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ABSTRACT

Modern High Performance Computing (HPC) systems are complex, with deep

memory hierarchies and increasing use of computational heterogeneity via accelera-

tors. When developing applications for these platforms, programmers are faced with

two bad choices. On one hand, they can explicitly manage machine resources, writ-

ing programs using low level primitives from multiple APIs (e.g., MPI+OpenMP),

creating efficient but rigid, difficult to extend, and non-portable implementations.

Alternatively, users can adopt higher level programming environments, often at the

cost of lost performance.

Our approach is to maintain the high level nature of the application without

sacrificing performance by relying on the transfer of high level, application semantic

knowledge between layers of the software stack at an appropriate level of abstraction

and performing optimizations on a per-layer basis. In this dissertation, we present

the STAPL Runtime System (stapl-rts), a runtime system built for portable per-

formance, suitable for massively parallel machines. While the stapl-rts abstracts

and virtualizes the underlying platform for portability, it uses information from the

the upper layers to perform the appropriate low level optimizations that restore the

performance characteristics.

We outline the fundamental ideas behind the design of the stapl-rts, such as the

always distributed communication model and its asynchronous operations. Through

appropriate code examples and benchmarks, we prove that high level information

allows applications written on top of the stapl-rts to attain the performance of

optimized, but ad hoc solutions. Using the stapl library, we demonstrate how this

information guides important decisions in the stapl-rts, such as multi-protocol
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communication coordination and request aggregation using established C++ pro-

gramming idioms.

Recognizing that nested parallelism is of increasing interest for both expressivity

and performance, we present a parallel model that combines asynchronous, one-sided

operations with isolated nested parallel sections. Previous approaches to nested

parallelism targeted either static applications through the use of blocking, isolated

sections, or dynamic applications by using asynchronous mechanisms (i.e., recursive

task spawning) which come at the expense of isolation. We combine the flexibility of

dynamic task creation with the isolation guarantees of the static models by allowing

the creation of asynchronous, one-sided nested parallel sections that work in tandem

with the more traditional, synchronous, collective nested parallelism. This allows

selective, run-time customizable use of parallelism in an application, based on the

input and the algorithm.
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1. INTRODUCTION

Programming in a general and portable way has always been a hard task. Pro-

gramming in parallel is an even harder task, as performance has to be guaranteed not

only for current parallel hardware, but also for future ones, without compromising

portability. This task becomes even more difficult considering the complex hierarchy

of current petascale and future exascale machines.

SmartApps [1] attempts to address this complexity by adopting application-

centric computing. The application is responsible for transferring information from

the top (application) to the bottom (machine). The application is at the forefront

and flows contextual information that each layer can use to adapt, increasing oppor-

tunities for optimization.

In this dissertation, we present our approach to supporting the SmartApps

philosophy of “measure, compare, and adapt if beneficial” at the runtime system

level. We will describe the motivation, concept, design, and implementation of the

STAPL Runtime System (stapl-rts), a runtime system targeted to user-friendly

and portable programming frameworks for High Performance Computing (HPC).

Our research is focused on providing a layer that abstracts and virtualizes the

underlying platform and provides a shared-memory view of the system, a communi-

cation model based on Remote Method Invocations (RMIs) on distributed objects,

support for nested parallelism, and the ability to easily partition the machine. The

stapl-rts provides a common interface for both shared-memory and distributed

memory platforms, while still fully exploiting the platform capabilities, providing

portability and performance.

We will describe a runtime system that is modular and configurable, so that it
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can be easily ported onto new platforms, and adaptive, so as to take into account

runtime parameters and offer the best performance possible. The stapl-rts will

be evaluated both in isolation and through its use by the Standard Template Adap-

tive Library (stapl) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], a framework

developed in C++ for parallel programming that uses the stapl-rts to offer par-

allel algorithms, distributed data structures and abstract data types that decouple

a container interface from the underlying storage that have interfaces similar to the

(sequential) ISO C++ Standard Template Library (stl) [17].

1.1 Contributions

The runtime system presented in this dissertation, called stapl-rts, makes the

following novel contributions.

• Exploiting machine hierarchy through nested parallelism. We will present

an execution model that takes advantage of the machine hierarchy through en-

abling nested parallel algorithms to be mapped and execute on hierarchical ma-

chines. Our model allows the asynchronous creation of nested parallel sections as

opposed to prior work, enabling new applications for nested parallelism.

• Transfer of application semantics to the runtime. We employ annotations

based on common programming idioms, for example move semantics [18] and im-

mutable sharing [19], as well as algorithm driven optimizations, to perform instance

specific optimizations, such as leveraging shared memory and relaxing communi-

cation ordering guarantees.

• Unification of shared and distributed memory communication using

asynchronous primitives. The stapl-rts offers a Remote Method Invoca-

tion (RMI) based communication model on distributed objects over both shared
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and distributed memory. It abstracts the machine hierarchy levels, offering a uni-

fied interface that releases the users from the intricacies of hybrid communication

solutions (e.g., hybrid OpenMP and MPI) without sacrificing performance.

• Causal communication ordering with support for explicit relaxation.

The stapl-rts provides causal ordering for all communication with the ability

to explicitly relax it if an algorithm or data structure allows. We will discuss

how causal ordering is used in real use cases to provide a consistency model, such

as in distributed containers, and we will show the effects that algorithmic driven

relaxation of ordering requirements can have on performance.

1.2 Outline

This dissertation is organized as follows. In Section 2 we begin with a discussion

of the challenges and the requirements that need to be met to support massively

parallel machines with complex hierarchies. We will describe the qualities that a

runtime system has to exhibit to fulfill those requirements, our approach to meeting

those requirements, and a brief comparison with related work.

In Section 3 we describe the design of the stapl-rts, focusing on its general

concepts, the communication and task execution interfaces offered, while Section 4

will provide a short overview of the experimental setup used in this dissertation.

Section 5 introduces the Standard Template Adaptive Parallel Library (stapl)

as a use case of the concepts, execution model, and primitives of the stapl-rts.

In Section 6 we demonstrate how to get advantage of shared memory by passing

high level information from the application, through stapl, to stapl-rts.

Section 7 will present a novel execution model based on asynchronously created

concurrent nested parallel sections. We describe the concepts, interfaces and how

the execution progresses when mapping an hierarchical algorithm, expressed using
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nested parallelism, to the physical machine hierarchy.

Finally, Section 8 outlines the communication ordering guarantees and how they

are used by stapl components and evaluates the effects of relaxing these guarantees.

We conclude this dissertation with Section 9, which will summarize our findings.

The appendices provide useful insight on how code using the stapl-rts looks like

compared to MPI, some implementation details of the stapl-rts and a high level

overview of the code organization.
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2. RUNTIME SYSTEMS FOR HIGH PERFORMANCE COMPUTING

2.1 Runtime System Definition

Programming languages and frameworks often specify an execution model that

dictates how execution takes place during the lifetime of an application. The com-

ponent that implements part of the execution model and offers features that support

it is the runtime system. As framed in [20], a runtime system is a software com-

ponent that provides essential services to a language or a library and applications

implemented on top of them.

Runtime systems are usually domain and perhaps language specific. They are

developed around specific needs and requirements of the upper layers, offering an

abstraction layer of the physical system. For example, various languages, such as

FORTH [21], Lisp [20] and even modern ones, such as Microsoft .NET [22], depend

on a specialized runtime system that offers the environment required for applications

written in those languages to execute.

For the domain of High Performance Computing (HPC), runtime systems face

multiple challenges. They have to support parallel execution through a model that

can be easy to program and reason about while not hindering scalability. They are

required to abstract a wide range of platforms, which can range from small work-

stations, or even embedded systems, to large, networked clusters of nodes, without

compromising performance.

Runtime systems targeting HPC applications abstract, or virtualize, the under-

lying platform, providing a layer that promotes application portability and ease of

development, while at the same time attempt to take advantage of all the features

of the platform, offering portable performance. For the rest of this dissertation, the
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term runtime system refers to any runtime system for HPC applications.

In brief, a good runtime system for HPC applications should:

• support an execution model that is suitable for scalability and performance,

• offer platform abstraction to decouple user applications from the underlying

platform, e.g., by providing a unified communication layer,

• be adaptive and facilitate vertical integration through abstract communication

methods between the top layer (application) and the bottom layer (hardware),

e.g., by downstream transfer of application information and upstream run-time

conditions reporting, so that each layer can adapt dynamically,

• be modular and extensible to allow integration with other runtime systems and

support new application requirements, and

• be portable and configurable so that it supports different and future platforms

without sacrificing performance.

In this dissertation, we will show that the stapl-rts fulfills all of the above

requirements through the description of its design, appropriate code samples that

show its capabilities, and microbenchmarks, kernels, and applications demonstrating

its performance compared to the state-of-the-art.

2.2 Design Decisions

The design decisions that have to be made for a runtime system are the funda-

mental principles of the execution model. In this section we outline the fundamental

design decisions behind the stapl-rts and the execution model it supports and the

reasoning behind them.
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2.2.1 Partitioned Global Address Space

Typically, the computing requirements of HPC applications surpass that of a sin-

gle processor, requiring machines that consist of interconnected nodes, each with its

own processing and memory resources. Supporting massively parallel [23] machines

and operating under a model that can take advantage of them is paramount for

performance and scalability. The Single Program Multiple Data (SPMD) model [24]

is an intuitive way of programming massively parallel machines. While SPMD may

seem more restrictive compared to the Multiple Program Multiple Data (MPMD)

model, it is more intuitive and easy to program with [25].

Shared memory machines, while easy to program, have limited processor and

memory scalability, requiring costly and complex mechanisms for maintaining cache

coherence. On the other hand, distributed memory machines, are more difficult to

program, but easier to scale.

Various models have been developed to bring the ease of use of shared memory

programming models to distributed memory machines. For example, the Distributed

Shared Memory (DSM) model [26] presents a global address space by allowing mem-

ory pages to be shared across different physical address spaces and managing coher-

ence automatically. However, DSM encounters some performance issues [27].

The Partitioned Global Address Space (PGAS) model addresses the performance

issues of DSMs by distinguishing between local and remote memory in SPMD pro-

gramming models. Local memory is directly accessible, using regular memory ac-

cesses, while remote memory is accessed through a communication layer. Its use

in a number of parallel programming languages, such as UPC [28] and Co-Array

Fortran [29] has proven its performance potential and programmability.

Using a PGAS model coupled with locality information allows the runtime sys-
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tem to efficiently utilize hierarchical machines. The knowledge of if communication

happens in shared or distributed model is replaced with appropriate high level in-

formation about locality. Higher level programming frameworks can then be written

by relying on qualitative information about the communication, e.g., what are the

relative latencies, rather than on quantitative, such as the latency to read or write

to a specific object in memory, which is machine and execution dependent.

2.2.2 Nested Parallelism

Function invocation is important in program development, as it is the foundation

of software composition. The ability to provide nested function invocation plays a

major role in programmer productivity and reuse. Function composition is especially

important in parallel programming models, as it allows users to express parallel

algorithms in a natural way by composing other, simpler parallel algorithms. This

ability is more commonly known as nested parallelism, the “ability to take a parallel

function and apply it over multiple instances in parallel.” [30]

Sequential support for nested algorithm invocation is straightforward: appropri-

ate state (e.g., registers) is saved, the call stack is initialized according to convention,

and control is transferred to the target function until it returns. However, parallel

programming models present a more challenging scenario. Nested parallel algorithm

invocations must be efficiently mapped onto the processing elements while taking

data locality into account. Furthermore, by definition, multiple such nested invoca-

tions occur concurrently, meaning a coordination of activities is required.

Supporting nested parallelism in both static and dynamic applications requires

flexible support. Since the nature of the parallelism is not always known a priori,

nested algorithms are usually implemented as a series of dynamically spawned tasks.

In order to achieve clean algorithm expressivity, avoid user managed nested par-
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allelism and provide reasonable performance, the mapping of these tasks must be

handled by the runtime system.

If nested parallelism is combined with a PGAS/SPMD model then it provides

the basis for maintaining the algorithm structure, allowing better control on how

execution happens on an hierarchical machine. The user expresses her application

as a composition of parallel algorithms on distributed data structures, providing this

information to the lower levels all the way to the runtime, which can then help map

each algorithm instance to the appropriate subset of the machine.

2.2.3 Differentiate between Work and Communication

Programs consist of algorithms invoked on data. While supporting both through

the same mechanisms increases reuse and reduces complexity, putting both work and

data under the same concept is challenging and can create performance or usability

issues. It is important to maintain a distinction between communication and work,

or communication tasks and computation tasks, respectively.

In order to provide a general model, any task can generate a task of any other

type. However, each task type has its own characteristics. Computational tasks

are governed by scheduling policies that are mandated by the algorithm, whereas

communication tasks obey ordering rules, such as those described in Section 8, that

allow users to reason about the order of reads and writes.

2.2.4 Asynchronous Remote Method Invocation

It is known that latency lags bandwidth [31], creating challenges when scaling an

application to an increasing number of cores. Synchronous, or blocking, operations

limit scalability by blocking progress on cores that wait for data to arrive. This fact

makes latency one of the biggest obstacles to sustaining performance.

Asynchronous, or non-blocking, communication mechanisms have been proven
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effective at offering a solution by hiding latency. While all software managed asyn-

chrony has inherent overheads, its benefits outweigh its costs. Asynchronous com-

munication primitives allow the overlap of computation and communication, thus

providing latency hiding.

Asynchronous communication using a Remote Method Invocation (RMI) based

model is an exciting approach. RMIs allow one to move data, work or both. Users can

call arbitrary functions on remote targets asynchronously, allowing greater flexibility

than merely asynchronous reads or writes. We will discuss more about the benefits

of RMIs and we will address some of their drawbacks in Sections 3 and 6.

2.2.5 Implicit and Explicit Parallelism

Implicitly parallel models, such as those in HPF [32] and NESL [30], remove

the burden of managing parallelism from the user, increasing productivity. User

applications are written using high level algorithms and the rest of the stack takes

care of data and work distribution, communication and synchronization. On the

other hand, explicitly parallel models allow users more fine grain control over the

applications, leading to greater scalability and performance, as demonstrated by the

success of models such as MPI [33].

It is more beneficial if a runtime system offers an implicitly parallel model to

the upper layers paired with an explicit data communication model. For example,

algorithms always run in parallel and can choose when communication happens, while

the runtime abstracts how it happens. It is up to the runtime to provide the necessary

tools to assist algorithms and data structures in minimizing communication, offering

an implicitly parallel model with explicit data movement to the end user.
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2.3 Related Work

Many parallel programming languages and frameworks are supported by runtime

systems that attempt to provide portable performance. We briefly present a number

of them, saving a more direct comparison with our work in each individual chapter.

2.3.1 Shared Memory

The common characteristic of all runtime systems that support shared memory

only is that communication is implicit; all threads have access to any object they are

given access to, either implicitly or explicitly, without being required to go through a

communication library. This is an intuitive programming model, however it relies on

DSM techniques to be able to work on distributed memory, limiting its performance.

C++11 [34] offers thread creation and synchronization primitives, such as atomic

types and mutexes. It also provides interfaces for creating tasks and retrieving values

asynchronously, i.e., futures. It is a low level framework that focuses on concurrency

rather than efficient parallel execution.

OpenMP [35] is built on the fork-join parallelism model [36] and is a set of direc-

tives and library routines that provide support for shared memory parallel program-

ming in C, C++ and Fortran. Users annotate their sequential code with directives

that the compiler uses to parallelize it, either by decomposing loops or by specifying

tasks. While OpenMP has had nested parallelism capabilities since its inception

and performance gains have been reported [37], the collapse keyword in OpenMP

3.0 that flattens nested parallel sections attests to the difficulty of gaining perfor-

mance from nested parallelism in OpenMP. OpenMP focuses on computational tasks,

since communication is implicit through shared memory. This approach has limited

OpenMP to shared memory, as attempts to bring it to distributed memory had

scalability issues, as demonstrated by Cluster OpenMP [38].
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Cilk/Cilk++ [39, 40] are extensions of C and C++ respectively that provide

primitives to create tasks, called Cilk procedures, executed by worker threads. Each

Cilk procedure can create new procedures, thus supporting a form of nested paral-

lelism. The runtime system implements work-stealing techniques and the work-first

principle to adapt to run-time parameters. Silkroad [41] was an attempt to execute

Cilk programs on distributed memory.

Intel Threading Building Blocks (TBB) [42] is a library for C++ that has similar

nested parallelism and work-stealing properties as Cilk. It provides parallel algo-

rithms and thread-safe containers with the runtime system providing a task parallel

model. TBB tasks, a bundle of work and data, can be further partitioned in smaller

tasks by the runtime system. TBB is also limited to shared memory and its task

based, work-stealing runtime system does not retain the algorithm structure.

Habanero-Java [43], and its siblings Habanero-C and Habanero-C++, used in

shared memory parallel programming, provide primitives for asynchronous function

invocation, communication and synchronization. They all have work-stealing mech-

anisms and they extend the Cilk model with explicit task affinity control. Commu-

nication and computation are handled by the same primitives without a mechanism

to differentiate between the two.

Table 2.1 summarizes the main characteristics of each presented language and

library for shared memory parallelism.

2.3.2 Distributed Memory

Distributed memory only runtime systems are communication libraries that are

designed to offer an abstraction layer for other, higher level libraries. While many

have optimizations for intranode communication, they still retain their distributed

character, forcing the user to copy data between the different address spaces of the
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Name Model Nested
Parallelism

Communication Synchronization

OpenMP Fork-join Yes Object sharing Mutexes

C++11 MPMD No Object sharing,
futures

Mutexes,
futures

Cilk/Cilk++ MPMD Yes Object sharing Continuations,
Hyperobjects

TBB MPMD Yes Object sharing Continuations

Habanero-Java/C/C++ MPMD No Object sharing,
futures

Continuations,
Phasers

Table 2.1: Shared memory parallel languages and libraries

processing elements.

MPI (Message Passing Interface) [33] implementations are ubiquitous on all HPC

platforms. They offer a wide range of primitives for message passing, both point-

to-point and collective, and Remote Memory Access (RMA) operations [44], such

as put, get and accumulate. MPI has support for nested parallelism through its

subgroup and process spawning support. MPI was designed for data communication

in distributed memory machines and while most implementations have optimizations

for shared memory, they do not offer any control over the program execution.

Active Messages (AM) [45] is a library that provides message passing and allows

one to specify a handler on the receiving process to process the message. AM was

used as the basis for languages that offer a PGAS model, for example in Split-C [46].

ARMCI [47] and its successor ComEx [48] are libraries for RMA operations.

They provide request aggregation dynamically at run-time and are configurable to

fully utilize its platform’s capabilities. Along with GASNet [49], they are used to

offer a PGAS model to parallel frameworks, rather than being offered to end-users.

Table 2.2 summarizes the main characteristics of each presented library for dis-

tributed memory parallelism.
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Name Model Subgroups Communication Collectives Synchronization

MPI SPMD Yes Message Passing,
RDMA

Blocking /
Non-blocking

Blocking /
Non-blocking

GASNet SPMD No RDMA Proposed Non-blocking

ARMCI SPMD No RDMA Blocking Blocking

AM MPMD No Active Messages No Non-blocking

Table 2.2: Distributed memory parallel libraries

2.3.3 Hybrid Shared and Distributed Memory

Hybrid shared and distributed memory runtime systems are usually built by

combining a distributed memory runtime system that provides a PGAS model with

a shared memory task parallel runtime system. The level of integration varies. There

are frameworks that have a loose integration, such as Tpetra and Kokkos from the

Trilinos package [50], in which Tpetra uses Kokkos, but the latter is unaware of

the former. Others are more closely coupled, blurring the lines between shared and

distributed memory and offering a single interface.

Charm++ [51] is a language based on C++ which provides a message-driven

execution model. Messages invoke functions on chares, active objects with associ-

ated data that can be migrated automatically by the Charm++ runtime system,

Converse. Charm++ allows users to associate multiple chares between them into

collections, with each collection potentially representing a part of an hierarchical

machine, offering some form of hierarchical mapping. Charm++ offers an MPMD

model with a relaxed consistency model and does not distinguish between computa-

tion and communication tasks.

In Chapel (Cascade High Productivity Language) [52] a program executes on

a number of locales, each with its own locality information and mapped to a level

of the hierarchy (e.g., socket, core, etc.). Chapel provides a PGAS based model
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called Asynchronous PGAS (APGAS) that permits only asynchronous operations.

Each locale can spawn asynchronous tasks on any other locale, with the runtime

system managing shared and distributed memory communication. Both computation

and communication is performed through tasks and nested parallelism is supported

through recursive task spawning. X10 [53], a Java-based language and predecessor

to Habanero-Java, has a similar execution model.

HPX [54], an implementation of the ParalleX system in C++, shares the char-

acteristics of Chapel and X10. It offers methods for creating lightweight tasks on

specific threads, which are scheduled from the HPX system and provides an Active

Global Address Space (AGAS) view, which is PGAS with the ability to move objects

between physical addresses without having to update their virtual address.

UPC [28], UPC++ [55], Co-Array Fortran [29], and Titanium [56, 57] all provide

an SPMD programming model with a PGAS view. All of them allow explicit affinity

control, as they expose the locality of data, and they allow nested invocation of

SPMD algorithms on a subset of the processing elements of the invoking algorithm.

Global Arrays [58] offers a programming model that resembles as much as possible

that of shared memory models while being based on PGAS through ComEx [48]. It

supports the creation of distributed arrays and uses RDMA for data transfers. Nested

parallelism is not supported.

A few projects have been abandoned but they are worth mentioning for their

contributions. Nexus [59] is a task parallel runtime system that provides remote ser-

vice requests, essentially non-blocking Remote Procedure Calls (RPCs), for spawning

tasks on processors, requiring the user to explicitly define affinity.

Split-C [46] is a parallel extension of C that uses the SPMD model and provides

a PGAS view through AM [45]. Split-C supports nested parallelism, and provides

data locality information but it targets regular applications.
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Name Model Subgroups
Nested
Parallelism

Consistency

Charm++ RMI No No Weak

Chapel APGAS No Yes Weak

X10 APGAS No Yes Weak /
Sequential

UPC PGAS Proposed Limited Weak

Titanium / UPC++ RSPMD Yes Yes Weak / Strict

HPX MPMD No No Weak

Global Arrays PGAS Yes Yes Weak with ordered
loads/stores to
overlapping addresses

Nexus SPMD (RPC) No No Platform dependent

Split-C PGAS No No Processor

Table 2.3: Hybrid distributed and shared memory parallel libraries

NESL [30] was the first language that supported expressing algorithms using

nested parallelism. The user expresses her algorithm as a composition of other par-

allel algorithms. Since subgroup support is not offered, the NESL compiler performs

flattening to transform the nested parallel algorithms into a flat data parallel model.

Table 2.3 summarizes the main characteristics of each presented library for hybrid

shared and distributed memory parallelism.
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3. THE STAPL RUNTIME SYSTEM

In Section 2 we have outlined the characteristics that a good runtime should

exhibit. In this chapter we will present our approach for a portable, scalable, and

efficient runtime system. One of the key design goals is portable performance: users

must be able to write one version of the code that exhibits performance on different

systems with no per platform optimization.

The STAPL Runtime System (stapl-rts) is an abstraction layer for parallel

frameworks. It supports an SPMD execution model with task parallelism capabilities.

For scalability and correctness, we employ a distributed Remote Method Invocation

(RMI) model on distributed shared objects, called p objects. The stapl-rts offers

the same set of asynchronous primitives for communication over both shared and

distributed memory, thus mitigating the effects of high memory latency and hiding

architectural complexities.

Each processing element together with a logical address space forms an isolated

computational unit called a location. Locations only have access to their own ad-

dress space and communicate with other locations using RMIs on p objects. This

eliminates accidental data sharing and by extension, race conditions.

The stapl-rts presents a uniform communication interface that transparently

employs both shared and distributed memory primitives, something that we re-

fer to as mixed-mode. This approach is distinct from the standard hybrid (e.g.,

MPI+OpenMP) models, where a distinct shared memory implementation is main-

tained within a single process of the distributed program.

The scheduling of runnable tasks is handled by the executor component. The

executors present a task execution engine to the user and allow the scheduling of
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runnable tasks with customizable scheduling policies.

Finally, the stapl-rts is written in the C++11 programming language [18] and

only requires standard components, such as off-the-shelf compilers and established

communication libraries such as MPI.

3.1 Execution Model

The goal of the stapl-rts is to support a scalable execution model that fulfills the

requirements set in Section 2. Based on the positive experience at scaling applications

using PGAS and SPMD models, we adopt and extend these models. In this section

we describe several aspects of the execution model of the stapl-rts.

3.1.1 Execution Environment

Algorithms and applications built on top of the stapl-rts are executed always in

SPMD sections. Each SPMD section is executed cooperatively by a set of locations.

Definition 1. A location consists of a processing element (PE) combined with a

virtual address space. This address space is logically isolated and cannot be directly

accessed by other locations in user code.

Each location is mapped to a PE and is not allowed to be migrated. When a

location wishes to modify or read a remote location’s memory, this has to be done

through the appropriate stapl-rts functions, even if the two locations reside in

shared memory.

Definition 2. A gang is a collection of N locations with identifiers in the range

[0, . . . , N − 1] in which an SPMD section executes.

Each gang has the necessary metadata for resolving location IDs to the corre-

sponding PE. Two locations in the same gang cannot be mapped to the same PE.

