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ABSTRACT 

 

 

 

 An energy producer must determine optimal energy investment strategies in 

order to maximize the value of its energy portfolio. Determining optimal investment 

strategies is challenging. One of the main challenges is the large uncertainty in many of 

the parameters involved in the optimization process. Existing large-scale energy models 

are mostly deterministic and thus have limited capability for assessing uncertainty. 

Modelers usually use scenario analysis to address model input uncertainty.  

In this research, I developed a probabilistic model for optimizing energy 

investments and policies from an energy producer’s perspective. The model uses a top-

down approach to probabilistically forecast primary energy demand. Distributions rather 

than static values are used to model uncertainty in the input variables. The model can be 

applied to a country-level energy system. It maximizes the portfolio expected net present 

value (ENPV) while ensuring energy sustainability. The model was built in MSExcel® 

using the @RISK Palisade add-in, which is capable of modeling uncertain parameters 

and performing stochastic simulation optimization. 

The model was applied to Saudi Arabia to determine its optimum energy 

investment strategy, determine the value of investing in alternative energy sources, and 

compare deterministic and probabilistic modeling approaches. The model, given its 

assumptions and limitations, suggests that Saudi Arabia should keep its oil production 

capacity at 12.5 million barrels per day, especially in the short term. It also suggests that 

most of the future power-generation (electricity) demand in Saudi Arabia should be met 
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using alternative-energy sources (nuclear, solar, and wind). Otherwise, large gas 

production is required to meet such demand. In addition, comparing probabilistic to 

deterministic model results shows that deterministic models may overestimate total 

portfolio ENPV and underestimate future investments needed to meet projected power 

demand. 

A primary contribution of this work is rigorously addressing uncertainty 

quantification in energy modeling. Building probabilistic energy models is one of the 

challenges facing the industry today. The model is also the first, to the best of my 

knowledge, that attempts to optimize Saudi Arabia’s energy portfolio using a 

probabilistic approach and addressing the value of investing in alternative energy 

sources. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

 

 

1.1 Background and Problem Statement 

Energy is critical to world social and economic development. Since the start of 

the industrial revolution in the nineteenth century, we have seen a tremendous growth in 

energy consumption. Along the way, the energy-consumption fuel mix has changed from 

primarily biomass to an increasing share of fossil fuels (Dahl 2004). The world total 

energy consumption is about 540 quadrillion British thermal units (Btu) or 97 billion 

barrels oil equivalent (boe) per year, with fossil fuels representing more than 85% of the 

total energy consumption (EIA 2013). Fig. 1.1 shows the trend and changes in the fuel 

mix of the world energy consumption since 1965.The world total energy consumption 

has increased by almost 2.5 folds since 1970. Fig. 1.2 shows selected total energy 

consumption and fuel-shares data for 1970, 1990 and 2010. 

 

 

 

Fig. 1.1—World energy consumption by fuel (left) and fuel-mix changes (right) since 

1965. Data from BP (2015). 
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Fig. 1.2—Snapshots of the world total-energy demand and fuel-share changes for 

the years 1970, 1990 and 2010. The total-energy demand has been increasing while 

the share of fossil fuels has been decreasing since 1970. Data from BP (2015).  

 

 

 

From the two figures above, the following are observed: 

1.  Oil share started to decline since the first oil crisis (oil embargo) in 1973 from a 

maximum of 47% to as low as 35% in 2010.  

2. Natural gas increased from about 15% in 1965 to 23% in 2010. 

3. Coal, however, shows a rather interesting trend. Coal consumption share used to 

be as high as 38% in 1965 but decreased to the lowest point of 24% in 2000. In 

2011, coal represented 30% of the world total energy demand. This shift in the 

trend is mainly due to increasing energy demand from China and India. Coal 

consumption in both countries has increased by 2 to 3 folds since 2002 (BP 

2015).  
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4. Nuclear energy demand increased noticeably after the first oil crisis but its share 

has been within 5–6% for the past 25 years mostly due to public safety concerns 

and large capital costs compared to other power generation alternatives (e.g., 

natural gas and coal).  

5. Hydropower’s share was consistent at about 5–6% after 1965 with a small 

increase over time. This is mainly due to the limited availability of suitable 

locations and the fact that most candidate locations have already been developed. 

6. Other renewable energy demand (including solar, wind, biofuels, geothermal and 

biomass) has a very small share of the overall energy demand. However, its rate 

of increase is remarkable. The contribution of these fuels increased at an average 

annual rate of about 23% over the past 5 years (BP 2015).   

With these remarkable changes in energy demand, the energy markets’ dynamics 

have also seen major fluctuations triggered by the first oil crisis of the early 1970s. Fig. 

1.3 shows historical trends for oil, U.S. coal and U.S. gas wellhead prices. A notable 

change is the volatility in prices just after the first oil crisis (1973 oil embargo).1 This 

volatility in prices is a source of uncertainty that should be considered when planning 

future investments for a country or a company involved in the energy sector. 

 

                                                 

1 The U.S. gas wellhead prices were under price regulation until January 1, 1993, following The Natural 

Gas Wellhead Decontrol Act of 1989 (EIA 2016). 
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Fig. 1.3—Selected historical prices for oil, gas and coal indicating major volatility 

just after the early 1970s oil crisis. Note that U.S. gas wellhead prices were under 

price regulations until January 1, 1993. Data from EIA (2013). 

 

 

 

In addition, recent economic crises, geopolitical unrest, and potential 

environmental regulations increase the uncertainty associated with the energy industry. 

Until the recent downturn, the energy industry faced a challenge in meeting growing 

energy demand (Eidt 2012), and this challenge is expected to continue in the long term.  

These factors pose an economic challenge to countries and companies with large 

existing or planned investments in the energy industry in general, and in the oil and gas 

business in particular, as many developed countries try to be less dependent on fossil 

fuels and move to other alternative, “cleaner” sources of energy. However, forecasting 

future alternative energy supply also has huge uncertainty, as suggested by the National 

Petroleum Council Hard Truths 2007 Report (NPC 2007). Because of all these factors, 
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determining optimal energy investment strategies to maximize the value of an energy 

producer’s energy portfolio is quite challenging. 

1.2 Status of the Problem and Research Gaps 

The problem addressed in this work is a constrained optimization problem that 

can be solved by modeling energy supply and demand and factors that affect them as a 

dynamic system, while addressing the uncertainty inherent in the energy industry. Prior 

to reviewing previous work, an overview of energy models is provided. 

According to Weijermars et al. (2012), the first oil crisis in the early 1970s and 

the advancement of computer power and programming capability led to the creation of 

models that relate energy supply, demand, and economic performance. Early models 

focused on the impact of the oil crisis on the economy and possible adaptation options. 

Recently, the objectives of energy models have expanded to energy supply security and 

cost in addition to environmental impact. 

An energy model typically consists of several modules, including modules for 

supply, demand and conversion technologies (Fig. 1.4). Energy resources availability 

and control of greenhouse gas emissions are often considered as constraints to the 

model. Each module may be treated as a model by itself, e.g., energy demand model and 

energy supply model. The combination of all these modules in one model is referred to 

as an energy system model. 
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Fig. 1.4—Components of an energy system model (Nakata 2004) 

Several models have been developed for analyzing energy systems for different 

objectives. These models can be classified based on several alternative criteria. One 

classification method uses the modeling techniques: linear programming-based method, 

input-output approach, econometric method, process method, system dynamics and 

game theory. Other classification methods use modeling approach or paradigm (bottom-

up or top-down), methodology (partial or general equilibrium), modeling technology 

(optimization, econometric or accounting) and spatial dimension (national, regional or 

global) (Bhattacharyya and Timilsina 2010). The classification approach used by the 

World Bank is shown in Fig. 1.5 (Timilsina 2011). Classifying the models streamlines 

the review process. Furthermore, the model objective usually dictates which type of 

model to be built. 
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Fig. 1.5—Energy models classification used by the World Bank (Timilsina 2011). 

For energy demand models, the top-down models focus on an aggregated level of 

analysis while bottom-up models identify end-uses for which demand is forecasted. The 

end-use accounting approach disaggregates the demand into homogenous modules and 

sectors and links the demand of each module to technical and economic indicators; 

hence, the name bottom-up or end-use. This approach emphasizes the role of technology, 

behavior of consumers and economic environment and their effects on demand 

(Bhattacharyya 2011). The econometric demand models analyze demand at aggregate 

levels and relate that to economic indicators that are used as independent variables. 

Energy supply models can be used as standalone or as a module in an energy 

system model. These models take demand forecasts, energy resources, technology, and 

costs as key driving variables. Energy supply models can be classified as optimization or 

simulation models (Fig. 1.5). Optimization models minimize the cost of meeting specific 
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demand while meeting all constraints, such as resources availability and emission 

constraints, among others. They are more appropriate when a large number of supply 

sources are available. Simulation models, on the other hand, simulate the behaviors of 

consumers and producers under different signals such as prices and income levels and 

can be sensitive to the starting conditions (Timilsina 2011). 

Energy system models combine both supply and demand and can be used for 

energy market projections, policy analysis and impact on the environment. 

Bhattacharyya and Timilsina (2009, 2010) commented that existing energy system 

models have intensive data requirements and may inadequately capture developing 

countries energy features. This problem is more pronounced with econometric and 

optimization models. 

