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ABSTRACT 

We employ the semi-analytical approach in modeling of coupled flow and 

geomechanics, where flow is solved numerically and geomechanics is solved analytically. 

We first model a PKN hydraulic fracture geometry numerically and incorporate the fluid 

compressibility term in order to investigate the effect of the fluid compressibility on 

hydraulic fracture geometry evolution. The results show that as the fluid becomes 

compressible, the fracture propagation is delayed because it takes time for pressure to be 

built up to extend the fracture. In a multi-phase flow system, we model a hydraulic 

fracturing process in a gas reservoir by solving flow numerically and geomechanics 

analytically. The fracture propagates slowly when water saturation of the reservoir is low. 

This implies high initial gas saturation, resulting in high total compressibility of reservoir 

fluid. We observe the gas concentration near the fracture tip, caused by (1) the movement 

of initial gas within the fracture to the fracture tip and (2) the possibility of the leakage of 

gas from the formation to the hydraulic fracture. The existence of gas is another factor that 

can lead fluid flow within the hydraulic fracture to be compressible.  
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NOMENCLATURE 

ct Total compressibility  

k Permeability 

q Flow rate 

t Time  

u Darcy flux 

p Pressure 

v poisson’s ratio 

A Cross sectional area 

G Shear modulus 

H Fracture thickness 

L Length 

 

Subscripts 

f Fluid 

g Gas 

net Net 

i Space index 

inj Injected 

n Time index 

ref Reference  

w Water 
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Superscripts 

̇  Time derivative 

 

Greek variables and operators 

γ Shape factor 

𝜃 Moving coordinate 

μ Fluid viscosity 

𝜌 Density 

𝜙 Porosity 

Δ Difference 

∇ Gradient 
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CHAPTER I  

INTRODUCTION* 

The scientific community has made several assumptions in the research of 

hydraulic fracturing. One assumption is to neglect the effects of fluid compressibility by 

assuming that the fracturing fluid is incompressible, one of the main assumptions in 

analytical solutions of hydraulic fracturing geometry. Still, considering the magnitude of 

the stiffness of a typical rock and the stiffness of the injected fluid (such as water), the 

effects of the fluid compressibility should not be ignored. Furthermore, when the 

fracturing fluid is gas, such as nitrogen or carbon dioxide, the compressibility of the fluid 

must be considered to account for the geomechanical changes in the reservoir. Another 

common assumption is to disregard that gas in a gas reservoir is going to infiltrate the 

hydraulic fracture from the reservoir formation during hydraulic fracturing operations, 

whereas leak-off from the hydraulic fracture into the reservoir formation is usually 

considered. Note that some studies have indicated that the existence of a gap between the 

fracture tip and the water front is possible. This gap implies the possibility of leakage of 

shale gas from the formation into the hydraulic fracture.  

 

 

 

 

*Part of the material in this section is reprinted from “Importance of fluid compressibility and 

multi-phase flow in numerical modeling of hydraulic fracture propagation” by Park, J., Kim, J., 

2016, June. presented at the 50th ARMA symposium. 
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In order to investigate the importance of fluid compressibility in the hydraulic 

fracturing process, we first focus on modeling a Perkins-Kern-Nordgen fracture geometry 

which is first introduced by Perkins and Kern (1961) and further improved by Nordgren 

(1972). A PKN geometry has been considered to be physically acceptable in a sense that 

the fracture length is larger than its height, which is one of the primary assumptions of the 

geometry. Once we validate our numerical modeling comparing the numerical results with 

analytical solutions, we derive mass balance equations assuming the fluid is not 

incompressible to incorporate fluid compressibility in the equations. 

To demonstrate the hydraulic fracturing process in multi-phase flow systems, we 

solve multi-phase flow numerically, but geomechanics analytically by using modified 

fixed-stress split scheme. In the fixed-stress split method, fluid flow part is solved first, 

fixing the total stress fields, and then geomechanics is updated from the variables obtained 

from the flow part at the previous time step (Kim et al., 2011). This sequential method 

shows high accuracy and unconditional numerical stability, and furthermore can easily be 

conducted in the existing flow simulators by updating a porosity function and its 

correction term. (Kim et al., 2011, Kim et al., 2012a, Kim et al., 2012b). 

We conduct numerical simulations for a highly gas-saturated reservoir with very 

low permeability and porosity. The gas represents pure methane in this study so that all 

the properties, such as the critical pressure temperature, the acentric factor and the 

molecular weight, of pure methane are utilized to calculate viscosity and density of gas in 

the simulations. We investigate the fracture propagation speed varying initial water 

saturation of the reservoir. We also investigate water saturation at the fracture tip to see 
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the gas concentration which implies the possibility of the leakage of gas from the 

formation to the hydraulic fracture. 
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CHAPTER II  

HYDRAULIC FRACTURE PROPAGATION MODEL IN SINGLE-PHASE FLOW 

In this chapter, we review assumptions and governing equations used in a PKN 

hydraulic fracture geometry. We solve the governing equations numerically by 

discretizing the equations in terms of time and space and compare it with the analytical 

solution for PKN hydraulic fracture geometry. In order to save computational costs, a 

moving mesh algorithm is employed in numerical calculation introduced by Detournay et 

al. (1990). To account for the effect of the fracturing fluid, we derive governing equations 

assuming that the fluid is compressible.  

Before moving to the mathematical statement, note that we refer to the governing 

equations in Detournay et al. (1990) in this study. Readers might be confused when they 

compare the equations in Detournay’s paper with other materials since Detournay used q  

as flow rate per unit height of fracture. However, they are all in consistency and that 

confusing part is resulted from the fact that a PKN has an elliptical cross section in a 

vertical direction. It is also worth noting that a PKN fracture geometry has following main 

assumptions referring to Gidely et al. (1989), Valko and Economides (1995) and 

Economides and Nolte (2000).  

 The fracturing height is considered to be fixed which is independent of the length. 

 The fracturing fluid pressure holds constant in vertical cross sections  

 The deformation of each vertical section is independent of each other. 

 The cross section in vertical planes has an elliptical shape. 
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Note that )(tL  and ),0( tw  are considered to be total fracture length and maximum 

fracture width, respectively. 

 

Figure 1. Schematic figure of a PKN fracture geometry.  

 

 

2.1 Mathematical statement  

2.1.1 Continuity equation 

The continuity equation (i.e. local mass balance equation) for hydraulic fracture 

propagation models* is as follows: 

0








u

t

w

x

q
 (1) 

 

 

*Eq.(1) is applied not only to PKN but also to KGD hydraulic fracture geometry. This is because 

the principle of mass conservation in a local manner is identical in both fracture geometries. 
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where q  is a flow rate per unit height of the fracture, w  is the average fracture width and 

u  is a fluid leak-off velocity. In an impermeable reservoir, there is no leak-off from the 

hydraulic fracture to the formation so that the leak-off term is neglected. 

 

2.1.2 Fluid momentum balance equation 

In a PKN fracture geometry, if we assume laminar flow of a Newtonian fluid in 

the direction of the fracture propagation, the fluid momentum balance equation becomes 

x

fpw
q







3
 (2) 

 

where fp  is the pressure in the fracture and   is the viscosity of the fracturing fluid.   

 

2.1.3 Pressure-width relation 

The average fracture width is calculated by an elasticity in the state of plan strain: 

w
Hv

G
netp

)1(

4





 (3) 

 

where netp  is the effective stress, v  is the Possion’s ration and G  is the shear modulus of 

the formation. H  is the height of the fracture. 
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2.1.4 Global mass balance equation 

The global mass balance equation is based on the principle that the total volume 

of the fracture is identical to the volume of fluid injected into the formation and the 

cumulative leak-off volume. It is represented as  

0'
0

)'(0'
0

)'(
0

),()(
0

),(   dtt tqdtt dxtL txudxtL txw  (4) 

 

where 0q  is the injected fluid rate per unit height of the fracture. In impermeable 

reservoirs, assuming no leak-off term in the equation, the total injected volume is the same 

as the total fracture volume. 

