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ABSTRACT

Both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) play a crucial role

in the existence and proper development of all living organisms. In addition, it is

through these molecules that the genetic information is passed from parent to off-

spring. It is no surprise that, over the last decades, a lot of efforts have been put into

developing technology that help us better understand their underlying mechanisms.

Similarly to how computers work using only ones and zeros, DNA and RNA only

need four different characters to encrypt all the genetic information. Thanks to the

sequencing technology development over the past decades, it is possible nowadays to

sequence these molecules in a relatively fast and inexpensive way. However, as in

any measurement, there is noise involved and this needs to be addressed if one is to

reach conclusions based on these kind of data.

The hidden Markov model (HMM) is a perfect fit for this case. Through a Markov

chain, the model can capture genetic patterns, while, by introducing the emission

probabilities, the noise involved in the process can be taken into account. In addition,

previous knowledge can be used by training the model to fit, for instance, a given

organism or sequencing technology.

In this thesis, the HMM theory is applied for two purposes, (1) to assess the relia-

bility of sequencing data, and (2) to correct potential errors in the sequences observed.

The results show that the HMM model is capable of identifying genetic patterns in

the sequence and to repair potential errors, thus improving the reliability of the data

before any downstream analysis is performed. For these purposes, HiMMe has been

developed and is publicly available on https://github.com/jordiabante/HiMMe.
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NOMENCLATURE

A Adenine

bp Base pair

C Cytosine

cDNA Complementary deoxyribonucleic acid

DNA Deoxyribonucleic acid

G Guanine

HMM Hidden Markov model

LTP Law of Total Probability

MC Markov chain

MNase-seq Micrococcal nuclease sequencing

mRNA Messenger ribonucleic acid

NGS Next-generation sequencing

NCBI National Center for Biotechnology Information

PCR Polymerase chain reaction

SEQC Sequencing Quality Control

SNP Single nucleotide polymorphism

RAM Random-access memory

RNA Ribonucleic acid

rRNA Ribosomal ribonucleic acid

T Thymine

U Uracil

VCF Variant Call Format
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1. INTRODUCTION AND LITERATURE REVIEW

Back in 1977, gel electrophoresis was first used to separate deoxyribonucleic acid

(DNA) fragments at single-base resolution. Over the next decade, electrophoresis

sequencing became very popular and different groups adopted and improved it [13].

Some ambitious group of scientists believed that by 2005 the entire human genome

could be sequenced. Nevertheless, a lot of skepticism arose given the high cost of

the state of the art technology. At that time, the cost associated with sequencing a

single base was approximately $10.

However, a lot of effort has been put into the improvement of sequencing tech-

nology. Consequently, the cost has been drastically reduced since then. This cost

reduction has been so prominent that it has even surpassed Moore’s Law’s trend.

Figure 1.1: Cost per megabase of DNA sequence - the cost of determining one
megabase (million bases) of DNA sequence of a specified quality [16].
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Figure 1.1 illustrates the cost reduction of DNA Sequencing over the past fifteen

years. Note the sharp decrease around 2008, when the sequencing centers began the

transition from Sanger-based technology [10] to next-generation sequencing. This

sharp improvement of the technology marked the sudden and profound out-pacing

of Moore’s Law [16].

Figure 1.2: DNA-sequencing significant increase in the output per instrument run
plotted on a logarithmic scale along some of the major breakthroughs in sequencing
technology [7].

Moreover, not only has the cost associated with sequencing been significantly

reduced, but the speed with which one can sequence biological samples has dramat-

ically increased as well. Note in Figure 1.2 how there is a sudden increase in the

output density per run when next-generation sequencing technology took over Sanger

sequencing, reflecting again the huge impact that this sequencing technology had in
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the field ten years ago. And, in addition to an increase in the output density per

run, there has been a fierce competition between sequencing technology manufactur-

ers that has led to a progressive increase in the read length as well as the base-calling

accuracy [7].

However, such amount of information needs a place to be stored. Furthermore,

extremely powerful hardware and software are required as well for it to be processed.

Following Moore’s Law in this case, computer technology has enabled scientists to

deal with an important portion of these data in order to distill part of the biological

insight in it. As a consequence, biological and medical research has lead to numerous

discoveries during these last decades.

1.1 Central dogma of molecular biology

It is well known that all the living organisms store their genetic information in

the DNA [15]. This huge double stranded molecule can be regarded as a sequence of

nucleotides, which can be of four different kinds. These four types of nucleotides are:

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). Given DNA’s double-

stranded nature, these four bases are found in pairs in the DNA (Adenine with

Thymine, Guanine with Cytosine) [14]. Just using these four different letters, liv-

ing organisms are capable of encrypting all the genetic instructions for the proper

functioning of their cells. However, it is not the DNA itself that carries out all the

necessary reactions in the cell, there are some other molecules that play an important

role in this process as well. These two molecules are (1) ribonucleic acid (RNA) and

(2) proteins.

Through a process called transcription, the DNA is transcribed into RNA which

will eventually leave the nucleus of the cell after undergoing certain intermediate

processes in it. The RNA is similar to the DNA in that it is a molecule that can
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be regarded as a sequence of nucleotides. However, there are two main differences

between the RNA and the DNA. Firstly, the RNA is not a double-stranded molecule,

which in turn makes it unstable compared to the DNA. Secondly, the four bases that

the RNA uses to transfer the genetic information differ in one when compared to the

DNA. Instead of Thymine, RNA relies on another base called Uracil (U).

Figure 1.3: Central dogma of molecular biology.

RNA molecules, once they leave the nucleus of the cell and reach the ribosome,

undergo a process called translation. Through this process, RNA molecules provide

the necessary information to the ribosome to generate any needed protein. This

whole process is usually referred to as the central dogma of molecular biology, and is

illustrated in Figure 1.3. This dogma explains how the genetic information flows in

living organisms. As Crick [2] stated:

The central dogma of molecular biology deals with the detailed residue-by-

residue transfer of sequential information. It states that such information
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cannot be transferred back from protein to either protein or nucleic acid.

However, not all the nucleotides in the DNA are transcribed. The parts of the

genome that undergo the mentioned process are commonly referred to as genes.

These are made of two different kinds of sequences, mainly exons and introns. The

former usually reach the ribosome to be translated into proteins. The latter, instead,

are removed in an intermediate process called splicing.

Figure 1.4: RNA splicing process example.

Through this process, the cell selects the exons that are required and gets rid

of the introns in the pre-mature RNA to produce mRNA. Figure 1.4 illustrates this

process in a simplified fashion. In this case, the gene contains two exons and an

intermediate intron. The figure depicts how, through splicing, the cell gets rid of the
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intron to produce the mRNA. Note that this process can lead to the production of

different proteins coming from the same gene.

1.2 Next-generation sequencing (NGS) and some applications

As of 2016, the state of the art sequencing technology is usually referred to as

next-generation sequencing (NGS).

Figure 1.5: Next-generation sequencing chemistry overview [4].
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The main workflow of the current dominant NGS platform, Illumina, is depicted

in Figure 1.5 and its steps are described as follows:

1. Library Preparation: the DNA or the cDNA is randomly fragmented and

adapters are attached to both the 5’ and the 3’ end of the strands. The product

is then amplified by a polymerase chain reaction (PCR) and purified.

2. Cluster Generation: the products of the library preparation step bind to some

oligos, which are complementary to the library adapters used in the previous

step. Through bridge amplification, each fragment is amplified into clonal

clusters.

3. Sequencing: fluorescent-labeled nucleotides are used to sequentially determine

the nature of each nucleotide. The flow cell is imaged at each iteration, and the

emission wavelength and intensity is later on used to identify the base. This

process is repeated as many times as bases there are in the reads.

4. Data Analysis: once the reads are obtained, one can align them to the corre-

sponding reference genome. Many different analysis are possible at this point

such as read counting for RNA methods or studying single nucleotide polymor-

phisms (SNP) among others.

NGS data have been found to have several applications. For instance, through

RNA-seq, one can study which genes are associated with a given condition by com-

paring the gene expression levels between the control and the condition subjects.

To do so, RNA samples from multiple replicates are sequenced for both conditions.

Once the reads are obtained, usually in FASTQ format, reads are aligned to the ref-

erence genome of the organism being studied. The number of reads that fall in each

annotated region of interest, are compared between conditions. By doing so, gene
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expression and allele frequency differences can be found between conditions in case

such differences existed. This type of analysis is usually referred to as differential

gene expression analysis. While it was already possible with the so-called microarray

technology ten years ago, by taking advantage of NGS, one can speed up the process

significantly given the amount of genes that can be studied in a single run [8].

Another crucial topic in the computational biology field that relies on NGS data

is the study of epigenetic structures. Scientists have come to believe that the DNA

does not have the last say in how living organisms develop. Different external factors

to the DNA, mainly proteins, play an important role in this process by binding to

the promoter region and modifying the expression level of the corresponding gene

in turn [11]. Other examples of epigenetic processes discovered so far are changes

in the chromatin structure [6] or DNA methylation [5]. For instance, one can study

the position of nucleosomes and the effect that these have in the expression level of

a given gene through micrococcal nuclease sequencing (MNase-seq) data analysis.

Nucleosomes are protein complexes that the DNA uses to compact its structure in

a rather efficient way. DNA wraps around nucleosomes and these are organized in

a very compacted fashion to form the chromatin structure. Using the micrococcal

nuclease, researchers get rid of the parts of the DNA that are not binded to any

nucleosome and only those sequences wrapped around nucleosomes are sequenced.

By mapping these sequences back to the reference genome, one can study the position

of these protein complexes and look for potential correlations with gene expression

levels.

From the moment that biologists extract DNA or RNA samples to the point in

which one analyzes the data, there are multiple intermediate steps that can affect the

final result. For instance, due to the inherent random sampling of the sequencing

technology, RNA-seq has been found to have measurement noise [12]. This has

8



led to different outcomes in previous differential gene expression analysis studies.

Therefore, it is of high relevance to develop tools that allow researchers to make

sure that the reads that they use for their downstream analysis are as error-free and

reliable as possible. This makes the hidden Markov model (HMM) approach very

useful, since it allows one to deal with observing noisy signals, i.e. the sequences

obtained, which are used as hints to infer the real signal, i.e. the real sequences. This

model will be formally introduced in section 2 and applied to genomic sequences in

section 3.

1.3 Thesis layout

The previous sections have underlined the relevance of the recent sequencing tech-

nology breakthroughs and some applications have been described. The relevance of

sequencing data reliability to biological and medical research has also been high-

lighted. In section 2, the theoretical foundations of hidden Markov models (HMM)

are introduced as well as the notation used throughout the thesis. In section 3, this

theory is applied to genomic sequences by modeling the observed data as hints that

can help one to find the real sequences and to evaluate the reliability of the observed

sequences. Once the theory is adapted to NGS data, section 4 describes the way the

model is implemented in a computational efficient fashion. Following, in section 5

the two main results of this thesis are presented (1) scoring sequences reliability and

(2) repairing potential errors. Finally, in section 6, conclusions are provided based

on the results obtained.
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2. HIDDEN MARKOV MODELS (HMM)

Hidden Markov models (HMM) are used to describe the behavior of a system

based on hints, usually referred to as observable events. For instance, one could try

to infer the position of the upstairs neighbor based on the sound of his or her steps.

The observable events, the sounds produced by the steps in this case, are usually

called ’symbols’. On the other hand, the underlying or invisible factor one is trying

to understand, in this case the position of the neighbor, is usually referred to as

’state’.

More technically, a HMM can be regarded as the interaction between two stochas-

tic processes. That is why it is usually referred to as a doubly-embedded stochastic

process [9]. The probability distribution of the symbols depend on the underlying

states, while the latter form a Markov chain. Thus, given that the present state is

known, the future states are conditionally independent of the past.

