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ABSTRACT

Improving Decoy Databases for Protein Folding Algorithms. (May 2014)

Aaron Lindsey
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy M. Amato
Department of Computer Science and Engineering

Predicting protein structures and simulating protein folding motions are two of the most

important problems in computational biology today. Modern folding simulation methods

rely on a scoring function which attempts to distinguish the native structure (the most

energetically stable 3D structure) from one or more non-native structures. Decoy databases

are collections of non-native structures that are widely used to test and verify these scoring

functions.

We present a method to evaluate and improve the quality of decoy databases by adding

novel structures and/or removing redundant structures. We test our approach on 13 different

decoy databases of varying size and type and show significant improvement across a variety of

metrics. The most improvement comes from the addition of novel structures indicating that

our improved databases have more informative structures that are more likely to fool scoring

functions. We also test our improved databases on a popular modern scoring function. We

show that they contain a greater number of native-like structures than the original databases,

thereby producing a more rigorous database for testing scoring functions. This work can aid

the development and testing of better scoring functions, which in turn, will improve the

quality of protein folding simulations.
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CHAPTER I

INTRODUCTION

Two important, and related, problems in computational biology are predicting protein struc-

tures and simulating protein folding motions. The protein’s most energetically stable struc-

ture, called the native structure, determines its function and how it interacts with other

proteins. Because a protein’s structure and function are so intimately related, predicting a

protein’s structure is of paramount importance. In addition, errors in the protein folding

process (i.e., folding from an unstructured chain of amino acids to the native structure)

cause a protein to fold incorrectly thereby altering its functional ability. Such alterations

are thought to lead to many devastating diseases including Alzheimer’s, Mad Cow, and

Parkinson’s disease [8]. Thus, the folding process itself remains an important area of study.

Many computational tools have been developed to study these problems because they are

either too difficult or too expensive to tackle experimentally. Protein structure prediction [26]

is a widely studied area. One notable method is Rosetta [22] which uses a simplified model

(similar to [28]) to predict the low-resolution protein structure. In response to increased

research in protein structure prediction, the casp [24] competition emerged as a platform to

test structure prediction methods. Molecular dynamics [18] and Monte Carlo simulations [9]

have been widely used to simulate protein motion. All of these methods rely on a scoring

function, typically an energy function. A scoring function attempts to distinguish between

native and non-native structures, ranking them in terms of their energetic feasibility. Thus,

the accuracy of these methods largely depends on the accuracy of the scoring function used.

In response to this, decoy databases have been developed to test and verify these scoring

functions [23]. A decoy is a computer-generated protein structure that is similar to the

native structure. Decoys test the ability of a scoring function to identify the protein’s native

structure from among a set of incorrect protein conformations. If the scoring function can

correctly identify the native structure, the function is said to be correct. Such tests where
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decoys attempt to “fool” the scoring function are commonly used to test protein folding

algorithms. Thus, if we can create higher quality decoy databases, we can improve protein

folding algorithms by improving the scoring functions they rely on.

Many large decoy databases for specific proteins have already been compiled for the purpose

of testing and improving scoring functions [23, 21, 30]. However, there is not currently a

good way to take these existing databases and improve them so that they are more effective

at testing modern scoring functions. Here, we strive to generate higher quality decoy sets in

order to more rigorously test these functions.

The contributions of this research are methods for:

• evaluating the quality of decoy databases,

• improving the quality of decoy databases by adding novel structures, and

• improving the quality of decoy databases by removing redundant structures.

In order to evaluate the quality of decoy databases, we must describe the attributes of a

good database. First, an effective database should contain structures with an overall average

potential energy that is similar to the energy of the native structure. This makes it difficult

for the scoring function to distinguish between the native structure and the other decoys. A

high quality database should also contain structures that cover the potential energy space of

the protein. This is the set of all possible conformations and their associated energies. We

would like to have a wide variety of structures in the set so that we can be sure that various

local minima throughout the energy space are represented by the set. Finally, the database

should contain as few structures as possible to cover the potential energy space. In other

words, it should not contain redundant structures, which are non-informative structures

that are very similar to another structure in the set. We later define a variety of metrics to

measure the quality of an existing decoy database based on these attributes.