Examples of the most commonly used energy models are shown in Table 1.1, 

along with their classification and a brief description for each model. Most of the models 

reviewed in Table 1.1 have an energy consumer perspective and thus try to minimize the 

cost of supply for a certain demand. My focus is to maximize the portfolio value of 

energy supply for a country or company. Unfortunately, none of these models for this 

purpose are in the public domain. In addition, potentially applicable models such as 

WEM, SAGE and NEMS are proprietary and likely not available for my use, even for a 

fee. Other models (MARKAL and TIMES) are expensive ($3,000 to $15,000) to acquire 

and are likely not customizable for my purposes. I would like to modify the models to 

include maximizing energy investments profits instead of minimizing the cost of 

meeting forecasted demand. Furthermore, to the best of my knowledge, only two models 
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consider uncertainty quantification. MARKAL quantifies uncertainty in its forecasts 

using what-if analyses and NEMS uses distributions to quantify uncertainty in power 

generation investments. 

The models listed in Table 1.1 are large energy-systems models that can handle 

the whole energy market, but there are also small-scale models that deal with specific 

issues such as global warming. Edmonds and Reilly (1985), for example, developed a 

model for estimating future carbon-dioxide (CO2) emissions based on different energy 

supply and demand forecasts. They projected future supply and demand, solved for 

prices, computed the equilibrium quantities of energy produced and calculated the CO2 

emissions. Their model considered solar energy as the backstop technology (i.e., energy 

source with inexhaustible supply). They recognized the effects of uncertainty on their 

projections but their projections were based on a scenario-analysis approach. 

Chakravorty et al. (1997) also built a model to assess the effect of carbon dioxide 

on global warming. They modeled the supply and demand of three fossil fuels (oil, coal 

and natural gas) and solar energy while considering four demand sectors (power 

generation, residential & commercial heating, industrial heating and transportation). 

They also modeled the substitution effects of meeting different sectors demand by 

different fuels. In their model, solar energy is considered as the backstop fuel. Their 

model, however, neglects to consider uncertainty in both the supply and demand 

forecasts.  
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Model Type Model Name Model Characteristics 

Bottom-up, 

Optimization-

based 

RESGEN 
(Regional Energy Scenario 

Generator) 

Used for energy planning in developing countries for demand only. 

EFOM 
(Energy Flow Optimization 

Model) 

Multi-period system optimization based on linear programming that 

minimizes the total discounted costs to meet a country specified 
demand and allows for marginal costs identification. 

MARKAL 
(Market Allocation Model) 

The most widely used model. It uses linear optimization to generate the 

least-cost supply system to meet a given demand, given energy system 
configuration and energy resources. 

TIMES 
(The Integrated MARKAL-

EFOM System) 

Integration of EFOM and MARKAL and thus produces the least-cost 
solution considering the investment and operation decisions. 

MESAP 
(Modular Energy System Analysis 

and Planning) 

The model is used for energy system analysis and environmental 
planning with emphasis on power generation. 

Bottom-up, 

Accounting 

LEAP 
(Long-range Energy Alternative 

Planning Model) 

Integrated energy planning model for both supply and demand. The 
model answers what-if types of analysis on supply and forecasts 

demand. It does not optimize market share but rather analyzes the 

implications of possible alternative market shares on demand. 

Top-down, 

Econometric 

DTI 

(Department of Trade & Industry 

Energy Model) 

The model forecasts energy and future carbon emission estimations 
from power generation. Mostly used in power generation modeling. 

Hybrid 

(Econometric 
and bottom-up) 

NEMS 
(National Energy Modeling 

System) 

A hybrid model for energy-economy interaction used by USDOE-EIA 
for USA only. The demand is divided into four components: 

residential, commercial, industrial and transport. The supply side 

contains four modules for oil and gas supply, gas transportation, coal 
supply and renewable fuels. The model is not widely used outside EIA 

due to reliance on costly proprietary software packages and complex 
model design. 

POLES 
(Prospective Outlook on Long-

term Energy Systems) 

This model is used by European Union for energy policy analysis. It 

has four modules: final energy demand, new and renewable energy 

technologies, conventional energy transformation system and fossil 
fuel supply. It uses a disaggregated approach for demand and a detailed 

production model for main producers for supply considering resources, 

cumulative production and depletion. 

WEM 
(World Energy Model) 

WEM is the global energy market model used by IEA. It provides the 

long-term supply and demand forecast. The model consists of six main 

modules: final energy demand (with sub-models covering residential, 
services, agriculture, industry, transport and non-energy use); power 

generation and heat; refinery/petrochemicals and other transformation; 

fossil-fuel supply; CO2 emissions and investment. The demand part 
follows a hybrid approach where econometrics is combined with end-

use methodology. It uses activity variables (GDP or per capita GDP) 

and structural variables for specific features of demand. It also uses 
price variables for energy end-use by linking them to international 

prices and energy taxes. It uses GDP, population, technological 

changes and international prices as exogenous to the model while using 
the scenario approach to define ranges of possibilities. 

SAGE 
(System for the Analysis of 

Global Energy Markets) 

Used by USDOE-EIA for global energy situation. The demand 

forecasts are based on demand trends, economic and demographic 

drivers, energy equipment stocks and technological changes. The 

supply module considers world oil market, gas market and other 

energy resources. 

Table 1.1—Summary of the most commonly used energy models and their 

characteristics. 
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Finally, several models are available that consider only one energy fuel (e.g., oil) 

and find the optimum production level that maximizes the producer profit function. Al-

Qahtani (2008), for example, developed a static model for the global oil market that 

finds the optimum oil production levels for Saudi Arabia. Bukhari and Jablonowski 

(2012) studied the effect of oil prices uncertainty on the optimum allocation of oil 

production from multiple fields with different crude oil types. Mohaddes (2012) 

estimated the oil terminal price (price of oil at time of depletion) in addition to its cost 

and used these data to estimate future oil price and optimum extraction rate. However, 

these models, even with uncertainty quantification, lack completeness due to ignoring 

the fuel switching and substitution effects on the oil demand.  

In his PhD. dissertation, McGlade (2013) identified uncertainties affecting oil 

and gas outlooks. These uncertainties include epistemic, communication, random 

macroscopic and uncertainties arising from simplifying assumptions. His main 

contributions were constructing supply cost curves for different oil and gas categories 

and building a bottom-up economic and geologic model for oil (BUEGO) that has up to 

7000 oil fields. He used the TIAM-UCL (TIMES Integrated Assessment Model – 

University College London) model to test different scenarios for oil and gas outlooks. 

However, a deterministic approach was used when testing different scenarios instead of 

a Monte-Carlo (MC) simulation approach due to computational limitations (long running 

time) and the belief that relatively few additional insights would be gained if a fully 

probabilistic approach were used. 
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Another model that UCL (University College London) is currently developing is 

the Energy System Modeling Environment (ESME). ESME is a cost optimization model 

with a fully probabilistic approach to uncertainty and is built especially for the United 

Kingdom energy system. The model is used to test alternative pathways to a low carbon 

energy system for the UK (Pye et al. 2014). Unfortunately, access to TIAM-UCL and 

ESME models are not available outside UCL, as per e-mail correspondence with the 

UCL faculty members responsible for these models. 

Therefore, there is a need for models that consider all energy sources from a 

supplier perspective and address the uncertainties associated with their supply. 

According to Kann and Weyant (2000), limitations of computing resources is the major 

obstacle to performing all-inclusive uncertainty analysis in energy models since large 

models face an important trade-off between level of details and run time. Extending 

existing large-scale energy models to perform extensive uncertainty analysis is a difficult 

task (Pfenninger et al. 2014). 

1.3 Uncertainty Quantification in the Energy Industry 

Uncertainty is present in most aspects of the energy industry. Throughout the 

review of energy models, uncertainty quantification was an important criterion for 

deciding on model suitability to this work. Brashear et al. (1999) distinguished two types 

of uncertainties affecting oil and gas portfolio optimizations as above-ground (e.g., 

environmental and operating regulations, changes in end-use demand) and underground 

uncertainties (e.g., geologic uncertainties). The Organization of Petroleum Exporting 

Countries (OPEC) identified four major sources of uncertainty that surround the energy 
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future: the world economy, policies, technology and consumer choices (OPEC 2013). 

According to Tschang and Dowlatabadi (1995), energy models are subject to two types 

of uncertainties: uncertainty in the model structure and uncertainty in the input 

parameters. 

1.3.1 Evidence for Uncertainty Underestimation in Energy Models’ Forecasts 

 According to McVay (2015), all the biases affecting project evaluations can be 

boiled down to two fundamental biases—overconfidence (underestimation of 

uncertainty) and directional bias (optimism or pessimism). Overconfidence is due to not 

considering all possible outcomes, leading to too-narrow estimated distributions of 

uncertain quantities. Directional bias, e.g., optimism, results when failing to consider 

some possible negative outcomes or when giving greater weight to possible positive 

outcomes than possible negative outcomes. 

 Shlyakhter et al. (1994) analyzed the United States Energy Information 

Administration (EIA) forecasts credibility by comparing previous forecasts to actual 

energy demand data and found that the forecasts usually have too narrow ranges. They 

concluded that the assumption of normal error distribution is not valid and they had to fit 

the error data with an exponential distribution, which resulted in increasing the forecasts 

range (difference between low and high case). This is a clear indication of 

overconfidence and underestimation of uncertainty. 

Probabilistic forecasts reliability can be analyzed graphically using calibration 

charts or numerically using calibration scores such as the Brier (1950) scoring method. 

Fondren (2013), for example, used the Brier score and calibration chart to calibrate 
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different forecasts including drilling costs, shale gas reserves and football game scores. 