 

2.1.5 Initial and boundary condition 

Demonstrating the PKN fracture geometry necessitates solving the equations with 

initial and boundary conditions. The problem is subject to the initial conditions: 

0at  0)0,0( ,0)0( ,0)0,(  tpLxw  (5) 

 

and boundary conditions: 

 

0),0( qtq   for one-sided fracture 

  0),( ttLp  for 0t  

0),( txw  for )(tLx   

(6) 
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2.1.6 Moving coordinate system 

Nilson and Griffiths (1983), Ramamurthy and Hujeux (1988) and Detournay et al. 

(1990) used a moving coordinate system to illustrate hydraulically-driven fracture 

problems. One of the advantages of using the moving coordinate system is that it enables 

running simulations with fixed number of locations. For example, with this system, the 

number of nodes at the initial time and at the end is the same regardless of the evolution 

of the total fracture length. Referring to Detournay et al. (1990), it is possible to transform 

the mathematical statements into the moving coordinate system  : 

)(/ tLx  (7) 

 

Basically, the moving coordinate system is the form of normalized coordinate 

along the fracture length so it has the range of [0, 1]. Time and spatial derivatives are 

converted in terms of   as follows: 





 













L

L

tt x


 (8) 

 

where dtdLL /  and 

xLx t 






 1
 (9) 

 

The mathematical statements are transformed and presented in Table 1. 
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Table 1. Mathematical statements in x and   coordinates 

x  coordinate 
 

0








u

t

w

x

q
 

(1) 

x

fpw
q







3
 

(2) 

0'
0

)'(0'
0

)'(
0

),()(
0

),(   dtt tqdtt dxtL txudxtL txw  
(4) 

0at  0)0,0( ,0)0( ,0)0,(  tpLxw  
(5) 

0),0( qtq  ,   0),( ttLp  for 0t  

and 0),( txw  for )(tLx   

(6) 

 

  coordinate  

0
1















u

q

L

w

L

L

t

w



 
 (10) 

 




fp

L

w
q

13

 
(11) 

0'
0

)'(0'
0

1
0

)',()'(1
0

),(   dtt tqdtt dtutLdtwL   
(12) 

0at  0)0,0( ,0)0( ,0)0,(  tpLw   
(13) 

0),0( qtq  ,   0,1 tp  for 0t   

and 0),( tw   for 1  

(14) 

 

2.2 Numerical modeling  

The equations in Sec.2.1 are solved numerically. An explicit finite difference 

method is utilized by discretizing the equations in terms of time and space to illustrate a 
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PKN geometry in a single-phase flow. An impermeable system of the reservoir is assumed 

to neglect the effect of leak-off. The following is how we discretize the equations and the 

algorithm used in our simulator. Also, a moving mesh algorithm is utilized to save 

computational costs. 

 

2.2.1 Equations discretization 

The equations are discretized by using explicit finite difference method. For the 

purpose of simplicity, we assume that there is no leak-off from the hydraulic fracture into 

the formation (i.e. 0u ). The coordinate,  , is discretized into N  nodes. At each node, 

pressure and fracture width (i.e. aperture, opening) are calculated and flow rate is 

computed between adjacent nodes. The schematic figure of space discretization are shown 

in Figure 2. In Figure 2, pressure and fracture width are calculated at the points of blue 

dots and flow rate is obtained at red dots.  

 

 

 

i-1          i-1/2          i         i+1/2      i+1 

Figure 2. Schematic figure of space discretization  
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First of all, the continuity equation, Eq. (10), is discretized as follows (Detournay 

et al. 1990): 

1 ,2  when 
2

11

2/12/1

1

111 






























 Ni
qq

L

ww

L

L
tww

ii

n
i

n
i

n
ii

n
i

n
i

n

n
inn

i
n
i



 
 (15) 

 

And for the very first node, 













 
 

2

02/311
1

2



nn

n

nn
i

n qq

L
tww  (16) 

 

And the last node 

01 n
Nw  (17) 

 

In the fluid momentum balance equation, Eq. (11), in order to calculate the flow rate at 

mid-point nodes, the average of adjacent fracture width is used.  

1 ,1 when 
2

1

1

11
1

3
1

1
1

1
1

1

1
1

1

1
2/1 


















 



























 Ni

ppww

Lpp

pp
q

ii

n
i

n
i

n
i

n
i

nn
i

n
i

n
i

n
in

i


 (18) 

 

It is worth noting that 0q  always holds constant as we saw in boundary conditions 

unless we change the injection rate during the simulation. Therefore, 0q  is an input, not a 

variable which changes through simulation and it should go into Eq. (16). The pressure-

width relation, Eq. (3), becomes 
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Niw
Hv

G
p n

i
n
i  ,1 when 

)1(

4 11 


 


 (19) 

 

Note that fp  in Eq. (2) and netp  in Eq. (3) become identical assuming the initial 

state is in equilibrium so that both initial netp and fp  are zero. 

The total fracture length (i.e. )(tL  in Figure 1) is calculated by the principle of 

global mass balance: the total injected fluid volume should be equal to the volume of the 

hydraulic fracture. Here, we introduce the average fracture width, w , and shape factor, 

. The definition of w  is the ratio of the volume of the hydraulic fracture to the area of one 

face of the wing. To be specific, w  is the width when we approximate the total fracture 

volume into a cuboid which has an equivalent volume as the fracture volume.   is the 

ratio of w  to w  and is usually a value of 5/  in PKN fracture geometry*. Detournay et 

al. (1990) introduced the way we can obtain a shape factor in a moving coordinate system: 

   
1

1

1
11

1

2
1

1

1
121

6

1

22 










 




 
n

n
NN

N

i
n

n
iiin

w

w

w

w 
  (20) 

 

 

 

 

*Please refer to Chapter 4 and 9 of Valko and Economides (1995) and Chapter 18 of Economides 

et al. (2012) for further information 
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If we have equally spaced nodes along  , adding up fracture widths along the 

fracture at a certain time and dividing it by the number of nodes and maximum fracture 

width gives us similar results as a shape factor.  

The fracture length is computed as follows: 

11
1

1

1

1
1








 

kk

n
inj

k

n
injn

w

V

w

V
L


 (21) 

 

where 1n
injV  is the total injected fluid volume at time step 1n , which is calculated by 

11
0

1

1
0

1 




  
nnn

inj

n

k

kkn
inj tqVtqV  (22) 

 

The fracture growth rate, L , in Eq. (15) is computed as follows: 

 
1

1
1











n

nn
n

t

LL
L  (23) 

 

2.2.2 Numerical stability 

In general, numerical stability is one of the critical issues in solving non-linear 

equations by using an explicit method. In this study, we take the heuristic approach which 

is presented in Detournay et al. (1990) to investigate the numerical stability.  

Taking a derivative of Eq. (3) with respect to x  yields to  

x

w

Hv

G

x

p












)1(

4


 (24) 
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Then, Eq. (2)becomes,  

x

w

Hv

Gw
q








)1(

4
2

3


 (25) 

 

Note that in Eq. (1), we have a derivative q  with respect to x . To take a derivative Eq. 

(25) with respect to x  becomes, 














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Substituting Eq. (26) into Eq. (1) is now,  
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Using the coordinate transformation in Eq. (8) and Eq. (9), Eq. (27) becomes, 
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Here, we assume that the numerical stability only depends on the coefficient of the first 

term and the critical time step is computed as  
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In the case that the grid is equally divided, put an arbitrary number such as 1 in i  so that 

 212
2   i  and 3

1
3 )()( nn

i ww  . 

