. The minimum 

amount of water required to dissolve most of the white solid (~50 mL) was added 

to the flask again. The light-blue solution was filtered once more to remove 

insoluble impurities. Methanol was added to the filtrate until a precipitate had 

begun to form causing the solution to be slightly murky. The flask was covered 

and put into a freezer maintained at -2 °C for 90 minutes. The blue-gray, block-

shaped crystals that had formed were collected by filtration, washed with copious 

amounts of methanol, rinsed with ~15 mL of diethyl ether three times and left 
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under aspiration for about ten to fifteen minutes before being put into a vial. The 

resulting product is a very faint blue-gray microcrystalline powder (1.2 g). 

Additional methanol was added to the mostly clear and colorless filtrate until the 

solution became murky. The flask was covered and returned to the freezer. After 

several hours in the freezer, a very fine microcrystalline solid precipitated from the 

solution. The product (a finer microcrystalline solid and lighter in color than the 

first fraction of product collected) was recovered using filtration. The product was 

rinsed with copious amounts of methanol and then with approximately 15 mL of 

diethyl ether three times. The solid was dried with an aspirator for about 10 

minutes and then put into a vial (0.6 g). In total, this synthesis yielded 1.8 g of 

product (91% yield), in contrast to the previous synthetic method yielding a highly 

impure sample before recrystallizations due to water-insoluble impurities and 75% 

after multiple recrystallizations. IR, ν(C≡N): 2112 (m, sp), 2079 (vs, sp), 2068 (vs, 

sp), 2039 (vs, vb) and 2021 cm-1 (vs, b) where m = medium, vs = very strong, sp 

= sharp, b = broad and vb = very broad. In contrast to the previous synthetic 

method used to obtain the product, IR spectroscopy of the product prepared by 

the procedure above exhibits well resolved cyanide stretching frequencies and a 

lack of significant peaks at 1646 cm-1, 1617 cm-1 and around 1057 cm-1 (broad) 

attributed to impurities that plague both the K4[RuII(CN)6] and K4[OsII(CN)6] salts. 

TGA analysis of the product prepared using the above method confirms the 

product is completely dry and does not decompose below 450 °C (the analysis 

was stopped after this temperature). Refer to page eleven in notebook six for an 
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in-depth description of the procedure and detailed observations for this synthesis. 

 

Bis(triphenylphosphine)iminium Chloride (PPNCl) 

CAUTION: This reaction should be performed in a working fume hood as 

hydrogen chloride gas is liberated during the reaction. Limit the amount of 

exposed metal in the hood to prevent corrosion of the metal. NO GREASE should 

be used because Cl2 gas reacts with hydrocarbons. All joints should be wrapped 

with Teflon tape or covered with Teflon sleeves. Inhalation, ingestion and eye 

contact with 1,1,2,2-tetrachloroethane are very hazardous. This substance has 

been determined to be carcinogenic by OSHA and has an acute oral toxicity LD50 

of 250 mg/kg in rats.177 This substance is toxic to the liver, kidneys, blood and 

nervous system and prolonged exposure can produce target organ damage. 

This procedure is a modified version of a previously reported method.178 

This reaction was carried out under N2 gas on a Schlenk line. A very large egg-

shaped stir bar was put into a 2 L three-necked round-bottomed flask. A water 

condenser outfitted with a gas inlet adapter connected to the Schlenk line was 

placed into the middle neck of the flask while another gas inlet adapter with a 

Teflon stopcock and a gas outlet adapter were secured onto the remaining two 

necks of the flask. The gas inlet adapter with the Teflon stopcock was connected 

to a large, clean, oil bubbler which was connected to a lecture bottle of Cl2 gas. 

Tygon tubing was used to join the lecture bottle and oil bubbler to the gas inlet 

adapter and also the gas outlet adapter to an oil bubbler containing silicon oil. 
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Refer to Figure 2-1 for a picture of the reaction setup. With the use of a funnel, 

PPh3 (786 g, 3.0 mol) and 1 L of 1,1,2,2-tetrachloroethane were added to the 3-

necked flask. The reagents were stirred together under N2 until all of the PPh3 

dissolved, leaving a clear and colorless solution. The solution was submerged into 

a dry ice/isopropanol bath between -20 °C and -30 °C and stirring continued as 

chlorine gas was added to the reaction. A large oil bubbler was used to condense 

Cl2 (~91 mL, 2 mol). This was achieved by marking the bubbler to denote 91 mL 

of volume and then the bubbler was submerged in a Dewar containing a dry 

ice/acetone mixture (~77 °C). The lecture bottle (connected to a needle valve for 

better control) was slowly opened and then closed once condensed chlorine 

reached the line marked on the bubbler. The oil bubbler was slowly removed from 

the Dewar in a step-wise fashion in order to allow the chlorine to slowly evaporate 

into the 3-necked flask. Stirring of the solution became impeded due to the 

viscosity. Once all chlorine had been added, the gas inlet adapter was removed, 

hydroxylamine hydrochloride (NH2OH·HCl, 69.0 g, 0.99 mol) was added to the 

now yellow solution and a stopper replaced the gas inlet adapter. The 3-necked 

flask was removed from the Dewar and warmed to room temperature slowly, 

resulting in an off-white suspension. The flask was placed in a heating mantle and 

refluxed until the pH of the outgas from the small oil bubbler was neutral (about 8-

9 hours), indicating that no more HCl was being liberated. The reaction was cooled 

to room temperature. Ethyl acetate (2 L) was added to a large 3-necked round-

bottomed flask. Half of the reaction was slowly added to the 3-necked flask 
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containing the ethyl acetate and then 2 L of ethyl acetate was added to the 

remaining solution in the original reaction flask. White solid had precipitated in 

both flasks. More product crystallized in both flasks upon standing overnight. The 

product was collected by filtration and the filtrate was treated with more ethyl 

acetate and left to stand overnight. This process was repeated several times until 

the filtrate was mostly clear and colorless instead of light-yellow in color. The 

crude product was recrystallized from boiling water (~1 L of water for every 100 g 

of product) yielding 286 g (50%). Refer to page sixty-two in notebook four for a 

detailed description of the procedure and observations for the synthesis of PPNCl 

and to page one hundred in notebook four for a detailed description of the 

procedure and observations for the recrystallization of crude PPNCl. 
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Figure 2-1. Reaction setup for the synthesis of PPNCl. 
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(PPN)3[RuIII(CN)6]·H2O (1) 

This procedure is a modified version of previously reported methods.169,172 

A slight excess of PPNCl (3.3 g, 5.7 mmol) was added to 125 mL of H2O in a 

250 mL Erlenmeyer flask. The solution was warmed just enough to dissolve the 

PPNCl (~40-45 °C). The starting material, K4[RuII(CN)6] (0.75 g, 1.8 mmol), was 

dissolved in ~60 mL of water in a 125 mL Erlenmeyer flask. The largest volume 

of DMF (~20 mL) that could be added without precipitating the reagent from the 

water, was added to the clear, colorless, aqueous solution of K4[RuII(CN)6]. The 

solution was then stirred over excess CeIV(SO4)2 (~0.7 g, ~2 mmol) until the 

solution was a golden yellow color (approximately 30 – 45 minutes). The golden 

yellow solution of K3[RuIII(CN)6] was gravity filtered into the clear, colorless, 

aqueous solution of PPNCl while the reaction was stirred and gently heated until 

the filtration was complete. The product was collected immediately by filtration. 

The filtrate was a clear, light-green color due to the decomposition products being 

soluble in DMF. The product is a wet, yellow powder. The product was dissolved 

in the minimal amount of MeCN (~5 – 10 mL). THF was added to the clear, golden 

yellow solution to the point just before precipitate formed (~75 - 100 mL). Several 

aliquots of 10-20 mL of diethyl ether were added to the solution. For the first few 

additions of diethyl ether, the solution was swirled to dissipate any yellow 

precipitate that had formed and then the solution was left undisturbed for 10 – 15 

minutes between each addition. Yellow, needle-shaped crystals formed with each 

addition of diethyl ether. Additions continued in this manner until the solution 
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became nearly colorless, leaving only yellow crystals which were collected by 

filtration and rinsed with diethyl ether (15 mL x 3). The product was dried in air 

with an aspirator for approximately 10 minutes with typical yields being 2.2 g 

(55%). IR, ν(C≡N): 2094 (m, sp) and 2085 (m, sp) cm-1 where m = medium and 

sp = sharp. Below 50 °C, TGA thermograms exhibit very small mass losses 

(-0.46% on average) indicating the product has less than one water molecule (0.7) 

per formula unit, or the presence of surface solvent. Elemental analysis (EA): 

Calculated for (PPN)3[RuIII(CN)6]·H2O, (C114H92N9P6ORu) (%): C, 72.41; N, 6.66; 

H, 4.90. Average found (%): C, 72.19; N, 6.66; H, 5.04. Difference (%): C, -0.3; 

N, 0.0; H, 2.7. NOTE: The clean oxidation from RuII to RuIII is challenging as the 

product can easily turn green from the formation of divalent, decomposition 

products. Several factors influence the increase in the formation of decomposition. 

Too much time over CeIV(SO4) is just one of these factors so care should be taken 

to ensure the reaction does not stay in contact with the oxidant for more than one 

hour. Most importantly, decomposition is facile if the solution is too hot. Special 

care is necessary to ensure the aqueous PPNCl solution does not rise above 

40 °C, otherwise the product rapidly decomposes. Refer to page thirty-two in 

notebook six for a representative, detailed accounting of the procedure and 

observation for the synthesis of (PPN)3[RuIII(CN)6] (1).  

 

(PPN)3[OsIII(CN)6]·H2O (2) 

 This procedure is a modified version of previously reported methods172,179 
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and is analogous to that of its ruthenium congener, (PPN)3[RuIII(CN)6]. This salt is 

also susceptible to the formation of dark-green, divalent-osmium decomposition 

products, but slightly less so than the ruthenium analog.  

A slight excess of PPNCl (5.5 g, 9.6 mmol) in 125 mL of H2O was gently 

warmed (<50 °C) in a 250 mL Erlenmeyer flask while the solution was being 

stirred. In a 125 mL Erlenmeyer flask, water (60 mL) and DMF (20 mL) were used 

to dissolve K4[OsII(CN)6] (1.5 g, 3.0 mmol). An excess of CeIV(SO4)2 (1.2 g, 

3.6 g mmol) was added to the clear, colorless osmium-containing solution. The 

solution instantaneously turned a very bright yellow-green color and was stirred 

over the oxidizer for about 30 minutes. The bright, neon green solution was gravity 

filtered into the PPNCl solution with continued heating and stirring. In order to 

keep excess PPNCl from precipitating, the bright green product was collected 

while the solution was still warm. The powder was rinsed three times with 30 mL 

aliquots of diethyl ether. The product was recrystallized from MeCN and THF in 

the same manner as (PPN)3[RuIII(CN)6]. The product is a light-neon-green 

microcrystalline solid. Average yield is 4.2 g (70% yield). IR, ν(C≡N): 2083 (m, sp) 

and 2076 (s, sp) cm-1 where m = medium, s = strong and sp = sharp. Below 50 °C, 

TGA thermograms exhibit very small mass losses (0.54% on average), indicating 

the product has less than one water molecule (0.6) per formula unit, or the 

presence of surface solvent. Elemental analysis (EA): Calculated for 

(PPN)3[OsIII(CN)6]·H2O, (C114H92N9P6ORu) (%): C, 69.15; N, 6.36; H, 4.68. 

Average found (%): C, 68.65; N, 6.43; H, 4.86. Difference (%): C, 0.7; N, 1.1; 
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H, 3.8. Refer to page sixty-seven in notebook five for a representative accounting 

of the synthetic details and observations for the preparation of (PPN)3[OsIII(CN)6] 

(2). 

 

Results and Discussion 

Synthesis and Characterization 

Several aspects of the synthetic procedure for the trivalent, 

hexacyanometallate (PPN)+ salts of Ru and Os warrant discussion. Most of this 

discussion will focus on the synthesis of (PPN)3[RuIII(CN)6] as it was found to be 

the most challenging, but the same issues apply to the synthesis of 

(PPN)3[OsIII(CN)6].  

First, the choice in cation should be discussed. The (PPN)+ cation (Figure 

2-2) has been successfully used in the preparation of several hexacyanometallate 

salts, including the divalent Ru species.180,181 The cation is good for stabilizing air-

sensitive anions when other cations proved to be unsuccessful which has led to 

their extensive use in metal carbonyl chemistry.182 Organometallic chemists have 

found the cation to be useful in stabilizing large anionic complexes due to its 

bulkiness and low tendency to engage in interactions which can enhance the 

nucleophilic tendencies of the anion.180 The cation is not hygroscopic and is 

soluble in organic media which allows for a wide array of solvent choice for 

reactions other than the usual water or MeOH solutions used in cyanometallate 

chemistry. Common reagents such as alkali metal ions, encapsulated in crown 
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ethers and tetraalkylammonium, phosphoium and arsonium cations have several 

disadvantages compared to (PPN)+: they can be more difficult to prepare, are 

generally less soluble, tend to be more hygroscopic, can catalyze oxidation 

reactions and are more expensive.183 The (PPN)+ cation is air stable and can 

easily be purified from boiling water.178 The solubility of the (PPN)+ salt in warm 

water makes metathesis reactions with the alkali cyanometallates a fast and easy 

synthetic process with no need for complicated or time-consuming extractions as 

reported for other synthetic methods of the (PPN)3[RuIII(CN)6] precursor.170 For 

the reasons stated above, our group has chosen PPNCl as a counter cation in 

preparing many of the cyanometallates we use. It is readily available to purchase 

or can be made as explained in the experimental section. 

 

 

 

 

Figure 2-2. Bis(triphenylphosphine)iminium chloride 
(PPNCl) 
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 A second point is that decomposition during the oxidation process has 

been a major hurdle for many groups undertaking the preparation of these trivalent 

Ru and Os cyanometallates. Reports of decomposition are more prevalent in the 

preparation of the Ru congener but this problem exists for Os analog as well, albeit 

to a lesser extent. Early work described the formation of divalent green solutions 

or powders during the oxidation process.161,164 Crean and Schug suggested that 

the oxidation of K4[RuII(CN)6] with strong oxidizers such as CeIV in aqueous media 

is unstable if the concentration of the Ru salt is greater than 1 mM, the pH is too 

acidic or if an excess of the oxidant is present.164 They claim that aquation, 

dimerization and redox reactions all contribute to the spontaneous decomposition. 

The current work with these precursors in aqueous solutions has confirmed that 

decomposition to divalent green species readily occurs in aqueous media with 

Ce(SO4)2. Previous synthetic reports indicate that the divalent alkali 

cyanometallates of Ru and Os are rapidly and completely oxidized by stirring in 

air in the presence of DMF or H2O2.163 This approach has not proven to be 

successful in our laboratories or others’.170 A previous group member, Dr. 

Matthew Hilfiger, attempted to prepare (PPN)3[RuIII(CN)6] using different methods, 

both aerobic and anaerobic, but found the easiest method to be the common 

method with Ce(SO4)2 in aqueous media. His synthetic method to slow the rate of 

decomposition in these (PPN)3[RuIII(CN)6] and (PPN)3[OsIII(CN)6] precursors was 

to add MeCN or MeOH to the aqueous solution during the oxidation process.172 

Unfortunately, this approach still led to an undesirable level of impurity due to 



 

68 

 

decomposition. In the current syntheses of the (PPN)3[RuIII(CN)6] and 

(PPN)3[OsIII(CN)6], a mixture of water and DMF was used during the oxidation 

process with Ce(SO4)2 in an attempt to stabilize the oxidized product as Fischer 

et. al had reported that the oxidation of (R4N)[RuII(CN)6] was readily carried out in 

air if the solvent was DMF and the cation was tetrabutylammonium. This change 

in organic media during the oxidation process proved to be very fruitful as the 

reaction solution no longer turned green within a short period of time. It became 

evident however that the longer the [Ru(CN)6]4-/3- solution was kept in contact with 

Ce(SO4)2, the more decomposition occurred. The solutions should not be stored 

over Ce(SO4)2 for more than one hour. The DMF is also a valuable component of 

the reaction once the product has begun to form. The use of MeCN during the 

oxidation process did not help with co-precipitation as the decomposition by-

products are not sufficiently soluble in the MeCN/water mixture. The DMF/water 

mixture allows for any small amount of decomposition product(s) to stay in the 

filtrate. Although the formation of the decomposition by-products during the 

oxidation step had been resolved, it was found that the degradation during the 

metathesis step was still possible with too much heating. It was found that these 

reactions are extremely heat sensitive and that decomposition is rapidly 

accelerated with increasing temperatures. Considering the aqueous solution 

containing the PPNCl must be heated slightly to dissolve the PPNCl, care must 

be taken to ensure the temperature of the solution is just hot enough to dissolve 

the reagent which usually occurs at mild temperatures around 40 – 50 °C. If 
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decomposition still occurs one can purify the product by recrystallization from an 

MeCN/THF/diethyl ether solution. As stated earlier, the decomposition by-product 

is not very soluble in MeCN. By dissolving the product in a minimal volume of 

MeCN the insoluble green particles can be removed by filtration through Celite. 

To re-precipitate the product, THF was found to be very useful as the addition of 

just diethyl ether to the concentrated MeCN solutions results in an emulsion that 

requires vigorous stirring in copius amounts of diethyl either in order to obtain a 

very wet powder. The addition of THF before diethyl ether however, prevents the 

formation of an emulsion due to the sparingly soluble nature of (PPN)+ salts in 

THF. Upon addition of enough diethyl ether into the MeCN/THF solution, small 

crystals precipitate from solution leading to a pure, microcrystalline product. 

 The method described above and in the experimental section have several 

advantages over previously reported methods. Other methods reported the use 

of harsh chemicals such as HCl which is not the safest option for a reagent in a 

reaction using cyanide. The same method using HCl is also reported to take 

several days to prepare, whereas the current method can take approximately 1-2 

hours to complete. Other reported methods similar to the method discussed in this 

chapter have been unreliable and the product is invariably highly contaminated 

with decomposition by-products. All of the structures reported for the [RuIII(CN)6]3- 

and [OsIII(CN)6]3- contain at least two water molecules per formula unit. The 

crystallization of the product with two water molecules holds true for the 

(PPN)3[MnIII(CN)6] and (PPN)3[FeIII(CN)6] precursors previously reported as 
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well.180,181 The use of THF as a recrystallization solvent limits the amount of water 

in the product for both the Ru and Os salts to less than one molecule per formula 

unit. This makes the use of these precursors in a water- and oxygen free 

environment more successful. These precursors have also been found to remain 

stable in air as a solid or organic solution, contrary to the products reported 

previously.169 

 

(PPN)3[RuIII(CN)6]·H2O (1) 

 In Figure 2-3, one can see the typical colors expected during the synthesis 

of 1 as it progresses without decomposition. Figure 2-4 is a comparison of what 

the oxidized solution should look like without decomposition present (a) and what 

the color of the solution is when decomposition is prevalent. The reaction steps in 

Figure 2-3: a and b) The water/DMF mixtures containing K4[RuII(CN)6] and 

Ce(SO4)2 as time progresses, c) the metathesis step, d) the product that 

precipitates as a powder from the metathesis step, e) the filtrate, after the product 

is collected, with evidence of decomposition f and g) recrystallization from MeCN, 

THF and diethyl ether as time progresses and h) the microcrystalline product of 

1. The left picture in Figure 2-4 is of a filtered solution of the oxidized reaction 

before the metathesis step and is what the color should look like if the synthesis 

is progressing well. The picture on the right, however, is what the solution looks 

like if decomposition occurred during the oxidation step.  
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Figure 2-3a-h. Typical colors expected as the synthesis of 1 progresses. 
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 IR spectroscopy of cyanometallate compounds can be very revealing as to 

the oxidation state of the product. Trivalent hexacyanoruthenate species exhibit 

characteristic νC≡N at ~2090 wavenumbers163,169 while the divalent species move 

to lower frequencies at ~2050 wavenumbers184 due to the increased π-

backbonding and decreased σ-donation with the metal. This large separation in 

frequency renders assignment of the peaks to the correct oxidation state of the 

metal relatively easy. The IR spectra in Figure 2-5 is typical for (PPN)3[RuIII(CN)6] 

and has νC≡N peaks at 2094 and 2085 cm-1 which correspond well to literature 

values and is consistent with the expected decrease in π-backbonding. Figure 2-

6 is IR spectra for (1) contaminated with the green decomposition by-product as 

the emergence of the new νC≡N peak at 2048 cm-1 clearly indicates. The 

decomposition by-product is consistent with a divalent Ru-CN bridged species as 

Crean and Schug suggested many years ago.164 

Figure 2-4. Filtered solutions of the oxidation step in the synthesis of 1. 
Left: Expected color when there is no decomposition and right: color of 
the solution due to decomposition occurring  
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Figure 2-5. IR spectra of (PPN)3[RuIII(CN)6] (1) in Nujol oil. Inset is a close-up of the cyanide stretching peaks. 
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Figure 2-6. IR spectra of (1) contaminated with decomposition by-products. Inset is a close-up of the νC≡N peaks. 
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 TGA performed on (1) (Figure 2-7) in a N2 atmosphere suggests the 

presence of ~ 1 (0.9) H2O molecules per (PPN)3[RuIII(CN)6] and demonstrates the 

thermal stability of (PPN)3[RuIII(CN)6]. The TGA was only performed up to 250 °C 

but the sample maintained its composition throughout the analysis. The 

temperature was held at 70°C for 30 minutes during the measurement in an effort 

to distinguish surface solvent from coordinated water. The bump in the data as 

temperature begins to increase again after the 30 minute hold-time is most likely 

due to a combination of buoyancy (the temperature of the gas is in advance of the 

sample itself which causes the buoyancy of the gas to decrease, resulting in an 

artificial increase in the sample mass) and gas displacement effects. These effects 

are most prevalent at the start of the experiment and tails off at higher 

temperatures once the sample and gas are at similar temperatures. 
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(PPN)3[OsIII(CN)6]·H2O (2) 

 As stated above, the oxidation process to obtain [OsIII(CN)6]3- is still 

susceptible to spontaneously decomposing in aqueous media and co-precipitating 

divalent by-products, but not as readily as is [RuIII(CN)6]3-. The synthetic method 

described in this chapter works well for the (PPN)3[OsIII(CN)6] congener and 

results in very similar observations but instead of a golden yellow color, the 

solutions and product are more of a neon yellow/green color (Figure 2-8). 

Figure 2-7. Thermogram of 1. The blue line represents mass loss (%) and 
is on the left y-axis. The pink line represents temperature in °C and pertains 
to the right y-axis. These two variables were plotted against minutes. 
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 Typical νC≡N frequencies have been reported at ~2070 wavenumbers170 for 

[OsIII(CN)6]3- anions and ~2030 wavenumbers184,185 for [OsII(CN)6]4- species. 

Again, this large difference in frequency allows for easy assignment of the 

oxidation states of the precursor and can easily give insight into whether the 

product is contaminated with decomposition by-products. It should be noted, 

however, that the use of KBr pellets for collecting IR spectra can lead to cation 

exchange180 or reduction of the cyanometallate163 resulting in different νC≡N 

frequencies, so mineral oil or Nujol mulls can be employed. The IR spectrum in 

Figure 2-9 exhibits νC≡N frequencies at 2083 and 2086 cm-1 which is in good 

agreement with values reported in literature. The reduced νC≡N frequencies in 

comparison to the (PPN)3[RuIII(CN)6] precursor is consistent with the increase in 

π-backbonding strength as is expected from the more diffuse 5d orbitals of Os. 

Figure 2-8. Typical color and 
consistency of (2) when it is free of 
decomposition by-products. 
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Figure 2-9. IR spectrum of (PPN)3[OsIII(CN)6] (2) in Nujol oil. Product is free of decomposition contamination. 
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The cyanide stretching frequencies for both (PPN)3[RuIII(CN)6] and 

(PPN)3[OsIII(CN)6] are in good agreement with those reported for the 

(PPN)3[FeIII(CN)6] congener (2104, 2099 and 2093 cm-1).180 The increase in 

frequencies for the Fe salt follows the trend expected with a decrease in 

backbonding as the heavier transition metals are replaced with lighter ones. The 

cyanide stretching frequencies for the Fe, Ru and Os salts are in Table 2-1.  

 

 

 

Table 2-1. Cyanide stretching frequencies for (PPN)3[MIII(CN)6], (M = Fe, Ru and Os). 

Compound νC≡N (cm-1) 

(PPN)3[FeIII(CN)6] 2104 2099 2093 

(PPN)3[RuIII(CN)6] — 2094 2085 

(PPN)3[OsIII(CN)6] — 2083 2076 

 

 

 

Thermogravimetric analysis of (PPN)3[OsIII(CN)6] in a N2 atmosphere 

(Figure 2-10) suggests there are ~0.6 interstitial H2O molecules per 

cyanometallate. As with the Ru congener, this is less interstitial water as 

compared to previous reports in the literature. The TGA was performed up to 

200 °C. The compound exhibited thermal stability throughout the temperature 

range. The initial increase in mass at low temperatures is usually an effect of 

buoyancy. 
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Single Crystal X-ray Diffraction 

 The structures of 1 and 2 were collected on the Texas A&M University 

APEXII instruments at 110 K. Details can be found in Appendix A. By using the 

synthetic method described above, X-ray quality crystals of these precursors were 

obtained for the first time. As expected, the structures were found to crystallize in 

the same space group as each other (orthorhombic Pbcn). They both contain two 

crystallographically independent (PPN)+ cations. One of the cations occupies a 

Figure 2-10. Thermogram of (2) up to 200 °C in a N2 atmosphere.  
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general position whereas the nitrogen atom of the other resides on a two-fold 

rotation axis resulting in one half of the cation being crystallographically 

independent. The metal of the anion also resides on 2-fold rotation axis resulting 

in only half of the anion being crystallographically independent. The relevant 

structural data and refinement parameters for compounds 1 and 2 are listed in 

Table 2-2. The asymmetric units were determined to contain ~0.3 H2O molecules 

for (PPN)3[RuIII(CN)6] and ~0.7 H2O molecules for (PPN)3[OsIII(CN)6]. The water 

molecules were modeled anisotropically with hydrogen atoms and exhibit 

hydrogen bonding to one of the cyanide ligands. Pertinent M–C bond lengths for 

each structure as well as the O–N bond length are in Table 2-3. The M–C and 

C≡N bond lengths are very similar to each other and are consistent with the 

previously reported salts of these trivalent hexacyanometallates. The average M–

C bond lengths (2.06 Å) are slightly elongated in comparison to the 

(PPN)3[FeIII(CN)6] analog reported (1.94 Å).180 The errors on the cyanide bond 

lengths are too large in both these structures and those reported in literature to 

draw any correlation. The general structure of compound 2 is depicted in Figure 

2-11. Compound 1 is isomorphous to 2 and is not shown. Figure 2-12 is a packing 

diagram of 2 looking down the c axis. 
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Table 2-2. Crystal data and refinement parameters for single crystals of 1 and 2. 

Formula C114H90N9P6Ru·0.3H2O C114H90N9P6Os·0.7H2O 

Space Group Pbcn Pbcn 

a/ Å 23.839(3) 23.80(6) 

b/ Å 20.368(2) 20.467(5) 

c/ Å 19.348(2) 19.353(5) 

α = γ = β/ ° 90 90 

Volume/ Å3 9394.3(18) 9430(4) 

Temperature 110 K 110 K 

μ/ mm-1 0.326 1.511 

2Θ Range for 
Data Collection/ ° 

3.368 to 52.232 2.624 to 49.468 

Crystal Description 
Crystal Size/ mm3  

Yellow block 
0.10 x 0.09 x 0.05 

Green block 
0.09 x 0.09 x 0.08 

Independent 
Reflections 

9327 
Rint = 0.0723 

Rsigma = 0.0636 

8024 
Rint = 0.0613 

Rsigma = 0.0341 
Data/Restraints/ 
Parameters 

9327/0/600 8024/0/602 

aGooF on F2 1.011 1.041 
b,cFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0421 
wR2 = 0.0.0867 

R1 = 0.0298 
wR2 = 0.0.0604 

b,cFinal R Indexes 
[all data] 

R1 = 0.0.0704 
wR2 = 0.0.0976 

R1 = 0.0.0465 
wR2 = 0.0.0697 

Largest Diff. 
Peak/Hole/ e Å-3 

0.55 / -0.73 0.56 / -0.60 

Radiation = MoKα (λ = 0.71073), α = γ = 90°, Z = 4,  aGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-
p)}1/2, where n is the number of reflections and p is the total number of parameters refined. bR = 

∑Fo-Fc/∑Fo. cwR = {∑[w(Fo
2 - Fc

2)2]/∑w(Fo
2)2]}1/2. 
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Table 2-3. Pertinent bond lengths for compounds 1 and 2. 

  (PPN)3[RuIII(CN)6] (PPN)3[OsIII(CN)6] 

Bond 
Lengths 

Angles 
Bond 

Lengths (Å) 
Angles (°) 

Bond 
Lengths (Å) 

Angles (°) 

M–C(1) C(1)–M–C(2) 2.065(3) 89.77(10) 2.067(4) 90.85(12) 

M–C(2) C(2)–M–C(3) 2.063(3) 89.19(10) 2.063(4) 89.91(13) 

M–C(3) C(1)–M–C(3) 2.054(3) 178.25(11) 2.060(4) 178.48(13) 

Avg M–C — 2.061(3) — 2.063(4) — 

C(1)≡N(1) — 1.158(3) — 1.153(4) — 

C(2)≡N(2) — 1.152(3) — 1.159(4) — 

C(3)≡N(3) — 1.157(3) — 1.150(4) — 

Avg C≡N — 1.156(3) — 1.154(4) — 

O–N — 2.861(16) — 2.852(9) — 

 

 

Figure 2-11. Asymmetric unit of (PPN)3[MIII(CN)6]. Yellow atoms are 
phosphorous. MIII is Os or Ru. 
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Figure 2-12. Packing diagram of (PPN)3[MIII(CN)6], where MIII is Ru/Os. View is 
looking down the c axis. Color scheme: Green is Ru/Os, yellow is P, blue is N, red 
is O, grey is C and white is H. 
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Magnetic Properties 

 Both (PPN)3[RuIII(CN)6] and (PPN)3[OsIII(CN)6] are S = ½ systems and, in 

the absence of any anisotropic effects, are expected to follow Curie law. As shown 

in Figure 2-13, Curie behavior is indeed exhibited for both (PPN)3[RuIII(CN)6] 

(Figure 2-13a) and (PPN)3[OsIII(CN)6] (Figure 2-13b). For spin-only S = ½ 

systems, one would expect a χT value of 0.375 emu·K/mol. As can be seen from 

the data in Figure 2-13, both precursors have a value at 2 K slightly below what is 

expected for a spin-only value of χT. (PPN)3[RuIII(CN)6] exhibits a value of 0.30 

emu·K/mol at 2 K while the Os congener has a χT value of 0.29 emu·K/mol. As 

temperature is increased, both compounds exhibit temperature induced 

paramagnetism (TIP). The pink and red lines in Figure 2-13 represent values 

expected for a Curie paramagnet with C = 0.30 and C = 0.29 emu·K/mol for the 

Ru and Os congeners, respectively. For the Ru compound, the 2 K data were fit 

using g = 1.79 and the room temperature data were fit by including a TIP value of  

875 x 10-6 emu·K/mol. In order to fit (PPN)3[OsIII(CN)6] to the Curie law, a g = 1.76 

and TIP = 395 x 10-6 emu·K/mol were used. The fit lines modeled the experimental 

data best when no Weiss constant (θ) was taken into account. Magnetization data 

at 1.8 K (Figure 2-14) for both compounds are consistent with a S = ½ system as 

the data saturates near 1 B.M. The data were fit with the Brillouin function (pink 

line in Figure 2-14) using S = ½ for both compounds, with g = 1.77 for 

(PPN)3[RuIII(CN)6] and g = 1.74 for (PPN)3[OsIII(CN)6]. 

 According to Figgis and Hitchman,186 the free ions of Ru3+ and Os3+ with 
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ground state terms of 2T2g should not deviate much from the spin-only values for 

these S = ½ ions. By taking λ and the orbital angular momentum reduction factor 

(k) into account, Figgis predicts that as temperature is reduced from 300 K, Ru3+ 

should vary in χT by ~47% and Os3+ should vary by ~21% as a function of kT/|λ|, 

where k and λ are held constant. For free ions, the value of k is unity as there is 

no delocalization of electrons from the t2g orbitals of the ions onto the donor atoms 

of the ligands. When delocalization does occur, the value of k decreases and 

corresponds to an additional quenching of the orbital angular momentum which 

usually brings the magnetic moment closer to the spin-only value. As 

delocalization of the electrons is expected for the (PPN)3[RuIII(CN)6] and 

(PPN)3[OsIII(CN)6] starting materials, the variance in the χT values and the 

deviation of the values from the spin-only ones are not in accord with the 

predictions made by Figgis for these 2T2g compounds. Between 2 and 300 K, the 

values of χT vary 77% and 41% for the RuIII and OsIII hexacyanometallates, 

respectively. However, cases have been known for T terms in which an interaction 

with a nearby higher configuration results in an effective value of k that is greater 

than unity and would result in greater deviations from the spin-only values of χT. 

Essentially, these precursors seem to exhibit more orbital contribution to the 

magnetic properties than Figgis and Hitchman predicted. 
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Figure 2-13. Temperature dependent susceptibility data for compounds 1 (a) and 2 (b). The 
susceptibility for both compounds exhibit Curie behavior with TIP (red and pink lines). Data was 
fit using C = 0.30, g = 1.79 and TIP = 875 x 10-6 emu·K/mol for compound 1 and C = 0.29, g = 
1.76 and TIP = 395 x 10-6 emu·K/mol for compound 2. 
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Figure 2-14. Magnetization data for compounds 1 (a) and 2 (b) at 1.8 K. The data 
are fit with the Brillouin function (pink lines) using g = 1.77 for compound 1 and g 
= 1.74 for compound 2. 
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Electron Paramagnetic Resonance Spectroscopy 

 Variable temperature electron paramagnetic resonance (EPR) data were 

collected by our collaborators, Dr. Doros Petasis and his student Keiron Stoddard 

at Allegheny College in Pennsylvania. Data were measured on solid samples of 

compounds 1 and 2 and also on 1 mM MeCN solution of both compounds. The 

spectra obtained for the compounds in MeCN (Figure 2-15) are broad and do not 

give much information. The intensities of the peaks decrease with increasing 

temperature until they are no longer observed above 100 K. The broad peaks are 

centered around a g ~ 2 for (PPN)3[RuIII(CN)6] and g ~ 1.8 for (PPN)3[OsIII(CN)6]. 

Spectra obtained on solid samples of 1 and 2 (Figure 2-16) exhibit multiple line 

structures centered around g ~ 1.8 for both samples, indicative of some 

unresolved hyperfine coupling. Literature reports of g values for RuIII have been 

calculated or estimated to be 1.88168 and 1.9.158,187 EPR data at 78 K on a frozen 

methanol solution of (K@18-crown-6)3[RuIII(CN)6] was reported to exhibit a single, 

broad resonance at 1.85.170 The same group reported a g = 1.8 for the Os 

congener measured in the same manner170 whereas another group obtained a g 

= 1.82 on a frozen water solution of (Ph4P)3[OsIII(CN)6]·6H2O.179 Several g values 

for OsIII have been calculated or estimated in the literature recently: 1.75,168 

1.79179 and 1.8.159,187 These values are in good agreement with the EPR data for 

the new (PPN)+ salts and follow a trend of lower g values for OsIII as compared to 

RuIII. In similar compounds, effective g values for [FeIII(CN)6]3- anions have been 

estimated to be 2.01188 and 1.98.168 
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Figure 2-15. Variable temperature EPR data for 1 (top) and 2 (bottom). 
Compounds were measured in 1 mM MeCN solutions. 
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Figure 2-16. Variable temperature EPR data collected on solid 
samples of 1 (top) and 2 (bottom). 
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Cyclic Voltammetry 

 The ability of cyanometallates to be reversibly reduced or oxidized is an 

interesting facet of their magnetism. The redox properties of the 

hexacyanometallates incorporated into molecular cyanide materials have been 

widely studied for interesting magnetic phenomena such as charge-transfer-

induced-spin-transition (CTIST). The [Fe(CN)6]3-/4- redox properties have been 

rigorously studied and it is known that the reduction potential varies depending on 

several factors including the cation, solvent, electrolyte and working electrode. 

When the CV’s of (PPN)3[RuIII(CN)6] and (PPN)3[OsIII(CN)6] were attempted with 

a platinum working electrode, no redox couples were observed so a glassy carbon 

electrode was used for CV characterization. Experimental details can be found in 

Appendix A. During electrochemical studies of (PPN)3[FeIII(CN)6], Cauzzi and 

coworkers suggested that the non-electroactive (PPN)+ cation is responsible for 

the lack of an electrochemical response with Pt and Au working electrodes due to 

adsorption phenomena.180 They found that (PPN)3[FeIII(CN)6] exhibits a quasi-

reversible reduction couple at -0.92 V (Table 2-4) with a ΔE separation of 0.1 V 

when using a glassy carbon electrode and a scan rate of 0.2 V/s.180  Figure 2-17 

shows the voltammograms for compounds 1 (top) and 2 (bottom) collected 

between a potential of +2 to -2 V. The compounds were scanned in the negative 

direction starting at an initial potential of 0 V. The reduction couple of MIII/II (Table 

2-4) occurs at -0.425 V for (PPN)3[RuIII(CN)6] and -0.70 V for (PPN)3[OsIII(CN)6] 

referenced against Ag/AgCl with ΔE separations of 0.072 V for Ru and 0.078 V 
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for Os. The couples are assigned to the reduction of these trivalent compounds to 

their divalent counterparts, [MIII(CN)6]3- → [MII(CN)6]4- The half potential for the 

reduction of (PPN)3[RuIII(CN)6] occurs at less negative potentials (~0.28 V and 

~0.42 V less) in comparison to the (PPN)3[OsIII(CN)6] and (PPN)3[FeIII(CN)6] 

compounds, respectively. As the potential is scanned in a more positive direction 

than the reduction couple, (PPN)3[RuIII(CN)6] exhibits two irreversible oxidations 

at +0.98 V and +1.78 V and (PPN)3[OsIII(CN)6] exhibits a single irreversible wave 

at +0.85 V. Upon scanning back in the negative direction after this event, the 

original reduction events are no longer reversible as expected if the original 

species at the electrode surface has decomposed.  

 

 

 

Table 2-4. Half potentials for the reduction of (PPN)3[MIII(CN)6]. 