2.1 Markov chain

Let us formally define an HMM, and for that purpose, let us first define the

Markov chain that the underlying states follow. The state space of the Markov

chain is denoted as E. We denote a general sequence of states as follows:

X = X1 · · ·Xm (2.1)

where m is the number of states in the sequence. The stochastic process X =

{Xn;n ∈ N} is called a Markov chain provided that

P{Xn+1 = j|X0, ..., Xn} = P{Xn+1 = j|Xn} (2.2)

10



for all j ∈ E and n ∈ N [1]. This conditional probability can be expressed also using

the following notation:

P{Xn+1 = j|Xn = i} = P (i, j) (2.3)

The probabilities P (i, j) are called transition probabilities and can be arranged

in a matrix P called transition matrix or Markov matrix. Thus, if E = {0, 1, 2, ...}

this matrix has the following form:

P =



P (0, 0) P (0, 1) P (0, 2) · · ·

P (1, 0) P (1, 1) P (1, 2) · · ·

P (2, 0) P (2, 1) P (2, 2) · · ·

· · · · · ·

· · · · · ·


(2.4)

For any square matrix to be a transition matrix defined over E the following

conditions have to be met:

1. P (i, j) ≥ 0 ∀i, j ∈ E, and

2.
∑

j∈E P (i, j) = 1, ∀i ∈ E

Therefore, each row of the transition matrix has to add up to one and all the

entries have to be non-negative. In addition, when this matrix is symmetric, the

associated Markov chain has some special properties that simplify the problem. Such

a discrete stochastic process is usually referred to as a double chain Markov model.

However, this will not be the case for the intended application of the model as

described in this thesis. For instance, the following could be considered a transition

11



matrix for state space E = {1, 2, 3}:

P =


1
2

1
4

1
4

2
3

0 1
3

3
5

2
5

0

 (2.5)

Such a transition matrix represents mathematically the following Markov chain:

1

2 3

1
2

1
4

1
4

2
3

1
3

3
5

2
5

Note that all the edges leaving each node in the graph add up to one, since each

row in the corresponding transition matrix fulfills that condition as well. From the

graph it is usually easier to understand the dynamics of the Markov chain. Consider

now the following sequence of states:

X1 = 1, X2 = 1, X3 = 3, X1 = 2 (2.6)

For instance, considering that X0 = 1, the probability of such a path can be

computed as follows:

P{X1 = 1, X2 = 1, X3 = 3, X4 = 2|X0 = 1} = P (1, 1)P (1, 1)P (1, 3)P (3, 2)

12



=
1

2
· 1

2
· 1

4
· 2

5

=
1

40
(2.7)

It is of interest as well the following characteristic of a Markov chain. The prob-

ability that the chain moves from state i to state j in r steps is the (i, j) entry of the

rth power of the transition matrix [1].

P{Xn+r = j|Xn = i} = P r(i, j) (2.8)

Thus, one can compute the probability of going from state i to state j in r steps,

taking into account all the possible states in between, by using the preceding formula.

2.2 Emission probabilities

Once introduced the Markov chain that the underlying states follow, let us define

the emission probabilities, which bridge the gap between the observed symbols and

the underlying sequence of states. Each symbol Yi is a random variable that takes on

a set of possible observations O = {O1, ..., OL} based on a probability distribution

conditional on the current underlying state. We denote a sequence of symbols as

follows:

Y = Y1 · · · Ym (2.9)

Then, since the random variable Yi takes on O based on the current state only,

we have:

P{Yn = y|Y1, ..., Yn−1, X1, ..., Xn−1, Xn = i} = P{Yn = y|Xn = i} (2.10)

13



for all y ∈ O and all i ∈ E. This conditional probability is referred as emission

probability of y at state i and represented by e(·|·).

P{Yn = y|Xn = i} = e(y|i) (2.11)

2.3 Complete model

The initial state probability of the Markov chain X can be denoted as:

π0(i) = P{X1 = i} (2.12)

Note that the HMM is completely specified by the three probability measures

π0(i), P (i, j) and e(y|i). This set of probabilities is going to be denoted as Θ for

convenience from now on. For a realization Y and X we have:

P{Y,X|Θ} =
P{Y,X,Θ}
P{Θ}

=
P{Y |X,Θ}P{X,Θ}}

P{Θ}

=
P{Y |X,Θ}P{X|Θ}P{Θ}

P{Θ}

= P{Y |X,Θ}P{X|Θ} (2.13)

where

P{Y |X,Θ} = e(Y1|X1)e(Y2|X2) · · · e(Ym|Xm) (2.14)

and

P{X|Θ} = π0(X1)P (X1, X2) · · · P (Xm−1, Xm) (2.15)

14



Thus, when the underlying state sequence X = X1 · · ·Xm is known, it is easy to

compute the observation probability of a given realization Y = Y1 · · · Ym. Note as

well that by the Law of Total Probability (LTP):

P{Y |Θ} =
∑
x∈Ωm

P{Y,X = x|Θ} (2.16)

where Ωm is the set of all possible sequences of states of length m. Note that one

could potentially go through every single possible hidden state sequence to find the

marginal distribution of the observation based on the model used. In other words,

without knowing the actual hidden state sequence, one can compute the probability

of observing Y given the model, i.e. Θ. Depending on how large the state space is

and the number of elements in the chain, this might not even be feasible. However, by

taking advantage of the Bayes’ rule, equation 2.16 can be expanded in the following

way:

∑
x∈Ωm

P{Y,X = x|Θ} =
∑
x∈Ωm

P{Y |X = x,Θ}P{X = x|Θ}

=
∑
x∈Ωm

π0(x1)e(Y1|x1)
m∏
i=2

e(Yi|xi)P (xi−1, xi) (2.17)

Note that if the distributions {Y |X,Θ} and {X|Θ} are known, i.e. Θ is known,

then some sort of sampling technique could be used in order to find the marginal

distribution of the symbol sequence independent on the hidden states sequence. For

instance, a hierarchical modeling approach could be used to sample first X∗ from

P{X|Θ} and then sample Y ∗ from P{Y |X∗,Θ} and iterate as many times as needed.

By doing so, one could eventually find the empirical marginal distribution of the

observation Y given the model Θ.
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3. SEQUENCING DATA MODELING

In section 1, NGS data and multiple applications of this sequencing technology

have been introduced. In section 2, the theory behind a hidden Markov model

has been introduced. The aim of this section is to apply this theory to assess the

reliability of this type of data and to correct potential errors in it as well.

As introduced in the previous section, an HMM is a doubly-embedded stochas-

tic process. Such a process is composed of an observed sequence of symbols and a

sequence of states which, on the other hand, is not observed. Here, each sequence ob-

tained through NGS is going to be regarded as a sequence of symbols. These observed

sequences are going to be scored without knowing the corresponding underlying se-

quence of states. Then, an error-free version, i.e. the most likely underlying state

sequence, is going to be provided for each of the observed sequences.

3.1 Amount of information in a k-mer

A sequence of k nucleotides is usually referred to as a k-mer. When breaking

down a DNA or RNA sequence into substrings, one can use different k-mer sizes.

The number of possible states in the Markov chain that defines the behavior of the

underlying state sequence, clearly depends on the choice of k-mer size, since there

would be as many as |N |k different states, where |N | is the cardinality of the set of

characters used at each position in the k-mer and k is the k-mer size. Therefore,

following the notation introduced in section 2, the cardinality of the set of states for

the hidden layer would be:

|E| = |N |k (3.1)
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For instance, if the set of characters used at each position in the k-mer contained

the four possible nucleotides that exist in DNA, i.e. N = {A,C,G, T}, then the

cardinality of the space state of the Markov chain would be 4k.
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Figure 3.1: Number of states and size of the transition matrix as a function of the

k-mer size.

Note that the size of the transition matrix, which defines the underlying sequences

of states, would grow quadratically with the number of states as Figure 3.1 suggests.

Therefore, the memory requirements also grow quadratically with the size of k-mer

used. However, one can benefit from using larger k-mers. For instance, one could

break the sequence down into individual nucleotides, thus using 1-mers, or one could

break it down into groups of three nucleotides or 3-mers. When choosing the k-mer
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size, one has to be aware that, as it becomes smaller, information is lost. In the

previous example, the second choice of k-mer size would have more memory and

computational requirements, but intuitively, the model would be able to detect more

patterns in the data.

Looking at it from an Information Theory standpoint, the amount of information

obtained from observing an event A with probability pA is:

I(A) = − log(pA) (3.2)

Therefore, as the cardinality of the state space grows, more information can be

obtained from an observation on average.
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I(A
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Figure 3.2: Amount of information given the probability of event A.
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Note in Figure 3.2 how the amount of information obtained when observing an

event A increases as the probability of this event decreases. For instance, consider the

1-mer case, where each of the outcomes has the same probability of 1/4 of occurring.

The amount of information obtained when observing a given 1-mer is:

I(1-mer) = −log
(

1

4

)
≈ 0.6 (3.3)

On the other hand, consider the case where 3-mers are used. In this case, the

state space is significantly large since for every position in the 3-mer, there are four

different choices. The cardinality of the state space in this case is 64. Again, assuming

that all the outcomes have the same probability, the probability of observing any 3-

mer is 1/64 and the amount of information obtained in a single observation is:

I(3-mer) = −log
(

1

64

)
≈ 1.8 (3.4)

Which is larger than then amount of information obtained in a single observation

of a 1-mer.

The average amount of information is usually referred to as entropy. Here, the

entropy is the expected amount of information obtained in a single observation.

Therefore, the entropy can be expressed as:

S = −
∑
A∈E

pA log(pA) (3.5)

However, since all the events were equally likely in the previous examples, their

entropies are going to have the same value as the information function for any event.

S = −
∑
A∈E

pA log(pA)
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= −
∑
A∈E

p log(p)

= −|E|p log(p)

= −|E| 1

|E|
log(p)

= − log(p)

= I(A) (3.6)

In addition, it is of interest to look at the behavior of the entropy function as one

increases the k-mer size. Assuming again that all events are equally likely, we have

that:

I(A) = − log(pA)

= − log

(
1

|E|

)
= − log

(
1

|N |k

)
= log

(
|N |k

)
= k log (|N |)

∝ k (3.7)

Therefore, the amount of information is going to be proportional to the k-mer

size, thus proving, from an Information Theory standpoint, that in fact one can learn

more from the sequence the larger the choice of k-mer is. However, using large k-mers

is usually associated with both higher memory and processing requirements as Figure

3.1 reflects. Thus, a compromise between the amount of biological information and

computational requirements is often required.
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3.2 Modeling the state sequences

Using the notation introduced in section 2, the hidden state sequence is repre-

sented as follows:

X = X1 · · ·Xm (3.8)

and the probability of such a path would be:

P{X|Θ} = π0(X1)P (X1, X2) · · · P (Xm−1, Xm)

= π0(X1)
m∏
i=2

P (Xi−1, Xi) (3.9)

Let us consider the following sequence:

S = ACTAGACAGATGACA (3.10)

Let us assume now that the k-mer size chosen to break down the sequence is

three. Then, the sequence of states would be:

ACT → AGA→ CAG→ ATG→ ACA (3.11)

Thus, if X = S, then

X1 = ACT

X2 = AGA

X3 = CAG

X4 = ATG

X5 = ACA
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and the probability of observing that sequence of states would be:

P{X = S|Θ} = π0(ACT )P (ACT |AGA)P (AGA|CAG)P (CAG|ATG)P (ATG|ACA)

(3.12)

These probabilities would be found in the transition matrix. The probability can

be computed in the same way for any path once the sequence of states is defined.

3.3 Modeling the symbol sequences

As previously introduced, each DNA sequence present in the NGS dataset is going

to be regarded as a sequence of symbols. Using the notation introduced in section

2, the symbol sequence is represented as follows:

Y = Y1 · · · Ym (3.13)

Considering the model introduced in section 2, the HMM uses the emission prob-

abilities to evaluate how likely is to observe a given symbol given the hidden state.