 

2.2.3 Numerical algorithm 

The program has the following algorithm.  

1. The critical time step for the following iteration,
1 nt , is obtained from the 

numerical stability, Eq. (29), knowing the values of iw , ip , 2/1iq , L  and L  at 

previous time step, 1n . 

2. The fracture width at nodal points, 1n
iw  is calculated from the continuity 

equation, Eq. (15), with a given 
1 nt  in the previous procedure. 

3. The fluid pressure along the fracture, 1n
ip , is computed by using the pressure-

width equation, Eq. (19). 

4. The fluid flow rate between adjacent nodes, 1
2/1



n
iq , is calculated from the fluid 

momentum balance equation, Eq. (18). 

5. The total fracture length is updated by employing the global mass balance 

equation, Eq. (21), while the shape factor 1n  is obtained from Eq. (20). 

6. The fracture length growth rate, 1nL , is calculated from Eq. (23) and it goes into 

procedure 2 to calculate iw  at a new time step.  
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The schematic figure for the algorithm of the program is presented below. 

 

 

Figure 3. Schematic figure of the program algorithm 
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2.2.4 Verification of numerical model 

The PKN numerical model has been verified with the approximation solution 

derived by Nordgren (1972). The numerical simulation domain is presented in Figure 4. 

We take a horizontal plane of the hydraulic fracture and demonstrate the half of the taken 

plane. In the figure, the blue arrow is the half of the maximum fracture width and the red 

arrow is the total fracture length. We assumed that there is no leak-off from the fracture 

to the formation for simplicity.  

 

Figure 4. Numerical domain of PKN fracture geometry 

 

For the analytical solution, we refer to the solutions in Gidley et al. (1989) which 

are presented in Table 2.  
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Table 2. The analytical solution for PKN fracture geometry 
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To conduct a sensitivity analysis on the number of nodes in the moving coordinate, 

 , we run simulations varying the number of nodes. The fracture width profiles are 

presented in Figure 5 and the summary of the results is shown in Table 3. Note that the 

deviation in Table 3 is calculated by normalizing the value based on 50 nodes and the total 

simulation time is 1000 seconds. 

 

Figure 5. Fracture width profiles at different number of nodes 
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Table 3. Sensitivity analysis on the number of nodes 

Number of nodes Deviation in L  Deviation in maxw  Running time(sec) 

5 1.009 1.05 1.2 

10 1.006 1.02 3.4 

15 1.003 1.01 9 

50 1 1 228 

 

It is observed that fracture width becomes large when the number of nodes is small. 

However, total fracture length does not appear to vary in relation to the number of nodes 

in the moving coordinate system. When it comes to the simulation running time, it 

becomes exponentially larger, as shown in Figure 6, when the number of nodes is large. 

Therefore, we conclude that having the 15 nodes in the simulations gives reasonable 

results and less computational costs. 
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Figure 6. Increase in computational time with number of nodes 

 

 

We run simulations with the parameters shown in Table 4 to compare the 

numerical results with analytical solutions. Note that this is the case without leak-off effect 

and that the fracturing fluid is incompressible.  
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Table 4. The parameters used in the simulation 

Parameters Value 

Fluid viscosity (Pa·s) 5.6×10-1  

Injection rate (m3/s) 4×10-3  

Possion’s ratio 0.2 

Shear modulus (GPa) 10  

Fracture height (m) 1 

 

The comparisons between the numerical results and the analytical solutions are 

presented in figures below.  

 

Figure 7. Numerical solution and the analytical solution in the fracture width 
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Figure 8. Numerical solution and the analytical solution in the fracture length 

 

 

Note that axes are normalized. analyticw  and analyticL  are maximum value of 

analytical fracture width at wellbore and maximum value of analytical fracture length, 

respectively. maxt  is total simulation time, maxL  and maxw  are and It is shown in Figure 

8, that two solutions are matched up in both the fracture length and the fracture width at 

wellbore though small differences are observed at late time where numerical solutions are 

bigger than analytical solutions. It is worth noting that w  in Eq. (1) indicates the average 

width of fracture, while in the analytical solution, ),0( tw  represents the maximum 

fracture width (i.e. fracture width at wellbore). Two widths are related to each other as 
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/4),0( wtw . It is shown that the numerical results are 3% and 5% larger than the 

analytical solutions in total fracture length and the maximum fracture width, respectively. 

 

 

Figure 9. Fracture width profiles of numerical and analytical solutions 

 

Figure 9 shows the fracture width profiles along the fracture from the numerical 

solution and analytical solution at the end time of the simulation. Referring to Gidley et 

al. (1989), the fracture profile can be analytically calculated with the maximum fracture 

width and the total fracture length as follows: 
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where maxw  and maxL  are obtained from Table 2. To demonstrate the fracture profile 

from the numerical result, we take the fracture width values at the simulation end time. It 

is observed that the numerical fracture width at wellbore is larger than that from 

analytical solution as we see in Figure 8. When 8.0~5.0dL , the analytical fracture 

width is slightly larger than the numerical fracture width.  

It is worth noting that, referring to Gidley et al. (1989), the fracture volume is calculated 

by  

max
5

LHwV


  (31) 

 

By using Eq. (31), the fracture volume is calculated in a manner that V is larger 

than the injected volume. For example, with the parameters in Table 4, the analytical 

solutions in Table 2 give 115.7m for L and 0.0059m for maxw  at 100 seconds of 

simulation time. Then V is 0.4289m3. However, since the injection rate is 4×10-3 m3/s, the 

injected volume should be 0.4m3. I suppose that this gap results from assumptions of PKN 

fracture geometry. The volume comparison is presented below in Figure 10. 
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Figure 10. Comparison in analytic, numerical solution and injected volume 

 

 

Note that Volfrc-a, Volfrc-n, and Volinj-f represent the fracture volume from analytical 

solutions, the volume from the numerical solution and the injected fluid volume. dV  is the 

volumes divided by the injected fluid volume and dt  is the simulation time divided by the 

total simulation time. The results show that the fracture volume by the numerical 

simulation is perfectly identical to the injected fluid volume. However, the analytical 

solution shows around 7% larger volume than the fluid volume. 
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2.3 Effect of fracturing fluid compressibility  

2.3.1 Mass balance equations 

To account for the effect of fluid compressibility, we utilize the concept of 

formation volume factor. The formation volume factor is defined as the ratio of the volume 

occupied by fluid at in-situ conditions (i.e. reservoir conditions) to that at standard 

conditions (i.e. surface conditions). It can be written in terms of the density of fluid:  

sc

res

res

sc

V

V
B 




 (32) 

 

where sc  and res  are the density of the fluid at standard conditions and at reservoir 

conditions, respectively. The formation volume factor for slightly compressible fluids (e.g. 

water, dead-oil) in isothermal systems might be approximated as follows (Ertekin et al., 

2001): 

)(1 reff

ref

ppc

B
B


  (33) 

 

where refB  is the formation volume factor at reference condition, refp  is the pressure at 

reference condition and fc  is the compressibility of the fluid. We incorporate the 

formation volume factor in the continuity equation and the global mass balance equation 

to calculate the average fracture width and fracture length respectively at a specific time. 

Assuming that the fluid is compressible, the formation volume factor does not change with 
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space and that there is no leak-off from the fracture to the formation, the continuity 

equation can be derived as follows (detailed derivation is presented in the Appendix): 
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Note that width and pressure have a linear relation as shown in Eq. (3). Therefore, Eq. 

(32) is possibly written as  
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The terms in Eq. (35) are expressed in a moving coordinate system,   
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Therefore, Eq. (35) is written in a moving coordinate system as follows: 
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The mass balance in the global manner assuming no leak-off effect is  
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),(, dtt tBtqdtwLVV resfluidfracture     (38) 

 

where fractureV  is the volume of the hydraulic fracture and resfluidV ,  is the fluid volume at 

reservoir conditions.  