Compound E½ (MIII/II) 

(PPN)3[FeIII(CN)6] -0.92 V 

(PPN)3[RuIII(CN)6] -0.43 V 

(PPN)3[OsIII(CN)6] -0.70 V 
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Figure 2-17. Voltammograms of compounds 1 (top) and 2 (bottom) in MeCN with 
a glassy carbon working electrode and a Ag/AgCl as the reference electrode. 
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Concluding Remarks 

 Access to pure precursors for their use as building blocks in coordination 

complexes is an important task of a synthetic inorganic chemist working in 

molecular magnetism. In the fast-paced field of magnetic cyanometallate 

chemistry, there are numerous groups competing to push back the frontiers by 

designing new heavy cyanometallates and probing how their magnetic properties 

differ from their 3d-transition-metal analogs and developing such methods is 

crucial. Although salts of [RuIII(CN)6]3- and [OsIII(CN)6]3- have been reported in the 

literature previously, the methods led to products highly contaminated with 

divalent decomposition by-products. Not only were these previous methods 

unreliable, but they were also time consuming and used expensive organic 

cations as the counterions. In this work, the syntheses of these trivalent 

precursors has been vastly improved by using mild reagents/conditions that 

require only about one hour to complete. These new trivalent cyanometallate salts 

of (PPN)+ were characterized structurally for the first time and found to crystallize 

in the orthorhombic Pbcn space group with less water than previous salts. Their 

νC≡N stretching frequencies and magnetic properties are consistent with the 

previously reported salts. The EPR data were also obtained to support the g 

values estimated from the susceptibility and magnetization data. The redox 

properties of these (PPN)+ salts were studied for the first time with the results 

indicating that the reduction of these trivalent species is readily achieved. As 

expected, the results shown here demonstrate the similarity in behavior for the 
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Group VIII [MIII(CN)6]3- anions and support the idea of Os having more intrinsic 

anisotropy than its 4d and 3d counterparts. 
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CHAPTER III 

MAGNETIC PROPERTIES OF NEW TRIGONAL BIPYRAMIDAL MOLECULES 

BASED ON RUTHENIUM AND OSMIUM HEXACYANOMETALLATES 

 

Background 

 As discussed in the introduction to the previous chapter, magnetic 

materials containing 3d transition metals have received most of the attention in 

magnetism research as they are easier to handle both experimentally and 

theoretically as compared to their 4d and 5d counterparts. Incorporation of 4d and 

5d transition metals into molecular magnetic compounds offer several advantages 

over their 3d transition metal counterparts however. Specific differences between 

the first row metal ions and their heavier congeners are that the heavier metal ions 

(i) have more diffuse orbitals with the trend being 5d > 4d ≫ 3d,156,160 (ii) possess 

larger intrinsic spin-orbit coupling (SOC) resulting in increased orbital 

contributions15,157 (iii) are found in a variety of oxidation states, (iv) have redox 

properties that can be triggered with external stimulus and (v) can exhibit higher 

coordination numbers.189 These advantages have been found to lead to new and 

enhanced magnetic behavior when these metal ions are incorporated into 

compounds. As stated in the last chapter, hexacyanoruthenate and 

hexacyanoosmate are similar to hexacyanoferrate in that they exist in both the 

divalent and trivalent oxidation states with six coordinated cyanide ligands. This 

situation allows for direct comparison of magnetic behaviors upon exchanging 
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hexacyanoferrate for the heavier, more anisotropic Group VIII metal ions and 

provides insight into the effects of increased magnetic exchange in cyanide 

bridged compounds. To date, very few compounds incorporating these heavier 

hexacyanometallate precursors have been reported. The first magnetic materials 

to incorporate one of these heavier Group VIII metals were the Ni3Os2 TBP and 

Prussian blue analog reported in 2008,165 followed by the Fe3Os2 TBP116 and the 

Co3Os2 Prussian blue analog115 in 2010, all reported by our group. As discussed 

in the last chapter, enhanced magnetic properties were generally observed by 

incorporating the heavier Os metal ion into these compounds. A few compounds 

containing [RuIII(CN)6]3- and [OsIII(CN)6]3- have been reported since 2010 and 

exhibit either SMM or SCM behavior.158,159,166-168,187 

 Our group’s large study on TBP molecules presents itself as a powerful 

scaffold for probing how exchanging 3d hexacyanometallates for second and third 

row transition metals affects the magnetic properties of cyanide-bridged materials. 

A former group member worked on incorporating [RuIII(CN)6]3- and [OsIII(CN)6]3- 

anions into the TBP framework but he was not able to obtain the elusive Co3Ru2 

and Co3Os2 TBPs despite continued efforts, nor was he able to obtain structural 

data for the Mn3Ru2 TBP.172 These homologous TBPs are highly sought by our 

group considering the interesting magnetic behavior shown by their 3d metal ion 

counterparts. The Co3Fe2 TBP can exist in different electronic isomeric forms 

depending on the amount and identity of interstitial solvent molecules – 

[CoIII
2CoIIFeII

2], [CoII
2CoIIIFeIIIFeII], [CoII

3FeIII
2] – and can undergo charge-
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transfer-induced-spin-transition behavior (CTIST) with both temperature 

and light irradiation.111,142,148 Although both the Mn3Fe2
146 and Mn3Os2 

analogs exhibited antiferromagnetic coupling, only the Mn3Os2 TBP 

exhibited SMM behavior.172 

 This chapter describes the Co3Ru2 and Co3Os2 TBPs and their 

structural and magnetic properties with details about the synthetic methods 

required to obtain them. This chapter will also describe the synthetic 

challenges involved to obtaining crystals of the Mn3Ru2 TBP and will 

introduce the Zn3Os2 TBP for the first time. 

 

Experimental Details 

Materials 

All chemicals and solvents were of ACS reagent grade or higher and used 

as received, unless stated otherwise. Reagents for the synthesis of 

{[MII(tmphen)2]3[MIII(CN)6]2}·nSolv: cobalt (II) iodide anhydrous (CoI2 anhydrous, 

light sensitive and hygroscopic powder, 99.5%, Alfa Aesar), zinc (II) chloride 

(ZnCl2, powder, 98+%, Sigma Aldrich), 3,4,7,8-tetramethyl-1,10-phenanthroline 

(tmphen) (C16H16N2, crystalline powder that varies in color from pinkish to off-

white, 98+%, Alfa Aesar). The CoI2 anhydrous was stored in an oxygen- and 

water-free glove box with a nitrogen atmosphere. Reagents for the synthesis of 

{[MII(tmphen)2]2[RuII(CN)4(tmphen)]2}·nSolv: manganese (II) chloride 
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anhydrous (MnCl2, anhydrous, hygroscopic flakes, 96.8%, Alfa Aesar) and 

3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) (C16H16N2, crystalline powder 

that varies in color from pinkish to off-white, 98+%, Alfa Aesar). Solvents used: 

methanol (MeOH) (EMD) and acetonitrile (MeCN) (Fisher Scientific) were used 

as received from Texas A&M University’s chemistry stockroom. N,N-

dimethylformamide, anhydrous (DMF) (hygroscopic, 99.8%, Alfa Aesar, packed 

under Argon in a resealable ChemSeal™  bottle), was purchased and pumped 

into an oxygen- and water-free glove box with a nitrogen atmosphere before being 

opened. Once opened, DMF was stored in the glove box. Acetonitrile purchased 

from the stockroom was also pre-dried for two weeks over 3 Å molecular sieves 

(hygroscopic 3-5 mm beads, Alfa Aesar), refluxed over 3 Å molecular sieves and 

then distilled before being stored in the glove box. 

 

Syntheses 

{[Co(tmphen)2]3[Ru(CN)6]2}·nSolv (Co3Ru2) (3) 

 This reaction was carried out in an oxygen- and water-free glove box with 

a N2 atmosphere and can be scaled up with minimal yield loss. A sample of CoI2 

(0.059 g, 0.189 mmol) was added to a 20 mL vial. MeCN (~12 mL) was added to 

the vial and the green mixture was stirred. The addition of DMF (~5-7 mL) to this 

solution that contained some CoI2 undissolved turned the solution a light pink 

color. Slightly less than 2 equivalents of tmphen (0.078 g, 0.330 mmol) was added 

to the murky, light pink solution and stirred for about ten minutes - resulting in a 
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cloudy, yellow solution. A sample of (PPN)3[RuIII(CN)6] (0.214 g, 0.114 mmol) was 

dissolved in MeCN (~17 mL) in a different 20 mL vial to give a clear, golden-

yellow-colored solution. The Co-containing solution was divided equally into two 

20 mL vials and then half of the (PPN)3[RuIII(CN)6] solution was poured into each 

vial, resulting in dark blue/green solutions. Within five days, large, dark blue, 

block-shaped crystals formed in both vials, leaving a light yellow solution. Typical 

yields are 30-40%. IR, ν(C≡N): 2139 (vw, sp), 2101 (w, sp) and 2059 (m, b) cm-1 

where vw = very weak, w = weak, m = medium, sp = sharp and b = broad. TGA 

thermograms exhibit mass losses between 10 and 12.5% up to 200 °C which 

correspond to ~5.7 to 7.4 molecules of acetonitrile per TBP molecule. Refer to 

page eighty-three in notebook number three for a detailed description of the 

procedure and observations for the synthesis of the Co3Ru2 TBP (3). 

 

{[Co(tmphen)2]3[Os(CN)6]2}·nSolv (Co3Os2) (4) 

This reaction was also carried out in an oxygen- and water-free glove box 

with a N2 atmosphere in an analogous manner to the Co3Ru2 congener and can 

be scaled up with minimal yield loss. A sample of CoI2 (0.053 g, 0.177 mmol) was 

dissolved in MeCN (~12 mL) and DMF (~5-7 mL). Less than two equivalents of 

tmphen (0.077 g, 0.326 mmol) were stirred into the light, pink solution for 

approximately ten minutes (turning the solution yellow) before being divided 

equally into two 20 mL vials. A 20 mL, neon-green, MeCN solution of 

(PPN)3[OsIII(CN)6] (0.246 g, 0.125 mmol) was divided equally and each half was 
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used to layer onto the cobalt-containing solution in each vial which resulted in 

powder formation and a dark blue/green solution at the interface. Large, dark blue, 

block-shaped crystals had formed within five days and the intensity of the solution 

had lightened. The vials were swirled to kick up any unwanted powder. The 

solvent and powder were decanted and the solvent was replaced with fresh 

MeCN. The samples were left under fresh MeCN for several hours before this 

purification step was repeated. This process is repeated as many times as 

necessary to obtain a solution free of powder and color. Once the MeCN remained 

clear and colorless with time, the crystals were collected by filtration. Typical yields 

range from 30-40% for TBPs. IR, ν(C≡N): 2142 (w, sp), 2095 (m, sh) and 

2052 cm-1 (vs) where w = weak, m = medium, sp = sharp and sh = shoulder. TGA 

thermograms exhibit mass losses up to 200 °C that range between 7 and 20%, 

which corresponds to ~4 – 14 molecules of acetonitrile per TBP molecule 

depending on the batch. Refer to page twenty-one in notebook four for a detailed 

description of the procedure and synthesis for the Co3Os2 TBP (4). 

 

{[ZnII(tmphen)2]3[OsIII(CN)6]2}·nSolv (Zn3Os2) (5) 

A light, neon-green-colored solution of (PPN)3[OsIII(CN)6] (0.20 g, 

0.102 mmol) was prepared with MeCN (20 mL) in a 40 mL vial. A stoichiometric 

shortage of tmphen (0.0592 g, 0.251 mmol) was added to a 20 mL MeCN solution 

of ZnCl2 (0.0279 g, 0.205 mmol) and then MeOH (8 mL) was added before stirring 

the reaction for about five minutes. The zinc-containing solution was gravity 
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filtered directly into the osmium containing solution in the 40 mL vial. Small, yellow 

needles formed from the yellow reaction mixture within 30 minutes. After this time, 

powder may be present. When this occurred, the solvent and powder were 

decanted as soon as powder began to form. The solvent was replaced with fresh 

MeCN and the solution was decanted again. A crop of crystals was collected 

resulting in a ~36% yield. IR, ν(C≡N): 2150 (w, sp), a doublet at 2133 and 

2125 (w), 2099 (m, b), 2073 (w, sh) and 2051 (w, b) cm-1 where w = weak, m = 

medium, b = broad and sh = shoulder. Below 150 °C, TGA thermograms exhibit 

a continuous, gradual mass loss which corresponds to varying amounts of 

interstitial solvent present from sample to sample. The compound is thermally 

stable up to ~270 °C. Refer to page ninety-seven in notebook six for a detailed 

description of the procedure and observations for the synthesis of the Zn3Os2 TBP 

(5). 

 

{[MII(tmphen)2]2[RuII(CN)4(tmphen)]2}·2DMF·8H2O (Mn2Ru2) (6) 

Methanol (20 mL) was added to MnCl2 anhydrous (0.0162 g, 0.129 mmol) 

in air and the mixture was stirred. DMF (20 mL) was added to aid in the dissolution 

of anhydrous MnCl2. The reaction was stirred for 20 minutes after which time 

tmphen (0.0668 g, 0.283 mmol) was added to the solution. A MeOH solution 

(40 mL) of (PPN)3[RuIII(CN)6] (0.217 g, 0.116 mmol) was prepared. Thin tubes 

were used to layer the yellow solution of (PPN)3[RuIII(CN)6] onto the light yellow 

solution of the Mn solution. A small amount of yellow powder formed at the dark 
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brown solvent interface. The tubes were covered with Parafilm® M and left 

undisturbed. Small, yellow, rod-shaped crystals formed between 2 and 6 months. 

No characterization data was obtained except for the crystal structure. Refer to 

page thirty-four in notebook six for a detailed description of the procedure and 

synthesis for the Mn2Ru2 square (6). 

 

Results and Discussion 

Synthesis and Characterization 

Co3Ru2 (3) and Co3Os2 (4) 

 Several attempts to prepare these TBP analogs were made before finding 

the right combination of solvent and starting materials that would result in the 

formation of crystals. Conventional methods used to prepare TBP molecules 

(combining MeCN or MeOH solutions of the [MII(tmphen)2]Cl2 and [MIII(CN)6]3- 

precursors) did not suffice and generally resulted in the crystallization of 

[CoII(tmphen)3]Cl2. Multiple solvent combinations and layering techniques were 

tried but none were found to work until two concomitant changes were made. By 

changing the starting material from CoCl2 to CoI2 and adding DMF to the MeCN 

solution containing the divalent halide salt and tmphen, crystals of both the 

Co3Ru2 and Co3Os2 analogs were obtained. The addition of DMF proved useful 

during the oxidation of the divalent hexacyanometallates to the trivalent species 

and it was thought that the addition of DMF during the formation of the TBP would 

help stabilize the reaction. 



 

105 

 

 Although these compounds were first prepared under anaerobic 

conditions, it was found that they can be prepared in air as well. The anaerobic 

preparation of the TBPs allows for some control of interstitial solvent and better 

reproducibility of the compounds’ properties as it has been shown that TBPs are 

very susceptible to solvent exchange with water which usually affects the 

magnetic properties of them. It was also found that these TBPs can be prepared 

in a bulk manner when the synthetic conditions discussed here are met, similarly 

to most other TBPs made by our group.  

 IR stretching frequencies of the terminal and bridging cyanide ligands for 

both compounds are listed in Table 3-1. The higher frequency values are 

consistent with bridging cyanide ligands while the frequencies at 2059 cm-1 and 

2052 cm-1 are in accord with terminal cyanide ligands coordinated to RuII and OsII, 

respectively. The room temperature IR spectra indicate that the RuIII precursor 

has been reduced to RuII, most likely from a charge-transfer (CT) event between 

CoII and RuIII. As there are no νC≡N modes that correspond to frequencies exhibited 

by the [RuIII(CN)6]3- starting material, it is believed that two CT events occurred 

and the TBP exists as [CoIICoIII
2RuII

2] at room temperature. The IR spectrum for 

Co3Os2 is very similar to that of Co3Ru2 and suggests that two CT events occurred 

resulting in a room temperature configuration of [CoIICoIII
2OsII

2], which is in 

contrast to the room temperature magnetic data (vide infra). 
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Table 3-1. Cyanide stretching frequencies for compounds 3 and 4 along with the 
K4[MII(CN)6] and (PPN)3[MIII(CN)6] starting materials as references. 

Compound Bridging (cm-1) Terminal (cm-1) 

Co3Ru2 (3) 2139, 2101 2059 

K4[RuII(CN)6] — 2052, 2038 

(PPN)3[RuIII(CN)6] — 2094, 2085 

Co3Os2 (4) 2142, 2095 2052 

K4[OsII(CN)6] — 2068, 2039 

(PPN)3[OsIII(CN)6] — 2083, 2076 

 

 

 TGA data demonstrate that the ability of TBPs to contain varied amounts 

of solvent in the interstices is not different for these congeners and underscores 

the importance of characterizing samples used for magnetic measurements by 

TGA. Crystal data alone is not sufficient for determining interstitial solvent 

molecules for the diamagnetic correction of magnetic data, making TGA a 

necessary characterization method for TBPs. Co3Ru2 and Co3Os2 were found to 

be thermally stable throughout the analyses, which were carried out until 200 °C. 

 

Zn3Os2 (5) 

 The crystallization of the Zn3Os2 TBP requires specific conditions, similar 

to the other TBPs mentioned here. The synthesis of this TBP only works when 

MeOH is added to the MeCN solution of ZnCl2 and tmphen before mixing it with 

the MeCN solution of (PPN)3[OsIII(CN)6]. If the MeOH is not included, crystals will 

not form and powder will precipitate within twenty minutes. This still occurs even 
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if MeOH is added after the two solutions are mixed but before the powder 

precipitates. The yield of the reaction is dependent upon the rate at which the 

solutions are mixed. Layering the two solutions results in very few crystals forming 

along with the yellow powder. However, quickly mixing the two solutions together 

leads to the formation of the crystalline product. 

 The IR spectra exhibit six different peaks in the cyanide stretching 

frequency region (refer to Table 3-2). As with other TBPs and cyanometallate 

compounds, the three higher frequency peaks are attributed to the bridging 

cyanide ligands while the two lowest frequency peaks are most likely due to the 

terminal cyanide ligands as they resemble the stretching frequencies exhibited by 

the (PPN)3[OsIII(CN)6] precursor. The stretch at 2099 cm-1 is the most dominate 

of the peaks and is assigned to a terminal stretching frequency and is 26 cm-1 

lower than the three peaks attributed to the bridging cyanide and 26 cm-1 higher 

than the typical values for [OsIII(CN)6]3- salts. 

 

 

Table 3-2. Room temperature IR νC≡N for the Zn3Os2 TBP (5). 

 Bridging (cm-1) Terminal (cm-1) 

Zn3Os2 TBP (5) 2150, 2133, 2125 2099, 2073, 2051 

 

 

 As with most TBPs studied, analysis of the TGA thermograms for the 

Zn3Os2 TBP reveal that the amount of solvent in these compounds vary. Typical 
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thermograms exhibit an immediate but gradual mass loss between room 

temperature and 150 °C which typically corresponds to ~4 – 10% mass loss. The 

Zn3Os2 TBP was determined to be thermally stable up to 270 °C before 

decomposition began. Analysis of the thermogram that was performed on the 

Zn3Os2 sample measured in the SQUID revealed the TBP lost 5.6% of its mass 

due to solvent loss, which corresponds to ~7.6 H2O molecules per TBP.  

 

{[MII(tmphen)2]2[RuII(CN)4(tmphen)]2} (Mn2Ru2) (6) 

 The formation of this molecule was not intentional and was the result of 

one of many attempts to crystallize the Mn3Ru2 TBP. By layering MeOH/DMF 

solutions of the usual starting materials for the synthesis of TBPs, in conjunction 

with being left undisturbed for a significant amount of time (> 2 months), yellow 

rod-shaped crystals formed among yellow powder. Due to the small amount of 

crystallized product, no characterization techniques other than single X-ray 

crystallography could be done on this compound. 

 

Single Crystal X-ray Diffraction 

 Relevant crystal structure data and refinement parameters for the 

compounds discussed in this chapter are listed in Table 3-4. Details on the 

methods used to collect the structural data for the compounds can be found in 

Appendix A. For compounds 3 and 4, both MeCN and water molecules were 

determined to be in the void spaces while trying to model the disordered Q-peaks. 
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The Zn3Os2 TBP (5) was determined to contain only water in the void space as 

the electron densities were not consistent for MeCN. The SQUEEZE program190 

within PLATON was used to analyze the void spaces and the amount of electron 

density for molecule 3 – 5 (Table 3-3). With the use of Solver (a built in Excel add-

in), both the calculated electron density and void space were used to solve for the 

approximate amount of MeCN and/or water molecules for each TBP. The increase 

in electron density found in the Co3Os2 TBP at 20 K as compared to 100 K is most 

likely the result of ice formation on the crystal or could possibly be due to the 

crystal absorbing atmospheric water during data collection.  The solvent in the 

Mn2Ru2 compound (6) was modeled so the use of SQUEEZE was not needed.  

 

 

Table 3-3. SQUEEZE analysis and results for the Co3Ru2, Co3Os2 and Zn3Os2 TBPs. 

TBP 
Temp 

Void 
Space (Å) 

Number of 
Electrons 

% Void 
Space 

H2O/TBP MeCN/TBP 

Co3Ru2 

110 K 
4151.0 2012 40.0 24.0 4.5 

Co3Os2 

20 K 
4180.0 2498 40.2 27.8 3.7 

Co3Os2 

100 K 
4223.8 866 40.2 20.6 3.2 

Zn3Os2 

100 K 
3156.0 873 26.5 21.8 0 
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Table 3-4. Structural data and refinement parameters for compounds 3 – 6. 

Compound Co3Ru2 (3) 110 K Co3Os2 (4) 20 K Co3Os2 (4) 100 K Zn3Os2 (5) 100 K Mn2Ru2 (6) 100 K 

Space Group P3221 P3221 P3221 P21/c P-1 

a/ Å 24.552(4) 24.5892(15) 24.646(10) 19.8681(14) 15.6277(7) 

b/ Å 24.552(4) 24.5892(15) 24.646(10) 25.0997(17) 18.4130(8) 

c/ Å 19.857(3) 19.7803(14) 19.830(8) 24.1240(17) 20.8511(9) 

α/ ° 90 90 90 90 80.533(3) 

β/ ° 90 90 90 98.781(5) 79.169(3) 

γ/ ° 120 120 120 90 69.601(3) 

Volume/ Å3 10366(3) 10357.4(15) 10431(10) 11889.2(14) 5491.5(4) 

Z 3 3 3 4 2 
aInterstitial Solvent 2 MeCN, 23 H2O 3 MeCN, 23 H2O 4 MeCN, 21 H2O 22 H2O 2 DMF, 8 H2O 

μ/ mm-1 0.61 2.23 2.215 3.359 6.389 

Crystal Habitat Dark Blue Block Dark Blue Block Dark Blue Block Yellow Needle Yellow Rod 

Crystal Size/ mm3 0.22 x 0.27 x 0.36 N/A N/A 0.12 × 0.11 × 0.02 0.028 × 0.019 × 0.019 

λ MoKα 0.71073 MoKα 0.71073 MoKα 0.71073 Sync. 0.7749 Sync. 0.7749 

2Θ Range for 
Data Collection/ ° 

2.806 to 54.96 3.826 to 61.424 8.862 to 61.612 4.124 to 46.078 4.328 to 48.296 

Independent 
Reflections 

13069 
Rint = 0.0556 

Rsigma = 0.0702 

21403 
Rint = 0.1849 

Rsigma = 0.1169 

21647 
Rint = 0.2275 

Rsigma = 0.1907 

12800 
Rint = 0.1339 

Rsigma = 0.0954 

13487 
Rint = 0.1241 

Rsigma = 0.0999 

Data/Restraints/Parameters. 13069/0/629 21403/153/631 21647/153/631 12800/456/1256 13487/0/1367 
bGooF on F2 0.931 1.03 0.983 1.066 1.021 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0362 
wR2 = 0.0875 

R1 = 0.0655 
wR2 = 0.1273 

R1 = 0.0753 
wR2 = 0.1506 

R1 = 0.0897 
wR2 = 0.2601 

R1 = 0.0580 
wR2 = 0.1468 

c,dFinal R Indexes 
[all data] 

R1 = 0.0544 
wR2 =0.0970 

R1 = 0.1628 
wR2 = 0.1704 

R1 = 0.2045 
wR2 = 0.2096 

R1 = 0.1389 
wR2 = 0.2998 

R1 = 0.1064 
wR2 = 0.1695 

Largest Diff. 
Peak / Hole/ e Å-3 

0.29 / -0.22 1.73 / -0.85 1.42 / -0.82 1.95 / -1.05 1.67 / -.60 

aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-p)}1/2, where n is the number of reflections and p is the total 

number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - Fc

2)2]/∑w(Fo
2)2]}1/2.
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Co3Ru2 (3) and Co3Os2 (4) TBPs 

 Whereas most TBPs studied by our group (including the Co3Fe2 TBP) 

crystallize in the P21/c space group, the Co3Ru2 and Co3Os2 TBPs crystallize in 

the enantiomorphic, more symmetrical P3221 space group. This results in the 

equatorial Co ions having near perfect three-fold rotation when looking down the 

axial positions of the TBP and the asymmetric unit being only half of the TBP 

(Figure 3-1). The metal–ligand (M–L) bond lengths for the Co3Ru2 and Co3Os2 

TBPs can be found in Table 3-5. Variable temperature studies were tried for the 

Co3Os2 TBP as magnetic behavior (vida infra) warranted it. Unfortunately, the 

Co3Os2 TBP rapidly desolvates so room temperature data were not obtained. 

Data collected above 100 K on multiple crystals could not be well resolved and 

will not be discussed. The M–C bond lengths for these TBPs are similar between 

them (~2.02 Å) and give no indication of the oxidation state of the metal. Due to 

the symmetry of the TBP, only one axial metal position (M–C) is 

crystallographically unique. The symmetry of these TBPs results in one and one-

half of the equatorial cobalt centers being crystallographically unique as well. In 

these structures, the Co(1) centers are symmetrically equivalent and make up 2/3 

of the equatorial metal sites. Typical bond lengths for a Co–N6 coordination 

environment generally follow the trend: LS CoIII (~1.9 Å) < LS CoII (~2.0 Å) < HS 

CoII (~2.1 Å).191-195 A HS electronic configuration of CoIII is very unlikely as the 

only known examples of this situation are for [CoF6]3-, [CoF3(OH2)3] and Klaui 

complexes.81,196-199 The Co3Ru2 TBP at 110 K and the Co3Os2 TBP at both 20 K 
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and 100 K have similar metrical parameters. All have one cobalt center (Co(2)) 

with an average Co–N bond length of ~1.9 Å and two symmetrically equivalent 

cobalt centers (Co(1)) with an average Co–N bond length of ~2.0 Å. The average 

Co–N bond lengths for the Co(2) centers are consistent with literature values for 

a LS CoIII center and the Co(1) centers have typical bond lengths characteristic of 

a LS CoII–N6 configuration. These data suggest that both the Co3Ru2 and Co3Os2 

TBPs are in a [(LS-CoII)2(LS-CoIII)MIIMIII] (M = Ru or Os) electronic configuration. 

However, as these TBPs are more symmetrical than usual, the actual bond 

lengths of the Co(1) centers could be different from one another and the values 

obtained could be spatial averages of the two centers throughout the lattice. If this 

is the case, then one of the Co(1) centers could actually have an average Co–N 

bond length closer to 1.9 Å (for a LS CoIII center) while the other Co(1) center has 

Co–N bond lengths closer to 2.1 Å (typical for a HS CoII center). Knowing this, the 

possibility of a [(HS-CoII)(LS-CoIII)2MII
2] (M = Ru or Os) configuration cannot be 

precluded as a possibility and is actually the case for the water containing Co3Fe2 

congener that crystallizes in the less symmetric P21/c.147,148  
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Figure 3-1. Asymmetric unit of the Co3Os2 TBP. Co3Ru2 is isomorphic and not 
shown. Color scheme: Green is Os, cyan is Co, blue is N and white is C. Hydrogen 
atoms have been omitted for the sake of clarity. 
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Table 3-5. M–L bond lengths for the asymmetric units of the Co3Ru2 and Co3Os2 TBPs. 

Co3Ru2 (3)          Co(1)–N          Co(2)–N          Ru(1)–C 

110 K 1.948 (6) 1.894 (4) 1.971 (6) 
1.958 (4) 1.945 (5) 2.005 (5) 
2.025 (5) 1.962 (4) 2.021 (5) 
2.030 (5)   2.050 (5) 
2.032 (6)   2.059 (6) 
2.046 (7)   2.068 (7) 

Avg M–L 2.006 (5) 1.934 (4) 2.029 (6) 

Co3Os2 (4)           Co(1)–N           Co(2)–N            Os(1)–C 

20 K 1.954 (10) 1.902 (09) 1.965 (11) 
1.954 (14) 1.933 (11) 1.998 (15) 
2.034 (11) 1.960 (09) 2.007 (12) 

2.043 (11)   2.041 (14) 

2.068 (10)   2.047 (18) 
2.078 (13)   2.069 (13) 

Avg M–L 2.022 (11) 1.932 (10) 2.021 (14) 

100 K 1.952 (12) 1.885 (12) 1.952 (14) 
1.954 (17) 1.916 (12) 2.001 (18) 
2.014 (13) 1.946 (11) 2.020 (15) 
2.023 (13)   2.024 (20) 
2.061 (14)   2.041 (17) 
2.061 (11)   2.058 (16) 

Avg M–L 2.011 (13) 1.916 (12) 2.016 (17) 

 

 

 Upon investigating the π-π stacking interactions within the Co3Ru2 and 

Co3Os2 TBPs using the Olex2 structure solution program200, it was found that 

these molecules have one intermolecular interaction (Figure 3-2) and one 

intramolecular interaction (Figure 3-3). The parameters Olex2 uses to detect 

intermolecular interactions is a centroid-centroid distance less than 4 Å between 
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planes formed by NC5 or C6 rings and a shift distance between centroids that is 

less than 3 Å. A 4 Å distance for the centroid-centroid distance is considered to 

be slightly long for π-π stacking interactions, as discussed by Janiak.201 Strong 

π-π interactions are considered to be at a distance ~3.3 Å with weaker interactions 

~3.6 – 3.8 Å. The distance of 3.8 Å is generally considered the maximum distance 

for which π-π interactions are acknowledged, which is in accordance with the sum 

of Van der Waals radii’s (with 1.77 Å the proposed radii for C).202 Figure 3-2 

highlights the intermolecular interaction (purple plane in the figure) between the 

carbon ring in one tmphen ligand with its symmetrically equivalent self in the other 

TBP. This interaction, being a consequence of these TBPs stacking in a dimeric 

unit due to symmetry, is the stronger of the two π-π stacking interactions as 

indicated by the smaller centroid-centroid distance (Table 3-6). Figure 3-3 

highlights the intramolecular interactions (blue and green planes in the figure) 

between tmphen ligands on the Co(1) and Co(2) centers and is the weaker of the 

two molecular interactions, having centroid-centroid distances of ~3.96 Å. This 

interaction is very weak and the centroid-centroid distance can be considered as 

being too long for an interaction to be relevant (according to Janiak), but for the 

purpose of comparisons, the distance of 4.0 Å that Olex2 uses to define an 

interaction will be used throughout this dissertation. Despite the structure having 

nearly three-fold symmetry when looking down the axial metal positions, there is 

no intramolecular interaction between the tmphen ligands coordinated to the two 

Co(1) centers (centroid-centroid distances just slightly over 4 Å), just like in the 
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TBPs that crystallize in P21/c. When comparing the π-π interactions (Table 3-6) 

between the Co3Ru2 and Co3Os2 TBPs, it appears that they are slightly slipped 

(as indicated by the increase in shift distances) for the Co3Ru2 congener with the 

most noticeable difference between the two TBPs being the intramolecular 

interaction.  

 

 

 

Table 3-6. Geometric parameters (centroid-centroid distances, shift distances and angles 
between planes) for the inter- and intramolecular π-π stacking interactions in the Co3M2 
TBPs (3 and 4). 

Interaction- 
Plane 

TBP Temperature 
Centroid-Centroid 

Distance (Å) 
Shift 

Distance (Å) 
Angle (º) 

inter-pp 

Co3Ru2 110 K 3.700 1.313 2.598 

Co3Os2 
20 K 3.652 1.220 3.206 

100 K 3.653 1.250 3.127 

intra-gb 

Co3Ru2 110 K 3.964 1.597 12.268 

Co3Os2 
20 K 3.949 1.324 11.180 

100 K 3.970 1.366 10.257 
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Figure 3-2. Dimeric unit of the Co3M2 TBPs where 
M = Ru/Os. The purple planes highlight the 
intermolecular interaction between these 
molecules. Interaction referred to as inter-pp. 
Hydrogen atoms are omitted for the sake of 
clarity.  



 

118 

 

 

 

 

 

Figure 3-3. View of the Co3M2 TBP (where M = Ru/Os) looking down the axial 
Ru/Os positions. The green planes are symmetrically equivalent to one another  
just as the blue ones are. The intramolecular interactions that occur in these TBPs 
occur between the green plane and the blue plane. Interaction referred to as 
intra-gb. Hydrogen atoms omitted for the sake of clarity. 
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Zn3Os2 TBP (5) 

 The Zn3Os2 TBP crystallizes in the P21/c space group, similarly to most of 

the TBPs prepared by our group. The structural data and refinement parameters 

are listed in Table 3-4 and the M-L bond lengths can be found in Table 3-7. It is 

not possible that a ZnII ion (d10) will undergo a charge transfer with the OsIII metal 

center so there is no ambiguity concerning oxidation states of the metal centers 

in this TBP. There is also no uncertainty of the spin state of the ZnII metal center 

as it cannot undergo a SCO owing to its t2g
6eg

4 electronic configuration. This 

makes the assignment of the electronic structure of this TBP straightforward and 

is assigned as ZnII
3OsII

2. At 100 K the average ZnII–N bond distances are ~2.14 Å 

for all three ZnII centers and correspond well to the average ZnII–N bond distances 

of ~2.15 Å in the Zn3Fe2 TBP at 150 K.145 The average OsIII–C bond distances are 

2.05(3) Å and 2.03(3) Å for the Os(1) and Os(2) centers, respectively. As 

expected, due to the larger radius for 5d metals as compared to 3d metals, the 

OsIII–C bond lengths of ~2.0 Å in the Zn3Os2 TBP are slightly longer than the  

FeIII–C bond lengths of ~1.9 Å for both the Zn3Fe2 and Co3Fe2 TBPs.145,148  
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Table 3-7. M–L bond lengths (in Å) for the Zn3Os2 TBP (5). 

Temperature Zn(1)–N Zn(2)–N Zn(3)–N Os(1)–C Os(2)–C 

100 K 2.01 (2) 2.05 (2) 2.02 (2) 1.97 (3) 1.96 (4) 
2.14 (2) 2.05 (3) 2.05 (2) 2.03 (2) 1.96 (3) 
2.14 (2) 2.18 (2) 2.14 (2) 2.05 (3) 2.06 (3) 
2.17 (2) 2.20 (2) 2.14 (2) 2.07 (2) 2.07 (3) 
2.19 (2) 2.20 (2) 2.25 (2) 2.07 (3) 2.07 (5) 
2.22 (2) 2.22 (2) 2.26 (2) 2.08 (3) 2.08 (3) 

Avg M–L 2.14 (2) 2.15 (2) 2.14 (2) 2.05 (3) 2.03 (3) 

 

 

Similarly to the other TBPs that crystallize in the P21/c space group, the 

Zn3Os2 TBP stacks in a dimeric unit with two intermolecular interactions between 

two tmphen ligands coordinated to the Zn(3) centers in neighboring TBP 

molecules and two intramolecular interactions between tmphen ligands on the 

Zn(1) and Zn(2) metal centers and the Zn(2) and Zn(3) centers. The purple and 

yellow planes in Figure 3-4 depict the intermolecular interactions due to the π-π 

stacking between TBPs in the dimeric unit. Table 3-8 contains the pertinent 

centroid-centroid and shift distances as well as the angles between the planes. 

The interactions are labeled according to the color used for each plane: purple 

(p), yellow (y), teal (t) and whether it is an inter- (inter) or intramolecular (intra) 

interaction occurring between planes. The inter-pp and inter-py interactions 

(Figure 3-4) are the strongest of the π-π stacking interactions in the Zn3Os2 TBP 

with centroid-centroid distances of ~3.6 Å but are still considered relatively weak 

as far as π-π stacking interactions are concerned. The intra-tt interaction involving 

the Zn(1) and Zn(2) metal centers and the intra-gg interaction involving the Zn(2) 
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and Zn(3) metal centers are the weakest of the π-π stacking interactions in this 

TBP (Figure 3-5). Overall, the Zn(3) center has one tmphen ligand involved in two 

intermolecular interactions and the other tmphen ligand involved in an 

intramolecular interaction (3 interactions total) whereas the Zn(2) center is 

involved in two very weak intramolecular interactions and the Zn(1) center is 

involved in one very weak intramolecular interaction. 

 

 

 

Table 3-8. Geometric parameters (centroid-centroid distances, shift distances and 

angles between planes) for the inter- and intramolecular π-π stacking interactions in the 
Zn3Os2 TBP (5). 

Interaction-Plane 
Centroid-Centroid 

Distance (Å) 
Shift 

Distance (Å) 
Angle (º) 

inter-pp 3.652 1.163 0 

inter-py 3.672 1.326 1.545 

intra-tt 3.939 1.491 8.237 

intra-gg 3.895 1.178 6.526 
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Figure 3-4. View of the Zn3Os2 TBP stacking in a dimeric unit. The purple and yellow 
planes highlight the rings within the tmphen ligands that are involved in the intermolecular 
π-π stacking interactions (inter-pp and inter-py). Color code: Zn is Yellow, Os is green, C 
is white and N is blue. Hydrogen atoms omitted for clarity. The pink tmphen ligand is 
coordinated to a Zn(3) center and the cyan tmphen ligand is its symmetrically equivalent 
(due to inversion) tmphen ligand coordinated to the Zn(3) center on the neighboring TBP. 
These two ligands are the ones involved in the π-π stacking interactions. 
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Figure 3-5. View of the Zn3Os2 TBP looking down the axial Os positions. The teal 
colored planes portray the intra-tt intramolecular interaction and the green planes 
depict the intra-gg intramolecular interaction. There is no intramolecular 
interaction between the tmphen ligands on the Zn(1) and Zn(3) centers, as 
indicated by the red arrow marked out. Hydrogen atoms have been omitted for 
clarity.  
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{[MII(tmphen)2]2[RuII(CN)4(tmphen)]2} (Mn2Ru2) (6) 

 This molecule is a tetranuclear compound consisting of two divalent Mn 

ions and two divalent Ru ions that crystallizes in P-1, having an inversion center 

as its only symmetry element. In order for the molecule to be charge-balanced, 

the [RuIII(CN)6]3- starting material must have been reduced to [RuII(CN)6]4- 

moieties. Two of the cyanide ligands from each of the reduced [RuIII(CN)6]3- units 

were replaced with a tmphen molecule, which magnifies the underlying concept 

of the [RuIII(CN)6]3- moiety not being stable. Not only was the RuIII reduced to RuII 

but the cyanide ligands have become labile in solution. The metal centers form a 

distorted square-type geometry wherein both RuII ions are bridged to the MnII 

centers in a RuII–C≡N–MnII fashion. The ruthenium atoms do not bridge each 

other nor do the manganese centers. The molecule crystallizes with 8 H2O and 

two DMF molecules that participate in hydrogen bonding with all of the terminal 

cyanide ligands as shown in Figure 3-6. Figure 3-7 is a packing diagram of the 

molecule looking down the a-axis. The structural data and refinement parameters 

for the molecule at 100 K are in Table 3-4 and the M-L bond lengths are in  

Table 3-9. Both MnII centers have average MnII–N bond lengths of ~2.23 Å, which 

matches the average MnII–N bond lengths in the Mn3Fe2 TBP.203 The RuII ion is 

in a different octahedral coordination environment from the usual TBP 

configuration. Now the RuII metal centers have only four cyanide ligands 

coordinated to them (two of them are terminal and the other two are bridging the 

MnII centers) whereas the other two coordination sites are occupied by nitrogen  
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Figure 3-6. Asymmetric unit of Mn2Ru2. Thermal ellipsoids at 50% probability 
level.  Hydrogen bonds are represented with dashed lines. Color scheme: Mn is 
pink, Ru is purple, N is blue, C is grey, O is red and H is white. Looking down the 
a-axis, approximately. 
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Table 3-9. M-L bond distances (in Å) for Mn2Ru2 (6). 