Recall that:

P{Yn = y|Xn = i} = e(y|i) (3.14)

For instance, if one wants to model the probability that the ith nucleotide is

observed to be Adenine given that the hidden state is Guanine, a value between zero

and one can be assigned to that emission probability:

P{Yi = A|Xi = G} = e(A|G) = 0.05 (3.15)
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In addition, recall that by the LTP:

∑
y∈E

e(Yi = y|Xi = x) = 1, ∀ y ∈ E, j = 1, ...,m (3.16)

Note that the state space E is shared in this case between the symbols and

the states. This is usually preferred for convenience when working with HMM.

Nevertheless, in case one wanted to work with larger k-mers in order to capture more

biological information, it would be convenient to compute the emission probabilities

for k-mers with k larger than one.

Let us consider k-mers R1 = R11...R1k and R2 = R21...R2k, which both have

length k. The emission probability of observing R2 provided that R1 is the hidden

state would be:

P{R2 = R21...R2k|R1 = R11...R1k} = e(R21...R2k|R11...R1k) (3.17)

However, since a SNP database is going to be used to learn the emission probabil-

ities, the method proposed is based on the assumption that the emission probabilities

of adjacent nucleotides are independent. This assumption allows one to express the

emission probability of observing k-mer R2 = R21...R2k given k-mer R1 = R11...R1k

as a product of the different emission probabilities at a single base resolution:

e(R2|R1) = e(R21|R11)e(R22|R12) · · · e(R2k|R1k)

=
k∏

i=1

e(R2i|R1i) (3.18)

where k would be the length of the k-mer. For instance, if we observe the symbol

Yi = ACTAG and we know that the corresponding hidden state is Xi = ACTTG,
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the emission probability would be:

P{Yi = ACTAG|Xi = ACTTG} = e(ACTAG|ACTTG) (3.19)

Then, assuming independence, this emission probability could be computed in

the following way:

e(ACTAG|ACTTG) = e(A|A)e(C|C)e(T |T )e(A|T )e(G|G) (3.20)

Each single emission probability would be obtained from a matrix learned from

the SNP database previously mentioned. The exact way this matrix is constructed

is explained in section 3.5.

3.4 Learning the transition matrix P

The dynamics of the Markov chain are totally defined by the transition matrix,

and this can be deduced from the reference genome when working with DNA or from

the reference transcriptome if one was dealing with RNA data. These references

are based on multiple sequencing datasets from the same species that the scientific

community has put together creating a consensus sequence. Therefore, they can be

considered a good foundation for the transition matrix. That is, one can deduce the

conditional probability of having a k-mer Xn after k-mer Xn−1 from the reference.

For instance, a transition matrix using 1-mers, thus for state space E = {A,C,G, T},

could look like:

P =



P (A,A) P (A,C) P (A,G) P (A, T )

P (C,A) P (C,C) P (C,G) P (C, T )

P (G,A) P (G,C) P (G,G) P (G, T )

P (T,A) P (T,C) P (T,G) P (T, T )


(3.21)
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A transition matrix has to fulfill the properties described in section 2.1. There-

fore, the method suggested in this thesis to learn the transition matrix is to, based

on a k-mer size choice, scan the reference of the organism being studied and count

the transitions from any k-mer to any other k-mer, including itself. For instance,

the probability:

P{Xn = ACTGT |Xn−1 = AAGTA} = P (AAGTA,ACTGT ) (3.22)

can be estimated from the reference by counting how many times the 5-mer AAGTA

is followed by ACTGT and dividing by the number of times that AAGTA is present

in it so that the row corresponding to that 5-mer adds up to one as any transition

matrix or Markov matrix requires. This process would have to be repeated for all

the states in the state space E.

As stated at the beginning of this section, the choice of k-mer size has both

memory and processing requirements. Table 3.1 illustrates the approximate amount

of memory that the transition matrix would require for different k-mer sizes. Note

that if one wanted to store the whole matrix in the random-access memory (RAM),

this would require a RAM capacity that few machines have when the k-mer size

choice gets large. For example, it looks feasible to store a transition matrix built

based on 6-mers in a regular machine. If one wanted to store larger transition

matrices, then it would not probably be feasible in terms of memory requirements

to run the algorithm in a regular desktop and something more powerful would be

required. Note as well that there are going to be other matrices and variables to

store in the RAM, hence the memory available for the transition matrix will be very

limited depending on the capacity of the machine used.
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Transition matrix sizes

k-mer size Elements in matrix Memory required

1 16 150 B

2 256 2.2 KB

3 4,096 33 KB

4 65,536 515 KB

5 1,048,576 8.1 MB

6 16,777,216 129 MB

7 268,435,456 2.1 GB

Table 3.1: Memory required by the transition matrix for different k-mer sizes.

Nevertheless, storing this matrix in the RAM would be ideal in order to accelerate

the lookup process, since this would be an operation repeated continuously in the

method proposed. By storing it in the RAM, the lookup process would be much

faster rather than having it saved in the hard drive and having the algorithm open

that file, look for the number of interest and then close it again every time a transition

probability was needed. In addition, when working with larger k-mer sizes, even the

mere fact of storing the matrix in the hard drive could potentially be an issue.

Another issue to take into account, from the computational standpoint, is the

time required to build this matrix. However, once the matrix is built for a given

organism and k-mer size, the user would not need to go through this process again.

The perl code developed can be found in Appendix A.1.1 with some comments that

will help the reader to better understand the structure.
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3.5 Learning the emission probabilities e(·|·)

As discussed in section 3.3, the emission probabilities of k-mers with k larger than

one will be computed as the product of individual emission probabilities. Therefore,

the matrix containing the emission probabilities is going to be the equivalent to

a transition matrix based on 1-mers. Note that this is a very different case when

compared to the transition matrix scenario given that, in that case, we are interested

in building matrices with the largest k-mer size as possible. The matrix containing

the emission probabilities will be referred to as V and will contain only 16 elements:

V =



e(A|A) e(C|A) e(G|A) e(T |A)

e(A|C) e(C|C) e(G|C) e(T |C)

e(A|G) e(C|G) e(G|G) e(T |G)

e(A|T ) e(C|T ) e(G|T ) e(T |T )


(3.23)

For testing purposes, these emission probabilities are going to be learned from a

Human Variation database generated with human data by the National Center for

Biotechnology Information (NCBI). The common format for variant calling is the so

called Variant Call Format (VCF). In such a file, the third and fourth columns contain

the information relevant to us, the sequence information of the variants found in the

dataset. By counting the frequencies of each variant, the emission probability of a

given nucleotide being observed given that the hidden state is the same nucleotide can

be found then by subtracting to one the summation all the other possible outcomes:

e(i|i) = 1−
∑
j∈E\i

e(j|i), (3.24)
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for all i ∈ E. Therefore, by parsing the training VCF file, the matrix containing

the emission probabilities can be built in a relative simple and fast fashion. This

matrix would probably be specific to each organism and updated as new variants

were discovered. Again, the software suite developed will allow the user to generate

his or her own emission probabilities matrix based on whatever SNP database he

or she wants to use to train the HMM. The perl code developed can be found in

Appendix A.1.2 with some comments that will help the reader to better understand

the structure.
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4. COMPUTATIONAL APPROACHES

In section 3, the HMM model has been applied to genomic sequencing data.

However, it is still not clear how to compute the probabilities that the method

presented in this thesis seeks to find. This section will introduce the way these are

to be found from a computational standpoint. By taking advantage of dynamic

programming, the complexity of the algorithms will be significantly reduced when

compared to an exhaustive search approach.

First, the forward algorithm will be adapted to allow us to compute the proba-

bility of observing a given sequence of symbols given the model Θ. By doing so, the

probability of observing a given sequence of symbols {Y = y}, without knowing the

corresponding underlying sequence of states X, can be computed. This will serve

as a score for the sequence in that the higher the probability, the more confident

one can be about it. In addition, one can compare the scores obtained to that of

randomly generated sequences to get a sense of how significant these are.

Second, an adaptation of the well-known Viterbi algorithm will be introduced.

This algorithm will allow us to find the optimal path X∗, i.e. the sequence of states

that better explain the observed sequence of symbols {Y = y}. In addition, the

probability of this path will also be computed, thus obtaining a second score for the

sequence. Again, the higher this probability is, the more confident that one can be

about the sequence observed.

Third, another scoring approach is suggested by using the optimal path X∗ found

through the Viterbi algorithm to compute the conditional probability of observing

{Y = y} given the optimal path and the model, i.e. Θ.
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4.1 Adaptation of the forward algorithm

It is of interest to compute the probability of observing a given sequence of

symbols based on a HMM. In other words, to compute the probability:

P{Y = y|Θ} (4.1)

This problem is usually referred to as the scoring problem [17]. In this case, the

corresponding underlying sequence of states is not known. However, recall that, as

discussed previously, by the LTP:

P{Y = y|Θ} =
∑
x∈Ωm

P{Y = y,X = x|Θ} (4.2)

Therefore, by considering all the possible underlying sequences of states, one

could eventually find the marginal probability of a given observation {Y = y|Θ}.

Nevertheless, this would not be feasible for somewhat elaborated hidden Markov

models. Recall, that there would be as many as |E|m possible combinations, where

|E| is the cardinality of the state space and m the number of elements in a given

symbol sequence. Therefore, this number grow exponentially with the length of the

observation being studied.

The forward algorithm is an algorithm that allows us to deal with this issue. It

is based on dynamic programming, and can compute the probability of interest in a

rather efficient way [9]. This computational approach consists in solving a complex

problem by breaking it down into smaller problems that are much simpler, solving

these and storing the solutions to finally find the answer to the larger problem by

combining all these solutions. In this case, the following recursive variable is defined:
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α(n, i) = P{Y1 = y1, ..., Yn = yn, Xn = i|Θ} (4.3)

and this variable is recursively computed:

α(n, i) =
∑
s∈E

α(n− 1, s)P (s, i)e(yn|i), n = 2, ...,m (4.4)

Therefore, the first three iterations would be:

1. Set n = 1 and, for all i in E compute and store all the α(1, ·)

α(1, i) = P{Y1 = y1, X1 = i|Θ}

= π0(i)e(y1|i) (4.5)

2. Set n = 2 and, for all i in E compute and store all the α(2, ·)

α(2, i) = P{Y1 = y1, Y2 = y2, X2 = i|Θ}

=
∑
s∈E

α(1, s)P (s, i)e(y2|i) (4.6)

3. Set n = 3 and, for all i in E compute and store all the α(3, ·)

α(3, i) = P{Y1 = y1, Y2 = y2, Y3 = y3, X3 = i|Θ}

=
∑
s∈E

α(2, s)P (s, i)e(y3|i) (4.7)

Note that there are going to be as many recursive variables α(n, ·) as the size of

the cardinality of the state space |E|. In addition, we would need as many iterations

as k-mers there are in the symbol sequence of interest. In order to improve the
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performance of the algorithm, since each recursive variable will be independent, this

calculation could be multi-threaded.

Once the recursions are completed, then the probability of interest can be com-

puted in the following way:

P{Y = y|Θ} =
∑
s∈E

α(m, s) (4.8)

As a result, the probability {Y = y|Θ} is obtained with a complexity of O(m|E|2).

Note that the complexity of the algorithm is linear with respect to the number of

symbols m in the sequence observed and quadratic with respect to the cardinality of

the space state E. This makes a huge difference when compared to the initial guess,

which grows exponentially with the length of the sequence of symbols.

4.2 Adaptation of the Viterbi algorithm

It is of interest as well to find the optimal sequence of states that can better

explain the observed sequence of symbols. More technically, it is of interest to find:

x∗ = arg max
x∈Ωm

P{X = x|Y = y,Θ} (4.9)

Given Bayes’ rule,

x∗ = arg max
x∈Ωm

P{X = x|Y = y,Θ}

= arg max
x∈Ωm

P{X = x, Y = y,Θ}
P{Y = y,Θ}

= arg max
x∈Ωm

P{X = x, Y = y|Θ}P{Θ}
P{Y = y|Θ}P{Θ}

= arg max
x∈Ωm

P{X = x, Y = y|Θ}
P{Y = y|Θ}

(4.10)
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Note that the denominator is going to be a constant that will effect every possible

candidate path in the same way. Therefore, maximizing equation 4.9 is the same as

maximizing:

x∗ = arg max
x∈Ωm

P{X = x, Y = y|Θ} (4.11)

As in section 4.2, enumerating all possible states might be unfeasible depending

on the length of the sequence of observations and the cardinality of the space state.