We propose two methods of building high quality decoy databases using existing databases:

The addition of novel structures to and the removal of redundant structures from the existing
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database. Before the improvement process, we create a set of filters which define the criteria

for a decoy structure to be considered acceptable in the final database. Various filters and

their objectives are described later. We start by generating a set of sample structures that

we use to add to the existing database. The size of the sample set is chosen to achieve

maximum improvement while maintaining a reasonable number of samples, and the sample

structures are created using information from the native structure and the existing decoys

to earn a low potential energy score. We then apply our set of filters to the sample set to

obtain a set of novel informative structures and to the existing decoy database to remove

any redundant structures. The final database is a collection of structures from the existing

database and structures generated using our sampling methods.

We test our approach on 13 different decoy databases of varying size and type and show

that we are able to generate higher quality decoy databases across a variety of metrics. We

find that most improvement stems from the addition of structures by our sampling methods.

Thus, our improved databases contain more informative structures that are more likely to

fool modern scoring functions. We also test our improved databases on QMEAN [4], a

popular modern scoring function, and show that they contain a greater number of structures

ranked more native-like than the actual native state than the original databases for many of

the proteins studied. Our hope is that these methods will be applied to many of the existing

decoy databases and in turn will lead to more accurate protein folding algorithms.
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CHAPTER II

PRELIMINARIES AND RELATED WORK

In this chapter we discuss related work in the areas of protein models, scoring functions, and

existing decoy databases. We also discuss existing methods for sampling conformations as

we will use these to add conformations to existing decoy sets.

Protein Models

A protein is composed of a chain of amino acids that determine its function. While the

amino acids share a common backbone, each has a unique side chain that identifies the type

of amino acid. Figure II.1 shows an illustration of an amino acid’s structure.

When hydrogen bonds form between atoms on the protein backbone, secondary structures

can develop. α helices and β sheets make up the majority of secondary structures. An

α protein does not contain any β sheets, and likewise a β protein does not contain any α

helices. If a protein contains both α helices and β sheets, we call it an α/β mixed protein.

The most accurate protein model is the all-atoms model. It takes all bond angles and

torsional angles into consideration. However, in many cases the all-atoms model is too

computationally expensive, particularly for larger proteins.

A coarser-grained approach models a protein as a series of φ and ψ torsional angles. All other

bond angles and all bond lengths remain fixed. This is a common modeling assumption as

bond lengths and angles typically only undergo small fluctuations [26]. In this φ−ψ model,

a protein conformation with n amino acids has 2n degrees of freedom. Side chains are

modeled as spheres with zero degrees of freedom located at the Cβ position. This model has

been successfully used to simulate the correct order of large folding events for several small

proteins [2].
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Fig. II.1. An example of our amino acid model for Alanine. We model the side
chain as a sphere around Cβ and do not explicitly represent the hydrogen atoms
attached to Cβ.

Regardless of the model, a protein’s potential energy landscape is defined as the set of

all conformations and their associated potential energies. Figure II.2 shows a theoretical

energy landscape where all possible conformations are represented by the x − y plane. The

native structure of a protein is thought to be located at the lowest point on a funnel-shaped

landscape. The landscape may contain several local minima which are distinct from the

native energy basin.

Energy Functions

The atoms in the protein interact not only with each other but also with the surrounding

solvent through bonds and non-bond interactions such as electrostatic interaction and van

der Waals forces. A potential energy function determines conformation validity by taking

into account these different atom interactions.

Generally, potential functions that compute all pairwise interactions for a molecule are called

all-atoms functions, e.g., CHARMM [6] and AMBER [31]. All-atoms functions are the most

accurate since they consider all possible interactions. However, they are computationally

expensive and not feasible for many large proteins.