 

2.3.2 Equation discretization 

The equations with fluid compressibility are discretized by using explicit finite 

difference method as we do in Sec.2.2.1. No leak-off from the fracture into the formation 

(i.e. 0u ) is assumed and a moving coordinate, , is utilized.  

Let us divide Eq. (37) by term1 and term2 and discretize them as follows:  
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For the very first node, Term2 becomes  
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Therefore, discretized Eq. (37) is now 
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With a calculated 1n
ip  from Eq. (42), 1n

iw  is updated from the pressure-width relation: 
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The fluid momentum equation is the same as that in Sec.2.2.1, as well as shape factor 

equation. The total fracture length is computed as: 
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where 1
,
n

resinjV  is the total injected fluid volume at the reservoir condition at 1n  time step. 

The 1
,
n

resinjV  is expressed as  
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where B is the formation volume factor which is calculated from Eq. (33) 
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and 1np  is the average pressure along the hydraulic fracture at the 1n  time step. 

 

2.3.3 Numerical algorithm  

In order to account for the effect of the fluid compressibility in hydraulic fracture 

geometry evolution, the program has the following algorithm.  

1. The critical time step for the following iteration,
1 nt , is obtained from the 

numerical stability, Eq. (29), knowing that the values of iw , ip , 2/1iq , L  and L  

at previous time step, 1n . 

2. The fluid pressure along the fracture, 1n
ip is computed by using Eq. (37)-(40) 

knowing the values of LwqL ,,,  at previous time step and 
1 nt  in the previous 

procedure. 

3. The fracture width at nodal points, 1n
iw  is calculated from the pressure-width 

relation, Eq. (41). 

4. The fluid flow rate between adjacent nodes, 1
2/1



n
iq , is calculated from the fluid 

momentum balance equation, Eq. (18). 
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5. The total fracture length is updated by employing the global mass balance 

equation, Eq. (42), while the shape factor 1n  is obtained from Eq. (20). 

6. The fracture length growth rate, 1nL , is calculated from Eq. (23) and it goes into 

procedure 2 to calculate ip  at new time step.  

 

Comparing the equation above with the algorithm in Sec.2.2.3, we calculate the 

pressure first and then compute the fracture width. The reason that we change the sequence 

of the calculation is that we confront a numerical stability issue when we stick to the 

calculation of the fracture width first.  
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The schematic figure for the algorithm of the program is presented below. 

 

Figure 11. Schematic of the program algorithm with the fluid compressibility 
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2.3.4 Numerical results 

When the assumption of incompressible fracturing fluid is lifted, the continuity 

equation and the global mass balance equation should incorporate the fluid compressibility 

effect. The reference conditions in Eq. (31) is the initial pressure so that the initial 

formation volume factor is identical to refB  which is unity in the simulations. We 

implement simulations varying the fluid compressibility from 0 to 10-7 Pa-1. The results 

are shown in Figure 11 Fluids can be classified as incompressible when the fluid 

compressibility is 0, slightly compressible when the fluid compressibility is approximately 

10-10 Pa-1 to 10-9 Pa-1 or compressible when the fluid compressibility is larger than 10-8 Pa-

1 (Ertekin et al., 2001). Therefore, in Figure 11, the pink line indicates the case of 

incompressible fluids, the blue and green lines represent slightly compressible fluid cases 

and the others are compressible fluid cases. In general, the fluid compressibility changes 

according to the pressure when the fluid is compressible. However, we approximate the 

formation volume factor of compressible fluid cases roughly using Eq. (31), assuming 

compressibility holds constant during the hydraulic fracture process. This leads to higher 

value of the formation volume factor than real value based on Peng-Robinson cubic state 

of equation as shown in Figure 12 Note that the temperature in the calculations is set to 20 

°C. 
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Figure 12. Formation volume factor with Peng-Robinson EOS and Eq. (46) 

 

 

It is shown that the formation volume factor plunges with a small increase of the 

pressure whereas the formation volume factor from Eq. (31) decreases relatively 

smoothly. The final values also have significant differences: 0.5556, 0.1111, 0.0041 for 

the green, blue and red line, respectively. Recalling that the formation volume factor 

describes the ratio of the volume at the reservoir condition to the volume at the surface 

condition, this implies that the shrinkage effect of pressurized fluid is actually more 

significant than shown in these results. It is observed that as fluid becomes compressible, 

the fracture propagation is delayed. The fracture width also becomes smaller as the fluid 
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compressibility becomes larger. Note that we assume that the height is 1. When the 

simulation time increases, the difference in the fracture length and the fracture width 

become more significant.  

 

 

 

Figure 13. The fracture length at different fluid compressibilities 
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Figure 14. The maximum fracture width at different fluid compressibilities 

 

Note that  maxL  and maxw  values are utilized from the zero compressibility case 

to normalize the scales. The normalized results are presented in Table 5 below. 
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Table 5. The results of fracture geometry evolution at different fluid compressibilities 

 

 

Table 5 shows that as the compressibility of the fluid increases, both the fracture 

length and the width decrease. When the fluid compressibility is
109Pa104  , the total 

length of the fracture is reduced by more than 10% than that of the case when 

compressibility is 0. However, in terms of width, it only shows approximately 3% of drop 

off. Based on the numerical results, the fluid compressibility affect relatively huge on the 

total fracture length but not on the fracture width. This is also observed in the fracture 

width profile. Figure 15 shows the fracture width profiles at different fluid 

compressibilities. Based on the figure, the total fracture length shows relatively 

significantly change compared with the maximum fracture width.  

 

 

Compressibility Maximum fracture width Total fracture length 

0fc  1 1 

][104 110  Pac f  0.9971 0.9880 

][104 109  Pac f  0.9729 0.8900 

][104 108  Pac f  0.8048 0.3645 

][104 107  Pac f  0.3361 0.0095 
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Figure 15. The fracture width profile at different fluid compressibility 
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CHAPTER III  

HYDRAULIC FRACTURE MODEL IN MULTI-PHASE FLOW * 

To demonstrate the hydraulic fracture propagation process in a gas reservoir, we 

utilize multi-phase flow through porous media to obtain pressure distribution in the 

reservoir and geomechanics model to determine fracture propagation and fracture width. 

We make an assumption that the system is isothermal. In this study, gas represents pure 

methane so that all the properties of pure methane, such as critical pressure and 

temperature and acentric factor, are utilized. We solve multi-phase flow numerically but 

geomechanics analytically by using a modified fixed-stress split scheme (Kim et al., 2011) 

in order to account for poromechanics within the fracture. This sequential method shows 

high accuracy and unconditional numerical stability, and furthermore can easily be 

conducted in the existing flow simulators by updating a porosity function and its 

correction term. (Kim et al., 2011, Kim et al., 2012a, Kim et al., 2012b) 

 

 

 

 

 

 

*Part of the material in this section is reprinted from “Importance of fluid compressibility and 

multi-phase flow in numerical modeling of hydraulic fracture propagation” by Park, J., Kim, J., 

2016, June. presented at the 50th ARMA symposium. 
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3.1 Mathematical statement  

3.1.1 Single-phase fluid through porous media 

The governing equation to describe the fluid flow through porous media is called 

the diffusion equation. To derive the diffusion equation, we have to begin with the 

principle material balance and combine Darcy’s Law and an equation that demonstrates 

the fluid storage effect in porous media. Here, we first illustrate the case that one-

dimensional fluid flow without source term for simplicity purpose. We employ a prismatic 

region in Figure 16 to show the principle of mass conservation. Note that q  is volumetric 

flow per unit area and A  is a cross-sectional area. The cross-sectional area does not 

change with the space in a one-dimensional flow system. 