Therefore, we can benefit again from using dynamic programming to find an efficient

way to find the optimal path as well as its conditional probability based on the

observations. The well-known Viterbi algorithm fits this scenario perfectly [3]. In

this case, we define the variable:

γ(n, i) = max
x1,...,xn−1

P{Y1 = y1, ..., Yn = yn, X1 = x1, ..., Xn−1 = xn−1, Xn = i|Θ}

(4.12)

for n = 2, ...,m and we compute it recursively in the following way:

γ(n, i) = max
s∈E

γ(n− 1, s)P (s, i)e(yn|i) (4.13)

Therefore, the first three iterations would be:

1. Set n = 1 and, for all i in E compute and store all the γ(1, ·)

γ(1, i) = P{Y1 = y1, X1 = i|Θ}

= π0(i)e(y1|i) (4.14)
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2. Set n = 2 and, for all i in E compute and store all the γ(2, ·)

γ(2, i) = arg max
s∈E

P{Y1 = y1, Y2 = y2, X1 = s,X2 = i|Θ}

= arg max
s∈E

γ(1, s)P (s, i)e(y2|i) (4.15)

3. Set n = 3 and, for all i in E compute and store all the γ(3, ·)

γ(3, i) = arg max
s∈E

P{Y1 = y1, Y2 = y2, Y3 = y3, X2 = s,X3 = i|Θ}

= arg max
s∈E

γ(2, s)P (s, i)e(y3|i) (4.16)

As in the forward algorithm case, note that there are going to be as many recursive

variables γ(n, ·) as the size of the cardinality of the state space |E|. In addition, we

would need as many iterations as k-mers present in the symbol sequence of interest.

Once equation 4.13 is computed, the maximum observation probability can be

calculated as:

P ∗ = max
x∈Ωm

P{Y = y,X = x|Θ}

= max
s∈E

γ(m, s) (4.17)

Finally, the optimal path x∗ can be found by tracing back the states that led

tot P ∗. As in the forward algorithm, the Viterbi algorithm has an complexity of

O(m|E|2), thus the time required will be proportional to the length of the sequence

of symbols and quadratic to respect the cardinality of the space state.
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4.3 Using the optimal path X∗ to score an observation

Once the optimal path X∗ has been obtained by using the Viterbi algorithm, it

is possible to compute the following probability as well:

P{Y = y|X∗,Θ} (4.18)

This is pretty straightforward since this probability is simply the product of the

different emission probabilities.

P{Y = y|X∗,Θ} =
m∏

n=1

e(yn|x∗n) (4.19)
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5. RESULTS

In order to evaluate the performance of the algorithms introduced in sections

4.1 and 4.2, a set of data has been generated. Firstly, six files have been generated

containing each 250 random sequences of the same length. For instance, the first

file contains 250 sequences of length ten. The second file contains 250 sequences

of length twenty, and so forth. On the other hand, six files have been generated by

randomly drawing sequences from the reference from which the transition matrix has

been generated. Again, the first file contains 250 sequences of length ten, the second

one contains 250 sequences of length twenty, and so forth. In total, the dataset

generated to test the methods described in this thesis consist of twelve FASTA files

with 250 sequences each. In addition to this dataset, data from [12] have been used

as well to test HiMMe with real NGS data.

In this section, two main results are presented. Firstly, all the sequences have

been scored based on the HMM model built. The results suggest that the algorithm

is able to recognize those sequences that belong to the reference and, in turn, score

them higher than those that have been randomly generated. Secondly, the randomly

generated sequences are corrected using the algorithm described in section 4.2 to

achieve a higher score.

5.1 Scoring sequences

The algorithm described in section 4.1 has been used to score randomly generated

sequences as well as sequences derived from the reference used to learn the transition

matrix. The purpose of this comparison is to see whether the algorithm scores higher

those sequences that belong to the reference from which the transition matrix was

learned. Intuitively, the larger the sequences are, the larger the difference between
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scores should be given the amount of information the sequences would contain. In

addition, one would expect to encounter more differences between scores as the k-mer

size increases, since the algorithm should be able to identify more genomic patterns

in the sequences.
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Figure 5.1: Logarithm of the score ratio between the random and true sequences as

function of the sequence length.
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In Figure 5.1 the logarithm of the ratio of the average scores for different sequence

lengths and k-mer sizes has been plotted. Note that as the length of the sequences

increases, the ratio between true and random sequences increases. Therefore, the

hypothesis that the longer the sequences, the larger the discriminant power is, is

confirmed. In addition, as the k-mer size increases, this ratio seems to be more

prominent. That is consistent again with the fact that the larger the k-mers are, the

more biological information they are able to carry.

In order to statistically determine whether there is a significant difference between

the random and true scores obtained, a t-test has been performed for each possible

combination.

t-test summary

Sequence length p-value (1-mers) p-value (3-mers) p-value (5-mers)

10 bp 1e-10 1.1e-07 1.3e-09

20 bp 4.4e-23 1.3e-17 8.6e-03

30 bp 8.9e-17 1.e-13 4.7e-02

40 bp 4.8e-23 2.6e-07 9.9e-05

50 bp 4.5e-15 2.5e-09 0.1

60 bp 9.9e-16 6.3e-10 0.05

Table 5.1: Statistics for each comparison.

All the p-values, except for one, conclude that the differences between score

populations were different with a 95% confidence level. As the k-mer size increases,

the magnitude of the p-values, however, seems to increase. This is due to the fact
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that as the k-mer size increases, the difference in score magnitude decreases faster

than the standard deviation does. Therefore, the t-test loses power as the k-mer size

increases. However, as depicted in Figure 5.1, the algorithm is capable of scoring

higher those sequences that were sampled from the reference and this power increases

with the length of the sequences as well as with the k-mer size.
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Figure 5.2: Boxplots of the logarithm of the score ratios between the sequences

sampled from SEQC and the random sequences for k-mer sizes 1, 3 and 5 respectively.
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HiMMe has been used as well to score part of the RNA-seq data from [12]. This

dataset consists of NGS data that come from six different sequencing centers: the

Australian Genome Research Facility, the Beijing Genomics Institute, City of Hope,

Cornell, Mayo Clinic and Novartis, the pharmaceutical company. For each sequenc-

ing center present in the dataset, 250 sequences of length 100 have been randomly

extracted and scored. Note in Figure 5.2 that the sequences extracted from their

dataset score significantly higher than the randomly generated ones. Furthermore,

the ratio grows as the k-mer size used grows as in Figure 5.1, suggesting again that

the larger the choice of k-mer is, the more genetic information and patterns the

algorithm is able to identify in the data. The code used to generate the random

sequences, learn the transition matrix, learn the emission probabilities and score

FASTA files, can be found in Appendix A.1.

5.2 Correcting sequences

The algorithm described in section 4.2 has been applied to the random sequences.

As a result, these sequences have been corrected so that the joint probability

P{X = x, Y = y|Θ} (5.1)

is maximized. The results are illustrated in Figure 5.3. Note that for 1-mers, the

score of the corrected versions does not improve significantly compared to that of the

original random reads. However, for 3-mers and 5-mers, the algorithm is capable of

improving the scores significantly. For instance, when using 3-mers, there is a twofold

increase when the length of the sequence is above forty nucleotides. When using 5-

mers, the improvement is even more prominent, reaching an eightfold increase when

the length of the sequence is fifty nucleotides.

40



●

●

●

●

●

●

10 20 30 40 50 60

0
2

4
6

8
10

Sequences length

s c
or

re
ct

ed
s r

an
do

m

● 5−mers
3−mers
1−mers

Figure 5.3: Score ratio between the corrected and original sequences as function of

the sequence length.

5.3 Speed assessment

In order to increase the efficiency, since both algorithms share some common

steps, they have been implemented together.
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Time elapsed running HiMMe

Sequence length 1-mers 3-mers 5-mers

10 bp < 1.0 s 3.0 s 721.0 s

20 bp < 1.0 s 7.5 s 2057.0 s

30 bp < 1.0 s 13.0 s 3497.0 s

40 bp < 1.0 s 16.5 s 4860.0 s

50 bp < 1.0 s 20.5 s 5340.0 s

60 bp < 1.0 s 25.5 s 7100.0 s

Table 5.2: Time elapsed when running HiMMe on the generated dataset.

Note in Table 5.2 how the sequence length, as explained before, has a somewhat

linear relationship with the time elapsed. However, the k-mer choice ends up having

a huge impact on it and drastically affects the processing time. Recall that the

complexity of the algorithms introduced in section 4 grows quadratically with the

cardinality of the space state. In addition, the latter grows exponentially with the

k-mer size.

Average speed HiMMe

1-mers 3-mers 5-mers

10,000 bp/s 646 bp/s 2.42 bp/s

Table 5.3: Average number of nucleotides processed per second by HiMMe.

In Table 5.3 the average number of nucleotides processed by HiMMe is summa-

rized. As the k-mer size gets larger, more memory is required to store not only the
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transition matrix but also all the recursive variables involved in the algorithm and

the search space grows exponentially. Combined, this has a huge impact in terms of

performance.
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6. CONCLUSIONS

The sequence scoring method proposed in this thesis is capable of scoring higher

those sequences that were used to construct the hidden Markov model than those

that were randomly generated. In other words, it is able to identify those patterns

in the sequencing data that are more likely to happen based on previous knowledge

about the organism being studied. This method can be applied in multiple cases

when analyzing NGS data.

One application could be to evaluate NGS reads quality. Although FASTQ files

do contain such information, this would serve as another metric to quantify how confi-

dent one can be about the reads that the sequencing machine produced. A threshold

could be used to determine which reads are kept for the downstream analysis for

instance.

Another application that the scoring method proposed here could have, would be

to evaluate the reliability of assemblies, either genomes or transcriptomes. One could

generate different assemblies with different parameters and pick the one with the

highest score. Also, by using these scores as a benchmark, this method would allow

researchers in the field of assemblers to assess the performance of their algorithms

and improve based on that.

Finally, in a metagenomics scenario, where one wants to identify the organisms

present in a given environment, this tool could be used to classify the reads obtained

into the different organisms present in the genetic material recovered. Different

models should be learned for the species being studied and the algorithm would

allow the researcher to find the model, and thus organism, that better explains the

observed reads. These are only some of the applications that the method proposed
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in this thesis has.

As for the repairing algorithm proposed, it is capable of identifying potential

errors and repairing them. The scores obtained once the sequences are repaired are

higher, thus improving the reliability of the data. This has potentially a plethora of

applications as well. For instance, one could run the algorithm on NGS data, before

the downstream analysis is performed, to ensure that the dataset used in the analysis

is as reliable as possible. The same could be done with assemblies to correct errors

induced throughout the whole process, specially in rather complex organisms with a

lot of polymorphism in their genes.