7



Fig. II.2. The potential energy landscape of a protein is the set of all confor-
mations and their associated potential energies [7]. The conformation space of
a protein can span hundreds of degrees of freedom; it is not limited to only the
x− y plane.

Instead of modeling all possible interactions, coarse-grained functions only consider side

chain contributions to approximate the potential energy. Recall that in the φ − ψ model,

each side chain is modeled as a sphere located at the Cβ atom. If two side chains are too

close (less than 2.4 Å), the conformation is rejected. Otherwise, we use the energy equation

from Levitt et. al.:

Utot =
∑

restraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc}+ Ehp, (II.1)

where Kd is 100 kJ/mol, di is the distance of a hydrogen or disulphide bond in native

structure, and d0 = dc = 2Å [18]. This energy function has been shown to produce folding

simulation results similar to an all-atoms function in a fraction of the time [25].

Decoy Sets

Decoys are computer-generated protein structures. Decoy databases have been used to im-

prove the accuracy of scoring functions [13, 19, 27]. A scoring function is the component
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of a protein folding algorithm that distinguishes between native and non-native structures.

Thus, the performance of the algorithm is dependent on the accuracy of the scoring function.

Decoy databases attempt to “fool” a scoring function into choosing a non-native structure

as the native. Some existing decoy databases include (i) the Decoys ‘R’ Us set [23], (ii) the

Rosetta set [30], and (iii) the Critical Assessment of Protein Structure Prediction (casp)

set [21].

The Decoys ‘R’ Us set contains three subsets: the single decoy set, the multiple decoy set,

and the loop decoy set. The single decoy set only contains the native structure and one

decoy structure. The purpose of this set is to test whether a scoring function can distinguish

between these two structures. The multiple decoy set and the loop decoy set each contain

many decoy structures, and they are both used to verify that a scoring function can select a

conformation with low RMSD to the native structure.

The Rosetta set is generated by the Rosetta protein structure prediction method developed in

the Baker Laboratory. The Rosetta prediction method can generate low-resolution structures

by adding side chains and making structure adjustments [5].

casp is a protein structure prediction competition held every other year. Competition

submissions are collected as a decoy database. Participants use their own approaches to

predict the three-dimensional structure of the given amino acid sequence. In order to evaluate

the results, the distances between the Cα positions in the predicted model and the target

structure are calculated [10] and a score is assigned showing how similar the prediction is

compared to the target [32].

Some work has been proposed to improve protein decoy sets. For example, the Rosetta set

has been improved by adding back the side chains and running the structures through an

energy minimizer [30]. Other work uses a library of short fragments to generate protein

decoys by assembling them together given the protein’s geometric constraints [16]. Most

assembled proteins are 6Å from the native structure. Fragments of varying lengths are

used in [20] to refine near-native protein decoy structures. While this multi-level approach
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produces decoy structures closer to the native structure, this method is dependent on the

quality of the input fragments.

Sampling Conformations

Algorithms in the field of motion planning and robotics use sampling-based methods to

generate valid robot conformations. Some examples include the Probabilistic Roadmap

(prm) method [15] and Rapidly-Exploring Random Trees (rrt) [17]. Both of these strategies

rely on a sampling method to find valid conformations for a robot in its environment.

In the context of protein folding, sampling methods generate protein conformations by setting

a value for each degree of freedom in the protein model. Thus, for the φ− ψ protein model,

a conformation q is generated by assigning a value to each φ and ψ angle. The conformation

is accepted based on its potential energy E(q) with the following probability:

P (acceptq) =



























1 if E(q) < Emin

Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

. (II.2)

Values for each degree of freedom may be generated either directly from the amino acid

sequence or using an existing conformation to bias generation. This existing conformation,

for example, may be the native structure or a decoy structure.

The simplest strategy is to sample each φ and ψ angle uniformly at random. The resulting

sample may be passed through an energy minimization function to improve its energetic

feasibility. While this scheme has the ability to generate samples all across the energy

landscape, it does not provide dense coverage around more interesting regions, e.g., the

native energy basin. Due to the high dimensionality of the energy landscape, it would

require an infeasible number of samples to cover these areas well.