However, different gangs can have locations that are mapped to the same PE; gangs
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are allowed to overlap and their locations are cooperatively scheduled on the PE that

they are mapped to.

Figure 3.1: Execution example

Figure 3.1 shows an instance of a program in which gangs are overlapping over

the same set of PEs. User code is unaware if a remote location is on the same PE,

on shared memory or reachable only through distributed memory. Location naming

is virtualized, further abstracting the application from the underlying platform.

3.1.2 Distributed Shared Memory

All memory accesses between locations are expressed via Remote Method Invo-

cations (RMIs) on distributed objects. RMIs give us the ability to move work, data

or both, offering a more flexible infrastructure than PGAS based DSMs that only

focus on data transfer.

Definition 3. A p object is a distributed object defined over a set of locations. Each

location owns a piece of the p object, called a representative, and all the pieces are

logically associated with each other to form the p object.
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p objects are created within a gang, and as such, each p object is associated

with exactly one gang and is distributed across its locations. A gang can have any

number of p objects. The gang metadata that resolve location IDs to PEs are used

to direct RMIs to the right representative of a p object, as well as a additional

information for supporting collective operations.

This relationship between gangs and p objects is what offers isolation and virtu-

alization to higher level components, as they allow creating containers and invoking

algorithms on a subset of the resources without algorithm or code modifications

forming the basis of container composition and nested parallelism support. This

interaction is further explored in Section 7.

The ability to perform RMIs on p objects is the basis for distributed shared

memory (DSM) communication. When a location wishes to modify or read a remote

location’s memory, the work must be expressed via RMIs on distributed p objects,

even if the two locations reside in shared memory. This means that data races cannot

occur, as only one PE can directly access memory and RMI atomicity is guaranteed

by the stapl-rts.

3.1.3 Asynchronous Communication Primitives

RMIs can be synchronous (blocking) or asynchronous (non-blocking). They are

non-preemptive and are atomically executed as long as a scheduling point is not

encountered.

Definition 4. A scheduling point is a point in the execution of the instruction stream

of user code where control is returned to the stapl-rts. This happens when stapl-

rts primitives are called, such as for example blocking while waiting for a value or

invoking an RMI.

Asynchrony allows us to minimize the effects of high latency by enabling com-
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munication and computation overlapping. We further desire to minimize any state

associated with the RMI from the initiating location after invoking the non-blocking

RMI, allowing the location to proceed with other, potentially unrelated tasks while

it awaits any return value.

We facilitate the use of asynchronous RMIs by providing RMI argument copy

semantics. We enforce pass-by-value semantics for all arguments passed to an RMI.

A private copy of any argument passed to a remote function call is presented to the

receiver; any mutation on the argument either at the sender or at the receiver will

not be visible to the other.

3.1.4 Causal RMI Ordering

In order to present a coherent model, RMIs are causally ordered. A happened-

before relationship is established between RMIs that are invoked from the same

source location to the same destination location if they are issued in the same context

without requiring extra synchronization. These ordering guarantees may be stricter

than required by some algorithms, making them a good candidate for application

driven optimization. Causal RMI ordering is discussed in Section 8.

3.1.5 Customizable Execution

RMIs are able to move work, data or both, but they have to respect causal

ordering and lack the ability for user configurable scheduling. In order to enhance the

execution capabilities, we offer the ability to schedule runnable computational tasks

with arbitrary scheduling policies. The stapl-rts provides the necessary interfaces

to create and schedule tasks for execution on a per location basis.

• RMIs are single threaded and execute in the SPMD section of their target

p object. Their execution order is mandated by the causal ordering and arbi-

trary scheduling is not allowed.
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While RMIs can be used to perform computation, their execution can be inter-

rupted by other RMIs at scheduling points with negative performance impact,

e.g., because of cache eviction if they operate on different data. As such, RMIs

are used for relatively short-lived operations, such as data read, write and

update operations.

Collective operations, as well as p object creation, are not allowed while exe-

cuting RMIs.

• Computational tasks executed in their own SPMD section and are concurrent,

allowing to specify user defined, arbitrary scheduling policies.

When a task is declared runnable, e.g., by a task dependence graph built

on top of the stapl-rts, appropriate scheduling information is passed along

to place the task in a location specific task queue called the EXECUTOR.

Although concurrent, tasks execute atomically; another task cannot preempt

an executing task. This reduces potentially negative performance implications.

Typically, computational tasks perform lengthier operations than RMIs and

since they operate in their own SPMD section, they are allowed to make col-

lective calls and to create p objects.

Despite their differences, tasks and RMIs share a lot of commonalities. There

are no restrictions regarding the code that they can contain and both are allowed to

make blocking and non-blocking RMIs to p objects they have access to.

3.2 Component Overview

The runtime system features a highly modular design, depicted in Figure 3.2∗,

that allows it to be customized and tuned as needed for different platforms.

∗White text signifies components that are user accessible, black text marks components for
internal use only.
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Figure 3.2: stapl-rts components

3.2.1 Adaptive Remote Method Invocation (ARMI)

Adaptive Remote Method Invocation (armi) [60] provides primitives for creating

p objects and invoking RMIs on them. armi makes use of future and promise

objects [61] to allow the asynchronous return of values from RMIs. armi is the basis

for building distributed containers for storing and accessing data and task dependence

graphs to perform the computation.

3.2.2 executor

The executor allows users to schedule runnable tasks for execution with asso-

ciated scheduling information. Scheduling is influenced by user-defined scheduling

policies, such as First In First Out (FIFO), priority-based scheduling and others.

Work-stealing is also supported [62] through a work-stealing scheduler and var-

ious stealing policies. Finally, the executor framework is complemented by the

terminators, objects that can be closely tied with task dependence graphs and ex-

ecutors and decide when an algorithm has finished executing (terminated).
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3.2.3 Runqueue and Dispatcher

The runqueue and the dispatcher are responsible for executing tasks and RMIs.

They are responsible for passing RMI requests to the right communication channel,

e.g., communication libraries for distributed memory communication or to the mul-

tithreading library for shared memory communication. The runqueue has a list of

all pending RMIs per location, while the dispatcher is responsible for giving control

to the RMI selected for execution. The runqueue and the dispatcher cooperate with

the executors so that there is coordinated execution of tasks and RMIs.

Closely coupled with the dispatcher are the concurrency component which ab-

stracts the threading capabilities of the platform, offering functions to create threads

and it exposes the computing resources that are available, for example the number of

cores and the processing element hierarchy. Currently, two back-ends are offered, one

based on the C++11 thread support [34] and one that is built on top of OpenMP [35].

Finally, communication between different address spaces is achieved through the

communicator component, which is a low-level distributed memory communication

layer wrapper. It offers point-to-point, collective and multicast communication ca-

pabilities and currently it uses MPI as its back-end.

3.2.4 Performance Monitoring

The performance monitoring module consists of various independent components

that are related to measuring run-time variables. Its basis is the counters component

that offers high-level interfaces to the platform’s native counters and timers, such as

Linux timers or PAPI [63] and even energy consumption on machines that provide

this level of information.

The instrumentation component is responsible for the tracing and profiling ca-

pabilities through the integration of libraries such as TAU [64] and MPE [65]. armi
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and executors are annotated with compile-time enabled instrumentation calls that

make callbacks to supported third party libraries (TAU, MPE and others) and allow

users to understand the behavior of their application.

3.2.5 Serialization

The serialization module is an independent module that provides C++ object

marshalling capabilities for communication or storage. The stapl-rts relies on the

serialization module both for internal object marshalling, as well as user defined data

structure marshalling.

The typer [60] is our approach to serialization through intrusive marshalling.

Some of the functionality offered is:

• automatic support for basic types, such as empty classes, primitive types, and

plain old data structures (PODs),

• arbitrary object support via a per-class user-defined function (define_type),

that enables marshalling for objects with pointers, inheritance and members

that should not be packed, but rather default constructed for each object in-

stance (transient members), and

• the ability to decide if an object can introduce data races, e.g., communicating

an std::shared_ptr through shared memory, something that is used in zero-

copy described in Section 6.

Figure 3.3 shows an example of providing serialization support for a simple vector-

like class. The marshalling mechanism relies on the define_type functions to re-

cursively traverse the object structure and is similar to PUP from Charm++ [51].

Each statement in the define_type is evaluated in a depth-first manner, until a

basic type is encountered, in which the recursion stops. The typer is responsible for
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1 template <typename T>

2 class vector {

3 std:: size_t m_size;

4 T* m_data;

5

6 // constructors , accessors , etc.

7

8 public:

9 void define_type(stapl::typer& t) {

10 t.member(m_size);

11 t.member(m_data , m_size);

12 }

13 };

Figure 3.3: Marshaling example

finding the required size for an object, packing and unpacking it, relying on memcpy

for the simple types and using the additional information from the define_type to

fix pointers for complex types.

As mentioned, the typer provides intrusive marshalling. Sometimes this is not

desired. For example, an already good marshalling solution exists through a third-

party library or an intrusive solution is not possible, as the user has no access to the

class code. For these reasons, the serialization component is extensible and supports

seamless integration with other marshalling libraries, such as Boost.Serialization [66].

The stapl-rts automatically tries to fallback to Boost.Serialization if a suitable

stapl-rts-based marshalling method has not been defined.

We compare the typer-based serialization of the example data structure from

Figure 3.3 against Boost.Serialization and memcpy of a C array with the same number

of elements on an AMD Opteron 6272 Interlagos processor† in Figure 3.4. The typer-

based serialization, while slower than memcpy of a C array, it is significantly faster

than Boost.Serialization, a fact that is attributed to the intrusive mechanisms that

the typer uses. While both the typer and Boost.Serialization have to serialize the

†More information about the experimental set-up can be found in Section 4.
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Figure 3.4: stapl-rts serialization cost vs memcpy() and Boost.Serialization

data structure into a buffer, at deserialization the typer can unpack the object by

fixing the internal pointers of the data structure, effectively performing an in place

unpacking, whereas Boost.Serialization has to default construct a new object and fill

it with the serialized values.

3.3 p objects

As mentioned, a p object is a distributed object defined on a set of locations,

each of which has a local representative of the object. Each p object is identified by

an rmi handle which acts as its virtual address. A representative of a p object is

identified by the rmi handle of the p object it belongs to and the ID of the location

it lives on. An rmi handle is generated programmatically through the creation of a

stapl::rmi_handle object.

3.3.1 Virtual Addressing

Constructing a p object generates a virtual address unique in the system, the

rmi handle. This virtual address is shared among all the locations that participate

in the p object construction and has the necessary information for accessing the

p object using RMIs.
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Typically, an rmi handle is heavier than a C++ pointer. It consists of the ID

of the gang the p object was created in and an integral ID unique in the gang.

Additional information includes flags that modify the behavior of the p object, e.g.,

if communication is allowed to be aggregated or not. For gangs with 1 location, the

integral ID is the same as the physical address of the p object, an optimization that

avoids some of the overhead inherent to generating and storing rmi handles.

During communication, any C++ pointers and references to p objects are au-

tomatically converted to rmi handles at the sender and back to physical address at

the receiver. This is managed by the stapl-rts and the serialization module. De-

pending on the requirements, two different internal representations of an rmi handle

are used:

• the stapl::rmi_handle::reference is a complete virtual address that allows

both translation to the physical address of a p object to retrieve the represen-

tative on a location and allows RMI communication, and

• the stapl::rmi_handle::light_reference which is a partial virtual address

with a smaller space footprint that only allows translation to physical address.

3.3.2 Construction

We support two ways of declaring an object as p object as shown in Figure 3.5:

• by having a member variable stapl::rmi_handle in the class that associates

the object with an rmi handle and providing the function get_rmi_handle to

retrieve the handle or

• extending from the stapl::p_object class that itself uses an rmi handle in-

ternally.
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1 // using stapl :: rmi_handle

2 class A {

3 stapl:: rmi_handle m_handle;

4

5 public:

6 A(...) { }

7

8 stapl:: rmi_handle :: const_reference get_rmi_handle () const { return m_handle; }

9

10 stapl:: rmi_handle :: reference get_rmi_handle () { return m_handle; }

11 };

12

13 // using stapl :: p_object

14 class B

15 : public stapl:: p_object

16 {

17 public:

18 B(...) { }

19 };

20

21 stapl:: error_code stapl_main(int , char **) {

22 A a; // create instance of A

23 B b; // create instance of B

24 std::unique_ptr <B> p{new B}; // create instance of B on the heap

25 ...

26 return EXIT_SUCCESS;

27 }

Figure 3.5: p object declaration

For both methods, when a new instance of A or B is created, it is automatically

registered with the stapl-rts, creating a virtual address that can be used for com-

munication. By extending from the stapl::p_object class, the user is provided with

additional capabilities such as copy and move constructors that handle registration

automatically and support for polymorphic type hierarchies.

Currently, we require SPMD creation of p objects on all the locations of a gang

as described in [60]. stapl_main is the application entry point and executes on

a number of locations, acting as the primordial SPMD section. Users can create

p objects as shown in Figure 3.5. p object construction is a collective, SPMD

operation in which each location is responsible for constructing its representative

of the p object. It is worth noting that during construction no communication is

required in the stapl-rts to guarantee registration.
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1 // Create a p_object of type A by passing args to the constructor , in a new gang

over locations 0,2,3 and return a future to its handle

2 stapl::future <stapl:: rmi_handle ::reference > f1 =

3 stapl::construct <A>(stapl :: location_range ({0, 2, 3}), args ...);

4

5 // Get object handle

6 auto h = f1.get();

7

8 // Create a p_object of type B in a new gang that fully overlaps with the gang of h

9 stapl::future <stapl:: rmi_handle ::reference > f2 =

10 stapl::construct <B>(h, stapl :: all_locations , args ...);

11

12 // Delete first object

13 stapl:: p_object_deleter <A> d;

14 d(h);

Figure 3.6: Asynchronous, one-sided section creation

An alternative way of creating p objects is via an asynchronous, one-sided mech-

anism. The construct primitive, an example of which is shown in Figure 3.6, creates

a new gang over a set of resources and constructs a new p object in it. Multiple

variations are supported, such as creating sections on arbitrary ranges of locations

(or all) of either the current parallel section or that of another p object.

The stapl-rts is responsible for translating the virtualized specification of re-

sources, i.e., a range of location IDs, to PEs and for building a suitable broadcast

tree on the PEs which it uses to construct the associated p object. The return of

construct is always a future object, similar to C++11 futures [34], that allows

consumption of a return value from an asynchronous function; see also Section 3.4.1.

This asynchronous mechanism is the basis for providing nested parallelism for irreg-

ular applications and will be presented more in depth in Section 7.

3.3.3 Destruction

Similarly to construction, destruction of p objects is also an SPMD operation.

However, unlike construction, the destruction order of p objects can vary between

locations. This has the obvious advantage that p objects can be deleted one-sided
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using RMIs, something that would not be possible with SPMD unregistration.

We achieve this by extending the work in [60] through allowing p objects to

unregister in any order on each location. When a representative of a p object is

deleted, then the associated rmi handle is added to a location specific unregistration

reorder buffer. The rmi handle is not reused until the reorder buffer is committed.

We release the rmi handles in the same lexicographical order on all locations

only at the next synchronization point. This unregistration mechanism requires

no communication but it still requires that all locations have to delete the same

p objects in between two subsequent synchronization points. This requirement can

be relaxed by assigning a location responsible for a block of rmi handles and releasing

an rmi handle for reuse only when all the representatives of the p object have been

destroyed, avoiding the reorder buffer. We plan to explore this option in the future.

To complement the one-sided construction through construct, an asynchronous,

one-sided destruction mechanism is offered. The p_object_deleter follows the con-

cept of the std::deleter [34] and allows to call the destructor and release the mem-

ory for p objects that are either heap allocated or created through a construct call.

The p_object_deleter is shown in Figure 3.6.

3.4 ARMI

Adaptive Remote Method Invocation (armi) provides a unified communication

model to users based on RMIs on p objects. It transparently employs both shared

and distributed memory primitives, something that we refer to as mixed-mode. This

approach is distinct from the standard hybrid (e.g., MPI+OpenMP) models, where

a distinct shared memory implementation is maintained within a single process of

the distributed program.
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Primitive Description

One-Sided Primitives

void async_rmi(dest, h, f, args...)

Issues an RMI that calls member function f of the p object

associated with the rmi handle h on location dest with the
given arguments, ignoring the return value. Synchroniza-
tion calls or other RMI requests that do not ignore the
return value can be used to guarantee its completion.

future<Rtn> opaque_rmi(dest, h, f, args...)
Calls f and returns a future object for retrieving the re-
turn value of f.

Rtn sync_rmi(dest, h, f, args...) Calls f and waits for the return value (blocking primitive).

void try_rmi(dest, h, f, args...)

Issues an asynchronous RMI that calls f iff the target
p object is still alive; otherwise it is safely ignored. Can
be used for data prefetching.

One-sided Collective Primitives

void async_rmi(all_locations, h, f, args...)
Calls f of the p object associated with h on all of the
locations it exists on.

futures<Rtn> opaque_rmi(h, f, args...)
Calls f on all locations of h and returns a futures object
to retrieve the return value from each location.

future<Rtn> reduce_rmi(op, h, f, args...)
Calls f and returns the result of the reduction using oper-
ator op when applied to the return values.

Collective Primitives

futures<Rtn> allgather_rmi(h, f, args...)
Collectively calls f on all locations of h. The return values
are retrieved through the futures object.

future<Rtn> allreduce_rmi(op, h, f, args...)
Collectively calls f and returns the result of the reduction
using operator op when applied to the return values.

future<Rtn> broadcast_rmi(h, f, args...)

Caller (root) location calls f and broadcasts the return
value to all other locations. Non-root locations have to
call broadcast_rmi(root, f) to receive the value.

Synchronization Primitives

void rmi_fence()
Guarantees that all invoked RMI requests have been pro-
cessed using an algorithm similar to [67].

void rmi_barrier() Performs a barrier operation.

void p_object::advance_epoch()

Advances the epoch of the p object, as well as the
epoch of the location. It can be used for synchroniza-
tion without communication, avoiding the rmi fence() or
rmi barrier() primitives.

Information Primitives

location_id get_location_id() Returns the ID of the calling location.

location_id get_num_locations()
Returns the number of locations in the gang of the calling
location.

Table 3.1: armi primitives
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A synopsis of the current interface can be found in Table 3.1‡. We have substan-

tially extended the API from [60] and all our primitives, apart from sync_rmi, are

asynchronous (non-blocking). Asynchrony allows us to minimize the effects of high

latency by enabling communication and computation overlapping. In Section 3.4.1

we show how asynchronous RMI return values are handled without requiring block-

ing, allowing users to move on to another computation while awaiting said value.

The asynchronous operation is possible because of the RMI argument copy se-

mantics. Any argument passed to a remote function call is a private copy of the

receiver; any mutation on the argument either at the sender or at the receiver will

not be visible to the other. Copy semantics simplify reasoning about parallel pro-

grams, as they remove potential side-effects, but they can affect performance by

adding unnecessary copying, something that will be addressed in Section 6.

References and pointers to p objects are translated automatically to reference

the representative of the p object at the receiver. If the p object has no represen-

tative at the receiver, an error is raised.

armi primitives are divided in four categories:

• point-to-point, where the communication is performed between two end-

points (locations),

• one-sided collectives, one-to-many communication patterns, in which one

source location invokes an RMI to multiple destination locations,

• collectives, in which all locations of a gang participate in the RMI,

• synchronization that provide guarantees regarding the state of SPMD exe-

cution and RMI execution, and

‡All primitives exist in the stapl namespace that is omitted for brevity.
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1 struct A : public stapl:: p_object {

2 int m_value;

3 void write(int t) { m_value = t; }

4 int read() const { return m_value; }

5 };

6

7 foo (...) {

8 A a;

9 auto h = a.get_rmi_handle ();

10 int t = 5;

11 stapl:: async_rmi (1, h, &A::write , t);

12 t = 6;

13 stapl::future <int > f = stapl:: opaque_rmi (1, h, &A::read);

14 int y = f.get();

15

16 assert(y==5); // guaranteed by RMI argument copy semantics

17 }

Figure 3.7: Basic usage of armi primitives

• information that provide information about the execution environment and

the system.

In Figure 3.7 we give an example of armi usage. Function foo is executing

on a location which wishes to communicate with location 1. The shared p object

a is accessed through a handle h, which represents the distributed object with a

representative on the destination. The corresponding instance of a on location 1 is

updated via a call to A::write. Note that pass by value semantics guarantee that

the callee sees 5 and not 6. Also, assuming that no other locations send updates

to location 1, y will be set to 6 since the ordering of RMI invocations from a single

source is enforced by default according to the guarantees described in Section 8.

A more complete example use of the primitives with collectives and synchroniza-

tion is shown in Figure A.2 in Appendix A.1. It compares a 1-D Jacobi solver in

hybrid MPI+OpenMP against an armi-based one, showing that the unified commu-

nication interface of the stapl-rts provides a simpler programming model than that

of the dual interfaces required to implement the hybrid MPI and OpenMP version.
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3.4.1 Future / Promises

1 template <typename T>

2 class promise {

3 public:

4 // Sets the result

5 void set_value(T const&);

6

7 // Returns a future to retrieve the

result

8 future <T> get_future ();

9 };

(a) stapl::promise

1 template <typename T>

2 class future {

3 public:

4 // Checks if the result is available

5 bool valid() const;

6

7 // Waits for the result to become

available

8 void wait() const;

9

10 // Returns the result

11 T get();

12

13 // Invokes f when the result becomes

available

14 template <typename F>

15 void async_then(F&& f);

16 };

(b) stapl::future

1 template <typename T>

2 class futures {

3 public:

4 // Returns the number of expected

resutlts

5 std:: size_t size() const;

6

7 // Checks if all results are

available

8 bool valid() const;

9

10 // Checks if the n-th result is

available

11 bool valid(std:: size_t n) const;

12

13 // Waits for all results to become

available

14 void wait() const;

15

16 // Waits for the n-th result to

become available

17 void wait(std:: size_t n) const;

18

19 // Returns all results

20 std::vector <T> get();

21

22 // Returns the n-th result

23 T get(std:: size_t n);

24

25 // Invokes f when all results become

available

26 template <typename F>

27 void async_then(F&& f);

28 };

(c) stapl::futures

Figure 3.8: Asynchronous value retrieval interfaces

The RMI interfaces in Table 3.1 offer the ability to write data (put operations)

through the supplied arguments. For asynchronous get operations we draw inspira-

tion from the future / promise mechanisms [61]. We have modeled our future/promise

support on C++11 offerings [18] and their interface is presented in Figure 3.8.

A future is a mechanism to retrieve the result of an asynchronous primitive that

does not ignore the result of the invoked function, e.g., opaque_rmi. The promise
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1 stapl::future <T> send_request (...) {

2 stapl::future <T> f = stapl :: opaque_rmi (0, h, &A:: get_value);

3 return f;

4 }

5

6 process_request(T& t, stapl ::future <T> f) {

7 if (f.valid()) {

8 t = f.get();

9 return true;

10 }

11 return false;

12 }

13

14 stapl_main (...) {

15 T t;

16 stapl::future<T> f = send_request ();

17 while (! process_request(t,f))

18 { ... // perform other work }

19 foo(t); // use t;

20 }

(a) Example stapl::future and stapl::promise usage
1 send_request (...) {

2 future<T> f1 = opaque_rmi (1, h, &A:: get_value)

3 f1.async then([](future<T> f2) { foo(f2.get()); });

4 }

5

6 stapl_main (...) {

7 send_request ();

8 ... // proceed with other work

9 };

(b) Example stapl::future::async_then usage

Figure 3.9: Asynchronous value retrieval examples

is a placeholder for an incoming value, which can be set at the end of complex,

multi-hop communication patterns; the value is retrieved through a future object.

For collective operations, the futures object extends future support by providing

interfaces to retrieve multiple values.

A usage example of our API that highlights our asynchronous primitives and our

future/promise support is shown in Figure 3.9. While C++ versions are for shared

memory, our implementation provides similar semantics transparently in distributed

memory without any additional intervention from users. The promise/future mech-

anisms provide a standard idiom to facilitate gets, enable optimizations, e.g., zero
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copy, and delegate responsibility for receiving the return value from the RMI to code

outside the calling context. One example usage is shown Figure 3.9(a).

This trivial example shows how a return value from an RMI can be handled

outside the context of the RMI invocation. A different computational activity

can occur while waiting for the internal stapl-rts promise associated with the

future to be fulfilled. We also support continuations on future objects through

the future::async_then function [68], an extension that has been proposed for

C++17 [69]. Again, we follow the proposed interface, but provide our own imple-

mentation that provides a uniform interface for both shared and distributed memory.

Together with a lambda expression, this feature is used to refine the previous exam-

ple as shown in Figure 3.9(b). In this case, the consuming function of the RMI return

value is specified at the RMI call site, and will be called by stapl-rts when the

corresponding promise is fulfilled. Other local computation proceeds immediately

after the initial RMI request is made.

3.4.2 Synchronization

In our previous work [60], we only supported the rmi_fence primitive, that en-

sures that all pending RMI requests prior its call have been processed. For an

asynchronous system, this is a very strict operation that can limit scalability.

For that reason, we have implemented an epoch support in our framework to pro-

vide a cheap, communication-less synchronization mechanism. Our implementation

relies on logical clocks [70]. Each location has a local epoch counter and p objects

are associated with the epoch of the gang they are created in. By default, creating a

p object always advances the epoch, therefore each rmi handle is associated with

a specific epoch.