 

 

Figure 16. Schematic figure to describe the principle of mass conservation. 

 

 

q(x) 

x x + Δx 

q x + Δx  A 
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The idea is that the net mass flux from the prismatic region should be identical to 

the mass stored in the volume. Note that, in the figure, fluid is flowing from left to right. 

Let us indicate time lapse from t to t+Δt then, 

 Mass flux in:    Axxqt )()(   

 Mass flux out:   Axxxxqt )()(    

 Stored Mass:  )()( tmttm   

 

where xAVm   . The mass balance equations is now written as: 

  )()()()()()( tmttmAxxxxqAxxqt    (47) 

 

We can cancel out A from both side and divide it by t  and x . Letting 0t  and 

0x  yield to 
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and this is identical to 
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The first term of Eq. (49) is expanded by using Darcy’s Law, 
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Note that q  in Eq. (50) has unit of ]/[ TL . Then, the first term of Eq. (49) becomes 
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By using a chain rule, the last term in Eq. (51) is expressed as 
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Note that the definition of the compressibility of the fluid (i.e. fluid compressibility) and 

the compressibility of the rock formation (i.e. pore compressibility) are following: 
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If we manipulate the last term in Eq. (52) and equate it with Eq. (53), it becomes  
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Now, we expand the first term of Eq. (49) as 
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By using a simple chain rule, Eq. (56) is expressed as  
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Recalling the definitions of the fluid compressibility and the pore compressibility, Eq. (57) 

is written as  
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Equate Eq. (55) and Eq. (58) results as the following 
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The second term on the left hand side is generally negligible since the magnitude of the 

value is around 10-4~10-5 less compared to the first term. Therefore, the one-dimensional 

diffusion equation is  
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For multi-dimensional systems, we have additional terms on the left hand side. For 

example, in three-dimensional Cartesian coordinate systems which can describe fluid flow 

in x, y and z direction, Eq. (60) is extended to  
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3.1.2 Multi-phase flow through porous media 

In order to describe a multi-phase flow system through porous media, we need an 

additional equation which governs the physics. First of all, the mass balance equation in 

Eq. (49) is applied in the multi-phase flow system as follows:  
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where l  denotes the arbitrary phase of fluid, lq  is the volumetric flow of phase l  per unit 

area and ls is the saturation of phase l . Also, Darcy’s Law in Eq. (48) is extended in multi-

phase flow as follows:  
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 (63) 

 

where k  is the absolute permeability, rlk  is the relative permeability of phase l , l  is the 

viscosity of phase l  and lp  is the pressure of the phase l . Similarly, the compressibility 

term in Eq. (58) is to be extended to phase l : 
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where lc  is the compressibility of phase l  and l  is the density of phase l . Therefore, 

Eq. (60) is expressed in the multi-phase flow system as 
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For example, in a water and gas flow system, we have two diffusion equations, one for 

water and the other for gas as shown below.  
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Now, we have four unknowns: wp , gp , ws  and gs  to solve the above equations. 

However, with the relationship between saturations 

1 gw ss  (68) 

 

and pressures, 

wgwc ppsp )(  (69) 

we can induce two equations and two unknowns. In this study, gp and ws  are selected to 

solve two-phase flow equations.  

 

3.1.3 Gas - Equation of state  

In order for us to calculate the gas viscosity and the formation volume factor of 

gas, we need to obtain the density of gas and the compressibility factor of gas, called the 

Z factor. The Z factor is a measure of how much the gas deviates from ideal gas behavior. 

The Z factor is the ratio of the volume actually occupied by a real gas at a given pressure 

and temperature to the volume that would be occupied by the ideal gas by definition. 
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In this study, we employ the Peng and Robinson cubic equation of state to calculate the 

compressibility factor.  

      0321 32223  BBABZBBAZBZ  (71) 

 

In order to calculate the Z factor from the equation, we need to obtain parameters in the 

equation. The parameters are associated with the gas properties such as ideal gas constant, 

absolute temperature at the critical point, pressure at the critical point and the acentric 

factor of the gas and they are introduced below.  
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where R  is the ideal gas constant, cT is the absolute temperature at the critical point, cP  

is the pressure at the critical point, rT is cTT / and  is the acentric factor of the gas. For 

pure methane, the properties have the following values: 

 

Table 6. The properties of pure methane 

 

R (J/(mol K) cT  (K) cP  (MPa)   M  (kg/mol) 

8.31456 190.56 4.599 0.011 1.6043e-2 

 

We are able to obtain the compressibility factor (or z factor) by solving Eq. (71). 

The values of the compressibility factor of methane at different temperatures are plotted 

below in Figure 17. The figure shows that the compressibility factor decreases until the 

pressure attains around 15 MPa. After 15 MPa, the compressibility factor increases with 

the increment in the pressure. The curvature of the curve diminishes when the temperature 

increase.  
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Figure 17. Compressibility factors of methane at different temperatures 

 

 

The density of the gas can easily be obtained by 

RTZ

M
Pgas   (78) 

 

where the unit of a density is in kg/m3, T is the absolute temperature, P is Pa, R is 8.31 

J/mol·K and M is the molecular weight of the gas and its unit is kg/mol. The densities of 

methane at different temperatures are presented below in Figure 18. 

 



 

50 

 

 

Figure 18. The densities of methane with pressure at different temperatures 

 

 

We utilize the equation in the paper of Sun and Mohanty to calculate the viscosity 

of a gas. According to Sun and Mohanty (2005), the gas viscosity can be expressed as a 

function of the temperature and the gas density.  
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where g  is the gas density and T  is the absolute temperature of the gas. Since the gas 

density is a function of pressure, the viscosity can be described with pressure. The figure 

below indicates the changes of the gas viscosity with pressure at different temperatures. It 
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is shown in Figure 19 that when the temperature is higher, the viscosity of the gas changes 

less with the variation of pressure. 

 

Figure 19. The viscosities of methane with pressure at different temperatures 

 

 

3.1.4 Gas – Klinkenberg effect 

Knudsen diffusion occurs when the mean-free-path of gas molecules is similar to 

the pore dimensions of the porous medium. Knudsen diffusion is only significant in porous 

media with very small pores (on the order of a few micrometers or smaller) and at low 

pressures. The phenomenon of Knudsen flow was first modeled and applied to petroleum 

engineering problems by Klinkenberg (1941). The correction for apparent gas 

permeability (Freeman et al., 2011) is: 
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where ak  is the apparent or measured permeability in 𝑚2, ok  is the intrinsic permeability 

of the porous medium in 𝑚2, 𝑝 is the pressure of the sample or reservoir in 𝑃𝑎 and 𝑏𝑘 is 

the Klinkenberg constant in 𝑃𝑎. Note that if we apply the definition of the Knudsen 

number and the mean-free-path, we show that Eq. (80) is equivalent to  

 na Kkk 410   (81) 

 

and nK  is the Knudsen number and is expressed by 

pore
n

r
K


  (82) 

 

where 𝜆̅ is the gas phase molecular mean-free-path in 𝑚, and 𝑟𝑝𝑜𝑟𝑒 is the characteristic 

length scale of the flow path in 𝑚. 

 

3.1.5 Geomechanics - Fracturing criterion  

The tensile strength is employed as large-scale fracture propagation criteria. In 

general, the fracture toughness is utilized for investigating small-scale fracture 

propagation (Adachi et al., 2007). According to Ruiz et al. (2000), Kim et al. (2013) and 

Kim et al. (2014), the tensile failure can occur when  
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cns Tt  222
/ t  (83) 

where st  and nt  are the shear and normal traction and cT is the tensile strength of the 

material. If  , the tensile failure occurs due to normal traction, which is the case in 

this study. We simply assume that the failure occurs when the difference between 

hydraulic fluid pressure in the fracture and in-situ normal stress in the rock exceeds the 

tensile strength of the rock. Once the failure criteria is satisfied at a certain grid block, a 

new crack width is assigned at the grid block. The new crack width is accordingly 

determined by the crack width at the adjacent grid block.  