To improve the coverage in the native energy basin, some sampling strategies bias sampling

around the known native structure. Gaussian sampling [2] selects values for each φ and
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ψ angle from a set of normal distributions centered around the native structure. Iterative

Gaussian sampling [1] applies such perturbations iteratively. Instead of always sampling from

a set of normal distributions centered around the native structure, the normal distributions

are centered around seeds, or sampled conformations from prior iterations. Figure II.3

illustrates this process.

(a) (b) (c) (d)

Fig. II.3. Iterative Gaussian sampling gives a denser distribution near the native
structure and a sparse distribution as they grow outward.
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CHAPTER III

METHODS

In this chapter we describe our approach to evaluating and improving the quality of de-

coy databases. We first discuss how to evaluate a decoy set using various metrics. We

then present two types of improvement operations: adding novel structures to the set and

removing redundant structures from the set.

Decoy Set Evaluation

Because our methods improve existing decoy sets, we first develop strategies for analyzing

the quality of decoy sets. These are used later to show what advantages the improved set

provides over the original. We present several quantitative metrics to compare decoy sets

and describe how their values are calculated in the experiments.

Z-Score

The z-score (or standard score) indicates the number of standard deviations between the

native structure energy and the average energy of a decoy set [30]. Researchers frequently

use z-score to determine the likelihood that a scoring function would pick the native structure

from the other structures in the set. A positive z-score means the native structure has a

higher energy than the average energy of the set, and a negative z-score means the native

structure energy is lower than the average energy. A z-score of zero indicates the native

structure energy is exactly the same as the average energy of the decoys. The z-score of a

decoy set D is:

ZScore(D) =
E(D.native)−Eavg(D)

Estd(D)
(III.1)

where E(d) is the energy of a structure d, Eavg(D) is the average energy of D, and Estd(D)

is the standard deviation of the energies in D. A desirable decoy set has structures with low
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energies close to the native structure. Thus, we would like to see the z-score approach zero

after the improvement process.

Improvement Score

Given an original decoy set D and an improved decoy set D′, the improvement score returns

the change in z-score per sample between the two sets. We define this metric to help deter-

mine the optimal sample set size for our decoy selection algorithm when improving decoy

sets. The improvement score between D and D′ is:

Improvement(D,D′) = ZScore(D′)
|D′|

− ZScore(D)
|D|

. (III.2)

Higher values indicate greater changes in z-score.

Minimum Distance

The minimum distance metric measures the average minimum distance from each decoy

structure to any other decoy structure in the set. In other words, it is the average distance of

each structure to its closest neighbor measured by some distance metric δ, (see Algorithm 1).

Algorithm 1 MinDist(D, δ)

Input. A decoy set D and a distance metric δ.
Output. The average minimum distance from a structure in D to its closest neighbor as

measured by δ.
1: dtotal ← 0
2: for every i ∈ D do

3: dmin ←∞
4: for every j ∈ D \ {i} do

5: dmin = min(dmin, δ(i, j))
6: end for

7: dtotal ← dtotal + dmin

8: end for

9: return dtotal/|D|

13



We define this metric to measure the diversity of structures in the set. As the minimum

distance metric increases, the diversity of structures included in the set also increases. Pos-

sible distance functions include Euclidean distance in φ−ψ-space, CαRMSD, and a distance

based on the differences between the rigid and flexible regions in each structure [29].

Decoy Set Improvement

There are two main phases in the improvement of decoy sets. First, samples are generated

on the protein’s energy landscape. This set may be generated in a variety of ways and is

discussed in further detail below. In the decoy selection phase, some structures are chosen

from the original set D to be removed and some are chosen from the sample set S to be

added. Decoy selection is discussed below. Algorithm 2 describes the approach.

Algorithm 2 ImproveDecoySet(D,F, n,m)

Input. A decoy set D, a set of filters F , a number of samples to generate n, and a number
of attempts to generate a single sample m.