A clear advantage of the method proposed in this thesis is that there is no align-

ment involved and that, in turn, it could be faster than some of the state of the art

scoring and error-correcting tools. In a nutshell, the HMM model, with the appropri-

ate k-mer choice, seems to be able to capture the biological information and detect

potential errors in NGS data. In this thesis, two applications of this stochastic model

have been described and implemented leading, in both cases, to positive results.
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APPENDIX A

A.1 Code

A.1.1 Learning the transition matrix

1#! / usr / bin /env bash

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3##The MIT License (MIT)

4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##

14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 shopt −s extg lob

26

27 a b s p a t h s c r i p t=”$ ( r e a d l i n k −f −e ”$0” ) ”

28 s c r i p t a b s d i r=”$ ( dirname ” $ a b s p a t h s c r i p t ” ) ”

29 sc r ipt name=”$ ( basename ”$0” . sh ) ”

30

31# Find p e r l s c r i p t s
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32 p e r l s c r i p t=”${ s c r i p t a b s d i r }/ p e r l /${ sc r ipt name } . p l ”

33

34 i f [ $# −eq 0 ]

35 then

36 cat ” $ s c r i p t a b s d i r /${ sc r ipt name } he lp . txt ”

37 e x i t 1

38 f i

39

40TEMP=$ ( getopt −o hd : t : k : − l help , ou td i r : , threads : , kmer s i z e : −n ” $scr ipt name . sh” −−

”$@” )

41

42 i f [ $? −ne 0 ]

43 then

44 echo ” Terminating . . . ” >&2

45 e x i t −1

46 f i

47

48 eva l s e t −− ”$TEMP”

49

50# Defau l t s

51 outd i r=”$PWD”

52 threads=2

53 kmer s i z e=1

54

55# Options

56 whi le t rue

57 do

58 case ”$1” in

59 −h|−−help )

60 cat ” $ s c r i p t a b s d i r ”/${ sc r ipt name } he lp . txt

61 e x i t

62 ; ;

63 −d|−−outd i r )

64 outd i r=”$2”

65 s h i f t 2

66 ; ;

67 −t |−−threads )

68 threads=”$2”

69 s h i f t 2
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70 ; ;

71 −k|−−kmer s i z e )

72 kmer s i z e=”$2”

73 s h i f t 2

74 ; ;

75 −−)

76 s h i f t

77 break

78 ; ;

79 ∗)

80 echo ” $scr ipt name . sh : I n t e r n a l e r r o r ! ”

81 e x i t −1

82 ; ;

83 esac

84 done

85

86# Print LICENSE

87 cat ”${ s c r i p t a b s d i r } / . . / . . / LICENSE”

88

89# Inputs

90 input=”$1”

91

92# Output

93 input basename=”$ ( basename ” $input ” ) ”

94 p r e f i x=”${ input basename%%.∗}”

95 t e m p f i l e=”${ outd i r }/${ p r e f i x }”

96 o u t f i l e=”${ outd i r }/${ p r e f i x } tm${ kmer s i z e } . tx t . gz”

97

98# Output d i r e c t o r y

99 mkdir −p ” $outd i r ”

100

101# Count number o f e n t r i e s in FASTA

102 n e n t r i e s=”$ ( zcat −f ” $input ” | grep ”ˆ>” | wc − l ) ”

103

104# Run

105 zcat −f ” $ input ” | ” $ p e r l s c r i p t ” ” $input ” ” $kmer s i ze ” ” $ n e n t r i e s ” ” $ o u t f i l e ”

1#! / usr / bin /env p e r l

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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3##The MIT License (MIT)

4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##

14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25

26# L i b r a r i e s

27 use s t r i c t ;

28 use Algorithm : : Combinatorics qw( combinat ions v a r i a t i o n s w i t h r e p e t i t i o n ) ;

29

30# Read arguments

31 my $scr iptname = $0 ; # Get s c r i p t name

32 my $ f a s t a f i l e = @ARGV[ 0 ] ; # Get t a r g e t FASTA f i l e name

33 my $kmer s i ze= @ARGV[ 1 ] ; # Get user k−mer s i z e

34 my $ n e n t r i e s=@ARGV[ 2 ] ; # Number o f e n t r i e s in the FASTA f i l e

35 my $ o u t f i l e= @ARGV[ 3 ] ; # Output f i l e

36

37# Var iab l e s

38 my $FASTA; # Fasta f i l e handler

39 my $dim=1; # Dimension P ( based on k−mer s i z e )

40 my @markov matrix=() ; # 3D array [ assembly ] [ row ] [ column ]

41 my $n proc =0; # Number o f e n t r i e s proce s s ed
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42 my $n mem=0; # Number o f e n t r i e s s to r ed in RAM

43 my $ n l i m i t =2500; # Limit f o r number o f e n t r i e s in RAM

44

45# Time stamps

46 my $s t t ime =0; # Star t time

47 my $end time =0; # End time

48 my $cur rent t ime =0; # Current time

49 my $e lapsed t ime =0; # Time e lapsed

50

51# Hashes

52 my %f a s t a h a s h =() ; # Hash conta in ing sequence i n f o o f each sample

53 my %t r a n s i t i o n h a s h =() ; # Hash conta in ing dup le t s combinat ions

54

55################################ Main #########################################

56

57# Read in f a s t a f i l e

58 $ s t t ime = l o c a l t i m e ;

59 pr in t STDERR ”${ s t t i me } : FASTA f i l e : ${ f a s t a f i l e }\n” ;

60

61# Markov matr i ce s

62 $cur r ent t ime = l o c a l t i m e ;

63 pr in t STDERR ”${ cur r en t t ime } : I n i t i a l i z i n g Markov matrix . . . \ n” ;

64 i n i t i a l i z e ( ) ;

65 $cur r ent t ime = l o c a l t i m e ;

66 pr in t STDERR ”${ cur r en t t ime } : Learning Markov matrix . . . \ n” ;

67 f i l l m a r k o v m a t r i x ( ) ;

68

69# Print s t u f f

70 $cur r ent t ime = l o c a l t i m e ;

71 pr in t STDERR ”${ cur r en t t ime } : Saving Markov matrix in ${ o u t f i l e } . . . \ n” ;

72 pr int markov matr i ce s ( ) ;

73

74############################### Subs ##########################################

75## F i l l the markov matrix

76 sub f i l l m a r k o v m a t r i x

77 {

78 # Process in chunks o f n l i m i t

79 whi le ( $n proc<$ n e n t r i e s )

80 {
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81 # Read n l im e n t r i e s

82 r e a d f a s t a ( ) ;

83

84 # Get chromosomes from f a s t a

85 my @entr i e s=keys %f a s t a h a s h ;

86 f o r each my $entry ( @entr i e s )

87 {

88 f o r (my $ i =0; $i<=(s c a l a r @{ $ f a s t a ha sh { $entry }})−2∗$kmer s i ze ; $ i++)

89 {

90 # Get n u c l e o t i d e s o f the i t e r a t i o n

91 my $seq 1=@{ $ f a s t a ha sh { $entry }} [ $ i ] ;

92 my $seq 2=@{ $ f a s t a ha sh { $entry }} [ $ i+$kmer s i ze ] ;

93 f o r (my $ j =1; $j<$kmer s i ze ; $ j++)

94 {

95 $seq 1=$seq 1 .@{ $ f a s t a ha sh { $entry }} [ $ i+$ j ] ;

96 $seq 2=$seq 2 .@{ $ f a s t a ha sh { $entry }} [ $ i+$kmer s i ze+$ j ] ;

97 }

98 # Get codon index form markov matrix

99 my $row=$ t r a n s i t i o n h a s h { $seq 1 } ;

100 my $co l=$ t r a n s i t i o n h a s h { $seq 2 } ;

101 # F i l l markov matrix

102 $markov matrix [ $row ] [ $ co l ]+=1;

103 }

104 # Get r i d o f that entry

105 d e l e t e $ f a s t a ha sh { $entry } ;

106 $n mem−−;

107 # Update p rog r e s s

108 $n proc++;

109 my $perc=$n proc / $ n e n t r i e s ∗100 ;

110 p r i n t f STDERR ”\ rCurrent p rog r e s s : %.2 f%” , $perc ;

111 }

112 }

113 p r i n t f STDERR ”\n” ;

114 # Sca l e matrix

115 my $sum ;

116 f o r (my $ i =0; $i<=$dim ; $ i++)

117 {

118 $sum=0;

119 # Count f r e q u e n c i e s per row

53



120 f o r (my $ j =0; $j<=$dim ; $ j++)

121 {

122 $sum+=$markov matrix [ $ i ] [ $ j ] ;

123 }

124 # Normalize each row

125 i f ( $sum!=0)

126 {

127 f o r (my $ j =0; $j<=$dim ; $ j++)

128 {

129 $markov matrix [ $ i ] [ $ j ]/=$sum ;

130 }

131 }

132 }

133 }

134

135## I n i t i a l i z e markov matrices

136 sub i n i t i a l i z e

137 {

138 # Nuc l eo t ide s taken in to c o n s i d e r a t i o n

139 my @nuc leot ides=( ’A ’ , ’C ’ , ’G’ , ’T ’ ) ;

140 f o r (my $ i =1; $i<=$kmer s i ze ; $ i++)

141 {

142 $dim∗=( s c a l a r @nuc leot ides ) ;

143 }

144 # Because we s t a r t with dim=0 in the loops

145 $dim−=1;

146 # Get a l l p o s s i b l e combinations o f kmer s i z e n u c l e o t i d e s

147 my @permutations=v a r i a t i o n s w i t h r e p e t i t i o n (\@nucleot ides , $kmer s i ze ) ;

148 # Codify numer i ca l ly each p o s s i b l e permutation

149 my $ i =0;

150 f o r each my $combination ( @permutations )

151 {

152 my $length=$kmer s ize −1;

153 my $sequence = j o i n ( ’ ’ , @{ $combination } [ 0 . . $ l ength ] ) ;

154 $ t r a n s i t i o n h a s h { $sequence}=$ i ;

155 $ i++;

156 }

157 # I n i t i a l i z e markov matrix

158 f o r (my $ i =0; $i<=$dim ; $ i++)

54



159 {

160 f o r (my $ j =0; $j<=$dim ; $ j++)

161 {

162 $markov matrix [ $ i ] [ $ j ]=0;

163 }

164 }

165 }

166

167## Read in f a s t a f i l e

168 sub r e a d f a s t a

169 {

170 my $entry ;

171 whi le ( (my $ l i n e = <STDIN>) and ($n mem<=$ n l i m i t ) )

172 {

173 chomp( $ l i n e ) ;

174 i f ( $ l i n e =˜ />/)

175 {

176 $entry=subs t r ( $ l i n e , 1 ) ; # Get r i d o f l e ad ing ”>” cha rac t e r

177 $n mem++;

178 }

179 e l s e

180 {

181 my @array = s p l i t // , $ l i n e ;

182 push @{ $ f a s t a ha sh { $entry }} , @array ;

183 }

184 }

185 }

186

187## Print f a s t a

188 sub p r i n t f a s t a

189 {

190 # Print output

191 f o r each my $key ( s o r t keys %f a s t a h a s h )

192 {

193 my @entry=@{ $ f a s t a ha sh {$key }} ;

194 pr in t ”>$key\n” ;

195 f o r each my $nuc ( @entry )

196 {

197 pr in t ”$nuc” ;
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198 }

199 pr in t ”\n” ;

200 }

201 }

202

203## Print markov matrices

204 sub pr int markov matr i ce s

205 {

206 open (OUT, ” | gz ip −c > ${ o u t f i l e }” ) # $$ i s our p roce s s id

207 or d i e ”Can ’ t open f i l e ’ ${ o u t f i l e } ’ $ ! ” ;

208 # Reverse hash

209 my %reve r s e ha sh = r e v e r s e %t r a n s i t i o n h a s h ;

210 # Print to OUT

211 pr in t OUT ”\ t ” ;

212 f o r (my $ j =0; $j<=$dim ; $ j++)

213 {

214 my $key = $reve r s e ha sh { $ j } ;

215 pr in t OUT ”$key\ t ” ;

216 }

217 pr in t OUT ”\n” ;

218 f o r (my $ i =0; $i<=$dim ; $ i++)

219 {

220 my $key = $reve r s e ha sh { $ i } ;

221 pr in t OUT ”$key\ t ” ;

222 f o r (my $ j =0; $j<=$dim ; $ j++)

223 {

224 p r i n t f OUT ”%.5 f \ t ” , $markov matrix [ $ i ] [ $ j ] ;

225 }

226 pr in t OUT ”\n” ;