 

Figure 20. A schematic diagram for a planar fracture. 

 

 

3.1.6 Geomechanics – Fracture width and permeability calculation  

When a certain grid block is considered to be fractured, the fracture width at the 

grid block is calculated by using nonlocal elasticity relation (Sneddon and Lowengrub, 

𝑡𝑛 
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1969) with pressure distribution. Referring to Detournay (2004), nonlocal elasticity 

relation for Lx 0 is written as: 
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where 

22

22

11

11
ln

4

s

s
Gp











 (85) 

 

For the constant pressure distribution case (i.e. ptsLp ),( ), Eq. (85) becomes 
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In order to calculate the permeability of the fracture, we utilize nonlinear permeability 

introduced by modified cubic law (Witherspoon et al., 1980; Rutqvist and Stephansson, 

2003), for an example of one-dimensional single-phase fluid flow, written as 
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where c  is a coefficient accounting for the fracture roughness. Note that the equation 

becomes identical to the cubic law when 3n  and 1c . 
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3.2 Numerical modeling  

In this study, the fluid flow equation is discretized by the finite volume method 

and it is solved by using the fully implicit scheme with the Newton-Rapson method. 

However, the geomechanic part is updated by using analytical solutions introduced in the 

previous section. We solve two systems sequentially by updating information from each 

system to be used in another system. The schematic figure which shows how the program 

works is presented in Figure 21 below. 

 

 

Figure 21. Schematic figure which shows sequential algorithm 

 

 

3.2.1 Equations discretization 

We have time derivative and space derivative with respect to fluid pressure in fluid 

flow equations. To discretize the equation we here introduce the basic element which is 

used for space discretization. 

Fluid flow 

Geomechanics 

𝑘, 𝜙 𝑝 
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Figure 22. Schematic figure of an element in Cartesian coordinate. 

 

 

To begin with, assuming 1D single-phase flow equation, it is discretized spatially only in 

x direction. With Eq. (32), Eq. (49) is also written as  
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where C is the total compressibility which is  
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The left hand side of Eq. (88) is discretized as follows: 
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where Δ𝑥𝑖 is the size of the grid block 𝑖, 𝑃𝑖 is the pressure at the grid block 𝑖, Δ𝑥+ is the 

distance between grid block 𝑖 and 𝑖 + 1, Δ𝑥− is the distance between grid block 𝑖 and 𝑖 −

1 as shown in Figure 23.  

Figure 23 Schematic figure which shows distance between elements 

 

 

and 𝜆𝑖+1/2 is the mobility which is defined as a harmonic average of 
𝑘𝑖
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harmonic average is easily calculated as follows. Suppose we have iCBA )/(  and 
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Meanwhile, the right hand side is discretized as  
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Equating Eq. (90) and Eq. (92) and multiplying by the volume of the element (i.e. 

iiii zyxV  ) shown in Figure 22 yield to  
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where 𝐴𝑖+1/2 is a harmonic average of Δ𝑦𝑖 ∙ Δ𝑧𝑖 and Δ𝑦𝑖+1 ∙ Δ𝑧𝑖+1. In the fully implicit 

scheme, the time level at the left hand side of Eq. (93) is 𝑛 + 1. If a fully implicit scheme 

is employed and we have a source term at the i th element, Eq. (93) is rewritten as: 
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where iq~ is the volumetric source term at 
thi  element and if it is producing, the sign of it 

is positive. When series of Eq. (94) is expressed in an expanded matrix form, it becomes: 
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and in a simple way,  

  11111   nnnnnn
QPBPBT  (95) 

 

where 
t

CV
B i

i


 .  

In this study, we only consider two-phase, water and gas, fluid flow in porous 

media. From Eq. (62), we have two flow equations for water and gas. Water phase in one 

dimension, x, can be written similarly to Eq. (88): 
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It is worth noting that 𝑃𝑤 can be expressed in terms of 𝑃𝑔 and 𝑃𝑐 from Eq. (69). Therefore, 

Eq. (96) is rewritten by expressing wp  as co pp  : 
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Note that because cp is the function of saturation, xpc  /  can be expressed as 
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 by using the chain rule. However, in this study, we assume that the 

capillary pressure 𝑃𝑐 is zero to make the problem simpler. As we choose op and ws  to be 

primary variables in two-phase flow equations, the right hand side of Eq. (97) should be 

expressed in the form of 𝑃𝑜 and 𝑆𝑤 as follows: 

)(')('
'

' 1

1

1

1

1

n
w

n
w

w

cnn
w

n

w

n
o

n
o

w

n
w

n
w

n
w

n

w
w

n

w
w

ss
B

p
s

B
pp

B

s

B

s

s
B

s
B










































































































 (98) 

 

where 



 

61 

 

   
n

w

n

w

n

w

n

w

w pp

BB

B 








1

1

'

/1/11
 (99) 

n

w

n

w

n

c

n

c
c

ss

pp
p










1

1
'

 (100) 

n

o

n

o

nn

pp 








1

1
' 

  (101) 

 

and let us define 11'

'

1
d

B

s

B

s n

w

n

w

n

w

n

w 


 , 12

'

'

'1

d
B

p
s

B w

cnn

w

n

w























. 

In gas phase flow, we have 
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Taken together from Eq. (96) to Eq. (104), the discretized equations can be 

expressed as the following matrix form: 

  011111   nnnnnn QXDXDT  (105) 

 

where iX  is a set of gp  and ws . It is worth noting that since we have two equations for 

gp  and ws , the matrix sizes of 1nT  and 1nD  are NN 22   where N  is the total number 

of grids in a system. In addition, the sizes of matrix 1nX  and 
1nQ  are 12 N . When we 

expand Eq. (105) only from 1i  to 1i , it is shown as 
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3.2.2 Numerical algorithm 

We utilize the Newton-Rapson method to solve the equation in the fully implicit 

scheme. The purpose of the Newton-Rapson method is to find the primary variable matrix 

which makes residual zero using Jacobian matrix. Jacobian matrix is obtained by taking 

the derivative of residual with respect to primary variables. In the single phase simulator,  
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And in the two-phase simulator, 
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Once we find the Jacobian matrix, we repeat the process to find a relatively small 

number, which is called tolerance, from the residual term (𝛿 = −𝑅/𝐽). In this study, the 

value of 10-6 is used for tolerance. A schematic algorithm of the Newton-Rapson method 

in single-phase flow is shown in Figure 24 below. 

 

 

Figure 24. Schematic figure of Newton-Rapson algorithm in single-phase flow 

 

Start time step 

Guess pressure 

𝐏𝑛+1 = 1.1𝐏𝑛 

Calculate Jacobian 

𝐉𝑗,𝑖 =
𝜕𝐑𝑗 𝐏

n+1 

𝜕𝐏𝑖
n+1  

Get new pressure 

𝐏𝑛+1∗ = 𝐏𝑛+1 − 𝐉𝑗,𝑖
−1 ∗ 𝐑 𝐏n+1  

max( 𝐏𝑛+1∗ − 𝐏𝑛+1 ) < 𝑡𝑜𝑙 

no 

𝐏𝑛+1 = 𝐏𝑛+1∗ 

yes 

End time step 
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3.3 Numerical examples 

3.3.1 Verification of the model: Water flood scenario 

To verify the two-phase fluid flow simulator used in this study is valid, we 

compared the multi-phase simulator with the commercial software. The case that we 

testified is water flooding in compressible oil reservoir. The reservoir consists of 15×15 

grid blocks. Assume an isotropic heterogeneous permeability distribution which is given 

in a file named “permx.dat”. There is one producer operating at a constant bottom-hole 

pressure of 2900 psi and one water injector which has a constant rate of injection of 300 

bbl/day. The producer is located at grid block (15,15) and the injector is at (1,1). The well 

radius is 0.35ft. The properties needed are given in Table 7 and the equations are below. 