Output. An improved decoy set D′.
1: S ← GenerateSamples(n,m)
2: D′ ← SelectDecoys(D,D, F ) ∪ SelectDecoys(D,S, F )
3: return D′

Sample Set Generation

To improve decoy sets by adding structures, we must first generate a set of samples from

which to select. Algorithm 3 describes this process where GenerateSample() returns a

structure created using one of the methods discussed below and Valid(s) returns true if the

structure s is energetically feasible as given by Equation II.2.

Sampling Methods. We study several different sampling methods described below.

• Uniform Sampling. GenerateSample() returns a structure at a random point on

the energy landscape by simply selecting values for each φ and ψ angle uniformly at

random. This will generate many unwanted high-energy structures but provides good

14



Algorithm 3 GenerateSamples(n,m)

Input. A number of samples to generate n and a maximum number of attempts to generate
a single sample m.

Output. A set of samples S.
1: S ← ∅
2: for i = 0 . . . n do

3: for j = 0 . . .m do

4: s← GenerateSample()
5: if Valid(s) then

6: S ← S ∪ {s}
7: break

8: end if

9: end for

10: end for

11: return S

coverage of the landscape. Unlike the other methods, it is not biased by any input

structure.

• Sampling with Native Bias. GenerateSample() returns structures from iterative

Gaussian sampling [1]. This sampling approach has been successfully applied to simu-

late the folding process on larger proteins. It generates many low energy samples, but

they are usually confined to the native energy basin.

• Biased Sampling from Low-Energy Decoys. Instead of starting from the native structure

as iterative Gaussian sampling [1], this approach begins the iteration from the decoy

structures with the lowest energy. To our knowledge, this is a novel approach to

generating low-energy structures. As with native bias sampling, perturbations are

selected from a set of normal distributions. The advantage is that generated structures

have low energies and are not confined to the native energy basin. However, it typically

produces samples near the energy basins of the selected decoys.

These methods may be combined to form a hybrid sampler that exploits the strengths of

each method. Such a sampler first adds the native structure to the set of seeds as in iterative

Gaussian sampling [1]. For the remaining seeds in the set, it selects half from the lowest
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energy decoy structures and half from uniform sampling. This ensures that there are plenty

of low-energy structures in the final set that are located throughout the energy landscape

in many different local minima. Such structures are important to include because they are

most likely to confuse a scoring function.

Calculating Sample Set Size. For each sample set, we must specify n, the number of

sample structures to generate. This value affects the quality of the final decoy set because

the decoy selection algorithm uses the sample set size to determine how strict to make its

acceptance criteria. To calculate the ideal sample set size for a specific decoy set, we monitor

the rate of change in z-score with increased n and select the ideal size as the value at which

this rate of change peaks. This is a common learning algorithm technique (called the elbow

criterion) used to help determine parameter values [14].

Figure III.1 shows the z-score and its rate of change for various sample set sizes using a decoy

set for 4pti [23]. The original decoy set contained 334 structures. We search set sizes above

and below this value and average our results over 10 runs. The set size that maximizes the

rate of change in the z-score for this run is approximately 1350 (denoted by the triangle).

Decoy Selection

Given an existing decoy set D and a set of sample structures S, we would like to add viable

structures from S to D and remove redundant structures from D. To select such structures,

we apply a filter to each one. We investigate the following filters:

• Energy Filter. This filter chooses all structures whose energy is less than some thresh-

old.

• Minimum Distance Filter. This filter selects structures whose distance to their closest

neighbor as determined by some distance metric δ is greater than some threshold.

Filter thresholds are made stricter if the given sample set is large or more lenient if the

sample set is small.
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Fig. III.1. Z-Scores (below in blue) and their rate of change (above in red) using
the 4pti decoy set. The rate of change peaks at approximately 1350 samples
(denoted by the triangle).