Temperature Mn(1)–N Mn(2)–N Ru(1)–C Ru(1)–N Ru(2)–C Ru(2)–N 

100 K 2.118 (7) 2.114 (7) 1.971 (9) 2.109 (6) 1.951 (09) 2.107 (6) 

2.142 (7) 2.145 (7) 1.995 (9) 2.119 (6) 1.995 (09) 2.117 (6) 

2.249 (6) 2.248 (6) 2.036 (9)   2.024 (10)   

2.262 (7) 2.264 (6) 2.042 (9)   2.031 (10)   

2.269 (6) 2.322 (7)         

2.355 (6) 2.325 (7)         

Avg M–L 2.233 (7) 2.236 (7) 2.011 (9) 2.114 (6) 2.000 (9) 2.112 (6) 

 

Figure 3-7. Packing diagram of Mn2Ru2 looking down the a-axis. Hydrogen atoms 
are omitted for the sake of clarity. Color scheme: Mn is pink, Ru is purple, N is 
blue, C is grey and O is red. 
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atoms from the coordinated tmphen molecule. The average RuII–C bond lengths 

for each center are ~2.0 Å and the average RuII–N bond lengths are ~2.1 Å for 

each RuII center. Analysis of the π-π stacking interactions with Olex2 reveals 

that the molecule has intermolecular interactions with three other adjacent 

molecules and two intramolecular interactions. All of the rings in the tmphen ligand 

that are involved in the π-π stacking interactions are colored in Figure 3-8 and the 

corresponding geometric parameters are in Table 3-10. In the table, the 

interactions are labeled according to plane color: purple (p), yellow (y), teal (t), 

maroon (m), blue (b), red (r), green (g) and grey and also whether it is an inter- 

(inter) or intramolecular (intra) interaction occurring between planes. Planes of the 

same color are symmetrically equivalent. Except for the inter-gg interaction, the 

intermolecular interactions are weaker than the intramolecular interactions, which 

is in contrast to the TBP molecules. All of the π-π stacking interactions are 

considered to be weak and three of the four intermolecular interactions could be 

considered irrelevant according to literature standards. 
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Table 3-10. Geometric parameters (centroid-centroid distances, shift distances and 
angles between planes) for the inter- and intramolecular π-π stacking interactions in 
Mn2Ru2 (6). 

Plane 
Centroid-Centroid 

Distance (Å) 
Shift 

Distance (Å) 
Angle (º) 

inter-py 3.930 2.057 3.354 

inter-gg 3.697 1.358 0 

inter-yy 3.939 1.922 0 

inter-grey 3.948 1.857 0 

intra-mt 3.804 1.223 6.903 

intra-rb 3.732 1.372 3.278 

 

 

Figure 3-8. Depiction of the π-π stacking interactions in the Mn2Ru2 compound. 
Rings of the same color are symmetrically equivalent. 
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Magnetic Properties 

Co3Ru2 (3) and Co3Os2 (4) TBPs 

 Although the Co3Ru2 and Co3Os2 TBPs have very similar structural 

properties, their magnetic behavior is quite different. As shown in Figure 3-9, the 

temperature dependent susceptibility data varies between the two congeners, 

from the Co3Ru2 TBP being a paramagnet to the Co3Os2 exhibiting some form of 

spin-transition behavior. The room temperature susceptibility data for the Co3Ru2 

TBP Figure 3-9a) is ~2.7 emu·K/mol which corresponds to a  

[(HS-CoII)(LS-CoIII)2RuIII
2]. The only paramagnetic center contributing to the 

magnetic moment in this configuration is the HS CoII center, which has a spin-only 

value of 1.875 emu·K/mol but is typically observed to be 2.0 – 3.2 emu·K/mol due 

to orbital contributions.195,204,205 The only other electronic combination that would 

come close to a χT value of ~2.7 is [(LS-CoII)3RuIII
2] (spin-only value of 

1.875 emu·K/mol) but this does not account for the difference in the Co–N bond 

lengths (~2.0 and ~1.9 Å), nor does it account for the sharp decrease in the χT 

data below 100 K to 1.7 emu·K/mol which is attributed to decreasing orbital 

contributions and zero field splitting effects. The saturation of the magnetization 

data (Figure 3-10a) at 2.1 μB instead of 3 μB is also typical for a HS CoII ion with 

significant orbital contributions in an Oh coordination environment.15,206,207 In the 

Co3Fe2 TBP, simulation of EPR spectra gives g-values for the HS CoII site as 

g1 = 2.53, g2 = 2.42, g3 = 2.02, resulting in a geff ≅ 2.39 indicating an important 

orbital contribution.148 Splitting of the isofield lines in the reduced magnetization 



 

130 

 

data (Figure 3-11a) is not observed.  

 In contrast to the Co3Ru2 TBP, the Co3Os2 TBP exhibits reversible redox 

properties between 2 K and 300 K. The χT value of 8.2 emu·K/mol (Figure 3-9b) 

at 350 K renders the assignment of the TBP electronic configuration relatively 

easy when any configuration depending on a HS CoIII ion is not considered. The 

only reasonable electronic configuration for the TBP above room temperature 

then becomes analogous to anhydrous crystals of the Co3Fe2 congener and is 

[(HS-CoII)3OsIII
2]. The spin-only value for this configuration is ~6.4 emu·K/mol, but 

due to significant orbital contributions from HS CoII, it is reasonable that χT is 

much higher. As the temperature is lowered, an immediate decrease in the 

susceptibility data is observed (Δ ≅ 5.5 emu·K/mol) until the decrease becomes 

more gradual between 200 and 70 K (Δ ~ 1 emu·K/mol). Below 70 K, χT 

decreases by ~1.6 emu·K/mol as it reaches 2.1 emu·K/mol at 2 K. The overall 

curve shape is indicative of a gradual spin-transition that lacks cooperativity and 

occurs over the entire temperature range of 2 – 350 K with a total change of 

6.1 emu·K/mol in the susceptibility data. Table 3-11 lists the possible spin-

transitions for the equatorial Co sites and the expected changes in the χT values 

(spin-only model) associated with each transition. If an electron transfer is 

involved in the spin-transition, then the additional change in χT expected for the 

contribution of the Os is also included. In order to induce a change of 

6.1 emu·K/mol, one of a few possible spin-transition scenarios must occur as the 

temperature is decreased to 2 K: (1) a total of 3 SCO events from HS CoII → 
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LS CoII (ΔχTspin-only = 4.5 emu·K/mol), (2) 2 CTIST events from HS CoII → LS CoIII 

(ΔχTspin-only =  4.5 emu·K/mol) or (3) 2 CTIST events from HS CoII → LS CoIII 

coupled with a SCO from HS CoII → LS CoII (ΔχTspin-only = 6 emu·K/mol). However, 

susceptibility data alone does not allow for definitive assignment of the spin-

transitions occurring as the temperature changes, especially when significant 

spin-orbit coupling is involved. Magnetization data at 1.8 K, however  

(Figure 3-10b), begins to saturate near 3 μB at 7 T which is indicative of an 

electronic configuration with 3 unpaired electrons. Scenario 1 would result in a 

TBP configuration of [(LS-CoII)3OsIII
2] at 1.8 K and 5 unpaired electrons. Scenario 

2 would lead to a [(HS-CoII)(LS-CoIII)2OsII
2] configuration with 3 unpaired electrons 

at 1.8 K and scenario 3 would cause a configuration of [(LS-CoII)(LS-CoIII)2OsII
2] 

which would have 1 unpaired electron at 1.8 K. Magnetization data suggests that 

the TBP undergoes the transitions in scenario 2 (2 CTIST events) as temperature 

is decreased to obtain the same electronic configuration as the Co3Ru2 TBP at 

1.8 K, which is [(HS-CoII)(LS-CoIII)2OsII
2]. Reduced magnetization data for the 

Co3Os2 TBP (Figure 3-11b) exhibit more splitting between the iso-field lines than 

the Co3Ru2 congener. Preliminary photomagnetic studies were pursued for these 

TBPs but no change in magnetic moment was observed at 10 K with white light 

irradiation for a few hours.  
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Table 3-11. Possible spin-transitions for the Co3Os2 TBP and the ΔχTspin-only values 
associated with those transitions. If the transition involves an electron transfer, the 
additional change in χT due to the Os contribution is in the last column. 

Possible 
Electronic 
Transitions 

Type of 
Transition 

ΔχT                           
(Co Only)     

(emu·K/mol) 

Total ΔχT                            
(Os Included) 
(emu·K/mol) 

LS CoII ↔ HS CoII SCO 1.5 1.5 

LS CoII ↔ LS CoIII CT 0.375 0.750 

HS CoII ↔ LS CoIII CTIST 1.875 2.250 
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Figure 3-9. Temperature-dependent susceptibility data for the Co3Ru2 (a) and 
Co3Os2 (b) TBPs. 
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Figure 3-10. Magnetization data at 1.8 K for the Co3Ru2 (a) and Co3Os2 (b) TBPs. 
The pink line represents a Brillouin function for an S = 3/2 system with a g = 2.0. 
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Figure 3-11. Reduced magnetization data for the Co3Ru2 (a) and Co3Os2 (b) 
TBPs. 
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Upon comparing magnetic behavior, the RuIII metal ions in the Co3Ru2 TBP 

undergo an irreversible electron transfer with the CoII centers which then behaves 

as an isolated HS CoII paramagnet while the Co3Os2 TBP has rich redox 

properties that allow for two reversible CTIST events as temperature changes. 

Both of these TBPs differ from the spin-transitions observed in the three different 

solvation states of the Co3Fe2 TBP. The Co3Fe2 TBP exists as a blue solid when 

prepared in air, a red solid when a sample prepared in air is subjected to a vacuum 

and as red crystals when prepared in an anhydrous environment using MeCN. As 

temperature is increased from 2 to 300 K, the blue solid remains mostly in the 

[(HS-CoII)(LS-CoIII)2FeII
2] state but appears to begin a spin-transition near 300 K 

(similar to the Co3Ru2 TBP except for the appearance of a spin-transition near 

300 K), the red solid remains as [(HS-CoII)3FeIII
2] and the red crystals begin as  

[(HS-CoII)(LS-CoII)(LS-CoIII)FeIIIFeII] before undergoing one CTIST event which 

leads to the same configuration as the red solid (similar to the Co3Os2 TBP but 

has only one CTIST event instead of two).147,148 The blue solid form of the Co3Fe2 

TBP is also photomagnetic, capable of converting ~36% of the diamagnetic 

CoIII–FeII pairs to HS-CoII–FeIII pairs with 1 hour of irradiation with white light at 

10 K.111 

 

Zn3Os2 (5) 

 The purpose of preparing and measuring the Zn3M2 TBPs was to obtain 

model compounds in order to determine the magnetic contribution of the axial 
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metal centers to the TBP. One does not expect any exchange interactions 

between the two axial metal centers through the long, diamagnetic  

–C≡N–ZnII–N≡C– bridge. The temperature-dependent magnetic susceptibility 

data of Zn3Os2 (Figure 3-12a) was fit to Curie-Weiss behavior with a Curie 

constant (C) of ~0.58 emu·K/mol, a Weiss constant (θ) of 0.05 and a TIP = 

1200 x 10-6 emu·K/mol. The Curie constant was obtained using S = ½ and 

g = 1.75 for each OsIII center. The Weiss constant of 0.05 indicates very weak 

ferromagnetic coupling between the axial OsIII centers through the long, 

diamagnetic –C≡N–ZnII–N≡C– linkage. Magnetization data at 1.8 K  

(Figure 3-12b) was modeled with a Brillouin function for two S = ½ ions with 

g = 1.67. The Zn3Fe2 TBP exhibits similar magnetization and χT values but does 

not exhibit the small upturn in the curve below 10 K as the Zn3Os2 TBP does145,203 

indicating that the Os centers possibly have stronger magnetic exchange through 

the diamagnetic bridge than its Fe counterpart.  
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Figure 3-12. (a) Temperature-dependent susceptibility data for the Zn3Os2 TBP. 
Solid lines are fit lines for Curie-Weiss behavior with C = 0.56 (2 S = ½ ions with 
g = 1.75), θ = 0.05 and TIP = 1200 x 10-6 emu·K/mol. (b) Magnetization data at 
1.8 K. Solid line is the best-fit Brillouin function for 2 S = ½ ions with a g = 1.67. 
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Concluding Remarks 

 Three new TBPs were prepared and characterized both structurally and 

magnetically. These new TBPs are interesting additions to the large homologous 

family of TBPs studied by the Dunbar group. The Co3Ru2 and Co3Os2 TBPs were 

successfully prepared after attempts by former group members by changing from 

CoCl2 to CoI2 and adding a small volume of DMF. The Co3Ru2 TBP exhibits 

irreversible electron transfers from two of the [CoII(tmphen)]2+ precursors to the 

two [RuIII(CN)6]3- moieties while the Co3Os2 TBP displays reversible redox 

behavior and undergoes two CTIST events as temperature changes, adding to 

the small number of compounds that exhibit this type of behavior. The Co3Fe2 

TBP demonstrates different magnetic behavior from both the Co3Ru2 and Co3Os2 

TBPs. Although the Co3Fe2 TBP exhibits photomagnetic properties when 

irradiated with white light for an hour at 10 K, no photomagnetic behavior was 

observed in the Co3Ru2 and Co3Os2 congeners under the same conditions. 

Diffuse reflectance and additional photomagnetic studies should be investigated 

as these preliminary measurements do not exclude the possibility that these 

Co3Fe2 congeners can exhibit photomagnetic behavior, especially given their 

facile redox capabilities. The model compound Zn3Os2 was prepared and 

characterized and found to display enhanced magnetic exchange as compared to 

its Zn3Fe2 cousin as evidenced by the Weiss constant of 0.05 indicating the 

presence of very weak ferromagnetic interactions between axial OsIII centers 

through the long diamagnetic bridge. Although the Mn3Ru2 TBP was not obtained 
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in crystalline form, a Mn2Ru2 compound was formed instead. The lability of the 

cyanide in this compound exemplifies the synthetic challenges in preparing the 

[RuIII(CN)6]3- starting material as discussed in the last chapter. This facile 

labilization of the cyanide ligands is likely to be the fact that crystallization of the 

Mn3Ru2 TBP has evaded previous group members. Three differently colored 

powders (yellow, green and orange) were obtained during the synthesis of the 

Mn3Ru2 TBP and they all exhibit magnetic data consistent with possible electronic 

configurations of the TBP but without structural data, this TBP will remain to be 

fully determined.  
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CHAPTER IV 

SPIN-TRANSITION AND CHARGE-TRANSFER PROPERTIES OF THE 

Fe3Ru2 TBP AS A CONSEQUENCE OF SOLVATION 

 

Background 

 Spin-crossover (SCO) is an active field of study in molecular magnetism 

because compounds that exhibit bistable states with vastly different electronic and 

magnetic properties have applications in technological and medical fields such as 

sensors, displays, data storage devices and contrast agents to name a 

few.47,65,66,208 The majority of compounds studied (~90%) contain FeII and are 

soluble salts that are usually mononuclear.82,209 In recent years, more dinuclear 

and polynuclear compounds are being studied in an effort to probe the effects of 

polynuclearity on the cooperativity of SCO complexes.210-213 Additionally, several 

studies have been reported recently with the purpose of studying the role of 

solvent.51,95,96 A less common phenomenon related to SCO that has emerged in 

the last decade is charge-transfer-induced-spin-transition (CTIST).111,116,214,215 

Compounds exhibiting this type of behavior also have bistable states with most of 

the compounds reported being cyanometallate-based and often contain iron and 

cobalt.109,147,148,151,214,216 It should be noted that two of the reported compounds in 

the literature are Co3Fe2 and Fe3Os2 TBP molecules from the Dunbar group. 

Single crystal X-ray crystallography, SQUID magnetometry and 57Fe Mössbauer 

spectroscopy measurements showed that the CTIST events in the Co3Fe2 TBP 
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are dependent upon solvation environment, varying from one to two reversible 

CTIST events based on solvent content. The Fe3Os2 TBP exhibits two reversible 

CTIST events between 2 K and 350 K.116,145 In comparison, the Fe3Fe2 TBP does 

not exhibit CTIST but was found to undergo a spin-transition at two of the Fe 

centers due solely to SCO. 

With this information, it is not an unreasonable assumption to expect the 

Fe3Ru2 TBP compound to exhibit some form of spin-transition as well, whether it 

be from SCO or CTIST. Preliminary studies on the Fe3Ru2 TBP by a former group 

member (Dr. Matthew Hilfiger)172 confirmed that this metal combination does 

exhibit spin-transition behavior but that it is more complex in nature than its 

congeners. It was found through the current research in this dissertation that the 

reason for the complexity in the spin-transition behavior is related to the interstitial 

solvent in the void spaces of the crystals. Herein, a detailed study of the Fe3Ru2 

TBP in five different solvation environments is reported and compared to the 

isostructural Fe3Fe2 and Fe3Os2 TBPs reported previously by our group.116,145 

This chapter discusses the syntheses, characterization, structures and magnetic 

properties that differ from the isostructural congeners as a consequence of 

substitution of the apical Fe and Os metal centers for Ru and also as a 

consequence of the amount and identity of solvent contained within the crystals. 
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Experimental Details 

Materials 

All chemicals and solvents were of ACS reagent grade or higher, were 

dried (if necessary) and stored in an oxygen- and water-free glove box with a 

nitrogen atmosphere, unless stated otherwise. Reagents for the synthesis of 

FeII
4Cl8(THF)6: iron(II) chloride, anhydrous (FeCl2, air-sensitive, hygroscopic 

powder, 98%, Strem Chemicals). Anhydrous FeCl2 was stored in an oxygen- and 

water-free glove box with a nitrogen atmosphere. Reagents for the synthesis of 

{[Fe(tmphen)2]3[Ru(CN)6]2}·nSolv: 3,4,7,8-tetramethyl-1,10-phenanthroline 

(tmphen) (C16H16N2, crystalline powder that varies in color from pinkish to off-

white, 98+%, Alfa Aesar). Solvents used: tetrahydrofuran, anhydrous (THF) 

(Sigma Aldrich, ≥99.9%, contains 250 ppm butylated hydroxytoluene as an 

inhibitor, packed under Argon in a Sure/Seal™ bottle) was purchased and 

pumped into a N2 atmosphere glove box where it remained once opened. Diethyl 

ether (EMD Millipore) was purchased from the Texas A&M University’s chemistry 

stockroom and then purified with an MBRAUN Solvent Purification System (MB-

SPS). Acetonitrile (MeCN) (Fisher Scientific) was bought from the department’s 

stockroom, pre-dried for two weeks over 3 Å molecular sieves (hygroscopic 

3-5 mm beads, Alfa Aesar), refluxed over 3 Å sieves and then distilled before 

being stored in a N2 atmosphere glove box. All water used was distilled by Texas 

A&M University. All reactions and sample preparations for the various 

characterization techniques utilized were done in an anaerobic manner using an 
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oxygen- and water-free glove box with a nitrogen atmosphere or a Schlenk line, 

unless noted otherwise.  

 

Syntheses 

FeII
4Cl8(THF)6 

 CAUTION: FeCl2 is classified as a hazardous material that can cause 

severe skin burns and eye damage, is toxic if swallowed and is suspected of 

causing genetic defects. This chemical should be handled under inert gas as it is 

air-sensitive and will readily oxidize to Fe(III).  

 The product is very sensitive to moisture and will turn brown immediately 

upon exposure to moisture (or within minutes upon exposure to a humid 

atmosphere) due to the oxidation of the iron so this reaction must be done using 

anaerobic methods. The synthesis was done according to literature methods.217 

 In a N2 atmosphere glove box, FeCl2 (6.54 g, 51.6 mmol, the amount is 

trivial) was added to a Schlenk flask. THF was added to the flask to give about a 

½” layer of solvent above the solid. The mixture was refluxed for one day on a 

Schlenk line and then returned to the glove box where the orange solution was 

filtered to collect the off-white product. The finely divided powder was rinsed with 

copious volumes of THF until the washings were colorless. A total of 10.8 g was 

retrieved, giving a yield of 89.2%. Refer to page fifty-eight in notebook three for a 

detailed description of the procedure and observations for the preparation of 

FeII
4Cl8(THF)6. 
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{[Fe(tmphen)2]3[Ru(CN)6]2} (Fe3Ru2) (7) 

In order to obtain sufficient sample to subject it to five different levels of 

solvation and to carry out all of the characterization methods, five batches were 

prepared and combined. 

In a glove box with a N2 atmosphere, Fe4Cl8(THF)6 (0.168 g, 0.060 mmol) 

was dissolved in MeCN (~75 mL) to give a clear, colorless solution before tmphen 

(0.35 g, 0.062 mmol) was added. The red solution was stirred for fifteen minutes 

before it was poured into a 250 mL screw-cap jar containing (PPN)3[RuIII(CN)6] 

(0.89 g, 0.059 mmol) dissolved in MeCN (~75 mL). The combination of these two 

solutions resulted in a dark brown/blue color and the precipitation of a dark 

blue/purple powder. The jar was capped and within eight hours, needle-like 

crystals had formed on the sides of the jar. After several days, the color of the 

solution turned dark green and many more dark-colored crystals had formed from 

solution. The jar was swirled to suspend any remaining powder in the solvent and 

then the solvent and powder were decanted. Fresh MeCN was added and after 

several hours, the solvent was decanted once again. This process continued until 

the MeCN remained colorless after sitting over the crystals for several hours. 

Several crystals were set aside in the mother liquor for structural analysis. The 

remaining crystals were collected by vacuum filtration but extreme care was taken 

to ensure that the vacuum was broken as soon as the MeCN had passed through 

the frit so as not to remove interstitial solvent molecules from the crystals. The 

crystals were transferred to a mortar and pestle where they were ground to a very 
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fine solid. The product was divided into five vials, each containing at least 200 mg 

of product, to be subjected to different solvation states as described below. The 

crystals set aside for crystal structure analysis (solvated, 24 hours and humid 

samples) were prepared before data collection in the same manner as described 

below. Refer to page ten in notebook four for an in-depth description of the 

procedure and observations for the synthesis of the Fe3Ru2 TBP (7). 

 

Fe3Ru2 — Solvated (7a) 

 The crushed crystals in this vial from above, were stored under fresh MeCN 

for one day before magnetic measurements were performed in order to allow the 

crystals to reabsorb any solvent they may have lost during the sample preparation. 

IR, ν(C≡N): 2247 (w, sp), 2121 (w, sp), 2087 (s) and  2006 cm-1 (vs, b) where w = 

weak, s = strong, vs = very strong, sp = sharp and b = broad. TGA data were 

collected up to 150 °C with continuous mass loss being observed beginning from 

room temperature for a total loss of 13.7%. This result is attributed to 8.1 interstitial 

MeCN molecules per TBP, which is most likely less than the actual value due to 

the necessary step of removing excess solvent from the sample before running 

TGA on it. 

 

Fe3Ru2 — Filtered (7b) 

 This sample is the crystals put into a vial after being crushed with a mortar 

and pestle. IR, ν(C≡N): 2248 (m, sp), 2123 (m, sp), 2085 (vs), 2039 (vs, sh) and  
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2010 cm-1 (vs, b) where m = medium, vs = very strong, sp = sharp, sh = shoulder 

and b = broad. TGA analysis exhibits a 14.6% continuous mass loss between 

room temperature and about 160 °C before the mass begins to rise again, 

resulting in 8.8 interstitial MeCN molecules per TBP. 

 

Fe3Ru2 — Evacuated 3 Hours (7c) 

 Aluminum foil, with holes poked through it, was used to cover the vial 

containing the crushed crystals. The vial was then loaded into an Abderhalden 

drying apparatus and put under vacuum for three hours on the Schlenk line before 

being pumped back into the glove box to be prepared for characterization 

methods. IR, ν(C≡N): 2118 (vw, sp), 2084 (m) and 2016 cm-1 (s, b) where vw = 

very weak, m = medium, s = strong, sp = sharp and b = broad. TGA exhibits a 

10.1% continuous mass loss between room temperature and ~130 °C, which is 

attributed to 5.7 interstitial MeCN molecules per TBP. 

 

Fe3Ru2 — Evacuated 24 Hours (7d) 

 As in the case of the three hour sample, the crushed crystals for this sample 

were loaded into an Abderhalden drying apparatus and subjected to vacuum for 

twenty-four hours on a Schlenk line before being pumped back into the glove box 

to be prepared for several characterization techniques. IR, ν(C≡N): 2248 (vw, sp), 

2118 (w, sp), 2086 (s, sp), 2017 (s, sh) and  2002 cm-1 (s, sh) where vw = very 

weak, s = strong, vs = very strong, sp = sharp and b = broad. A TGA thermogram 
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exhibits a 7.8% continuous mass loss between room temperature and 150 °C 

when the heating had stopped. This is attributed to 4.3 interstitial MeCN molecules 

per TBP. 

 

Fe3Ru2 — Humid (7e) 

 The vial containing the crushed crystals for this sample was removed from 

the glove box and left open in air, inside of a beaker that contained a small amount 

of distilled water and a wet paper towel wrapped around the inside of the beaker. 

The beaker was covered with Parafilm® M and the sample was left in this humid 

environment for one day before being prepared for various characterization 

techniques. IR, ν(C≡N): 2126 (w, sp), 2080 (s, sp), 2046 (s, sh) and  2017 cm-1 

(vs, b) where w = weak, s = strong, vs = very strong, sp = sharp, sh = shoulder 

and b = broad. A TGA thermogram exhibits a 17.1% continuous mass loss 

between room temperature and 140 °C, which is attributed to 24.0 interstitial water 

molecules per TBP. 

 

Results and Discussion 

Synthesis and Characterization 

 The synthesis of the Fe3Ru2 TBP is similar to other homologous TBPs 

studied by our group since 2002.143,218 The formation of the Fe3Ru2 TBPs does 

not require an anaerobic atmosphere as they have been isolated both in air and 

from an inert atmosphere preparation. Once formed, the TBPs are stable but the 
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magnetic properties vary according to the amount and type of solvent present in 

the interstices of these crystals. It is for this reason, that the Fe3Ru2 TBP has been 

studied in various states of solvation: under MeCN (solvated) (7a), freshly filtered 

(filtered) (7b), exposed to vacuum for 3 hours (3 hrs) (7c), exposed to vacuum for 

24 hours (24 hrs) (7d) and exposed to a humid environment (humid) (7e). For the 

sake of reproducibility and to determine the underlying reason for the change in 

electronic configuration of the metals, the synthesis of the Fe3Ru2 TBPs presented 

herein was conducted with a strict adherence to maintaining an anhydrous, 

anaerobic environment from beginning to end, except for the sample that was 

purposely subjected to a humid atmosphere after it had been synthesized in an 

anhydrous, inert environment. The synthesis was repeated five times on the same 

day and after several days of crystal growth, all of the batches were combined 

and worked up together in order to rule out variations due to different batches. 

Although this reaction can be scaled up, it precipitates less powder and yields 

more crystals when the reaction solution is more dilute (~4 mM). The Fe4Cl8(THF)6 

used for this synthesis was found to be a much cleaner source of iron(II) than 

FeCl2 typically is. Iron dichloride does not readily dissolve in MeCN and leaves 

behind undissolved material which contaminates the TBP reaction if not removed 

by filtration first. In contrast, Fe4Cl8(THF)6 readily dissolves in MeCN and reacts 

with tmphen to form the [Fe(tmphen)2]2+ precursor in situ. MeCN is used as a 

solvent as it is readily stored in the glove box under a N2 environment, is relatively 

easy to dry and is chemically unreactive in these reactions. Once combined, the 
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[Fe(tmphen)2]2+ and [RuIII(CN)6]3- solutions precipitate a dark blue or purple 

powder. The color of the solution can vary between brown, purple and blue. After 

a few days, needle-like crystals that are dark in color (generally a red/purple) form 

among the powder. The color of the solution generally changes or lightens as 

more product forms. The powder that forms can easily be separated from the 

crystalline product by swirling the jar which leads to a suspension of the powder 

in solution with the crystals remaining on the bottom of the jar. The powder and 

mother liquor are then readily decanted from the crystals. If crystals have formed 

that are not the desired TBP, (generally a salt of some nature that contains 

[Fe(tmphen)3]2+
), these by-products can be re-dissolved in fresh MeCN. Fresh 

MeCN is added to the jar and allowed to sit over the crystals for several hours at 

a time. Once the MeCN remains clear and colorless with time, the crystals are 

ready to be characterized. The yield is generally 30-40%. 

 Although the sample work-up described in the experimental section is 

conducted precisely, slight variations in samples are unavoidable due to the large 

void spaces in the crystals that lead to small changes in solvent content distributed 

over all of the samples; combinations of batches leads to averaging of the 

variability. A schematic of the sample preparation is provided in Figure 4-1. 

Sample preparation for magnetic and 57Fe Mössbauer measurements were 

carried out under an inert atmosphere for all but the humid sample (7e). It is 

important to note that the glove box was purged immediately before sample 

preparations to ensure that the inert atmosphere was free from any solvent. This 
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was particularly important when preparing the samples that had been exposed to 

vacuum. Details on how the samples were prepared and measured can be found 

in Appendix A.  

 

 

 

 

Both IR spectroscopy and TGA characterizations were performed in air and 

care was taken to minimize the amount of time the samples were exposed to air 

before and during the characterization. Both characterization techniques were 

performed in air and on the same samples that were measured in the SQUID. 

Table 4-1 lists the νC≡N for compounds 7a-7e, as well as K4[RuII(CN)6] and 

(PPN)3[RuIII(CN)6] for reference. The spectra obtained at room temperature for all 

of the Fe3Ru2 TBPs exhibit νC≡N modes (~2006 – 2046 cm-1) reminiscent of the  

Figure 4-1. Scheme of sample preparation. Colors coincide with magnetic and 
57Fe Mössbauer data discussed later. 
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Table 4-1. Cyanide stretching frequencies from IR spectroscopy. 

Compound Bridging (cm-1) Terminal (cm-1) 

7a - Solvated 2121 (w, sp) 2087 (s, sp) — 2006 (vs, b) 

7b - Filtered 2123 (m, sp) 2085 (vs, sp) 2039 (vs, sh) 2010 (vs, b) 

7c - 3 Hours 2118 (vw, sp) 2084 (m, sp) — 2016 (s, b) 

7d - 24 Hours 2118 (w, sp) 2086 (m, sp) 2017 (s, sp) 2002 (s, sp) 

7e - Humid 2126 (w, sp) 2080 (s, sp) 2046 (s, sh) 2017 (vs, b) 

K4[RuII(CN)6] — — 2051 (s, sp) 2039 (m, sp) 

(PPN)3[RuIII(CN)6] — — 2094 (m, sp) 2085 (m, sp) 

 

 

νC≡N stretches in K4[RuII(CN)6] (2039 and 2046 cm-1). These frequencies are 

assigned to the terminal cyanide groups in the TBPs and indicate the presence of 

divalent ruthenium at room temperature in all samples. Similarly to Prussian blue 

analogs,115,219,220 the higher vibrational frequencies are assigned to the bridging 

cyanide groups within the TBP. Several factors are responsible for this; the 

kinematic effect, bonding effects due to electron-density redistribution, vibronic 

effects and charge effects are all reasons why the vibrational frequencies of νC≡N 

increase upon bridging.221 Some of the modes (~2084 cm-1) assigned as bridging 

cyanide are very close to the cyanide stretching frequencies in the 

(PPN)3[RuIII(CN)6] starting material. These modes could also be assigned as 

terminal modes for trivalent ruthenium as well, but are most likely due to bridging 

cyanide between RuII and FeIII as evidenced by the 57Fe Mössbauer and magnetic 

data (vide infra). 

 TGA studies were performed immediately after opening the NMR tube 
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containing the samples used for magnetic measurements. The solvated sample 

(7a) was placed under vacuum briefly to remove excess solvent immediately 

before TGA was performed. Although necessary, this step leads to a minor loss 

of interstitial solvent molecules and is reflected in the analysis. The filtered sample 

appears to contain more molecules of MeCN per TBP (8.8) as compared to the 

solvent sample (8.1). All solvent in the solvated sample was accounted for and 

used to correct the magnetic data. The intensity and gradual nature of the mass 

losses in the TGA data are very similar for all of the solvation states of the TBP. 

Due to the ambiguity of the thermograms and the relatively similar temperatures 

at which the mass loss is centered, the mass loss was attributed to the loss of 

acetonitrile for the solvated, filtered, 3 hour and 24 hour samples. This is more of 

a convenient assumption since they were prepared and handled in an anaerobic 

environment up until the time the TGA was performed in a furnace with a N2 flow 

of 20 mL/min. The samples were only exposed to air long enough to put the 

sample in the cell, the cell onto the hanging pan and to raise the furnace (typically 

takes less than two minutes). The humid sample was assumed to contain only 

water when the TGA was performed. Table 4-2 lists the number of interstitial 

solvent molecules attributed to the mass loss obtained from the thermograms for 

all five stages of solvation of the Fe3Ru2 TBPs . 
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Table 4-2. Interstitial solvent molecules in the Fe3Ru2 TBPs according to TGA data. 

 

 

Single Crystal X-ray Diffraction 

Fe3Ru2 (7) 

Like most other TBPs studied in this group, the Fe3Ru2 TBP is isostructural 

with the Fe3Fe2 and Fe3Os2 congeners, as well as several other metal 

combinations. Being from the same group however, the Fe3Fe2 and Fe3Os2 TBPs 

can offer a direct comparison of the effects of traversing down a group. As 

expected from the Fe and Os hexacyanometallate-containing analogs, the Fe3Ru2 

TBP crystallizes in the monoclinic P21/c space group and contains a racemic 

mixture of two optical isomers – the homochiral (each center is either Δ, Δ, Δ or 

Λ, Λ, Λ) of the equatorial [Fe(tmphen)2]2/3+ sites. As described in the main 

introduction for other homologous TBPs reported by our group,146 the Fe3Ru2 

TBPs pack as dimers due to the π-π stacking interactions between tmphen 

ligands on one TBP molecule with the tmphen ligands coordinated to a TBP 

related by inversion. These interactions were analyzed using Olex2 which uses a 

centroid-centroid distance and shift distance less than 4 and 3 Å, respectively, to 

detect intermolecular interactions. The nature of both the inter- and intramolecular 

π-π stacking interactions are depicted in Figure 4-2 and Figure 4-3, respectively. 

Interstitial 

Solvent 

7a 

Solvated 

7b 

Filtered 

7c 

3 Hours 

7d 

24 Hours 

7e 

Humid 

MeCN 8.1 8.8 5.7 4.3 — 

H2O — — — — 24.0 
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The TBP has a total of two inter- and two intramolecular interactions. The dimeric 

unit has two intermolecular interactions resulting from π-π stacking between 

symmetry equivalent tmphen ligands coordinated to the Fe(3) centers. Two of the 

rings of the tmphen ligand (the center ring denoted by the purple plane in 

Figure 4-2 and one of the pyridine rings denoted by the yellow plane in 

Figure 4-2) π-π stack with each other. The center ring in the tmphen ligand 

interacts with both its symmetry equivalent ring (interaction designated as inter-

pp – purple ring interacting with a purple ring, pp) and the pyridine ring in the 

neighboring tmphen ligand (interaction referred to as inter-py – purple and yellow 

rings interacting, py). For the intramolecular interactions, one of the pyridine rings 

in the tmphen ligand on the Fe(1) center π-π stacks with one of the pyridine rings 

in the tmphen ligand on the Fe(2) center (these rings are denoted by the turquoise 

planes in Figure 4-3 – interaction referred to as intra-tt). The other tmphen ligand 

on the Fe(2) center also has the same type of intramolecular interaction with a 

tmphen ligand on the Fe(3) center (these rings  are colored in yellow in 

Figure 4-3, interaction designated as intra-yy). The Fe(1) and Fe(3) centers do 

not engage in an intramolecular interaction, however, owing to the much longer 

average Fe(1)–Fe(3) distance of 10.0603 Å when compared to the average 

Fe(1)–Fe(2) distance of 6.4119 Å and the average Fe(2)-Fe(3) distance of 

6.3213 Å. These are the average Fe–Fe distances found for the solvated (7a), 

24hr (7d) and humid (7e) samples collected at various temperatures. The ranges 

for all thirteen structures used in the averages are 0.1392 Å, 0.2227 Å and  
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Figure 4-2. View of the Fe3Ru2 TBPs stacking in a dimeric unit due to the 
intermolecular π-π stacking interactions between neighboring TBP 
molecules. The purple and yellow planes highlight the rings within the 
tmphen ligands that have the intermolecular interactions. Color code: Fe is 
green, Ru is violet, C is gray and N is blue. Hydrogen and solvent have been 
omitted for clarity. 
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Figure 4-3. View of the Fe3Ru2 TBP looking down the apical hexacyanoruthenate 
centers. The turquoise and yellow planes coupled with the red arrows highlight 
the rings within the tmphen ligands that have intramolecular π-π stacking 
interactions within the TBP. Color code: Fe is green, Ru is violet, C is gray and N 
is blue. Hydrogen and solvent have been omitted for clarity. 
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0.1440 Å for the Fe(1)–Fe(3), Fe(1)–Fe(2) and Fe(2)–Fe(3) distances, 

respectively. Structures of the 3 hour and filtered samples were not obtained. 

 

Fe3Ru2 Solvated (7a) 

 Structural data at 150 K, 100 K, 50 K, 20 K, 200 K and then 250 K were 

obtained (in that order of temperature) on the same crystal. Unfortunately, during 

the data collection at 300 K, the crystallinity of the crystal deteriorated and 

diffraction data could no longer be obtained. This is most likely due to the rapid 

desolvation that can occur in these TBP molecules at room temperature.145 

Table 4-3 gives relevant structural data and refinement parameters for the 

solvated Fe3Ru2 TBPs. At the temperatures in which data was obtained, the space 

group remains unchanged. As the temperature increases from 20 K to 250 K, 

however, the cell edges and the unit cell volume increase as well. This is not 

uncommon for spin-transition complexes and is well documented in the 

literature.82,222,223 This effect is easily explained by the increase in the Fe-N bond 

distances as temperature increases. This lengthening is propagated throughout 

the crystal lattice causing the overall expansion of the unit cell parameters.65,82 

The disordered solvent was refined at 20 K but could not be modeled at higher 

temperatures. The PLATON SQUEEZE190 procedure, as contained in the 

PLATON224 software package, was used to remove residual electron density due 

to disordered solvent from the remaining structures and the built-in solver add-in 

contained within Microsoft Excel was used to model the interstitial MeCN and 
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water molecules based upon electron density found within the voids. Table 4-4 

gives the results from the SQUEEZE analysis. An interesting trend is the increase 

of 2.5 % in the amount of void space as the temperature is increased from 20 K 

to 250 K, a possible effect from the natural expansion of the unit cell with the 

increase in temperature coupled with the iron centers undergoing a spin-

transition. Parameters in Table 4-3 are for the structures where SQUEEZE was 

employed. Full refinement of the disordered solvent for 7a at 20 K resulted in 3.2 

MeCN molecules and 9.8 water molecules per TBP. Upon solving for the residual 

electron density given from the SQUEEZE analysis at all temperatures, it was 

determined that the TBP has an average of approximately three MeCN and 

thirteen water molecules per formula unit (7a·3MeCN·13H2O). The results from 

the SQUEEZE analysis are fairly close to the results from structure refinement for 

MeCN but estimates a larger amount of water in the crystal. As neither of these 

methods will give perfect values, the similarity of their values is acceptable and 

considered to be in good accord with each other. Although these samples were 

prepared in a strictly anaerobic manner, the short period of time the crystals were 

exposed to air in order to mount the crystal onto a MiTeGen loop before being put 

into a He cold stream at 150 K, is sufficient for the TBP to absorb several water 

molecules. In contrast to the TGA data obtained for 7a which suggests more 

molecules of MeCN should be present, it would seem that interstitial MeCN 

molecules were rapidly exchanged for water molecules upon exposure to air. At 

250 K, SQUEEZE analysis suggests that one of the MeCN molecules has been 
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Table 4-3. Crystal structure data and refinement parameters for the solvated Fe3Ru2 TBP at multiple temperatures. 