Each location advances the epoch in an SPMD way. This happens implicitly
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1 struct A : public stapl:: p_object {

2 int m_value;

3 void write(int t) { m_value = t; }

4 int read() const { return m_value; }

5 };

6

7 foo (...) {

8 A a;

9 auto h = a.get_rmi_handle ();

10

11 a.write (5);

12

13 auto f1 = stapl:: opaque_rmi (1, h, &A::read);

14 int y1 = f.get();

15 // assert(y1 , 5); unclear if the a.write (5) on the destination has been executed

16

17 a.advance_epoch ();

18

19 auto f2 = stapl:: opaque_rmi (2, h, &A::read);

20 int y2 = f2.get();

21 assert(y2, 5); // when opaque_rmi executes ,

22 // it is guaranteed that a.write (5) has finished

23 }

Figure 3.10: Epoch guarantees

when the stapl-rts has to guarantee that p objects are in a consistent state, for

example when registering them or after an rmi_fence, or explicitly through the

p_object::advance_epoch.

The synchronization guarantees are achieved through checking the epochs of the

incoming RMIs and that of the location and deciding if the RMI can be executed.

RMI requests that arrive from the same or past epoch are allowed to be processed,

while RMI requests coming from a future epoch are being deferred until the loca-

tion advances the epoch. Relying on this mechanism frees the user from always to

have to guarantee RMI execution through rmi_fence calls and promotes a more

asynchronous model.

Figure 3.10 shows an example use of the epoch support. All locations create the

p object a and then make an opaque_rmi call to retrieve the value from location 1.

However, there is no guarantee that A::write has been executed before the arrival
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of any of the RMIs, except for location 1. Calling p_object::advance_epoch guar-

antees that for any RMI that arrives from a future epoch (i.e., the opaque_rmis),

it’s execution will deferred until the epoch is advanced locally.

3.5 Interoperability

Software reuse is crucial for HPC applications. To improve productivity and per-

formance, it is essential to allow the use existing libraries that have been fine-tuned,

rather than reinvent them. The stapl-rts was designed to be interoperable with

other libraries, either through providing the appropriate interfaces to call external

libraries or allowing the stapl-rts to be called from other applications.

3.5.1 Calling Legacy Code

Shared Memory libraries. The stapl-rts can use other multithreaded libraries

transparently, e.g., fftw [71], since the latter operate on data in shared memory and

are assumed to access data in a safe manner.

For the cases that a library need to call armi primitives, the stapl-rts has to be

notified about the threads of the legacy code. The external_thread object notifies

of the existence of an externally managed thread that requires to call stapl-rts

primitives. Figure 3.11 shows a small example of how code in an OpenMP section

could invoke RMIs on a p object safely.

Distributed Memory libraries. For distributed memory code, e.g., libraries that

use MPI internally, a different approach is used. We offer the external_call func-

tion that halts the execution of an application in a consistent state and transfers

control to the the third party library.

external_call waits for all communication to quiesce and all pending RMIs to

finish. It then disables the communication layer so that it cannot be used through

any armi primitives. Finally, it elects one location per process to act as the leader
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1 struct A : public stapl:: p_object {

2 void f(...) { ... }

3 };

4

5 stapl:: error_code stapl_main(int , char **) {

6 A a;

7

8 // create OpenMP parallel section

9 #pragma omp parallel shared(a)

10 {

11 // inform STAPL -RTS that this is a thread from an external library

12 stapl:: external_thread t;

13

14 // accessing a directly managed by OpenMP

15 #pragma omp critical

16 a.f(...);

17

18 // calling RMIs managed by STAPL -RTS

19 stapl:: async_rmi (..., a.get_rmi_handle (), &A::f, ...);

20 ...

21 stapl:: rmi_fence ();

22 }

23 return EXIT_SUCCESS;

24 }

Figure 3.11: Calling RMIs from legacy code

for calling the external library; the rest of the locations block waiting for the leader to

finish. Since the stapl-rts is in a halted state, the user is responsible for transferring

all the data to the leader and ensuring that no armi primitives will be called.

In Figure 3.12 user code is calling MPI to perform a blocking MPI_Allreduce

that is called from one location per process. The external_call has been used

successfully by applications built on top of stapl-rts, such as the Graph 500 im-

plementation of the SGL [12].

3.5.2 Integrating with Legacy Code

To promote adoption of libraries built on top of the stapl-rts and combine them

with existing libraries, the stapl-rts can be initialized and invoked from existing

applications as another library. In this case, the stapl-rts is being driven by the

application, rather than being the driver.
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1 std::pair <int ,int > call_mpi_allreduce(int i)

2 {

3 int j = i;

4 MPI_Allreduce(MPI_IN_PLACE , &j, 1, MPI_INT , MPI_SUM , MPI_COMM_WORLD);

5

6 int size = MPI_PROC_NULL;

7 MPI_Comm_size(MPI_COMM_WORLD , &size);

8 return std:: make_pair(size , i);

9 }

10

11

12 stapl:: error_code stapl_main(int , char **) {

13

14 // associative container with all the leaders

15 const auto leaders = external_callers ();

16

17 // transfer control to external library; only the leader will make the call

18 auto p = external_call (& call_mpi_allreduce , 1);

19

20 if (c.find(stapl :: get_location_id ())!=c.end()) {

21 // this location is a leader , value is valid

22 assert(bool(p));

23

24 // each leader contributes 1, total result is the number of MPI processes

25 assert(p->first==p->second);

26 }

27 else {

28 // this location is not a leader , does not have a value

29 assert(bool(p));

30 }

31

32 return EXIT_SUCCESS;

33 }

Figure 3.12: Invoking distributed memory code

1 int main(int argc , char* argv []) {

2 MPI_Init_thread (&argc , &argv , MPI_THREAD_SERIALIZED , ...);

3

4 // other MPI code

5

6 // options for STAPL -RTS

7 auto opt = stapl:: option{argc , argv} & stapl:: option{ M P I _ C o m m , comm};

8

9 // initialization of STAPL -RTS and execution of function

10 stapl:: initialize(opts);

11 stapl:: execute(pdt_entry_point_wf{my_generated_data });

12 stapl:: finalize ();

13

14 // other MPI code

15

16 MPI_Finalize ();

17 return EXIT_SUCCESS;

18 }

Figure 3.13: Invoking stapl-rts from legacy code
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Figure 3.13 shows a simplified code example from PDT [72], a parallel particle

transport code. MPI is initialized and used to initialize the application data struc-

tures. The stapl-rts is given an arbitrary MPI communicator and some work to

do. Once the work is done, the stapl-rts finalizes itself and returns control to main.
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4. PERFORMANCE EVALUATION

In this chapter, we describe the methodology used to evaluate the performance

of components for the stapl-rts and the cooperation between the stapl-rts and

frameworks build on top of it, such as stapl [9]. We will look at the performance

using microbenchmarks, kernels, and real-world applications.

4.1 Experimental Setup

We conducted our experimental studies on various parallel machines comprising

various processor architectures and network interconnects.

Cray-XK7. This is a Cray XK7m-200 system which consists of twenty-four compute

nodes with AMD Opteron 6272 Interlagos 16-core processors at 2.1 GHz. Twelve of

the nodes are single socket with 32 GB of memory, and the remaining twelve are dual

socket nodes with 64 GB. Our codes have been compiled with gcc 4.9.1.

IBM-BG/Q. This IBM BG/Q system available at Lawrence Livermore National

Laboratory has 24, 576 nodes. Each node is populated by a 16-core IBM PowerPC

A2 processor clocked at 1.6 GHz and 16 GB of memory. The compiler was gcc 4.8.4.

x86-cluster. This machine is an x86-based commodity cluster that consists of 311

nodes with different processor and memory configurations. The slice of the system

that we used for our experiments is 128 nodes. Each node has two AMD Opteron

2350 2.5 GHz processors, with each processor having 4 cores, for a total of 8 cores

and 32 GB per node. We used gcc 4.8.2.

4.2 Benchmarks

The stapl-rts is evaluated both in isolation and as used by other frameworks.

Whenever possible, we choose to implement established benchmarks that are well
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known and understood, modified to fit the stapl-rts programming model.

4.2.1 Microbenchmarks

Microbenchmarks are small programs that target a specific component or prim-

itive. They are artificial benchmarks that attempt to evaluate the performance of

a small part of the stapl-rts in isolation and set the bounds on expected perfor-

mance. Their added benefit is that their results can be used with an appropriate

parallel computation model such as LogP [73] to derive a machine model.

Due to their nature, microbenchmarks have often execution restrictions, e.g.,

being able to used only on specific number of PEs. Our microbenchmarks include

adaptations of the Ohio State University Microbenchmarks (OMB) [74] and the set

of benchmarks presented in [75].

4.2.2 Kernels

Kernels are benchmarks that abstract common computational or communication

patterns of real world applications. Kernels are considerably smaller than the appli-

cations that are based on but exhibit similar characteristics. In this work, we focus

mainly on computation kernels implemented either directly using armi or using

stapl, such as the NAS parallel benchmarks [76] and Graph 500 [77].

4.2.3 Applications

Finally, the stapl-rts is evaluated using real world applications built on top

of stapl. The latter is an advanced parallel framework that takes advantage of

the stapl-rts functionality without exposing the latter to the user, proving that

the stapl-rts is a runtime system that can offer performance, without sacrificing

portability or ease-of-use.
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5. STAPL OVERVIEW

Before continuing with the presentation of our work, we will present a framework

that adopts the execution model presented in Section 3.1 and that is using the

stapl-rts as its platform abstraction layer.

The Standard Template Adaptive Parallel Library (stapl) [9] is a framework

developed in C++ for parallel programming. stapl is a library, requiring only a

C++ compiler (e.g., gcc) and uses the stapl-rts for expressing communication

and computation. An overview of its major components are presented in Figure 5.1.

The generic design of stapl is based on that of the C++ Standard Template Library

(stl) [17], extended and modified for parallel programming.
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Figure 5.1: stapl components

stapl provides parallel algorithms and distributed data structures [11, 12] with

interfaces similar to the stl. Instead of using iterators, algorithms are written with

views [10] that decouple the container interfaces from the underlying storage. The

skeletons framework [14, 16] allows the user to express an application as a composi-
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tion of simpler parallel patterns (e.g., map, reduce, scan and others).

Algorithmic skeletons are instantiated at runtime as task dependence graphs by

the PARAGRAPH, stapl’s data flow engine. It enforces the specified task dependencies

and is responsible for the transmission of intermediate values between tasks.

The STAPL Runtime System (stapl-rts) [78, 15, 79], the focus of this disserta-

tion, provides portable performance by abstracting the underlying platform with the

concept of locations as explained in Section 3. The stapl-rts abstracts the platform

and its resources, providing a uniform interface for communication and computation.

Throughout this dissertation, we will explain how stapl components are using

the stapl-rts for creating user friendly, portable, and efficient parallel applications.

5.1 Containers and Views

stapl containers are distributed data structures that offer a shared memory

inspired interface. They have interfaces similar to their stl counterparts for accessing

and mutating stored data and metadata, e.g., size of the container, distribution and

others. They are extensible and composable through regular C++ inheritance and

template instantiation mechanisms.

Various containers are offered that have similar characteristics as the stl contain-

ers they model, such as array, vector, map, set, unordered_map, unordered_set,

list, etc. There are also containers that are not to be found in stl such the

matrix [7] and the graph [12].

The container consists of the distribution metadata of its elements (metadata)

that itself is also a p object and the base containers (base container) that are

non-p objects that store the actual data. The container’s metadata has information

about the distribution of the elements, or mapping of element index to location ID,

locating transparently local and remote elements.
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1 template <typename T>

2 class array : public stapl:: p_object {

3 metadata m_meta;

4 base_container m_bcontainer;

5

6 void set_element(std:: size_t n, T const& t) {

7 auto lid = m_meta.location_of(n); // find in which location the element exists

8 if (lid==this ->get_location_id ())

9 m_bcontainer[m_meta.find_index(n)] = t; // element on this location

10 else

11 stapl:: async_rmi(lid , this ->get_rmi_handle (), &array:: set_element , n, t);

12 }

13

14 stapl::future <T> get_element(std:: size_t n) const {

15 auto lid = m_meta.location_of(n); // find in which location the element exists

16 if (lid==this ->get_location_id ())

17 return stapl :: make_ready_future <T>( m_bcontainer[m_meta.find_index(n)]);

18 else

19 return stapl :: opaque_rmi(lid , this ->get_rmi_handle (), &array :: get_element , n);

20 }

21

22 std:: size_t local_size () const { return m_meta.size(); }

23

24 stapl::future <std::size_t > size() const {

25 return stapl :: allreduce_rmi(std::plus <std::size_t >{}, this ->get_rmi_handle (),

26 &array:: local_size);

27 }

28 };

29

30 stapl_main (...) {

31 array <int > a(100);

32 if (stapl:: get_location_id ()==0) {

33 a.set_element (99, 1);

34 auto f = a.get_element (99);

35 assert(f.get()==1);

36 }

37 }

Figure 5.2: Simple container

A simplified container is shown in Figure 5.2. To provide a shared memory view

to the user, containers are declared as p objects. RMIs are used to read and write

elements. They are also used to access and mutate metadata, for example getting

the total size of the container relies on the reduction primitives of armi (reduce_rmi

and allreduce_rmi).

Figure 5.3 shows graphically the interaction between the containers and the

stapl-rts. The light gray color is user code, whereas purple is container code

and red is stapl-rts calls. Through the addition of minimal primitives, the stapl-
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Figure 5.3: Container and stapl-rts interaction

rts transforms data structures to distributed containers, attesting to its power as a

solution for creating parallel frameworks.

Container composition is supported through creating the inner containers in their

own isolated gang, different from that of the parent container. The support for

container composition will be explored in Section 7.

stapl views [10] are also inherently distributed objects. Several of their internal

parts, such as the underlying container and domain are p objects, thus views are

p objects as well. In fact, since the domain is a form of metadata, the container is

actually a view with associated, per-location storage. The interaction between views

and the stapl-rts is similar as that of the containers.
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5.2 PARAGRAPHs

Users write their application as a composition of algorithms, expressed through

skeletons. These composed algorithms are used in conjuction with the views to the

data they work on to create a distributed task graph. The PARAGRAPH is the data

flow engine of stapl. It is a distributed task graph that is responsible for placing

tasks, resolving dependencies and flow values between producer and consumer tasks,

generated by the skeletons and the views.

A PARAGRAPH is essentially a distributed container of tasks. It is a p object

and has an associated set of locations on which its tasks are mapped for execu-

tion. PARAGRAPHs use RMIs to place tasks, resolve dependencies and flow values

between producer and consumer tasks that are not on the same location. Addition-

ally, runnable tasks are scheduled through the executor framework.

The stapl-rts and the PARAGRAPH, while distinct and with clear interface sepa-

ration, have a close relationship. The stapl-rts lacks the task dependence resolu-

tion capabilities of the PARAGRAPH and the PARAGRAPH requires an abstraction layer

for communication and task scheduling. They complement each other, making the

PARAGRAPH a higher level runtime system.

In Section 6 we will show the how the PARAGRAPH interacts with the stapl-rts

to take advantage of shared memory in an abstract way, while in Section 7 we will

present how they work together to provide generic nested parallelism for regular and

irregular applications.
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6. LEVERAGING SHARED MEMORY∗

The current state of the art in HPC is a distributed memory machine comprised

of nodes with accelerators and multiple processor sockets, each with a multi-core

chip. Application development for these platforms is usually evolutionary: a scal-

able, distributed programming model (usually MPI [33]) is used for the initial imple-

mentation, with the memory hierarchy largely ignored. To increase performance, the

implementation is extended with another library (e.g., OpenMP [35]), with thread-

ing for finer grain parallelism and shared memory with explicit synchronization to

replace communication between processing elements. Writing such programs deco-

rated with primitives from multiple low level APIs is an inherently non-scalable way

to write software. Without a separation of concerns, only small programs written by

expert developers actually achieve greater efficiency. The implementations are also

rigid, difficult to extend, and not portable.

This lack of abstraction clearly detracts from code reuse and program composabil-

ity. However, developers are often faced with no other choice if they wish to gain even

some fraction of the peak performance modern systems offer. Efficiently mapping

applications to such architectures requires semantic information that is usually lost

when higher level programming models are used. In this chapter, we describe how

user-level information is transferred to the stapl-rts to leverage shared memory

when offered by the platform.

One of the key design goals of stapl is portable performance: users must be

able to write one version of the code that has good performance on different systems

∗Part of this chapter is reprinted with permission from “STAPL-RTS: An Application Driven
Runtime System” by Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, Nancy M. Amato,
Lawrence Rauchwerger, 2015. Proceedings of the 29th ACM on International Conference on Super-
computing, ICS’15, 425–434, Copyright 2015 by ACM.
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with minimal per-platform effort. The layered component architecture of the library

supports this objective, with each component responsible for abstracting some area

of concern in parallel programming, such as data distribution, computation speci-

fication, work scheduling, and communication. Key to obtaining performance is a

transfer of contextual information between these components, while still maintaining

the proper abstractions necessary for software reuse.

The stapl-rts presents a unified interface for both intra-node and inter-node

communication to support performance portability. Internally the mixed-mode im-

plementation uses both standard shared and distributed memory communication pro-

tocols when appropriate. Our distributed Remote Method Invocation (RMI) model

guarantees scalability and correctness.

Each processing element together with a logical address space forms a location

(isolated computational unit). Hence, parameters to RMIs are passed by value, main-

taining strict copy semantics with no user-visible sharing. This approach provides

safety to the user by guarding against data races. However, as with other features of

higher level languages, it can introduce runtime overhead, in this case from excessive

copying of large data structures. We show in this chapter how copy elision (i.e. re-

moving unnecessary copying of objects) can eliminate this performance penalty, via

simple annotations inserted by stapl based on information from higher levels of the

software stack.

This chapter makes the following contributions:

• Transfer of application semantics to the runtime. We employ annotations

based on common programming idioms. As the stapl-rts is implemented in

C++11 [18], the annotations are similar to C++ stl interfaces.

• Copy removal via move semantics and immutable sharing. To demonstrate
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application driven optimization, we transparently avoid copies usually incurred

when maintaining isolation of computational activities. We employ the commonly

known idioms of move semantics [18] and immutable sharing [19], leveraging shared

memory for communication between activities whenever possible. stapl programs

are expressed as task dependence graphs, with consumer tasks receiving read-only

access to produced values. We use this graph representation to transparently insert

annotations whenever possible: tasks with single consumers can direct the runtime

to move their copy directly to the producer, which it will do if the tasks exist in

shared memory. Tasks with multiple consumers can request immutable references

to the value be transmitted to other locations where these successors exist.

6.1 Shared Memory Optimization Opportunities

We describe several aspects of the execution model of stapl, motivating design

decisions and pinpointing opportunities for application driven optimization.

6.1.1 Execution Environment

A stapl application is always implicitly parallel and executes on a number of

locations. Each location has an isolated, virtual address space which is not directly

accessible by other locations. When a location wishes to modify or read a remote

location’s memory, the work must be expressed via RMIs on distributed p objects,

even if the two locations reside in shared memory. This design has the following

ramifications:

• Data Races Cannot Occur. With only one processing element able to directly

access memory and RMI atomicity guaranteed by the runtime system, users do

not have the ability to create data races as is usually possible in shared memory

parallel execution models.
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• Isolation causes copying. One cost of the added safety is object copying be-

tween locations, even if they share a common address space. Maintaining isolation

means values returned from RMIs between locations must be copied. We discuss

in Section 6.2.1 how to minimize this overhead when in shared memory.

6.1.2 RMI Argument Copy Semantics

We enforce pass-by-value semantics for all arguments passed to an RMI. A private

copy of any argument passed to a remote function call is presented to the receiver; any

mutation on the argument either at the sender or at the receiver will not be visible

to the other. Again, if this is done without high level information, the runtime may

introduce unnecessary copies to enforce pass-by-value semantics.

6.2 Application Driven Optimization

We now give examples of how high level information is transferred from stapl

programs into the stapl-rts to guide optimization using PARAGRAPH directed copy

elision between locations in shared memory. The information is provided at an

appropriate level of abstraction (i.e., they need not be aware of how and if stapl-

rts uses this information) through well known programming idioms, derived from

standard C++ language features or library interfaces.

6.2.1 Argument Copy Elision in Shared Memory

Copy semantics simplify the reasoning about parallel programs, as they remove

potential side-effects. However they can introduce significant runtime overhead. We

relax our implementation of copy semantics with assistance from the PARAGRAPH. We

describe three RMI annotations that allow stapl-rts to remove copies. They include

transfer via move, return storage specification via promise and future objects, and

the use of shared, immutable data references. We first describe how application
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contextual information flows to the PARAGRAPH to guide copy elision and then discuss

the annotations as well as their implementation.

6.2.1.1 PARAGRAPH Direction of Copy Elision

Skeleton

TDG  

Specification

PARAGRAPH

TDG Inspection, 

Instantiation, and 
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Figure 6.1: Copy elision in stapl

Copy elision annotations are not inserted by stapl application programmers.

Instead the elision is directed by the PARAGRAPH, and Figure 6.1 depicts this pro-

cess. First an application writer employs an algorithmic skeleton, which the skeleton

framework uses to generate a task dependence graph specification. At run-time, this

graph is instantiated by the PARAGRAPH and mapped onto a set of locations for ex-

ecution. The PARAGRAPH also performs an inspection of the graph to detect where

copy elision can be used. In Figure 6.1 the result of the map operation on location 1

can be transferred (i.e., moved) to the reduction task on location 0, as it is the only

consumer of the value. The PARAGRAPH uses the following set of rules to identify

elision opportunities:

• move annotation. If a task has single consumer and it is on a remote location

(i.e., different than where the task executes), pass the value to async_rmi via

std::move.
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1 void produce () {

2 std::vector <int > v(N);

3 ... // populate v

4 async_rmi(dest , h, obj::consume , v);

5 }

(a) RMI invocation with copy of v.
1 void produce (...) {

2 std::vector <int > v(N);

3 ... // populate v

4 async_rmi(dest , h, obj::consume , std::move(v));

5 }

(b) RMI invocation with move of v

Figure 6.2: Move semantics for RMI arguments

• immutable_shared annotation. If a task has multiple consumers and at least

one is on a remote location, use an immutable shared reference. The reference is

passed to associated RMIs and also used to service local consumers.

• No annotation. If all consumers are on the producer’s location, the value is

managed locally with no RMIs.

6.2.1.2 Using Moves for RMI Parameter Passing

Consider the code in Figure 6.2(a) which calls async_rmi. A location executes

function produce that creates a vector and sends it to another location via RMI.

In this case, the copy of the vector parameter into the runtime is unnecessary. The

source location produces the value solely for consumption at the destination loca-

tion. This is an object transfer pattern present in many parallel algorithms (e.g.,

reductions). This type of value transfer is also desirable in sequential computing.

C++11 [18] addresses this problem with language support for rvalue references and

an associated library function std::move.

The stapl-rts supports the direct use of these move semantics with RMI pa-

rameter passing, so that the unnecessary copies can be completely avoided. The
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trivially modified code in Figure 6.2(b) has been annotated to express the transfer

of v. The parameter is passed without any copying when the source and destination

reside in the same address space and is presented to consume_value as an rvalue

reference, that is as an std::vector<int>&&. During execution, the parameter is

moved from user space into the runtime, serialization is avoided, and control bits are

inserted into the RMI request to forward the rvalue reference to the callee.

6.2.1.3 Immutable Object Sharing

There are times that basic data transfer between locations is insufficient. If

there is still a local consumer of the value to be transmitted remotely, we can employ

immutable data sharing to avoid overhead while still preserving copy semantics. This

admittedly does not cover all cases (i.e., if the receiver wants to mutate the value,

they must still copy it), but when it can be used, it gives similar savings as the

zero-copy data transfers discussed in the previous two sections. We currently offer

two variations of immutable sharing:

Permanently immutable objects. Values placed in an immutable wrapper via

make_shared_immutable are guarded against mutation for the remainder of their

lifetime. This primitive mimics the behavior of a std::shared_ptr<const T> and

is used to safely share values between locations in shared memory. When the des-

tination location resides in another address space, a new copy is initialized there to

back the immutable wrapper. In each address space, the underlying copy is deleted

when the last reference is deleted, using standard reference counting.

Figure 6.3(a) depicts an example of permanently immutable sharing. Assume

that location 1 resides in the same address space as the location executing A::put,

while location 2 does not. Location 1 shares a copy of t with the lifetime managed

by stapl-rts. When A::put exits and references on location 1 are destroyed, the
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1 foo (...) {

2 auto t = stapl::make immutable shared<T>(...);

3 stapl:: async_rmi (1, h, &A::put , t);

4 stapl:: async_rmi (2, h, &A::put , t);

5 T const& ref = t.get();

6 }

(a) Example immutable_shared usage
1 t = ...;

2 stapl:: async_rmi (1, h, &A::put , immutable(t));

3 stapl:: rmi_fence ();

4 t = ...;

(b) Example immutable usage

Figure 6.3: Immutable object sharing in stapl-rts

copy is destroyed. Location 2 receives a wrapper to its own copy which is read and

subsequently shared, if desired, with other locations.