Algorithm 4 illustrates how a viable set is formed from a decoy set D, a sample set S, and a

set of filters F . The function SetThreshold(D) computes the threshold for the filter f by

finding average values for f over D. Once a threshold is computed, structures are removed

if they fail to meet the threshold.

In the case where S is a generated sample set, new structures will be chosen. In the case

where S = D, only the viable structures from D will be returned.

17



Algorithm 4 SelectDecoys(D,S, F )

Input. A decoy set D, a sample set S, and a set of filters F .
Output. A set of viable decoy structures V from S.
1: V ← S
2: for every f ∈ F do

3: f.SetThreshold(D)
4: for every s ∈ S do

5: if ¬f.pass(s) then

6: V ← V \ {s}
7: end if

8: end for

9: end for

10: return V
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CHAPTER IV

RESULTS AND DISCUSSION

We apply our methods to existing decoy sets and show that they are able to generate sets with

lower energies and more diverse structures that are more likely to fool protein folding scoring

functions. All decoy sets were obtained from the Decoys ‘R’ Us database [23] and are listed in

Table IV.1. We study both α proteins and α/β mixed proteins including larger proteins (e.g.,

1gdm with 153 residues) and larger decoy sets (e.g., 1eh2 with 2398 conformations). The

original decoys are collected from different sets with different features [12]: lmds is built and

refined by known secondary structure information, lattice ssfit is obtained from lattice

models, 4state reduced sets have correlation between energy and RMSD, fisa, fisa casp,

and fisa casp3 are collected by Baker’s group, and hg structal is generated by homology

modeling for globins. All results are averaged over 10 runs.

Table IV.1
Decoy sets studied from the Decoys ‘R’ Us database [23].

Original Improved Size
Type Protein Residue Set Name Size Avg. Std.

α/β

1fca 55 lattice ssfit 1994 2024.20 15.22
4pti 58 lmds 334 358.50 29.86
1igd 61 lmds 501 512.40 6.92
1sn3 65 4state reduced 660 630.20 7.92
1ctf 68 4state reduced 630 592.90 12.41
4icb 76 fisa 500 591.70 7.46
1eh2 79 fisa casp3 2398 2568.10 13.08

α

1r69 63 4state reduced 676 753.60 5.12
2cro 65 lmds 501 588.20 7.28
1nkl 78 lattice ssfit 1376 1575.90 17.50
1jwe 114 fisa casp 1407 1768.10 4.11
1ash 147 hg structal 30 37.00 0.45
lgdm 153 hg structal 30 34.00 1.41
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Sample Set Generation

Recall from Chapter III that we select the desired sample set size as the one that maximizes

the z-score rate of change over various set sizes. For each protein, the entire process of

sample set generation and decoy selection is carried out for different sample set sizes. We

use the hybrid sampling scheme to generate samples. Figures IV.1 and IV.2 display the z-

scores and their rates of change for different sample set sizes for α/β proteins and α proteins,

respectively. The set with the highest improvement score rate of change (denoted by the

triangle) is used for all subsequent experiments.

In most cases, we find a peak in z-score rate of change. This peak will be selected as the

sample set size for generating candidate decoy structures. For protein 1ash whose original

decoy set size is small (30 structures), the sample set size is selected as the second highest

z-score ratio within double of the original size because the sample set size with the maximum

ratio is too small of a set size.

Decoy Selection

After we compute the desired sample set size, we perform our decoy selection methods (see

Chapter III). The original decoy set D and the sample set S can be broken down into four

subsets:

• redundant decoy structures DD from D,

• viable decoy structures DV from D,

• redundant sampled structures SD from S, and

• viable sampled structures SV from S.

Figure IV.3 shows the relationship of these four subsets. The final improved decoy set is

DV ∪ SV and is a combination of two operations: removing redundant structures from D

(yielding DV ) and adding new structures from S (yielding SV ).
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Fig. IV.1. Improvement scores (below in blue) and their rate of change (above
in red) for each α/β protein. The final selected sample set size has the peak in
the rate of change (denoted by the triangle).
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Fig. IV.2. Improvement scores (below in blue) and their rate of change (above
in red) for each α protein. The final selected sample set size has the peak in the
rate of change (denoted by the triangle).
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Fig. IV.3. The relationship between each of the subsets DD, DV , SD and SV from
the original decoy set D and the sample set S. The final set, in red, is DV ∪ SV .