Calibration charts plot the frequency of an outcome (percent correct) against the 

assessed probability of that outcome (probability assigned). Perfectly calibrated forecasts 

will fall on the unit-slope line. Overconfident forecasts have a slope less than unity while 

underconfident forecasts have a slope greater than unity. Figs. 1.6 and 1.7 show 

calibration charts for EIA oil prices and total energy demand forecasts, respectively. The 

analyses are based on multiple EIA International Energy Outlook (IEO) reports since 

1995. The figures show these forecasts are overconfident, exhibiting narrow ranges 

between high and low estimates. 

Fig. 1.6—EIA oil prices forecasts calibration check for multiple forecast intervals 

shows clear signs of overconfidence. (CR = coverage rate indicating percentage of 

forecasts actually within the 80% confidence interval). 
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Fig. 1.7—EIA total energy demand forecast calibration check for 5-year forecast 

intervals demonstrates overconfidence. 

1.4 Value of Assessing Uncertainty 

One might question why we need to assess uncertainty. Capen (1976) suggested 

that a better understanding of uncertainty would have a significant effect on risk 

assessment and profits. Brashear et al. (2001) noted that return on net assets by the 

largest U.S.-based companies in the oil and gas upstream sector in the 1990s was 7% on 

average for projects that were selected with a hurdle rate of 15% and financed with 

capital that cost 9-12% percent on average. They partially attributed this 

underperformance of the oil and gas industry to the use of deterministic methods to 

estimate project value. 

McVay and Dossary (2014) performed a quantitative study to measure the value 

of assessing uncertainty on the performance of portfolio optimization. They concluded 
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that moderate overconfidence and optimism could result in a 30 to 35% expected 

portfolio disappointment (the difference between estimated and realized portfolio NPV 

as a percentage of the estimated NPV). Thus, reducing overconfidence and optimism 

should result in improved decision making, reduced disappointment, and greater 

portfolio value.  

In summary, uncertainty is present in many aspects of the energy industry. 

Underestimation of uncertainty results in underperformance and reduced value. Thus, 

assessing uncertainty is a necessity for an energy producer trying to optimize its energy 

portfolio and maximize its value. 

1.5 Research Objectives 

This research has two main objectives: 

1. Develop a coarse, fully-probabilistic model for energy portfolio optimization 

that considers all energy sources from a supplier perspective and can be used 

to determine the optimum mix of energy investments for individual countries 

or companies.  

2. Use the model to assess and determine the optimum energy investments and 

strategies for Saudi Arabia, including the value of investing in alternative 

energy sources. 
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1.6 Overview of Methodology 

To achieve the project objectives, this research included the following tasks: 

1. Conducted extensive literature review of previous modeling efforts and identified 

research gaps.  

2. Constructed a model architecture that addresses the research objectives and 

allows for uncertainty quantification. 

3. Compiled energy supply and demand data for the target country to be analyzed 

with the model.  

4. Identified and modeled factors that may affect both supply and demand. 

5. Identified and modeled the impact of primary alternative fuels on fossil fuels 

energy production within the target country. 

6. Developed a coarse probabilistic energy model that maximizes the country 

energy portfolio value while ensuring energy sustainability. The model was built 

in MS Excel® to capitalize on stochastic modeling capabilities of the @RISK 

(Palisade 2015a) add-in. 

7. Used the model to determine the optimal energy investment strategies for Saudi 

Arabia. 

8. Developed an equivalent deterministic model using mean and mode of 

distributions and compared the results of deterministic and probabilistic models 

with and without alternative energy sources as it applied to Saudi Arabia. 
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2. MODEL DESCRIPTION

This section describes the model architecture and its major components. A more 

detailed mathematical formulation is shown in Section 3 with the model application to 

Saudi Arabia. 

2.1 The Ideal Energy Model 

As explained in the Section 1, there are numerous models built for different 

purposes. Each model has its own benefits and shortcomings. However, an ideal model 

is the one that combines microeconomic realism, macro-economic completeness, and 

technological explicitness as shown in Fig. 2.1. I would add that an ideal model should 

also be fully probabilistic to properly account for uncertainty present in almost every 

aspect of the energy industry. Although many energy models use scenario analysis to 

account for input uncertainties, the models are deterministic in nature and may not 

capture the full effect of uncertainty on their final output. 

Building such an ideal model at once is not practical due to huge data and 

intensive computational power requirements. Limitations of computing resources is a 

major obstacle to performing all-inclusive uncertainty analysis in energy models. Thus, 

large energy models face a trade-off between level of details and run-time (Kann and 

Weyant 2000). Therefore, taking any one of the existing detailed large-scale models and 

converting it to a stochastic model is not practical as well (Pfenninger et al. 2014). As a 

result, in this work I start by building a coarse model but with explicit characterization of 

uncertainty that can be built upon in a later work to be more detailed and complex. Thus, 
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the intended model will lie in the bottom face of the cube but it has an uncertainty 

component that is not shown in Fig. 2.1. 

 

 

 
 

Fig. 2.1—Three-dimensional assessment of energy models (Evans and Hunt 2009). 

 

 

2.2 Model Architecture 

Fig. 2.2 shows the model architecture. The model has three major components: 

energy supply, energy demand and optimization modules. The optimization module is 

where the target country/company energy portfolio is specified (e.g., Saudi Arabia).  
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Fig. 2.2—General architecture of the model. 

 

 

 

The demand module can be a detailed bottom-up, technology-rich model that 

forecasts demand for each energy fuel by region and/or sector or it can be an aggregated 

a top-down model. In this work, top-down approach is followed using demand equations 

such as Cobb-Douglas (Eq. 2.1, or Eq. 2.2 in logarithmic form). 

𝐷𝑡 = 𝑓( 𝑝𝑡, 𝑌𝑡,  𝑍𝑡 ) = 𝑎 𝑝𝑡
𝑏𝑌𝑡

𝑐𝑍𝑡
𝑑           ........................................................... (2.1) 

ln 𝐷𝑡 = 𝑎 + 𝑏 ln 𝑝𝑡 + 𝑐 ln 𝑌𝑡 + 𝑑 ln 𝑍𝑡 ............................................................. (2.2) 

where D is the demand and p, Y and Z are parameters that drive demand—prices, 

income, and population growth, respectively. The constants b, c and d are the elasticities 
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defined as the percentage change in demand due to 1% change in the corresponding 

parameter. 

The supply module forecasts the supply of each energy fuel based on resources 

availability (in case of non-renewables) and costs of production. Technological 

advancement affects the supply forecast by either expanding the resources base and/or 

by reducing production costs. Institutional regulations such as limits on emissions of 

greenhouse gases impose an upper bound on production of fossil fuels. As in the demand 

modeling, the model can be aggregated by fuel or it can be detailed at the regional level. 

An aggregated approach will be used in this model. 

The optimization module is where the target country energy portfolio is defined 

and optimized. In this module, the followings are specified: 

1. Energy resources available (oil, gas, coal, wind, solar, and nuclear)

2. Current portfolio choices and production levels from each fuel

3. Production cost curves

4. Planned investments

The optimization module takes the prices forecasts from the supply and demand modules 

as input and it also updates them with the new production rates during each iteration 

until the optimum portfolio choices and production rates are reached. 

2.3 Model Objective Function 

The model objective function has two components: maximizing expected net 

present value (ENPV) and ensuring energy sustainability. The expected per capita 
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energy production capacity (EEPC) is used as a proxy for energy sustainability. In 

mathematical form: 

 maximize 
𝑞𝑗,𝑡

𝐸[𝑁𝑃𝑉]   .................................................................................... (2.3) 

Subject to         𝐸[𝐸𝑃𝐶] = 𝐸 [
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡
] ≥ 𝑋  ∀ 𝑡 ..... (2.4) 

where X is the minimum desired per-capita energy production capacity in boe/year and 

qj,t is the energy production from energy source j during time t. 

The objective function above is subject to other constraints that are specific to the 

target country to which the model is applied as detailed in the application section. 

2.3.1 Energy Sustainability 

Maximizing the net present value (NPV) is as short-term objective. NPV is 

indifferent to cash flow in the far future. The higher the discount rate the more 

shortsighted NPV becomes. Therefore, I added energy sustainability as a long-term 

objective. 

In the context of this work, energy sustainability refers to the use of energy in 

such a way that meets the needs of the present generations without compromising future 

generations ability to meet their own needs (Greene 2010). Then since fossil fuels are 

exhaustible or non-renewable, ensuring energy sustainability will eventually necessitate 

the need to tap into renewable energy sources to meet future energy demand. 

Greene (2010) attempted to quantify energy sustainability mathematically. He 

defined it as the per-capita energy services for next generations being at least equal or 

greater than that of current generation. However, modeling energy services (e.g., 
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cooling, heating, etc.) is beyond the scope of this coarse energy model. Therefore, per 

capita energy production capacity (EPC) is used as a proxy for energy sustainability as 

shown in Eq. 2.4. Per capita energy production capacity should not be confused with the 

per-capita energy consumption. EPC includes both domestic consumption and exported 

energy.  

2.4 Solution Method 

 The model is built in MS Excel® and uses Palisade’s @RISK software. @RISK 

is an Excel add-in that has uncertainty analysis capability. The RISKOptimizer tool 

within @RISK is used to perform the optimization. RISKOptimizer combines Monte 

Carlo (MC) simulation and optimization to find optimal solutions to models that contain 

uncertainty. It uses genetic algorithm (GA) and OptQuest as optimization methods.  

GA is an optimization algorithm developed based on evolutionary biological 

method where the fittest survive. The algorithm seeks to find global optima within the 

specified range. The algorithm works by randomly generating a population of 

chromosomes, which can be called solutions, to solve the optimization problem. Each 

chromosome contains number of genes equals to the number of variables in the solution. 