Temporarily immutable objects. Objects can be tagged using the immutable

function. A reference to such an object can be given to a destination location

in shared memory, instead of copying it. This annotation, demonstrated in Fig-

ure 6.3(b), allows the caller to regain mutability rights of the object after the next

synchronization point. Using the immutable tag, the caller guarantees that t will

not be updated until after the rmi_fence collective synchronization call. Afterwards

the variable can be safely modified.

6.2.2 Return Value Copy Elision

All return values from RMIs are returned only by copy in order to discourage the

user from returning pointers or references to objects. The exception to this rule is

returning a reference or pointer to a p object from an intragang RMI. The reasons

behind this design choice are

• to enforce data locality,

• to maintain portability by forcing the user to think in terms of distributed
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memory and

• to avoid possible memory leaks, as returning a pointer or a reference requires

a heap allocated object which the user has to delete.

Returning objects that themselves manage pointers, e.g., smart pointers such as

std::unique_ptr, std::shared_ptr and others, is allowed.

6.3 Mixed-mode Communication

To support the aforementioned optimizations, the stapl-rts is specialized when

in shared memory. Our mixed-mode communication unifies shared and distributed

memory communication under the same set of primitives.

Mixed-mode presents a consistent interface rather than mixing the two different

paradigms. Locations communicate using RMIs on p objects regardless of their rel-

ative position in the memory hierarchy. The stapl-rts internally changes its imple-

mentation and specializes RMI handling for each of these approaches. Maintaining

our always distributed model is achieved by allowing the creation of locations on

threads and avoiding the communication layer when communicating between them.

In mixed-mode, the program is executed on locations where some of them are on

the same physical address space, or same node, and others are on different nodes.

The stapl-rts can create more than one locations on each node that are capable

of communicating between them via shared memory, whereas locations on different

nodes communicate through a communication library. As far as the user is concerned,

locations are still isolated and the only valid communication means is via RMIs on

p objects and thread safety is ensured by the stapl-rts.

Figure 6.4 shows the difference between executing an application on 4 MPI pro-

cesses vs 2 MPI processes with 2 threads each on a 2 node, 2 core/node machine.

While the machine configuration did not change, changing the execution configura-
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(a) Distributed memory only (b) Mixed-mode

Figure 6.4: Mixed-mode execution vs distributed memory only

tion allows the stapl-rts to utilize shared memory optimizations.

6.3.1 Threading Backends

Through the concurrency component (Section 3.2.3), the stapl-rts abstracts the

threading capabilities of the platform. Each different threading library is plugged

in to the stapl-rts as a different multithreading back-ends. Currently, we support

backends based on C++11 threads [34] and OpenMP [35]. Additional ones can be

supported with the only restriction that only one can be active at any given moment.

6.3.2 Communication Protocol

When an RMI request is issued, the stapl-rts needs to find where the target

location exists in the system. This location-to-PE mapping is available internally

in the stapl-rts, but is partly distributed. To promote scalability, we aggregate

the information about where a location is at a process level. The stapl-rts knows

globally the process that a location is on, but not at which PE. The exact location-

to-PE mapping is only available on a per process level; each process knows only of

the exact mapping for the locations it hosts.

Figure 6.5 shows a high level overview of the location resolution when issuing

an RMI. The metadata answers on which process a location is. Locations in shared
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Figure 6.5: Enqueuing RMIs

memory communicate between them using a shared mailbox. The mailbox is a hash

table that associates location IDs to lock-free buffer queues. Locations in shared

memory have direct access to the mailbox and they are allowed to push a buffer

containing RMIs directly to the destination location, using its ID as the key.

If the source and target locations are not on the same process, communication is

delegated to the communicator. The request gets forwarded to the process that the

metadata has said that knows where the location is. Upon arrival of the forwarded

request, the metadata is queried again to determine the right queue. As mentioned,

the metadata has the full location-to-process mapping on each process.

This design can easily be adapted to have an hierarchical resolution mechanism

that answers where a location is, for example per node or per rack, reducing metadata

duplication to the cost of more communication hops. In this case, the protocol will

keep forwarding the request until the location is reached. Providing such support

does not require placing restrictions to the number of forwardings allowed, since

locations are pinned to their respective core and thus are never migrated, requiring

a deterministic number of hops to be reached.
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6.3.3 Shared Objects

Shared memory also enables the stapl-rts to use shared memory optimized

implementations for common operations, e.g., reductions. Using these primitives

relies on the ability to share objects between locations in shared memory, for example

a thread-safe accumulator.

Previous approaches, such as OpenMP [35] require shared objects to be declared

prior to creating the parallel section it is shared in. Others, such as Habanero-Java

[43] require a reference to the object to be passed explicitly to each thread. For

systems that support dynamic applications, these approaches are either cumbersome

to use or impose unnecessary overhead.

The stapl-rts has an internal mechanism for creating shared objects dynam-

ically, without requiring a priori declaration. This mechanism relies on the fact

that the rmi handle of a p object is a unique value in a gang. Upon first request

of a shared object, it is constructed and placed in a hashtable indexed with an

rmi handle, along with a reference count of how many locations will be sharing it.

The p object associated with it is inconsequential, as the rmi handle is the key for

that shared object. All locations that want to share the same object have to provide

the same rmi handle. The only limitation of this mechanism is that only one shared

object is allowed per p object.

6.3.4 Accessing Communication Layer

6.3.4.1 Outbound Communication Access

Each location that has to communicate with another location over distributed

memory must go through the communicator module. Our current communication

layer is based on MPI and we ensure that only one thread on the shared memory

is allowed to make calls to the MPI layer at any given moment. This way, we only
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require MPI THREAD SERIALIZED instead of the slower MPI THREAD MULTIPLE [75].

In order to avoid contention on that layer as each thread attempts to acquire a

lock around the communication layer, we introduce a deferred task mechanism. A

location that wants to use the communicator attempts to lock it. If the lock fails, it

places a task in a lock-free queue that has all the information regarding the requested

communication, such as the buffer, the destination and other metadata and returns.

If the lock succeeds, then the location will send everything that is currently in the

lock-free queue and then send its own buffer.

6.3.4.2 Inbound Communication Access

Since most low level communication libraries are polling-based, rather than interrupt-

based, they have to be occasionally checked for incoming communication. In the

stapl-rts, while a location waits for a value, it is free to process its pending RMIs.

If it has no RMIs, then it can poll the distributed memory communicator for any

incoming messages. We implement this functionality using busy-waiting. However,

if multiple locations on the same shared memory node are idle or are blocked waiting

for a value, then it is easy to have contention at the lock in the communicator.

Resolving contention can be done either by electing specific threads that are

allowed to access a shared resource or by allowing all threads to attempt to access

the shared resource and backing off if another thread is accessing it. In the stapl-rts

we offer a three distinct policies:

• Master thread policy which allows only the locations that are mapped to the

master thread of the process to access the communicator. While this approach

has the lowest overhead, it leads to unfair work distribution as locations on the

master thread have to always bear the cost of receiving and pushing requests

to the correct queue, even if other locations are idle.
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• First thread policy where the first thread that manages to lock the commu-

nicator takes care of inbound communication. In order to reduce contention,

as multiple threads try to be the first, we use an hierarchical lock that uses

the PE hierarchy from the concurrency component along with an exponential

back-off mechanism.

• Dedicated thread policy in which a dedicated, separate thread is the only

one allowed to access the communication layer.

6.4 Related Work

In [80] the authors propose Kanor, a declarative language for writing parallel

programs in partitioned address spaces. Users annotate how data flows between

address spaces to describe communication. The Kanor source-to-source compiler

uses these annotations to do a more informed data-flow analysis and appropriately

promote objects to global shared objects in shared memory, achieving zero-copy

without explicit synchronization from the user’s side, while maintaining the isolation

features of distributed memory. The resulting code targets either multithreaded code

or MPI code, but not a mix of both. The immutable object support we present is

similar to performing the globalization optimization on a variable in Kanor but with

the added benefit that it works in mixed-mode as well. A compiler such as Kanor’s

could easily leverage the immutable object support we offer.

A framework for taking advantage of immutable objects is introduced in [81] for

code optimization. The authors describe a set of immutability annotations for Java

that can be added to local or member variables. These can be used by the compiler

to perform optimizations such as relaxing bounds checking, and load eliminations.

Several papers explore reference and object immutability for type safety reasons,

with the potential to enable optimizations using those guarantees. Javari [82] and
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IGJ [83] extend the Java language with reference and object immutability qualifiers.

Using them, they provide symbolic constants. While it is mentioned that these qual-

ifiers can enable code optimizations, this opportunity is not explored. The authors

of [19] extend the concepts of object and reference immutability to build a type sys-

tem that offers immutability guarantees for objects, for the purpose of exploiting

it in parallel execution. However, the paper does not expand on the performance

implications. The presented immutable object support is similar to this work, but

our focus is exploiting shared memory, rather than enforcing type safety.

There have been previous attempts to provide a unified communication model.

Treadmarks [84] and Intel Cluster OpenMP attempted to expand shared memory

models to distributed memory. While novel and popular at the time, such shared

memory approaches suffer inherent scalability issues which make them infeasible

for large distributed systems. Additionally, it has been suggested that MPI should

become aware of shared memory through the use of the RMA functionality [85], but

this has yet to be approved in the MPI specification. However, the use of all these

primitives must be explicitly set up and managed by the user, making it effectively

a multi-protocol approach.

MPI implementations [86, 87] detect intra-node communication and use optimized

methods for copying data. While the optimizations take advantage of the node

memory hierarchy, data copying is still required between MPI processes.

Hybrid OpenMP+MPI solutions have been used in applications [88, 89] with suc-

cess. Almost all of these applications have sequences of parallel OpenMP sections

followed by sequential sections that perform communication using MPI. The reason

for this configuration is that while MPI implementations allow threads to communi-

cate with each other under the MPI THREAD MULTIPLE mode [90], it has been shown

that this negatively affects performance [75].
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Habanero-C with MPI (HCMPI) [91] introduces distributed memory communi-

cation in Habanero-C. It uses the Habanero task programming model for intra-node

computation and synchronization, while introducing new functions based on MPI

for the inter-node equivalents. While HCMPI has better performance than MPI or

hybrid MPI+OpenMP, it presents two different programming models to the user.

Intra-node, HCMPI uses the Habanero-C interface, while inter-node it relies on a

MPI-like message passing interface.

HPX [92] supports hybrid-mode, allowing threads to communicate in distributed

memory with asynchronous primitives. Future and promise mechanisms are provided

for synchronization and data retrieval. The distributed memory communication em-

ploys MPI. In shared memory, it allows arguments passed by reference, significantly

reducing communication latency. In distributed memory the arguments are copied,

exposing a slightly different view to the user depending on the target of the commu-

nication primitive.

Charm++ [51] provides support for hybrid mode, either by having multiple

threads per node to process messages or by declaring functions threaded and al-

lowing them to block while waiting for a value to arrive. The user has to be aware

of the threading capabilities, as data structures that may be accessed by multiple

threads have to be properly protected.

Chapel [52] has been designed to specifically fit multicore distributed systems.

As such, they offer support for creating tasks asynchronously either on distributed

or shared memory. There is not enough information on how Chapel performs in

mixed shared and distributed memory applications. However, shared-memory only

performance indicates that Chapel may not adequately optimized [93].

Tpetra [50] is a linear algebra package from Trilinos. Tpetra supports hybrid-

mode parallelism through Kokkos; communication in distributed memory uses MPI,
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while shared memory communication and computation employ various Kokkos back-

ends (Pthreads, OpenMP, Intel TBB, CUDA). Tpetra resembles a hybrid MPI and

OpenMP system, as Kokkos tasks cannot communicate through distributed memory.

6.5 Experimental Evaluation

For all our experiments, we configured the stapl-rts with the OpenMP-based

concurrency back-end with each location mapped to one OpenMP thread. In all

cases, threads are pinned to one core. The default armi buffer size is 8 KB which

means that the one-way handshake protocol (see Appendix B.2) will be used in

distributed memory communication for payloads that are bigger than 8136 bytes, as

56 bytes are used for armi bookkeeping and metadata. This means that the stapl-

rts sends two MPI messages rather than one, increasing the latency but allows truly

asynchronous communication without payload size restrictions.

6.5.1 Point-to-Point Latency
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Figure 6.6: async_rmi latency against MPI and Boost.MPI
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Figure 6.6 compares async_rmi against MPI_Send/MPI_Recv, one-sided MPI_Put/

MPI_Win_lock†, and Boost.MPI [66] using the OMB [74] latency benchmarks. For

the Boost.MPI benchmark, we implemented two versions, one that serializes and

sends the data structure containing the payload directly (Boost.MPI (direct)) and

one that creates and sends the MPI datatype of the data structure, followed its

data (Boost.MPI (skeleton)). For the latter, we are creating and transmitting the

datatype for each object sent to better simulate what would happen in an actual

application with varying data structures. All benchmarks where performed with

MPI THREAD SERIALIZED.

The pair of MPI_Send/MPI_Recv experiences the least latency, which is attributed

to the fact that they are blocking and they have direct access to the buffer that

contains the data to be transmitted, therefore requiring only minimal bookkeeping

information. Boost.MPI performance suffers since it has to serialize and deserialize

the data in an internal buffer prior to sending it and after receiving it, introducing

an extra copy at both the sender and the receiver. Similarly, the async_rmi has to

copy the data to an internal buffer in a serialized form, not only to preserve the copy

semantics of the RMI, but also to be able to transmit arbitrary objects. While we

cannot match the latency of MPI_Send/MPI_Recv, as we are using their non-blocking

counterparts to perform communication in armi, we offer similar latency to the

one-sided MPI primitives and considerably better latency than Boost.MPI.

In Figure 6.7, we compare our latency on one node, with the stapl-rts and HPX

benchmarks executing on shared memory (2 threads in the same process), against

MPI on two processes. Our latency for async_rmi is on par with the one-sided MPI.

It is clear though that we pay the overhead of serialization, as the pair MPI_Send

/ MPI_Put can do a memcpy from one address space to another, whereas we have

†This was the fastest combination on our system.
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Figure 6.7: async_rmi latency against MPI and HPX on one node
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Figure 6.8: opaque_rmi/async_rmi(promise) latency against one-sided MPI

to serialize the object, that involves among others a memcpy for its data. HPX on

the other hand sends a reference to the data, resulting in constant latency for any

payload size.
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6.5.2 Asynchronous Return Values

RMIs offer additional flexibility compared to MPI for value retrieval. MPI Re-

mote Memory Access (RMA) [90] use is complex, requiring explicit memory registra-

tion and synchronizations. RMIs expose a simple, high level interface which allows

one to either wait for values or pass them to a continuation via future::async_then,

with data transfer details managed by the stapl-rts.

Figure 6.8 presents the latency of our primitives employing futures and promises

(Section 3.4.1). We compare against one-sided MPI with MPI_Get/MPI_Win_flush‡

under distributed and shared memory. Creating MPI windows is done through

MPI_Win_create_dynamic, as it provides the most flexible form of RMA memory

registration for non-trivial applications [94].

Both our methods (opaque_rmi and async_rmi with promise) have similar la-

tency. They are competitive with MPI in distributed memory. However as the

object size increases past 64 KB, serialization begins to noticeably affect perceived

latency. In shared memory, especially for medium object sizes (2 KB - 256 KB), we

outperform MPI, as we can automatically elide one memory copy that MPI has by

performing in-place construction of the object in the receiver’s address space. MPI

starts to outperform us after 512 KB.

6.5.3 Concurrent Latency

In Figure 6.9, we evaluate our system under maximum contention using the con-

current latency benchmark from [75]. We configure our experiment to run on 2

processes with one process per node, and 1, 2, 4, 8 and 16 locations per process. It

is worth noting that changing the number of locations per process requires to set the

appropriate environment variable (STAPL NUM THREADS) at run-time and does not

‡This was the best performing combination on our system.
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Figure 6.9: async_rmi concurrent latency against MPI and MPI+threads

require any reconfiguration.

Each location is communicating with a location in the other process, forcing all

threads to go through the communicator. Similarly, in the MPI experiment, each pro-

cess has multiple threads that communicate through the same MPI communicator us-

ing different tags. Therefore, the MPI layer is configured with MPI THREAD MULTIPLE.

Communication patterns like this that can appear in applications with unpredictable

communication (e.g. graph applications). In these applications, introducing a hy-
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brid MPI+OpenMP solution that tries to extract communication in a separate phase

might be problematic and the only solution may be a thread-safe MPI. Our system

has very competitive latency compared to MPI, especially for smaller payload sizes

where the serialization overhead is minimal. The effects of the one-way handshake

protocol (see Appendix B.2) are visible at > 4 KB and our latency increases due to

object serialization at > 64 KB.

6.5.4 Graph 500
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Figure 6.10: Graph 500 in distributed memory only and mixed-mode

In Section 6.5.3 we showed results when all locations have to go through the

communication layer. For a more realistic communication model, we evaluate mixed-

mode using the Graph 500 benchmark [77] as presented in [12]. In Figure 6.10
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we compare the same implementation running with 1 thread/process (blue line),

4 threads/process (red line) and 8 threads/process (black line). For each horizontal

graph grid line, the number of locations is the same, the only thing that changes is

the configuration. So for 256 locations, the blue line means that the application is

invoked on 256 MPI processes, the red line on 64 MPI processes with 4 threads each

and the black line on 32 MPI process with 8 threads per process.

Without modifying the implementation at the higher levels and simply by chang-

ing the configuration, we are able to perform better than the distributed memory

only version for the 4 thread case.

When using 8 threads, the contention at the communicator eliminates our gains.

Graph 500 has a random communication pattern and the more locations exist, the less

probable is for a location to communicate with another location in shared memory.

This increases the number of locations trying to access the communicator. It is

evident that mixed-mode benefits applications that favor neighbor communication

patterns and those neighbors reside on the same shared memory node.

Currently, our Graph 500 implementation does not take advantage of zero-copy.

It does not use move semantics or immutable sharing, minimizing the opportunities

for eliding copies in shared memory. We expect that by introducing these zero-copy

techniques and further reducing contention will allow us to exhibit better results.

6.5.5 Jacobi Solver

For more structured communication, we evaluate the stapl-rts against hybrid

MPI+OpenMP using the Jacobi solver presented in Appendix A.1. We run the solver

for 100 iterations on a 23040 × 23040 matrix for 8 and 16 threads per process for

up to 512 processors (32 nodes) and present the results in Figure 6.11. The hybrid

solution is able to directly copy data from one address space to another when in
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Figure 6.11: Jacobi solver in mixed-mode armi and hybrid MPI+OpenMP

distributed memory and access the data directly when in shared memory. The armi

implementation always creates copies of a range of values using the make_range_n

primitive (see Figure A.2).

In the smaller thread counts (8 threads), while we scale similarly to the hybrid

solution, we experience higher overhead, as our always asynchronous, distributed

nature forces us to always make data copies, either in shared or distributed memory,

something that the hybrid version can avoid. However, in higher thread counts

(16 threads), the fork-join model of the shared memory parallelism in the hybrid

code takes its toll, increasing the overall processing time. This is where we expect

our work to provide clear benefits: as the number of cores increases, the fork-join

implementations have to spend more time creating parallel sections, whereas our

model avoids this.
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6.5.6 Copy Elision in K-means Clustering
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Figure 6.12: K-means algorithm with 4 M points, 1000 clusters in 3 D space on
Cray-XK7

K-means clustering [95] is a widely used data mining algorithm. Given a set of

vectors in an n-dimensional space, the algorithm assigns vectors which are similar to

one another to a specific cluster. The ”K” refers to the number of clusters, which

is specified by the user, at the start of the algorithm. The ”means” refers to the

computation for associating the vectors. Each cluster is represented by a single point

in the space, which is referred to as a cluster means or cluster centroid. Dhillon and

Modha [96] present a sequential and analogous parallel implementation of k-means.

The parallel algorithm is implemented using MPI.

We implemented the Dhillon and Modha MPI version of k-means in C++ and
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then created a stapl implementation of the same algorithm. It employs an algo-

rithmic skeleton performing a map operation followed by an all reduce. Binary

reduction tasks use moves on one of the inputs to co-locate data for the operation.

The broadcast portion of the allreduce operation uses shared immutability to avoid

unnecessary copies during dissemination of new cluster centroids. These optimiza-

tions are enabled by the PARAGRAPH using the rules outlined in Section 6.2.1.1.

The scalability of the stapl version (STAPL 1th/proc) as shown in Figure 6.12

surpasses that of the MPI implementation, due to other optimizations besides copy

elision. Despite being primarily a computation kernel, the mixed-mode execution

with copy elision (STAPL(zero-copy) 4th/proc) sees gains of up to 6.2% over the

basic stapl implementation.
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7. NESTED PARALLELISM∗

Writing parallel applications is difficult, and many programming idioms taken

for granted in sequential computing are often unavailable. One of these tools, pro-

gram composition via nested function invocation, is not present in many parallel

programming models, at least not in a general form that is abstracted from the

target architecture. Indeed, while nested parallelism, the “ability to take a parallel

function and apply it over multiple instances in parallel” [30], is a natural way to

express many applications, employing it is often constrained by the deep memory

hierarchies and multiple communication models of modern HPC platforms.

Sequential support for nested algorithm invocation is straightforward: appropri-

ate state (e.g., registers) is saved, the call stack is initialized according to convention,

and control is transferred to the target function until it returns. However, parallel

programming models present a more challenging scenario. Nested parallel algorithm

invocations must be efficiently mapped onto the processing elements (PEs) with the

locality of data it accesses considered. Furthermore, by definition, multiple nested

invocations occur concurrently, meaning a coordination of activities is required.

While the efficient mapping of the application’s hierarchy of algorithms onto the

machine’s hierarchy is important for performance, we believe requiring developers to

explicitly coordinate this effort is overly burdensome. Furthermore, direct manage-

ment leads to ad-hoc solutions that significantly decrease software reuse, which is

key to addressing the difficulties of parallel programming.

Previous work tried to make the problem tractable by focusing on specific types

∗Reprinted with permission from “Asynchronous Nested Parallelism for Dynamic Applications
in Distributed Memory” by Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, Dielli Hoxha,
Nancy M. Amato, Lawrence Rauchwerger, 2015. Lecture Notes in Computer Science, 9519, 106–
121, Copyright 2015 by Springer International Publishing Switzerland.
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of applications. Some target more regular applications, where the mapping can be

done in a static, globally coordinated manner. Invocation happens collectively, with

processing elements together creating a new isolated section for the nested algorithm.

Though restricted in the applications they support, these models tend to be both

expressive and exhibit good performance.

Dynamic applications require more flexible support. Since the nature of the

parallelism is not known a priori, nested algorithms are usually implemented as a

series of dynamically spawned tasks. The mapping of these tasks must be either

managed by the user or handled by the runtime system, making clean algorithm

expressivity and performance difficult to achieve together.

This chapter describes the support for nested parallelism in the stapl-rts and

how it extends to the creation of nested parallel sections that execute stapl al-

gorithms. These nested SPMD (Single Program Multiple Data) sections provide an

isolated environment from which algorithms, represented as task dependence graphs,

execute and can spawn further nested computation. Each of these sections can be

instantiated on an arbitrary subgroup of PEs across distributed and shared memory.

While the stapl-rts supports collective creation of nested parallel sections, we

will mostly focus on the one-sided interface. The one-sided interface allows a local

activity (e.g., visiting a vertex in a distributed graph) on a given location to spawn

a nested activity (e.g., following all edges in parallel to visit neighbors). Both the

creation and execution of this nested activity are asynchronous: calls to the stapl-

rts are non-blocking and allow local activities to proceed immediately. Hence, the

one-sided, asynchronous mechanism is particularly suitable for dynamic applications.

Nested sections are also used to implement composed data structures with data

distributed on arbitrary portions of the machine. Together, this support for nested

algorithms and composed, distributed containers provides an increased level of sup-
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port for irregular applications over previous work. In the experimental section, we

demonstrate how the algorithms and data interact in a stapl program, initially

with finding the minimum element on composed containers created such that com-

putation is imbalanced. We also use a distributed graph with vertex adjacency lists

being stored in various distributed configurations. Without any changes to the graph

algorithm, we are able to test a variety of configurations and gain substantial per-

formance improvements (2.25x at 4K cores) over the common baseline configuration

(i.e., sequential storage of edge lists).

Our contributions include:

• Uniform nested parallelism with controlled isolation. Support for arbi-

trary subgroups of processing elements (i.e., locations) across distributed memory.

The sections are logically isolated, maintaining the hierarchical structure of algo-

rithms defined by the user. For instance, RMI ordering and traffic quiescence is

maintained separately for each nested section.

• Asynchronous, one-sided creation of parallel sections. The ability to asyn-

chronously create nested parallel sections provides latency hiding which is im-

portant for scalability. We combine one-sided and asynchronous parallel section

creation, presenting a simple and scalable nested parallel paradigm.

• Separation of algorithm specification and mapping. stapl-rts provides

services to multiple components of upper layers (e.g., stapl), which enable the

specification of an algorithm to remain independent of the mapping. The lat-

ter is managed by stapl, providing the appearance to users that nested function

invocation proceed in a manner similar to that of sequential programming mod-

els. We build on stapl’s unified communication model [15] and we offer virtu-

alized affinity and creation of parallel sections while maintaining information for
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hierarchical-aware placement.

• Use of stapl-rts to implement dynamic, nested algorithms. We use our

primitives to implement several fundamental graph algorithms, and demonstrate

how various distribution strategies from previous work can be generalized under a

common infrastructure using our approach to nested parallelism.