 

Figure 25. Schematic figure of numerical domain for water flood scenario 
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Table 7. Parameters used in Eclipse comparison 

Model Properties  

Grid block in x direction 15 

Grid block in y direction 15 

Grid block in z direction 1 

Grid block size in the x direction (ft) 30 

Grid block size in the y direction (ft) 30 

Grid block size in the z direction (ft) 30 

Permeability (md) “permx.dat” 

Porosity 0.2 

Pore compressibility (
-1psi ) 3e-6 

  

Water Properties  

Formation volume factor Exponential approximation 

Viscosity (cp) 1 

Compressibility (
-1psi ) 3e-6 

Relative permeability Table 8 

Water density (lb/ft^3) 62.4 

  

Oil Properties  

Formation volume factor Table 9 

Viscosity Table 9 

Compressibility 1e-5 

Relative permeability Table 8 

Oil density (lb/ft^3) 45 

  

Simulation Condition  

Initial pressure (psi) 3000 

Bottom whole pressure (psi) 2900 

Water injection rate (bbl/day) 300 

Initial water saturation 0.25 

Initial oil saturation 0.75 

 

The permeability distribution from “permx.dat” in a log-scale is presented in Figure 26. 
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Figure 26. Permeability distribution in a log-scale. 

 

Oil and water relative permeability equation is introduced in Table 8 below. 

Table 8. Oil and water phase relative permeability equation and parameters 

𝐾𝑟𝑤 = 𝐾𝑟𝑤
∗ (

𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑟
)
2

 𝐾𝑟𝑤(𝑆𝑤 ≤ 𝑆𝑤,𝑚𝑖𝑛) = 0 𝐾𝑟𝑤(𝑆𝑤 ≥ 𝑆𝑤,𝑚𝑖𝑛) = 𝐾𝑟𝑤
∗  

𝐾𝑟𝑜 = 𝐾𝑟𝑜
∗ (

𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑟
)
3

 𝐾𝑟𝑜(𝑆𝑜 ≤ 𝑆𝑜,𝑚𝑖𝑛) = 0 𝐾𝑟𝑜(𝑆𝑜 ≥ 𝑆𝑜,𝑚𝑖𝑛) = 𝐾𝑟𝑜
∗  

𝑆𝑤𝑟 = 0.25   

𝑆𝑜𝑟 = 0.25   

𝑆𝑤,𝑚𝑖𝑛 = 𝑆𝑤𝑟   

𝑆𝑜,𝑚𝑖𝑛 = 𝑆𝑜𝑟   

𝐾𝑟𝑜
∗ = 0.08   

𝐾𝑟𝑜
∗ = 0.7   

 



 

68 

 

With parameters and equations in Table 8, relative permeability trends of the water and 

the oil phase are graphed in Figure 27. 

 

Figure 27. Relative permeability of water and oil phase with water saturation 

 

The properties of dead oil with pressure are given in Table 9. 
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Table 9. Dead oil properties 

Pressure FVF(bbl/STB) Viscosity(cp) 

400 1.012 1.17 

800 1.009 1.14 

1200 1.005 1.11 

1600 1.001 1.08 

2000 0.996 1.06 

2400 0.99 1.03 

2800 0.988 1 

3200 0.985 0.98 

3600 0.98 0.95 

4000 0.975 0.94 

4400 0.97 0.92 

4800 0.965 0.91 

5200 0.96 0.9 

5600 0.955 0.89 

 

The simulation results are shown in the figures below.  
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Figure 28. Oil production from Eclipse and the multi-phase flow simulator 
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Figure 29. Water production from Eclipse and the multi-phase flow simulator 
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Figure 30. Water oil ratio from Eclipse and the multi-phase flow simulator 

 

It is shown that the simulator is able to match the early time and the medium time 

response of the producer well in terms of oil and water production. The late response is 

promoted as the water breakthrough occurs earlier in our simulator than the commercial 

software. However, the trends of all cases are consistent in that the breakthrough occurs 

in advance and oil production starts to decrease ahead of the commercial software. 
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3.3.2 Verification of model: Production scenario 

The multi-phase flow simulator is verified by simulating a single-phase flow case. 

The verification can be easily accomplished by setting the initial saturation of the targeting 

fluid to 1 and the others to 0. This means that the reservoir is fully water-saturated. Also, 

the maximum relative permeability of the targeting phase should be 1 in order to be 

consistent with a single-phase flow case. The schematic figure for the system which is 

used for verification is shown in Figure 31 below. It has 18 grid blocks in x-direction, 9 

grid blocks in y-direction and 2 layers in z-direction. The producer is located in the first 

grid block in the top layer maintaining constant bottom whole pressure of 2900 psi. The 

domain has the same permeability, 5mD, and the porosity, 0.1, throughout the entire 

system. The configuration of the reservoir system is in Figure 31 and the specific 

parameters for the verification is in the table below.  

 

 

Figure 31. Numerical domain of the reservoir system in Sec.3.3.2. 

 

X 

Y Z 
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It is noted that the grid block nearest to the wellbore(point 1) and the furthermost 

grid block from the wellbore(point 2) are selected to compare the pressure drop trends 

from the single-phase flow simulator and the multi-phase flow simulator. The results are 

presented in Figure 32 and Figure 33. 

 

Table 10. Parameters used in Sec. 3.3.2 

Model Properties  

Grid block in x direction 18 

Grid block in y direction 9 

Grid block in z direction 2 

Grid block size in the x direction (ft) 30 

Grid block size in the y direction (ft) 30 

Grid block size in the z direction (ft) 30 

Permeability (md) 5 

Porosity 0.1 

Pore compressibility (
-1psi ) 3e-6 

  

Water Properties  

Formation volume factor Exponential approximation 

Viscosity (cp) Exponential approximation 

Compressibility (
-1psi ) 3e-6 

  

Oil Properties  

Formation volume factor Table 9 

Viscosity Table 9 

Compressibility 1e-5 

Relative permeability Table 8 

Oil density (lb/ft^3) 45 

  

Simulation Condition  

Initial pressure (psi) 3500 

Bottom whole pressure (psi) 2900 

Total simulation time (day) 100 
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Figure 32. Pressure drop from the single and the multi-phase simulator at point 1 
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Figure 33. Pressure drop from the single and the multi-phase simulator at point 2 

 

 

Both graphs show that the pressure drops from the single-phase simulator and the 

multi-phase simulator are well matched with each other. The maximum relative errors of 

both cases are less than 0.4%. It is assumed that the small differences shown in the middle 

region result from the Jacobian matrix. 
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3.3.3 Hydraulic fracture under in multi-phase flow: Initial water saturation 

We then investigate the fracture propagation coupled to multi-phase flow. We first 

test the mesh-size dependency in the hydraulic fracture propagation model for the multi-

phase flow system. We assume that there is 2.4 m of initial fracture and let the fracture 

propagate until it reaches 12 m of total fracture length. The system holds 40Mpa and 20C° 

of the initial pressure and temperature with 2.5 10-23 m2 of permeability and 5 10-2 of 

porosity. The shear modulus and Poisson’s ratio are 50GPa and 0.2. The injection rate is 

4 10-5 m3/s and the tensile strength is 2MPa. The size of the grid is 0.5 m   1 m in y and 

z-direction yet it varies from 0.2 to 0.6 in x-direction. The size of the grid block in x-

direction is presented in Table 11. From Figure 34 we find that the fracture propagation is 

almost the same, although we select different sizes of grid blocks. 