From this initial population of chromosomes, the breeding process starts by either 

crossover or mutation. Crossover is a combination of two chromosomes whereas 

mutation is replacement of one of the genes with another. The probability of crossover 

and mutation are usually specified as 0.5 and 0.05, respectively. Fig. 2.3 shows a 

flowchart of how GA works. 
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Fig. 2.3—A flowchart for genetic algorithm. 

The OptQuest engine uses metaheuristics, mathematical optimization, and neural 

network components to guide the search for optimal solutions. The OptQuest engine 

combines Tabu search, scatter search, integer programming, and neural networks into a 

single, composite search algorithm that provides maximum efficiency in identifying new 

scenarios (Palisade 2015b). 

When running the model, RISKOptimizer was set to automatically choose the 

optimization engine. OptQuest was chosen in most cases, as the GA method requires that 

all constraints must be met at the beginning of the optimization. 

Since the optimization has two objectives, I used the efficient frontier method to 

represent the optimal solution curve. Thus, the model is set to maximize the ENPV while 
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EEPC is considered one of the constraints that must be met. I then run the optimization 

multiple times by varying the minimum required EEPC until I get the desired efficient 

frontier curve. The following section has more details about the model structure along 

with model application to Saudi Arabia. 
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3. MODEL APPLICATION TO SAUDI ARABIA 

 

 

 

Saudi Arabia is an example of an energy producer that has a relatively simple 

energy system. The current fuel mix consists of only oil and gas. Thus, I will apply the 

model to Saudi Arabia to find the optimum mix of energy investments, optimum energy 

strategy, and the value of investing in alternative energy sources. 

Several authors have addressed optimizing Saudi Arabia’s oil and gas reserves 

development. For example, Al-Qahtani (2008) developed a static, deterministic model 

for the global oil market and studied different scenarios to find the optimum oil 

production for Saudi Arabia. Husni (2008) developed a multi-period deterministic 

optimization algorithm for scheduling large-scale petroleum development projects 

subject to several resources constraints. Bukhari (2011) studied the effects of uncertainty 

in oil prices, using deterministic and stochastic oil prices models, on the optimum 

allocation of oil production from multiple fields with different crude grades. However, to 

the best of my knowledge, this is the first attempt to probabilistically optimize Saudi 

Arabia’s oil and gas reserves development while considering alternative energy sources 

and their impact on the overall Saudi energy portfolio. 

3.1 Saudi Arabia Energy Challenge 

Saudi Arabia’s economy is highly dependent on revenue from oil and gas 

production. The oil sector represents about 42.1% of the country gross domestic product 

(GDP) and more than 87% of the government revenue (SAMA 2015). 

 



 

27 

 

While Saudi Arabia enjoys vast oil resources, growing domestic energy demand 

driven by increasing population and economic growth represents a major challenge. The 

domestic demand has been increasing at an annual rate of about 5%, risking diminishing 

oil export volumes. Fig. 3.1 shows Saudi Arabia total domestic energy consumption with 

the share of each fuel source. In 2013, crude oil and oil products represented about 55% 

of the total demand and the rest was met by natural gas.  

 

 
 

Fig. 3.1—Saudi Arabia total oil and gas demand with the share of each fuel source. 

 

 

There are efforts underway trying to moderate this domestic energy demand 

growth by establishing energy efficiency standards and spreading awareness among the 

public led by the Saudi Energy Efficiency Center (SEEC). Current program initiatives 
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are target three main sectors that are consuming more than 90% of the total domestic 

energy consumption—construction, industry and land transportation. 

Saudi Arabia also introduced the Saudi CAFÉ (Corporate Average Fuel 

Economy) Standards, which were enforced in early 2016. This new policy is expected to 

increase light-duty vehicles from current fuel economy of 33 miles per gallon to 40 

miles per gallon in 2020, a 4% increase per year. 

On another front, the Kingdom established King Abdullah City for Atomic and 

Renewable Energy (K.A.CARE) in 2010 by a Royal Decree. K.A.CARE’s objective is 

to help diversify Saudi Arabia domestic energy supply and alleviate some of the pressure 

on non-renewable resources. The main target for K.A.CARE efforts are targeting the 

power generation sector. Power demand is expected to double by 2030 to 110 GW 

(gigawatt). This increase is expected to be supplied by nuclear and renewable energy 

sources. Table 3.1 shows K.A.CARE planned power generation capacity additions by 

2032. In this work, power from waste and geothermal will not be considered and solar 

will be combined in one technology. 

Another challenge facing the Kingdom is the low administered energy prices. 

Energy prices are fixed by the government and set much lower than market prices as a 

way of distributing wealth among the public. Natural gas prices are fixed at $0.75 per 

million Btu and oil at about $4 per bbl (Matar et al. 2015). This may be one reason for 

the high domestic energy demand. During late 2015, however, the government increased 

domestic energy prices by an average of 50-75%. The prices are still less than market 

prices. 



 

29 

 

Technology Planned Capacity Additions, GW 

Nuclear 17.6 

Solar PV 16 

Solar CSP 25 

Wind 9 

Waste 3 

Geothermal 1 

Total 71.6 

 

Table 3.1—K.A.CARE planned power generation capacity additions by 2032. 

 

 

 

Another challenge facing the Kingdom is the low administered energy prices. 

Energy prices are fixed by the government and set much lower than market prices as a 

way of distributing wealth among the public. Natural gas prices are fixed at $0.75 per 

million Btu and oil at about $4 per bbl (Matar et al. 2015). This may be one reason for 

the high domestic energy demand. During late 2015, however, the government increased 

domestic energy prices by an average of 50-75%. The prices are still less than market 

prices.  

Therefore, Saudi Arabia’s main challenge is the increase in its domestic energy 

demand which will eventually affect its oil exports capacity and the government 

revenue. This work will address investment in alternative energy sources to meet 

domestic power demand and its effect on the overall Saudi energy portfolio.  
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3.2 Saudi Arabia’s Energy Portfolio 

Saudi Arabia’s current energy portfolio has only oil and gas as the main sources 

of energy. The Kingdom proved oil reserves stand at 268 billion barrels (EIA 2015). The 

Kingdom has played a vital role in stabilizing the oil markets due to having the largest 

total petroleum liquids export capacity and the largest crude oil spare production 

capacity. Saudi Arabia also has huge natural gas resources. The proved total natural gas 

reserves amounts to 291 trillion cubic feet (Tcf) (EIA 2015). All Saudi Arabia’s gas 

production is directed to domestic consumption, such as power generation and feedstock 

to the petrochemical industry. Figs. 3.2, 3.3 and 3.4 summarize historical production 

data for oil, gas and power generation, respectively. In addition to oil and gas, nuclear, 

solar, and wind will be added to the portfolio. 

 

 

 
 

Fig. 3.2—Saudi Arabia historical total oil production, export, oil for power 

demand, and oil demand from other sectors.  
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Fig. 3.3— Saudi Arabia historical total gas production, gas for power demand, and 

gas demand from other sectors.  

Fig. 3.4—Saudi Arabia annual power (electricity) consumption with the share of oil 

and gas.  
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3.3 Mathematical Formulation 

As shown in Eqs. 2.3 and 2.4, the model maximizes the energy portfolio 

expected net present value (ENPV) while ensuring per capita expected energy 

production capacity (EEPC) is greater than a set minimum value as a measure of energy 

sustainability. EEPC is used for probabilistic models. Fig. 3.5 below shows a simplified 

chart for primary energy flow for Saudi Arabia used in the model.  

 

 

 

 

Fig. 3.5—A chart for primary energy flow for Saudi Arabia energy system as used 

in the model. 

 

 

The Saudi demand side has many sectors including power generation, industrial, 

residential, commercial, and transportation. In this work, however, the Saudi demand 

side is assumed to have only two sectors: power generation and all other sectors are 
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combined as one. Since the model considers only primary energy flow at this stage (not 

secondary energy such as refinery products and petrochemicals), a simplified demand 

sector is acceptable and will simplify the modeling as well. In addition, no reliable data 

were found that show by-sector demand for Saudi Arabia except for the power 

generation sector.  

The supply side shows five energy sources (oil, gas, nuclear, solar, and wind). 

Oil prices and thus oil revenue through oil exports is the only link of the Saudi energy 

sector to the outside world in the model. More details are shown in the oil price model 

section below.  

Based on the above discussion, the Saudi energy sector objective function is 

given by (bold face variables are stochastic, i.e., uncertain) 

 maximize     
𝑞𝑗,𝑡

𝐸[ ∑ ∑ 𝛽𝑡 × 𝑞𝑗,𝑡(𝒑𝒋,𝒕 − 𝒄𝒋,𝒕)𝐽
𝑗=1

𝑇
𝑡=1 ] ............................................ (3.1) 

 Subject to         𝐸[𝑬𝑷𝑪] = 𝐸 [
∑ 𝑞̅𝑗,𝑡

𝐽
𝑗=1

𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒕
] ≥ 𝑋         ∀ 𝑡   ................................ (3.2) 

where  

𝑗 = fuel source index (oil, gas, nuclear, solar, and wind) 

𝑡 =  time step index (one-year time intervals) 

𝑞̅𝑗,𝑡 = production capacity from energy source j at time t 

𝑋 = desired minimum per-capita energy production capacity 

𝛽 =
1

1+𝑖
 = discount factor, where i is the discount rate 

𝑐𝑗,𝑡 = production cost in $ per energy unit 
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The cost function in Eq. 3.1 has multiple components including capital, fixed, and 

operating costs. 