Results are presented for both static and dynamic benchmarks, demonstrating

the flexibility of the approach and its performance at scale of up to 16K cores.

7.1 Design Considerations

In order to take advantage of nested parallelism and realize its full potential, we

have made several design decisions that influence our implementation including:

7.1.1 Expressiveness

Users express algorithms as a composition of simpler parallel algorithms using al-

gorithmic skeletons [16]. This specification is independent of any target architecture.

The responsibility for mapping it onto the machine is left to the library, though it

can be customized by more experienced users at an appropriate level of abstraction.

7.1.2 Preserving Algorithm Structure

We maintain the hierarchy of tasks defined by the application when mapping

it to the machine. Hence, each nested section’s tasks remain associated with it

and are subject to its scheduling policy. Each algorithm invocation is run within

an SPMD section, from which both point-to-point and collective operations are ac-

counted for independently of other sections. The SPMD programming model has

been chosen since scaling on distributed machines has favored this programming

model (e.g., MPI [33]) more than fork-join or task parallel models.
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7.1.3 Parallel Section Isolation

Parallel sections created from the stapl-rts exhibit controlled isolation for safety

and correctness. The uncontrolled exchange of data between parallel sections is

potentially unsafe due to data races. Performance can be impacted, as isolation

means that collective operations and data exchanges are in a controlled environment.

We discuss techniques to mitigate these overheads in [15]. Users have to explicitly

the data available for access in each section.

7.1.4 Asynchronous, One-sided Parallel Section Creation

We support both partitioning (collective creation) of existing sections and spawn-

ing (one-sided creation) of new sections. Partitioning existing parallel sections is

beneficial for static applications but is difficult to use in dynamic applications. On

the other hand, one-sided creation may not give optimal performance for static ap-

plications where the structure of parallelism is more readily known.

In this work we will focus on the one-sided creation as it is a more flexible approach

than the collective creation for dynamic applications. One-sided creation is also fully

asynchronous, allowing us to effectively hide latency and better support our always

distributed memory model.

7.2 Flow of Execution

As with stl programs, a typical stapl application begins with the instantiation

of the necessary data structures. Each container has its own distribution and thus

defines the affinity of its elements. Container composition is supported, as well as

complete control over the distribution of each container (e.g., balanced, block cyclic,

arbitrary) irrespectively of where it exists in the composition hierarchy.

Users write applications with the help of skeletons [16] and views [10], that ab-
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stract the computation and data access, respectively. The skeletons provide a plat-

form independent specification. The views provide element locality information,

projecting it from the underlying container. The responsibility of mapping the ap-

plication onto the machine is left to the library, though it can be customized by more

experienced users at an appropriate level of abstraction.

An algorithm’s execution is performed by a PARAGRAPH, a distributed task depen-

dence graph responsible for managing task dependencies and declaring which tasks

are runnable. Each PARAGRAPH executes in an isolated parallel section, with data

access provided by the views. Each task may itself be a parallel algorithm, for which

a new nested parallel section is created. A default policy places a PARAGRAPH for

execution based on the locality of the data it accesses, or one can define a custom

policy at PARAGRAPH creation.

Parallel sections exhibit controlled isolation for safety and correctness. The un-

controlled exchange of data between parallel sections is potentially unsafe due to

data races. Performance can be negatively impacted by isolation because isolation

requires that collective operations and data exchanges are in a controlled environ-

ment. Techniques to mitigate these overheads are discussed in Section 6. Users

provide views to define the data available for access in each section.

Figure 7.1 shows graphically the flow of execution. As in Section 5.1, light gray

color is user code, whereas purple is PARAGRAPH code and red is stapl-rts calls.

While the stapl-rts manages the creation of the isolated parallel sections, the

decision of if a parallel section is created is left to the PARAGRAPH. While the stapl-

rts allows arbitrary levels of nested parallel algorithm invocations, the PARAGRAPH

is ultimately responsible for stopping the recursion (flattening).

The PARAGRAPH decides on both if a new parallel section should be created as well

as its placement based on locality provided by the views. This can lead to multiple
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Figure 7.1: Flow of execution

Figure 7.2: Execution model with nested parallel sections
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parallel sections being mapped onto the same PEs. Figure 7.2 shows an example

execution instance of an application that has a number of PARAGRAPH invocations in

isolated parallel sections over the same set of hardware resources.

7.2.1 Container Composition and Nested Parallelism

Containers and PARAGRAPHs are both distributed objects (i.e., p objects) and

they use RMIs for communication. Containers use RMIs to read and write elements,

whereas PARAGRAPHs use them to place tasks, resolve dependencies, and flow values

between tasks that are not on the same location.

Distributed containers can contain other distributed containers. The inner con-

tainers can have their own type, distribution and they can be constructed in their

own parallel section, different from that of their parent container. More importantly,

in turn, they can be containers of containers, making container composition a first-

class citizen, with the stapl-rts providing the necessary support for creating them

and handling communication.

Nested parallelism is supported by allowing PARAGRAPH tasks to invoke nested

parallel sections, creating new PARAGRAPHs in the process that are defined in their

own parallel section. We can view the nested PARAGRAPH hierarchy and container

composition as two different expressions of object composition. Thus it is natural

that support for both is provided through the same mechanisms.

7.2.2 Parallel Sections

The stapl-rts allows the creation of new parallel sections that are independent

of the section that created them via

• spawning a new parallel section, whereby one location creates a new section in

an asynchronous and one-sided manner, using a subset of the resources of an

existing section and
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• partitioning the resources of an existing parallel section through collective prim-

itives over the resources that participate in the new section.

7.3 Gangs

In Section 3.1 we introduced the concept of a gang. Gangs are the stapl-rts

subgroup support. Each parallel section executes inside one. While the locations of a

gang execute a single SPMD task, they communicate asynchronously independently

of each other, making them a more loosely knit group than, for example, MPI groups

or Titanium/UPC++ teams.

Subgrouping gives the ability to invoke algorithms on a subset of the resources

without algorithm or code modifications. It allows partitioning the machine, so

as to create associations of existing processing elements. This can lead to lower

communication costs for collective operations as well as synchronization.

Figure 7.3: Gang state transitions
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p objects can be created within a gang, and as such, each p object is associated

with exactly one gang and is distributed across its locations. A gang can have any

number of p objects and its lifetime is tied to that of the p objects present in it.

Figure 7.3 presents a state transition diagram of the life of a gang.

• Upon construction, the gang is created. The gang metadata are generated and

everything is set up to execute the SPMD task.

• When the task executes, the gang is declared running. While the task executes,

p objects can be created and they are automatically associated with the gang.

The scope of the automatic p objects (stack allocated) is the scope of the

SPMD task, however heap-allocated p objects can outlive it.

• If the task finishes and there are no associated p objects, the gang is termi-

nated and its metadata are deleted.

• If there are still p objects associated with the gang, then it is declared alive

and its metadata preserved. The gang remains alive until the last p object is

deleted. RMIs can still be invoked on the p objects.

This relationship between gangs and p objects is what offers isolation and virtu-

alization to the higher level components of stapl, as they allow creating containers

and invoking algorithms on a subset of the resources through PARAGRAPHs with-

out algorithm or code modifications forming the basis of container composition and

nested parallelism support. Parallel sections are isolated, and a parallel section can

be given access to any p object only through its creator gang (parent). Ability to

move p object references between gangs, parent to child, between siblings only if

they go through the parent.
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7.4 Gang Creation

To create a new gang, the user can:

• Partition an existing gang with a collective call over the locations that par-

ticipate in the gang. The user has the ability to provide a name for the new

gang to have an O(1) creation cost. If such a name cannot be provided, the

stapl-rts will perform a O(log n) communication phase to generate a new

name, where n is the number of locations participating in the new gang.

• Spawn a gang via an asynchronous and one-sided manner over an existing gang.

Spawning always requires O(log n) communication, where n is the number of

locations participating in the new gang.

1 if (condition) {

2 // Create a p_object of type T in a new gang that was created collectively by

partitioning the existing one

3 gang g1{mapping -function1 , resolution -function1 };

4 T t{args ...};

5 }

6 else {

7 // Create a p_object of type U on the rest of the resources

8 gang g2{mapping -function2 , resolution -function1 };

9 U u{args ...};

10 }

Figure 7.4: Collective gang creation

7.4.1 Collective Gang Creation

Partitioning parallel sections is supported through the creation of a gang object,

where a provided mapping function determines which resources participate in the

new section. An example of its usage is shown in Figure 7.4.
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The mapping-function provides a way to translate from the parent gang location

id to the newly created gang location id. resolution-function is the inverse of

mapping-function. For example, if one wishes to create a new gang that has all the

odd locations of the parent gang, then

mapping-function(x) = x/2

and

resolution-function(x) = 2x + 1

Using functions, instead of location enumeration, as MPI and other systems do,

has the benefit that if a closed-form solution exists for the translation, then O(1)

space is used for doing the location-to-PE resolution.

1 // Create a p_object of type T by passing args to the constructor , in a new gang

over the given locations and return a future to its handle

2 future <rmi_handle ::reference > f1 =

3 construct <T>(location -range , args ...);

4

5 // Get object handle

6 auto h = f1.get();

7

8 // Create a new p_object of type U on a new section co -located with the section of

the first object

9 future <rmi_handle ::reference > f2 =

10 construct <U>(h, all_locations , args ...);

Figure 7.5: Asynchronous, one-sided gang creation

7.4.2 Asynchronous, One-sided Gang Creation

Spawning a parallel section is supported through the construct primitive as

shown in Section 3.3.2. A more general example is shown in Figure 7.5. construct

accepts a range of locations through the location-range argument. This does not
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need to be an enumeration, as special ranges are accepted such as all locations

or the level(n) where it abstracts a level of an hierarchical machine (e.g., nodes,

sockets). In all cases, the stapl-rts is responsible for translating location IDs to

processing element (PE) IDs and for building a suitable multicast tree on the PEs

which it uses to construct the section and the associated p object.

7.5 Gang Metadata

A gang is identified by its ID, a system-wide unique unsigned integral value, that

is used to index its gang metadata. The gang metadata provide facilities such as

mapping of the gang’s locations to PEs, as well as bookkeeping for synchronization

operations. It is a distributed object that has pieces on each process that a gang has

locations on.

The ID space is partitioned among the processes at the time of application exe-

cution using a block-cyclic distribution. It is guaranteed that location 0 of a gang is

on the process that is the owner of the gang ID of that gang.

Since the distribution is a closed-form solution, any location can make RMIs to

a p object that was created in another gang G′. If the gang metadata of G′ are

present on the process of the source location, then it is easy to find the destination

queue for the RMI, based on the protocol discussed in Section 6.3.2.

However, if the gang metadata of G′ are not available, we utilize the gang ID

distribution information to find where location 0 is and forward the RMI to it. That

location upon receipt of the RMI will be responsible for re-routing the RMI to the

actual destination. While this may create a bottleneck, we expect that gangs that

frequently communicate (e.g. parent and child gangs) have metadata that are on the

same subset of processes.
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7.5.1 Asynchronous Creation and Destruction of Metadata

Both gang metadata creation and destruction are designed to be asynchronous

operations to provide scalability. This has certain ramifications on the design of

the stapl-rts. Firstly, since gang metadata construction is asynchronous, it may

occur that RMIs arrive before the metadata has been created on a process. In order

to avoid the need for synchronization during creation, we queue all RMIs until the

gang metadata has been created. All incoming RMIs remain in a deferred request

buffer and will be queued for execution once the gang metadata and the associated

locations are created.

7.5.2 Gang ID Reuse

Gang IDs can only be reused when all the pieces of the gang metadata object have

been destroyed. Once a gang is terminated (i.e. the SPMD task has finished and has

no more p objects associated with it) then its metadata are destroyed. The gang

metadata are organized in a binomial tree whose root is the process of location 0.

Each metadata deletion incurs a notification to its parent node in the tree. When

all the metadata pieces have been destroyed (i.e. every leaf and node in the tree has

sent a destruction notification) the gang ID is available for reuse.

7.5.3 Gang Metadata Sharing

A lot of times user code ends up creating a gang over the same set of PEs with

the same mapping. This case raises the opportunity for sharing metadata between

gangs. If the stapl-rts determines that two or more gangs are over the same PEs,

e.g., when a new gang is created over all the locations of another gang, then part

of the gang metadata is shared between all these gangs using a reference counted

mechanism. This sharing not only reduces the space required, but also reduces any
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potential pre-processing that happens upon metadata creation.

For the corner case that a new gang has only one location, we perform a more

extreme optimization. No metadata is created, unless a p object is registered or

an RMI is issued. Additionally, a lot of operations, e.g., synchronization, become

no-ops. This is a useful optimization, as since PARAGRAPH tasks are typically SPMD

sections of one location.

7.6 Intragang and Intergang Communication

Communication between locations in the same gang (intragang) is straightfor-

ward, but the stapl-rts also provides the flexibility of intergang communication.

It is possible that a parallel section must perform an operation on a container that

has been created in a different section. For that reason, we allow the invocation of

RMIs between locations of different gangs, assuming that the source location has

an rmi handle to a p object of a different gang, for example through a view to a

container. This way, we can control the flow of references based on the algorithm

hierarchy, as a parallel section can be given an rmi handle only from its parent

parallel section.

An RMI that is being invoked while executing an intragang RMI is intragang if

it is on a p object that is part of the current gang or intergang otherwise. All RMIs

that are being invoked while executing intergang RMIs are intergang.

The stapl-rts maintains copy semantics on for all arguments to RMIs, except

p objects. p objects are distributed objects and they can be created in any gang G

and referenced from some other gang G′, as long as G gave access to its p objects.

A p object can be passed as a C++ reference or pointer in any intragang RMI

and the stapl-rts will take care of the conversion to and from an rmi handle

automatically. On the other hand, for intergang RMIs, a p object can only be
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passed as an rmi handle reference, as the p object may not have a representative

on the destination location of G′. As long as a location has a reference to a p object

or to its rmi handle, it can call RMIs on it.

7.7 Quiescence

We offer an RMI quiescence mechanism (rmi_fence), a collective synchronization

mechanism, that guarantees that all RMIs, both intragang and intergang, have been

executed. To account for intragang RMIs we use an algorithm similar to [67]. The

number of sent and processed RMIs is counted at each location and when the sum

of the difference of those counts for all locations is 0 for two consecutive times, then

intragang quiescence has been reached.

For intergang traffic we employ a different protocol. A gang G can be given

rmi handles to p objects that are in different gangs and G’s locations can do in-

tergang RMIs to any of the locations in those gangs. Instead of keeping information

on G about all locations that intergang RMIs have been sent to, we implement a

protocol that relies on back-edge coherence traffic. Whenever intergang RMIs are

sent from a location L in gang G to a location L′ in gang G′, L′ sends coherence

traffic back to L when the RMI has been executed. In order to reduce the amount

of coherence traffic, multiple back-edge messages are combined on L′. Furthermore,

when rmi_fence is called in G, each of its locations participates in a reduction tree

that combines all the partial coherence information to location 0, which can then

verify if all intergang RMIs have finished.

Quiescence is an operation private to a gang. This is an important property as it

offers isolation in the communication traffic: two unrelated gangs have independent

accounting of traffic and therefore, their respective quiescence is independent from

one another. Composed containers and nested PARAGRAPHs rely on this compartmen-
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talization to avoid performance pitfalls. For example, when all the writes initiated

from a parallel algorithm have to become visible, then the PARAGRAPH responsible for

executing the algorithm can issue an rmi_fence and continue when only the related

RMIs have finished.

7.8 Virtualization of Resources

Creating multiple gangs over the same set of PEs effectively virtualizes the com-

puting resources and it bears close resemblance to M : N schedulers. Locations for

different gangs may be mapped to the same PE.

Containers are aware of the locality of their elements, which they convey to the

PARAGRAPH through views, so that the former can perform efficient task placement

according to its placement policy, a process called localization. Naturally, localization

is important for performance.

While the stapl-rts is able to answer in a lot of instances the question of if

two different locations are on the same PE and make localization straightforward.

However, given the asynchronous nature of the stapl-rts, the fact that containers

and PARAGRAPHs may live in different subsets of the machine and that the location-

to-PE mapping is distributed, the answer to this question is challenging.

In order to compare localities, we have developed a lightweight PE description

scheme called an affinity tag which encodes the PE’s place in the machine hierarchy.

A location mapped to a specific PE inherits the affinity tag of the latter.

When a container is created, each one of its pieces tagged with the affinity of the

location it is created on. Views are using these affinity tags to provide information

on data locality, which the PARAGRAPH uses to do task placement. Should multiple

views that reference data in different affinities exist, the PARAGRAPH has various task

placement algorithms it can employ to perform the placement, which is beyond the
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scope of this dissertation.

As an illustrative example of an affinity tag, assume that we have a machine

with 2 nodes, 2 sockets per node and 16 cores per socket, we can fully describe the

machine by creating affinity tags with 6 bits (1 bit for the nodes, 1 bit for the socket

and 4 bits for the cores). The 4th core of the 2nd socket in the 1st node is tagged

with 010011. Up to 64 bits are allowed in this representation, allowing us to describe

even the largest available machine. This representation has the advantage that a

simple subtraction gives the distance between two different processing elements, and

a simple integer comparison can tell if any two locations are on the same PE.

Currently, we rely on OpenMP for creating affinity tags. The OpenMP runtime

determines thread-to-core binding, either automatically, using pragmas or environ-

ment variables. The stapl-rts inherits the binding and provides it to the rest of the

framework as an affinity tag. This affinity tag is fundamentally logical, as it relies on

the information provided from a lower level runtime system. In the future, we plan

to support affinity tags that utilize information from libraries such as hwloc [97].

7.9 Scheduling

PARAGRAPHs may create parallel sections that overlap on the same PEs. In order

to enforce isolation and preserve the algorithm structure, we employ a hierarchi-

cal scheduling approach. Each PARAGRAPH is associated with its own executor,

a distributed object that receives runnable tasks and scheduling information from

the PARAGRAPH and dispatches said tasks when appropriate. While a default First-

In/First-Out (FIFO) policy is provided, the scheduling policy can be changed by the

algorithm developer at the point of PARAGRAPH instantiation.

PARAGRAPH tasks run to completion and therefore priority inversion is avoided as

tasks cannot be preempted, except in cases where a lower priority task is runnable,
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and a higher priority task is not because of unsatisfied dependencies. These cases can

be resolved by special scheduling policies that disallow runnable lower priority tasks

from executing until the higher priority tasks have been scheduled. We delegate

this to the scheduling policy, since this information has to be provided from the

application itself.

Each executor with runnable tasks (therefore, a runnable executor) is in-

serted with associated scheduling information to the parallel section executor,

called a gang executor. Since we support the notion of non-blocking execu-

tors a gang executor may have more than one executors to schedule. The

gang executor is responsible for dispatching executors according to the schedul-

ing policy of the parallel section and each dispatched executor dispatches its

runnable tasks. This hierarchical scheme guarantees that the scheduling policy is

conserved within an executor and across all executors in a parallel section.

PARAGRAPH tasks can invoke parallel algorithms by creating new PARAGRAPHs. This

will result in the creation of new parallel sections with their own gang executors.

gang executors create an hierarchy based on the parallel section hierarchy. A

gang executor that has runnable executors is inserted to the gang executor

of its parent parallel section.

7.10 Related Work

Nested parallelism was first used for expressiveness, as in NESL [30]. The NESL

compiler applies flattening, transforming all nested parallelism algorithms to a flat

data parallel version, which may limit performance. Other parallel programming sys-

tems use nested parallelism for performance. Users express algorithms using nested

sections for the sole purpose of exploiting locality.

The treatment of nested parallelism in modern parallel programming models can
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be used to divide the previous work on the topic into the following categories: user

managed, structured nested parallelism, and recursive task spawning.

User managed. Models such as MPI [33] are generally single level, requiring

programmers to flatten any nested algorithm calls manually. Support that is provided

to support nested structure (e.g., communicators) is provided by primitives whose

use are intertwined with the program specification.

MPI [90] allows creating new MPI communicators by partitioning existing ones

or by spawning additional processes. This functionality can be used to map nested

parallel algorithms to the machine hierarchy. It is well suited to static applications.

Applications with input sensitive nested parallelism are difficult to express because

communicator creation is always collective and each process must know through

which MPI communicator it should communicate at any given point in the program.

OpenMP [35] has had nested parallelism capabilities since its inception. There is

work on nested parallelism for performance [37]. However, the collapse keyword in

OpenMP 3.0 that flattens nested parallel sections attests to the difficulty of gaining

performance from nested parallelism in OpenMP.

With hybrid protocol approaches to nested parallelism such as hybrid MPI and

OpenMP [35, 88, 89], the application code becomes more complex, with ad-hoc

solutions for data and computation placement, as performance gains are realized.

Looking toward exascale computing, we do not believe that the user managed ap-

proach is feasible, as the required user effort will increase greatly with the deep

system hierarchies that must considered for performance.

Structured nested parallelism. Several models including [98, 99, 100] have

been successful in allowing programmers to use nested algorithms for static appli-

cations. Nested algorithm invocations can exist in the code without explicit man-

agement of mapping (this is either done automatically, based on a data distribution,
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or through a separate, user specified mapping class as in [99]). These invocations

usually occur in isolated sections so that the application level algorithmic structure

is maintained.

Systems in this category enhance the MPI approach, while simplifying the pro-

gramming model. Neststep [101] is a language that extends the BSP (bulk syn-

chronous parallel) model and allows the partitioning of the processing elements that

execute a superstep to subgroups that can call any parallel algorithm. These sub-

groups must finish prior to the parent group continuing with the next superstep.

UPC [28] and Co-Array Fortran [102] have similar restrictions.

Titanium [98] and UPC++ [55] introduce the Recursive Single Program Multiple

Data (RSPMD) model and provide subgrouping capabilities, allowing programmers

to call parallel algorithms from within nested parallel sections that are subsets of

the parent section. Similarly to Neststep, they also require that the nested sections

finish before resuming work in the parent section.

The Sequoia [99] parallel programming language provides a hierarchical view of

the machine, enforcing locality through nested parallelism and thread-safety with

total task isolation: tasks cannot communicate with other tasks and can only access

the memory address space passed to them. This strong isolation, in conjunction with

execution restrictions to allow compile-time scheduling of task scheduling and task

movement, limit its usefulness in dynamic applications.

Phalanx [103] provides capabilities to asynchronously spawn SPMD tasks that ex-

ecute on multiple threads. Programmers allocate memory explicitly on the supported

devices (CPU, GPU, etc.) and invoke tasks on them, creating parallel sections. Pha-

lanx has a versatile programming model and is the most similar related work to the

stapl-rts. Its main difference from the stapl-rts is that Phalanx requires explicit

control of resources. Data and task placement needs to be statically specialized with
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the target (e.g., GPU, thread, process), transferring the responsibility of resource

management to the user and creating the need for multi-versioned code.

Recursive task spawning. Dynamic applications are not easily expressible in

many of these static models, as this type of nested parallelism typically requires more

centralized coordination for the creation, execution, and quiescence of nested sections

(i.e., they are blocking collectives). When the need for parallelism is not known a

priori due to input sensitivities, more flexible methods to dynamically spawn more

work are required. Task based models are effective in creating the desired parallelism.

However, they are often more difficult to program due to the loss of isolation based on

program structure. The scheduling and execution of tasks is usually flattened, and

synchronizations become more coarse grained, as the semantic information grouping

tasks for a given nested computation is lost. These shortcomings inevitably affect

the expressiveness provided by these programming models.

Several systems support task-based parallelism, allowing the user to spawn tasks

from other tasks. The programmer can thus express nested parallelism with the

system responsible for placement. These include Intel Thread Building Blocks [42]

and Cilk [104]. Since task placement is done in absence of knowledge about locality,

one of the benefits of nested parallelism is lost.

X10 [105], Habanero-Java [43], HPX [92], Fortress [106] and Grappa [107] all offer

task-based parallelism, going a step further and allowing control over task placement.

However, they suffer from loss of structure of the algorithms during execution, as

tasks are independent of each other. Building on top of Habanero, Otello [100]

addresses the issue of isolation in nested parallelism. While maintaining a task

parallel system, Otello protects shared data structures through analysis of which

object each task operates on and the spawning hierarchy of tasks.

The Charm++ [51] developers have extended their messaging model to shared
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memory communication as shown in [108]. In [109] the authors explore the po-

tential nested parallelism capabilities of Charm++ using a kd-tree benchmark that

introduces an ad-hoc fork-join model in Charm++.

Chapel [52] is a multi-paradigm parallel programming language and supports

nested parallelism. While it supports data and task placement, users are given only

two parallel algorithms (parallel for, reduce). Other parallel algorithms have to be

implemented explicitly using task parallelism.

Legion [110] retains Sequoia’s strong machine mapping capabilities and it relaxes

many of the latter’s assumptions, making it a good fit for dynamic applications.

It follows a task parallel model in which tasks can spawn subtasks with controlled

affinity. However, this process leads to loss of information about the structure of the

parallel sections, which is a common issue in other task parallel systems.

From the Trilinos package [50], Kokkos supports nested parallelism by allowing

users to divide threads in a team. Teams can be further divided and threads that

belong to a team are concurrent. However, teams cannot execute concurrently, and

only three algorithms (parallel for, reduce and scan) are available to be invoked from

within a nested parallel section.

Table 7.1 summarizes the main differences between stapl’s support of nested

parallelism and similar approaches.