227 }

228 c l o s e OUT;

229 }

230##############################################################################

A.1.2 Learning the emission probabilities

1#! / usr / bin /env bash

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3##The MIT License (MIT)
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4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##

14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 shopt −s extg lob

26

27 a b s p a t h s c r i p t=”$ ( r e a d l i n k −f −e ”$0” ) ”

28 s c r i p t a b s d i r=”$ ( dirname ” $ a b s p a t h s c r i p t ” ) ”

29 sc r ipt name=”$ ( basename ”$0” . sh ) ”

30

31# Find p e r l s c r i p t s

32 p e r l s c r i p t=”${ s c r i p t a b s d i r }/ p e r l /${ sc r ipt name } . p l ”

33

34 i f [ $# −eq 0 ]

35 then

36 cat ” $ s c r i p t a b s d i r /${ sc r ipt name } he lp . txt ”

37 e x i t 1

38 f i

39

40TEMP=$ ( getopt −o hd : t : b : − l help , ou td i r : , threads : , bases : −n ” $scr ipt name . sh” −− ”$@

” )

41
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42 i f [ $? −ne 0 ]

43 then

44 echo ” Terminating . . . ” >&2

45 e x i t −1

46 f i

47

48 eva l s e t −− ”$TEMP”

49

50# Defau l t s

51 outd i r=”$PWD”

52 threads=2

53 bases =10000000

54

55# Options

56 whi le t rue

57 do

58 case ”$1” in

59 −h|−−help )

60 cat ” $ s c r i p t a b s d i r ”/${ sc r ipt name } he lp . txt

61 e x i t

62 ; ;

63 −d|−−outd i r )

64 outd i r=”$2”

65 s h i f t 2

66 ; ;

67 −t |−−threads )

68 threads=”$2”

69 s h i f t 2

70 ; ;

71 −b|−−bases )

72 bases=”$2”

73 s h i f t 2

74 ; ;

75 −−)

76 s h i f t

77 break

78 ; ;

79 ∗)

80 echo ” $scr ipt name . sh : I n t e r n a l e r r o r ! ”
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81 e x i t −1

82 ; ;

83 esac

84 done

85

86# Print LICENSE

87 cat ”${ s c r i p t a b s d i r } / . . / . . / LICENSE”

88

89# Inputs

90 input=”$1”

91

92# Output

93 input basename=”$ ( basename ” $input ” ) ”

94 p r e f i x=”${ input basename%%.∗}”

95 t e m p f i l e=”${ outd i r }/${ p r e f i x }”

96 o u t f i l e=”${ outd i r }/${ p r e f i x } ep$ { bases } . tx t . gz”

97

98# Output d i r e c t o r y

99 mkdir −p ” $outd i r ”

100

101# Count number o f e n t r i e s in FASTA

102 n e n t r i e s=”$ ( zcat −f ” $input ” | grep −v ”ˆ#” | wc − l ) ”

103

104# Run

105 zcat −f ” $ input ” | ” $ p e r l s c r i p t ” ” $input ” ” $ n e n t r i e s ” ” $bases ” ” $ o u t f i l e ”

1#! / usr / bin /env p e r l

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3##The MIT License (MIT)

4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##
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14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25

26# L i b r a r i e s

27 use s t r i c t ;

28 use Algorithm : : Combinatorics qw( combinat ions v a r i a t i o n s w i t h r e p e t i t i o n ) ;

29

30# Read arguments

31 my $scr iptname = $0 ; # Get s c r i p t name

32 my $ v c f f i l e = @ARGV[ 0 ] ; # Get t a r g e t FASTA f i l e name

33 my $ n e n t r i e s=@ARGV[ 1 ] ; # Number o f e n t r i e s in the FASTA f i l e

34 my $n bases=@ARGV[ 2 ] ; # Number o f bases

35 my $ o u t f i l e=@ARGV[ 3 ] ; # Output f i l e

36

37# Var iab l e s

38 my $VCF; # Fasta f i l e handler

39 my $dim=1; # Dimension P ( based on k−mer s i z e )

40 my @emiss ion matr ix =() ; # 3D array [ assembly ] [ row ] [ column ]

41 my $n proc =0; # Number o f e n t r i e s proce s s ed

42 my $n mem=0; # Number o f e n t r i e s s to r ed in RAM

43 my $ n l i m i t =2000; # Limit f o r number o f e n t r i e s in RAM

44 my $kmer s i ze =1;

45

46

47# Time stamps

48 my $s t t ime =0; # Star t time

49 my $end time =0; # End time

50 my $cur rent t ime =0; # Current time

51 my $e lapsed t ime =0; # Time e lapsed

52
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53# Hashes

54 my %vc f hash =() ; # Hash conta in ing sequence i n f o o f each sample

55 my %t r a n s i t i o n h a s h =() ; # Hash conta in ing dup le t s combinat ions

56

57################################ Main #########################################

58

59# Read in f a s t a f i l e

60 $ s t t ime = l o c a l t i m e ;

61 pr in t STDERR ”${ s t t i me } : VCF f i l e : ${ v c f f i l e }\n” ;

62# I n i t i a l i z e matrix

63 $cur r ent t ime = l o c a l t i m e ;

64 pr in t STDERR ”${ cur r en t t ime } : I n i t i a l i z i n g emis s ion matrix . . . \ n” ;

65 i n i t i a l i z e ( ) ;

66# Count f r e q u e n c i e s

67 $cur r ent t ime = l o c a l t i m e ;

68 pr in t STDERR ”${ cur r en t t ime } : Learning emis s ion matrix $n bases . . . \ n” ;

69 f i l l e m i s s i o n m a t r i x ( ) ;

70# Print s t u f f

71 $cur r ent t ime = l o c a l t i m e ;

72 pr in t STDERR ”${ cur r en t t ime } : Saving emis s ion matrix in ${ o u t f i l e } . . . \ n” ;

73 p r i n t e m i s s i o n m a t r i c e s ( ) ;

74

75############################### Subs ##########################################

76## F i l l the emis s ion matrix

77 sub f i l l e m i s s i o n m a t r i x

78 {

79 # Process in chunks o f n l i m i t

80 whi le ( $n proc<$ n e n t r i e s )

81 {

82 # Read n l im e n t r i e s

83 r e a d v c f ( ) ;

84 # Get new e n t r i e s

85 my @entr i e s=keys %vc f hash ;

86 # Loop through the e n t r i e s

87 f o r each my $entry ( @entr i e s )

88 {

89 # Get v a r i a n t s

90 my @ref=@{ $vc f hash { $entry }{ ’ r e f ’ }} ;

91 my @alt=@{ $vc f hash { $entry }{ ’ a l t ’ }} ;
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92 # Get index form emis s i on matr ix

93 my $row=$ t r a n s i t i o n h a s h {@ref [ 0 ] } ;

94 my $co l=$ t r a n s i t i o n h a s h {@alt [ 0 ] } ;

95 # F i l l emi s s i on matr ix

96 $emis s ion matr ix [ $row ] [ $ co l ]+=1;

97 # Get r i d o f that entry

98 d e l e t e $vc f hash { $entry } ;

99 # Update p rog r e s s

100 $n mem−−;

101 $n proc++;

102 my $perc=$n proc / $ n e n t r i e s ∗100 ;

103 p r i n t f STDERR ”\ rCurrent p rog r e s s : %.2 f%” , $perc ;

104 }

105 }

106 p r i n t f STDERR ”\n” ;

107 # Add e ( i | i ) and s c a l e matrix

108 f o r (my $ i =0; $i<=$dim ; $ i++)

109 {

110 my $sum=0;

111 $emis s i on matr ix [ $ i ] [ $ i ]= $n bases /4 ;

112 # Count f r e q u e n c i e s per row

113 f o r (my $ j =0; $j<=$dim ; $ j++)

114 {

115 $sum+=$emis s ion matr ix [ $ i ] [ $ j ] ;

116 }

117 # Normalize each row

118 i f ( $sum!=0)

119 {

120 f o r (my $ j =0; $j<=$dim ; $ j++)

121 {

122 $emis s ion matr ix [ $ i ] [ $ j ]/=$sum ;

123 }

124 }

125 }

126 }

127

128## I n i t i a l i z e em i s s i on mat r i c e s

129 sub i n i t i a l i z e

130 {
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131 # Nuc l eo t ide s taken in to c o n s i d e r a t i o n

132 my @nuc leot ides=( ’A ’ , ’C ’ , ’G’ , ’T ’ ) ;

133 f o r (my $ i =1; $i<=$kmer s i ze ; $ i++)

134 {

135 $dim∗=( s c a l a r @nuc leot ides ) ;

136 }

137 # Because we s t a r t with dim=0 in the loops

138 $dim−=1;

139 # Get a l l p o s s i b l e combinations o f kmer s i z e n u c l e o t i d e s

140 my @permutations=v a r i a t i o n s w i t h r e p e t i t i o n (\@nucleot ides , $kmer s i ze ) ;

141 # Codify numer i ca l ly each p o s s i b l e permutation

142 my $ i =0;

143 f o r each my $combination ( @permutations )

144 {

145 my $length=$kmer s ize −1;

146 my $sequence = j o i n ( ’ ’ , @{ $combination } [ 0 . . $ l ength ] ) ;

147 $ t r a n s i t i o n h a s h { $sequence}=$ i ;

148 $ i++;

149 }

150 # I n i t i a l i z e emi s s i on matr ix

151 f o r (my $ i =0; $i<=$dim ; $ i++)

152 {

153 f o r (my $ j =0; $j<=$dim ; $ j++)

154 {

155 $emis s ion matr ix [ $ i ] [ $ j ]=0;

156 }

157 }

158 }

159

160## Read in vc f f i l e

161 sub r e a d v c f

162 {

163 my $entry ;

164 whi le ( ( $n mem<$ n l i m i t ) and (my $ l i n e = <STDIN>) )

165 {

166 chomp( $ l i n e ) ;

167 i f ( $ l i n e =˜ /#/)

168 {

169 # nothing
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170 }

171 e l s e

172 {

173 my @array = s p l i t ( ’ \ t ’ , $ l i n e ) ;

174 my $id = $array [ 2 ] ;

175 my @ref = s p l i t (// , $array [ 3 ] ) ;

176 my @alt = s p l i t (// , $array [ 4 ] ) ;

177 i f ( ( s c a l a r @ref eq 1) and ( s c a l a r @alt eq 1) )

178 {

179 $vc f hash { $ id }{ ’ r e f ’ }=[ @ref ] ;

180 $vc f hash { $ id }{ ’ a l t ’ }=[ @alt ] ;

181 $n mem++;

182 }

183 e l s e

184 {

185 $ n e n t r i e s −−;

186 }

187 }

188 }

189 }

190

191## Print em i s s i on mat r i c e s

192 sub p r i n t e m i s s i o n m a t r i c e s

193 {

194 open (OUT, ” | gz ip −c > ${ o u t f i l e }” ) # $$ i s our p roce s s id

195 or d i e ”Can ’ t open f i l e ’ ${ o u t f i l e } ’ $ ! ” ;

196 # Reverse hash

197 my %reve r s e ha sh = r e v e r s e %t r a n s i t i o n h a s h ;

198 # Print to OUT

199 pr in t OUT ”\ t ” ;

200 f o r (my $ j =0; $j<=$dim ; $ j++)

201 {

202 my $key = $reve r s e ha sh { $ j } ;

203 pr in t OUT ”$key\ t ” ;

204 }

205 pr in t OUT ”\n” ;

206 f o r (my $ i =0; $i<=$dim ; $ i++)

207 {

208 my $key = $reve r s e ha sh { $ i } ;
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209 pr in t OUT ”$key\ t ” ;

210 f o r (my $ j =0; $j<=$dim ; $ j++)

211 {

212 p r i n t f OUT ”%.5 f \ t ” , $emis s ion matr ix [ $ i ] [ $ j ] ;

213 }

214 pr in t OUT ”\n” ;