3.3.1 Optimization Constraints 

In addition to the EEPC constraint, which is considered as the secondary 

objective, the optimization problem has additional constraints: 

1. The total power generated each time step (year) from all energy sources must be at

least equal to the forecasted power demand that year. Since the forecasted power 

demand is uncertain, chance constrained programming is used to model such 

constraint as explained in a later section. 

∑ (𝑞𝑗_𝑝𝑤𝑟)
𝑡

𝑁
𝑗=1 ≥ (𝒒𝒑𝒓𝒋𝒄𝒕𝒅 𝒑𝒘𝒓)

𝑡
 ∀ 𝑡  .......................................................... (3.3) 

2. Additional capacity power projects are capital intensive and thus once a power

project is ON it will stay ON 

(𝑞𝑗_𝑝𝑤𝑟)
𝑡

≥ (𝑞𝑗_𝑝𝑤𝑟)
𝑡−1

 ∀ 𝑗, 𝑡  .............................................................. (3.4) 

3. Low oil depletion rate:

Oil production is constrained to be less than the maximum allowed rate which is 

equivalent to 5% annual reserves depletion. Low depletion rate is one of the 

reservoir management best practices in order to extend the life of an oil field, gaining 

more knowledge, and capitalizing on new technologies and thus maximizing oil 

recovery. 

(𝑞𝑂)𝑡 ≤ (𝑞𝑂,𝑚𝑎𝑥)
𝑡

 = 5% ×
(𝑶𝒊𝒍 𝑹𝒆𝒔𝒆𝒓𝒗𝒆𝒔)𝑡

365
 ∀ 𝑡  ............................................ (3.5) 
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4. Annual change in total oil production is kept within 15%.  

Limiting annual changes to 15% avoids unreasonable changes in total oil production 

and thus annual capacity changes.  

5. Annual change in total power production is kept within 15% as well for the same 

reason above. 

3.3.2 Other Mathematical Equations 

 Other mathematical equations included that describe energy flows in the model 

are  

1. Oil equation: 

 𝑞𝑂 =  𝑞𝑂_𝑝𝑤𝑟 + 𝑞𝑂_𝑜𝑡ℎ𝑟 + 𝑞𝑂_𝑒𝑥𝑝𝑟𝑡   ................................................................ (3.6) 

Total oil production is the sum of oil directed to power generation (as crude or oil 

products), oil directed to meet other sectors demand, and the exported oil. 

2. Gas equation: 

𝑞𝐺 = 𝑞𝐺_𝑝𝑤𝑟 + 𝑞𝐺_𝑜𝑡ℎ𝑟 = 𝑞𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 + 𝑞𝑛𝑜𝑛𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 = 𝑞𝑂 × 𝐺𝑂𝑅 +

 𝑞𝑛𝑜𝑛𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  ................................................................................................ (3.7) 

3. Power generation equations—from alternative energy sources 

 𝑞𝑘 = 𝑞𝑘_𝑝𝑤𝑟     , 𝑘 =  Nuclear, Solar, and Wind   .............................................. (3.8) 

4. Oil capital cost: 

Oil capital cost is assumed to range (with uniform distribution) from $2,500 to 

$17,500 per bbl/day of peak production of the added capacity. This cost is assumed 

to increase exponentially as more capacity is added within the same year. 
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5. Oil and gas production costs:

The production cost of oil (gas) is assumed to increase as more oil (gas) is extracted. 

I assumed an exponential function form to represent production costs as a function of 

the cumulative production. Thus, oil production cost, co, is given by 

𝑐𝑜 = 1.4 𝑒0.0098×𝐶𝑢𝑚𝑙𝑎𝑡𝑖𝑣𝑒 𝑂𝑖𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑  ............................................................ (3.9)

and gas production cost, cg, is given by 

𝑐𝑔 = 0.15 𝑒0.005×𝐶𝑢𝑚𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑  ........................................................ (3.10)

The potential technological effect on reducing production costs was not considered 

as this is a long-term model. Production costs are expected to increase in the long-

term as more hydrocarbon is produced and resources scarcity increases. 

3.3.3 Oil Price Model 

Ideally, oil prices should be estimated by probabilistically forecasting global oil 

supply and demand and solving for equilibrium prices. However, since the model is built 

for Saudi Arabia in this work, a simpler approach can be followed if we consider Saudi 

Arabia as a price maker in the oil market. This is in fact true not only due to its large 

production and spare capacity but also as the largest producer within OPEC. Therefore, I 

assume that the oil price is inversely related to total Saudi Arabia’s oil production. 

Gao et al. (2009) provided an easy to use model for oil prices in the context of 

the above assumptions. They used the Energy Information Administration’s (EIA) Oil 

Market Simulation (OMS) model to simulate an equilibrium model of the world oil 

market. They simulated 25 different cases for the years 1986-2010 and solved for oil 

prices and oil production choices by OPEC countries. Then they fit the data with an 
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inverse demand equation that relates average daily supply of OPEC and the resulting oil 

price.  

The resulting model takes the form 

ln 𝑝𝑡 = 𝛼0 + 𝛼1𝑦𝑡 + 𝛼2𝑇 + 𝜖  ....................................................................... (3.11) 

where 

𝑝𝑡 = the equilibrium oil market price 

𝑦𝑡 = OPEC production choices 

T = the time trend index defined as 𝑇 = 𝑡/65 ( t =1 in year 1986) 

𝜖 = regression error 

Using ordinary least square regression, their oil price (in 1986 U.S. dollars) model is 

given by 

ln 𝑝𝑡 = 3.5323 − 0.0398 𝑦𝑡 + 3.9656 𝑇 + 𝜖  .............................................. (3.12) 

Then assuming that Saudi Arabia will continue to produce about 27% of the total OPEC 

production in the long run, the model becomes 

ln 𝑝𝑡 = 3.5323 − 0.0398 × 3.7 (𝑞𝑂𝐾𝑆𝐴
)

𝑡
+ 3.9656 𝑇 + 𝜖  .......................... (3.13) 

where 𝑞𝑂_𝐾𝑆𝐴 is the total oil production by Saudi Arabia.  

Eq. 3.13 may not be the perfect model for oil prices but it is a simple relationship 

that satisfies the need of this work by relating Saudi Arabia production to global oil 

market prices. This link is the only part of this model that connects Saudi Arabia’s 

energy system to the outside world. Eq. 3.13 is converted to 2014 US dollar value by 

multiplying it by the appropriate US CPI (consumer price index) ratio. In addition, the 

price model is converted to a probabilistic equation by multiplying it by a normal 
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distribution of 𝒩(1,0.4). A standard deviation of 0.4 gives a P10-P90 range that 

encompasses most of past oil price fluctuations (Fig. 3.6). The model seems reasonable 

given that the average model response follows the general oil prices trend and the range 

brackets most of the actual historical fluctuations since 1986. 

Therefore, the total oil revenue, 𝑅𝑂 , function for Saudi Arabia as is given by 

(𝑅𝑂)𝑡 = 365 × (𝑞𝑂𝐾𝑆𝐴
)

𝑡
𝑒

[(3.5323−0.0398×3.7 (𝑞𝑂𝐾𝑆𝐴
)

𝑡
+3.9656 𝑇)×𝒩(1,0.4)]

  ...... (3.14)

Fig. 3.6—Comparison between actual and model response for oil spot prices since 

1986. The red line is the average model response and gray area is the 80% 

confidence interval (or P10-P90 range).  
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3.3.4 Modeling Uncertain Constraints 

 The model has many stochastic (uncertain) variables in the right-hand side of the 

constraints formula (Eq. 3.3, for example). If the left-hand side of the constraint is 

uncertain we can easily take certain percentiles that satisfy that constraint. However, it is 

difficult to deal with uncertain variable in the right-hand side of the constraint. There are 

several methods to account for such constraints including chance-constrained 

programming (CCP) and quadratic programming (McCarl and Spreen 2003). I use CCP 

in this work due to its simplicity and easy implementation in @RISK.  

 Chance constrained programming ensures that the stochastic (uncertain) 

constraint is met based on the level specified by the user. For example, the projected 

power demand is an uncertain variable in the model and, thus, if we specify that we need 

to meet the projected power demand with a 90% probability, the constraint becomes 

Pr [∑ (𝑞𝑗_𝑝𝑤𝑟)
𝑡

𝑁
𝑗=1 ≥ (𝒒𝒑𝒓𝒋𝒄𝒕𝒅 𝒑𝒘𝒓)

𝑡
]        ≥ 0.9                   ∀𝑡 ........................ (3.15) 

Then, we can replace the stochastic constraint in Eq. 3.15 with an equivalent constraint 

by specifying the 90th percentile of the projected power demand as 

∑ (𝑞𝑗_𝑝𝑤𝑟)
𝑡

≥ (𝒒𝒑𝒘𝒓,𝒑𝒓𝒋𝒄𝒕𝒅)
𝑡𝑃90

 𝑗         ∀𝑡    ................................................... (3.16) 

3.3.5 Forecasting Equations 

Population and economic growth are considered the major factors deriving 

energy demand in Saudi Arabia. Energy prices and taxes play a major role in influencing 

demand as well. However, in Saudi Arabia, energy prices are administered by the 
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government and are not often changed. Thus, their effect is negligible in driving 

demand, especially in the short term, unless prices are deregulated.  

 Therefore, I consider only GDP and population growth influencing energy 

demand in this work. In addition, the reported Saudi GDP in government reports or the 

World Bank statistics does not represent the actual economic activities in Saudi Arabia 

since about 42% of the GDP is due to oil revenue. Aldukheil (2013) used a modified 

GDP for forecasting Saudi Arabia future energy demand. He used the non-oil GDP 

(GDPNO) plus only 10% of the oil GDP to get a representative GDP for Saudi Arabia. 