7.11 Experimental Evaluation

In this section, we measure the performance of our one-sided nested parallelism

primitives on both static application kernels, as well as several dynamic ones, such

as graph algorithms.
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Name SPMD NP
sections

Asynchronous Locality
Aware

Any algorithm al-
lowed in NP section

MPI Yes No Manual Yes

UPC++, Co-Array
Fortran, Titanium

Yes No Manual Yes

Sequoia Yes No Compile-time Yes

Habanero, X10 No Yes Yes Yes

Chapel No Yes Yes No

Charm++ No Yes Yes Yes

Legion No Yes Yes Yes

Phalanx Yes Yes Manual Yes

STAPL Yes Yes Yes Yes

Table 7.1: Nested Parallelism (NP) capabilities comparison

7.11.1 Gang Creation

In Figure 7.6 we present the results of a microbenchmark that compares the

one-sided (construct) and collective (gang) section creation against the collective

MPI_Comm_create† over the same number of processes, when the global parallel sec-

tion is 512 processes on Cray-XK7. The combined effect of asynchronous creation

and deletion result in competitive performance against MPI. Moreover, it shows that

the one-sided parallel section creation is a scalable approach.

The last line, construct(all_locations), takes advantage of the gang metadata

reuse mentioned in Section 7.5. This happens in the benchmark by creating initially

a gang over a subset of the locations and every subsequent call uses a p object

created in that gang to create a new using the construct call. This results in

reduction of the overhead to create a new section, as it shares the metadata with

an already existing one, removing the need to recreate the metadata. We expect

that finding more opportunities for metadata reuse will reduce the collective and

one-sided section creation cost.

†MPI does not offer one-sided communicator creation functionality.
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Figure 7.6: One-sided (construct) and Collective (gang) vs MPI on 512 processes
on Cray-XK7

7.11.2 Intragang vs Intergang Communication

In Figure 7.7 we evaluate the overhead of intergang RMIs over intragang RMIs

using the MPI latency benchmark from [74] on Cray-XK7. Intergang RMIs incur

an additional overhead of about 1 us due to some additional bookkeeping required,

as discussed in Section 7.7. MPI results are shown using both MPI_Send/MPI_Recv

pairs and one-sided MPI-2 calls (MPI_Put/MPI_Win_flush).

7.11.3 SAXPY

SAXPY stands for “Single-Precision AX Plus Y” and is a Level 1 routine in the

standard Basic Linear Algebra Subprograms (BLAS) library [111]. SAXPY uses two

input vectors of 32 bit floats X and Y with N elements each, and a scalar value A

and it multiplies each element X[i] by A and adds the result to Y [i].

We evaluate the overhead of creating nested parallel sections using a SAXPY kernel

written directly using stapl-rts primitives in Figure 7.8. We compare a straightfor-

ward SAXPY implementation (“flat”) against a version that recursively divides the
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Figure 7.7: Intragang vs intergang asynchronous RMI latency

input vectors in half 4 times by creating nested parallel sections using the construct

primitive. This figure is complimentary to Figure 7.6, as the latter shows the cost of

one-sided creation with minimal computation, and shows that the overhead of nested

parallel section creation is minimal.

7.11.4 NAS Conjugate Gradient

The NAS Conjugate Gradient (CG) benchmark [76] estimates the largest eigen-

value of a symmetric positive definite sparse matrix using the inverse power method.

It employs the conjugate gradient method which uses matrix vector multiplication.

We compare a stapl CG implementation using one-sided nested parallelism

against the reference NAS CG MPI implementation on IBM-BG/Q. The stapl-

rts shared memory optimizations [15] are disabled to provide a fairer comparison as

there is not a hybrid implementation (i.e., MPI+OpenMP) of the reference.

The reference implementation distributes the matrix in a 2D block manner and

uses MPI communicators for ad-hoc nested parallelism, dividing the P processors

evenly into
√
P groups. In the matrix vector multiplication, each processor performs
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Figure 7.8: SAXPY with no nested parallel sections (“flat”) and 3 nested parallel
sections created (“nested”) on Cray-XK7 (log-log graph)

local work before a per group recursive doubling phase. A global pairwise exchange

is done next to effect a transposition of the vector.

The stapl implementation uses a composed container (i.e., array of arrays) for

the row-wise vectors: each inner array is distributed in a gang of size
√
P . The

matrix is distributed as in the reference implementation. A nested invocation of

map(inner_product()) performs the matrix vector multiplication. This is followed

by
√
P parallel broadcasts to implement the vector transpose.

The implementations of NAS CG perform the same data distribution and compu-

tation. The advantage of the stapl implementation is the separation of the specifi-

cation of the computation from its mapping to the system. The MPI implementation

intertwines the data distribution and explicit communication together with the com-

putation of the algorithm. stapl separates the data distribution specification from
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the communication pattern for the vector transpose, and the conjugate gradient

implementation.
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Figure 7.9: NAS CG Class C, D, and E on IBM-BG/Q

Results for CG on IBM-BG/Q are shown in Figure 7.9. Given the wide range of

core counts (1..16K), a weak scaling would be preferred but is not possible as NAS

problem sizes are fixed across core counts. We use 3 NAS problem classes (C, D, E)

to span the range of processors. The plots show the stapl execution time normalized

to that of the reference implementation. Besides a single data point (Class E, 4K

processors), the stapl version is slightly slower than the reference (up to 25% at

Class C, 4K processors).

In addition to the results shown, the stapl version also ran at 65K cores, but the

times could not be shown as the reference failed to compile (a new binary is generated
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for each combination of problem class and core count). The stapl implementation is

performing on par with the reference implementation and doesn’t require parameters

to be hardwired when the code is compiled.

7.11.5 Minimum Element using Composed Containers

In this section, we compare a nested parallel implementation of finding the min-

imum element over a composed container (stapl::array<stapl::array<int>>)

against a flat parallel implementation with a distributed container of non-distributed

containers (stapl::array<std::vector<int>>).

For the stapl::array<std::vector<int>> version we find the minimum el-

ement by invoking a parallel stapl::min_element algorithm over the results of

std::min_element calls over the inner std::vector<int> containers whereas for

the container composition version (stapl::array<stapl::array<int>>) we recur-

sively call stapl::min_element over the outer and the inner containers.

In Figure 7.10 we compare the two versions in which the outer container, C,

is a stapl::array with n elements, where n is the total number of locations that

the experiment is run on. The inner containers c are either std::vector<int> for

the flat implementation of minimum element or stapl::array<int> for the nested

parallel implementation.

Each inner container ci has 10, 000 + 400, 000 ∗ i ints, where i is the index of

c in the outer container C (ci = C[i]). For example for the data point on 512

locations, the C has 512 inner containers where the c0 has 10, 000 ints and c511 has

204, 810, 000 ints.

This example intentionally creates imbalance, where the higher the location ID,

the more elements the inner container has. In the case of the composed stapl

containers stapl::array<stapl::array<int>> the inner containers are distributed
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across all n locations. While we over-distribute the inner containers, in turn increas-

ing the number of nested parallel sections that find the minimum element in the

inner containers, invoking nested parallel algorithms presents the benefit of more

efficiently distributing the work across the system resulting in better performance.

7.11.6 Breadth First Search

Processing large-scale graphs has become a critical component in a variety of

fields, from scientific computing to social analytics. An important class of graphs are

scale-free networks, where the vertex degree distribution follows a power-law. These

graphs are known for the presence of hub vertices that have extremely high degrees

and present challenges for parallel computations.

In the presence of hub vertices, simple 1D partitioning (i.e., vertices distributed,
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Figure 7.11: Graph 500 breadth-first search on Cray-XK7 varying (a) the num-
ber of hubs on 512 processors and (b) the number of processors for a weak scaling
experiment.

edges collocated with corresponding vertex) of scale-free networks presents challenges

to balancing per processor resource utilization, as the placement of a hub could

overload a processor. More sophisticated types of partitioning have been proposed

[112, 113, 114, 115], however these strategies often change both the data representa-

tion as well as the algorithm.

We represent the graph as a distributed array of vertices, with each vertex having

a (possibly) distributed array of edges. Using construct we define several strategies

for distributing the edges of hub vertices, that can be interchanged without changing

the graph algorithm itself. The first distribution strategy (everywhere) places a

hub’s adjacency list on all locations of the graph’s gang. The second (neighbors)

places the edges only on locations where the hub has neighbors. This strategy is

especially dynamic as the distribution of each hub edge list is dependent on the

input data. Thus, we rely heavily on the arbitrary subgroup support of stapl-rts.

The last strategy (striped) distributes the adjacency list on one location per shared-

memory node in a strided fashion to ensure that no two hubs have edges on the same
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location. Even though the distribution strategy of the edges changes, the edge visit

algorithm remains unchanged.

To validate our approach, we implemented the Graph 500 benchmark [77], which

performs a parallel breadth-first search on a scale-free network. In Figure 7.11(a), all

three edge distribution strategies fare well over the baseline of non-distributed ad-

jacency lists for modest number of hubs, and then degrade in performance as more

vertices are distributed. The everywhere and neighbors strategies behave sim-

ilarly, as the set of locations that contain any neighbor is likely to be all locations

for high-degree hub vertices. The everywhere and neighbors strategies are 49%

and 51% faster than the baseline, respectively. The striped strategy performs up to

75% faster than the baseline, which is a further improvement over the other strate-

gies. On Cray-XK7, cores exhibit high performance relative to the interconnect,

and thus even modest amounts of communication can bring about large performance

degradation. The striped strategy reduces the amount of off-node communication

to create the parallel section from the source vertex location, bringing the perfor-

mance of the algorithm above the other two strategies. We are investigating this

phenomenon to derive a more rigorous model for distributing edge lists.

Figure 7.11(b) shows a weak scaling study of the neighbor distribution strategy

on Cray-XK7. As shown, the flat breadth-first search scales poorly from 1 to 2

processors due to an increase in the amount of communication. By distributing the

edges for hubs, we reduce this communication and provide better performance than

the flat algorithm. The number of distributed hubs must be carefully chosen: too

few hubs will not provide sufficient benefit in disseminating edge traversals, whereas

too many hubs could overload the communication subsystem.

In order to evaluate our technique at a larger scale, we performed a breadth-first

search on the Graph 500 graph on IBM-BG/Q in Figure 7.12(a). We found that
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Figure 7.12: Graph 500 breadth-first search with various adjacency distributions on
IBM-BG/Q

although faster than the flat version, all three distribution strategies performed com-

parably with each other. At 4,096 processors, the distributed adjacency list versions

of breadth-first search are 2.25x faster than the flat baseline. Hence, the distribu-

tion strategy is machine-dependent, further reinforcing the need for a modular and

algorithm-agnostic mechanism to explore the possible configuration space for nested

parallelism in parallel graph algorithms.

7.11.7 Minimum Edge Weights

Finding the incident edge of each vertex with the minimum edge weight is an

important operation that occurs in various graph algorithms, including Boruvka’s

minimum spanning tree algorithm [116]. This operation is a natural fit for nested

parallel execution, as each vertex can spawn an asynchronous nested parallel algo-

rithm to find the minimum edge weight amongst all of the edges in its adjacency list.
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Following the same optimization of distributing only hub vertices, we are able to

dynamically choose between a sequential or nested parallel reduction on a per-vertex

basis, dependent on the degree of the vertex itself.
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Figure 7.13: Minimum weight edge with the Graph 500 input on (a) Cray-XK7
and (b) IBM-BG/Q

Figure 7.13 compares the throughput of finding minimum edge weights in a weak-

scaling experiment on the Graph 500 input. On Cray-XK7, we find that the neigh-

bors strategy performs best and provides a 1.5x improvement at 512 cores. On the

other hand, the flat strategy on IBM-BG/Q is initially better than all distributed

strategies, but is outperformed by the striped strategy at scale and we see a 1.4x

improvement at 4,096 cores.
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8. CAUSAL RMI ORDERING∗

The stapl-rts abstracts the platform, providing a unified communication inter-

face over shared and distributed memory. As explained in Section 3, our commu-

nication abstraction is based on Remote Method Invocations (RMIs) on distributed

objects. While allowing RMIs to execute in any order is a tempting proposition, as

it can expose a lot of performance opportunities, this would create a cumbersome,

difficult to program model which can lead to unnecessary synchronization.

Thus, it is important that a runtime system offers a virtualization layer with well

defined communication ordering guarantees. An appropriate model will allow the

user to reason about the order of operations without excessive synchronization. In

addition, to support the application-centric computing vision, an application should

have the appropriate mechanisms to influence the model to enable optimizations,

such as relaxing the ordering constraints if the algorithm can tolerate that.

The stapl-rts RMI ordering scheme, Causal RMI Ordering (CRMIO), attempts

to combine traditional message ordering schemes with the dynamic nature of RMIs.

In this chapter we will

• motivate why ordering RMIs is a desirable property,

• formalize the RMI ordering guarantees as provided by the stapl-rts and

compare it against similar schemes,

• describe its use cases, such as in the stapl framework, and

∗Part of this chapter is reprinted with permission from “STAPL-RTS: An Application Driven
Runtime System” by Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, Nancy M. Amato,
Lawrence Rauchwerger, 2015. Proceedings of the 29th ACM on International Conference on Super-
computing, ICS’15, 425–434, Copyright 2015 by ACM.
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• evaluate the performance benefits of relaxing those guarantees when this can

be safely communicated from the algorithm to the stapl-rts.

8.1 Related Work

The stapl-rts is primarily a distributed system that offers a form of distributed

shared memory (DSM) [26] via presenting a shared object view to its users. Therefore

the related work cannot be constrained to distributed systems only, but must extend

to the memory consistency models to fully understand the implications of the RMI

ordering guarantees of the stapl-rts.

Starting with shared memory and DSMs, a number of memory consistency models

have been described. Stricter consistency models are simpler to program with and

reason about, while weaker ones offer performance benefits, especially as memory

latency increases, to the expense of a more convoluted programming model.

Sequential Consistency (SC) [117] defines a memory to be sequentially consistent

if “the result of any execution is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program.” Data-race free C++

programs are SC [118].

In Linearizability [119], writes and reads can overlap and are not instantaneous,

and a total order is imposed on the operations in the concurrent execution. Ac-

cording to this order, each read returns the value written by the latest preceding

write. The total order is consistent with the order of non-overlapping operations

in the concurrent execution. While linearizability seems as prohibitive in terms of

performance, in [120] the authors use linearizability guarantees through futures to

provide thread-safe containers with better performance than lock-free solutions.

In Processor Consistency (PC) [121], processors agree on the order of writes from
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each processor but can disagree on the order of writes from different processors to

different memory locations.

Under the Pipelined Random Access Memory (PRAM) [122] consistency model,

writes from a processor are seen by all other processors in the order in which they

were issued, but writes from different processors may be seen in a different order by

different processors. Using an implementation example, each processor has a local

copy of the global memory and reads are performed on that local copy. When a

processor makes a write, it broadcasts the new value to all the processors’ copies,

including its own, and all writes are processed in order, hence the term “pipelined”.

Causal Consistency (CC) [123] is based on Lamport’s concept of potential causal-

ity [70]. CC is a consistency model that is between SC and PRAM. Causality of

operations is determined by program order and a writes-into order. If o1 and o2 are

two operations, then program order means that o1 →
i
o2 for some processor pi, if o1

precedes o2 in processor i. Writes-into order ( 7→) associates a write operation with

each read operation (o1 7→ o2, with write operation o1 = w(x)v and read operation

o2 = r(x)v ). A causality order between o1 and o2 (o1  o2) exists if either program

order or write-into order exists between o1 and o2 or an operation o′ exists such that

o1  o′  o2. A history of operations H is causal if for each process i there is a

serialization of the operations that respects . A memory is causal if it admits only

causal histories of operations.

Relaxed consistency models such as Weak Consistency (WC) [124] offer sequen-

tially consistent access to synchronization variables, while accesses to the synchro-

nization variables act as barriers across which accesses cannot be reordered. MPI

RMA (Remote Memory Access) [125] is an example of WC in DSMs; users are re-

quired to issue explicit synchronization operations to guarantee that reads and writes

have completed.
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Release Consistency (RC) [126] extends WC with acquire, release and non-synchro-

nizing accesses. Acquire accesses prohibit future accesses only, while release accesses

ensure that past accesses have finished. Munin [127] uses RC, requiring the users

to explicitly define which variables were under RC and which were not to achieve

performance at the expense of usability.

Building on top of RC, Lazy Release Consistency (LRC) [128] defers all updates

to memory until the next acquire operation, reducing overall communication. An

example of LRC use is Treadmarks [84].

Entry Consistency (EC) used in the Midway system [129] requires shared vari-

ables to be associated with a synchronization variable, allowing RC on such vari-

ables. Midway, like Munin, requires the programmer to declare which variables are

protected.

Location Consistency (LC) [130] relaxes the memory coherence assumption [126]†

and offers a partially ordered set of writes for each object (memory location). It is

more relaxed than RC or EC and requires that locations have to be explicitly listed

for acquire and release operations to establish an order of operations between different

processors for the same object.

Distributed memory communication libraries such as MPI [33], GASNet [49] and

Active Messages (AM) [45], provide FIFO guarantees for communication through

messages. For example, in MPI, two MPI messages send through the same com-

municator to the same rank and tag, will be received in the issuing order. Similar

guarantees apply for GASNet and AM. These guarantees, while they are enough when

dealing with programming models similar to Communicating Sequential Processes

(CSP) [131], are usually not enforced in shared memory, requiring the programmer

†“All writes to the same location are serialized in some order and are performed in that order
with respect to any processor.”

113



to distinguish between shared and distributed memory.

All parallel programming systems respect the consistency model of the underly-

ing language for shared memory execution, however they offer little to no guarantees

when it comes to task or communication request execution order, especially over

distributed memory. The user is required to use either point-to-point, e.g., acknowl-

edgment mechanisms, or collective synchronizations, e.g., quiescence detection [67]

or phasers [132].

For example, Charm++ [51] applications are written by sending messages to

migratable objects called chares. Each chare lives on a processing element (PE) but

is globally addressable. Messages are typically processed in the order they arrive

(First In First Out or FIFO). However, if the target object (chare) is migrated,

Charm++ will automatically start forwarding messages, providing no guarantee that

two messages from the same source will be executed in order.

Similarly, in work-stealing languages and frameworks, including but not limited

to Cilk/Cilk++ [39, 40], TBB [42], Habanero-Java [43] and its other variants, the

user is responsible for enforcing ordering between tasks.

X10 [53], Chapel [52], UPC [28] and others, offer a SC model for local accesses

and remote accesses that happen between the same source and destination. While

they do provide constructs that give SC guarantees even to tasks (e.g. Chapel’s

coforall), in general they offer relaxed consistency.

Distributed systems on the other hand often present a more intuitive model.

Based on the work in [70], happened-before relations are established between events

or messages that allow users to create a partial order of events. As mentioned,

the stapl-rts operates always as a distributed system, taking advantage of shared

memory transparently. Therefore, its RMI ordering guarantees have a lot in common

with [70] and the Medium Futures Linearizability (Medium-FL) model presented
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in [120]. The main differences are that the primitives offered by the stapl-rts create

their own execution context, extending the notion of process from [70], and ordering

is maintained for asynchronous primitives (e.g., async_rmi) that never return its

result, as opposed to [120].

8.2 Preliminaries

As mentioned previously, the stapl-rts abstracts a processing element (PE)

using the concept of a location, a virtual isolated address space with associated

execution capabilities (e.g. thread). Locations communicate between each other

through Remote Method Invocations (RMIs) on distributed objects (p objects).

A p object consists of logically associated objects, or representatives, each of

which is owned by a location. The location can read and write to the local repre-

sentative of a p object directly, however any remote reads and writes happen only

through RMIs. An RMI call targets one or more representatives of a p object as

shown in Section 3.4. Point-to-point RMIs call the function on one representative,

while collective and one-sided collective operations call the same function on multiple

representatives. For now we will only consider the case of point-to-point RMIs.

RMIs are executed on the corresponding destination location on the represen-

tative of the p object that resides on that location (owner-computes). RMIs are

executed sequentially and atomically, as the execution of an RMI is not preempted,

unless an stapl-rts primitive is encountered.

8.2.1 Direct Memory Access

An RMI can make an arbitrary number of reads and writes on the target p object

representative and, as a consequence, to the location’s memory address space. Apart

from the obvious reads/writes on the target p object, the arguments to the RMI

can reference other p objects as well. An example is given in Figure 8.1. When

115



1 struct A : public stapl:: p_object {

2 int m_value;

3

4 void write(int t) { m_value = t; }

5

6 int read() const { return m_value; }

7

8 void write_direct(int t, A* p) {

9 m_value = t;

10 p->m_value = (t+1);

11 }

12 };

13

14 foo (...) {

15 A a1;

16 A a2;

17

18 stapl:: async_rmi (1, a2.get_rmi_handle (), &A::write , 5);

19 stapl:: async_rmi (1, a1.get_rmi_handle (), &A:: write_direct , 6, &a2);

20

21 int r1 = stapl:: sync_rmi(1, a1.get_rmi_handle (), &A::read);

22 int r2 = stapl:: sync_rmi(1, a2.get_rmi_handle (), &A::read);

23

24 assert( r1==6 && r2==7 );

25 }

Figure 8.1: Direct p object access

the RMI to the function A::write_direct executes, the writes to a1 and a2 are

performed atomically.

8.2.2 Indirect Memory Access

During the execution of an RMI, other RMIs may be invoked that target the

same or other p objects. An example of this is shown in Figure 8.2. While the

value r1 is expected to be 6, without any quiescence (e.g. rmi_fence) it is uncertain

what the value of r2 is. However, if the value of r2 is 7, then we can be sure that the

value of r1 is 6, a fact that implies that there is a causality between the effects of

the execution of different RMIs. We refer to RMIs that have been called from other

RMIs as nested RMIs.
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1 struct A : public stapl:: p_object {

2 ...

3

4 void write_indirect(int t, A* p) {

5 m_value = t;

6 stapl:: async_rmi (2, p->get_rmi_handle (), &A::write , t+1);

7 }

8 };

9

10 foo (...) {

11 A a1;

12 A a2;

13

14 stapl:: async_rmi (2, a2.get_rmi_handle (), &A::write , 5);

15 stapl:: async_rmi (1, a1.get_rmi_handle (), &A:: write_indirect , 6, &a2);

16

17 int r1 = stapl:: sync_rmi(1, a1.get_rmi_handle (), &A::read);

18 int r2 = stapl:: sync_rmi(2, a2.get_rmi_handle (), &A::read);

19

20 assert( r1==6 && (r2==5 || r2==7) );

21 }

Figure 8.2: Indirect p object access

8.3 Causal Remote Method Invocation Order

As mentioned in previous chapters, RMIs may return the result of the invocation,

e.g., opaque_rmi, sync_rmi, or they may discard it, e.g., async_rmi.

Claim 1. An RMI request call that discards results behaves the same as an RMI

request call that returns the result if we choose to discard said result.

Additionally, RMI request calls that return the result of the function can be

blocking, e.g., sync_rmi or non-blocking, e.g., opaque_rmi. A non-blocking RMI

can always become blocking if the value is requested immediately, for example by

calling future::get on the returned future from an opaque_rmi.

Claim 2. A blocking (synchronous) RMI can be treated the same as a non-blocking

(asynchronous) RMI if the result is immediately requested.

Up until now, we have only looked at point-to-point primitives. Collective and
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one-sided collective operations have similar effects and properties as their point-to-

point counterparts, but they operate on multiple locations.

Claim 3. Collective and one-sided collective operations can be logically replaced by

a series of point-to-point operations without loss of generality.

Each RMI is effectively a sequential instruction stream that executes uninter-

rupted until a stapl-rts primitive is encountered. When such a primitive is called,

control is transferred to the stapl-rts which is free to schedule any other request

for execution. Only after the stapl-rts is finished control is returned to the caller.

Definition 5. A context is an environment in which a sequential instruction stream,

such as an RMI, executes.

Locations that execute SPMD (Single Program Multiple Data) [24] parallel sec-

tions have a context for each instance of the section‡, that is each location is associ-

ated with its own context Cl, where l is the location ID.

SPMD sections can invoke RMIs and RMIs can invoke other nested RMIs (Sec-

tion 8.2.2). RMIs are executed in a context and multiple RMIs can be executed

in the same context, provided that their execution is serialized. An implicit causal

order is established between local reads and writes and RMIs and between RMIs

themselves that forms the stapl-rts RMI ordering guarantees.

An SPMD function f executes on a location l in context Cl. While the location

is executing f, it encounters an RMI, RMI1 (e.g., an async_rmi). The execution

of RMI1 logically happens after any local reads and writes in f that preceded the

invocation of RMI1.

If during the execution of f two RMIs, RMI2 and RMI3, are invoked to the same

‡Section 3.1 describes the stapl-rts execution model.

118



destination location l′, then RMI2 and RMI3 will be executed in the invocation order

in the same context CRMIl′
irrespectively of the target p object.

An RMI RMI4 executes on a location in its own context CRMI4 and has access to

that location’s p object representatives. If during the execution of RMI4 another

RMI, RMI5, is invoked, then the execution of the latter happens after the reads and

the writes of RMI4 that preceded the invocation of RMI5. Additionally, if RMI4

also invokes an RMI RMI6 to the same destination location l′′ as RMI5, RMI5 and

RMI6 will be executed in their invocation order in the same context CRMIl′′
.