215 }

216 c l o s e OUT;

217 }

218##############################################################################

A.1.3 HiMMe algorithm

1#! / usr / bin /env bash

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3##The MIT License (MIT)

4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##

14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 shopt −s extg lob

26
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27 a b s p a t h s c r i p t=”$ ( r e a d l i n k −f −e ”$0” ) ”

28 s c r i p t a b s d i r=”$ ( dirname ” $ a b s p a t h s c r i p t ” ) ”

29 sc r ipt name=”$ ( basename ”$0” . sh ) ”

30

31# Find p e r l s c r i p t s

32 p e r l s c r i p t=”${ s c r i p t a b s d i r }/ p e r l /${ sc r ipt name } . p l ”

33

34 i f [ $# −eq 0 ]

35 then

36 cat ” $ s c r i p t a b s d i r /${ sc r ipt name } he lp . txt ”

37 e x i t 1

38 f i

39

40TEMP=$ ( getopt −o hd : t : k : − l help , ou td i r : , threads : , kmer s i z e : −n ” $scr ipt name . sh” −−

”$@” )

41

42 i f [ $? −ne 0 ]

43 then

44 echo ” Terminating . . . ” >&2

45 e x i t −1

46 f i

47

48 eva l s e t −− ”$TEMP”

49

50# Defau l t s

51 outd i r=”$PWD”

52 threads=2

53 kmer s i z e=1

54

55# Options

56 whi le t rue

57 do

58 case ”$1” in

59 −h|−−help )

60 cat ” $ s c r i p t a b s d i r ”/${ sc r ipt name } he lp . txt

61 e x i t

62 ; ;

63 −d|−−outd i r )

64 outd i r=”$2”

66



65 s h i f t 2

66 ; ;

67 −t |−−threads )

68 threads=”$2”

69 s h i f t 2

70 ; ;

71 −k|−−kmer s i z e )

72 kmer s i z e=”$2”

73 s h i f t 2

74 ; ;

75 −−)

76 s h i f t

77 break

78 ; ;

79 ∗)

80 echo ” $scr ipt name . sh : I n t e r n a l e r r o r ! ”

81 e x i t −1

82 ; ;

83 esac

84 done

85

86# Inputs

87 t m f i l e=”$1”

88 e p f i l e=”$2”

89 f a s t a f i l e=”$3”

90

91# Output

92 fasta basename=”$ ( basename ” $ f a s t a f i l e ” ) ”

93 p r e f i x=”${ fasta basename%%.∗}”

94 o u t f i l e s u m=”${ outd i r }/${ p r e f i x } summary ${ kmer s i z e } . tx t ”

95 o u t f i l e f a s t a=”${ outd i r }/${ p r e f i x } c o r r e c t e d $ { kmer s i z e } . f a ”

96

97# Output d i r e c t o r y

98 mkdir −p ” $outd i r ”

99

100# Count number o f e n t r i e s in FASTA

101 n e n t r i e s=”$ ( zcat −f ” $ f a s t a f i l e ” | grep ”ˆ>” | wc − l ) ”

102

103# Run
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104 zcat −f ” $ f a s t a f i l e ” | ” $ p e r l s c r i p t ” ” $ t m f i l e ” ” $ e p f i l e ” \

105 ” $ f a s t a f i l e ” ” $kmer s i ze ” \

106 ” $ n e n t r i e s ” ” $o u t f i l e s um ” ” $ o u t f i l e f a s t a ”

1#! / usr / bin /env p e r l

2# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3##The MIT License (MIT)

4##

5##Copyright ( c ) 2016 Jord i Abante

6##

7##Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy

8##of t h i s so f tware and a s s o c i a t e d documentation f i l e s ( the ” Software ”) , to dea l

9##in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s

10##to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

11##c o p i e s o f the Software , and to permit persons to whom the Software i s

12##furn i shed to do so , s ub j e c t to the f o l l o w i n g c o n d i t i o n s :

13##

14##The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in a l l

15##c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

16##

17##THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

18##IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

19##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20##AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

21##LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

22##OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

23##SOFTWARE.

24# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25

26# L i b r a r i e s

27 use s t r i c t ;

28 use Algorithm : : Combinatorics qw( combinat ions v a r i a t i o n s w i t h r e p e t i t i o n ) ;

29 use POSIX ;

30

31# Read arguments

32 my $scr iptname = $0 ; # Get s c r i p t name

33 my $ t m f i l e = @ARGV[ 0 ] ; # Trans i t i on matrix f i l e name

34 my $ e p f i l e = @ARGV[ 1 ] ; # Emission p r o b a b i l i t i e s f i l e name

35 my $ f a s t a f i l e = @ARGV[ 2 ] ; # Get t a r g e t FASTA f i l e name
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36 my $kmer s i ze= @ARGV[ 3 ] ; # Get user k−mer s i z e

37 my $ n e n t r i e s=@ARGV[ 4 ] ; # Number o f e n t r i e s in the FASTA f i l e

38 my $ ou t f i l e s um= @ARGV[ 5 ] ; # Output f i l e

39 my $ o u t f i l e f a s t a= @ARGV[ 6 ] ; # Output f i l e

40

41# For t e s t i n g purposes

42 my $ t m o u t f i l e=” out / tm tes t . txt . gz” ; # F i l e to check the t r a n s i t i o n matrix

43 my $ e p o u t f i l e=”out / e p t e s t . txt . gz” ; # F i l e to check the emis s ion probs

44

45# Handlers

46 my $FASTA; # Fasta f i l e handler

47 my $TM; # Trans i t i on matrix handler

48 my $EP ; # Emission p r o b a b i l i t i e s handler

49

50# Var iab l e s

51 my $dim=1; # Dimension P ( based on k−mer s i z e )

52 my @markov matrix=() ; # Trans i t i on Matrix [ row ] [ column ]

53 my @emiss ion matr ix =() ; # Emission Matrix [ row ] [ column ]

54 my $n proc =0; # Number o f e n t r i e s proce s s ed

55 my $n mem=0; # Number o f e n t r i e s s to r ed in RAM

56 my $ n l i m i t =250; # Limit f o r number o f e n t r i e s in RAM

57

58# Time stamps

59 my $s t t ime =0; # Star t time

60 my $end time =0; # End time

61 my $cur rent t ime =0; # Current time

62 my $e lapsed t ime =0; # Time e lapsed

63

64# Hashes

65 my %f a s t a h a s h =() ; # Hash conta in ing sequence i n f o o f each sample

66 my %t r a n s i t i o n h a s h =() ; # Hash conta in ing t r a n s i t i o n matrix

67 my %emiss ion hash =() ; # Hash conta in ing emis s ion probs

68 my %e m i s s i o n a l l h a s h =() ; # Hash conta in ing a l l comb emiss ion probs

69 my %sco r e ha s h 1 =() ; # Hash conta in ing s c o r e s i t e r n−1

70 my %gamma 1=() ; # Recurs ive v a r i a b l e gamma f o r opt . path −1

71 my %sco r e ha s h 2 =() ; # Hash conta in ing s c o r e s i t e r n

72 my %gamma=() ; # Recurs ive v a r i a b l e gamma f o r opt . path curr .

73 my %r e s u l t s h a s h =() ; # Hash conta in ing s c o r e s o f a l l sequences

74 my %v i t e r b i o u t =() ; # Hash conta in ing V i t e r b i ’ s output
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75 my %template hash =() ; # Hash generated based on a l l the combinations

76

77################################ Main #########################################

78

79## Read input f i l e s

80 $ s t t ime = l o c a l t i m e ;

81 pr in t STDERR ”${ s t t i me } : ${ n e n t r i e s } e n t r i e s to p roce s s . . . \ n” ;

82 pr in t STDERR ”${ s t t i me } : Reading in t r a n s i t i o n matrix f i l e : ${ t m f i l e } . . . \ n” ;

83 read tm ( ) ;

84#print markov matr ix ( ) ;

85 $cur r ent t ime = l o c a l t i m e ;

86 pr in t STDERR ”${ cur r en t t ime } : Reading in emis s ion p r o b a b i l i t i e s f i l e : ${ e p f i l e

} . . . \ n” ;

87 read ep ( ) ;

88#p r i n t e m i s s i o n m a t r i x ( ) ;

89 $cur r ent t ime = l o c a l t i m e ;

90 pr in t STDERR ”${ cur r en t t ime } : FASTA f i l e : ${ f a s t a f i l e }\n” ;

91

92## I n i t i a l i z e s t a t e hash and emis s ion a l l hash

93 $cur r ent t ime = l o c a l t i m e ;

94 pr in t STDERR ”${ cur r en t t ime } : I n i t i a l i z i n g . . . \ n” ;

95 i n i t i a l i z e ( ) ;

96

97## Run algor i thm

98 $cur r ent t ime = l o c a l t i m e ;

99 pr in t STDERR ”${ cur r en t t ime } : Computing s c o r e s & optimal path . . . \ n” ;

100 run a lgor i thm ( ) ;

101

102# Save s t u f f

103 $cur r ent t ime = l o c a l t i m e ;

104 pr in t STDERR ”${ cur r en t t ime } : Saving in ${ o u t f i l e s u m } & ${ o u t f i l e f a s t a } . . . \ n” ;

105 s a v e r e s u l t s ( ) ;

106

107############################### Subs ##########################################

108## Run forward and V i t e r b i a lgor i thms

109 sub run a lgor i thm

110 {

111 # Process in chunks o f n l i m i t

112 whi le ( $n proc<$ n e n t r i e s )
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113 {

114 # Read n l im e n t r i e s

115 r e a d f a s t a ( ) ;

116 # Get chromosomes from f a s t a

117 my @entr i e s=keys %f a s t a h a s h ;

118 f o r each my $entry ( @entr i e s )

119 {

120 my $ n i t e r=f l o o r ( ( s c a l a r @{ $ f a s t a ha sh { $entry }}) / $kmer s i ze )−1;

121 my $pos =1;

122 # Loop through the sequence

123 f o r (my $ i =0; $i<=$ n i t e r ∗ $kmer s i ze ; $ i+=$kmer s i ze )

124 {

125 # Get s t a t e s in the i t e r a t i o n

126 my $seq 1=@{ $ f a s t a ha sh { $entry }} [ $ i ] ;

127 my $seq 2=@{ $ f a s t a ha sh { $entry }} [ $ i+$kmer s i ze ] ;

128 f o r (my $ j =1; $j<$kmer s i ze ; $ j++)

129 {

130 $seq 1=$seq 1 .@{ $ f a s t a ha sh { $entry }} [ $ i+$ j ] ;

131 $seq 2=$seq 2 .@{ $ f a s t a ha sh { $entry }} [ $ i+$kmer s i ze+$ j ] ;

132 }

133 # Get a l l p o s s i b l e hidden s t a t e s

134 %sc o r e ha s h 2=%template hash ;

135 # In case i t ’ s the f i r s t i t e r a t i o n , i n i t i a l i z e alpha

136 i f ( $ i eq 0)

137 {

138 # Get a l l p o s s i b l e hidden s t a t e s

139 %s co r e ha s h 1=%template hash ;

140 # Compute s co r e f o r each hidden s t a t e

141 f o r each my $h idden s ta t e ( keys %sco r e ha s h 1 )

142 {

143 my $p i 0 =1/(4∗∗ $kmer s i ze ) ;

144 my $emiss ion=$ e m i s s i o n a l l h a s h { $h idden s ta t e }{ $seq 1 } ;

145 my $sco r e=$p i 0 ∗ $emiss ion ;

146 $ s co r e ha sh 1 { $h idden s ta t e}=$sco r e ;

147 $gamma{$pos }{ $h idden s ta t e }{ s c o r e}=$sco r e ;

148 $gamma{$pos }{ $h idden s ta t e }{ seq}=”” ;

149 }

150 $pos++;

151 }
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152 i f ( l ength ( $seq 2 ) eq $kmer s i ze )