Fe3Ru2 Solvated 20 K 50 K 100 K 150 K 200 K 250 K 

Space Group P21/c P21/c P21/c P21/c P21/c P21/c 

a/ Å 19.0959(6) 19.1001(8) 19.1318(16) 19.1600(15) 19.2675(6) 19.3787(6) 

b/ Å 24.9486(7) 25.0143(10) 25.075(2) 25.1157(19) 25.0897(7) 25.1159(7) 

c/ Å 24.3846(7) 24.4167(10) 24.471(2) 24.5366(19) 24.5796(7) 24.6325(7) 

β/ ° 98.471(2) 98.400(2) 98.309(4) 98.257(4) 98.480(2) 98.726(2) 

Volume/ Å3 11490.5(6) 11540.6(8) 11616.0(16) 11685.0(16) 11752.3(6) 11850.2(6) 

aInterstitial Solvent 
3 MeCN 
13 H2O 

3 MeCN 
13 H2O 

3 MeCN 
13 H2O 

3 MeCN 
13 H2O 

3 MeCN 
13 H2O 

2 MeCN 
13 H2O 

μ/ mm-1 0.735 0.732 0.727 0.723 0.719 0.713 

Crystal Size/ 
mm3 

0.047 × 0.047 x 0.3102 ; reddish-purple prism 

2Θ Range for 
Data Collection/ ° 

4.09 to 47.976 4.258 to 54.236 4.248 to 47.844 4.242 to 53.554 4.238 to 40.81 4.228 to 40.476 

Integration 
Resolution/ Å 

0.95 0.84 0.96 0.85 1.11 1.11 

Independent 
Reflections 

13821 
Rint = 0.1247 

Rsigma = 0.0670 

19658 
Rint = 0.1736 

Rsigma = 0.0951 

13875 
Rint = 0.1568 

Rsigma = 0.0810 

19248 
Rint = 0.1004 

Rsigma = 0.0600 

8906 
Rint = 0.1153 

Rsigma = 0.0507 

8822 
Rint = 0.1028 

Rsigma = 0.0475 
Data/Restraints/ 
Parameters 

13821/585/1414 19658/120/1258 13875/0/1256 19248/0/1258 8906/1377/1258 8822/1377/1258 

bGooF on F2 1.014 1.031 1.033 1.042 1.014 1.015 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0482 
wR2 = 0.1169 

R1 = 0.0668 
wR2 = 0.1618 

R1 = 0.0593 
wR2 = 0.1517 

R1 = 0.0570 
wR2 = 0.1401 

R1 = 0.0379 
wR2 = 0.0952 

R1 = 0.0383 
wR2 = 0.0951 

c,dFinal R Indexes 
[all data] 

R1 = 0.0721 
wR2 = 0.1310 

R1 = 0.1130 
wR2 = 0.1869 

R1 = 0.0878 
wR2 = 0.1682 

R1 = 0.0828 
wR2 = 0.1613 

R1 = 0.0554 
wR2 = 0.1031 

R1 = 0.0548 
wR2 = 0.1047 

Largest Diff. 
Peak/Hole/ e Å-3 

1.06 / -0.74 1.87 / -0.92 1.19/-0.69 1.56 / -1.05 1.07 / -0.33 1.37 / -0.28 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-

p)}1/2, where n is the number of reflections and p is the total number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - 

Fc
2)2]/∑w(Fo

2)2]}1/2.
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Table 4-4. Void space and residual electron density for the solvated Fe3Ru2 TBPs (7a), 
as calculated from SQUEEZE analysis. Interstitial solvent was calculated using the 
electron density and the solver add-in in Excel 2013. 

Fe3Ru2 

Solvated 
Void 

Space (Å) 
Number of 
Electrons 

% 
Void Space 

H2O/TBP MeCN/TBP 

20 K 2889.1 755.0 25.1 13.0 2.7 

50 K 3020.3 840.0 26.2 13.4 3.4 

100 K 3094.0 830.0 26.6 13.5 3.3 

150 K 3135.5 783.0 26.8 13.3 2.9 

200 K 3194.9 753.0 27.2 13.2 2.5 

250 K 3268.3 731.0 27.6 13.2 2.3 

Average 3100.4 782.0 26.6 13.3 2.8 

 

 

lost, leaving two MeCN and thirteen water molecules in the interstitial sites 

(7a·2MeCN·13H2O).  

The metal–ligand (M–L) bond lengths are listed in Table 4-5. The average 

Fe–N distances in LS and HS FeN6 complexes are 1.92 – 2.00 Å and 2.16 – 2.21 

Å, respectively.82 The structure at 20 K has eight Fe(1)–N bond distances given 

instead of the usual six due to disorder in one of the tmphen ligands. Throughout 

the temperature range (20 – 250 K) the average Fe(1)–N bond distance remains 

relatively unchanged around 2.07 – 2.08 Å. This is a typical Fe–N bond distance 

for an iron center in the middle of a SCO. The average Fe(2)–N bond length slowly 

increases from 1.9616(48) Å at 20K to 2.0317(59) Å at 150 K. Although the 

lengthening of this bond is not a Δ = 0.2 Å, it still suggests that a spin transition, 

either a SCO or CTIST, is possible at this iron center and is likely to occur at higher 

temperatures. As with the average Fe(1)–N bond distances, the average 
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Fe(3)–N bond distances remain relatively unchanged from 20 K to 250 K (2.08 Å 

to 2.11 Å). Again, these bond lengths are typical for an iron center in an 

intermediate spin-transition. It is interesting to note that the Fe–N bond lengths 

that come from the bridging cyanide (the first two Fe–N bond lengths given at 

each temperature) are consistently shorter (~0.2 Å) than the Fe–N distances that 

come from the tmphen ligands. This is most likely due to the rigid bonding motif 

imposed upon the iron center from the bridging cyanide coupled with the fact that 

the cyanide is electron-dense and allows for strong σ bonding with the metal 

centers.221,225 The Ru–C bond length are given but do not give any insight into the 

oxidation state of the ruthenium centers. They are both very similar and remain 

relatively unchanged with temperature changes. As expected, the Ru–C bond 

lengths from the bridging cyanide (the first three bond lengths for Ru–C given at 

each temperature) are constantly shorter than the Ru–C bond lengths from the 

terminal cyanide. 

The structure of 7a with the disordered water and MeCN molecules 

modeled at 20 K is shown in Figure 4-4. In order for the structure to converge, the 

hydrogen atoms were removed from the water molecules. At 20 K, the Fe(1) 

center has a tmphen ligand that is disordered over two positions. This is an 

indication that the Fe center is undergoing a spin-transition in this temperature. At 

all of the other temperatures, this disordered tmphen ligand was modeled in one 

place but the thermal ellipsoids are slightly oblong. When the average Fe(1)–N 

bond lengths are considered throughout the temperatures, it becomes more 
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Table 4-5. Metal–Ligand (M–L) bond lengths (in Å) for the solvated Fe3Ru2 TBP (7a). 

Temperature Fe(1)–N Fe(2)–N Fe(3)–N Ru(1)–C Ru(2)–C 

20 K 1.965(05) 1.929(5) 1.938(5) 1.979(6) 1.970(7) 
1.936(05) 1.926(5) 1.971(6) 2.038(7) 2.019(6) 
2.105(05) 1.987(4) 2.124(4) 1.964(7) 1.989(7) 
2.140(04) 1.964(5) 2.182(5) 2.069(8) 2.040(7) 
2.163(65) 1.985(5) 2.172(5) 2.069(7) 2.059(8) 
2.132(41) 1.980(5) 2.146(5) 2.060(7) 2.041(8) 
1.959(38)     
2.196(19)     

Avg M–L 2.066(16) 1.962(5) 2.089(5) 2.030(7) 2.020(7) 

50 K 1.978(5) 1.934(5) 1.950(6) 2.000(6) 1.962(6) 
1.949(6) 1.926(5) 1.968(6) 2.043(7) 2.042(6) 
2.111(5) 1.987(5) 2.116(5) 1.957(6) 1.992(7) 
2.143(5) 1.970(5) 2.185(5) 2.070(7) 2.051(7) 
2.147(5) 1.975(5) 2.163(5) 2.077(6) 2.063(8) 
2.108(5) 1.982(5) 2.157(5) 2.058(7) 2.038(9) 

Avg M–L 2.073(52) 1.963(5) 2.090(5) 2.034(6) 2.025(7) 

100 K 1.966(6) 1.930(6) 1.955(6) 1.985(7) 1.973(8) 
1.942(6) 1.926(6) 1.974(7) 2.038(8) 2.026(7) 
2.107(6) 1.989(6) 2.125(5) 1.967(8) 1.979(8) 
2.148(6) 1.972(6) 2.194(5) 2.049(8) 2.047(8) 
2.158(5) 1.986(6) 2.170(6) 2.069(8) 2.049(9) 
2.112(6) 1.986(5) 2.154(5) 2.048(8) 2.045(9) 

Avg M–L 2.072(6) 1.965(6) 2.095(6) 2.026(8) 2.020(8) 

150 K 1.973(4) 1.939(4) 1.949(4) 1.994(5) 1.958(5) 
1.949(5) 1.931(4) 1.974(5) 2.050(5) 2.042(5) 
2.128(4) 1.988(4) 2.135(4) 1.956(5) 1.997(6) 
2.154(4) 1.969 (4) 2.193(4) 2.057(6) 2.049(6) 
2.161(4) 1.990(4) 2.176(4) 2.071(6) 2.061(7) 
2.119(4) 1.986(4) 2.164(4) 2.055(6) 2.049(7) 

Avg M–L 2.081(4) 1.967(4) 2.098(4) 2.030(5) 2.026(6) 

200 K 1.975(6) 1.937(6) 1.958(6) 1.992(7) 1.957(7) 
1.949(6) 1.946(6) 1.978(6) 2.030(7) 2.032(7) 
2.117(5) 2.009(5) 2.115(5) 1.956(8) 1.986(7) 
2.137(5) 1.997(6) 2.198(5) 2.054(8) 2.047(8) 
2.160(5) 2.009(5) 2.177(5) 2.063(8) 2.048(8) 
2.108(5) 2.012(5) 2.150(5) 2.050(8) 2.030(9) 

Avg M–L 2.074(5) 1.985(6) 2.096(5) 2.024(8) 2.017(8) 

250 K 1.982(6) 1.957(6) 1.977(6) 1.987(7) 1.958(7) 
1.944(6) 1.966(6) 2.011(6) 2.012(8) 2.011(7) 
2.127(5) 2.061(6) 2.139(5) 1.960(8) 1.986(7) 
2.150(5) 2.064(6) 2.197(5) 2.056(8) 2.053(8) 
2.165(5) 2.078(6) 2.183(6) 2.061(8) 2.047(9) 
2.112(5) 2.065 (5) 2.153(5) 2.051(8) 2.043(9) 

Avg M–L 2.080(5) 2.032(6) 2.110(6) 2.021(8) 2.016(8) 
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apparent as to why the tmphen ligand is disordered. As discussed earlier, this Fe 

center is undergoing a very gradual spin-transition as temperature changes, 

leading to the thermal movement of the tmphen ligand throughout the lattice. The 

pink circles in Figure 4-4 highlight the disordered tmphen ligand as well as the 

disordered MeCN molecules. The solvent molecules in this figure were arbitrarily 

moved to a symmetrically equivalent position in order to obtain a clear view of the 

disordered tmphen ligand. The packing diagram in Figure 4-5 gives a simple view 

of how the solvent packs between the dimeric units of the TBP. Each dimeric unit 

is colored differently (green, yellow and cyan) in order to show the packing 

arrangement of the units in the lattice. It can be seen that the water and MeCN 

molecules fill the voids between the dimeric units and has very little interaction 

with the Fe(3) centers, as those are involved in the π-π stacking between 

neighboring TBPs. The solvent mostly resides around the Fe(1), Fe(2) and 

ruthenium centers as the water appears to hydrogen bond to the terminal cyanide 

ligands. This creates what is most likely a hydrogen bonding network between the 

dimeric units in the TBP. This structure, however, is not an accurate 

representation of what the TBP made in a strictly anaerobic environment should 

be though. It is reasonable that the MeCN molecules that were most likely 

exchanged for water upon exposure to air, still reside in these cavities that exist 

between the dimers. The main difference is their inability to hydrogen bond to the 

terminal cyanide ligands on the ruthenium centers.   
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Figure 4-4. Asymmetric unit of the solvated Fe3Ru2 TBP (7a) at 20 K. Pink circles 
highlight the disordered tmphen and MeCN molecules within the crystal. Color 
code: Fe is green, Ru is violet, C is gray, N is blue and O is red. Oxygen atoms 
were refined without hydrogen in order to obtain convergence of the structure. 
Hydrogen from all other atoms have been omitted for the sake of clarity. 
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Figure 4-5. Simple packing diagram of the solvated Fe3Ru2 TBP (7a). Dimeric 
units of the TBPs are colored using the same color (three dimeric units shown – 
green, yellow and cyan). Two individual TBP molecules shown using the following 
color scheme: Fe is green, Ru is violet, C is gray, N is blue and O is red. Oxygen 
atoms were refined without hydrogen in order to obtain convergence of the 
structure. Hydrogen from all other atoms have been omitted for the sake of clarity. 
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Analysis of the π-π stacking interactions gives three relevant structural 

parameters: centroid-centroid distances, shift distances between the centroids 

and angles between the planes involved (given in Table 4-6). As stated earlier, 

the parameters Olex2 uses to detect intermolecular interactions is a centroid-

centroid distance and shift distance less than 4 and 3 Å, respectively. A 4 Å 

distance for the centroid-centroid distance is considered to be slightly long for π-

π stacking interactions, as discussed by Janiak.201 Strong π-π interactions are 

considered to be at a distance ~3.3 Å with weaker interactions ~3.6 – 3.8 Å. The 

distance of 3.8 Å is generally considered the maximum distance for which π-π 

interactions are acknowledged, which is in accordance with the sum of Van der 

Waals radii’s (with 1.77 Å the proposed radii for C).202 From the analysis, no clear 

temperature dependence for the three parameters is observed but the centroid-

centroid distance does vary slightly. The inter-pp interaction is the strongest π-π 

interaction with the shortest distance (average 3.529 Å). The other three 

interactions, with values slightly longer than 3.8 Å, can be considered weak π-π 

interactions. From the shift distances observed, all inter- and intramolecular 

interactions are slipped instead of face-to-face, which is common for ligands with 

N donor atoms.201 The inter-pp interaction (the strongest) is also the one with the 

smaller lateral displacement between the pyridine rings. Below 250 K, there is not 

a large variation in shift distances with temperature but at 250 K the inter-pp 

interaction exhibits an increase (~0.15 Å) in the shift distance while the inter-py 

shift distance decreases slightly (~0.13 Å). This suggests a lateral displacement 
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of the tmphen ligands involved in the intermolecular π-π stacking interactions at 

elevated temperatures and could be a consequence of several factors, the main 

one most likely being the thermal expansion of the bonds. The angles between 

the planes formed by the rings in the tmphen ligands are smaller than 7º in all 

cases, an indication that the interacting tmphen ligands are close to being parallel 

to one another which allows for stronger interactions between them. In the inter-

pp interaction, the angle is 0º due to these planes being related by inversion. 

Interestingly, only for the intra-tt interaction (intramolecular interaction between 

Fe(1) and Fe(2) centers) is a clear temperature dependence observed for the 

angle between the planes. As temperature increases from 20 K to 250 K, the angle 

increases 4.74º, a large change compared to the 0.471° maximum variation within 

the other interactions. It possible that the increased bending of these planes away 

from 0° as temperature increases is related with the fact that the average Fe(2)–

N bond distances also increase due to a spin-transition. However, the largest 

differences in the angle between the planes is between 20 and 50 K while the 

largest change in the average Fe(2)–N bond lengths are above 200 K, so no direct 

relationship can be inferred. 
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Table 4-6. Geometric parameters (centroid-centroid distance, shift distance and angle) 
for the inter- and intramolecular π-π stacking interactions in the solvated Fe3Ru2 TBPs 
(7a). The average values (avg) and the differences between the minimum and maximum 
values (Δ) have been included. *Indicates symmetry equivalent metal center. 

Interaction-Plane 
Fe Centers 
Involved 

Temperature 
Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

inter-pp 

Fe(3)–Fe(3)* 

20 K 3.505 0.632 0 
50 K 3.503 0.613 0 

100 K 3.516 0.639 0 
150 K 3.531 0.650 0 
200 K 3.545 0.773 0 
250 K 3.573 0.923 0 

 Avg 3.529 0.705 0 

 Δ 0.068 0.291 0 

inter-py 

Fe(3)–Fe(3)* 

20 K 3.851 1.782 1.218 
50 K 3.864 1.801 1.067 

100 K 3.867 1.775 0.781 
150 K 3.867 1.761 1.088 
200 K 3.813 1.649 0.878 
250 K 3.749 1.512 0.849 

 Avg 3.835 1.713 0.980 

 Δ 0.118 0.289 0.437 

intra-tt 

Fe(1)–Fe(2) 

20 K 3.891 1.273 1.997 
50 K 3.818 1.238 4.639 

100 K 3.821 1.241 4.659 
150 K 3.835 1.234 5.035 
200 K 3.870 1.249 5.476 
250 K 3.909 1.259 6.737 

 Avg 3.857 1.249 4.757 

 Δ 0.091 0.030 4.740 

intra-yy 

Fe(2)–Fe(3) 

20 K 3.836 1.426 6.860 
50 K 3.840 1.411 6.832 

100 K 3.841 1.435 6.526 
150 K 3.841 1.420 6.389 
200 K 3.852 1.406 6.512 
250 K 3.855 1.365 6.808 

 Avg 3.844 1.410 6.654 

 Δ 0.019 0.070 0.471 
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Fe3Ru2 24 Hours (7d) 

 Table 4-7 contains the usual structural parameters and Table 4-8 contains 

the results from the SQUEEZE analysis. According to the SQUEEZE analysis, the 

evacuated sample has a slightly higher percentage of void space in comparison 

to the solvated sample at 150 K and also contains more interstitial solvent. 

Complete structure refinement of the crystal resulted in a near identical number 

of water molecules per TBP (23.4) as calculated from SQUEEZE (23.7). 

Parameters in Table 4-7 are from the refinement using SQUEEZE. This is mainly 

for consistency between the solvated and humid samples discussed here. The 

data for the evacuated sample are not ideal (as indicated by the usual refinement 

parameters such as R1, wR2, Rint and a low resolution cut-off of 1.03 Å) but it is 

actually impressive that the crystal did not disintegrate entirely which is attributed 

to the fact that the packing of the molecules allows for large void spaces for 

solvent loss and absorption in a manner similar to MOFs. 
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Table 4-7. Crystal structure data and refinement parameters for the Fe3Ru2 TBP 
evacuated for 24 hours. 

Fe3Ru2 24 Hour 150 K 

Space Group P21/c 

a/ Å 19.6693(13) 

b/ Å 24.8293(16) 

c/ Å 24.4678(16) 

β/ ° 98.644(4) 

Volume/ Å3 11813.7(13) 

aInterstitial Solvent 24 H2O 

μ/ mm-1 0.715 

Crystal Size/ 
mm3 

0.094 × 0.094 x 0.254 
reddish-purple prism 

2Θ Range for 
Data Collection/ ° 

4.02 to 44.048 

Integration Resolution/ Å 1.03 

Independent 
Reflections 

11142 
Rint = 0.1452 

Rsigma = 0.0697 
Data/Restraints/ 
Parameters 

11142/702/1256 

bGooF on F2 1.052 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0949 
wR2 = 0.2168 

c,dFinal R Indexes 
[all data] 

R1 = 0.1739 
wR2 = 0.2866 

Largest Diff. 
Peak/Hole/ e Å-3 

1.28 / -0.49 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: 
Goodness-of-fit = {∑[w(Fo

2- Fc
2)2]/(n-p)}1/2, where n is the number of reflections and p is the total 

number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - Fc

2)2]/∑w(Fo
2)2]}1/2. 

 

 

 

Table 4-8. Void space and residual electron density for the Fe3Ru2 TBPs exposed to 
vacuum for 24 hours (7d), as calculated from SQUEEZE analysis. Interstitial solvent was 
calculated using the electron density. 

Fe3Ru2 

24 Hours 
Void 

Space (Å) 
Number of 
Electrons 

% 
Void Space 

H2O/TBP 

150 K 3218 949.0 27.4 23.7 
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Table 4-9. M–L bond lengths (in Å) for the Fe3Ru2 TBP under vacuum for 24 hours (7d). 

Temperature  Fe(1)–N  Fe(2)–N  Fe(3)–N Ru(1)–C Ru(2)–C 

150 K 1.956(19) 1.918(21) 1.930(17) 1.973(27) 1.975(26) 

1.903(18) 1.950(17) 1.971(17) 2.001(26) 1.934(21) 

2.000(16) 2.005(15) 2.070(15) 1.987(24) 1.958(23) 

2.013(15) 1.970(18) 2.190(14) 2.042(26) 2.021(24) 

2.023(13) 1.979(17) 2.161(15) 2.095(23) 1.957(25) 

2.039(12) 2.021(16) 2.124(13) 2.003(25) 1.969(26) 

Avg M–L 1.989(16) 1.9738(17) 2.074(15) 2.017(25) 1.969(24) 

 

 

The M–L bond lengths listed in Table 4-9 differ from those in the solvated 

structure collected at 150 K. In contrast to two iron centers with average Fe–N 

bond lengths indicative of the iron center existing in an intermediate spin-transition 

state, the evacuated structure clearly indicates that the Fe(1) and Fe(2) centers 

are in a LS state with average Fe–N bond length of ~1.99 Å and ~1.97 Å, 

respectively. The average Fe(3)–N bond length is ~2.07 Å which suggests the Fe 

center is in between the LS and HS states. The average Ru(2)–C distance 

(~1.97 Å) is relatively shorter than the Ru(1)–C bond length and is also shorter 

than those found in the solvated sample (~2.02 Å). This might suggest a 

difference in oxidation states between the two ruthenium centers but with such 

large standard deviations on the bond distances in this structure, it would be 

unwise to commit to that theory based solely off of X-ray data. The π-π stacking 

parameters obtained are given in Table 4-10. In this structure, the centroid-

centroid distances are shorter in both intermolecular interactions (still the inter-pp 

interaction being the strongest) compared to the solvated sample. The solvated 
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structures exhibit inter-py interactions considerably longer than in the 24 hour 

sample (3.867 Å vs 3.654 Å) while the intra-tt centroid-centroid distance in the 24 

hour sample elongates (3.930 Å vs 3.835 Å). There is also a larger shift and angle 

associated with the intra-tt interaction in the 24 hour sample while the π-π stacking 

parameters for the intra-yy interaction are smaller when compared to the solvated 

structures. These intramolecular interactions indicate that a contraction between 

the Fe(2) and Fe(3) centers and an expansion between the Fe(1) and Fe(2) 

centers is occurring in the 24 hour sample. 

 
 
Table 4-10. Geometric parameters (centroid-centroid distances, shift distances and 
angles) for the inter- and intramolecular π-π stacking interactions in the 24 hour 
evacuated Fe3Ru2 TBPs at 150 K. *Indicates symmetry equivalent metal center. 

Interaction-Plane 
Fe Centers Involved 

Centroid-Centroid 
Distance (Å) 

Shift Distance (Å) Angle (º) 

inter-pp 
Fe(3)–Fe(3)* 

3.546 1.049 0 

inter-py 
Fe(3)–Fe(3)* 

3.654 1.374 0.871 

intra-tt 
Fe(1)–Fe(2) 

3.930 1.496 7.327 

intra-yy 
Fe(2)–Fe(3) 

3.804 1.283 4.542 

 

 

It must be stated that although a structure of the evacuated TBP was 

obtained, the data must be taken lightly as it shows more water content than the 

humid sample does. Obviously, the rapid absorption of water molecules no longer 

give a true representation of what the evacuated sample is truly like, structurally. 
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As expected, the packing diagram with the modeled water (Figure 4-6) show that 

even though the solvent had been removed from the TBP, it quickly re-absorbed 

water. The arrangement of the absorbed water fills the cavities that lie between 

the dimers, just as it did in the solvated sample.  

 

 

Figure 4-6. Packing diagram of the 24 hour evacuated Fe3Ru2 TBP. Color code: 
Fe is green, Ru is violet, C is gray, N is blue and O is red. Oxygen atoms were 
refined without hydrogen in order to obtain convergence of the structure. 
Hydrogen from all other atoms have been omitted for the sake of clarity. 
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Fe3Ru2 Humid (7e) 

 The usual structure and refinement parameters can be found in Table 4-11 

and the SQUEEZE analysis in Table 4-12. The humid samples were fully refined 

for solvent content for all temperatures. SQUEEZE was still employed as a 

comparison of experimental and calculated solvent content and for consistency 

between samples. The differences in structural data found between the modeled 

and SQUEEZED data sets were negligible in all aspects except solvent content. 

As can be seen by the refinement parameters and the resolution cut-off, this 

crystal diffracted better than the solvated and the evacuated crystals which led to 

better structure refinement. Much like the solvated structure, the volume of the 

unit cell increases with increasing temperature. In contrast to the solvated sample 

however, all cell edge lengths did not continually increase throughout the 

temperature regime. From 20 – 200 K the cell edges expanded as expected but 

at 250 K, there was a contraction of both the a and c axes. This trend is in accord 

with the percent of void space in the lattice at these temperatures. This could 

possibly indicate a difference in the spin-transitions occurring around 250 K 

between the solvated and humid Fe3Ru2 TBPs. The analysis of the SQUEEZED 

solvent is less than consistent. The amount of water fluctuates a great deal 

between lower temperatures, which is unlikely to occur naturally. However, during 

data collection in a He cold stream at the ALS, ice tends to accumulate on the 

loops and crystals below 150 K, which can lead to extra diffraction spots on the 

frames and incorrect spot intensities. This could be a reason for the inconsistent  
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Table 4-11. Crystal structure data and refinement parameters for the humid Fe3Ru2 TBP at multiple temperatures. 

Fe3Ru2 Humid 20 K 50 K 100 K 150 K 200 K 250 K 

Space Group P21/c P21/c P21/c P21/c P21/c P21/c 

a/ Å 19.5291(8) 19.5287(5) 19.5496(8) 19.5885(12) 19.6694(7) 19.6400(5) 

b/ Å 24.7058(10) 24.7166(6) 24.7642(11) 24.8103(15) 24.8678(9) 24.9411(7) 

c/ Å 24.1203(9) 24.1330(6) 24.1847(10) 24.2531(14) 24.3597(9) 24.3104(6) 

β/ ° 98.314(2) 98.2950(10) 98.252(3) 98.272(4) 98.534(2) 98.709(2) 

Volume/ Å3 11515.3(8) 11526.7(5) 11587.3(9) 11664.3(12) 11783.2(7) 11771.0(5) 

aInterstitial Solvent 21 H2O 20 H2O 23 H2O 20 H2O 20 H2O 20 H2O 

μ/ mm-1 0.758 0.757 0.754 0.749 0.741 0.741 

Crystal Size/ 
mm3 

0.0376 × 0.0376 x 0.1692 ; reddish-purple prism 

2Θ Range for 
Data Collection/ ° 

2.298 to 63.346 4.13 to 60.604 2.58 to 59.81 4.11 to 55.654 4.096 to 53.152 4.102 to 44.156 

Integration 
Resolution/ Å 

0.74 0.77 0.78 0.82 0.87 1.03 

Independent 
Reflections 

29942 
Rint = 0.0675 

Rsigma = 0.0496 

26610 
Rint = 0.0684 

Rsigma = 0.0466 

25751 
Rint = 0.1029 

Rsigma = 0.0712 

21345 
Rint = 0.1084 

Rsigma = 0.0680 

18879 
Rint = 0.0632 

Rsigma = 0.0385 

11170 
Rint = 0.0723 

Rsigma = 0.0364 
Data/Restraints/ 
Parameters 

29942 /29/1533 26610/23/1533 25751/24/1533 21345/28/1533 18879/19/1475 11170/19/1475 

bGooF on F2 1.043 1.039 1.041 1.041 1.073 1.089 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0587 
wR2 = 0.1465 

R1 = 0.0562 
wR2 = 0.1387 

R1 = 0.0649 
wR2 = 0.1690 

R1 = 0.0623 
wR2 = 0.1617 

R1 = 0.0649 
wR2 = 0.1656 

R1 = 0.0741 
wR2 = 0.1813 

c,dFinal R Indexes 
[all data] 

R1 = 0.0932 
wR2 = 0.1754 

R1 = 0.0844 
wR2 = 0.1634 

R1 = 0.0972 
wR2 = 0.2046 

R1 = 0.0896 
wR2 = 0.1903 

R1 = 0.1011 
wR2 = 0.2020 

R1 = 0.1105 
wR2 = 0.2257 

Largest Diff. 
Peak/Hole/ e Å-3 

1.89 / -0.89 1.57 / -0.73 2.06 / -1.08 1.40 / -0.82 1.40 / -0.66 1.20 / -0.54 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-

p)}1/2, where n is the number of reflections and p is the total number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - 

Fc
2)2]/∑w(Fo

2)2]}1/2.
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Table 4-12. Void space and residual electron density for the humid Fe3Ru2 TBPs (7e), as 
calculated from SQUEEZE analysis. Interstitial solvent was calculated using the solver 
add-in in Excel 2013 by considering both the electron density and void space. Water was 
treated as occupying 40 Å. 

Fe3Ru2 

Humid 
Void 

Space (Å) 
Number of 
Electrons 

% 
Void Space 

H2O/TBP 
SQUEEZE 

H2O/TBP 
Modeled 

20 K 3019 1218 26.2 21.2 21.2 

50 K 3029 922 26.3 19.8 21.3 

100 K 3064 1463 26.4 22.6 21.4 

150 K 3105 918 26.6 20.1 21.4 

200 K 3158 870 26.8 20.1 22.0 

250 K 3121 793 26.5 19.6 22.0 

Average 3083 1031 26.5 20.6 21.6 

 

 

electron densities in the void spaces. Below 150 K, finding the number of water 

molecules in the crystal using SQUEEZE data was more accurate when both the 

electron density and void space was taken into account. Above 150 K though, 

using just the residual electron density gave values closer to those obtained from 

modeling the disordered water in the structures (values are in Table 4-12). For the 

sake of consistency, both the electron density and void space were used for all 

temperatures and are reported here. 

 The M–L bond lengths for the humid crystal are in Table 4-13. The average 

Fe(1)–N and Fe(2)–N bond lengths from 20 K to 150 K steadily increase, 

indicating a gradual spin-transition is occurring at both the Fe(1) and Fe(2) 

centers. At 20 K, the Fe(3) center has an average Fe–N bond length indicative of 

an iron center between the LS and HS states. As the temperature increases to 

250 K, the average Fe(3)–N bond length stays relatively stagnant with only a 
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minute lengthening in the distance. This suggests that the Fe(3) center is not 

undergoing a LS↔HS transition below 250 K. As with the other structures, the 

Ru–C bond distances are not distinct enough to interpret oxidation states of the 

ruthenium centers. When the TBP contains water in the interstitial sites though, a 

network of hydrogen bonding water molecules appear to occur between the 

terminal cyanide ligands on the ruthenium centers and neighboring TBP 

molecules. The asymmetric unit in Figure 4-7 shows the water molecules forming 

a hydrogen bonding network beginning at one of the terminal cyanide molecules 

(circled in pink). This network is formed on both sides of the dimeric unit (Figure 

4-8). The extensive network of hydrogen bonding can clearly be seen in the 

packing diagram (Figure 4-9) when looking down the b-axis. Channels of solvent 

form around the dimeric unit in such a way that the intermolecular interaction 

between TBP molecules can easily be seen due to the absence of solvent near 

this site. 
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Table 4-13. M–L bond distances (in Å) for the humid Fe3Ru2 TBP (7e). 

Temperature Fe(1)–N Fe(2)–N Fe(3)–N Ru(1)–C Ru(2)–C 

20 K 1.956(3) 1.894(3) 1.954(3) 2.053(4) 2.027(4) 
1.940(3) 1.895(3) 1.984(3) 2.002(4) 1.998(4) 
1.976(3) 1.978(3) 2.124(3) 1.967(4) 1.987(4) 
1.971(3) 1.967(3) 2.181(3) 2.058(4) 2.066(4) 
1.981(3) 1.972(3) 2.180(3) 2.068(4) 2.048(4) 
1.992(3) 1.978(3) 2.138(3) 2.039(4) 2.044(4) 

Avg M–L 1.969(3) 1.947(3) 2.094(3) 2.031(4) 2.028(4) 

50 K 1.958(3) 1.896(3) 1.956(3) 2.055(4) 2.025(3) 
1.936(3) 1.898(3) 1.983(3) 2.004(4) 1.999(4) 
1.979(3) 1.980(3) 2.122(3) 1.966(3) 1.988(4) 
1.972(3) 1.968(3) 2.185(3) 2.056(4) 2.068(4) 
1.981(3) 1.973(3) 2.179(3) 2.064(4) 2.043(4) 
1.992(3) 1.981(3) 2.143(3) 2.037(4) 2.039(4) 

Avg M–L 1.970(3) 1.949(3) 2.095(3) 2.030(4) 2.027(4) 

100 K 1.954(4) 1.892(4) 1.949(4) 2.056(5) 2.032(4) 
1.944(4) 1.895(4) 1.985(4) 2.003(5) 1.999(5) 
1.980(4) 1.985(4) 2.129(4) 1.960(4) 1.984(4) 
1.977(4) 1.967(4) 2.189(4) 2.056(5) 2.065(5) 
1.986(4) 1.976(4) 2.180(4) 2.061(5) 2.049(5) 
1.999(4) 1.982(4) 2.144(4) 2.038(5) 2.045(5) 

Avg M–L 1.973(4) 1.950(4) 2.096(4) 2.029(5) 2.029(5) 

150 K 1.954(3) 1.903(4) 1.957(4) 2.049(5) 2.025(4) 
1.942(4) 1.901(4) 1.990(4) 2.004(5) 2.000(5) 
1.994(4) 1.989(4) 2.130(4) 1.970(5) 1.994(5) 
1.990(4) 1.977(4) 2.189(4) 2.058(5) 2.071(5) 
2.001(3) 1.994(4) 2.181(4) 2.058(5) 2.045(5) 
2.006(4) 1.998(4) 2.152(4) 2.042(5) 2.040(5) 

Avg M–L 1.981(4) 1.960(4) 2.100(4) 2.030(5) 2.029(5) 

200 K 1.966(4) 1.947(5) 1.978(4) 2.012(5) 1.992(5) 
1.941(5) 1.938(5) 2.020(5) 1.997(6) 1.993(6) 
2.057(4) 2.044(5) 2.134(4) 1.992(5) 2.006(6) 
2.072(4) 2.032(6) 2.196(4) 2.059(7) 2.069(6) 
2.084(4) 2.050(5) 2.188(4) 2.056(6) 2.046(6) 
2.060(4) 2.053(5) 2.153(4) 2.048(6) 2.033(6) 

Avg M–L 2.030(4) 2.011(5) 2.112(4) 2.027(6) 2.023(6) 

250 K 1.972(8) 1.972(10) 1.991(8) 1.989(11) 1.947(11) 
1.922(9) 1.952(09) 2.043(9) 1.972(12) 1.987(11) 
2.117(7) 2.087(09) 2.123(8) 2.004(11) 2.009(11) 
2.132(7) 2.088(10) 2.215(7) 2.033(13) 2.071(12) 
2.145(6) 2.081(10) 2.187(8) 2.066(11) 2.066(13) 
2.110(7) 2.098(08) 2.156(7) 2.048(12) 2.014(14) 

Avg M–L 2.066(7) 2.046(09) 2.119(8) 2.019(11) 2.016(12) 
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Figure 4-7. The asymmetric unit of the Fe3Ru2 TBP left in a humid environment 
for a day. The pink circle highlights the hydrogen bond to a terminal cyanide 
ligand. Color code: Fe is green, Ru is violet, C is gray, N is blue and O is red. The 
dashed lines represent hydrogen bonds. 
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Figure 4-8. Dimeric unit of 7e at 50 K. The orange and yellow tmphen ligands are 
on opposite Fe(3) centers involved in π-π stacking. Water forms a hydrogen 
bonding network with a cyanide ligand on the Ru(2) center. Color code: Fe is 
green, Ru is violet, C is gray, N is blue and O is red. The orange and yellow tmphen 
ligands are the ones involved in the intermolecular interactions in the dimeric unit. 
The dashed lines represent the hydrogen bonds. 
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Figure 4-9. Packing diagram of 7e looking down the b-axis. Color code: Fe is 
green, Ru is violet, C is gray, N is blue and O is red. The dashed lines represent 
the hydrogen bonds. 
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Figure 4-10. View of the humid Fe3Ru2 TBP (7e) at 20 K stacking in a 

dimeric unit due to the intermolecular π-π stacking interactions between 
neighboring TBP molecules. The purple and yellow planes highlight the 
rings within the tmphen ligands that are common between all of the 
structures discussed. The maroon plane highlights the additional 
interaction found only in this solvation state at this temperature. Color 
code: Fe is green, Ru is violet, C is gray and N is blue. Hydrogen and 
solvent have been omitted for the sake of clarity. 
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An interesting difference between the humid structure at 20 K and all other 

structures analyzed, are the intermolecular π-π stacking interactions. The 20 K 

structure has the same intra- and intermolecular interactions as the other samples 

with the exception that the Olex2 software detects an additional intermolecular 

interaction with the third ring in the tmphen ligands on the Fe(3) centers already 

involved in the inter-pp and inter-py interactions. Figure 4-10 shows the overlap 

between the two symmetrically related tmphen ligands at 20 K. The additional 

intermolecular interaction between the third ring in the tmphen ligands (maroon-

colored planes in Figure 4-10) and the yellow-colored planes on the inversely 

symmetrical tmphen ligands will be referred to as inter-my. The π-π stacking 

parameters obtained for the different temperatures of the humid Fe3Ru2 TBP are 

given in Table 4-14. The additional intermolecular interaction at 20 K (inter-my) 

has a centroid-centroid distances of 3.992 Å. This value is practically at the limit 

of what Olex2 defines as a π-π interaction and is longer than the usually accepted 

distance of 3.8 Å, so a slight displacement of the tmphen ligand would make this 

interaction undetectable by the employed analysis methodology. As with the other 

structures analyzed, the strongest interaction is inter-pp. The inter-py interaction 

is slightly stronger than in the humid structures than in the other samples while 

the intra-tt interaction is slightly weaker. No correlation of temperature 

dependence with the centroid-centroid distances can be made as there is no clear 

variation in the values. In contrast to the solvated structures, the humid structures 

seem to mirror the expansion and increased twisting between the planes of the  



 

185 

 

Table 4-14. Geometric parameters (centroid-centroid distance, shift distance and angle) 
for the inter- and intramolecular π-π stacking interactions in the humid Fe3Ru2 TBPs (7e). 
The average values (avg) and the differences between the minimum and maximum 
values (Δ) have been included. *Indicates symmetry equivalent metal center. 

Interaction-Plane 
Fe Centers 
Involved 

Temperature 
Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

inter-pp 

Fe(3)–Fe(3)* 

20 K 3.519 0.847 0 
50 K 3.521 0.85 0 

100 K 3.521 0.85 0 
150 K 3.527 0.869 0 
200 K 3.542 0.932 0 
250 K 3.544 0.922 0 

 Avg 3.529 0.878 0 

 Δ 0.025 0.085 0 

inter-py 

Fe(3)–Fe(3)* 

20 K 3.738 1.598 1.09 
50 K 3.74 1.59 0.829 

100 K 3.74 1.59 0.829 
150 K 3.733 1.559 0.682 
200 K 3.694 1.478 1.169 
250 K 3.711 1.484 0.888 

 Avg 3.726 1.550 0.914 

 Δ 0.046 0.120 0.487 

inter-my 

Fe(3)–Fe(3)* 
20 K 3.992 2.198 4.124 

intra-tt 

Fe(1)–Fe(2) 

20 K 3.931 1.614 7.09 
50 K 3.942 1.598 6.764 

100 K 3.942 1.598 6.764 
150 K 3.946 1.578 7.191 
200 K 3.94 1.508 7.264 
250 K 3.963 1.434 6.192 

 Avg 3.944 1.555 6.877 

 Δ 0.032 0.180 1.072 

intra-yy 

Fe(2)–Fe(3) 

20 K 3.788 1.335 3.596 
50 K 3.795 1.347 3.831 

100 K 3.795 1.347 3.831 
150 K 3.795 1.113 3.91 
200 K 3.806 1.335 4.279 
250 K 3.832 1.299 4.236 

 Avg 3.802 1.296 3.947 

 Δ 0.044 0.234 0.683 
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intra-tt interaction as well as the contraction and decreased twisting between the 

planes in the intra-yy interactions as exhibited in the 24 hour structure. 