 

Table 11. The grid sizes and the number of fractured grids 

dx [m] 
Number of initially fractured grid 

blocks 

Total number of fractured grid 

blocks 

0.2 12 60 

0.3 8 40 

0.4 6 30 

0.6 4 20 
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Figure 34. The grid size dependency of the hydraulic fracturing model  

 

 

For the multi-phase flow system, the total fluid compressibility is given by the sum 

of saturation multiplied by fluid compressibility at each phase, as  

llf csc   (109) 

 

where ls  and lc  are saturation and the compressibility of phase l , respectively. In this 

study, the summation of water saturation and gas saturation is always one. Thus, high 

water saturation, which means low gas saturation, results in low total fluid compressibility. 
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On the other hand, low water saturation brings about high total fluid compressibility. To 

investigate how the saturation of phases affect fracture propagation, we perform numerical 

simulations at different initial water saturations. The sizes of grid blocks are uniform, 

0.5m, 0.5m and 1m in x, y, z. The initial pressure and temperature of the reservoir are 

40Mpa and 20C° with 2.5 10-23 m2 of permeability and 5 10-2 of porosity. We have 5 

initially fractured grid blocks near the wellbore to help fracture propagate. We inject water 

of 4 10-7 m3/s to the reservoir, which holds 0.2, 50GPa of the Poisson’s ratio and shear 

modulus respectively. The tensile strength of 0.1Mpa is used as fracture propagation 

criteria.  
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Figure 35. The fracture length at different initial water saturations 

 

Figure 35 shows that the fracture propagation is delayed when the initial water 

saturation becomes lower. Note that maxL  is utilized from the case of 0.4 initial water 

saturation, which holds the largest fracture length. As we found in Figure 14, the highly 

compressible fluid makes the total fracture length shorter. Similarly, in the water-gas flow 

system, the fracture would propagate slowly in the case of low water saturation, resulting 

in high total fluid compressibility. 
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3.3.4 Hydraulic fracture under in multi-phase flow: Gas concentration at the tip 

Gas concentration at the hydraulic fracture tip is observed in our hydraulic fracture 

propagation model in water and gas flow system. Some studies (Adachi et al., 2007) 

suggests this phenomena by saying that there might be the gap between water front and 

the fracture tip. Let us call this gap as dry zone. The dry zone implies the existence of gas 

concentration at the fracture tip in two ways: 1. the movement of initial gas within the 

fracture to the fracture tip, 2. the possibility of leakage of the gas from the formation to 

the hydraulic fracture. This brings us to the fact that some part of the fracture near the 

fracture tip is partially filled with gas. As shown in Figure 36, there is less water at the 

fracture tip, implying the existence of the gas concentration at the tip. The case shown in 

Figure 36 has the system which holds 40Mpa and 20C° of the initial pressure and 

temperature with 2.5 10-23 m2 of permeability and 5 10-2 of porosity. The shear modulus 

and Poisson’s ratio are 50GPa and 0.2. The injection rate is 4 10-5 m3/s and the tensile 

strength is 0.4MPa. The size of the grid is 0.5 m 0.5 m 1 m in x, y and z-direction. The 

residual gas saturation is 0.05. 
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Figure 36. Fracture profile with water occupied in the fracture.  

 

To further investigate the size of the dry zone near the fracture tip, we conduct 

sensitivity analysis on tensile strength and initial pressure of the reservoir. The numerical 

domain has 2 layers and one of the layer has 5 initially fractured grid blocks with injection 

point. We measure the fracture width and water saturation profile when the fracture 

reaches 18th grid blocks.  
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Figure 37. Schematics of numerical domain for the sensitivity analysis 

 

 

 

Figure 38. The water saturation profiles at different tensile strengths 
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The water saturation profile in Figure 38 shows that when tensile strength is low, 

the fracture near the tip is more saturated with gas, while the area closest to the injection 

well is almost saturated with water. This implies that, within the fracture, the initial gas 

near the injection well moves to the area near the fracture tip, due to its high mobility. 

Then, the water does not necessarily reach the fracture tip if the pressure is built up enough 

compared to the tensile strength when the fracture is extended. Also, when the fracture 

propagates quickly due to small tensile strength, the water flow may not catch up with the 

speed of the fracture propagation. Low relative permeability would be one of the factors 

that hinder the water from advancing. 
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Figure 39. The fracture width profiles at different tensile strengths 

 

 

Figure 39 shows the fracture width profiles at different tensile strengths. It is 

shown that the fracture width is highly dependent on tensile strength. We have large 

maximum fracture width when the tensile strength is large. This is because it requires large 

pore-pressure, which leads to greater displacement. 
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Figure 40. The water saturation profiles at different initial reservoir pressures 

 

Next case is when the initial pressure of the reservoir is the only variable. It is 

shown that when the initial pressure of the reservoir is high, more gas concentration at the 

fracture tip is observed. The fact that when the initial pressure is high, it is easier for the 

fracturing fluid to be pressurized, leading fracture to propagate easily explains the 

observation. The quick fracture propagation increases the gap between the water front and 

fracture tip. 
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Figure 41. The fracture width profiles at different initial reservoir pressures 

 

The fracture width profiles are all matched in the case that the initial pressure of 

the reservoir is the only variable because the tensile strengths at the all cases are same. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

We modeled a PKN fracture geometry numerically and compared the numerical 

results with its analytical solution. For the case that the fluid is compressible, we 

incorporated the fluid compressibility term, which has been ignored in previous studies. 

The results showed that as fluid becomes compressible, the fracture length and the 

maximum fracture width (i.e. the fracture width at the wellbore) decrease. We also studied 

the hydraulic fracturing process in a shale gas reservoir by using multi-phase flow and 

poromechanics. We performed numerical simulation, varying initial water saturation of 

the reservoir in order to investigate the effect of total fluid compressibility. We found that, 

for low initial water saturation, which yields high total fluid compressibility, the fracture 

propagates slowly.  

For the multi-phase flow, we then investigated two possibilities that explain the 

existence of the dry zone: 1. the leakage of gas from the formation to the hydraulic fracture 

due to the vacuum area, 2. the movement of initial gas within the fracture to the fracture 

tip. We then identified gas concentration in near the fracture tip with sensitivity analysis.  

Therefore, from numerical simulation of both single-phase and multi-phase flow, a 

rigorous modeling of flow coupled to geomechanics is highly recommended to predict 

propagation of the hydraulic fracture more accurately. 
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APPENDIX  

THE CONTINUITY EQUATION WITH FLUID COMPRESSIBILITY 

In this appendix, the derivation of the local mass balance equation is presented. The mass 

balance equation is described as follows  

 
  0




Vu

t

V 



 (1) 

 

where  is the fluid density, t indicates time,V is the control volume and u


is the flow 

velocity. If we assume that the fluid density does not change with time and space, which 

means that the fracturing fluid is incompressible, then  can be canceled out in the first 

and second term. Noting that the control volume can be described as dxhwV f   

yields  
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It is worth noting that fh is considered to be fixed and dx is also constant as we set so that 

they can come out from the derivatives and be canceled out. That leads Eq.(A.2) to  

0



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



x

q

t

w
 (3) 

 

where q is volumetric flow rate per unit height of fracture. Note that Eq.(A.3) is identical 

to Eq.1 without leak-off term. If the density is the function of time and space depending 
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on the fluid pressure, which means that the fracturing fluid is compressible, the first temr 

in Eq.(A.1) becomes 
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This is because tppt  ///   by chain rule and   fcp/  from the 

definition of fluid compressibility. 
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The second term of Eq.(A.1) in 1 dimensional problem yields to  
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Rearranging Eq.(A.1) by Adding Eq.(A.4) and Eq.(A.6) becomes  
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We can divide Eq.(A.7) with dxh f  and let us assume that   does not change with space 

much so that we can make   out of the space derivative. This results in 
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