His assumption is that 10% of the oil GDP is the cost of extraction. Lahn and Stevens 

(2011) also used non-oil GDP as a driver for Saudi energy demand. Thus, in this work 

non-oil GDP (GDPNO) is used to forecast future energy demand in addition to the 

population growth. Fig. 3.7 shows how Saudi non-oil GDP compares to the total GDP. 

 

 
Fig. 3.7—Saudi total GDP and non-oil GDP in 2013 US dollars. 
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Therefore, using population growth and GDPNO, we can estimate future energy 

fuels demand using Cobb-Douglas demand equation (Cooper 2003) as 

𝐷𝑡 = 𝑎 𝑝𝑡
𝑏 𝑌𝑡

𝑐 𝑒𝑡  ............................................................................................. (3.17)

In logarithmic form, Eq. 3.17 is written as 

ln 𝐷𝑡 = ln 𝑎 + 𝑏 ln 𝑝𝑡 + 𝑐 ln 𝑌𝑡 + ln 𝑒𝑡 .......................................................... (3.18) 

I assumed that since energy prices are set by the government in Saudi Arabia, 

their effect on energy demand is negligible. Thus, the price term is eliminated from Eq. 

3.18. Then, using per-capita energy demand and per-capita GDPNO, we can estimate 

future energy demand. For example, for power demand, 𝐷𝑝𝑤𝑟, we have 

ln (
𝐷𝑝𝑤𝑟

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
= ln 𝑎 + 𝑐 ln (

𝐺𝐷𝑃𝑁𝑂

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
+ ln 𝑒𝑡 ....................................... (3.19) 

Eq. 3.19 can be written as 

ln (
𝐷𝑝𝑤𝑟

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
= 𝛼0 + 𝛼1 ln (

𝐺𝐷𝑃𝑁𝑂

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
+ 𝜖𝑡 ........................................... (3.20) 

where 𝛼0 is the intercept, 𝛼1 is the income elasticity of demand, and 𝜖𝑡 is the regression 

error. Regression was made using Eq. 3.20 on Saudi Arabia historical demand data since 

1995. The regression results are shown in Table 3.2 while Fig. 3.8 shows how well the 

regression model fits the actual data. Eq. 3.20 then uses input data from population and 

non-oil GDP forecasts (Fig. 3.9) to estimate future energy demand for power and oil and 

gas demand for other sectors (Fig. 3.10). 

In Section 3.6, regulated domestic oil prices assumption will be relaxed and 

assumed to follow global oil market prices. Gas prices, however, will still be assumed 

constant due to the localized nature of gas markets. 
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Variable   α0 α1 

Power Demand 

Estimate 0.903 0.872 

Standard Error 0.444 0.049 

R2 0.950   

Oil: Other Sectors Demand 

Estimate -0.351 0.448 

Standard Error 0.267 0.029 

R2 0.933   

Gas: Other Sectors Demand 

Estimate -0.740 0.636 

Standard Error 0.312 0.034 

R2 0.951   

 

Table 3.2—Regression results for estimating demand equations. “Other Sectors 

Demand” refers to the total demand of all energy sectors except power generation. 

 

 

 

   
 

 
 

Fig. 3.8—Regression model fit in comparison with actual data for power demand 

(upper left), oil demand for other sectors (upper right), and gas demand for other 

sectors (lower left). 
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Fig. 3.9—Saudi Arabia population (top) and non-oil GDP (bottom) forecasts used 

as input to the model. 
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Fig. 3.10—Stochastic forecasts for Saudi Arabia power demand (upper left), oil demand for other than power sectors 

(upper right) and gas demand for other than power sectors (lower left). 
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3.4 Model Input and Assumptions 

 The model is run until 2050. A discount factor of 10% is used to calculate the 

NPV. Table 3.3 shows in put variables along with their distributions and formulae. 

 

 

Variable Function 

Population (Thousands) Normal ()* 

Non-oil GDP (Billions $) Autoregressive model (AR1) 

Projected Power Demand (TWh) Regression Formula: f (GDP per-capita) 

Projected Oil Demand (Other sectors) (MBD) Regression Formula: f (GDP per-capita) 

Projected Gas Demand (Other sectors) (MBD) Regression Formula: f (GDP per-capita) 

Oil Reserves (Billion bbl) Log-normal [68, 71, Shift(252)] 

Gas Reserves (Tcf) Log-normal [146, 97, Shift(235)] 

Oil Annual Decline Rate (%) Uniform (0.05, 0.10) 

Gas Annual Decline Rate (%) Uniform (0.03, 0.10) 

Oil Prices ($/bbl) pO * Normal (1, 0.4) 

Oil Projects Capital Cost 

($/bbl of peak production) 
Uniform (2500, 17500) 

Notes: 

1) * using 5th and 95th percentiles from the UN population forecasts for Saudi Arabia. 

2) pO is the oil price calculated using the oil price model. 

3) MBD: thousands bbl/day 

 

Table 3.3—Density functions and formulae of uncertain input variables. 

 

 

 

3.4.1 Modeling Oil and Gas Reserves 

 Saudi Arabia oil and gas reserves are modeled using lognormal distributions 

(Figs. 3.11 and 3.12) along with their reserves replacement rates. With the assumed 

reserves replacement rates, the model is less sensitive to oil and gas resources 

availability. In other words, the oil production, for example, will not be forced to decline 

due to non-availability of oil reserves. Hence, the model is more sensitive to costs and 

value generated from each energy source. 
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Fig. 3.11—Oil reserves distribution (top) and reserves growth to production ratio 

(bottom).  
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Fig. 3.12—Total gas reserves distribution (top) and reserves growth to production 

ratio (bottom).  
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3.4.2 Power Generation Technologies Assumptions 

In this model, only five technologies are included for power generation—oil, gas, 

nuclear, wind, and solar. The choice of which energy technology to include is mainly 

location (country) specific. For example, in the case of Saudi Arabia coal and 

hydropower are not viable options due to non-availability of coal and lack of large 

hydropower locations. 

Table 3.4 shows capital and non-fuel operating costs for each power generation 

technology. Lead time is also included which indicates the time needed to begin capital 

investments and build a project before it actually starts. I recognized there is potential for 

the cost of renewable energy projects to go down with time following the historical 

trends, but I chose to leave it constant over the forecast time period. This assumption 

will be relaxed in section 3.6. 

Technology 

Capital 

Cost 

(USD/kW) 

Fixed O&M 

Cost 

(USD/kW-

year) 

Non-fuel Variable 

O&M Cost 

(USD/MWh) 

Lead 

Time 

(years) 

Lifetime 

(years) 

Oil (Crude or Oil Products) 2,120 11.2 1.64 3 - 4 30 

Natural Gas 1,500 11.2 4.00 3 - 4 35 

Nuclear 4,500 100 2.14 5 - 10 35 

Solar 2,100 30 0 2 25 

Wind 2,100 40 0 3 25 

Table 3.4—Capital and non-fuel operation costs for new installed capacity in the 

power sector (IRENA 2015; Matar et al. 2015) 
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Appendix A shows conversion factors that can be used to convert from one 

energy unit to another. It is especially needed for power generation calculations to have a 

consistent energy measure unit (e.g., boe). 

3.5 Model Results 

 The model was built to be run two different ways: probabilistic and deterministic 

(Table 3.5). The model is run assuming different values of EEPC ranging from 130 to 

180 boe/year per capita. Any value of EEPC below 130 would result in the same ENPV 

since the model will reach its minimum energy production. On the other hand, the model 

will not reach a solution for EEPC values above 180 due to model constraints—it 

requires additional energy production more than the allowed rate of increase per year. A 

special case was also run for each model type called the business-as-usual (BAU) case 

considering only Saudi legacy energy sources, i.e., oil and gas. Each of the model types 

will give a different perspective on the energy strategy for Saudi Arabia.  

 

 

Model Type Description 

Probabilistic 

A probabilistic model with uncertain variables modeled using 

distributions. Uncertain constraints are modeled using chance 

constrained programming. 

Deterministic – Mode  
Replacing each distribution in the probabilistic model with its 

mode. 

Deterministic – Mean  
Replacing each distribution in the probabilistic model with its 

mean. 

 

Table 3.5—Description of model types run in this work. 
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3.5.1 Probabilistic Model Results 

The probabilistic model was run for five different values of EEPC as its 

secondary objective in addition to maximizing the ENPV. The ENPV efficient frontier 

for this optimization is shown in Fig. 3.13. 

Fig. 3.13—Efficient frontier for the probabilistic model optimization. 

The efficient frontier shows the maximum possible portfolio expected net present 

value (ENPV) that can be reached for each specified level of minimum expected energy 

production capacity (EEPC). Any combinations of ENPV and EEPC below the efficient 
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frontier curve are not optimum and combinations above the efficient frontier are not 

possible. 

From this efficient frontier curve we can see that ENPV declines as the required 

energy production capacity increases since more investments are needed to add new 

capacity. In addition, high EEPC values require higher oil production which exerts 

downward pressure on oil prices resulting in lower revenue and total ENPV (Eq. 3.14). 

Fig. 3.14 shows the probabilistic model results for EEPC ≥ 180 boe/year per 

capita. For such a high energy sustainability requirement, the model suggested 

increasing oil production from the current rate of about 11 million bbl/day to about 16.3 

million bbl/day by 2050, doubling natural gas production rate (mainly due to increase in 

other sectors demand), and meeting almost all new power demand from alternative 

sources of energy (nuclear, solar, and wind). 
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Fig. 3.14—Probabilistic model results for EEPC ≥ 180 boe/year per capita. The figures are (clockwise from upper left): 

optimum oil production rates, optimum gas rates, capital investments distributions, and optimum share of power 

generation from each fuel source.  
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Results for minimum EEPC of 160 boe/year per capita are shown in Fig. 3.15. In 

fact, EEPC of 160 boe/year per capita is about the average EEPC for the past 10 years 

for Saudi Arabia. Therefore, we can consider this value a good measure sustainability. 