 Upon comparing the average Fe–N bond lengths for all of the compounds 

discussed in this section, it becomes evident that the Fe(2) centers in the humid 

and solvated compounds have similar average Fe–N bond lengths to each other 

between 20 – 250- K. The Fe(3) centers also have similar bond lengths throughout 

that temperature range when comparing the solvated and humid samples to each 

other. A graph of the average Fe–N bond distances for all temperatures of the 

solvated, 24 hour and humid compounds (Figure 4-11) illustrates this similarity in 

the Fe centers between samples. This suggests that they behave similarly as far 

as the spin-transition is concerned. The Fe(2) centers (circles in Figure 4-11) in 

both compounds are clearly undergoing a gradual spin transition with thermal 

perturbation, as indicated by the increase in the bond lengths. The Fe(3) centers 

(squares in Figure 4-11) in these compounds stay relatively unchanged at a bond 

distance typical for an iron center between a LS and HS state. The difference 

between the solvated and the humid TBPs, as far as the bond lengths are 

concerned, comes from the Fe(1) centers (triangles in Figure 4-11). In the 

compound containing MeCN, the Fe(1) center behaves similarly to the Fe(3) and 

the bond length remains relatively stable up to 250 K. For the humid sample 

however, the Fe(1) center behaves more like the Fe(2) center and shows a 

lengthening in the bond distances above 100 K. At low temperatures, the humid 

sample contains two Fe centers in a LS state that are undergoing a gradual spin- 
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transition above 100 K while the MeCN sample only has one Fe center exhibiting 

this behavior. This comparison suggests that these two TBPs exhibit different 

types of spin-transition behaviors. With only obtaining data at one temperature 

with the evacuated sample, nothing can be determined from structural data as to 

whether a change in temperature has an effect on the Fe–N bond lengths. It can 

be said, however, that at 150 K the Fe centers in the evacuated sample that 

Figure 4-11. Graph of average Fe–N bond lengths for all temperatures of 7a (blue 
markers and lines), 7d (green markers) and 7e (orange markers and lines). The 
triangles represent the Fe(1) centers, the circles represent the Fe(2) centers and 
the squares represent the Fe(3) centers for each compound. 



 

188 

 

contains more water than the humid sample have bond lengths for each Fe center 

that correspond well with those found in the humid sample. 

Overall, the Fe3Ru2 TBP has similar structural data to the isostructural 

Fe3Fe2 and Fe3Os2 congeners reported previously.116,145 The Fe3Fe2 crystal data 

at 110 K have average Fe-N bond lengths consistent with three LS Fe centers, 

which is in agreement with the magnetic data showing concurrent SCO events 

that start above 110 K. For the Fe3Os2 TBP it was found that the Fe(1) and Fe(3) 

centers undergo a Δd(Fe-N) ≈ 0.2 Å, consistent with a LS ↔ HS transition of some 

type. It was determined through 57Fe Mössbauer and magnetic data that this was 

due to CTIST events. The Fe(2) center remained relatively unchanged between 

110 and 300 K. 

 

Magnetic Properties 

 These compounds are made with trivalent ruthenium and divalent iron 

metals at room temperature. If these oxidation states are unchanged when the 

TBP forms, an FeII
3RuIII

2 electronic configuration is expected. Temperature 

dependent DC susceptibility (χT) values expected for HS FeII (d6) in an octahedral 

coordination environment can vary from a spin-only value of 3.0 emu·K/mol (less 

likely) to ~3.8 emu·K/mol for compounds with larger Landé g-factors due to the 

additional angular momentum contribution stemming from the S = 2 electronic 

configuration.65 No contribution to χT is expected for LS FeII (d6) in an octahedral 

coordination environment as it is diamagnetic due to its t2g
6 electronic 
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configuration. This means that for an FeII center to undergo a LS ↔ HS SCO 

event, a Δ ~3.0 – 3.8 emu·K/mol is expected. For octahedral RuIII ions, a spin-

only χT value of 0.375 emu·K/mol is expected, but can decrease to 

~0.27 emu·K/mol as the g-factor decreases, as it commonly does for these S = ½ 

ions.168-170,187 Ruthenium surrounded by a strong-field ligand such as cyanide will 

not undergo SCO. However, as it was shown in Chapter 3, [RuIII(CN)6]3- can be 

reduced to [RuII(CN)6]4- in TBP compounds, just as it was in the Co3Ru2 TBP. This 

will result in a diamagnetic t2g
6 electronic configuration of the RuII center and 

consequently, no contribution to χT. If a charge transfer does occur between an 

FeII and RuIII center, several configurations are possible due to the SCO capability 

of iron in an all nitrogen, octahedral coordination environment. Charge-wise, an 

FeIII–RuII pair will result. Owing to the nature of Fe–N6 to undergo SCO, the 

resulting pair could be LS FeIII–RuII or HS FeIII–RuII. Generally, if a SCO is possible 

and a charge transfer event occurs between two bridging metal centers, the two 

events occur concomitantly with each other and is termed a charge-transfer-

induced spin transition (CTIST). The outcome of this being that the only electronic 

configurations possible are LS FeII–RuIII ↔ HS FeIII–RuII, as was seen in the 

Fe3Os2 congener,116 or HS FeII–RuIII ↔ LS FeIII–RuII, the latter being very unlikely 

in this case (vide infra). The CTIST phenomena is still relatively understudied as 

it has only occurred in a limited number of compounds.215 If the SCO doesn’t occur 

at all, then the other possible transitions allowed due to charge-transfer are LS 

FeII–RuIII ↔ LS FeIII–RuII or HS FeII–RuIII ↔ HS FeIII–RuII. To the best of my 
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knowledge, an instance where the charge-transfer and SCO were not concomitant 

events in the overall spin-transition of a compound has not been reported. This 

being said, a LS FeIII center (t2g
5 electronic configuration) will be spin one-half (S 

= ½) with a χT value around 0.375 emu·K/mol and a HS FeIII center (t2g
3eg

2) will 

have a χT value around 4.375 emu·K/mol. These spin-only values can fluctuate 

slightly when orbital angular momentum is taken into account. Table 4-15 

represents the typical values of χT expected for the possible electronic 

configurations of the Fe and Ru centers discussed above and Table 4-16 is the 

change in the spin-only values of χT based upon the type of transition possible in 

this molecule. If the change in configuration is due to a charge transfer, the χT 

values associated with the change in the ruthenium center must also be 

accounted for. The first column is the ΔχT expected if just the iron center is 

considered. The second column is the overall change in χT when the ruthenium 

is taken into account. 

 

Table 4-15. Typical and spin-only χT values and electronic configurations of Fe and Ru. 

Metal Center 
Configuration 

Electronic Oh 
Configuration 

Total 
Spin 

Range of Typical 
χT Values 

(emu·K/mol) 

Spin-Only χT 
Values 

(emu·K/mol) 

LS FeII (d6) t2g
6
 S = 0 0 0.000 

HS FeII (d6) t2g
4eg

2 S = 2 3.0 – 4.3 3.000 

LS FeIII (d5) t2g
5 S = ½ 0.36 – 0.41 0.375 

HS FeIII (d5) t2g
3eg

2 S = 5∕2 4.36 – 5.29 4.375 

LS RuII (d6) t2g
6 S = 0 0 0.000 

LS RuIII (d5) t2g
5 S = ½ 0.29 – 0.38 0.375 
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Table 4-16. Types of spin-transitions possible in the Fe3Ru2 TBP. The spin-only values 
of χT are used for the Δ values. If a charge transfer (CT) is involved, then the ΔχT 
associated with the Ru is included in the last column. 

Possible 
Electronic 
Transitions 

Type of 
Transition 

ΔχT                           
(Fe Only)     

(emu·K/mol) 

Total ΔχT                            
(Ru Included) 
(emu·K/mol) 

LS FeII ↔ HS FeII SCO 3.0 3.0 

LS FeII ↔ LS FeIII CT 0.375 0.0 

LS FeII ↔ HS FeIII CTIST 4.375 4.0 

HS FeII ↔ HS FeIII CT 1.375 1.0 

LS FeIII ↔ HS FeIII SCO 4.0 4.0 

 

 

Fe3Ru2 Solvated (7a) 

 When the Fe3Ru2 TBP is measured under MeCN, the temperature-

dependent susceptibility data (Figure 4-12) indicate that a spin-transition occurs 

in the molecule. At room temperature, when taking a g-factor of 2.1 for FeII and 

1.9 for RuIII into account, the χT value of 10.6 emu·K/mol is consistent with a SCO 

event occurring in all three FeII centers. This results in a TBP configuration of three 

HS FeII centers and two LS RuIII centers, [(HS-FeII)3RuIII
2]. Unfortunately, this 

value is also consistent with other electronic configurations when other g-factors 

are taken into account. EPR was collected on these molecules but the data for 

these complex molecules were inconclusive and will not be discussed. It is also 

possible that the TBP exhibits a [(HS-FeII)2(HS-FeIII)RuIIRuIII] electronic 

configuration, owing to an electron charge-transfer between an FeII and RuIII 

center. This configuration would be similar to the Fe3Os2 congener at room 

temperature with the exception that one of the FeII sites is HS instead of LS. This 
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however, is a reasonable configuration in comparison to the Fe3Os2 congener 

considering there is about a 3 emu·K/mol difference in χT between the two 

analogs at room temperature, with the Fe3Ru2 TBP having the larger χT value. 

Another reasonable assumption is that both Ru centers were reduced upon 

formation of the TBP, like in the Co3Ru2 analog. This results in a configuration 

somewhere between [(LS-FeII)(HS-FeIII)2RuII
2] exhibited by the Fe3Os2 analog at 

350 K and [(HS-FeII)(HS-FeIII)2RuII
2]. These four scenarios are the most probable, 

as the other M3Ru2 TBPs and M3Os2 congeners studied suggest. These four 

Figure 4-12. Temperature-dependent susceptibility data for the Fe3Ru2 TBP 
measured under MeCN (7a). The inset is the reduced magnetization data. 
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configurations allow for a χT value between ~8.5 – 12 emu·K/mol when moderate 

Landé g-factors are used. As temperature is decreased, the χT curve decreases 

~4 emu·K/mol very gradually  until about 50 K where χT is 6.5 emu·K/mol. Below 

50 K, the decrease is much more rapid and changes by 5.1 emu·K/mol as 2 K is 

reached (1.4 emu·K/mol). From 300 K to 150 K, the gradual decrease in 

susceptibility of  3 emu·K/mol indicates that a HS ↔ LS transition at an FeII center 

is occurring within this molecule. At 2 K, with such a small paramagnetic signal 

(1.4 emu·K/mol), the more reasonable spin and oxidation states are for a 

[(LS-FeII)3RuIII
2] configuration (0.75 emu·K/mol) with a small percentage of 

remnant HS FeII. Reduced magnetization data (inset of Figure 4-12) is of little help 

in determining the ground state of the TBP as it lacks any form of saturation and 

is a straight line nearing 6 B.M., indicating the presence of low lying excited states. 

For a [(LS-FeII)3RuIII
2] configuration, one would expect magnetization data to 

saturate near 2 B.M. The splitting of the iso-field lines do indicate an appreciable 

amount of anisotropy present in the TBP though. The lack of saturation is 

generally due to low lying excited states. If the [(LS-FeII)3RuIII
2] ground state 

configuration is considered along with the possible room temperature 

configurations discussed earlier, it can be said that overall, the molecule is either 

undergoing three Fe SCO events, one CTIST and two SCO events or one SCO 

and two CTIST events. Without 57Fe Mössbauer data, assignment of the TBP 

electronic configuration and the phenomena occurring is just speculation. 

Mössbauer data will be discussed in the next section. 
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Fe3Ru2 Filtered (7b) 

 Ultimately, the point of preparing and measuring the filtered sample was to 

see if a simple lab technique of separating the product from the mother liquor  

could alter the magnetic behavior of it. Filtering is a common technique and is 

rarely given a second thought when it comes to collecting the product. Figure 4-

13 shows the difference in χT between a sample measured under MeCN and a 

sample that had been filtered, briefly. Both the χT curvature and values along with 

the reduced magnetization data are fairly consistent with the sample measured 

under solvent. This suggests that filtering the sample in a way that doesn’t pull off 

interstitial solvent will result in the same spin transition behavior as a sample 

measured under solvent. The data also suggests that measuring the sample 

under the mother liquor does not impose a chemical pressure on the sample, 

which usually leads to an altering of the spin transition behavior in these samples. 

The filtered sample was measured to 350 K and the data shows the very gradual 

spin transition continues, with no sign of a plateau. 
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Figure 4-13. Temperature dependence of χT for the solvated (7a – dark blue 
circles) and filtered (7b – light blue circles) Fe3Ru2 TBPs. This filtered sample is 
easily recognized as it is measured up to 350 K. The inset is the reduced 
magnetization for the filtered sample. 
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Fe3Ru2 3 Hours (7c) 

 The susceptibility data at 300 and 350 K (Figure 4-14) is about 

3 emu·K/mol higher than the solvent/filtered samples (13.3 and 13.6 emu·K/mol, 

respectively) The only electronic configuration that would result in such a large 

value of χT is [(HS-FeII)(HS-FeIII)2RuII
2]. As stated earlier, the expected spin-only 

value for this state is 11.75 emu·K/mol with a total of fourteen unpaired electrons. 

The susceptibility data suggests that larger g values are at play here. The 

decrease in χT with decreasing temperature is slightly more cooperative than in 

the solvated and filtered samples. By the time 150 K is reached, the χT decreases 

4 emu·K/mol, suggesting that either a SCO at the FeII or one of the FeIII centers 

has occurred or that a CTIST has taken place. As temperature is continually 

decreased, another spin transition is evident by the rapid decrease in χT between 

50 and 2 K, with a Δ ≅ 6 emu·K/mol. As with the solvated and filtered samples, 

the χT data at 2 K suggests that the TBP is leading to ground state configuration 

of [(LS-FeII)3RuIII
2]. Reduced magnetization data for the 3 hour sample is nearly 

identical to the filtered and solvated samples in that it lacks any suggestion of 

saturation and is a straight line up to ~6 B.M. The anisotropic splitting of the iso-

field lines are similar to the previous samples as well. Again, without Mössbauer 

data, assignment of the TBP configuration between 2 K and 350 K is speculative 

and a non-trivial task. 
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Fe3Ru2 24 Hours (7d) 

 Similarly to the sample put under vacuum for three hours, the sample put 

under vacuum for twenty-four hours has a very telling TBP configuration at 350 K 

due to its large χT value in Figure 4-15. Between 300 and 350 K the curve of the 

spin transition appears to plateau at 14.5 emu·K/mol, an even higher value than 

in the 3 hour sample. Just like in the previous samples, the most reasonable state 

of the TBP at 350 K is [(HS-FeII)(HS-FeIII)2RuII
2] and at 2 K is [(LS-FeII)3RuIII

2] from 

the value of χT at these two temperatures. As temperature is decreased from 

Figure 4-14. Temperature dependent susceptibility of the Fe3Ru2 TBP put under 
vacuum for three hours. Inset: reduced magnetization data for the sample. 
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350 – 150 K, a spin transition is evident with a gradual decrease in χT from 14.5 

to 10.3 emu·K/mol, a similar value to the solvated and filtered samples at 300 K. 

This change of ~4 emu·K/mol in χT could be due to either SCO or CTIST but is 

most likely the result of a HS → LS SCO on the FeII center owing to the fact that 

the second transition step in the χT curve (between 150 – 2 K) is much larger than 

in previous samples and accounts for two transitions. From 150 K to 2 K, the 

second transition step occurs with a change of nearly 9 emu·K/mol, which is 

Figure 4-15. Temperature dependent χT curve for the Fe3Ru2 TBP (7d) exposed 
to vacuum for 24 hours prior to measurement. Inset: reduced magnetization data 
for the compound. 
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consistent for two CTIST events from HS FeIII → LS FeII. Considering the high-

temperature configuration of [(HS-FeII)(HS-FeIII)2RuII
2] and the ground state for 

the TBP most likely being [(LS-FeII)3RuIII
2] (as the small value of χT suggests) 

there are two CTISTs and one SCO event that must take place as temperature is 

decreased from 350 to 2 K. It makes more chemical sense if the transitions that 

occur simultaneously are of the same type. Reduced magnetization data in the 

inset of Figure 4-15 is very similar to the previous samples except that it is a 

straight line nearing 8 B.M. instead of 6 B.M.  

 

Fe3Ru2 Humid (7e) 

Out of the five different solvation states studied for this compound, the 

humid sample has a more distinct susceptibility curve from 2 – 350 K (Figure 4-

16). Whereas the samples under vacuum have a transition step on either side of 

~120 K, the humid sample has the transition steps on either side of ~70 K. 

resulting in the higher temperature transition in the humid sample to begin at a 

lower temperature than the similar transitions in the other samples. At 350 K, 7e 

has a similar χT value to the filtered sample, and most likely has a very similar 

electronic configuration tending to [(HS-FeII)(HS-FeIII)2RuII
2]. The most noticeable 

difference between the previous four samples and this one, other than the lower 

transition temperature and the change in cooperativity of the transitions, is the 

ground state. At 2 K the χT value is 3.5 emu·K/mol instead of 1.5 emu·K/mol 

Reduced magnetization for the humid sample is also notably different in that the 
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splitting of the iso-field lines is much smaller, indicating a decrease in the 

anisotropy of the compound. If the ground states in the previous samples have 

been assigned correctly and the TBP is mostly in the [(LS-FeII)3RuIII
2] state, then 

the inherent anisotropy found in these complexes are most likely coming from the 

RuIII centers due to LS FeII being diamagnetic. The decrease in anisotropy in the 

humid sample suggests a decrease in the amount of RuIII present in the ground 

state. Taking the decrease in anisotropy into account, as well as the higher value 

Figure 4-16. Temperature dependent susceptibility of the water-containing 
Fe3Ru2 TBP (7e). The reduced magnetization for this humid sample can be found 
in the inset. 



 

201 

 

of χT, it can be argued that the water has caused a change in the ground state of 

the TBP to [(LS-FeII)2(LS-FeIII)RuIIRuIII]. With this configuration at low 

temperatures and [(HS-FeII)(HS-FeIII)2RuII
2] at higher temperatures, it can be said 

that this TBP exhibits one reversible CTIST event and one SCO event on an FeIII 

center that is a result of an irreversible charge-transfer between FeII and RuIII 

during formation of the TBP. It is well known that FeII salts will often oxidize to FeIII 

in air with time and rapidly oxidize to FeIII in the presence of moisture. The fact 

that these crystals seem to contain only water in the interstitial sites now, could 

be a factor as to why only one CTIST occurs as temperature is decreased. 

Although it seems that hexacyanoruthenate seems to prefer a trivalent oxidation 

state at low temperatures in the Fe3Ru2 TBPs, when water is in the interstitial sites 

one of the Ru centers remain in a divalent oxidation state which could be due to 

the hydrogen bonding of the water molecules to the terminal cyanide ligands of 

the Ru center ultimately changing the redox properties of the ruthenium. Figure 4-

17 is a comparison of the temperature dependent susceptibility data for all five 

solvation states studied and demonstrates that changes in the lattice due to 

solvent can cause non trivial changes in the spin-transition of the Fe3Ru2 TBP. 

 Upon comparing the magnetic data with the Fe3Fe2 and Fe3Os2 congeners, 

clear differences and similarities are noticed. Below 100 K, the susceptibility data 

for the Fe3Fe2 TBP containing water as the interstitial solvent (analogous to the 

humid Fe3Ru2 sample) is consistent with an electronic configuration of  

[(LS-FeII)3(LS-FeIII)2]. As temperature is increased to 375 K, the χT value  
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increases ~9 emu·K/mol due to three gradual SCO events occurring on the three 

FeII centers simultaneously. When the Fe3Fe2 TBP was measured under MeCN 

(analogous to the solvated Fe3Ru2 TBP), the SCO events begin to occur just 

below 100 K and are slightly more gradual in nature than in the water-containing 

sample. The fact that the SCO events do not occur below 100 K in the analogous 

Fe3Fe2 TBPs supports the theory that the major spin-transitions occurring in the 

Fe3Ru2 TBPs below 100 K is due to CTIST events. The Fe3Os2 TBP exists as 

Figure 4-17. A comparison of spin-transition curves exhibited in the temperature 
dependent χT data of Fe3Ru2 TBPs with different levels of solvation. 
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[(LS-FeII)3OsIII
2] at low temperatures and undergoes two concurrent CTIST events 

above 220 K. The Fe3Ru2 susceptibility data exhibit two clear steps from 2 K to 

350 K, indicative of at least two spin-transitions occurring separately throughout 

the temperature range. One of these steps occur below 220 K in all of the Fe3Ru2 

sample measured. By exchanging Ru for Os, the spin transitions that are 

occurring have clearly been shifted to lower temperatures and seem to have 

increased in number as well. 

 

57Fe Mössbauer Properties 

In order to try to deconvolute the complex spin-transitions that occur as the 

level of solvation changes in these TBPs, 57Fe Mössbauer data was collected and 

simulated by Dr. Catalina Achim and her graduate student Heather Stout at 

Carnegie Melon University. Data was collected at zero field on crystals that came 

from the same batch of samples used for magnetic measurements. Without 

having simulated Mössbauer data under an applied field, the distinction between 

LS FeII and HS FeIII cannot be ascertained with any percent of certainty, but with 

the combination of magnetic and crystallography data, reasonable assumptions 

about the overall type of spin-transitions occurring can be made. Details on the 

instrument and methods used to collect the data can be found in Appendix A. The 

percent of iron given are for the total iron in the molecule. Considering there are 

three iron centers in these molecules and a total percentage is not particularly 

helpful when considering what each iron center is doing, there are two easy ways 
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to relate the total percent of iron given to the actual iron centers. One iron center 

is considered to be approximately 33.33̅% of the total iron, or the total iron 

percentage can be multiplied by 3 to obtain the percentage of one iron center. For 

consistency, the latter method will be used to discuss what is most likely occurring 

at each iron center, with the inclusion of the magnetic and crystallography data for 

support. 

 

Fe3Ru2 Solvated (7a) 

 Spectra for this sample were collected at 150 K and 4.2 K without an 

applied field. Relevant parameters and data can be found in Table 4-17. These 

parameters are simulated with an orange line in Figure 4-18. At 150 K (Figure 4-

18a), the main feature of the spectra is a doublet just to the right of 0 mm/s with a 

quadrupole splitting (ΔEQ) of 0.485 mm/s and a chemical shift (δ) of 0.417 mm/s 

and accounts for 80% of the iron in the sample. These parameters are typical for 

either LS FeII or HS FeIII. The minor feature with a peak just above a velocity of 

2 mm/s signifies the presence of HS FeII and accounts for 7% of the total iron (or 

21% of one iron center, possibly) in the sample. As temperature is decreased to 

4.2 K (Figure 4-18b), the main doublet remains unchanged and still accounts for 

80% of the total iron in the sample measured under MeCN. The peak above 

2 mm/s that corresponds to HS FeII is visibly smaller and now and only account 

for 5% of the total iron (or 15% of one iron center). What is more notable is the 

emergence of a new doublet with one peak at a lower velocity of the main doublet 
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and the other peak appearing as a shoulder at a higher velocity of the main 

doublet. This doublet is attributed to LS FeIII and accounts for 12% of the total iron 

(or 36% of one iron center) in the sample. With the LS FeII and HS FeIII doublet 

remaining unchanged and the amount of HS FeII remaining relatively unchanged 

between 150 K and 4.2 K, this suggests that the emergence of LS FeIII is coming 

from either LS FeII or HS FeIII. This means that two spin-transitions are possible – 

a LS FeII → LS FeIII charge transfer as temperature is decreased, or a HS FeIII → 

LS FeIII SCO. 

 

 

Table 4-17. 57Fe Mössbauer data collected with no applied field for 7a. 

 

Sample Conditions T(K) δ (mm/s) ΔE
Q
 (mm/s) % Fe Type 

Crystals Under 
Acetonitrile 

(7a) 

4.2 

0.180 2.085 12 LS FeIII 

0.450 0.520 80 LS FeII or HS FeIII 

1.100 3.050 5 HS FeII 

 

150 

   Broad 

0.417 0.485 80 LS FeII or HS FeIII 

1.050 3.000 7 HS FeII 
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Figure 4-18. 57Fe Mössbauer data for the solvated crystals of Fe3Ru2 (7a) at 
150 K (a) and 4.2 K (b). Spectra were obtained without an applied field. Orange 
line is the simulation using the parameters in Table 4-17. Percentages of iron 
used in simulation are displayed on each figure for convenience. 
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The continual decrease in the magnetic susceptibility data as temperature 

decreases is not consistent with an increase in unpaired electrons however, ruling 

out the former possibility. With the percentage of this doublet remaining 

unchanged at 80% at both temperatures and the continual decrease in 

susceptibility, the amounts of HS FeIII and LS FeII must change in ratio between 

themselves. In other words, HS FeIII is likely undergoing a CTIST to LS FeII
 as 

temperature decreases. At 2 K, the susceptibility of the molecule is 1.4 emu·K/mol 

and at 4 K, it is 2.1 emu·K/mol. These values, in conjunction with Mössbauer data, 

are consistent for a TBP with a configuration headed towards [(LS-FeII)3RuIII
2] with 

one Fe center that did not complete a charge-transfer from LS FeIII to LS FeII. The 

unlikelihood of LS FeII becoming LS FeIII as temperature decreases requires the 

presence of FeIII at higher temperatures. Susceptibility data at room temperature 

offered four possibilities for the state of the TBP, three of which demanded the 

presence of HS FeIII and none that suggested the presence of LS FeIII. With this 

knowledge, and the presence of 12% LS FeIII (or 36% of one iron center) detected 

at 4.2 K, it becomes clear that there is some HS FeIII undergoing a SCO to LS FeIII 

as temperature is decreased. The amount of HS FeII present in the Mössbauer 

spectra at 150 K coupled with the relatively small change in χT, from 300 K to 

150 K, preclude the configuration of [(HS-FeII)2(HS-FeIII)RuIIRuIII] at room 

temperature. This leaves the TBP in a [(HS/LS-FeII)(HS-FeIII)2RuII
2] configuration, 

where the SCO in the FeII center is in an intermediate state. From the combination 

of magnetic, Mössbauer and crystallography data it is likely that the Fe(2) center 
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in the TBP is undergoing a continuous HS → LS FeII SCO with the majority of the 

remaining SCO occurring between 300 K and 150 K. This accounts for the sharp 

decrease in the average Fe(2)–N bond length between these temperatures and 

also the ~Δ = 3 emu·K/mol in the χT data. The other bond lengths stay relatively 

unchanged through these temperatures, as discussed earlier. If there was an 

abrupt CT, CTIST or SCO through these temperatures, it could be seen in the χT 

data as well as the Fe–N bond lengths. This does not preclude the possibility of a 

gradual spin-transition at the other two remaining Fe centers from occurring 

though. Between 150 K and 2 K, there is a ~Δ = 6 emu·K/mol in the χT data and 

the emergence of LS FeIII at low temperatures, according to Mössbauer data. It is 

clear from the magnetic data that no, or very little HS FeIII is present in the sample 

at 2 K, meaning that one of the HS FeIII centers at elevated temperatures 

undergoes a CTIST to become LS FeII as temperature is decreased. The other 

center appears to be undergoing a HS FeIII → LS FeIII SCO first, followed by a 

charge-transfer to LS FeII. This is the first time that I am aware of, where a SCO 

and charge-transfer event occur on the same metal at different times. In the 

literature, these two events have been observed as concomitant phenomena 

known as CTIST. Mössbauer in an applied field and at room temperature is 

needed to confirm these theories, obviously. 
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Fe3Ru2 Filtered (7b) 

 The filtered sample has similar magnetic and 57Fe Mössbauer data (Table 

4-18 and Figure 4-19) and should behave in the same manner as explained 

above. It can be seen from the Mössbauer data at 4.2 K (Figure 4-19b), that the 

spin-transitions occurring, go more toward completion than the sample measured 

under MeCN. The red line in the figure corresponds to the simulation of the data 

using the parameters in Table 4-18. 

 

 

Table 4-18. 57Fe Mössbauer data for 7b at 4.2 K and 150 K. 

Sample Conditions T(K) δ (mm/s) ΔE
Q
 (mm/s) % Fe Type 

Filtered Crystals 
(7b) 

4.2 

0.190 2.000 3 LS FeIII 

0.480 0.550 93 LS FeII or HS FeIII 

1.100 3.100 2 HS FeII 

 

150 

   Broad 

0.425 0.510 79 LS FeII or HS FeIII 

1.050 2.900 8 HS FeII 
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Figure 4-19. 57Fe Mössbauer spectra for the filtered sample (7b) at 150 K (a) 
and 4.2 K (b). Measurements done in zero field. The red line represents the 
simulation of the data with the parameters in Table 4-18. Total iron percentages 
are displayed on the spectra for convenience. 
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Fe3Ru2 3 Hours (7c) 

 57Fe Mössbauer data were collected at 250 K and 150 K for this sample. 

The relevant parameters are in Table 4-19 and the spectra are in Figure 4-20. 

According to magnetic susceptibility data discussed previously, the only plausible 

configuration of the TBP above room temperature was that of 

[(HS-FeII)(HS-FeIII)2RuII
2]. This configuration holds true down to about 250 K as 

the decrease in χT is only 1.5 emu·K/mol resulting in a total χT value of 

12.1 emu·K/mol. This is consistent with a gradual SCO from HS to LS on the FeII 

center. The Mössbauer spectrum at 250 K (Figure 4-20a) exhibits two sets of 

doublets. The main quadrupole doublet centered just above 0 mm/s has 

parameters typical for LS FeII or HS FeIII and accounts for 63% of the total iron in 

the sample (100% of one iron center and ~90% of another iron center, possibly). 

The less intense doublet that exists as a shoulder on the left side of the main 

doublet and a peak above a velocity of 2 mm/s is typical for HS FeII and represents  

 

 

Table 4-19. 57Fe Mössbauer parameters for 7c at 150 K and 250 K in zero field. 

Sample Conditions T(K) δ (mm/s) ΔE
Q
 (mm/s) % Fe Type 

Crystals Under 
Vacuum for 

3 Hours 
(7c) 

150 

   Broad 

0.425 0.555 82 LS FeII or HS FeIII 

1.090 2.850 9 HS FeII 

 

250 

   Broad 

0.410 0.550 63 LS FeII or HS FeIII 

1.020 2.450 30 HS FeII 
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30% of the total iron in the sample, or 90% of one entire iron center, possibly. In 

conjunction with magnetic data, this could be looked at as one Fe center exists as 

~90% HS FeII and ~10% LS FeII, exhibiting SCO behavior between 350 K and 

250 K. The other iron centers remain as mostly HS FeIII as mandated by the 

susceptibility value of 12.1 emu·K/mol. As temperature is decreased to 150 K, the 

main doublet grows in intensity at a nearly equivalent magnitude at which the 

doublet for HS FeII decreases. That is, there is a decrease of 21% in the amount 

of HS FeII and an increase of 19% in the amount of LS FeII/HS FeIII in the sample. 

As stated earlier, it is unlikely that HS FeIII will emerge as temperature is 

decreased, and especially not from HS FeII. That leaves the reasonable 

assumption that the increase in the main doublet is due to a HS to LS SCO event 

of FeII. As of now, all that can be said for this sample, is that from 350 K to 150 K, 

there is an FeII center undergoing a HS to LS SCO with the decrease in 

temperature and that the other iron contribution comes from mostly HS FeIII. As 

with the previous samples, magnetic data suggests that the sample is ultimately 

transitioning, incompletely, to a [(LS-FeII)3RuIII
2] configuration. The mechanism in 

which this occurs is unknown without conclusive Mössbauer data but it is clear 

that this sample undergoes at least one FeII SCO and most likely, two CTIST 

events. Whether this sample mirrors the solvent and filtered sample by separating 

the charge-transfer and SCO event on one of the iron sites remains unknown for 

now. 
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Figure 4-20. 57Fe Mössbauer spectra for 7c collected at 250 K (a) and 150 K (b)  
in zero field. The orange line is the simulation of the data with the parameters in 
Table 4-19. The iron percentage and type is displayed on the figure for 
convenience. 
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Fe3Ru2 24 Hours (7d) 

 The crystals exposed to vacuum for 24 hours were measured using 57Fe 

Mössbauer spectroscopy in zero field at room temperature, 150 K and 4.2 K. The 

relevant data can be found in Table 4-20 and the spectra in Figure 4-21. The 

Mössbauer and magnetic data for this sample is much more conclusive and 

provides a good idea of the spin-transitions occurring when solvent is removed 

from the sample. The spectrum at room temperature (Figure 4-21a) features the 

usual main doublet indicative of LS FeII or HS FeIII and represents 67% of all iron 

present in the sample (or two complete iron centers, in other words). The doublet 

that corresponds to HS FeII is also present and is simulated to account for 31% of 

all iron in the sample, or ~93% of one iron center. In combination with the magnetic 

data that has a spin-transition curve which is nearly plateaued at 300 K at 

 

Table 4-20. 57Fe Mössbauer data for 7d at 4.2 K, 250 K and room temperature. 

Sample Conditions T(K) δ (mm/s) ΔE
Q
 (mm/s) % Fe Type 

Crystals Under 
Vacuum for 

24 Hours 
(7d) 

4.2 

   Broad 

0.460 0.540 90 LS FeII or HS FeIII 

1.140 2.950 7 HS FeII 

 

150 

   Broad 

0.415 0.525 77 LS FeII or HS FeIII 

1.100 2.900 10 HS FeII 

 

RT 

   Broad 

0.380 0.525 67 LS FeII or HS FeIII 

0.980 2.300 31 HS FeII 
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Figure 4-21. 57Fe Mössbauer spectra for 7d at room temperature (a), 150 K (b) 
and 4.2 K (c) in zero field. The green lines are the simulation of the HS FeII 
doublets, the blue lines are the simulations for the LS FeII/HS FeIII doublets and 
the red lines are the overall simulations with all parameters in Table 4-20 for each 
temperature. 
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14.2 emu·K/mol, there is only one possible configuration for the TBP at this 

temperature and that is [(HS-FeII)(HS-FeIII)2RuII
2]. The small percentage of iron 

that is not HS at room temperature, according to Mössbauer data, is most likely 

all HS at 350 K as suggested by the increase of χT to 14.5 emu·K/mol. As 

temperature decreases to 150 K, The doublet for HS FeII decreases but still 

accounts for 10% of the Fe in the compound (or 30% of one center). This decrease 

inevitably causes an increase in the main doublet characteristic of LS FeII or HS 

FeIII. Unfortunately, only 87% of the iron in the sample at this temperature could 

be accounted for, partly due to the broadening of the main doublet. Magnetic data 

indicates that the majority of the sample still contains HS FeIII. At this point, it 

would appear that the main phenomena that occurs between 150 K and 350 K is 

still the FeII SCO and is most likely occurring on the Fe(2) center as suggested by 

crystallography data. As 4.2 K is reached however, Mössbauer data can account 

for 98% of all iron in the sample again and shows that only a small amount (3%) 

of the FeII center continued the SCO event. The main doublet represents 90% of 

the iron in the compound and with the help of susceptibility data (1.5 emu·K/mol), 

it can be considered to be caused by the presence of LS FeII. This indicates a 

ground state configuration of [(LS-FeII)3RuIII
2] with some remnant HS FeII. Without 

the emergence of LS FeIII, it would appear that when solvent is removed from the 

compound and temperature is decreased, an FeII HS→LS SCO event will occur 

along with two CTIST events from HS FeIII → LS FeII. 
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Fe3Ru2 Humid (7e) 

 Just as the magnetic data for this compound was the most distinct of all the 

samples, so is the Mössbauer data (Table 4-21 and Figure 4-22). Spectra were 

obtained at 150 K and 4.2 K in zero field. Just like all of the other samples, the 

main doublet characteristic of either LS FeII or HS FeIII is present but unlike any 

of the other spectra obtained, there is an emergence of a significant signal that 

corresponds to LS FeIII at 150 K (Figure 4-22a). This doublet only grows in 

intensity at 4.2 K (Figure 4-22b), resulting in an increase in the amount of LS FeIII 

present from 20 to 25%, or 60 to 75% of one iron center. Again, as temperature 

decreases it is very unlikely that LS FeIII will be formed from HS FeII and even less 

likely from LS FeII. The Mössbauer spectra show that the LS FeII/HS FeIII doublet 

decreases in intensity as temperature decreases from 150 K to 4.2 K, unlike all of 

the other samples that showed an increase in this feature (except for the solvent 

sample which remained unchanged in magnitude). This suggests that some of the 

 

 

Table 4-21. 57Fe Mössbauer data for 7e at 4.2 and 150 K collected with zero field. 

Sample Conditions T(K) δ (mm/s) ΔE
Q
 (mm/s) % Fe Type 

Humid 
Crystals 

 (7e) 

4.2 

0.180 2.085 25 LS FeIII 

0.445 0.480 57 LS FeII or HS FeIII 

1.120 2.950 7 HS FeII 

 

150 

0.150 2.070 20 LS FeIII 

0.425 0.475 65 LS FeII or HS FeIII 

1.100 2.900 9 HS FeII 
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HS FeIII present at higher temperatures is not undergoing a CTIST to LS FeII
, but 

is becoming LS FeIII due to SCO. The amount of HS FeII at both temperatures 

remain relatively similar which supports the conclusion that the change in 

susceptibility (Δ ≅ 2.0 emu·K/mol) and Mössbauer data between 150 and 4.2 K is 

mostly due to an incomplete SCO of an FeIII center. The larger decrease in 

magnetic susceptibility data comes from the 350 K → 150 K transition. At 150 K, 

the spin-transition/s are still not complete as the curve does not “plateau” until 

around 70 K, resulting in a change of ~ 6 emu·K/mol. This is consistent with a 

portion of an FeII center undergoing a HS → LS SCO, a portion of a HS FeIII 

transitioning to a LS FeII center through CTIST and another FeIII  center that is 

gradually undergoing a SCO from HS FeIII → LS FeIII as temperature is decreased. 

The crystallography data supports the conclusion that all three iron centers 

undergo a different type of spin-transition. The Fe(1) center has Fe–N bond 

lengths that rapidly decrease from 250 K to 150 K with respect to the other Fe 

center distances. The Fe(2) center also shows this same trend but has smaller 

bond lengths throughout the temperature regime. The Fe–N bond lengths for the 

Fe(3) center however, remain very similar to one another throughout the 

temperature range with distances characteristic of an Fe center in the middle of a 

SCO. With this information, it is reasonable to suggest: i) the Fe(2) center is the 

FeII center undergoing a gradual SCO between 350 and 2 K, ii) the Fe(3) center 

is the FeIII center undergoing the gradual CTIST and iii) the Fe(1) center is the 

FeIII center that is now undergoing a gradual SCO instead of a CTIST like in the 
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Figure 4-22. 57Fe Mössbauer spectra for 7e at 150 K (a) and 4.2 K (b). The lines 
simulate the parameters in Table 4-21. The red lines are for HS FeII, the green 
lines simulate LS FeIII, the blue lines simulate the LS FeII/HS FeIII doublet and 
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solvated and evacuated samples. So it seems that when the TBP contains water, 

the electronic configuration above room temperature tends toward the usual 

[(HS-FeII)(HS-FeIII)2RuII
2] and as temperature is decreased the TBP transitions 

toward a ground state of [(LS-FeII)2(LS-FeIII)RuIIRuIII].  