Figure IV.4 summarizes the resulting z-score, improvement score, and minimum distance

value for each protein. For each metric, we show the contribution from each operation

(removing redundant decoys (DV ) and adding new samples (D ∪ SV )) and from their com-

bination (DV ∪ SV ).

When the z-score approaches zero, the native structure energy is harder to distinguish among

the energies of the other structures in the set. For every protein in Figure IV.4(a), the z-scores

of D and DV are very similar. Thus, simply removing structures does not greatly impact

the z-score. However, once we add new structures from our sampling approach (D ∪ SV ),

the z-score drops drastically with comparable z-scores to the final set (DV ∪SV ). Therefore,

the main contributors to z-score improvement are the structures generated by our sampling

approach.

Recall that the improvement score shows the change in z-score per sample between two sets.

A higher value indicates that the change (either structure addition, removal, or both) has

a greater impact on the z-score. Figure IV.4(b) displays the improvement scores across all

tested proteins. We again see that adding structures provides a decoy set with better quality

than simply removing redundant structures. Proteins 1ash and 1gdm with the smallest

original sets show the largest improvement scores.
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Fig. IV.4. Resulting metrics of improved decoy sets and their subsets.
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The last metric we examine is the minimum distance between neighboring structures which

indicates the diversity of the structures. A larger distance signifies greater structural diversity

and implies a greater ability to fool different scoring functions. Figure IV.4(c) shows how

this metric changes for each operation. As expected, when decoys are removed (DV ), the

minimum distance increases, and when adding decoys (D ∪ SV ), the minimum distance

decreases. For all proteins studied, the minimum distance isn’t affected significantly by

adding decoys (D ∪ SV ) implying that they are informative structures.

Set Distribution

Table IV.2 shows the contributions from each type of sample (e.g., from the original decoy

set, from uniform sampling, etc.) to the final improved decoy set. In the final improved

decoy set, most samples come from the original set (DV ) and the remaining largely come

from native bias sampling. Uniform sampling and decoy bias sampling play a very small role

because they typically fail to pass the filters employed in the decoy selection phase, either

because their energies are too high or they are too similar to structures already in the final

set.

Figures IV.5 and IV.6 show the potential vs. CαRMSD from the native structure distribution

for α/β and α proteins, respectively. In each plot, three subsets are displayed: DV , DD and

SV . We see that in general, the added structures have lower energies and cover a wider range

of CαRMSD than the original structures. While most added structures are located near the

native structure, there are also some structures with high CαRMSD. These structures are

especially valuable because they could be located in a local minima of the energy landscape

and may be more likely to fool scoring functions.

Improved Decoy Sets in Practice

Here we assess the ability of our improved decoy sets to “fool” a modern scoring function.

In protein structure prediction, scoring functions are often used to guide the search for the

native structure. Thus, they must be able to accurately detect the native structure from a
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Fig. IV.5. Plots of potential vs. CαRMSD for DD (red circles), DV (blue ‘+’s),
and SV (green ‘*’s).
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Fig. IV.6. Plots of potential vs. CαRMSD for DD (red circles), DV (blue ‘+’s),
and SV (green ‘*’s).
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Table IV.2
Set distributions for the initial generated samples S and the final improved decoy
sets DV ∪ SV from Table IV.1.