This case resulted in higher ENPV than the previous one (EEPC ≥ 180 boe/year) since it 

requires less energy production. Recommended optimal total oil production is about 12.5 

million bbl/day until 2035 and about 13.8 million bbl/day beyond 2035. Natural gas 

production should be doubled to 20 Bcf/d by 2050 where most of additional gas is 

directed to meet demand from other sectors and only small portion to power generation. 

In addition, almost all future power demand requirements should be met using 

alternative energy sources. 
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Fig. 3.15—Probabilistic model results for EEPC ≥ 160 boe/year per capita. The figures are (clockwise from upper left): 

optimum oil production rates, optimum gas rates, capital investments distributions, and optimum share of power 

generation from each fuel source.  
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3.5.2 Deterministic Model Results 

 Efficient frontier curves for the deterministic optimization models are similar in 

shape to those of the probabilistic model (Fig. 3.16). However, efficient frontier curve 

for the Deterministic-Mode model is slightly higher than the Deterministic-Mean curve 

except for very high values of EEPC. One reason for this difference is the Deterministic-

Mean model suggested higher oil production than the Deterministic-Mode model (Figs. 

3.17 and 3.18 for EEPC ≥ 160 boe/year per capita). Thus, with higher oil production, the 

required investments will be higher and oil prices would be lower, resulting in overall 

lower ENPV. In addition, the mode of the projected power demand is slightly lower than 

its mean (Fig. 3.19), affecting the value used in Eq. 3.3. Therefore, the Deterministic-

Mode model suggests lower investment in building power capacity (see capital 

investment distribution in Fig. 3.17) and hence higher ENPV.  

 

 

 
 

Fig. 3.16—Efficient frontier for Deterministic-Mode and Mean models optimization 

and how they compare to the probabilistic model curve. 
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Fig. 3.17—Deterministic-Mode model results for EEPC ≥ 160 boe/year per capita. The figures are (clockwise from 

upper left): optimum oil production rates, optimum gas rates, capital investments distributions, and optimum share of 

power generation from each fuel source.  
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Fig. 3.18—Deterministic-Mean model results for EEPC ≥ 160 boe/year per capita. The figures are (clockwise from 

upper left): optimum oil production rates, optimum gas rates, capital investments distributions, and optimum share of 

power generation from each fuel source.  
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3.5.3 The Value of Probabilistic Modeling Approach 

Fig. 3.16 showed efficient frontier curves for all three models. We observe that 

the probabilistic model efficient frontier curve is consistently below those of the 

deterministic models. Thus, the probabilistic model shows lower ENPV for all possible 

values of EEPC. 

The main reason for such difference is how the constraints are set up in the 

probabilistic model using the CCP approach. For example, the projected power demand 

is met with a probability of 90% and thus requires that the total generated power is at 

least equal to the P90 of the projected annual power demand. The Deterministic models 

are required to meet much smaller (mean and mode) demand (Fig. 3.19). However, since 

the projected power demand is uncertain, it is prudent to use a probabilistic approach 

with a probability of 90%. Thus, depending on deterministic models may result in 

underestimation of the required investments needed to meet future power demand. We 

can see that by comparing the investments distribution chart in Fig. 3.15 with Figs. 3.17 

and 3.18. 
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Fig. 3.19—Projected power demand constraint used in each model. P90 in 

probabilistic model (CCP), Mean in Deterministic-Mean model and Mode in 

Deterministic-Mode model. 

 

3.5.4 The Value of Investing in Alternative Energy Sources in Saudi Arabia 

 All three models (probabilistic and deterministic) were run for business-as-usual 

(BAU) cases where no investment in alternative energy sources is considered and EEPC 

is kept at 160 boe/year per capita. As shown Fig. 3.20, BAU ENPV values were within 

the range of other cases with alternative energy sources and minimum EEPC of 160 

boe/year. However, comparing the models results in Figs. 3.21, 3.22, and 3.23 with their 

counterparts in Figs. 3.15, 3.17, and 3.18, respectively, all BAU cases require much 

higher gas production, reaching 25 Bcf/day by 2050, in addition to directing more oil to 

power generation. In addition, BAU cases result in a less diversified and riskier energy 

portfolio, especially since oil and gas are exhaustible resources. 
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Investing in alternative energy sources will reduce the required gas production to 

less than 20 Bcf/day by 2050. It will also direct more oil toward export, maximizing oil 

revenue. 

 

 
 

Fig. 3.20—BAU cases compared to probabilistic and deterministic model efficient 

frontiers. 
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Fig. 3.21—Probabilistic model results for BAU case (EEPC ≥ 160 boe/year per capita). The figures are (clockwise from 

upper left): optimum oil production rates, optimum gas rates, capital investments distributions, and optimum share of 

power generation from each fuel source.  
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Fig. 3.22—Deterministic-Mode model results for BAU case (EPC ≥ 160 boe/year per capita). The figures are (clockwise 

from upper left): optimum oil production rates, optimum gas rates, capital investments distributions, and optimum 

share of power generation from each fuel source.  
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Fig. 3.23—Deterministic-Mean model results for BAU case (EPC ≥ 160 boe/year per capita). The figures are (clockwise 

from upper left): optimum oil production rates, optimum gas rates, capital investments distributions, and optimum 

share of power generation from each fuel source.  
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3.6 Model Extensions and Policy Changes Effects 

In this section, I relaxed some of the assumptions in the previous sections to 

explore different scenarios and effects of policy changes. The model was run for three 

cases: domestic oil prices deregulation, potentially lower alternative energy costs, and 

low-income elasticity of domestic energy demand.  

I ran the new cases for EEPC of 160 boe/year per capita since this value ensures 

energy sustainability for Saudi Arabia and thus results for each case are compared to the 

probabilistic model results in Section 3.5.1.  

3.6.1 Saudi Arabia Domestic Energy Prices Reform 

 Although domestic energy prices are administered by the Saudi government and 

are rarely changed, increase in domestic oil prices by the government or complete price 

deregulation is likely to occur in the future. The extreme case is when domestic oil 

prices are allowed to change with global oil market prices. Thus, the model is run 

assuming domestic oil prices are equal to the global oil prices and accounting for their 

effect on domestic oil demand. The forecasting equation (Eq. 3.20) will take the form 

 ln (
𝐷𝑂

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
= 𝛼0 + 𝛼1 ln(𝑝𝑡) +  𝛼2 ln (

𝐺𝐷𝑃𝑁𝑂

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑡
+ 𝜖𝑡 ...................... (3.21) 

where 𝐷𝑂 is the Saudi domestic oil demand for other sectors and 𝑝𝑡 is the global oil 

prices. Table 3.6 the regression of domestic oil demand for other sectors results using oil 

price and non-oil GDP per capita as factors influencing oil demand in Saudi Arabia. The 

price elasticity of demand (𝛼1) magnitude is small compared to income elasticity of 

demand (𝛼2), indicating that oil demand is influenced more by income rather than by 
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prices. It also indicates that domestic oil demand in Saudi Arabia is inelastic with respect 

to prices change.   

 

Variable  α0 α1 α2 

Oil: Other Sectors 

Demand 

Estimate -1.187 -0.052 0.562 

Standard Error 0.565 0.026 0.072 

R2 0.927   

 

Table 3.6—Regression results for estimating Saudi Arabia’s oil demand equation 

accounting for prices and non-oil GDP per capita effects. “Other Sectors Demand” 

refers to the total demand of all energy sectors except power generation. 

 

 

The results for EEPC of 160 boe/year per capita (Fig. 3.24) show that oil 

production capacity need not be increased more than its current level and the oil 

production required is much less compared to the case when price effects were assumed 

negligible (Fig. 3.15). In addition, the ENPV (Fig. 3.25) is much larger now showing 

$6,200 Billion compared to $4,750 Billion when oil prices were regulated. This increase 

is due to additional income that was foregone by the government when domestic oil 

prices were subsidized and due to less capital investment in the oil sector. Thus, 

deregulating domestic oil prices should result in higher revenue without the need to 

increase oil production capacity.  

The effects described here are only the economic effects of prices deregulation. 

The social impacts are beyond the scope of this research and were not addressed.  
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Fig. 3.24—Probabilistic model results for EEPC ≥ 160 boe/year per capita with oil prices deregulation and higher gas 

prices. The figures are (clockwise from upper left): optimum oil production rates, optimum gas rates, capital 

investments distributions, and optimum share of power generation from each fuel source.  
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Fig. 3.25—Probabilistic model result with the changes proposed in this section 

compared to probabilistic model efficient frontier. 

 

 

3.6.2 Reduction in Alternative Energy Capital Costs 

 Capital costs of alternative energy sources for power generation are expected to 

decline with time due to technological advancement and/or due to establishing a learning 

curve with more practice. In this case, the probabilistic model for EEPC of 160 boe/year 

per capita was run assuming potential reduction in alternative energy capital costs. 

Capital costs are assumed to decline at an average rate of 2% per year starting in 2016. 

Fig. 3.26 shows that reduction in alternative energy costs have little effect on the 

overall energy production strategy mainly since investment in alternative energy sources 

to meet future power demand has been already established to be better than continue 



 

68 

 

dependence on fossil fuels. The ENPV is slightly higher than the case with high 

alternative energy capital costs (Fig. 3.25) mainly due to lower investment costs in 

alternative energy sources.  