 Again, without more conclusive Mössbauer data, these assignments are 

educated conjectures as to the most reasonable spin-transitions occurring in 

these compounds containing different levels of solvation. By comparing the data 

for all of the samples at 150 K (Figure 4-23), one trend can be concluded. And 

that is, when solvent is removed from the compound, the amount of HS FeII 

present in the sample increases, as indicated by the increase in the characteristic 

HS FeII doublet circled in red in Figure 4-23. This is a reasonable occurrence 

because removing solvent from the lattice affects the TBPs in at least two ways – 

more void space is available which allows expansion of the TBP from the increase 

in Fe–N bond lengths as a consequence of SCO and it also imparts less of a 

chemical pressure on the TBP itself. As stated in the main introduction, pressure 

often causes a compound to become LS at elevated temperatures where it would 

normally be HS without the applied pressure. The solvent in the lattice can act as 

an applied pressure and is often referred to as a chemical pressure. This chemical 

pressure can stabilize the LS state. When removed, the HS state is preferred, as 

is exhibited by this study.  
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Concluding Remarks 

 From the magnetic, Mössbauer and variable temperature X-ray 

crystallography data obtained for the Fe3Ru2 TBPs with different interstitial 

solvent, it can be said that as temperature decreases from 350 K to 2 K: 

i) The 3 and 24 hour samples undergo a SCO event (HS FeII → LS FeII) at the 

Fe(2) center, followed by two CTIST events (HS FeIII → LS FeII) at the Fe(1) 

and Fe(3) centers. 

ii) The solvated and filtered samples undergo a gradual SCO event (HS FeII → 

LS FeII) at the Fe(2) center, one CTIST (HS FeIII → LS FeII) and one SCO 

(HS FeIII → LS FeIII) followed by a charge-transfer to LS FeII as indicated by 

the small amount of LS-FeIII detected by Mössbauer. 

iii) The humid sample undergoes a gradual SCO event (HS FeII → LS FeII) at the 

Fe(2) center, one CTIST event (HS FeIII → LS FeII)  at the Fe(3) center and 

one SCO event (HS FeIII → LS FeIII) at the Fe(1) center. 

iv) The Fe(2) center is always involved in a gradual SCO event (HS FeII → LS 

FeII), is the center furthest from the other TBP in the dimeric unit and 

participates in two very weak intramolecular interactions. 

v) The SCO event occurring at the Fe(2) center is more prominent at higher 

temperatures, as indicated by the increase in the average Fe-N distances 

above 150 K for both the humid and solvent samples and is also suggested 

by the small percentage of HS-FeII detected by Mossbauer below 150 K. Also, 
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the lack of a plateau at 350 K in the susceptibility data in the solvated and 

humid samples indicate that this SCO event is not complete. 

vi) The Fe(3) center always exhibits CTIST (HS FeIII → LS FeII) and is the center 

involved in the intermolecular π-π interactions, which are the stronger π-π 

stacking interactions exhibited in these molecules. 

vii) The Fe(1) center displays different behavior amongst the samples – exhibiting 

CTIST (HS FeIII → LS FeII) in the 24 hour sample, SCO (HS FeIII → LS FeIII) 

in the humid sample and SCO (HS FeIII → LS FeIII) followed by an incomplete 

charge-transfer event (LS FeIII → LS FeII) in the solvent sample, which is a 

phenomenon not yet seen in literature to the best of my knowledge. 

viii) This TBP is the first example of a pentanuclear TBP molecule containing LS 

FeIII in an equatorial position, demonstrating that CTIST is not always a 

concomitant process (as in the solvated and filtered samples). 

ix) The absence of solvent stabilizes the HS states at lower temperatures due to 

the absence of chemical pressure. When comparing water and MeCN as 

interstitial solvent in these TBPs, the water stabilizes LS states. 

The data presented here shows that not only does the identity of solvent 

but also the amount of solvent can impose non-trivial changes to both SCO and 

CTIST behavior in the Fe3Ru2 TBPs. This idea is not new in the world of SCO 

compounds but is still under investigation as it still cannot be predicted, nor 

generalized as to how solvent will affect the spin-transitions in molecules, for the 

most part. Most SCO compounds studied in literature are mononuclear salts with 
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few examples of dinuclear compounds, in comparison, and even fewer 

multinuclear compounds being reported. This study not only shows the 

occurrence of SCO and CTIST in a pentanuclear compound, but it does it in one 

that is neutral and can lose or exchange interstitial solvent without causing 

significant structural changes/rearrangement to the TBP by doing so. This is novel 

in the fact that it is a neutral, pentanuclear compound and that it is does not need 

to be crystalized using different solvents in order to study the effect solvent has 

on the spin-transitions of the molecule. It was also shown that this TBP exhibits 

more intricate spin-transition behavior than both of the Fe3Fe2 and Fe3Os2 analogs 

– a consequence related to the exchange of Fe/Os for Ru. With thermal 

perturbation, the Fe3Fe2 congener (solvated and humid samples) only exhibits 

reversible FeII SCO behavior while the Fe3Os2 analog (with interstitial MeCN 

molecules) exhibits two, reversible, concurrent CTIST events at the Fe(1) and 

Fe(3) centers.  

Mössbauer data was not as conclusive as it was anticipated to be, but more 

measurements under an applied field may help confirm the spin-transition 

assignments made for these samples. Despite that, it can be said that this TBP is 

the first one to have equatorial iron centers in the LS FeIII electronic configuration. 

This occurred in not one, but three of the Fe3Ru2 compounds studied here and 

appears to be a result of two different phenomena occurring. This demonstrates 

that the CTIST is not always a concomitant process (as in the solvated and filtered 

samples). This study also adds more polynuclear SCO complexes to the relatively 



 

225 

 

small collection of data in the literature and to the fewer studies reported on 

polynuclear FeIII SCO compounds. This study has proven to be a non-trivial task 

of adhering to good, consistent, lab practices and intricate data analysis but has 

also rewarded us with a complex compound capable of exhibiting up to three 

different, reversible spin-transitions within one molecule, an unprecedented 

behavior in the field of spin-transition. 
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CHAPTER V 

INVESTIGATION OF π-π STACKING INTERACTIONS IN SPIN CROSSOVER 

Fe3Co2 TRIGONAL BIPYRAMIDAL COMPLEXES 

 

Background 

 Spin-crossover behavior is a well-documented phenomenon whose 

cooperativity and transition temperature is affected by many factors. The types of 

perturbations that cause changes to SCO behavior are either chemical or physical 

in nature.85 Typical chemical influences that are often investigated are ligand 

substitution and solvate effects while the more common physical influences are 

the use of light and pressure. These parameters allow chemists to modify the SCO 

behavior of compounds with the ultimate goal being to achieve materials that 

exhibit an abrupt, wide hysteretic transition that spans room temperature. 

Researchers in this field are striving to predict how these different chemical and 

physical perturbations will affect SCO but it is not often that generalizations can 

be made. This is, in part, due to multiple, subtle influences that all effect SCO and 

are inherent in most studies. Some researchers have discredited the ability to 

“fine-tune” the SCO behavior due to these multiple influences that are difficult to 

control synthetically.88 Despite this situation, a considerable body of research has 

led to three synthetic strategies to impart and strengthen cooperativity in SCO 

molecules: (a) incorporation of a network capable of hydrogen bonding (e.g., 

through the use of solvent such as water or through ligands), (b) incorporation of 
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moieties capable of π-π stacking interactions and (c) coordination of ligands 

capable of bridging.83 Most research in the field of SCO pertains to mononuclear, 

soluble salts of FeII and as such, there is little known about how the results of 

these studies translate to polynuclear molecules. 

 The research discussed herein is aimed at studying the effect of π-π 

stacking interactions in TBP molecules that are insoluble, neutral, pentanuclear 

compounds that typically exhibit a gradual spin-crossover. The complexity of the 

TBPs discussed in this dissertation thus far (due to the facile redox properties of 

[RuIII(CN)6]3- and [OsIII(CN)6]3- precursors) make deconvoluting the spin and 

oxidation states of the metal centers a non-trivial task. For this reason, the Fe3Co2 

TBP presents itself as an ideal scaffold among the possible TBPs that undergo a 

spin-transition due to the stability of the oxidation states of the CoIII and FeII 

centers. Cobalt(III) in a cyanide environment is LS and remains diamagnetic in 

these molecules. The FeII centers are diamagnetic in the LS state and any 

magnetic signal observed is a direct result of the amount of HS FeII present in the 

sample. Therefore, the assignment of the electronic states of the metal centers in 

these systems allow for the effect of π-π stacking interactions on the FeII SCO in 

these TBPs to be evaluated. The ligands that have been investigated are 

illustrated in Figure 5-1. The 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) 

and 4,4’,5,5’-tetramethyl-2,2’-bipyridine (tmbpy) ligands offer a direct comparison 

between the effects of π-π stacking on the SCO behavior. The 4,4’-dimethyl-2,2’-

bipyridine (4dmbpy) and 5,5’-dimethyl-2,2’-bipyridine (5dmbpy) ligands also offer 
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this comparison but have additional steric differences than the tmphen and tmbpy 

ligands. 

 

 

 

 

 

  

3,4,7,8-tetramethyl-1,10-phenanthroline 
Chemical Formula: C

16
H

16
N

2
 

tmphen (8)  

4,4’,5,5’-tetramethyl-2,2’-bipyridine 
Chemical Formula: C

14
H

16
N

2
 

tmbpy (11)  

4,4’-dimethyl-2,2’-bipyridine 
Chemical Formula: C

12
H

12
N

2
 

4dmbpy (9)  

5dmbpy (10)  

5,5’-dimethyl-2,2’-bipyridine 
Chemical Formula: C

12
H

12
N

2
 

Figure 5-1. ChemDraw structures of the bidentate ligands used to make the 
Fe3Co2 TBPs. The number in parenthesis following the abbreviation of the 
name in bold-type font corresponds to the number of the compound in which 
the ligand is used. 
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Experimental Details 

Materials 

All chemicals and solvents were of ACS reagent grade or higher and used 

as received unless stated otherwise. Reagents for the synthesis of 

4,4’,5,5’-tetramethyl-2,2’-bipyridine (tmbpy or Me4Bpy), (C14H16N2): 

3,4-lutidine (C7H9N, hygroscopic liquid, 98%, Alfa Aesar), palladium over carbon 

(Pd/C, dry support, powder, 10% by weight, Sigma Aldrich) and activated charcoal 

(untreated powder, 100-400 mesh, Sigma Aldrich). Reagents for the synthesis 

of (PPN)3[CoIII(CN)6]: potassium hexacyanocobaltate(III) (K3[CoIII(CN)6], powder, 

97+%, Pfaltz and Bauer). Reagents for the synthesis of 

{[FeII(tmphen)2]3[CoIII(CN)6]2}·nSolv: iron(II) tetrafluoroborate hexahydrate 

(FeII(BF4)2·6H2O, hygroscopic crystalline solid, 97%, Sigma Aldrich) and 

3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) (C16H16N2, crystalline powder 

that varies in color from pinkish to off-white, 98+%, Alfa Aesar). Reagents for the 

synthesis of {[FeII(4dmbpy)2]3[CoIII(CN)6]2}·nSolv: iron(II) tetrafluoroborate 

hexahydrate (FeII(BF4)2·6H2O, hygroscopic crystalline solid, 97%, Sigma Aldrich) 

and 4,4’-dimethyl-2,2’-bipyridine (4dmbpy) (C12H12N2, crystalline solid, 99%, 

Sigma Aldrich). Reagents for the synthesis of 

{[FeII(5dmbpy)2]3[CoIII(CN)6]2}·nSolv: iron(II) tetrafluoroborate hexahydrate 

(FeII(BF4)2·6H2O, hygroscopic crystalline solid, 97%, Sigma Aldrich) and 

5,5’-dimethyl-2,2’-bipyridine (5dmbpy) (C12H12N2, crystalline solid, 98%, Sigma 

Aldrich). Reagents for the synthesis of {[FeII(tmbpy)2]3[CoIII(CN)6]2}·nSolv: 
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iron(II) tetrafluoroborate hexahydrate (FeII(BF4)2·6H2O, hygroscopic crystalline 

solid, 97%, Sigma Aldrich). Solvents used: dichloromethane (DCM) (Fisher 

Scientific), toluene (Fisher Scientific), diethyl ether (EMD Millipore), acetonitrile 

(MeCN) (Fisher Scientific), and tetrahydrofuran (THF) (EMD Millipore) were 

purchased from the Texas A&M University chemistry stockroom and used as 

received. All water used was distilled by Texas A&M University. All reactions were 

performed in a fume hood in an aerobic manner, unless stated otherwise. 

 

Syntheses 

4,4’,5,5’-tetramethyl-2,2’-bipyridine (tmbpy or Me4Bpy) 

 CAUTION: 3,4-lutidine is a very hazardous material that can cause several 

immediate and serious toxic effects, including death. The MSDS states that it is 

fatal if it comes into contact with skin (the dermal LD50 on rabbits is 134 mg/kg).226 

The chemical is toxic if inhaled, harmful if swallowed, causes skin and serious eye 

irritation and may cause respiratory irritation. It is prudent that proper safety attire 

(protective gloves and clothing) be worn when handling this chemical! 

 This organic compound was prepared in a fume hood using aerobic 

methods in a similar manner to previously reported literature methods.227-229 To a 

100 mL Schlenk flask outfitted with a large egg-shaped stir bar was added 10% 

Pd/C (2.45 g, 0.023 mmol) and 3,4-lutidine (21 mL, 0.187 mmol, ρ = 0.955 g/mL). 

The reaction was refluxed for fifteen days, resulting in long, white needles of the 

product. DCM (~80 mL) was added to the flask and the solution was gently heated 
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and filtered while still warm. Once the light brown solution cooled, it was stirred 

over activated charcoal for a few hours. The solution was filtered and reduced to 

dryness. The product was recrystallized from hot toluene to give white 

crystals/powder upon cooling. The product obtained (3.6 g) was collected by 

filtration and rinsed with diethyl ether (18% yield). 1H NMR (500 MHz, CDCl3): δ 

2.29 (s, 3H), 2.34 (s, 3H), 8.12 (s, 1H), 8.36 (s, 1H); Literature values: 2.28 (s), 

2.33 (s), 8.11 (s), 8.36 (s).227  Refer to page sixty-four in notebook six for a detailed 

description of the procedure and observations for the synthesis of 

4,4’,5,5’-tetramethyl-2,2’-bipyridine.  

 

(PPN)3[CoIII(CN)6] 

 This compound was prepared similarly to previously reported methods180 

by performing an aqueous metathesis of K+ for PPN+ and then recrystallizing the 

material from MeCN, THF and diethyl ether. An Erlenmeyer flask containing H2O 

(~350 mL) was treated with PPNCl (11.21 g, 19.53 mmol). The solution was 

stirred and warned to dissolve the PPNCl (~50 °C). Yellow crystals of 

K3[CoIII(CN)6] (1.99 g, 6.0 mmol) were dissolved in warm distilled water (150 mL). 

The cobalt solution was slowly poured into the PPNCl solution as it was heating. 

The white powder was filtered while the solution was warm and rinsed with warm 

water (60 mL x 3) to remove excess PPNCl. Diethyl ether (30 mL x 3) was used 

to help dry the wet product before being recrystallized in the same manner as the 

(PPN)3[RuIII(CN)6] and (PPN)3[OsIII(CN)6] salts from chapter 2 by dissolving the 
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product in a minimal volume of MeCN to obtain a clear, colorless solution. 

Subsequently, a larger volume of THF was added to the solution before small 

aliquots of diethyl ether were added, over time, to precipitate white crystals from 

the solution. The crystals were collected by filtration and rinsed with diethyl ether 

(30 mL x 3). After the recrystallization step/s, 7.86 g of white crystals were 

recovered for a yield of 88%. IR, ν(C≡N): 2113 (m, sp, sh) and 2105 (m, sp) cm-1 

where m = medium, sp = sharp and sh = shoulder. TGA generally exhibits a 2-3% 

mass loss over a 50 °C temperature range centered around 60 °C, which is 

equivalent to ~2-3 water molecules per formula unit. Refer to page four in 

notebook five for a detailed description of the procedure and observations for the 

preparation of (PPN)3[CoIII(CN)6]. 

 

{[FeII(tmphen)2]3[CoIII(CN)6]2}·nSolv (Fe3Co2) (8) 

 With the exception of the FeII starting material used and the fact that the 

chemistry was performed in air instead of in a N2 atmosphere glove box, this 

compound was prepared in a similar fashion to previously reported methods.116,145 

In air, FeII(BF4)2·6H2O (0.0452 g, 0.133 mmol) and tmphen (0.0726 g, 0.31 mmol) 

were dissolved in acetonitrile (21 mL). The dark red solution was stirred for twenty 

minutes before being poured slowly into a 40 mL vial containing a 20 mL MeCN 

solution of (PPN)3[CoIII(CN)6] (0.1483 g, 0.081 mmol). Red powder precipitated 

from the red solution immediately. Within one day, the powder had redissolved 

and dark, red crystals had appeared. To purify the sample, the mother liquor was 
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decanted and replaced with MeCN until the solvent remained clear and colorless 

for several hours. Typical yields are 30-40%. IR, ν(C≡N): 2155 (m, sp) and 

2129 cm-1 (s, sp) where m = medium, s = strong and sp = sharp. TGA was 

performed on the sample immediately after SQUID measurements were 

performed on it and revealed a continuous mass loss of 10.4% between room 

temperature and ~120 °C with the majority of the mass loss occurring below 

~67 °C. The compound is thermally stable up to ~260 °C. Refer to page ninety-

two in notebook six for an in-depth description of the procedure and detailed 

observations for the synthesis of {[Fe(tmphen)2]3[Co(CN)6]2}·nSolv (8). 

 

{[FeII(4dmbpy)2]3[CoIII(CN)6]2}·nSolv (Fe3Co2 4dmbpy) (9) 

This reaction is performed in an analogous manner to the Fe3Co2 reaction 

with tmphen described above (8). Acetonitrile (~20 mL) was used to dissolve both 

FeII(BF4)2·6H2O (0.0419 g, 0.124 mmol) and 4dmbpy (0.0510 g, 0.277 mmol) to 

give a dark, red solution. The solution was stirred for 25 minutes before being 

poured slowly into a 40 mL vial containing a 20 mL MeCN solution of 

(PPN)3[CoIII(CN)6] (0.1486 g, 0.081 mmol). The mixture turned a dark, red-purple 

color and, after a few minutes, powder had settled to the bottom of the vial. Within 

one day, the powder had redissolved and dark crystals had taken its place. As 

more crystals formed over the next few days, the color of the solution became less 

intense and the color became more red than purple. The crystals were purified in 

the usual manner through decantation and soaking in fresh MeCN. Yield is 
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typically ~35%. IR, ν(C≡N): 2164 (vw) and 2130 cm-1 (m, sp) where vw = very 

weak, m = medium and sp = sharp. TGA performed on the sample immediately 

after SQUID measurements show an immediate mass loss of 6.6% between room 

temperature and 60 °C where the temperature was held for 1 hour. After resuming 

heating to 150°C, a gradual mass lass of 1.5% occurred. The compound begins 

to decompose at ~160 °C. Refer to page eighty-three in notebook six for a detailed 

description of the procedure and observations for the synthesis of 

{[Fe(4dmbpy)2]3[Co(CN)6]2}·nSolv (9). 

  

{[FeII(5dmbpy)2]3[CoIII(CN)6]2}·nSolv (Fe3Co2 5dmbpy) (10) 

This reaction is carried out in an analogous manner as the Fe3Co2 reactions 

(8-9). MeCN (~40 mL) was used to dissolve both FeII(BF4)2·6H2O (0.024 g, 

0.072 mmol) and 5dmbpy (0.021 g, 0.11 mmol) to give a dark, red solution. The 

solution was stirred for five minutes after which time half of the solution was added 

dropwise to 20 mL of the MeCN solution of (PPN)3[CoIII(CN)6] (0.102 g, 

0.056 mmol) in a 20 mL vial. This procedure was performed twice. The solution 

turned red with no powder formation being observed. Dark red, block-shaped 

crystals formed after several days. The crystals were treated in the usual manner 

through decantation and soaking in fresh MeCN. Yield is ~20%. IR, ν(C≡N): 2177 

(vw, sp), 2151 (w, sp) and 2123 cm-1 (m, sp) where vw = very weak, w = weak, m 

= medium and sp = sharp. TGA analysis of the sample after being measured in 

the SQUID magnetometer exhibits a gradual loss of mass between room 
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temperature and ~60 °C which accounts for 4.8% of the sample. This mass loss 

is attributed to ~4.8 water molecules. The TBP is thermally stable until ~180 °C. 

Refer to page eighty-three in notebook six for a detailed description of the 

procedure and observations for the synthesis of 

{[Fe(5dmbpy)2]3[Co(CN)6]2}·nSolv (10). 

 

{[FeII(tmbpy)2]3[CoIII(CN)6]2}·nSolv (Fe3Co2 tmbpy) (11) 

This reaction is carried out in a similar manner as all of the Fe3Co2 reactions 

discussed above (8-10). MeCN (~20 mL) was used to dissolve both 

FeII(BF4)2·6H2O (0.0439 g, 0.130 mmol) and tmbpy (0.0528 g, 0.249 mmol) to give 

a dark, red solution. The solution was stirred for ten minutes. One-half of the 

solution was quickly pipetted into a 20 mL vial containing half of a 20 mL MeCN 

solution of (PPN)3[CoIII(CN)6] (0.1486 g, 0.081 mmol). This was performed twice. 

The mixtures turned a dark, red-purple color and, within a few days, dark crystals 

had formed. The crystals were purified in the usual manner through decantation 

and soaking in fresh MeCN. Typical yields are 30-40%. IR, ν(C≡N): 2175 (vw, sp), 

2166 (vw, sp) and 2126 cm-1 (m, sp) where vw = very weak, m = medium and 

sp = sharp. TGA performed on a portion of the sample being measured in the 

SQUID shows an immediate mass loss of 12.6% between room temperature and 

~150 °C with the majority of the mass occurring before 55 °C. TGA performed on 

the sample after being measured in the SQUID exhibits mass loss over the same 

temperature range as before the SQUID analysis but the sample only loses ~5.2% 
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of its mass before decomposing before 200 °C. Refer to page sixty-seven in 

notebook six for a detailed description of the procedure and observations for the 

synthesis of {[Fe(tmbpy)2]3[Co(CN)6]2}·nSolv (11). 

 

Results and Discussion 

Synthesis and Characterization 

Fe3Co2 tmphen (8) 

 The synthesis of this molecule is straightforward. Out of all of the ligands 

that were used, TBPs with tmphen are the most readily isolated. Generally, it is 

not crucial whether the precursor solutions for this reaction are layered or mixed 

quickly, as the product forms with little to no contamination when performed on a 

small scale as reported here. The crystals that form are a very characteristic dark 

red color and needle shaped. The reaction can easily be scaled up to make these 

crystals in bulk but more powder will precipitate initially upon mixing of the 

solutions.  

 IR spectra show νC≡N peaks at 2155 cm-1 and 2129 cm-1 which are 

attributed to the bridging and terminal cyanide ligands, respectively. The νC≡N 

modes for (PPN)3[CoIII(CN)6] are 2139, 2127, 2114 and 2106 cm-1 and correspond 

well to the peak at 2129 cm-1 assigned to the terminal cyanide ligands. The spectra 

indicate the presence of interstitial water with a strong, broad peak around 

3406 cm-1 (typical for symmetric and antisymmetric stretching of the OH in H2O) 

and the HOH bending mode at 1622 cm-1. 
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 TGA was performed on the sample after being measured in the SQUID 

magnetometer where it was warmed to 390 K twice with the intention of removing 

solvent. The thermogram shows an immediate mass loss between room 

temperature and ~67 °C. The mass loss continues at a more gradual rate until 

about 140 °C and has a total mass loss of 10.4% which is attributed to ~12.9 H2O 

molecules per TBP. The compound begins to decompose just after ~260 °C. 

 

Fe3Co2 4dmbpy (9) 

 This reaction is similar to the tmphen containing congener but is not as 

reliable. This reaction can co-crystallize with [FeII(4dmbpy)3]2[CoII(CN)6] 

(determined by X-ray crystallography) as a by-product, fortunately, is soluble in 

copious amounts of MeCN. The scaling up of this reaction (to prepare in a bulk 

manner analogous to the Fe3Ru2 TBPs) was not attempted. 

 IR spectra for this TBP exhibit very similar νC≡N as those for the Fe3Co2 

TBP with tmphen (8), which is to be expected as the M–C≡N–M’ core remains 

unchanged between the two TBPs. The νC≡N at 2164 cm-1 is assigned to the 

bridging cyanide and the mode at 2130 cm-1 is assigned to the terminal cyanide 

ligands. Again, the spectra indicate the presence of water with peaks at 3352 and 

1617 cm-1. 

 TGA was performed on the sample immediately upon removing it from the 

SQUID after measuring the magnetic properties up to 390 K twice. The 

thermogram shows that the TBP loses the majority of the interstitial solvent 
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between room temperature and 55 °C but continues to lose mass until ~150 °C. 

The molecule is thermally stable up to ~160 °C before it decomposes, which is 

100 °C lower than the tmphen congener. The total mass loss of 8.1% is attributed 

to ~8.4 H2O molecules per TBP. 

 

Fe3Co2 5dmbpy (10) 

 This synthesis is the most difficult to control of all of the ones discussed 

here. The formation of crystals appears to be most dependent upon the rate of 

addition of the Fe containing solution to the Co containing solution. It also seems 

that the concentration of the solutions plays a partial role in product formation as 

well. In order for the product to form, the Fe containing solution must be added 

dropwise to the vial containing the Co solution. Rapid mixing of the solutions 

results in the immediate precipitation of a reddish-orange microcrystalline solid as 

does layering of the two solutions. It was found that a concentration of ~1.3 mM 

for the two solutions works best as it results in the least amount of powder 

formation. As the solutions become more concentrated, the amount of solid that 

precipitates increases. The co-crystallization of [FeII(5dmbpy)3]2[CoII(CN)6] is also 

a possibility for this reaction but this can be removed with MeCN rinses. The 

scaling up of this reaction (to prepare in a bulk manner analogous to the Fe3Ru2 

TBPs) was not attempted. 

 IR spectra for this TBP exhibit very similar νC≡N stretches to those of the 

Fe3Co2 TBPs with tmphen (8) and 4dmbpy (9). The νC≡N absorptions at 2177 and 
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2151 cm-1 are assigned to the bridging cyanide and the mode at 2123 cm-1 is 

assigned to the terminal cyanide ligands. The presence of water is evident from 

the features at 3351, 1623 and 1605 cm-1. 

TGA was performed on the sample immediately upon removing it from the 

SQUID after two cycles of warming to 390 K. The thermogram shows that the TBP 

loses the majority of the interstitial solvent between room temperature and 60 °C 

but continues to lose mass until ~100 °C. The TBP is thermally stable up to 

~180  C before a very slight loss in mass begins which leads to rapid 

decomposition at ~270 °C. The total mass loss of 4.8% is attributed to ~4.8 H2O 

molecules per TBP. 

 

Fe3Co2 tmbpy (11) 

 This synthesis is more subtle than the synthesis of the TBP with tmphen 

but is not as challenging as the TBP with the 5dmbpy or 4dmbpy ligands. 

Controlling the concentration of the solutions in a similar fashion to that of the 

5dmbpy congener results in a higher yield of crystal formation and less powder 

precipitation upon mixing the solutions. When the solutions are mixed, the color 

of the solution is markedly different from all of the other syntheses as it turns a 

dark purple color instead of a dark red. The [FeII(tmbpy)3]2[CoII(CN)6] by-products 

that co-crystallize with the product can be removed with copious amounts of 

MeCN. The scaling up of this reaction (to prepare in a bulk manner analogous to 

the Fe3Ru2 TBPs) was not tried. 
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 IR spectra for this TBP correspond well with the previous Fe3Co2 TBPs with 

νC≡N at 2175, 2166 and 2126 cm-1 and stretching/bending bands for interstitial 

water at 3399, 1641 and 1613 cm-1. Table 5-1 lists the νC≡N and stretching/bending 

modes for compounds 8-11 as well as the νC≡N stretches for (PPN)3[CoIII(CN)6] for 

comparison sake. 

 

 

Table 5-1. The νC≡N and H2O stretching/bending modes for compounds 8-11 and 
(PPN)3[CoIII(CN)6] for comparison. 

Fe3Co2 
TBPs 

Bridging CN 
(cm-1) 

Terminal CN 
(cm-1) 

H2O 
Stretching 

(cm-1) 

H2O 
Bending 

(cm-1) 

tmphen      (8) 2155 2129 3406 1622 

4dmbpy     (9) 2164 2130 3352 1617 

5dmbpy   (10) 2177, 2151 2123 3351 1623, 1605 

tmbpy      (11) 2175, 2166 2126 3399 1641, 1613 

(PPN)3[CoIII(CN)6] — 
2139, 2127 

2114, 2106 
— — 

Typical Range for 
Lattice H2O122 

— — 3550–3200 1630–1600 

 

 

TGA was performed on two samples: a portion of a sample prepared for 

magnetic measurements and on the sample measured in the SQUID immediately 

after being removed from the instrument. This procedure was done to compare 

the amount of solvent in the sample before and after being measured in the 

SQUID. The sample was warmed to 390 K twice within the SQUID with the 



 

241 

 

expectation of solvent loss within the instrument. The thermogram of the sample 

before being measured in the SQUID showed an immediate mass loss between 

room temperature and 54 °C. The mass loss continues at a more gradual rate 

after 54 °C until ~150 °C for a total loss of 12.6% of its original mass (~14.9 H2O 

molecules per TBP). The TBP is thermally stable until ~190 °C, which is nearly 

70 °C lower than the TBP with tmphen as the capping ligand. The thermogram of 

the sample measure in the SQUID portrays the same attributes as the previous 

one but has a total mass loss of only 5.2% (~5.7 H2O molecules per TBP). 

 

Single Crystal X-ray Diffraction 

 By looking at the disordered electron density in the void spaces, it was 

determined that both water and MeCN molecules are present in all of the crystal 

structures. Due to the disorder, the electron density in the voids were SQUEEZED. 

The amount of solvent was determined by minimizing the differences between the 

calculated electron density and void space. To do this, 54 Å/MeCN and 40 Å/H2O 

molecules were used to determine the volume of space each solvent molecule is 

estimated to require. A solution using the built-in Excel Solver add-in was obtained 

so that the calculated number of MeCN molecules per TBP resembled what was 

estimated from looking at the disordered electron density for each structure. Table 

5-2 summarizes the results from the SQUEEZE analysis and calculated solvent 

content for compounds 8-11. 
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As the differences in the π-π stacking interactions are at the heart of this 

study, the focus of the discussion is on these interactions. The interactions will be 

referred to by intermolecular (inter) or intramolecular (intra) interactions with the 

color of the planes involved (p is purple, y is yellow, t is teal, r is red and g is 

green). The structures with the colored planes are provided for each TBP with a 

different ligand. The teal planes are on ligands coordinated to the Fe(1) and Fe(2) 

centers, the red planes are on ligands coordinated to the Fe(2) and Fe(3) centers 

and the green planes are on ligands coordinated to the Fe(1) and Fe(3) centers. 

The purple and yellow planes are on the same ligand as each other and are 

coordinated to the Fe(3) center of the two TBPs related by an inversion center. 
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Table 5-2. SQUEEZE analysis and calculated interstitial solvent for compounds 8-11. 

Fe3Co2 TBP 
(Ligand) 

Temp 
(K) 

Void 
Space (Å) 

Number of 
Electrons 

% 
Void Space 

H2O MeCN 

tmphen     (8) 

15 2949 698 26.1 8.9 6.2 

50 2954 698 26.2 9.3 5.9 

100 2982 692 26.3 8.6 6.4 

150 3064 655 26.7 8.3 6.8 

200 3164 648 27.3 9.6 6.2 

220 3225 650 27.7 9.7 6.4 

 Average 2620 674 26.7 9.1 6.3 

4dmbpy    (9) 

20 2558 679 26.6 12.4 2.5 

100 2593 684 26.9 12.6 2.5 

200 2732 692 27.9 13.0 2.7 

250 2863 647 28.7 14.2 2.2 

 Average 2687 676 27.5 13.0 2.5 

5dmbpy  (10) 110 2841 856 28.5 10.4 5.3 

tmbpy     (11) 

20 2697 725 26.2 10.0 5.4 

50 2899 756 26.0 9.2 5.9 

100 2878 763 28.5 11.1 5.5 

150 3190 715 28.8 11.2 5.7 

200 3307 705 29.1 11.2 5.8 

250 3356 686 29.1 11.3 5.9 

 Average 2697 725 28.0 10.7 5.7 

 

 

Fe3Co2 tmphen (8) 

 This TBP crystallizes in the usual P21/c space group in which most other 

TBPs with tmphen crystallize. The asymmetric unit of 8 can be seen in Figure 5-

2, the structural data and cell parameters are in Table 5-3 and Table 5-4 lists the 
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M–L bond lengths at various temperatures. All of these details are consistent with 

the reported structure.145 As this TBP has been studied thoroughly by previous 

group members, it is known that there is no CTIST behavior expected. The TBP 

consists of 2 LS CoIII centers and 3 FeII centers that undergo a LS ↔ HS transition 

as temperature is changed. As stated before, the average Fe–N6 bond lengths 

are very telling as to the spin state of the FeII center as they change ~0.2 Å from 

the LS to HS state. At 20 K, all 3 FeII centers have an average Fe–N bond length 

of ~1.97 Å but as temperature increases, it becomes clear that the Fe(3) center is 

undergoing a gradual SCO. At 220 K, the Fe(1) and Fe(2) centers still have 

average Fe–N bond lengths ~1.98 Å but the Fe(3) center has an average Fe–N 

bond length of 2.14 Å. When the π-π stacking interactions are taken into account, 

it becomes evident that the Fe(3) center is being stabilized by the intermolecular 

interaction within the dimeric unit and is the first center to undergo SCO with a 

change in temperature as a result.  
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Table 5-3. Crystal structure data and refinement parameters for the Fe3Co2 TBP with tmphen (8). 

Fe3Co2 tmphen (8) 15 K 50 K 100 K 150 K 200 K 220 K 

Space Group P21/c P21/c P21/c P21/c P21/c P21/c 

a/ Å 18.8722(6) 18.8686(5) 18.8945(5) 18.9446(9) 19.0530(5) 19.0810(5) 

b/ Å 24.7681(8) 24.7635(7) 24.8106(7) 24.8932(12) 24.9734(7) 25.0057(7) 

c/ Å 24.3977(8) 24.3901(7) 24.4446(7) 24.5078(12) 24.6142(7) 24.6491(7) 

β/ ° 97.5740(10) 97.5990(10) 97.5810(10) 97.559(3) 97.6090(10) 97.6410(10) 

Volume/ Å3 11304.7(6) 11296.2(5) 11359.1(5) 11457.2(10) 11608.8(6) 11850.2(6) 

aInterstitial Solvent 
6 MeCN 
9 H2O 

6 MeCN 
9 H2O 

6 MeCN 
9 H2O 

7 MeCN 
8 H2O 

6 MeCN 
10 H2O 

6 MeCN 
10 H2O 

μ/ mm-1 0.861 0.860 0.857 0.850 0.839 0.835 

Crystal Size/ mm3 
Habitat 

0.564 × 0.244 x 0.094 
Dark, red needle 

2Θ Range for 
Data Collection/ ° 

4.3 to 56.698 4.302 to 57.456 4.08 to 58.26 4.068 to 52.63 4.264 to 56.394 4.258 to 57.408 

Independent 
Reflections 

21737 
Rint = 0.0679 

Rsigma = 0.0433 

22403 
Rint = 0.0640 

Rsigma = 0.0417 

23407 
Rint = 0.0650 

Rsigma = 0.0415 

17758 
Rint = 0.0678 

Rsigma = 0.0385 

22036 
Rint = 0.0606 

Rsigma = 0.0366 

23155 
Rint = 0.0540 

Rsigma = 0.0344 
Data/Restraints/ 
Parameters 

21737/54/1257 22403/51/1257 23407/51/1257 17758/60/1255 22036/0/1257 23155/0/1256 

bGooF on F2 1.077 1.082 1.089 1.072 1.050 1.049 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.1108 
wR2 = 0.2506 

R1 = 0.1130 
wR2 = 0.2520 

R1 = 0.1105 
wR2 = 0.2488 

R1 = 0.0922 
wR2 = 0.2305 

R1 = 0.0599 
wR2 = 0.1610 

R1 = 0.0561 
wR2 = 0.1501 

c,dFinal R Indexes 
[all data] 

R1 = 0.1339 
wR2 = 0.2650 

R1 = 0.1355 
wR2 = 0.2657 

R1 = 0.1347 
wR2 = 0.2646 

R1 = 0.1140 
wR2 = 0.2478 

R1 = 0.0860 
wR2 = 0.1820 

R1 = 0.0830 
wR2 = 0.1710 

Largest Diff. 
Peak / Hole/ e Å-3 

2.12 / -0.84 2.19 / -0.93 2.19 / -0.90 2.40 / -0.76 1.64 / -0.68 1.36 / -0.59 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-

p)}1/2, where n is the number of reflections and p is the total number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - 

Fc
2)2]/∑w(Fo

2)2]}1/2.
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Figure 5-2. Asymmetric unit of the Fe3Co2 TBP looking down the axial metal 
centers. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. Hydrogen 
atoms have been omitted for the sake of clarity. 
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Table 5-4. The M–L bond distances (in Å) for the Fe3Co2 TBP with tmphen (8). 