In [70] the “happened-before” relation (→) is established between events in a

system of communicating processes: i) if a and b are events in the same process, and

a precedes b, then a → b, ii) if a is the sending of a message from one process to

another process and b is the receipt of that message, then a → b and iii) if a → b

and b→ c, then a→ c. Two events a and b are concurrent if a 6→ b and b 6→ a; it is

also noted that a 6→ a for any reasonable system.

We extend and adapt the definition of → to suit the dynamic nature of asyn-

chronous RMIs; RMIs are invoked from a source location to a destination location,

without requiring the destination location to explicitly post receive requests for the

RMIs.

Definition 6. Causal RMI Order (CRMIO) is defined based on the “happened-

before” relation (→) between RMIs. RMI RMI1 is said to have happened before

an RMI RMI2 (RMI1 → RMI2) if

1. RMI1 and RMI2 are RMIs invoked from the same context to the same desti-

nation location and RMI1 is invoked before RMI2, or

2. RMI2 was invoked from the context that RMI1 was executing in, or

3. RMI1 → RMIi and RMIi → RMI2 for some RMI RMIi.
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(a) Rule 1 (b) Rule 2

(c) Rule 3

Figure 8.3: Causal RMI Ordering

We can show this definition using space-time diagrams, such as Figure 8.3. The

vertical direction represents time with earlier times appearing higher, while the hor-

izontal space. The solid line blocks are RMIs and SPMD functions, while the dotted

line blocks denote a context the former execute in. The lines are the invocation of

RMIs from a context to a location on a target p object in the destination location.

In Figure 8.3(a), the RMIs are ordered because of rule 1 in Definition 6; RMI1 →

RMI2 since both RMI1 and RMI2 are invoked from the same context (Context0).

The second rule is visualized in Figure 8.3(b). RMI1 → RMI2 since RMI2 is

invoked while executing RMI1. Finally, the third rule is shown in Figure 8.3(c).

The first rule dictates that RMI1 → RMI2 and RMI ′1 → RMI ′2, whereas the
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Figure 8.4: Concurrent RMIs

second rule guarantees RMI1 → RMI ′1 and RMI2 → RMI ′2. The transitivity

property introduced by the third rule guarantees that RMI1 → RMI ′2.

On the other hand, Figure 8.4 shows an instance where ordering is not guaranteed

for RMIs RMI1′ and RMI2′ . The first rule is violated, as RMI1 and RMI2 have

different destination locations and thus RMI1 6→ RMI2.

8.4 Implementing Causal RMI Ordering

8.4.1 Atomic Execution of RMIs

We can rely on the C++ memory model [118] that if data races do not exist,

the execution of a C++ program is sequentially consistent. Under this assumption,

as long as a location is prevented from accessing the memory of another location

directly, then RMIs can execute atomically.

Indeed, since the only way for locations to communicate is through RMIs on

p objects, then it is guaranteed that unless there is a call to the stapl-rts, an

RMI will execute atomically.
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Figure 8.5: In-order RMI processing

8.4.2 Sequential and In-order Execution of RMIs

Distributed systems that guarantee causal message order often rely on mecha-

nisms such as vector clocks [70] or timestamp mechanisms, such as MARS [133] and

∆-protocols [134]. All these algorithms work under the assumption that messages

between processes can arrive out-of-order. In the HPC domain, communication li-

braries such as MPI and GASNet guarantee that messages will be delivered in the

issuing order. As long as FIFO order is enforced for queued RMIs, then they will

execute in the order they were received.

Our implementation of Causal RMI Order (CRMIO) is based around RMIs and

their association with contexts. RMIs are aggregated in messages, or buffers, as

shown previously in [60] and in Appendix B.1. Messages are transmitted in dis-

tributed memory through some communication library (e.g., MPI, GASNet) that

guarantees that messages between two processes are received in the issuing order.

Our mailbox data structure (see Section 6.3.2) provides the same guarantees in shared

memory.

Upon receipt of a message with aggregated RMIs, it is placed in a FIFO queue that

is associated with the context it will execute in. Upon processing of each message,

the RMIs aggregated in it are executed in the stored order and in the context the

queue is associated with. Therefore, the execution of RMIs that execute in the same
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context is serialized and is in the issuing order, as shown in Figure 8.5. This satisfies

the first rule in Definition 6.

In order to guarantee that RMIs are properly executed in order, it is enough to

guarantee that they are associated with the same context and thus queued in the

same queue. We define the context ID as a tuple of location IDs that the predecessor

RMIs that lead to received RMI have executed on. The first RMI in the tuple always

comes from an SPMD section and as such, the first element in the tuple is called the

originator location ID. When an RMI is received, a new context ID is created by

suffixing the context ID of the sending context with the location ID of the destination

location. Therefore, the context ID is a history of the invocation chain of locations

that resulted in the currently received RMI.

For RMIs that invoke other nested RMIs, if the context IDs of two contexts C

and C ′, created by RMIs RMI and RMI ′ respectively, are denoted with the tuples

TC and TC′ and li, i ∈ N is a location ID then

C → C ′ ⇔ TC = (li, lj, . . . , ln), TC = (li, lj, . . . , ln, . . .)

which satisfies the second rule in Definition 6.

As an example of nested RMIs, in Figure 8.6, the chain when function A::i is

called is (0, 2, 1, 4); stapl_main calls A::f on location 0, A::f calls A::g on location

2, A::g calls A::h on location 1 which finally calls A::i and A::j on location 4.

This chain is the context ID and the location that started the chain, in this example

location 0, the originator. A::i and A::j will execute in issuing order as their context

IDs are the same. Additionally, A::f → A::g → A::h → A::i, which follows the

invocation order of the respective functions.

Based on our experience, it is relatively uncommon to have nested RMIs that
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1 struct A : public stapl:: p_object {

2 void f() {

3 // context ID = (0)

4 stapl:: async_rmi (2, this ->get_rmi_handle (), &A::g);

5 }

6

7 void g() {

8 // context ID = (0, 2)

9 stapl:: async_rmi (1, this ->get_rmi_handle (), &A::h);

10 }

11

12 void h() {

13 // context ID = (0, 2, 1)

14 stapl:: async_rmi (4, this ->get_rmi_handle (), &A::i);

15 stapl:: async_rmi (4, this ->get_rmi_handle (), &A::j);

16 }

17

18

19 void i() {

20 // context ID = (0, 2, 1, 4)

21 // executes before j() on location 4

22 }

23

24 void j() {

25 // context ID = (0, 2, 1, 4)

26 // executes after i() on location 4

27 }

28 };

29

30 stapl_main (...) {

31 A a;

32

33 if (a.get_location_id ()==0) {

34 // context ID = (0)

35 a.f();

36 }

37 }

Figure 8.6: Nested RMIs
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have a context ID longer than 6 elements, while context IDs with 2 levels are the

most prevalent. RMIs are used to put and get data, update metadata and flow values

in task dependence graphs. In order to minimize latency, most algorithms on top of

the stapl-rts are developed to keep nested invocation of RMIs to a minimum. As

such, the more deeply nested an RMI is, the less the probability that it will invoke

a new RMI.

Maintaining the context ID as a full tuple of all the visited locations can create

performance issues. For each nested RMI the context ID would keep increasing by

one location ID, requiring Θ(n) space, with n the number of locations in the tuple.

The header size of a message that stores the context ID increases as the nesting

level of the RMI increases. This in return makes RMI queuing more complex, as the

context ID has to be parsed dynamically.

We therefore choose to compress context IDs so that we can have fast RMI

scheduling for simple cases of 1 or 2 levels of RMIs and a more complex algorithm

for all other cases. To bound the context ID to Θ(1) space, given a tuple T =

(li, . . . , lm, ln) we use the tuple

< o, s, d, a, n >

as a compressed form of T :

• o is the originator location that started the chain (li),

• s is the source location that was the last location that created a context in the

chain (lm),

• d is the destination location where S created the context on (ln),

• a is the arbiter, an integral value to differentiate between two contexts that,
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although they have the same o, s, d and n, are actually concurrent, something

that we explain more in depth in later paragraphs, and

• n is the length of the chain, or the nesting level of T (|T |).

By replacing the full tuple of location IDs with information about three locations

and the nesting level, we effectively compress the chain with a lossy algorithm. The

scheme can be relaxed to allow more locations in the compressed form.

However, discarding information may create artificial causality between contexts

that are concurrent. For example, two RMIs that execute in contexts with chains

T ′ = (l0, l1, l2, l3) and T ′′ = (l0, l4, l2, l3) will have the same compressed context ID

at l3, which would be < l0, l2, l3, 3 >. RMIs in contexts that have the same ID will

be processed in the order they arrive. In this case, RMIs that are concurrent will be

incorrectly identified as causally related.

The arbiter is an integral value that breaks unintentional causality between con-

texts due to the compression of the invocation chain. It is an automatically generated

integral value that captures the information that although two different context IDs

have the same o, s, d, and n, they are in fact concurrent.

The arbiter is generated at the sender prior to sending the RMI when it is detected

that the compressed context ID may lead to concurrent RMIs declared as causally

related. When a new RMI RMI ′ is invoked from a context C, a new context ID is

created that will identify the context C ′ that the RMI ′ will execute in. The context

ID of C ′ is derived from the context ID of C; if the context ID of C is < o, s, d, a, n >

then the created context ID will be < o, d, d′, a′, n + 1 >, where o is the originator,

d is the location C executes in and the source of C ′, d′ is the location C ′ executes in

and n is the nesting level. a and a′ are the arbiter numbers and their generation is

explained below:
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• Each location has a hash table H that uses compressed context IDs as keys

and hash tables h as the stored values.

• Each inner hash table hi uses context IDs as keys and stores arbiter numbers.

• If the nesting level n of C is n > 2, then it is assumed that an artificial

relationship will be imposed between C ′ and some other future context C ′′ that

are both generated from C, as in the example with the tuples T ′ = (l0, l1, l2, l3)

and T ′′ = (l0, l4, l2, l3) above.

• While creating the context ID of C ′, H is queried with a proposed context ID

of C ′, which includes all the information of a compressed ID as discussed above

minus the arbiter number. This requires to access entry hC′ .

• If entry hC′ does not exist, then the arbiter number is chosen as 0, and hC′ is

initialized and added to H. Additionally, the arbiter number is assigned to the

entry for the current context C using hC′ [C] = 0.

• If entry hC′ exists, then hC′ [C] is retrieved. If it exists, then number that is

returned is used as the arbiter. If hC′ [C] does not exist, a new entry is created

and it is initialized with the size of hC′ , hC′ [C] = hC′ .size(). The newly created

hC′ [C] is the arbiter.

Since entries are never removed, the size of the inner hash tables are monotonically

increasing and therefore generate a unique number for each pair of created and

current context IDs. Using the example from previous paragraphs, in l2 unique

arbiter numbers a′ and a′′ are generated for both T ′ and T ′′, as the proposed context

IDs would be the same for both (< l0, l2, l3, 3 >) but the contexts that create them

are not (T ′ is created by context < l0, l1, l2, 2 >, whereas T ′′ is created by context

< l0, l4, l2, 2 >).
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The trade-off using this technique is that while we maintain constant space com-

plexity for communicating the context ID, we introduce Θ(km) space requirements

per location, where k are the contexts of the location with nesting level n > 2 that

invoke RMIs§ and m are the created context IDs the RMIs are going to execute in.

8.5 Differences over Previous Work

armi [60] always relied on guarantees from the communication layer (e.g., MPI)

to provide RMI ordering. However, as noted in [60], the user was responsible to

write her programs in such a way that deadlock would not be possible. With the

introduction of automatic work and data migration in stapl [62], avoiding deadlocks

became a more daunting task.

Additionally, the earlier implementation of armi did not allow arbitrary schedul-

ing of RMIs that are concurrent. RMIs had to be executed in the order they were

received from the communication layer, potentially causing starvation if a location

was sending more RMIs than other locations.

8.5.1 Scheduling of RMIs

In this work, RMIs are queued in FIFO order based on the context they execute

in. RMIs in the same queue are causally related and therefore cannot be arbitrarily

scheduled. However, RMIs that are in different queues can follow any scheduling

policy as they are concurrent.

The stapl-rts uses a round-robin scheduling scheme that executes 1 message

from each queue every time that user code encounters a scheduling point (Sec-

tion 3.1.3). If it is detected that either too many messages are queued (default

value of 256) or are pending in the outgoing queue of the communication layer (de-

fault value of 2, 048) or a synchronization primitive was called (rmi_fence), then the

§Contexts that do not invoke RMIs do not require an entry.
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1 struct A : public stapl:: p_object {

2 int f() {

3 return stapl :: sync_rmi(

4 1, this ->get_rmi_handle (), &A::g);

5 }

6

7 int g() {

8 return stapl :: sync_rmi(

9 0, this ->get_rmi_handle (), &A::h);

10 }

11

12 int h() {

13 return stapl :: sync_rmi(

14 1, this ->get_rmi_handle (), &A::i);

15 }

16

17 int i() {

18 return 42;

19 }

20 };

21

22 stapl_main (...) {

23 A a;

24

25 if (a.get_location_id ()==0)

26 a.f();

27 }

(a) Example code (b) RMI call graph

Figure 8.7: Deadlock example

scheduling policy changes to execute all messages from one queue before moving to

the next.

Choosing scheduling policies for RMIs is a new capability that opens a new do-

main for experimentation. This does not only include finding the optimal values for

influencing the current scheduling policy, but even changing the scheduling based on

the type of RMI received (e.g., process blocking RMIs first to minimize the effect on

the waiting location).

8.5.2 Deadlock Avoidance

The more flexible scheduling capabilities also remove the possibility of a deadlock

compared to prior work.

Consider the example in Figure 8.7. In each function a blocking sync_rmi call is
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invoked to the other location. The chain of RMIs ends with the call to A::i and the

value 42 will be flowed back to location 0 that started the chain.

Under [60], this code would lead to a deadlock. It was using the invocation order

to create a single FIFO RMI queue, and since A::g was blocked waiting for a return

value, A::i would never execute. Using CRMIO, A::g and A::i, while they are

causally related (A::f → A::g → A::h → A::i), they are queued under different

runqueues. The stapl-rts will properly execute A::i, return the value and allow

it to flow back to location 0.

8.6 Causal RMI Ordering Use Cases

8.6.1 STAPL Container Consistency Model

The main stapl component that depends on the CRMIO is the container frame-

work. The container Memory Consistency Model (pContainer MCM) that the

stapl containers provide is described in [135].

In brief, the containers operate under an SPMD model as described in Section 5.1.

Users declare a distributed container(i.e., p object) over a set of locations and can

invoke Read and Write operations on elements of a container. Additional operations

are supported that are collective in the SPMD section (Coll), such as getting the size

of the container. All operations are implemented as RMIs on p objects. Successful

completion of operations is guaranteed either by synchronization operations (Synch)

or by implicit RMI ordering. Irrespectively of the data distribution or the number

of locations, two writes to the same container element will be seen in the same order

from any location in the system. This holds true even when elements are migrated.

Containers provide a more restrictive model to the user than the one that the

stapl-rts supports. While internally they make full use of the RMI capabilities,

externally they only allow reads, writes and container information operations on an
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SPMD model. As such, all user invoked operations happen from a location context,

rather than from within RMIs.

In order to show exactly how the CRMIO guarantees the pContainer MCM, we

will annotate the latter with the guarantees provided by CRMIO. Normal text is the

consistency model as outlined in [135], whereas bold text explains how the CRMIO

makes the pContainer MCM possible:

The pContainer MCM: For an execution E, a container guarantees that there is

a permutation P of all method invocations in E such that:

1. The methods in P occur sequentially (no overlapping). The stapl-rts offers

atomic and sequential execution of RMIs on a location. While con-

current RMIs may be executed in any order, they will not execute

in parallel.

2. For each element x, the restriction of P to just those methods on x, denoted

P |x, satisfies the specification of the data type of x. (E.g., if x is a register

that supports Read and Write, then each Read returns the value of the latest

preceding Write invoked on x.) Since x lives on one location and Read

and Write functions are expressed using RMIs, CRMIO guarantees

that RMIs are executed in invocation order, as long as the operations

are invoked from the same location.

3. For each thread i, the restriction of E to just the Coll (collective) and Synch

(synchronization) methods invoked by i, denoted E|(Coll ∪ Synch)|i, must

equal P |(Coll ∪ Synch)|i. That is, the permutation P has all the collective

and synchronous methods by i in the same order as they were invoked. How-

ever, no guarantee is given as to how Synch methods at different locations

are ordered in P . Ordering guarantees apply to both point-to-point
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and collective operations. CRMIO makes no ordering guarantees for

Synch methods.

4. For each element x and each thread i, the restriction of P to the methods on x

invoked by i, denoted P |x|i, consists of all the Synch, Asynch, and Split Phase

methods on x invoked by i in E, in the order of their invocation. CRMIO

does not reorder operations from the same context.

5. Consider any element x and let Oi and Oj be two operations on x in E such

that Oi is invoked by some thread i, Oj is invoked by some other thread j, and

Oi completes (i.e., receives its ACK) before Oj is invoked. Then Oi is ordered

in P before Oj. The stapl-rts does not need to guarantee anything

additional for this.

Other container components that require CRMIO is the base container ordering

and base container ranking. Depending on the distribution policy and the partition-

ing information, each container, itself a p object, has one or more base containers

per location. These base containers are non-distributed objects that are the con-

tainer’s element storage. Each base container stores elements that have consecutive

IDs. However, in order to support view operations, such as random access and the

ability to create linear views over any container, the base containers themselves have

to be ordered. The base container ordering operation builds a distributed double-

connected linked list of all the base containers of a container that connects base

containers that have consecutive elements. The base container ranking generates an

increasing rank per base container that reflects its index in the linked list and is used

to offer random access. Both operations are implemented directly using RMIs and

rely on the CRMIO for correct execution.
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8.6.2 Implementing Causal Consistency

In this section, we will implement Causal Consistency (CC) as presented in [123]

to prove that CRMIO is applicable to use cases outside stapl.

An algorithm that provides CC is outlined and proved correct in [123] and the

reader can see it in Figure 8.8 in C++ pseudocode for some value type T . The main

idea of the algorithm is the following:

• The machine consists of n reliable processes that communicate between them

with messages through reliable communication channels that can reorder mes-

sage delivery.

• Each process i has a private copy of the shared causal memory called M and

a private copy of the vector clock t.

• A read from process i for an address x happens through the private copy of

the shared memory M (read).

• A write from process i for an address x happens in the private copy of the

shared memory M (write). This includes also updating its part of the vector

clock (t[i]) and writing information about the write, such as which process, the

address, the value and the private copy of the vector clock, called a write-tuple,

to the OutQueue.

• The pair of functions send_writes and receive_writes are used to commu-

nicate updates to the shared memory through broadcasting the updates from

each process. send_writes sends the OutQueue of a process to all other pro-

cesses. receive_writes receives the OutQueue from a process and queues it

in the process private copy of InQueue, a priority queue that orders elements

based on the vector clock copy (timestamp), the fourth type in the write-tuple.
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1 n = ... // number of processes

2 i = ... // process id

3

4 // Initialization

5 M = ... // private copy of shared causal memory

6 for (auto& x : M)

7 x = {};

8 std::vector <int > t(n, 0); // vector clock

9 std::deque <std::tuple <process_id , std::size_t , T, std::vector <int >>> OutQueue = {};

10 std:: priority_queue <std::tuple <process_id , std::size_t , T, std::vector <int >>>

InQueue = {};

11

12 // Read from x

13 T read(std:: size_t x) {

14 return M[x];

15 }

16

17 // Write v to x from process i

18 void write(std:: size_t x, T v) {

19 t[i] = t[i] + 1;

20 M[x] = v;

21 OutQueue.emplace_back(i, x, v, t);

22 }

23

24 // Send action: execute infinitely often

25 void send_writes () {

26 if (! OutQueue.empty()) {

27 auto A = std::move(OutQueue);

28 send(all_processes , A);

29 }

30 }

31

32 // Receive action: upon receipt of A from process i

33 void receive_writes(A) {

34 for (auto const& e : A)

35 InQueue.push(e);

36 }

37

38 // Apply action: executed infinitely often

39 void update_private_memory () {

40 if (! InQueue.empty()) {

41 process_id j;

42 std:: size_t x;

43 T v;

44 std::vector <int > s;

45 std::tie(j, x, v, s) = InQueue.front();

46 if (s[j] = t[j] + 1) {

47 for (std:: size_t k = 0; k < n; ++k) {

48 if (k!=j && s[k] > t[k])

49 return;

50 }

51 InQueue.pop();

52 t[j] = s[j];

53 M[x] = v;

54 }

55 }

56 }

Figure 8.8: Causal consistency memory implementation
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• The function update_private_memory updates the private copies of M and t

on process i. The update happens only if the write-tuple on the head of the

queue reflects no other write that process i is not aware of.

In stapl-rts, CC can be implemented more easily. Reliable processes (loca-

tions) and communication channels (RMIs) are provided by the stapl-rts and the

underlying communication libraries (e.g., MPI). All RMIs coming from a context are

processed in-order, something that removes the need for tracking which write hap-

pened when, as this is tracked by the stapl-rts. Each location has a private piece

of the shared causal memory (representative of a p object). CRMIO guarantees

that if two operations are causally related they will be seen as such; reads/writes

from the same context are ordered and a “happened-before” relation is established

between them and between an RMI and its invoked RMI, as described earlier.

In Figure 8.9 we have implemented a shared causal memory on top for the stapl-

rts. We did not strive for an optimal implementation, but rather a proof-of-concept

that shows that the stapl-rts is applicable for use in other cases apart from stapl.

Each location i has a copy of the shared memory. A causal_memory::read calls

an RMI to return a value from the local copy¶. A causal_memory::write from

location i sends out an update to all locations, including i.

Since the reads and writes happen through RMIs, the reads and writes are ordered

per invocation order on the location. Writes from different locations are seen in the

order they were performed. Finally, if a location reads a value, it can assume that all

the operations that preceded the write of that value have finished, as per CRMIO.

This satisfies all the requirements of Causal Consistency.

¶A location invoking an RMI to itself still follows CRMIO.
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1 using namespace stapl;

2

3 template <typename T>

4 class causal_memory

5 : public p_object

6 {

7 private:

8 // private copy of shared memory

9 ... M;

10

11 T read_impl(std:: size_t x) const {

12 return M[x];

13 }

14

15 void write_impl(std:: size_t x, T v) {

16 M[x] = v;

17 }

18

19 public:

20 future <T> read(std:: size_t x) const {

21 return opaque_rmi(this ->get_location_id (), this ->get_rmi_handle (),

&A::read_impl , x);

22 }

23

24 void write(std:: size_t x, T v) {

25 async_rmi(all_locations , this ->get_rmi_handle (), &A::write_impl , x, v);

26 }

27 };

Figure 8.9: stapl-rts-based causal memory implementation

8.7 Unordered Primitives

In some cases, components do not require the default RMI ordering guarantees

that the stapl-rts offers. Examples of these cases are finding the size of a container

via the one-sided collective reduce_rmi and propagating values to be consumed

in the PARAGRAPH via async_rmi to multiple locations. For these cases we offer

implementations of popular one-sided collective primitives, such as reduce_rmi and

async_rmi in the unordered namespace that override the CRMIO.

An example of the difference between ordered and unordered RMI requests can

be found in Figure 8.10(a) and Figure 8.10(b) respectively. In Figure 8.10(a) the

async_rmi(all_locations) and the opaque_rmi respect the implicit ordering by

CRMIO. For the unordered::async_rmi(all_locations) (Figure 8.10(b)), com-
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1 struct A : public stapl:: p_object {

2 int m_value;

3

4 A() : m_value (0) { }

5 void write(int t) { m_value = t; }

6 int read() const { return m_value; }

7 };

8

9 stapl_main (...) {

10 A a;

11

12 if (stapl:: get_location_id ()==0) {

13 // set the int stored in p_object a on all locations to 42

14 stapl:: async_rmi(stapl:: all_locations , a.get_rmi_handle (), &A::write , 42);

15

16 // read the value from location 1

17 auto r = stapl :: opaque_rmi (1, a.get_rmi_handle (), &A::read);

18

19 assert( r.get()==42 );

20 }

21 }

(a) Ordered RMI request
1 stapl_main (...) {

2 A a;

3

4 if (stapl:: get_location_id ()==0) {

5 // set the int stored in p_object a on all locations to 42

6 stapl:: unordered :: async_rmi(stapl:: all_locations , a.get_rmi_handle (),

&A::write , 42);

7

8 // read the value from location 1

9 auto r = stapl :: opaque_rmi (1, a.get_rmi_handle (), &A::read);

10

11 // assert( r.get () ==42 ); not guaranteed , unordered :: async_rmi may

12 // have not executed

13 }

14

15 stapl:: rmi_fence ();

16

17 if (stapl:: get_location_id ()==0) {

18 // read the value from location 1

19 auto r = stapl :: opaque_rmi (1, a.get_rmi_handle (), &A::read);

20

21 assert( r.get()==42 ); // guaranteed , unordered :: async_rmi has executed

22 // due to rmi_fence

23 }

24 }

(b) Unordered RMI request

Figure 8.10: Ordered and unordered RMI requests
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pletion can only be guaranteed through explicit synchronization, in this case the

rmi_fence call, which ensures that all previously invoked RMI calls have finished.

Unordered RMIs offer the same execution guarantees as the ordered; an RMI ex-

ecutes sequentially, and atomically unless an stapl-rts primitive is invoked. How-

ever, they relax the ordering guarantees for performance. For example, unordered

one-sided collective RMIs can use simpler multicast algorithms and previous and

subsequent RMIs do not have to wait for the unordered RMI to execute.