Type Protein
DD/D % Samples in S % Samples in DV ∪ SV

(%) Uniform Native Bias Decoy Bias Uniform Native Bias Decoy Bias DV

α/β

1fca 6.37 10.17 89.45 0.38 0.00 8.49 0.00 91.51
4pti 16.83 1.70 98.13 0.16 0.00 22.48 0.00 77.49
1igd 11.28 11.90 88.00 0.10 0.00 13.25 0.00 86.75
1sn3 13.62 5.76 94.04 0.20 0.00 9.54 0.00 90.46
1ctf 21.95 7.01 92.73 0.26 0.00 17.07 0.00 82.93
4icb 4.94 7.55 92.40 0.05 0.00 19.67 0.00 80.33
1eh2 2.16 14.34 85.62 0.04 0.00 8.64 0.00 91.36

α

1r69 6.52 9.59 90.27 0.14 0.00 16.12 0.00 83.85
2cro 0.18 5.15 94.55 0.30 0.00 14.84 0.03 85.02
1nkl 10.76 8.94 90.43 0.63 0.00 22.07 0.00 77.92
1jwe 0.00 0.07 99.92 0.02 0.00 20.42 0.01 79.58
1ash 0.00 0.00 100.00 0.00 0.00 18.92 0.00 81.08
1gdm 0.67 0.00 100.00 0.00 0.00 12.35 0.00 87.65

set of possible candidates. Qualitative Model Energy ANalysis (QMEAN) [4] is a composite

scoring function incorporating several different structural descriptors including local geom-

etry features for discriminating native-like torsional angles from others, secondary structure

features for long-range interactions, burial status, and solvent accessibility. QMEAN showed

a statistically significant improvement over 5 other well-established scoring functions on de-

coy sets compiled from molecular dynamics simulations and CASP competition predictions.

Table IV.3 compares the number of structures QMEAN ranked higher than the native state

between the original Decoys ‘R’ Us dataset [23] and our improved decoy dataset. The

QMEAN webserver was used to generate rankings [3]. In 3 out of 13 proteins studied, our

improved decoys sets were able to produce more structures that “fooled” the scoring function

than the original set. Thus, even on a sophisticated, modern scoring function, our improved

decoy sets are able to indicate areas of weakness in the scoring function. Note that our

improved sets are never worse than the original sets. This means that their quality does not

decrease after we remove the structures in DD.
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We also examine the structural differences between the native structure and the decoy with

the highest QMEAN score for the 4pti set (denoted by the triangle in Figure IV.5(b)).

Figure IV.7 shows the superimposition between the native structure (displayed in green)

and the highest QMEAN ranked decoy (displayed in blue) for 4pti. The decoy has an extra

α helix (top right) and shorter β sheets which cause it to score higher in QMEAN.

Fig. IV.7. Superimposing the native structure (shown in green) and the decoy
scored the highest in QMEAN (shown in blue) for 4pti by PyMOL [11]. The
decoy has an extra piece of secondary structure causing it to score higher on
QMEAN.
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Table IV.3
Comparison of the number of structures ranked higher than the native state by
the QMEAN scoring function [4].

Type Protein
# Structures Ranked
Higher than Native

Original Improved Impr. - Orig.

α/β

1fca 0 0 0
4pti 0 46 46
1igd 0 0 0
1sn3 0 0 0
1ctf 0 9 9
4icb 0 0 0
1eh2 0 6 6

α

1r69 0 0 0
2cro 0 0 0
1nkl 0 0 0
1jwe 7 7 0
1ash 0 0 0
1gdm 0 0 0
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CHAPTER V

CONCLUSION

We describe a new method for evaluating and improving the quality of decoy databases. Our

method removes redundant structures and generates new low energy structures in varied

locations on the energy landscape resulting in higher quality decoy sets that are more likely

to fool the scoring functions of modern protein folding algorithms.

We tested our approach on 13 different decoy databases of varying size and type and showed

significant improvement over the original set. Interestingly, most of the improvement came

from adding structures not originally covered by the set indicating a capacity to fool more

scoring functions. We also show that our improved databases produced a greater number of

structures ranked more native-like by a popular modern scoring function than the original

databases for many of the proteins studied.

In the future, we plan to implement a web service to improve user-submitted decoy databases.

Our hope is that others can use these improved databases to develop better protein folding

algorithms and more accurate folding simulations.
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