Temperature   Fe(1)–N   Fe(2)–N   Fe(3)–N Co(1)–C Co(2)–C 

15 K 1.936 (6) 1.924 (7) 1.946 (6) 1.883 (8) 1.878 (1) 
1.945 (6) 1.937 (6) 1.962 (7) 1.887 (8) 1.878 (8) 
1.975 (6) 1.956 (7) 1.990 (1) 1.891 (10) 1.895 (7) 
1.986 (1) 1.965 (8) 1.991 (8) 1.896 (1) 1.913 (9) 
1.987 (7) 1.975 (7) 1.992 (7) 1.911 (8) 1.917 (8) 
1.995 (6) 1.979 (7) 2.014 (6) 1.911 (8) 1.928 (7) 

Avg M–L 1.971 (5) 1.956 (7) 1.983 (6) 1.897 (7) 1.902 (7) 

50 K 1.938 (6) 1.928 (7) 1.947 (6) 1.886 (8) 1.880 (8) 
1.951 (6) 1.938 (6) 1.964 (7) 1.888 (8) 1.880 (10) 
1.979 (6) 1.953 (7) 1.995 (7) 1.889 (10) 1.892 (7) 
1.986 (6) 1.966 (7) 1.996 (8) 1.898 (7) 1.903 (9) 
1.987 (7) 1.976 (7) 1.998 (7) 1.908 (8) 1.916 (8) 
1.998 (6) 1.981 (7) 2.019 (6) 1.917 (8) 1.921 (7) 

Avg M–L 1.973 (6) 1.957 (7) 1.987 (7) 1.898 (8) 1.899 (8) 

100 K 1.932 (5) 1.931 (7) 1.943 (6) 1.887 (7) 1.878 (8) 
1.952 (6) 1.938 (6) 1.965 (7) 1.889 (9) 1.888 (9) 
1.981 (6) 1.962 (7) 1.990 (7) 1.890 (8) 1.894 (6) 
1.983 (6) 1.967 (7) 1.990 (6) 1.905 (7) 1.900 (9) 
1.984 (6) 1.978 (6) 1.996 (7) 1.906 (8) 1.911 (8) 
1.997 (6) 1.981 (6) 2.022 (6) 1.917 (8) 1.925 (7) 

Avg M–L 1.972 (6) 1.960 (7) 1.984 (7) 1.899 (8) 1.899 (8) 

150 K 1.929 (6) 1.941 (6) 1.976 (6) 1.890 (8) 1.879 (7) 
1.954 (6) 1.942 (6) 2.001 (7) 1.891 (9) 1.882 (9) 
1.976 (6) 1.960 (7) 2.014 (7) 1.896 (8) 1.892 (7) 
1.980 (6) 1.970 (6) 2.035 (7) 1.898 (9) 1.896 (8) 
1.994 (6) 1.973 (6) 2.047 (9) 1.898 (8) 1.902 (8) 
2.007 (6) 1.989 (6) 2.077 (6) 1.903 (7) 1.935 (7) 

Avg M–L 1.973 (6) 1.963 (6) 2.025 (7) 1.896 (8) 1.898 (8) 

200 K 1.949 (4) 1.941 (3) 2.046 (4) 1.895 (5) 1.883 (4) 
1.975 (3) 1.943 (4) 2.077 (4) 1.898 (5) 1.889 (4) 
1.978 (4) 1.968 (4) 2.135 (4) 1.900 (4) 1.893 (5) 
1.985 (4) 1.973 (3) 2.173 (4) 1.901 (5) 1.902 (4) 
1.993 (3) 1.976 (4) 2.175 (4) 1.902 (4) 1.907 (5) 
2.002 (3) 1.982 (3) 2.194 (4) 1.906 (5) 1.927 (4) 

Avg M–L 1.980 (4) 1.964 (4) 2.133 (4) 1.900 (5) 1.900 (4) 

220 K 1.953 (3) 1.945 (3) 2.057 (3) 1.894 (4) 1.883 (4) 
1.981 (3) 1.946 (3) 2.090 (4) 1.894 (5) 1.890 (4) 
1.987 (3) 1.969 (3) 2.148 (3) 1.896 (4) 1.894 (4) 
1.993 (3) 1.975 (3) 2.184 (4) 1.902 (4) 1.906 (4) 
2.005 (3) 1.976 (3) 2.187 (3) 1.902 (4) 1.907 (4) 
2.010 (3) 1.981 (3) 2.194 (4) 1.906 (5) 1.925 (4) 

Avg M–L 1.988 (3) 1.965 (3) 2.143 (4) 1.899 (4) 1.901 (4) 
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 The π-π stacking interactions present in the Fe3Co2 TBP containing 

tmphen ligands  are very similar to those present in the Zn3Os2 and Fe3Ru2 TBPs 

discussed already. There are two intermolecular interactions involving the Fe(3) 

centers in two TBPs and two intramolecular interactions involving the Fe(1) with 

the Fe(2) center and the Fe(2) with the Fe(3) center. Figure 5-3 portrays the 

intermolecular interactions that occur between the two TBPs that stack in a 

dimeric unit. For compound 8, as with the other TBPs, the intermolecular 

interactions are the strongest of the π-π stacking interactions with the inter-pp 

being stronger than the inter-py interaction owing to the shortest centroid-centroid 

and shift distances. The geometric parameters (Table 5-5) remain relatively 

constant as temperature changes except for the shift distance between the 

centroids in the inter-pp interactions. As compared to the lower temperature 

structures, the 200 and 220 K structures show a significant decrease in the shift 

distance between centroids. These temperatures coincide with the Fe(3) center 

involved in this intermolecular interaction becoming HS, according to the average 

Fe–N bond length. The intramolecular interactions are weak and as temperature 

increases above 200 K, the shift distances and angles between the planes 

increase. Figure 5-4 portrays the intramolecular interactions and Figure 5-5 shows 

how the compound packs down the a-axis with the planes intact to offer 

perspective. 
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Figure 5-3. View of the dimeric unit of the Fe3Co2 TBP with 
tmphen ligands (8). The purple and yellow colored planes are 
the rings within the tmphen ligands that are involved in the 
intermolecular interactions. 
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Figure 5-4. Depiction of the intramolecular interactions in the Fe3Co2 TBP with 
tmphen (8). Arrows indicate the interaction between the planes. 
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Table 5-5. Geometric parameters (centroid-centroid distance, shift distance and angle) 
for the inter- and intramolecular π-π stacking interactions in the Fe3Co2 TBP with tmphen 
(8). The average values (avg) and the differences between the minimum and maximum 
values (Δ) have been included. *Indicates symmetry equivalent metal center. 

Interaction-Plane 
Fe Centers 

Involved 
Temperature 

Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

inter-pp 

Fe(3) – Fe(3)* 

15 K 3.495 1.187 0 
50 K 3.492 1.170 0 
100 K 3.506 1.216 0 
150 K 3.461 1.031 0 
200 K 3.459 0.732 0 
220 K 3.473 0.746 0 

 Avg 3.481 1.014 0 

 Δ 0.047 0.484 0 

inter-py 

Fe(3) – Fe(3)* 

15 K 3.634 1.613 1.778 
50 K 3.638 1.619 1.773 
100 K 3.633 1.596 1.449 
150 K 3.638 1.579 1.785 
200 K 3.748 1.666 1.096 
220 K 3.756 1.660 1.034 

 Avg 3.675 1.622 1.486 

 Δ 0.123 0.087 0.751 

intra-tt 

Fe(1) – Fe(2) 

15 K 3.761 1.288 4.201 
50 K 3.762 1.286 4.048 
100 K 3.767 1.288 4.050 
150 K 3.780 1.318 4.259 
200 K 3.799 1.352 4.767 
220 K 3.809 1.363 4.907 

 Avg 3.780 1.316 4.372 

 Δ 0.048 0.077 0.859 

intra-rr 

Fe(2) – Fe(3) 

15 K 3.769 1.390 5.154 
50 K 3.763 1.388 5.455 
100 K 3.764 1.385 5.294 
150 K 3.797 1.399 5.551 
200 K 3.883 1.505 6.943 
220 K 3.890 1.516 6.948 

 Avg 3.811 1.431 5.891 

 Δ 0.127 0.131 1.794 
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Figure 5-5. Packing diagram looking down the a-axis for compound 8. The 
colored planes offer perspective and help distinguish the packing of the dimeric 
unit. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. Hydrogen 
atoms have been omitted for the sake of clarity. 



 

253 

 

Fe3Co2 4dmbpy (9) 

 The Fe3Co2 TBP with 4dmbpy ligands coordinated to the equatorial FeII 

centers crystallizes in the P21/n space group which is equivalent to P21/c through 

the transformation matrix (0 0 -1 0 1 0 1 0 -1). The unit cells are slightly different 

than the tmphen cousins as they have three distinct cell edge lengths instead of 

two as in the case of the tmphen containing TBPs. The structural parameters for 

several temperatures are in Table 5-6, the relevant M–L bond lengths are in Table 

5-7 and the asymmetric unit can be seen in Figure 5-6. The structure obtained at 

20 K was taken on a different crystal than the structures obtained at 100, 200 and 

250 K which were all collected on the same crystal. Throughout the 20 – 250 K 

range, all of the FeII–N bond lengths are shorter than 2.0 Å suggesting that all of 

the Fe centers remain LS below 250 K. The Fe(2) center shows a slight 

lengthening in the average Fe–N bond length at 250 K compared to the other Fe 

centers suggesting that this center is the first to undergo a SCO event from 

LS → HS as temperature is increased above 250 K. 
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Table 5-6. Structural data and cell refinement parameters for compound 9 at variable temperatures. Structural data at 20 K is 
for a different crystal than the data at 100, 200 and 250 K which were obtained on the same crystal.  

Fe3Co2 4dmbpy (9) 20 K 100 K 200 K 250 K 

Space Group P21/n P21/n P21/n P21/n 

a/ Å 20.6763(7) 20.6052(9) 20.6988(9) 21.1144(5) 

b/ Å 18.4954(6) 18.5218(9) 18.6027(8) 17.8678(4) 

c/ Å 25.2796(8) 25.4483(12) 25.6542(12) 26.8639(6) 

β/ ° 96.657(2) 97.228(3) 97.378(3) 100.6440(10) 

Volume/ Å3 9602.2(5) 9635.0(8) 9796.5(8) 9960.5(4) 

aInterstitial Solvent 
2 MeCN 
12 H2O 

3 MeCN 
13 H2O 

3 MeCN 
13 H2O 

2 MeCN 
14 H2O 

μ/ mm-1 1.005 1.001 0.985 0.969 

Crystal Size/ mm3 

Habitat 
0.113 x 0.094 x 0.047 

Dark, Red Needle 
0.075 x 0.047 x 0.028 

Dark, Red Needle 
2Θ Range for 
Data Collection/ ° 

4.276 to 59.808 4.258 to 49.542 4.23 to 45.882 4.182 to 57.316 

Independent 
Reflections 

21294 
Rint = 0.0872 

Rsigma = 0.0696 

12642 
Rint = 0.1064 

Rsigma = 0.0.630 

10364 
Rint = 0.0971 

Rsigma = 0.0531 

19703 
Rint = 0.0708 

Rsigma = 0.0464 
Data/Restraints/ 
Parameters 

21294/0/1030 12642/0/1030 10364/0/1030 19703/0/1030 

bGooF on F2 1.049 1.072 1.049 1.035 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0517 
wR2 = 0.1187 

R1 = 0.0932 
wR2 = 0.2763 

R1 = 0.0951 
wR2 = 0.2849 

R1 = 0.0434 
wR2 = 0.1151 

c,dFinal R Indexes 
[all data] 

R1 = 0.0764 
wR2 = 0.1284 

R1 = 0.1231 
wR2 = 0.3027 

R1 = 0.1210 
wR2 = 0.3107 

R1 = 0.0696 
wR2 = 0.1279 

Largest Diff. 
Peak / Hole/ e Å-3 

0.69 / -0.59 1.52 / -0.64 1.06 / -0.59 0.50 / -0.31 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-

p)}1/2, where n is the number of reflections and p is the total number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - 

Fc
2)2]/∑w(Fo

2)2]}1/2..
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Table 5-7. The M–L bond distances (in Å) for the Fe3Co2 TBP with 4dmbpy (9). 

Temperature   Fe(1)–N   Fe(2)–N   Fe(3)–N Co(1)–C Co(2)–C 

20 K 1.943 (3) 1.934 (3) 1.937 (3) 1.887 (4) 1.892 (3) 
1.964 (3) 1.937 (3) 1.963 (3) 1.888 (4) 1.897 (4) 
1.965 (3) 1.947 (3) 1.965 (3) 1.897 (3) 1.898 (4) 
1.967 (3) 1.962 (3) 1.967 (3) 1.897 (3) 1.901 (4) 
1.983 (3) 1.970 (3) 1.985 (3) 1.898 (4) 1.902 (3) 
1.985 (3) 1.976 (3) 1.986 (3) 1.921 (3) 1.916 (3) 

Avg M–L 1.968 (3) 1.954 (3) 1.967 (3) 1.898 (4) 1.901 (4) 

100 K 1.944 (10) 1.916 (10) 1.932 (10) 1.900 (12) 1.885 (12) 
1.959 (9) 1.935 (10) 1.966 (9) 1.904 (13) 1.898 (13) 
1.965 (8) 1.949 (10) 1.970 (8) 1.906 (11) 1.900 (11) 
1.969 (8) 1.959 (8) 1.979 (8) 1.917 (11) 1.902 (12) 
1.979 (8) 1.966 (9) 1.981 (9) 1.926 (13) 1.906 (12) 
1.994 (8) 1.980 (9) 1.986 (8) 1.948 (13) 1.918 (13) 

Avg M–L 1.968 (9) 1.951 (9) 1.969 (9) 1.917 (12) 1.902 (12) 

200 K 1.947 (13) 1.921 (13) 1.927 (11) 1.886 (17) 1.864 (15) 
1.958 (11) 1.932 (12) 1.972 (10) 1.887 (16) 1.883 (14) 
1.977 (10) 1.937 (11) 1.974 (9) 1.892 (17) 1.883 (17) 
1.978 (10) 1.944 (10) 1.981 (9) 1.905 (14) 1.886 (15) 
1.980 (10) 1.970 (10) 1.985 (9) 1.924 (15) 1.917 (14) 
2.002 (9) 1.979 (10) 1.986 (11) 1.941 (16) 1.925 (16) 

Avg M–L 1.974 (11) 1.947 (11) 1.971 (10) 1.906 (16) 1.893 (15) 

250 K 1.944 (2) 1.963 (3) 1.926 (3) 1.898 (4) 1.887 (3) 
1.963 (2) 1.974 (3) 1.967 (3) 1.900 (3) 1.896 (3) 
1.968 (2) 1.994 (3) 1.967 (3) 1.902 (3) 1.900 (3) 
1.970 (3) 2.002 (3) 1.971 (3) 1.902 (3) 1.901 (3) 
1.973 (2) 2.005 (3) 1.972 (3) 1.903 (3) 1.903 (4) 
1.990 (2) 2.012 (3) 1.980 (3) 1.909 (3) 1.912 (3) 

Avg M–L 1.968 (2) 1.992 (3) 1.964 (3) 1.902 (3) 1.900 (3) 
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Figure 5-6. Asymmetric unit of the Fe3Co2 TBP at 100 K with 4dmbpy coordinated 
to the equatorial Fe centers. Color scheme: Co is cyan, Fe is green, N is blue and 
C is grey. Hydrogen atoms have been omitted for the sake of clarity. 
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 Analysis of the π-π stacking interactions with Olex2 reveals a decrease in 

the number of intermolecular interactions from two in the TBP with tmphen, to one 

in this TBP. Figure 5-7 depicts the intermolecular interaction that involves the 

Fe(3) centers in the dimeric unit and Figure 5-8 portrays the intramolecular 

interactions that occur between the 4dmbpy ligands in an analogous fashion to 

those between tmphen ligands. The inter-py is the strongest interaction of the 

three total π-π interactions as the inter-pp is no longer an interaction in this 

molecule. The centroid-centroid distance decreases slightly from 20 K to 250 K 

and the shift distance between centroids decreases significantly from 1.69 Å at 

20 K to 1.02 Å at 250 K. The intra-rr interaction is very weak at 20 K with a 

centroid-centroid distance of 3.98 Å and becomes undetectable by Olex2 at 100 

and 200 K with centroid-centroid distances greater than 4 Å. At 250 K this 

interaction is strengthened as the centroid-centroid distance becomes 3.78 Å. 

Table 5-8 lists the relevant geometric parameters and Figure 5-9 shows how the 

compound packs down the a-axis with the planes intact to offer perspective. 
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Figure 5-7. View of intermolecular π-π stacking 
interactions in the Fe3Co2 TBP with 4dmbpy (9). The purple 
and yellow planes portray the inter-py interaction. 
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Fe(3) 
Fe(1) 

Fe(2) 

Co 

Figure 5-8. View of the intramolecular interactions in the Fe3Co2 TBP with the 
4dmbpy ligands. The teal colored planes denote the intra-tt interaction and the red 
colored planes portray the intra-rr interaction. 
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Table 5-8. Geometric parameters (centroid-centroid distance, shift distance and angle) 

for the inter- and intramolecular π-π stacking interactions in the Fe3Co2 TBP with 4dmbpy 
(9). The average values (avg) and the differences between the minimum and maximum 
values (Δ) have been included. *Indicates symmetry equivalent metal center. 

Interaction-Plane 
Fe Centers 

Involved 
Temperature 

Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

inter-py 

Fe(3) – Fe(3)* 

20 K 3.557 1.691 8.939 
100 K 3.543 1.675 8.938 
200 K 3.579 1.710 8.906 
250 K 3.513 1.015 9.157 

 Avg 3.548 1.523 8.985 

 Δ 0.066 0.695 0.251 

intra-tt 

Fe(1) – Fe(2) 

20 K 3.743 1.106 6.798 
100 K 3.759 1.049 8.873 
200 K 3.778 1.015 9.407 
250 K 3.779 1.106 7.593 

 Avg 3.765 1.069 8.168 

 Δ 0.036 0.091 2.609 

intra-rr 

Fe(2) – Fe(3) 

20 K 3.983 1.749 12.621 
100 K — — — 
200 K — — — 
250 K 3.779 1.022 9.377 

 Avg 3.881 1.386 10.999 

 Δ 0.204 0.727 3.244 
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Figure 5-9. Packing diagram looking down the a-axis for compound 9. The 
colored planes offer perspective and help distinguish the packing of the dimeric 
unit. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. Hydrogen 
atoms have been omitted for the sake of clarity. 
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Fe3Co2 5dmbpy (10) 

 Unlike any other TBP studied by the Dunbar group, the Fe3Co2 TBP with 

5dmbpy ligands coordinated to the equatorial Fe centers crystallizes in the 

orthorhombic space group of Pca21. Refer to Table 5-9 for the unit cell and 

structural data. The structure was collected at 110 K (Figure 5-10) and has 

average CoIII–C bond lengths consistent with those found in the Fe3Co2 tmphen 

and 4dmbpy structures. The average FeII–N bond lengths for all 3 Fe centers are 

~1.96 Å (Table 5-10) which is typical for LS FeII ions surrounded by nitrogen atoms 

in an octahedral environment. As no variable temperature data were obtained, the 

specific Fe center that undergoes SCO cannot be discerned. 
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Table 5-9. Crystal structure data and refinement parameters for the Fe3Co2 TBP with 
5dmbpy (10). 

Fe3Co2 5dmbpy (10) 

Crystal System Orthorhombic Space Group Pca21 

Temperature 110 K Formula C84N24H72Fe3Co2 

a/ Å 25.109(6) b/ Å 15.821(4) 

c/ Å 25.060(6) α = β = γ/ ° 90 

Volume/ Å3 9955(4) Z 4 

aInterstitial Solvent 
5 MeCN 
10 H2O 

Radiation MoKα (λ = 0.71073) 

μ/ mm-1 0.802 Crystal Habitat Dark Red Block 

2Θ Range for 
Data Collection/ ° 

2.574 to 54.37 
Independent 
Reflections 

21996 
Rint = 0.0575 

Rsigma = 0.0514 

Data/Restraints/ 
Parameters 

21996/1/1026 bGooF on F2 1.034 

c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0390 
wR2 = 0.0834 

c,dFinal R Indexes 
[all data] 

R1 = 0.0502 
wR2 = 0.0884 

Largest Diff. 
Peak / Hole/ e Å-3 

0.46 / -0.36 Flack Parameter 0.017(4) 

aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-p)}1/2, where n is 

the number of reflections and p is the total number of parameters refined. cR = ∑Fo-

Fc/∑Fo. dwR = {∑[w(Fo
2 - Fc

2)2]/∑w(Fo
2)2]}1/2 

 

 

Table 5-10. The M–L bond distances (in Å) for the Fe3Co2 TBP with 5dmbpy (10). 

Temperature   Fe(1)–N   Fe(2)–N   Fe(3)–N Co(1)–C Co(2)–C 

110 K 1.936 (4) 1.932 (4) 1.937 (4) 1.893 (5) 1.886 (4) 
1.943 (4) 1.953 (4) 1.948 (3) 1.897 (4) 1.888 (5) 
1.951 (3) 1.961 (3) 1.960 (4) 1.900 (4) 1.895 (5) 
1.963 (4) 1.963 (3) 1.965 (4) 1.905 (5) 1.897 (4) 
1.966 (3) 1.966 (4) 1.977 (4) 1.907 (4) 1.901 (4) 
1.971 (4) 1.979 (4) 1.986 (4) 1.917 (5) 1.910 (5) 

Avg M–L 1.955 (4) 1.959 (4) 1.962 (4) 1.903 (5) 1.896 (5) 
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Figure 5-10. Axial view of the asymmetric unit of the Fe3Co2 TBP with 5dmbpy  
ligands coordinated to the equatorial Fe centers. Color scheme: Co is cyan, Fe 
is green, N is blue and C is grey. Hydrogen atoms have been omitted for the sake 
of clarity. 
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 Analysis of the π-π stacking interactions with Olex2 reveals that this TBP 

has even fewer interactions than the two previous Fe3Co2 TBPs discussed herein. 

The intermolecular interaction of this TBP is no longer present as this TBP does 

not stack in a dimeric fashion analogous to the TBP with tmphen or 4dmbpy. 

Despite the appearance of near trigonal symmetry when looking down the axial 

metal positions, the TBP only has 2 intramolecular interactions (Table 5-11). The 

intra-tt and intra-gg interactions (Figure 5-11) involve the Fe(1)–Fe(2) and Fe(1)–

Fe(3) centers, respectively but the intra-rr is no longer considered an interaction 

in this TBP due to a centroid-centroid distance greater than 4 Å. With tmphen and 

4dmbpy, the Fe(1)–Fe(3) interaction (intra-gg) was not seen due to the much 

larger distance between the Fe(1) and Fe(3) metal centers than in the TBP with 

5dmbpy. It should be noted that these two interactions are very weak with 

centroid-centroid distances of ~3.98 and 3.95 Å and could be considered as non-

interactions by literature standards. Figure 5-12 portrays how the molecule packs 

looking down the a-axis. 

 

 

Table 5-11. Geometric parameters (centroid-centroid distance, shift distance and angle) 
for the intramolecular π-π stacking interactions in the Fe3Co2 TBP with 5dmbpy (10). 

Interaction-Plane 
Fe Centers 
Involved 

Temperature 
Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

intra-tt 
Fe(1) – Fe(2)  

110 K 3.984 1.756 10.978 

intra-gg 
Fe(1) – Fe(3) 

110 K 3.953 1.841 11.941 
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Figure 5-11. View looking down the axial metal positions of the intramolecular 
interactions occurring in the Fe3Co2 5dmbpy TBP (10). The intra-gg interaction is 
indicated by the green planes and the intra-tt interaction is shown with the teal 
planes. This TBP does not exhibit the intra-rr interaction between the Fe(2) and 
Fe(3) centers. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. 
Hydrogen atoms have been omitted for clarity. 
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Figure 5-12. Packing diagram of Fe3Co2 5dmbpy (10) looking down the a-axis. 
The planes indicating the intra-gg interaction offer perspective on the packing of 
the molecules. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. 
Hydrogen atoms have been omitted for clarity 
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Fe3Co2 tmbpy (11) 

 Variable temperature data was collected on two different crystals for this 

TBP. The data obtained at 20 and 50 K from one of the crystals could not be 

refined anisotropically in its entirety. The metal centers were the only atoms 

refined anisotropically for these two structures. The space group obtained for the 

crystal for these two temperatures was P21/c while the crystal used for data 

collection at 100, 150, 200 and 250 K was P21/n, like the Fe3Co2 4dmbpy TBP. 

As stated earlier, these two space groups are related by the transformation matrix 

0 0 -1 0 1 0 1 0 -1. The unit cell data and refinement parameters for all of the 

structures at the various temperatures (Table 5-12) are very close to one another 

regardless of the change in the unique axis between the two crystals. Unlike the 

TBPs with tmphen and 4dmbpy, when looking down the axial metal positions, the 

asymmetric unit (Figure 5-13) has nearly 3-fold symmetry owing to Fe–Fe 

distances of ~6.5 Å for both Fe(1)–Fe(2) and Fe(2)–Fe(3) centers and ~6.3 Å for 

the Fe(1)–Fe(3) centers. As expected, the average CoIII–C bond distances stay 

relatively constant (~1.9 Å) at all temperatures (Table 5-13). Similarly to the 

Fe3Co2 TBP with 4dmby, the structures collected at all of the temperatures up to 

250 K indicate that all 3 FeII centers remain in the LS state as the average Fe–N 

bond lengths of ~1.96–1.97Å remain unchanged throughout the temperature 

range. 
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Table 5-12. Crystal structure data and refinement parameters for the Fe3Co2 TBP with tmbpy (11). 

Fe3Co2 tmbpy (11) 20 K 50 K 100 K 150 K 200 K 250 K 

Space Group P21/c P21/c P21/n P21/n P21/n P21/n 

a/ Å 16.4982(15) 16.497(2) 16.5343(6) 16.5840(6) 16.6104(4) 16.6594(4) 

b/ Å 24.144(2) 24.137(3) 24.2217(8) 24.2647(8) 24.3336(6) 24.4056(6) 

c/ Å 28.969(3) 28.949(3) 29.1116(9) 29.1574(10) 29.2480(7) 29.3250(7) 

β/ ° 106.159(7) 106.191(9) 106.072(2) 105.895(2) 105.7620(10) 105.6330(10) 

Volume/ Å3 11083.7(18) 11070(2) 11203.2(7) 11284.5(7) 11377.3(5) 11482.0(5) 

aInterstitial Solvent 
5 MeCN 
10 H2O 

6 MeCN 
9 H2O 

6 MeCN 
11 H2O 

6 MeCN 
11 H2O 

6 MeCN 
11 H2O 

6 MeCN 
11 H2O 

μ/ mm-1 0.873 0.876 0.866 0.859 0.852 0.844 

Crystal Size/ mm3 

Habitat 
0.075 × 0.047 x 0.019 

Dark, red needle 
0.132 × 0.094 x 0.047 

Dark, red needle 
2Θ Range for 
Data Collection/ ° 

4.056 to 36.72 4.012 to 35.718 4.61 to 57.934 4.6 to 56.392 4.588 to 55.654 4.572 to 55.134 

Independent 
Reflections 

6231 
Rint = 0.1639 

Rsigma = 0.0815 

5642 
Rint = 0.1854 

Rsigma = 0.0993 

22917 
Rint = 0.0758 

Rsigma = 0.0485 

21430 
Rint = 0.0745 

Rsigma = 0.0444 

20815 
Rint = 0.0700 

Rsigma = 0.0447 

20387 
Rint = 0.0697 

Rsigma = 0.0435 
Data/Restraints/ 
Parameters 

6231/0/550 5642/0/550 22917/0/1172 21430/0/1149 20815/0/1129 20387/0/1132 

bGooF on F2 1.049 1.021 1.109 1.120 1.085 1.055 
c,dFinal R Indexes 
[I>=2σ (I)] 

R1 = 0.0827 
wR2 = 0.1966 

R1 = 0.0869 
wR2 = 0.2072 

R1 = 0.0821 
wR2 = 0.1790 

R1 = 0.0826 
wR2 = 0.1960 

R1 = 0.0719 
wR2 = 0.1743 

R1 = 0.0587 
wR2 = 0.1435 

c,dFinal R Indexes 
[all data] 

R1 = 0.1160 
wR2 = 0.2182 

R1 = 0.1261 
wR2 = 0.2321 

R1 = 0.1070 
wR2 = 0.1904 

R1 = 0.1050 
wR2 = 0.2074 

R1 = 0.0948 
wR2 = 0.1862 

R1 = 0.0837 
wR2 = 0.1570 

Largest Diff. 
Peak / Hole/ e Å-3 

0.51 / -0.48 0.49 / -0.51 0.94 / -1.17 0.98 / -1.12 1.51 / -1.15 1.45 / -1.00 

Radiation = synchrotron (λ = 0.7749), α = γ = 90°, Z = 4, aCalculated from SQUEEZE data.  bGooF: Goodness-of-fit = {∑[w(Fo
2- Fc

2)2]/(n-

p)}1/2, where n is the number of reflections and p is the total number of parameters refined. cR = ∑Fo-Fc/∑Fo. dwR = {∑[w(Fo
2 - 

Fc
2)2]/∑w(Fo

2)2]}1/2.
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Figure 5-13. View of the asymmetric unit of Fe3Co2 tmbpy (11) looking down the 
axial Co metal centers. Color scheme: Co is cyan, Fe is green, N is blue and C is 
grey. Hydrogen atoms have been omitted for the sake of clarity. 
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Table 5-13. The M–L bond distances (in Å) for the Fe3Co2 TBP with tmbpy (11). 

Temperature    Fe(1)–N    Fe(2)–N    Fe(3)–N  Co(1)–C Co(2)–C 

20 K 1.940 (15) 1.928 (14) 1.936 (13) 1.862 (20) 1.870 (19) 
1.956 (13) 1.950 (13) 1.948 (13) 1.871 (19) 1.875 (18) 
1.956 (13) 1.956 (14) 1.948 (13) 1.873 (19) 1.877 (19) 
1.958 (12) 1.963 (13) 1.970 (12) 1.892 (18) 1.879 (18) 
1.972 (12) 1.967 (13) 1.976 (12) 1.897 (17) 1.913 (18) 
1.988 (12) 1.971 (12) 1.977 (13) 1.904 (19) 1.916 (17) 

Avg M–L 1.962 (13) 1.956 (13) 1.959 (13) 1.883 (19) 1.888 (18) 

50 K 1.935 (15) 1.940 (16) 1.931 (14) 1.873 (22) 1.873 (22) 
1.940 (17) 1.944 (14) 1.940 (15) 1.889 (22) 1.879 (20) 
1.960 (15) 1.958 (15) 1.950 (16) 1.891 (20) 1.891 (21) 
1.965 (14) 1.960 (16) 1.974 (14) 1.895 (20) 1.921 (22) 
1.967 (14) 1.960 (15) 1.979 (15) 1.912 (22) 1.926 (22) 
1.970 (14) 1.987 (14) 1.987 (15) 1.933 (24) 1.926 (21) 

Avg M–L 1.956 (15) 1.958 (15) 1.960 (15) 1.899 (22) 1.903 (21) 

100 K 1.949 (4) 1.936 (5) 1.925 (5) 1.866 (6) 1.884 (6) 
1.952 (5) 1.944 (5) 1.942 (4) 1.884 (5) 1.899 (6) 
1.954 (4) 1.954 (5) 1.952 (4) 1.896 (6) 1.899 (7) 
1.973 (4) 1.959 (5) 1.953 (5) 1.899 (5) 1.900 (7) 
1.979 (5) 1.959 (5) 1.958 (5) 1.900 (6) 1.903 (6) 
1.989 (4) 1.967 (5) 1.976 (5) 1.911 (5) 1.904 (6) 

Avg M–L 1.966 (4) 1.953 (5) 1.951 (5) 1.893 (6) 1.898 (6) 

150 K 1.947 (5) 1.939 (5) 1.923 (5) 1.862 (6) 1.881 (7) 
1.953 (5) 1.944 (5) 1.940 (5) 1.891 (6) 1.891 (7) 
1.956 (5) 1.956 (5) 1.952 (5) 1.897 (6) 1.899 (7) 
1.974 (4) 1.958 (5) 1.957 (5) 1.898 (6) 1.900 (7) 
1.979 (5) 1.962 (5) 1.961 (5) 1.900 (6) 1.904 (6) 
1.991 (5) 1.965 (5) 1.988 (5) 1.913 (6) 1.907 (7) 

Avg M–L 1.967 (5) 1.954 (5) 1.954 (5) 1.894 (6) 1.897 (7) 

200 K 1.951 (4) 1.933 (5) 1.926 (5) 1.867 (5) 1.884 (6) 
1.956 (4) 1.945 (4) 1.942 (4) 1.896 (6) 1.888 (6) 
1.959 (4) 1.959 (4) 1.950 (4) 1.898 (5) 1.898 (7) 
1.973 (4) 1.960 (5) 1.962 (4) 1.900 (5) 1.900 (6) 
1.979 (4) 1.963 (4) 1.964 (4) 1.904 (6) 1.900 (6) 
1.993 (4) 1.966 (5) 1.974 (5) 1.906 (6) 1.903 (6) 

Avg M–L 1.969 (4) 1.954 (5) 1.953 (4) 1.895 (6) 1.896 (6) 

250 K 1.960 (4) 1.932 (4) 1.935 (4) 1.882 (4) 1.882 (5) 
1.961 (3) 1.944 (4) 1.946 (3) 1.896 (5) 1.894 (5) 
1.962 (4) 1.963 (4) 1.950 (3) 1.897 (4) 1.894 (5) 
1.981 (4) 1.964 (4) 1.963 (3) 1.898 (5) 1.901 (5) 
1.988 (3) 1.967 (4) 1.970 (3) 1.901 (4) 1.903 (5) 
2.003 (3) 1.970 (4) 1.973 (4) 1.905 (5) 1.907 (5) 

Avg M–L 1.976 (4) 1.957 (4) 1.956 (3) 1.897 (5) 1.897 (5) 
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 Analysis of the π-π stacking interactions of this TBP with Olex2 revealed 

that this ligand is involved in even fewer interactions than the three previous 

ligands discussed. The only π-π stacking interaction recognized is an 

intramolecular interaction involving the Fe(1) and Fe(3) center which has the 

shorter distance of ~6.3 Å between the two centers. Figure 5-14 is a depiction of 

the intra-gg interaction that occurs in this molecule. Although this interaction is 

recognized by Olex2, it is a very weak interaction with a centroid-centroid distance 

~3.93 Å at all temperatures. There is no real change in centroid-centroid or shift 

distances as temperature increases but there is an obvious decrease in the angle 

between the planes involved in this interaction that occurs as temperature is 

increased (Δ = 2.9 °). The geometric parameters for the intramolecular interaction 

in this TBP are listed in Table 5-14. Figure 5-15 is a packing diagram of the TBP 

looking down the a-axis. The green planes indicating the intramolecular 

interaction cannot be easily seen as they were in the packing diagrams for the 

other TBPs. 
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Figure 5-14. Depiction of the intramolecular π-π stacking interaction in the Fe3Co2 
tmbpy TBP (11). The green planes indicate the rings involved in the intramolecular 
interation. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. 
Hydrogen atoms have been omitted for the sake of clarity. 
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Table 5-14. Geometric parameters (centroid-centroid distance, shift distance and angle) 
for the intramolecular π-π stacking interactions in the Fe3Co2 TBP with tmbpy (11). The 
average values (avg) and the differences between the minimum and maximum values 
(Δ) have been included. 

Interaction-Plane 
Fe Centers 
Involved 

Temperature 
Centroid-
Centroid 

Distance (Å) 

Shift 
Distance 

(Å) 

Angle 
(º) 

intra-gg 

Fe(1) – Fe(3) 

20 K 3.933 1.350 11.557 
50 K 3.938 1.353 11.750 

100 K 3.928 1.452 10.440 
150 K 3.927 1.462 10.023 
200 K 3.932 1.455 9.563 
250 K 3.941 1.443 8.824 

 Avg 3.933 1.419 10.360 

 Δ 0.014 0.112 2.926 
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Figure 5-15. Packing diagram of Fe3Co2 tmbpy (11) looking down the a-
axis. Color scheme: Co is cyan, Fe is green, N is blue and C is grey. 
Hydrogen atoms have been omitted for the sake of clarity. 
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 Upon comparing the crystal structures and the π-π stacking interactions, it 

becomes clear that the TBP with tmphen has the most interactions. Table 5-15 

contains a list of the type and number of π-π stacking interactions for each of the 

ligands in the Fe3Co2 TBPs. It is clear that the number of interactions are changed 

by exchanging tmphen for similar ligands that are expected to be less capable of 

engaging in π-π stacking interactions. The ligands also seem to dictate the 

packing arrangement of these molecules in the crystal as the molecules exhibit 

vastly different packing arrangements even though three of the four TBPs 

crystallize in the same space group (Figure 5-16). According to the 

crystallography, the TBP that participated in the most π-π stacking interactions is 

also the TBP that has one Fe center undergoing a SCO event before 250 K. This 

observation indicates that the number of interactions play a role in stabilizing SCO 

in that the LS → HS transition occurs at lower temperatures than molecules with 

less interactions. The Fe center that was found to undergo the SCO before 250 K 

is the center involved in the only intermolecular interaction within the TBP, 

indicating that the type of interaction also plays a role in the SCO phenomena. 
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Table 5-15. Number of π-π stacking interactions found by Olex2 in the Fe3Co2 
TBPs with different capping ligands (8-11). *Indicates very weak interactions that 
could be considered irrelevant by literature standards. 

Number of π-π 
Stacking Interactions 

tmphen 
(8) 

4dmbpy 
(9) 

5dmbpy 
(10) 

tmbpy 
(11) 

Inter- 2 1 0 0 

Intra- 2 2 2* 1* 

Total Number of 
Interactions 4 3 2* 1* 
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Figure 5-16. Comparison of how compounds 8-11 pack looking down the a-axis. 
The colored planes indicating the π-π stacking interactions for each TBP offer 
perspective on the orientation of the molecules. 
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Magnetic Properties 

 The transition event in the Fe3Co2 TBP with tmphen as a capping ligand 

has been thoroughly studied by previous members in our group.111,145,146,230 The 

TBP was found to undergo SCO at the FeII centers as a result of temperature 

changes and white light irradiation at 5 K. The fact that this TBP exhibits 

straightforward SCO and does not undergo CTIST behavior is the driving force 

behind studying the effect of ligand exchange on this TBP. Exchanging the 

tmphen for very similar ligands that are less capable of π-π stacking is not 

expected to change the inherent redox properties of the Fe3Co2 core so any 

changes in χT in these molecules are expected to be due to SCO at the FeII 

centers. The [(LS-FeII)3CoIII
2] configuration is completely diamagnetic and will not 

contribute to any magnetic signal observed so any magnetic moment observed is 

due to the presence of HS FeII. The value of χT for one HS FeII center typically 

ranges from the spin-only value of 3 emu·K/mol to ~4.3 emu·K/mol if orbital 

contributions are included. Considering all of this, analyzing the magnetic data is 

more clear-cut than in previous cases presented in this dissertation. In order to 

limit the differences in magnetic behavior due to extrinsic factors, all of the TBPs 

discussed herein were measured using the same capsule, brass rod and 

sequence. The details of the measurement and sample preparation can be found 

in Appendix A. 
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Fe3Co2 tmphen (8) 

 Thorough studies on this TBP have shown that the transition temperature 

and, more so, the cooperativity of the SCO events that occur in this TBP change 

depending on solvent content and preparation technique. For this reason, this 

TBP was prepared and measured again but in the same manner as the TBPs 

containing 4dmbpy, 5dmbpy and tmbpy. This procedure allows for more accurate 

comparisons and conclusions about the effect that π-π stacking has on the SCO 

behavior in the Fe3Co2 TBPs and, by extension, how it could affect congeners 

containing different metal combinations. 

 At 2 K, the TBP with tmphen has almost entirely LS FeII centers as indicated 

by the χT value of 0.3 emu·K/mol (orange circles in Figure 5-17) and the 

parameters obtained from crystallography. Although the χT value changes to 

~12  emu·K/mol as the temperature is increased to 390 K, the susceptibility data 

only display one transition step in the curve indicating that either the Fe centers 

are transitioning simultaneously or that one center begins to undergo SCO as the 

previous center nears completion of the SCO. The crystallographic data 

discussed earlier suggests that the ladder is the most likely event as there is an 

obvious lengthening of the Fe(3)–N bond distances from 15 K to 220 K but not in 

the Fe(1)–N and Fe(2)–N bond lengths. At 220 K, the χT value is 4.5 emu·K/mol 

which is slightly higher than the typical range of 3 – 4.3 emu·K/mol for one HS FeII 

ion. As the temperature is raised to 390 K, the χT value is 12.2 emu·K/mol and 

the curve appears to reach a plateau indicating the completion of the SCO events 
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for all three FeII centers. As it is known that solvent content can play a pivotal role 

in the SCO behavior of these TBPs, the sample was measured while being cooled 

from 390 K to 2 K to probe if the SCO events would change with the loss of solvent 

that was expected to occur by warming the sample to 390 K. The yellow circles in 

Figure 5-17 represent the χT data as the sample is cooled to 2 K and the dark 

green circles represent the χT data as the sample is warmed from 2 K to 390 K a 

second time. These two transition curves are nearly identical to each other 

indicating that this TBP does not exhibit hysteresis upon the loss of solvent but 

the data are quite different from the original data collected from 2 to 390 K, i.e., 

before solvent was lost. As solvent is removed with heat inside the magnetometer, 

the SCO events become less cooperative and the HS state of the FeII center is 

more favored. The decrease in χT becomes very gradual around 100 K where the 

value of χT is ~4.1 emu·K/mol which is typical for approximately one HS FeII 

center. Below 20 K, χT decreases quickly to 0.1 emu·K/mol. Before the loss of 

solvent, the temperature required to obtain a χT value within the range typical of 

one HS FeII center (~3 – 4.3 emu·K/mol) is ~190–220 K. After some solvent is 

removed, the temperature required to obtain the same range in values is 

~14–110 K. Although the range in temperature required for the value of χT to 

increase from 3 to 4.3 emu·K/mol increased from 30 to 96 K due to the loss of 

solvent, the χT values were obtained much earlier in the warming process (110 K 

after solvent loss vs 220 K before solvent loss). This indicates that the first 

LS → HS transition occurs much more rapidly and is initially more cooperative 
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once the solvent is removed. However, the second and third SCO events that 

occur when there is less solvent in the interstices are much more gradual as they 

occur over a 280 K range instead of a 170 K range. The HS state of the FeII center 

is clearly favored in this TBP when solvent is removed which could be due to a 

reduction in mechanical pressure exerted on the molecules.  