8.8 Application Driven Ordering Relaxation

As an example of application driven runtime optimization, we tune the aggrega-

tion of RMIs, an optimization that has been shown to be important for fine-grained

asynchronous messaging models [51, 60, 136]. We create ad-hoc communication

channels to efficiently aggregate sequences of RMIs sharing common and constant

parameters such as destination and target method. As we will show, the technique

can allow relaxed ordering for collections of requests that are logically associated with

a given computational activity. This technique can have a dramatic effect on appli-

cation performance, as demonstrated using a common graph traversal algorithm.

As is usually the case with asynchronous communication models, stapl encour-

ages fine grain communication. Previous work [51, 60, 136] has shown aggregating

these requests generally leads to overall better performance. In stapl-rts, we ag-

gregate multiple RMI requests to the same destination location in the same outgoing

buffer. We further enhance this mechanism by implementing request combining, a

lightweight compression technique for requests that have the same triplet of target

p object, function and destination as the previous requests in the buffer. If this

triplet is the same, then we need only append the arguments of the request to the

aggregation buffer. This is explained more in depth in Appendix B.1.
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1 for (int idx = ...)

2 stapl:: async_rmi(dest , handle , A:: set_element , idx , rand());

(a) Default request aggregation
1 auto tunnel = stapl ::bind(stapl::async_rmi , dest , handle , A:: set_element , _1 , _2);

2 for (int idx = ...)

3 tunnel(idx , rand());

(b) Partial function evaluation of async_rmi

Figure 8.11: Application customized aggregation in stapl-rts

Consider the code in Figure 8.11(a) which updates a sequence of values in a

remote object with random values. If the stapl-rts were to generate an MPI request

for every async_rmi invocation in this tight loop, performance would suffer as the

overhead of request transmission would greatly outweigh the cost of the requested

updates. In this case, however, the stapl-rts is free to employ not only basic

aggregation but combining as well (see AppendixB.1), without violating the CRMIO.

Note however in this case there is information trivially available to the user that

would aid the runtime in this activity. The fact that the object handle, destination

location and target method remain constant is immediately clear in the calling con-

text. Using partial function evaluation, a common generic programming operation,

we can fix one or more arguments of the stapl-rts primitives such as async_rmi,

creating a new function with reduced arity. This new function contains typing in-

formation about which parameters have been fixed. To accomplish this, we can use

a bind function with an interface similar to that of the C++ stl. The operation

creates a custom communication channel as shown in Figure 8.11(b) based solely on

algorithm level information. Using this RMI tunnel has the following effects:

• Relaxed request ordering. Tunnels define a new logical route to destination

location with ordering guarantees independent of the default route (the atom-
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icity of all RMIs is maintained). A tunnel defined with only a bound location

maintains the same basic causal ordering as previously described.

• Less runtime overhead and more efficient aggregation. By binding ad-

ditional arguments during the partial evaluation, we reduce redundancy in the

message; only a single copy of the bound parameter is stored in the aggregated

message instead of a copy for every RMI. Other optimizations are enabled by

different combinations of bound parameters. For example binding both the ob-

ject handle and target function enables combining at compile time, eliminating

the overhead of runtime detection.

Though not necessary for the example shown in Figure 8.11(a), dedicated per

method tunnels enable greater use of combining in some instances. Consider the

case where a small number of non-combinable RMIs are interspersed in an otherwise

homogeneous sequence of RMI invocations. By creating a tunnel for the homogeneous

requests, the other requests do not interfere with the combining operation.

One use of tunnels in stapl is in graph traversals, where a vertex visitor function

passed to the algorithm is repeatedly applied on vertices throughout the pGraph data

structure. When graph edges cross location boundaries, RMIs are issued to complete

the visitation. The algorithm specifies a set of tunnels for these fine grain method

invocations through this interface. As we show below, this high level annotation can

have a dramatic effect on performance and scalability.

We evaluate this technique using a parallel connected components (CC) graph

algorithm. The algorithm computes the connected components – i.e., the subgraph

wherein any two vertices in the subgraph can be connected through some path – for

each vertex, and the ID representing the component is assigned to the vertex. It is

a label-propagation algorithm similar to the work presented in [137], wherein nodes
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1 for (auto&& u : neighbors(v))

2 stapl:: async_rmi(location_of(u), handle , Graph ::visit <cc_visitor >,

cc_visitor(v.id()), u);

(a) Default request aggregation
1 auto tunnel = stapl ::bind(stapl::async_rmi , _1, handle , Graph ::visit <cc_visitor >,

_2, _3);

2 for (auto&& u : neighbors(v))

3 tunnel(location_of(u), cc_visitor(v.id()), u);

(b) Partial evaluation of async_rmi

Figure 8.12: Customized request aggregation for connected components
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set their CC ID to the lowest CC ID of their neighbors iteratively for k rounds. The

CC algorithm is widely used to study the connectivity and basic topology of graphs.

In the standard expression of the algorithm, each vertex in parallel visits all

other vertices in its neighborhood to propagate its ID as a candidate CC ID. In

Figure 8.12(a), we achieve this by issuing async_rmis to the locations of all neighbor

vertices to apply the visitation function computing the CC. At the algorithm’s level,

both the handle of the graph data-structure and the method to apply visitor functions

is constant, so we can form a tunnel to aid combining based aggregation of these

requests (Figure 8.12(b)).

Figure 8.13 evaluates the algorithm’s performance in terms of throughput (mil-

lions of traversed edges per second or MTEPS), both with and without tunneling on

up to 131, 072 processors on IBM-BG/Q for a Newman-Watts-Strogatz graph of 210

vertices per core. We see a 1.5× improvement in throughput at lower core counts,

which grows to 1.7×, suggesting that tunneling is not only increasing throughput

but also improving scalability. Figure 8.14 shows the performance for the same type

of graph with 215 vertices per core on x86-cluster with smaller but still noticeable

improvement of about 20% over the approach without tunneling.
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9. CONCLUSION AND FUTURE WORK

The past few years increases in single thread performance have been marginal.

As needs for computational power increase, multicore and multiprocessor approaches

often coupled with accelerators become more relevant in mainstream computing. Ad-

ditionally, the scale up approach, adding more computing resources to a single com-

puter, will eventually hit an upper bound, forcing to adopt more scale out solutions.

Programming these complex architectures has been proven difficult. Tradition-

ally, to achieve the best performance, experts write highly tuned but non-portable

applications. On the other side of the spectrum, non-experts rely on higher level pro-

gramming paradigms that trade easier programming, portability and expressivity for

some performance loss.

The SmartApps approach puts productivity and the application in the center

of attention. The programmer is responsible for expressing her application using

high level constructs. The application is responsible for establishing a top-to-bottom

information flow, information which every software layer can mine to perform op-

timizations. In this dissertation we focus on the STAPL Runtime System (stapl-

rts), a runtime system built to support higher level programming frameworks. The

stapl-rts abstracts massively parallel platforms and provides platform-independent

interfaces that allow to restore performance lost due to the abstractions, building the

foundation for the SmartApps vision.

We began our discussion by establishing what is a runtime system and what

are some desired qualities for a runtime that supports scale out systems. We then

presented the programming model the stapl-rts supports and its main components,

focusing on the asynchronous communication model it offers. In order to give a
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more concrete example of how the stapl-rts can be used, we presented the stapl

framework and how it takes advantage of the stapl-rts.

We continued with our mixed-mode support, showing how abstracting shared and

distributed memory communication under a unified communication model relieves

the programmer from the nuances of hybrid solutions. We expanded on that and

offered high-level interfaces that allow programmers to abstractly express data con-

sumption, information that the stapl-rts uses to take advantage of shared memory

transparently and increase performance, both in isolation and in stapl.

Turning our focus back to the programming model, we delved into the support

for nested parallelism. We presented a model that combines the traditional blocking,

collective subgroup support with a novel asynchronous, one-sided subgroup creation

and how it is used to support container composition and nested parallelism. Using

a natural, nested parallel expression for dynamic algorithms we proved that using

asynchronous, one-sided nested parallelism can lead to significant performance im-

provements in graph applications.

We have also presented the ordering guarantees for RMIs, Causal RMI Ordering,

that provides an intuitive way to reason about communication request execution.

Using appropriate abstractions, we showed how an application can relax this ordering

to enhance performance.

This work is only the start for the stapl-rts. Its modular design has allowed

porting it from smartphones to the largest supercomputers. However, we have only

scratched the surface of the potential application-driven optimizations. While we

have abstracted and maintained the machine hierarchy information, we have not

fully taken advantage of the shared memory node hierarchy or the machine topology.

Introducing hierarchy awareness to the stapl-rts will allow us to fine-tune shared

memory optimizations. Taking into account topology information can not only lead
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to more efficient collective operations but also allow us to control common operations,

such as the dissemination of data, in such a way that we fully utilize the machine’s

network capabilities.

Our asynchronous, one-sided nested parallelism support would be an interesting

approach to harness the power of accelerators. The nested parallel programming

model that the stapl-rts offers can be trivially expanded to allow the creation of

parallel sections on accelerators, allowing higher level frameworks, such as stapl, to

take advantage of accelerators with minimal changes to the frameworks themselves.

Finally, another research dimension would be to provide different guarantees along

the causal RMI ordering, such as object consistency. Object consistency can couple

the existing ordering guarantees on a p object basis, providing more opportunities

for communication and computation overlap, and quiescence segregation.
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adjustment of parallel nested loops. In Shared Memory Parallel Programming

with OpenMP, pages 137–147. Springer, 2004.

[38] Christian Terboven, Dieter An Mey, Dirk Schmidl, and Marcus Wagner. First

experiences with Intel Cluster OpenMP. In OpenMP in a New Era of Paral-

lelism, pages 48–59. Springer, 2008.

[39] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementation, PLDI

’98, pages 212–223, New York, NY, USA, 1998. ACM.

[40] Charles E. Leiserson. The Cilk++ concurrency platform. In Proceedings of the

46th Annual Design Automation Conference, DAC ’09, pages 522–527, New

York, NY, USA, 2009. ACM.

151



[41] Liang Peng, Weng-Fai Wong, Ming-Dong Feng, and Chung-Kwong Yuen.

Silkroad: A multithreaded runtime system with software distributed shared

memory for smp clusters. Cluster Computing, IEEE International Conference

on, 0:243, 2000.

[42] James Reinders. Intel threading building blocks. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 2007.
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APPENDIX A

armi EXAMPLES

A.1 1-D Jacobi Stencil

An example use of the armi primitives presented in Section 3 is shown in Fig-

ures A.1 and A.2. This simple example implements a basic Jacobi solver∗ for the

Laplace equation using two dimensions with finite differences.

The primitives used are explained in Table 3.1. The async_rmi is used for a

point-to-point put, whereas the allreduce_rmi is used in place of MPI_Allreduce.

make_range_n is a helper function to describe to the stapl-rts that it has to sent

the first n objects starting from iterator it, rather than the whole container. Notice

the use of rmi_fence that guarantees that all RMIs have been executed and the

values to xnew have been written.

While the number of lines is similar, the unified communication interface of the

stapl-rts (Figure A.2) provides a simpler programming model than that of the

dual interfaces required to implement the hybrid MPI and OpenMP version shown

in Figure A.1.

∗Based on Jacobi solver from http://www.mcs.anl.gov/research/projects/mpi/tutorial/

mpiexmpl/src/jacobi/C/main.html
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1 int main(int argc , char* argv []) {

2 using matrix_t = ...; // matrix or multiarray type of doubles

3

4 MPI_Init (&argc , &argv);

5 MPI_Comm comm = MPI_COMM_WORLD;

6 int size = MPI_PROC_NULL;

7 int rank = MPI_PROC_NULL;

8 MPI_Comm_size(comm , &size);

9 MPI_Comm_rank(comm , &rank);

10

11 std:: size_t maxn = ...; // matrix dimensions

12 matrix_t xlocal = ...; // matrix to solve , (maxn/size + 2) × maxn per process

13

14 // xlocal [][0] is lower ghostpoints , xlocal [][ maxn +2] is upper

15 std:: size_t i_first = 1;

16 std:: size_t i_last = maxn/size;

17 // top and bottom processes have one less row of interior points

18 if (rank == 0)

19 i_first ++;

20 if (rank == size - 1)

21 i_last --;

22

23 double gdiffnorm = DBL_MAX;

24 for (int itcnt =1; itcnt <100 && gdiffnorm >1.0e-2; ++ itcnt) {

25 if (rank < size - 1)

26 MPI_Send(xlocal[maxn/size], maxn , MPI_DOUBLE , rank+1, comm);

27 if (rank > 0)

28 MPI_Recv(xlocal [0], maxn , MPI_DOUBLE , rank -1, comm);

29 if (rank > 0)

30 MPI_Send(xlocal [1], maxn , MPI_DOUBLE , rank -1, comm);

31 if (rank < size - 1)

32 MPI_Recv(xlocal[maxn/size+1], maxn , MPI_DOUBLE , rank+1, comm);

33

34 matrix_t xnew; // temporary matrix , (maxn/size + 2) × maxn per process

35

36 #pragma omp parallel for reduction (+: diffnorm)

37 for (std:: size_t i=i_first; i<= i_last; i++) {

38 for (std:: size_t j=1; j<maxn -1; j++) {

39 xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

40 xlocal[i+1][j] + xlocal[i-1][j]) / 4.0;

41 diffnorm += pow(xnew[i][j], xlocal[i][j], 2.0);

42 }

43 }

44

45 #pragma omp parallel for

46 for (std:: size_t i=i_first; i<= i_last; i++)

47 for (std:: size_t j=1; j<maxn -1; j++)

48 xlocal[i][j] = xnew[i][j];

49

50 MPI_Allreduce (&diffnorm , &gdiffnorm , 1, MPI_DOUBLE , MPI_SUM , comm);

51 gdiffnorm = std::sqrt(gdiffnorm);

52 }

53

54 MPI_Finalize ();

55 return EXIT_SUCCESS;

56 }

Figure A.1: MPI + OpenMP Jacobi solver
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1 struct jacobi : public p_object {

2 using matrix_t = ...; // matrix or multiarray type of doubles

3

4 std:: size_t maxn = ...; // matrix dimensions

5 matrix_t xlocal = ...; // matrix to solve , (maxn/size + 2) × maxn per process

6 std:: size_t i_first = ...; // same as in MPI version

7 std:: size_t i_last = ...; // same as in MPI version

8 double diffnorm;

9

10 template <typename Range >

11 void recv_lower(Range const& v)

12 { std::copy(v.begin(), v.end(), xlocal [0]); }

13

14 template <typename Range >

15 void recv_upper(Range const& v)

16 { std::copy(v.begin(), v.end(), xlocal[m_maxn/this ->get_num_locations ()+1]); }

17

18 double get_diffnorm () const { return diffnorm; }

19

20 double do_iteration () {

21 auto h = this ->get_rmi_handle ();

22 auto size = this ->get_num_locations ();

23 auto rank = this ->get_location_id ();

24

25 if (rank < size - 1)

26 async_rmi(rank+1, h, &jacobi ::recv_upper ,

27 make_range_n(xlocal[maxn/size], maxn));

28 if (rank > 0)

29 async_rmi(rank -1, h, &jacobi ::recv_lower , make_range_n(xlocal [1], maxn));

30

31 rmi_fence (); // wait for all writes

32

33 matrix_t xnew; // temporary matrix , (maxn/size + 2) × maxn per process

34

35 this ->diffnorm = 0.0;

36 for (std:: size_t i=i_first; i<= i_last; i++) {

37 for (std:: size_t j=1; j<m_maxn -1; j++) {

38 xnew[i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +

39 xlocal[i+1][j] + xlocal[i-1][j]) / 4.0;

40 this ->diffnorm += pow(xnew[i][j], xlocal[i][j], 2.0);

41 }

42 }

43

44 auto f = allreduce_rmi(std::plus <double >{}, h, &jacobi :: get_diffnorm);

45

46 for (std:: size_t i = i_first; i <= i_last; ++i)

47 for (std:: size_t j=1; j<m_maxn -1; ++j)

48 xlocal[i][j] = xnew[i][j];

49

50 return std::sqrt(f.get());

51 }

52 };

53

54 exit_code stapl_main(int , char **)

55 {

56 jacobi_computation m;

57 for (int itcnt =1; itcnt <100 && m.do_iteration () >1.0e-2; ++itcnt);

58 return EXIT_SUCCESS;

59 }

Figure A.2: armi-based Jacobi solver
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APPENDIX B

COMMUNICATION MECHANISM DETAILS

B.1 Communication Coarsening

Programming with asynchronous RMIs exposes the user to a fine-grain communi-

cation model. As it has been shown in previous publications [51, 60, 136], aggregating

requests coarsens the fine-grain communication that is encountered in asynchronous

systems, leading to overall better performance.

In the stapl-rts, we aggregate multiple RMI requests to the same location

in the same outgoing buffer, or message [60]. We further enhance this mechanism

by implementing request combining, a compression technique for RMI requests that

target the same p object representative and call the same member function.

At the sender, every time that an RMI is invoked, the triplet of location, target

p object and member function is checked against the triplet from the last aggre-

gated RMI request. If the triplets differ, then we proceed with request aggregation.

However, if the triplets are equal, we only aggregate the arguments of the request,

eliminating duplicate data, a process called request combining. At the receiver, while

processing RMIs contained in a message, each RMI is checked if it has participated

in combining. If it is, then the translation from rmi handle to p object represen-

tative happens once and the same member function is invoked as many times as

the combined requests. Thus, the overhead of request execution is reduced, as the

translation happens only once.

Figure B.1 shows a simple distributed array implementation. A location invokes

multiple RMI calls to array::write to the same location but with different data.
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1 struct array : public stapl :: p_object {

2 int m_value [...];

3 void write(std:: size_t index , int t) { m_value[index] = t; }

4 int read(std:: size_t index) const { return m_value[index]; }

5 };

6

7 stapl_main (...) {

8 array a;

9 auto h = a.get_rmi_handle ();

10

11 if (stapl:: get_location_id ()==0) {

12 stapl:: async_rmi (1, h, &A::write , 0, 10);

13 stapl:: async_rmi (1, h, &A::write , 1, 20);

14 stapl:: async_rmi (1, h, &A::write , 4, 30);

15 }

16 }

Figure B.1: RMI combining

Under aggregation, the outgoing buffer would have 3 instances of the target in-

formation (rmi handle of the array and the pointer to member function) and the

arguments, i.e., the index in the array and the value to be set. With request com-

bining, it is automatically detected that the target (location, p object, and member

function) is always the same and therefore only on instance of the target information

is sent along with the three sets of arguments.

Combining is possible only when the triplet of destination location, p object and

function match for two subsequent requests. For example, in Figure B.2 only Exam-

ple 2 can combine the two call to array::write, since there is no other call between

them. Combining the array::write calls in Example 1 would violate the ordering

guarantees presented in Section 8. If preserving the RMI ordering is not required,

then this type of combining would be possible, something that we plan to explore in

future work. Figure B.3 presents the state of the stapl-rts internal buffers after

aggregation only (Example 1), and combining and aggregation (Example 2).

Combining reduces the overall size of the buffer for a small cost at the sender

location, which is offset by the reduced work that happens on the receiver, as the
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1 stapl_main (...) {

2 array a;

3 auto h = a.get_rmi_handle ();

4

5 if (stapl:: get_location_id ()==0) {

6 // Example 1: three aggregated requests , no combining possible

7 stapl:: async_rmi (1, h, &A::write , 0, 10);

8 ... = stapl:: opaque_rmi (1, h, &A::read);

9 stapl:: async_rmi (1, h, &A::write , 1, 20);

10 }

11

12 if (stapl:: get_location_id ()==0) {

13 // Example 2: two combined requests and one aggregated

14 stapl:: async_rmi (1, h, &A::write , 0, 10);

15 stapl:: async_rmi (1, h, &A::write , 1, 20);

16 ... = stapl:: opaque_rmi (1, h, &A::read);

17 }

18 }

Figure B.2: RMI combining opportunities

Figure B.3: Aggregation vs combining
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Figure B.4: Combining vs aggregation on Cray-XK7

rmi handle-to-pointer translation happens once and a virtual function call is elided

for each one of the combined RMI requests. Figure B.4 shows the latency and

bandwidth achieved on two nodes of Cray-XK7 with (combining) and without

(aggregation) combining using async_rmi. Since the overhead is minimal, latency

is unaffected; a slow combining technique would have increased the time to create an

RMI request, manifesting itself as latency. Bandwidth improves with combining, as

more requests can fit in the same buffer. The abnormal increase in latency between

from 2 KB to 4 − 8 KB is due to the MPI implementation, something that can be

seen in Section 6.5.1 for MPI_Send/MPI_Recv as well∗.

B.2 One-way Handshake Protocol

Another issue faced by frameworks that support one-sided transfers coupled with

function invocations (RMI, RPC, Active Messages, etc.) is how to copy data of

arbitrary size from one address space to another. While the sender is aware of the

data payload size to be communicated, the receiver also has to be ready to receive

∗For this experiment, all RMIs have to go through the MPI layer, as the locations are in different
nodes.
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Figure B.5: One-way handshake vs large message sizes on Cray-XK7

such a payload. A number of protocols have been invented such as rendez-vous

protocols [138, 139], bounce buffers, firehose [140] and others to address this issue.

Our current MPI-based communicator implementation uses pairs of MPI_Isend

and MPI_Irecv calls for all distributed memory communication. We pre-post some

messages using MPI_Irecv using a predetermined tag T in a stapl-rts owned MPI

communicator. These messages have a default size that is configurable at run-time,

with a default value of two pages (typically 8 KB).

All messages that are of smaller or equal size as the default can be trivially

sent and received. For messages larger that the default size, we have implemented

a lightweight communication protocol, called one-way handshake. In the case that

the message is larger than the default size, then the sender will only send the first

8 bytes of the header of the buffer in the default channel, using the tag T . These

bytes contain the actual size of the message and are only part of the full message

header, that contains additional information. Then it sends the full message in a

different channel with a predefined tag T ′, T ′ 6= T .
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The receiver, upon receiving just 8 bytes and not the full header, posts a new

MPI_Irecv in the other channel with MPI tag T ′, to receive the large message. In

order to avoid message reordering that would violate the ordering presented in Sec-

tion 8 and protect the process from being overwhelmed with large messages and run

out of memory, we do not allow any other message to be received until the large mes-

sage has been received. When the large message is received, normal communication

resumes.

Figure B.5 evaluates the one-way handshake by using a default message size of

8 KB (one-way handshake) against using a default message size of 4 MB (large

message size), which would avoid the one-way handshake for all payloads, both

for latency (Figure B.5(a)) and bandwidth (Figure B.5(b)). The one-way handshake

imposes some overhead and does exhibit higher variability than using the larger mes-

sage size, something that is expected, as the former sends two messages to complete

the operation. However, with the one-way handshake, the stapl-rts is not required

to post the largest message expected, thus reducing memory use.
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APPENDIX C

stapl-rts CODE ORGANIZATION

In this section we briefly present a high level overview of the code organization of

the stapl-rts as of April 21, 2016 and revision r12272 of the stapl SVN repository.

A partial code directory structure can be seen in Figure C.1.

• collective: Contains helper p objects for implementing collective opera-

tions. Normally, each collective RMI is backed by such a p object, for example

allgather_rmi relies on the allgather_object.

• communicator: Backends for communication layers, such as MPI, as well as

distributed memory collective operations implementations. This code is used

in the implementation of the runqueue.

• concurrency: Multithreaded backends based on existing multithreading li-

braries, such as OpenMP and C++11 threads. This directory contains also

optimized shared memory collective operations (e.g., reductions, barriers).

• config: Configuration headers to automatically recognize platform capabilities

(e.g., data alignment) and define the various internal stapl-rts types, such

as the gang and location IDs.

• counter: Counter infrastructure implementation (see Section 3.2) that uses

platform dependent libraries, such as PAPI-backed counters. It includes con-

figuration files for automatic and user-guided counter discovery.

• executor: Implementation of the executors and their associated schedul-

ing and work-stealing capabilities (scheduler subdirectory). Task dependence
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Figure C.1: Code organization tree
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graph objects (i.e., PARAGRAPH) are the main users of this code.

• instrumentation: Support for instrumentation and bindings to TAU [64],

MPE [65], and vampir [141].

• non rmi: High-level interfaces of non-RMI primitives, such as construct and

external_call.

• request: Building blocks for implementing both RMI and non-RMI requests.

This directory contains code for implementing the primitives offered in non rmi

and rmi directories.

• rmi: Implementation of interfaces for all RMI primitives, such as async_rmi

and opaque_rmi.

• serialization: Marshalling support for C++ objects that includes typer

and Boost.Serialization integration as described in Section 3.2.5.

• type traits: Template-based interfaces to query or modify types at compile-

time, similar to the C++11 [34] and Boost [66] type traits support.

• utility: Utility classes such as implementations of type-erased ranges, func-

tions that behave as input iterator ranges, and specialized allocators.

• aggregators.hpp, context.hpp, runqueue.hpp: Support for RMI creation,

aggregation and combining, and execution.

• gang md.hpp, gang md registry.hpp, location md.hpp: Metadata classes

for gang support and SPMD sections, and location-to-core mapping.

• immutable range.hpp, immutable ref.hpp, immutable shared.hpp,

range.hpp: Support classes for zero-copy as presented in Section 6.

179