3.6.3 Lower Income Elasticity of Demand 

 In developing countries, like Saudi Arabia, energy consumption is usually linked 

to economic growth and vice versa. This correlation is very large and reflected in high 

income elasticity of demand. However, as the economy developed and advanced (similar 

to developed nations), the correlation between domestic energy consumption and 

economic growth becomes weaker. For Saudi Arabia, this correlation is expected to be 

very strong especially in the short term but it is likely to get weaker in the long run. The 

model is run simulating this case by allowing the income elasticity of domestic demand 

to be lower than estimated values by multiplying it by a uniform distribution ~ 

Uniform(0.95, 1). 

 The results for EEPC of 160 boe/year per capita is shown in Fig. 3.27. The 

domestic energy demand is slightly less than the case with constant elasticity values 

(Fig. 3.15) especially for natural gas and total power demand. The ENPV is also higher 

mainly due to lower demand and thus lower investments and higher income from oil 

exports.  
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Fig. 3.26—Probabilistic model results for EEPC ≥ 160 boe/year per capita considering low alternative energy capital 

costs. The figures are (clockwise from upper left): optimum oil production rates, optimum gas rates, capital 

investments distributions, and optimum share of power generation from each fuel source.  
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Fig. 3.27—Probabilistic model results for EEPC ≥ 160 boe/year per capita considering possibly lower income elasticity 

of demand. The figures are (clockwise from upper left): optimum oil production rates, optimum gas rates, capital 

investments distributions, and optimum share of power generation from each fuel source. 
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3.7 Optimum Energy Strategy for Saudi Arabia 

Although the model developed in this work is coarse and models only primary 

energy flows, it can provide some insights into the optimum energy strategy for Saudi 

Arabia. These insights are based on model runs with EEPC of 160 boe/year per capita 

(especially Fig. 3.15) since this value ensures energy sustainability for Saudi Arabia, i.e., 

future generations will enjoy the same energy production capacity benefits as the current 

generation. Based on the model results and its assumptions, I conclude that Saudi Arabia 

should keep its oil production capacity at about 12.5 million bbl/day in the short term, 

suggested by the model for the EEPC of 160 boe/year per capita. In the long term, the 

model suggests increasing oil production capacity to about 14 million bbl/day.  

Natural gas production should be increased to about 20 Bcf/d by 2050. Most of this gas 

should be directed to meet the demand for other energy sectors (petrochemical, 

industrial, etc.) while limiting increase in gas directed to power generation. 

In addition, increases in future power demand should be met primarily by 

alternative energy sources. Not investing in alternative energy sources will require high 

gas production rates to meet future power demand.  With increasing gas production, 

power generation cost will increase due to increasing gas production costs, i.e., higher 

fuel cost. Additionally, not considering alternative energy sources for power generation 

leads to a less diversified and riskier energy portfolio, especially since oil and gas are 

exhaustible resources. Therefore, in order to keep the energy sustainability measure (or 

EEPC) at its current level of 160 boe/year per capita, Saudi Arabia should invest in 



 

72 

 

alternative energy sources—solar, wind, and nuclear—to meet its rising future power 

demand.  

Finally, if domestic oil prices were to be deregulated, the model suggests 

increasing revenue and ENPV would be realized while no increase in the oil production 

capacity would be required.  

3.8 Notes on Solutions Stability and Reproducibility 

 The model attempts to find the optimum solution of 6 variables by changing 216 

(6 variables × 36 time steps) values. In all model runs, RISKOptimizer within @RISK 

was set to run for 15,000 trials and stop the optimization process whenever the objective 

function value (ENVP) did not change by more than 0.01% for the last 500 trials. 

Although RISKOptimizer engines (GA and OptQuest) are designed to find a global 

optimum, these optimization setting may not guarantee finding that solution. The 

probabilistic model takes a long time to reach a stable solution. According to the @RISK 

User’s Manual, the optimization solution should improve if given more time to run. 

Thus, I expect the fluctuations in oil rate (e.g., Fig. 3.15) to decrease with longer run 

time, with little change in the overall results and conclusions.  
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4. SUMMARY AND RECOMMENDATIONS 

 

 

 

4.1 Summary 

In this work, I built a coarse, fully-probabilistic model for optimizing energy 

investments and policy that can be applied at a country or company level. The model 

considers all energy sources from a supplier perspective. It can handle primary energy 

flows at this stage. The model as presented in this work was specifically designed for 

Saudi Arabia’s energy system. However, it can be easily modified and generalized for 

another country’s application.  

The model was applied to Saudi Arabia in order to determine its optimum energy 

strategy, determine the value of investing in alternative energy sources, and compare 

deterministic and probabilistic modeling approaches.  

The model suggests that Saudi Arabia oil production capacity should remain at 

about 12.5 million bbl/d in the short term and increase to about 14 million bbl/d in the 

long term. It also suggests that most of the future power demand should be met using 

alternative energy sources. Otherwise, large gas production will be needed to meet such 

demand. With increasing gas production, power generation cost will increase due to 

increasing gas production costs, i.e., higher fuel cost. Comparing probabilistic to 

deterministic model results shows that deterministic models may underestimate future 

investments needed to meet projected power demand.  

A primary contribution of this work is addressing uncertainty quantification in 

energy modeling. Building probabilistic energy models is one of the challenges facing 
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the industry today. It is also the first model, to the best of my knowledge, that attempts 

to optimize Saudi Arabia’s energy portfolio using a probabilistic approach and 

addressing the value of investing in alternative energy sources. 

4.2 Recommendations for Future Work 

This project started as a very ambitious research topic. The ultimate goal is to 

build a global, fully-probabilistic energy-system model. However, the time required to 

complete such task was underestimated. Nonetheless, this work is the first step to 

achieving that ultimate objective.  

Therefore, I recommend the following possible extensions to the current model 

presented in this dissertation for future work:  

1. Run the model for a very long time and check if solution changes and stability 

improves.  

2. Improve the model running speed, especially the probabilistic version, by 

considering software that has similar capabilities as @RISK but runs much faster. 

3. Expand the model to include more energy sectors such as transportation, residential, 

industrial and commercial. 

4. Expand the model to include secondary energy flows. This requires adding modules 

for refinery and petrochemical processes. 

5. Once secondary energy flows are included, improve the energy sustainability 

measure by modifying its definition to reflect energy services as proposed by Greene 

(2010). 

6. Expand prices modeling to include all energy sources. 
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NOMENCLATURE 

 

 

 

Bbl  Barrels (of oil) 

Bcf  Billion Cubic Feet 

Boe Barrel oil equivalent 

Btu British thermal unit 

CPI Consumer Price Index 

DOE Department of Energy 

EEPC Expected Per-capita Annual Energy Production Capacity (Boe/year) 

EF Fixed expenses (cost) 

EIA U.S. Energy Information Administration  

ENPV Expected Net Present Value 

EPC Per-capita Annual Energy Production Capacity (Boe/year) 

ESME Energy System Modeling Environment 

GDP Gross Domestic Product 

GOR  Gas Oil Ratio, cf/bbl 

i Discount rate, % [fraction] 

IEA International Energy Agency 

MARKAL Market Allocation Model 

MBD Thousands Barrels per Day (for oil rate) 

NPV Net Present Value 

OPEC Organization of the Petroleum Exporting Countries 
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p  Unit price 

Pr [ ] Probability function 

R Total revenue 

t  time step index (years) 

Tcf  Trillion Cubic Feet 

TIAM TIMES Integrated Assessment Model 

TIMES The Integrated MARKAL-EFOM System 

TW∙h  Terawatt-hour (1012 watt-hour) 

UCL University College London 

U.S. United States 

USD Unites States Dollar 

USDOE United States Department of Energy 

β  Discount factor =1/(1 + 𝑖), where 𝑖 is the discount rate 

𝑞𝐺_𝑜𝑡ℎ𝑟  Gas used for other demand, Bcf/d 

𝑞𝐺_𝑝𝑤𝑟  Gas used for power generation, Bcf/d 

𝑞𝐺  Total gas production, Bcf/d 

𝑞𝑁  Total power generation from nuclear, TW∙h 

𝑞𝑂_𝑒𝑥𝑝𝑟𝑡 Exported oil rate, Bbl/d 

𝑞𝑂_𝑜𝑡ℎ𝑟  Oil used for other demand, Bbl/d 

𝑞𝑂_𝑝𝑤𝑟  Oil used for power generation, Bbl/d 

𝑞𝑂   Total oil production, Bbl/d 

𝑞𝑆  Total power generation from solar, TW∙h 
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𝑞𝑊  Total power generation from wind, TW∙h 

𝑞𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 Associated gas production, bcf/d 

𝑞𝑛𝑜𝑛𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  Nonassociated gas production, bcf/d 

𝑞𝑝𝑟𝑗𝑐𝑡𝑑 𝑝𝑤𝑟   Projected total power demand, TW∙h 
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APPENDIX A 

CONVERSION FACTORS 

 

 

 The following table shows approximate conversion factors used in this 

document. 

 

Unit 
Multiplied 

by 

Approximate 

Conversion 

Factor 

Equals Unit 

Barrel of Oil (bbl) × 5,848,000 = British Thermal Units (Btu) 

Cubic Feet of Natural 

Gas (cuf) 
× 1,025 = British Thermal Units (Btu) 

Kilowatt Hour (KWh) × 3,412 = British Thermal Units (Btu) 

Tonnes (metric) × 7.33 = Barrels 

 

Table A.1—Approximate conversion factors used in this dissertation. 

 

 

 

 