The magnetic behavior of the TBP was also measured as the sample was 

cooled from 390 K for the second time (light green circles in Figure 5-17); the data 

reveal that more solvent is lost resulting in further stabilization of the HS state as 

indicated by the higher χT values than in the previous measurements. 

Interestingly, however, at 390 K the magnitude of χT (12.2 emu·K/mol) remains 

constant although more of the sample remains in a HS state upon cooling the 

sample for the last time, as compared to the previous time. As observed for 

several TBPs (including the Fe3Ru2 discussed earlier), the removal of solvent 

results in more of the sample remaining in the HS state at the same temperatures 

as compared to the solvated sample. The increase in the χT values below 390 K 

indicates that more solvent is lost from the sample after being warmed to 390 K 

for the second time but it is noted that the absolute magnitude of χT at 390 K 

remains constant. This is unexpected behavior given the solvent loss and 

suggests that the LS → HS transition for all three FeII centers is complete at 390 K 

in this sample. If this is the case, the χT value for one HS FeII center in this TBP 

is ~4.06 emu·K/mol and will be used, as such, for comparisons between the 

samples throughout this discussion. 
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Fe3Co2 4dmbpy (9) 

 The SCO events in compound 9 are similar to those discussed above for 

compound 8 but the transitions occur at higher temperatures and are more abrupt 

in comparison. For the Fe3Co2 molecule with the 4dmbpy ligands coordinated to 

the equatorial FeII centers, the maximum χT value at 390 K for all measured states 

of the sample is ~11.5 emu·K/mol, which is slightly lower than the 12.2 emu·K/mol 

obtained for the TBP containing tmphen. The curves do not reach a plateau 

Figure 5-17. Temperature dependent susceptibility data for Fe3Co2 with tmphen 
(8). The order of measurement follows the order of the legend where the orange 
circles were 1st, the yellow circles 2nd, the dark green circles 3rd and the light green 
circles are the 4th measurement. 
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indicating that the SCO event is incomplete or that the orbital contribution of the 

FeII centers is slightly different when 4dmbpy is coordinated to the FeII metal. As 

there is no further solvent loss between cycles and no increase in the magnitude 

of the susceptibility it is not possible to conclude if the SCO events are complete. 

Higher temperatures and/or Mössbauer data would be useful in this regard but it 

is likely that the SCO is incomplete. When warming the sample from 2 K to 390 K 

for the first time (orange circles in Figure 5-18), the χT value of 4 emu·K/mol is not 

obtained until ~290 K whereas for the tmphen analog, that value was obtained at 

~210 K. When the sample is cooled back down from 390 K for the first time after 

losing solvent (dark green circles in Figure 5-18), the decrease in χT becomes 

much more gradual and the HS state is retained longer. In fact, the value of χT is 

still 1.9 emu·K/mol at 2 K as there is a significant amount of remnant HS FeII in 

the TBP. The χT value of 4.0 emu·K/mol occurs at ~10 K once solvent is removed 

instead of at 290 K. This is a huge shift in temperature resulting from loss of 

solvent. As the sample is warmed back up to 390 K (dark green circles in Figure 

5-18), the SCO behavior remains identical as for the previous cooling cycle from 

390 K except for the data between ~260 and 360 K where the transition shows 

hysteresis. The possibility of this difference originating from the sample shifting 

during the measurement was ruled out because as the sample is cooled back 

down (light green circles in Figure 5-18) the hysteresis is still present (the 2nd 

cooling curve tracks the 1st cooling curve). This is the first case in which a TBP 

molecule exhibits hysteresis in the SCO behavior. The occurrence of this 
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hysteresis could be a result of a crystallographic or phase transition not exhibited 

by the other TBPs. Without higher temperature X-ray data this hypothesis cannot 

be confirmed. 

 Overall, by exchanging the tmphen ligand for 4dmbpy, which is less 

capable of engaging in π-π stacking interactions, the majority of the SCO events 

shift to elevated temperatures and the LS state is favored. As with the TBP 

containing tmphen, as solvent is removed the transitions become more gradual 

and the HS state is favored. Removal of solvent also results in a new high 

temperature hysteretic behavior in the SCO when 4dmbpy is used as the capping 

ligands. 
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Fe3Co2 5dmbpy (10) 

 The SCO behavior for the Fe3Co2 TBP when 5dmbpy is used as a capping 

ligand instead of 4dmpby or tmphen is quite different at high temperatures. The 

cooperativity in the LS → HS transition as the sample is warmed from 2 K to 390 K 

(orange circles in Figure 5-19) is relatively similar to the 4dmbpy analog. At 2 K, 

the TBP is nearly diamagnetic (χT = 0.4 emu·K/mol) with only a small amount of 

HS FeII being present. There is a gradual increase in χT at higher temperatures, 

Figure 5-18. Temperature dependent susceptibility data for Fe3Co2 with 4dmbpy 
(9). The order of measurement follows the order of the legend where the orange 
circles were 1st, the yellow circles 2nd, the dark green circles 3rd and the light green 
circles are the 4th measurement. 
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and the value of 4.0 emu·K/mol is reached at 300 K as compared to 290 K in the 

4dmbpy analog. Once this value is reached at 300 K, the transition becomes more 

abrupt until ~350 K where a plateau is reached with a maximum χT of 

9.5 emu·K/mol at 390 K. If the same contribution of ~4 emu·K/mol for the χT value 

for one HS FeII center is used, it can be concluded that two Fe centers undergo a 

complete SCO event whereas the transition in the third center is incomplete. The 

sample was measured in the same manner with the same cycles as compounds 

8 and 9. The first cooling measurement from 390 K and the 2nd warming 

measurement to 390 K are identical to the final cooling cycle (light green circles 

in Figure 5-19) and are not shown in the figure. Upon losing solvent, the transition 

from HS → LS becomes more gradual as observed previously with the HS state 

being favored. The χT value of 4.0 emu·K/mol is obtained at ~26 K once solvent 

has been removed and more HS FeII is retained at 2 K (χT = 1.4 emu·K/mol). 

 Overall, this TBP packs with fewer π-π stacking interactions which are two 

very weak intramolecular interactions according to crystallographic data. Before 

solvent loss, the LS state is favored more as compared to the 4dmbpy and tmphen 

containing analogs. Two FeII centers undergo a complete SCO between 2 and 

390 K in this TBP while the SCO event for the third FeII center is incomplete, in 

contrast to the other two analogs where the SCO is nearly complete for all three 

FeII centers.  

 

 



 

288 

 

 

 

Fe3Co2 tmbpy (11) 

 As is the case with the other ligands, the SCO events in this TBP occur as 

one step instead of a multi-step transition. At 2 K the χT value is nearly 

diamagnetic (0.2 emu·K/mol) as expected for the electronic configuration of 

[(LS-FeII)3CoIII
2] but a small amount of HS FeII is present. As the temperature is 

increased to 390 K for the first time (orange circles in Figure 5-20), the SCO is 

very gradual and χT does not reach a value of 4.0 emu·K/mol for one HS FeII until 

Figure 5-19. Temperature dependent susceptibility data for Fe3Co2 with 5dmbpy 
(10). The orange circles are the data for the sample as it was warmed from 2 K to 
390 K for the 1st time and the light green circles are the data as the sample was 
cooled from 390 K to 2 K for the 2nd time. 
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~337 K. At 390 K, all four curves remain at a χT value between 8.3 and 

8.7  emu·K/mol. This value is too low for 3 FeII centers to be completely HS and 

is more likely due to two HS FeII centers. Once the sample is warmed to 390 K 

and loses solvent, the HS → LS transition is very gradual as the temperature is 

decreased (yellow circles in Figure 5-20) and the χT value of 4.0 emu·K/mol for 

one HS FeII center is obtained when the temperature reaches 160 K. At 2 K, more 

HS FeII is present in the sample than before solvent had been removed. No 

hysteresis is observed in the SCO behavior upon warming the sample to 390 K 

for the second time (dark green circles in Figure 5-20) as the warming and cooling 

curves are nearly identical. It is evident that more solvent was removed from the 

sample (resulting in more HS FeII) upon warming to 390 K a second time as the 

magnitude of χT at 390 K is slightly higher and the overall χT values are higher as 

the sample is cooled back down to 2 K (light green circles in Figure 5-20). 

 Overall, this TBP has the least number of π-π stacking interactions and 

also has the least amount of HS FeII present in the sample at 390 K. Like the other 

TBPs, when solvent is removed, the FeII centers adopt a HS state. 
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 The plot at the top of Figure 5-21 depicts the χT curves for all four TBPs 

with the different ligands as the samples are warmed to 390 K for the first time 

(before solvent was removed) and the bottom of Figure 5-21 compares the χT 

curves for the TBPs upon cooling for the last time (after solvent was removed). A 

trend can clearly be seen as the compounds are warmed to 390 K. As the number 

of π-π stacking interactions in the TBPs decrease (tmphen > 4dmbpy > 5dmbpy 

> tmbpy) the LS → HS transitions on the FeII centers are shifted to higher 

Figure 5-20. Temperature dependent susceptibility data for Fe3Co2 with tmbpy 
(11). The order of measurement follows the order of the legend where the orange 
circles are 1st, the yellow circles 2nd, the dark green circles 3rd and the light green 
circles are the 4th measurement. 
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temperatures and the transitions are no longer complete for all three Fe centers. 

Once the solvent is removed, the trend exhibited by these TBPs is that the HS 

state is favored as the number of π-π stacking interactions decreases. Table 5-

16 lists the temperatures at which the χT value of 4.0 emu·K/mol (assumed 

contribution to the χT value for 1 HS FeII center in these TBPs) is observed before 

and after solvent was removed from the crystals. A trend can clearly be seen 

before solvent is removed, namely, that as the number of π-π stacking 

interactions decreases, the LS → HS transition for the first HS FeII center is shifted 

to higher temperatures. The LS state is preferred for the Fe centers when there 

are fewer π-π stacking interactions. Once solvent has been removed, a similar 

trend that the LS state is favored as the number of π-π stacking interactions are 

decreased is observed in most of the transition temperatures (Table 5-16). Below 

240 K, however, there is more HS FeII present in compound 9 (4dmbpy) than in 8 

(tmphen). Also, below 140 K there is more HS FeII in compound 10 (5dmbpy) than 

in compound 8 as well. This does not follow the trend expected for the number of 

π-π stacking interactions and suggests that there is another factor governing the 

SCO behavior in these TBPs once solvent has been removed. As the trend does 

not exactly follow the previous one noted for the Fe3Ru2 TBP in where an inverse 

relationship exists between the amount of HS FeII and the amount of solvent, it is 

difficult to say which factor is the driving force behind the change in SCO behavior 

in these TBPs once solvent is removed. Another perspective of this trend is given 

in Table 5-17 where the magnitude of χT before the sample loses solvent is given 
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Figure 5-21. Comparison of the temperature dependent susceptibilities for 
compounds 8-11 before (top) and after (bottom) solvent is removed. 
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for all compounds at 2 K, 300 K and 390 K. It is clearly seen by these values that 

there is less HS FeII present at these temperatures as the π-π interactions in the 

TBP are decreased. 

 

 

Table 5-16. Temperatures where the χT = 4.0 emu·K/mol is observed for the samples 
before and after losing solvent. This χT value was chosen as a representative value for 1 
HS FeII center based upon the maximum χT value reached for compound 8 at 390 K. 

Fe3Co2 TBP 
with Ligand 

Before Solvent 
Loss 

After Solvent 
Loss 

Number of 
π-π Stacking 
Interactions 

tmphen      (8) 210 K 16 K 4 

4dmbpy     (9) 290 K 10 K 3 

5dmbpy   (10) 300 K 26 K 2 

tmbpy      (11) 337 K 160 K 1 

 

 

 

Table 5-17. Comparison of χT values (before solvent loss) for molecules 8-11 at 2 K, 300 
K and 390 K. 

Fe3Co2 TBP 
with Ligand 

χT Value at 
2 K 

(emu·K/mol) 

χT Value at 
300 K 

(emu·K/mol) 

χT Value at 
390 K 

(emu·K/mol) 

Number of 
π-π 

Stacking 
Interactions 

tmphen    (8) 0.3 9.0 12.2 4 

4dmbpy   (9) 0.5 4.6 11.5 3 

5dmbpy (10) 0.4 4.0 9.5 2 

tmbpy    (11) 0.2 2.1 8.7 1 
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Table 5-18. Comparison of χT values for compounds 8-11 at 2 K and 300 K before losing 
solvent (initially) and after losing solvent (after warming). Solvent content was determined 
through a combination of the difference in mass of the sample before and after 
measurement in the SQUID and analysis of the sample with TGA after being measured 
in the SQUID. 

Fe3Co2 TBP 
with Ligand 

 
Water 

Content 
Per TBP 

χT Value at 
2 K 

(emu·K/mol) 

χT Value at 
300 K 

(emu·K/mol) 

tmphen     (8) 
Initially 33.0 0.3 9.0 

After Warming 12.9 1.2 10.7 

4dmbpy    (9) 
Initially 30.2 0.5 4.6 

After Warming 8.4 1.9 10.3 

5dmbpy  (10) 
Initially 19.9 0.4 4.0 

After Warming 4.8 1.4 7.5 

tmbpy     (11) 
Initially 16.6 0.2 2.1 

After Warming 5.7 1.0 6.7 

 

 

 Table 5-18 lists the number of solvent molecules as determined by the 

combination of TGA measurements and the mass difference in the sample before 

and after SQUID measurements. All solvent was assumed to be H2O molecules. 

It can be seen that the samples did, in fact, lose solvent content in the SQUID and 

that all compounds retain some H2O molecules despite being heated to 390 K 

(117 °C) twice. The magnitude of χT at 2 K and 300 K (Table 5-18) for the 

compounds before and after solvent loss clearly illustrates the fact that the HS 

state of FeII in each sample is favored, regardless of π-π stacking interactions, 

once solvent has been removed. 
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Concluding Remarks 

 SCO is a highly complex phenomenon that is affected by chemical and 

physical changes in the environment of the metal center. These perturbations, 

even if seemingly minor, can have non-trivial effects on the transition which makes 

elucidating or predicting the behavior difficult. Without careful systematic studies, 

it is often unclear which factor is the main driving force behind the change in 

transition behavior. This study illustrates that SCO behavior in Fe3Co2 TBPs can 

be changed effectively by two different methods. The SCO behavior in these 

molecules can be altered by the structural influence of π-π stacking interactions 

and the solvent content. It was shown that a decrease in π-π stacking interactions 

results in the LS state being favored over the HS state, as evidenced by the shift 

in transition temperatures and the decrease in the amount of HS FeII present in 

each sample as measured by SQUID magnetometry. By exchanging the tmphen 

ligand for 4dmbpy, hysteresis in the SCO behavior has been exhibited for the first 

time in a TBP molecule. This study also lends further evidence to the conclusion 

obtained for the Fe3Ru2 TBPs that the HS state of FeII is preferred as solvent is 

removed from the interstices of the crystal. This study also suggests that once 

solvent is removed from the molecules, the π-π stacking interactions still play a 

pivotal role in determining the spin state of the molecules. These influences have 

been shown to be major factors in determining the spin state of FeII and lend 

insight into how to modify these Fe-containing TBPs (and possibly other metal 

combinations) in order to tune the SCO behavior exhibited by these TBPs. 
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CHAPTER VI 

SUMMARY AND FUTURE OUTLOOK 

 

 The work presented in this dissertation has resulted in the addition of new 

molecules to the largest homologous family of cyanide compounds in the whole 

of the literature. The research encompasses structural and magnetic studies of 

new and previously known trigonal bipyramidal molecules from the Dunbar 

laboratories, the results of which lend insight into how SCO and CTIST behavior 

can be modified with chemical influences such as solvation and π-π stacking 

interactions. 

 In Chapter II, a fast and reliable method for the preparation of the 

anisotropic [RuIII(CN)6]3- and [OsIII(CN)6]3- cyanometallate anions as organic 

soluble salts is presented. The (PPN)+ salts of these anions were structurally and 

electrochemically characterized for the first time. The facile reduction of these 

trivalent 4d and 5d Group VIII hexacyanometallates to their divalent analogs was 

confirmed by electrochemistry which corroborates the synthetic difficulties faced 

in avoiding decomposition by-products during the oxidation of the divalent 

species. EPR and magnetic studies support the conclusion that Os has more 

intrinsic anisotropy as compared to its 4d and 3d counterparts which could 

potentially lead to enhanced magnetic exchange and interesting magnetic 

behavior when incorporated into compounds. 

 Chapter III revealed the successful incorporation of [RuIII(CN)6]3- and 
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[OsIII(CN)6]3- into the Co3M2 TBP motif which had evaded previous group 

members. The Co3Ru2 and Co3Os2 TBPs further exemplify the facile redox 

properties of the [RuIII(CN)6]3- and [OsIII(CN)6]3- precursors and constitute 

interesting additions to the large homologous family of TBPs studied by our group. 

Both the Co3Ru2 and Co3Os2 TBPs undergo two metal-to-metal charge transfers 

between the axial Ru/Os and the equatorial CoII centers. The Co3Ru2 TBP does 

this irreversibly and adopts a configuration of [(HS-CoII)(LS-CoIII)2RuII
2] that 

behaves magnetically as an isolated HS CoII ion at all temperatures since it is the 

only non-diamagnetic metal center in the molecule. Splitting of the iso-field lines 

in the reduced magnetization data was not observed. In contrast, the 

[(HS-CoII)3OsIII
2] TBP at room temperature undergoes two reversible CTIST 

events as the temperature is decreased resulting in a low temperature 

configuration of [(HS-CoII)(LS-CoIII)2OsII
2]. This TBP is an interesting addition to 

the small number of compounds that exhibit CTIST as it is only the second Co/Os 

metal combination to show this behavior (the first being the Co3Os2 PB analog) 

and complements the findings observed for the Co3Fe2 TBP which exhibits one 

CTIST event. A slight splitting of the iso-field lines was observed in the reduced 

magnetization suggesting the presence of anisotropy. The model Zn3Os2 

compound was also added to the family of TBPs studied and was fit to Curie-

Weiss behavior with a Weiss constant (θ) of 0.05 indicating very weak 

ferromagnetic coupling between the axial OsIII centers through the long, 

diamagnetic –C≡N–ZnII–N≡C– linkage. This suggests that Os has stronger 
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exchange through the diamagnetic bridge than Fe since the Zn3Fe2 TBP did not 

exhibit this coupling behavior. Although the Mn3Ru2 TBP could not be crystallized, 

a MnII
2RuII

2 square-like compound was obtained, the formation of which involves 

the reduction and labilization of two CN- ligands from each [RuIII(CN)6]3- moiety. 

This result underscores the facile redox properties of [Ru(CN)6]3/4- and the 

synthetic challenges faced in preparing the [RuIII(CN)6]3- starting material.  

 In Chapter IV interesting solvent-dependent redox behavior for the Fe3Ru2 

TBP was reported. The TBP was studied under MeCN solvent, after being freshly 

filtered, after exposed to vacuum for both 3 and 24 hours and with interstitial water 

molecules from being exposed to a humid atmosphere. Through the use of X-ray 

crystallography, 57Fe Mössbauer and SQUID magnetometry, the most likely 

electronic configurations for the spin centers in each solvation environment was 

determined between the temperature range of 2 – 350 K. Above room 

temperature, the TBPs were all determined to contain 

[(LS/HS-FeII)(HS-FeIII)2RuII
2] where the SCO event that occurs on the FeII center 

ranges from complete for the TBP exposed to vacuum for 24 hours to incomplete 

for the remaining solvation states studied. As the temperature is lowered, the first 

event to occur for all five TBPs is the HS → LS SCO on the Fe(2) center that 

remains divalent throughout all temperatures. Afterward, a combination of two 

events occur as temperature is decreased to 2 K at the Fe(1) and Fe(3) centers 

for all solvation states studied. One of them is a CTIST that occurs at the Fe(3) 

center that is engaged in intermolecular π-π stacking. The phenomena that occur 
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at the Fe(1) center were found to differ depending on the solvation environments 

however. The TBPs exposed to vacuum undergo another CTIST at the Fe(1) 

center while the TBPs studied under MeCN and after immediate filtration appear 

to undergo a SCO first which is then followed by a MMCT. The lack of concomitant 

MMCT and SCO events at the same metal center is a phenomenon that has not 

been reported in the literature to the best of our knowledge. With the exchange of 

interstitial MeCN for water, the trivalent Fe(1) center appears to undergo a HS → 

LS SCO event only, ultimately changing the redox properties observed in the other 

solvation states of the Fe3Ru2 TBP. Table 6-1 shows a summary of the Fe centers 

and the transition events that occur based upon the solvation. The clear trend 

observed from this study is that the percent of HS FeII that occurs increases as 

solvent is removed and that solvent can change the redox properties of these 

TBPs. The Fe3Ru2 TBP can exhibit a variety of spin transition behaviors which 

complement the Fe3Fe2 TBP that only undergoes SCO of all three equatorial FeII 

centers and the Fe3Os2 TBP that mirrors the evacuated Fe3Ru2 analogs and 

exhibits two reversible CTIST events but no SCO on the remaining FeII center. 
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Table 6-1. Summary of the transition events on the Fe centers in the Fe3Ru2 TBPs (7a-e). 

Fe3Ru2 

TBP 
Fe(1) Fe(2) Fe(3) 

Total 

Events 
Type 

Solvated 

(7a) 

SCO 

LS FeIII ↔ HS FeIII 

CT 

LS FeII ↔ LS FeIII 

SCO 
LS FeII ↔ HS FeII 

CTIST 

LS FeII ↔ HS FeIII 

SCO 

CTIST 

SCO 

CT 

FeII 

 

FeIII 

FeIII ↔ FeII 

Filtered 

(7b) 

SCO 

LS FeIII ↔ HS FeIII 

CT 

LS FeII ↔ LS FeIII 

SCO 
LS FeII ↔ HS FeII 

CTIST 

LS FeII ↔ HS FeIII 

SCO 

CTIST 

SCO 

CT 

FeII 

 

FeIII 

FeIII ↔ FeII 

3 hours 

(7c) 

CTIST 

LS FeII ↔ HS FeIII 

SCO 
LS FeII ↔ HS FeII 

CTIST 

LS FeII ↔ HS FeIII 

SCO 

2 CTIST 

FeII 

 

24 hours 

(7d) 

CTIST 

LS FeII ↔ HS FeIII 

SCO 
LS FeII ↔ HS FeII 

CTIST 

LS FeII ↔ HS FeIII 

SCO 

2 CTIST 

FeII 

 

Humid 

(7e) 

SCO 

LS FeIII ↔ HS FeIII 

SCO 
LS FeII ↔ HS FeII 

CTIST 

LS FeII ↔ HS FeIII 

SCO 

CTIST 

SCO 

FeII 

 

FeIII 

 

 

 Chapter V is devoted to a study of the effects of π-π stacking on the SCO 

events at the equatorial FeII centers in the Fe3Co2 TBP. It was found that there is 

a correlation between intermolecular interactions and the stabilization of spin 

states. As the number of π-π stacking interactions are fewer in number, the 

percent of HS FeII present between 2 K and 390 K decreases. This trend indicates 

that suppressing the π-π stacking interactions in these polynuclear SCO 

compounds stabilizes the LS state of FeII and leads to a more cooperative SCO 
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at elevated temperatures. This study also revealed that losing interstitial water 

affects the SCO behavior in a similar manner to the Fe3Ru2 TBPs in that the HS 

state of the FeII centers are stabilized in the absence of solvent. 

 A summary of the low and high temperature electronic configurations of the 

TBPs studied in this dissertation and their previously reported congeners is 

contained in Table 6-2. Note that the configurations given are for complete 

transition events which is not always the case. The Zn3Os2 TBP is not included, 

as the electronic configuration does not change with temperature. For the family 

of Co3M2 TBPs (M = Fe, Ru or Os) a very different behavior is observed when 

descending the Group VIII elements. For the Fe congener there is a reversible 

CTIST event involving one of the axial Fe and equatorial Co centers as well as a 

SCO event in one of the CoII centers. In the case of the Ru analog two MMCT 

events occur during synthesis and are irreversible. However, for the Os cousin 

there are two thermally reversible CTIST events that occur. When comparing the 

three analogs at high temperatures the Os and Fe centers remain in the trivalent 

state (no spontaneous MMCT occurs during the synthesis) which is in contrast to 

the Ru analog where the MMCT occurs during synthesis and is irreversible. Upon 

decreasing the temperature, both Os centers participate in CTIST events while 

the Fe analog has only one of the Fe centers participating in a CTIST which 

indicates a more facile reduction of the [OsIII(CN)6]3- moiety in comparison to the 

Fe analog. In the case of the Fe3M2 TBP analogs (M = Fe, Ru or Os), the Fe3Fe2 

TBP shows only one SCO event at the three equatorial FeII centers. 
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Table 6-2. A summary of the electronic configurations that are observed for the 
TBPs discussed. * Indicates when the transition is not complete. The state that is 
given with the * is the majority of the spin state present. # Indicates an incomplete 
charge transfer process where the majority of the observed configuration is given. 
Note that there is no change in electronic configuration of the Co3Ru2 TBP. 

M3M2 TBP Low Temperature High Temperature 

Co3M2  

Co3Fe2 (HS-CoII)(LS-CoII)(LS-CoIII)FeIIFeIII  (HS-CoII)3FeIII
2  

Co3Ru2 (3) (HS-CoII)(LS-CoIII)2RuII
2 (HS-CoII)(LS-CoIII)2RuII

2 

Co3Os2 (4) (HS-CoII)(LS-CoIII)2OsII
2 (HS-CoII)3OsIII

2 

Fe3M2 

Fe3Fe2 (LS-FeII)3FeIII
2 (HS-FeII)3FeIII

2 

Fe3Ru2 Solvated (7a) (LS-#FeII)(*LS-FeII)2RuIII
2 (*HS-FeII)(HS-FeIII)2RuII

2  

Fe3Ru2 Filtered (7b) (LS-#FeII)(*LS-FeII)2RuIII
2 (*HS-FeII)(HS-FeIII)2RuII

2 

Fe3Ru2 3 Hours (7c) (LS-FeII)3RuIII
2 (*HS-FeII)(HS-FeIII)2RuII

2 

Fe3Ru2 24 Hours (7d) (LS-FeII)3RuIII
2 (HS-FeII)(HS-FeIII)2RuII

2 

Fe3Ru2 Humid (7e) (LS-FeII)2(#LS-FeIII)RuIIRuIII (*HS-FeII)(HS-FeIII)2RuII
2 

Fe3Os2  (LS-FeII)3OsIII
2 (LS-FeII)(HS-FeIII)2OsII

2 

Fe3Co2 

Fe3Co2 tmphen (8) (LS-FeII)3CoIII
2  (HS-FeII)3CoIII

2 

Fe3Co2 4dmbpy (9) (LS-FeII)3CoIII
2 (*HS-FeII)3CoIII

2 

Fe3Co2 5dmbpy (10) (LS-FeII)3CoIII
2 (*LS-FeII)(HS-FeII)2CoIII

2 

Fe3Co2 tmbpy (11) (LS-FeII)3CoIII
2 (*LS-FeII)(HS-FeII)2CoIII

2 
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Depending on the solvent content, the Ru congener exhibits different, complex 

behaviors from one SCO and two CTIST events to one CTIST along with two 

incomplete SCO and one incomplete CT events, as explained earlier. The Os 

analog undergoes two CTIST events while the remaining equatorial FeII center 

stays LS at all temperatures. When comparing the group (Fe, Ru and Os), at high 

temperatures, only the axial Fe centers (Fe3Fe2 TBP) remain in their trivalent state 

which is in contrast to both the Ru and Os analogs that undergo spontaneous 

MMCT during synthesis. At low temperatures however, Ru and Os are re-oxidized 

(returning to their trivalent state), consequently reducing two of the equatorial Fe 

centers to their divalent state. This underscores the rich redox properties of Group 

VIII elements. 

 SCO is a complex phenomenon that is affected by many different, and 

often, subtle perturbations. Further studies are required to ascertain whether 

generalizations about these perturbations and their corresponding effects on the 

spin-transition behavior of TBPs can be made. Ideally, an investigation of these 

fundamental aspects is better when all variables except one that contribute to 

changes in SCO or CTIST are held constant. Considering the non-trivial changes 

that can occur due to subtle differences, this is a very challenging task in the study 

of SCO compounds.  

For these TBPs, replacing tmphen for other ligands capable of different 

degrees of π-π stacking is a rewarding endeavor, especially as they are 

incorporated into TBPs that have rich redox properties like the Fe3Ru2, Fe3Os2, 
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Co3Ru2 and Co3Os2 analogs. In order to best correlate the changes in ligand to 

changes in spin-transition behavior, it would be ideal to conduct these studies with 

TBPs that contain only water in the interstitial molecules and to limit the amount 

of solvent loss during sample preparation and measurement.  

The effect of interstitial solvent is an interesting study in these TBPs and 

although difficult, it should be conducted on the analogs that have rich redox 

behavior like the Fe3Ru2, Fe3Os2, Co3Ru2 Co3Os2 and Co3Fe2 TBPs with the 

Fe3Fe2 and Fe3Co2 analogs as models. An extensive solvent exchange study for 

the Fe3Co2 TBP is still underway and confirms that the type of solvent within the 

interstitial lattice plays a vital role in the cooperativity and spin states of SCO.  

These TBPs should be studied for photomagnetic behavior since the 

Fe3Co2 and Co3Fe2 TBPs both display this phenomenon. It would be interesting 

to see how the photomagnetic behavior changes upon solvent and ligand 

exchange.  

 Future work will include the preparation of new metal combinations of these 

TBPs. The Mn3Ru2 TBP is still of very high priority as the Mn3Os2 TBP exhibits 

SMM behavior similar to the Mn3Mn2 TBP compound. The Cr3Os2 TBP is of 

interest as well since the Cr3Fe2 TBP undergoes cyanide linkage isomerism and 

the Cr3Ru2 analog undergoes two irreversible MMCT events during synthesis but 

still displays very weak ferromagnetic coupling between the Cr metal centers 

despite the fact that the RuII centers are diamagnetic. Obtaining the Zn3Ru2 model 

compound will be useful for probing if there are any long range exchange 
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interactions between the RuIII centers as was found for the Zn3Os2 analog. 

Attempts to prepare the Zn3Ru2 TBP led to formation of tiny yellow crystal rods 

that will need to be measured at the ALS synchrotron source. It appears that these 

crystals may be very sensitive to solvent loss because filtering the crystals for 

magnetic measurements eventually led to an olive green material after several 

minutes. Magnetic measurements were obtained but did not correlate well to what 

was expected for the Zn3Ru2 TBP, most likely due to decomposition of the solid 

upon solvent loss. This TBP should be prepared again and measured under 

solvent. The synthesis of this compound is intricate as it is not the same as the 

Zn3Os2 TBP. Prussian Blue analogs containing vanadium have been theorized to 

behave as high temperature magnets so the incorporation of VII into the M3Ru2 

and M3Os2 should be carried out as well.  
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 APPENDIX A 

 

Instrumentation and Physical Methods 

Magnetic Measurements 

With the exception of the Zn3Os2 TBP (5), magnetic measurements were 

collected on compounds 1 – 4 and 7 using a Quantum Design MPMS-XL SQUID 

magnetometer capable of helium temperature ranges of 1.8 – 400 K and equipped 

with a 7 Tesla magnet. The instrument utilizes the MPMS MultiVu software 

interface. For compounds 8 – 11 in chapter 5 and the Zn3Os2 TBP (5), magnetic 

measurements were collected using a Quantum Design MPMS®3 SQUID 

magnetometer equipped with a 7 Tesla magnet and an EverCool® system capable 

of a temperature range of 1.8 – 400 K. This instrument also utilizes the MPMS 

MultiVu software interface. 

All measurements were made on crushed microcrystalline samples. Unless 

stated otherwise, samples were measured in a plastic bag constrained within a 

plastic straw attached to the instrument probe and prepared in air. The data were 

corrected for the diamagnetic contribution of the bag with the equation: 
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where mg is the mass of the bag in milligrams and T is the temperature of the 

measurement. This equation was obtained by fitting magnetic measurements of 

the bags at multiple temperatures and fields. For compounds 7a-d in Chapter 4 

(Fe3Ru2 TBPs), samples were put into a 100 MHz Quartz NMR tube under an 

anaerobic environment. The Fe3Ru2 TBP measured under MeCN (7a) had just 

enough solvent added to cover the top of the sample and then the tube was 

sealed. An inverted NMR tube was placed underneath the sample NMR tube in a 

plastic straw attached to the instrument probe. The straw was capped on the 

bottom to prevent the tubes from falling out of the straw and the straw was taped 

to the probe with a very small amount of duct tape to prevent the straw from falling 

off of the probe. Compound 7e (the humid Fe3Ru2 TBP) was prepared and 

measured in the same manner but was prepared in air. All Fe3Co2 TBP samples 

in chapter 5 (8 – 11) were measured using a Quantum Design VSM capsule 

constrained by a brass rod. The data were corrected by doing a point-by-point 

subtraction of the capsule from the raw data. All data were corrected for the 

diamagnetic contribution from solvent and Pascal’s constants.11 In order to 

account for all interstitial solvent as well as excess solvent, TGA were performed 

on all samples once they were removed from the SQUID. For samples that were 

measured in NMR tubes under excess solvent, the tubes were broken open and 

immediately put under vacuum to remove excess solvent before being weighed 

(to account for the solvent lost to vacuum) and immediately measured in the TGA. 
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 Magnetic susceptibility measurements were performed in a DC applied 

field of 1000 Oe between 2 and 390 K. Low temperature magnetization 

measurements were carried out at 1.8 K at various fields up to 7 T. Room 

temperature magnetization measurements were made at 300 K at various fields 

up to 2 T in order to verify the purity of the samples. Reduced magnetization 

measurements were performed at various low temperatures at various fields up 

to 7 T. 

 

Infrared (IR) Spectroscopy 

Infrared (IR) spectral data were measured on a Nicolet 470 FT-IR 

spectrometer with a CsI beam splitter and analyzed with the OMNIC 5 or OMNIC 

6.1 software package. All samples were prepared in air as Nujol mulls on KBr 

plates under a N2 atmosphere between 4000 and 400 cm-1. 

 

Thermogravimetric Analysis (TGA) 

Thermogravimetric analyses were performed on a Shimadzu TGA-50 

Analyzer with a maximum temperature of 1,000 °C and a sample mass readability 

of 1 μg to 1 g.  The analyzer is controlled by a TA-50WS thermal analysis 

workstation and software. All samples were prepared in air and analyzed in an 

aluminum sample pan under a N2 atmosphere.  
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Elemental Analysis (EA) 

Elemental analyses were performed off-site by Atlantic Microlab, Inc. Solid 

samples were sent by overnight express mail in closed vials. Duplicate analyses 

were performed on the same sample. 

 

Cyclic Voltammetry (CV) 

Electrochemical data were collected at room temperature using an HCH 

Electrochemical Analyzer model CH 1620A in dry MeCN. A BAS glassy carbon 

working electrode, Pt wire auxiliary electrode, Ag/AgCl (3M KCl(aq)) reference 

electrode and 0.1 M tetra-n-butylammonium hexafluorophosphate ([nBu4N][PF6]) 

as the supporting electrolyte were utilized to carry out the measurements. A scan 

rate of 0.2 V/s was used for all measurements. 

 

Single Crystal X-Ray Diffractometry 

 The (PPN)3[RuIII(CN)6] (1), (PPN)3[OsIII(CN)6], (2), Co3Ru2 (3), Co3Os2 (4) 

and Fe3Co2 5dmbpy (10) samples were collected on a Bruker APEXII (Mo Kα) 

diffractometer equipped with a CCD detector. The crystals were mounted in air 

using oil on a nylon loop and put into a N2(g) cold stream at 110 K. 

All Fe3Ru2 (7a-e), the Fe3Co2 (8, 9, 11) structures, the Zn3Os2 TBP (5) and 

the Mn2Ru2 square (6) were collected using a synchrotron radiation source at the 

Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). 

Experiments were done on beamline 11.3.1 using a beam energy of 16 keV 
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(λ = 0.7749) and a Bruker AXS APEXII CCD shutterless detector. Crystals were 

mounted in air using oil on a MiTeGen loop and collected at temperatures between 

15 and 300 K using He(g) or N2(g). 

 Integration for all data sets were performed with the Bruker SAINT Software 

package and absorption corrections were empirically applied using SADABS.231 

The structures were initially solved using Direct Methods with the shelxt232 

structure solution program and refined using Least Squares minimization from the 

shelxl233 refinement software. A combination of Olex2,200 shelxle234 and manual 

editing of the res file were used to refine, finalize and render images of the 

structures. All hydrogen atoms were placed in calculated positions. The final 

refinements were carried out with anisotropic thermal parameters for all non-

hydrogen atoms unless otherwise noted within the chapter text. Thermal ellipsoids 

are drawn for all applicable structures at 50%. 

 

Fe3Ru2 Solvated 7a 

 These crystals were placed into a tube that had been treated with 

Glassclad® 18 in an oxygen and water-free environment. The tube was sealed in 

an anaerobic manner and then shipped to the ALS. Upon opening the sealed tube 

in air, the crystals were immediately transferred to oil. A dark, purple/red prism 

was transferred from the oil and mounted to a MiTeGen loop. The crystal was 

placed into a He cold stream at 150 K and a data set was collected using 

synchrotron radiation at 16 eV (λ = 0.7749). Once the data collection was finished, 
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the crystal was cooled to 100 K at 20 K/minute and the structure was recollected. 

Cooling and data collection continued in this manner for both 50 K and 20 K data 

sets. The crystal was then warmed from 20 K to 200 K, again at a rate of 20 K/min, 

and another data set was collected. This continued for temperatures of 250 and 

300 K as well. The crystal no longer diffracted well at 300 K so the data could not 

be used. 

 

Fe3Ru2 24 Hours 7d 

These crystals were put into a tube that had been treated with Glassclad® 

18 in an oxygen and water-free environment. The tube was sealed in an anaerobic 

manner and then shipped to the ALS. Upon opening the sealed tube, crystals 

were immediately put into oil and then a dark, reddish-purple prism was quickly 

mounted on a MiTeGen loop and put into a He cold stream at 150 K. The crystal 

no longer diffracted well at 300 K so the data could not be used. 

 

Fe3Ru2 Humid 7e 

 These crystals were shipped to the ALS in a sealed glass tube. The tube 

was opened and crystals were put into oil before a dark, reddish-purple prism was 

mounted on a MiTeGen loop and put into the He cold stream at 150 K. The crystal 

was cooled and warmed while data sets were being collected in the same manner 

as the solvated sample (7a). Again, the crystal no longer diffracted well at 300 K 

so the data could not be used. 
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57Fe Mössbauer 

57Fe Mössbauer spectra were collected on constant acceleration 

instruments using cryostats that allowed the sample temperature to be varied 

between 1.5 and 300 K in external fields up to 8 T (Carnegie Mellon University). 

Spectral simulations were generated using WMOSS (WEB Research, Edina, MN), 

and isomeric shifts were reported relative to an Fe metal standard at room 

temperature. Mössbauer data were obtained on the same batch of Fe3Ru2 TBP 

crystals as all other characterization techniques. Except for the humid sample 

(7e), all samples (7a-d) were prepared in a water- and oxygen-free glove box 

under a N2 atmosphere. Crystals were placed in Teflon® Mössbauer cups, capped 

and the junctions where the cup and cap meet were lined with vacuum grease. 

The sample under MeCN (7a) was NOT capped and greased but frozen in the 

cup with liquid N2 instead. The cups were placed in vials covered with electrical 

tape and Parafilm® M and then shipped over night on dry ice to Dr. Catalina Achim 

at Carnegie Mellon University for Mössbauer measurements. At Carnegie Mellon 

University, the samples are stored under in an inert atmosphere when not being 

measured.  

 