153 {

154 # Consider every p o s s i b l e hidden s t a t e

155 f o r each my $h idd en s t a t e 2 ( keys %sc o r e ha s h 2 )

156 {

157 my $emiss ion=$ e m i s s i o n a l l h a s h { $h idd en s t a t e 2 }{ $seq 2 } ;

158 my $sum=0;

159 f o r each my $h idd en s t a t e 1 ( keys %sc o r e ha s h 1 )

160 {

161 # Forward algor i thm

162 my $row=$ t r a n s i t i o n h a s h { $h idd en s t a t e 1 } ;

163 my $co l=$ t r a n s i t i o n h a s h { $h idd en s t a t e 2 } ;

164 my $sco r e=$sco r e ha sh 1 { $h idd en s t a t e 1 }∗

165 $markov matrix [ $row ] [ $ co l ]∗ $emiss ion ;

166 $sum+=$sco r e ;

167 # V i t e r b i a lgor i thm

168 my $sco r e=$gamma{$pos−1}{ $h idd en s t a t e 1 }{ s c o r e }∗

169 $markov matrix [ $row ] [ $ co l ]∗ $emiss ion ;

170 i f ( $ s co r e > $gamma{$pos }{ $h idd en s t a t e 2 }{ s c o r e })

171 {

172 $gamma{$pos }{ $h idd en s t a t e 2 }{ s c o r e}=$sco r e ;

173 $gamma{$pos }{ $h idd en s t a t e 2 }{ seq}=$h i dde n s t a t e 1 ;

174 }

175 }

176 $ s co r e ha sh 2 { $h idd en s t a t e 2}=$sum ;

177 }

178 $pos++;

179 }

180 e l s e

181 {

182 %s co r e ha s h 2=%sco r e ha s h 1 ;

183 }

184 %sc o r e ha s h 1=%sco r e ha s h 2 ;

185 }

186 ## Traceback gamma

187 $pos−−;

188 f o r each my $h idden s ta t e ( keys %{$gamma{$pos }})

189 {

190 i f ($gamma{$pos }{ $h idden s ta t e }{ s c o r e } > $ v i t e r b i o u t { $entry }{ $pos }{
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s c o r e })

191 {

192 $ v i t e r b i o u t { $entry }{ $pos }{ s c o r e}=$gamma{$pos }{ $h idden s ta t e }{

s c o r e } ;

193 $ v i t e r b i o u t { $entry }{ $pos }{ seq}=$h idden s ta t e ;

194 }

195 }

196 $pos−−;

197 f o r (my $ i=$pos ; $i >=1;$i−−)

198 {

199 my $seq=$ v i t e r b i o u t { $entry }{ $ i +1}{ seq } ;

200 my $seq 1=$gamma{ $ i +1}{$seq }{ seq } ;

201 $ v i t e r b i o u t { $entry }{ $ i }{ seq}=$seq 1 ;

202 }

203 %gamma=() ;

204 # Total s c o r e P(X=x |HMM)

205 my $ t o t a l s c o r e =0;

206 f o r each my $kmer ( keys %sc o r e ha s h 1 )

207 {

208 $ t o t a l s c o r e+=$sco r e ha sh 1 {$kmer } ;

209 }

210 # Store in r e s u l t s hash

211 $ r e s u l t s h a s h { $entry}=$ t o t a l s c o r e ;

212 # CLean s co r e hash

213 %s co r e ha s h 1 =() ;

214 %s co r e ha s h 2 =() ;

215 # Get r i d o f that entry

216 d e l e t e $ f a s t a ha sh { $entry } ;

217 $n mem−−;

218 # Update p rog r e s s

219 $n proc++;

220 my $perc=$n proc / $ n e n t r i e s ∗100 ;

221 p r i n t f STDERR ”\ rCurrent p rog r e s s : %.2 f%” , $perc ;

222 }

223 }

224 pr in t STDERR ”\n” ;

225 }

226

227## I n i t i a l i z e s t u f f
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228 sub i n i t i a l i z e

229 {

230 # Get p o s s i b l e permutat ions o f l enght k

231 my @nuc leot ides=( ’A ’ , ’C ’ , ’T ’ , ’G’ ) ;

232 my @permutations=v a r i a t i o n s w i t h r e p e t i t i o n (\@nucleot ides , $kmer s i ze ) ;

233 # Get a l l p o s s i b l e hidden s t a t e s

234 f o r each my $ s t r i n g 1 ( @permutations )

235 {

236 my $length=$kmer s ize −1;

237 my $sequence 1 = j o i n ( ’ ’ , @{ $ s t r i n g 1 } [ 0 . . $ l ength ] ) ;

238 $template hash { $sequence 1 }=1;

239 f o r each my $ s t r i n g 2 ( @permutations )

240 {

241 my $length=$kmer s ize −1;

242 my $sequence 2 = j o i n ( ’ ’ , @{ $ s t r i n g 2 } [ 0 . . $ l ength ] ) ;

243 my $emiss ion =1;

244 f o r (my $ j =0; $j<$kmer s i ze ; $ j++)

245 {

246 my @state 1=s p l i t (// , $sequence 1 ) ;

247 my @state 2=s p l i t (// , $sequence 2 ) ;

248 my $row=$emiss ion hash { $ s t a t e 1 [ $ j ] } ;

249 my $co l=$emis s ion hash { $ s t a t e 2 [ $ j ] } ;

250 $emiss ion∗=$emis s ion matr ix [ $row ] [ $ co l ] ;

251 }

252 $ e m i s s i o n a l l h a s h { $sequence 1 }{ $sequence 2}=$emiss ion ;

253 }

254 }

255 }

256## Save r e s u l t s

257 sub s a v e r e s u l t s

258 {

259 my $sum=0;

260 my $n=0;

261 # Open output f i l e

262 open (OUT, ”>$ ou t f i l e s um ” ) or d i e ”Can ’ t open f i l e ’ ${ o u t f i l e s u m } ’ $ ! ” ;

263 # Loop through a l l sequences

264 f o r each my $key ( s o r t keys %r e s u l t s h a s h )

265 {

266 my $ s t r i n g = s p r i n t f ( ’ %.3e ’ , $ r e s u l t s h a s h {$key }) ;
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267 p r i n t f OUT ”$key\ t $ s t r i n g ” ;

268 pr in t OUT ”\n” ;

269 $sum+=$ r e s u l t s h a s h {$key } ;

270 $n++;

271 }

272 my $mean=$sum/$n ;

273 my $ s t r i n g = s p r i n t f ( ’ %.3e ’ , $mean) ;

274 pr in t OUT ”Mean\ t $ s t r i n g \n” ;

275 # Close handler

276 c l o s e OUT;

277 # Print c o r r e c t e d sequences

278 open (OUT, ”>$ o u t f i l e f a s t a ” ) or d i e ”Can ’ t open f i l e ’ ${ o u t f i l e f a s t a } ’ $ ! ” ;

279 f o r each my $entry ( s o r t keys %r e s u l t s h a s h )

280 {

281 pr in t OUT ”>${ entry }\n” ;

282 f o r each my $pos ( s o r t {$a<=>$b} keys %{$ v i t e r b i o u t { $entry }})

283 {

284 pr in t OUT ” $ v i t e r b i o u t { $entry }{ $pos }{ seq }” ;

285 }

286 pr in t OUT ”\n” ;

287 }

288 c l o s e OUT;

289 }

290

291## Read in f a s t a f i l e

292 sub r e a d f a s t a

293 {

294 my $entry ;

295 $n mem=0;

296 whi le ( (my $ l i n e = <STDIN>) and ($n mem<$ n l i m i t ) )

297 {

298 chomp( $ l i n e ) ;

299 i f ( $ l i n e =˜ />/)

300 {

301 $entry=subs t r ( $ l i n e , 1 ) ; # Get r i d o f l e ad ing ”>” cha rac t e r

302 }

303 e l s e

304 {

305 my @array = s p l i t // , $ l i n e ;
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306 push @{ $ f a s t a ha sh { $entry }} , @array ;

307 $n mem++;

308 }

309 }

310 }

311

312## Print f a s t a

313 sub p r i n t f a s t a

314 {

315 # Print output

316 f o r each my $key ( s o r t keys %f a s t a h a s h )

317 {

318 my @entry=@{ $ f a s t a ha sh {$key }} ;

319 pr in t ”>$key\n” ;

320 f o r each my $nuc ( @entry )

321 {

322 pr in t ”$nuc” ;

323 }

324 pr in t ”\n” ;

325 }

326 }

327## Read in t r a n s i t i o n matrix

328 sub read tm

329 {

330 my @nuc leot ides=( ’A ’ , ’C ’ , ’T ’ , ’G’ ) ;

331 f o r (my $ i =1; $i<=$kmer s i ze ; $ i++)

332 {

333 $dim∗=( s c a l a r @nuc leot ides ) ;

334 }

335 # Because we s t a r t with dim=0 in the loops

336 $dim−=1;

337 # Open f i l e

338 open ($TM, ” gunzip −c ${ t m f i l e } | ” )

339 or d i e ”Can ’ t open f i l e ’ ${ t m f i l e } ’ $ ! ” ;

340 my $ i =0;

341 # Loop through each row

342 whi le (my $ l i n e=<$TM>)

343 {

344 i f ( $ i gt 0)
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345 {

346 chomp( $ l i n e ) ;

347 my @row=s p l i t (/\ t / , $ l i n e ) ;

348 my $j =0;

349 f o r each my $co l (@row)

350 {

351 i f ( $ j eq 0)

352 {

353 $ t r a n s i t i o n h a s h { $co l}=$i −1;

354 }

355 e l s e

356 {

357 $markov matrix [ $i −1] [ $j−1]= $co l ;

358 }

359 $ j++;

360 }

361 }

362 $ i++;

363 }

364 c l o s e $TM;

365 }

366

367## Print t r a n s i t i o n matrix

368 sub pr int markov matr ix

369 {

370 open (OUT, ” | gz ip −c > ${ t m o u t f i l e }” ) # $$ i s our p roce s s id

371 or d i e ”Can ’ t open f i l e ’ ${ t m o u t f i l e } ’ $ ! ” ;

372 # Reverse hash

373 my %reve r s e ha sh = r e v e r s e %t r a n s i t i o n h a s h ;

374 # Print to OUT

375 pr in t OUT ”\ t ” ;

376 f o r (my $ j =0; $j<=$dim ; $ j++)

377 {

378 my $key = $reve r s e ha sh { $ j } ;

379 pr in t OUT ”$key\ t ” ;

380 }

381 pr in t OUT ”\n” ;

382 f o r (my $ i =0; $i<=$dim ; $ i++)

383 {
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384 my $key = $reve r s e ha sh { $ i } ;

385 pr in t OUT ”$key\ t ” ;

386 f o r (my $ j =0; $j<=$dim ; $ j++)

387 {

388 p r i n t f OUT ”%.5 f \ t ” , $markov matrix [ $ i ] [ $ j ] ;

389 }

390 pr in t OUT ”\n” ;

391 }

392 c l o s e OUT;

393 }

394

395## Read in emis s ion p r o b a b i l i t i e s

396 sub read ep

397 {

398 # Open f i l e

399 open ($EP , ” gunzip −c ${ e p f i l e } | ” )

400 or d i e ”Can ’ t open f i l e ’ ${ e p f i l e } ’ $ ! ” ;

401 my $ i =0;

402 # Loop through each row

403 whi le (my $ l i n e=<$EP>)

404 {

405 i f ( $ i gt 0)

406 {

407 chomp( $ l i n e ) ;

408 my @row=s p l i t (/\ t / , $ l i n e ) ;

409 my $j =0;

410 f o r each my $co l (@row)

411 {

412 i f ( $ j eq 0)

413 {

414 $emis s ion hash { $co l}=$i −1;

415 }

416 e l s e

417 {

418 $emis s ion matr ix [ $i −1] [ $j−1]= $co l ;

419 }

420 $ j++;

421 }

422 }
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423 $ i++;

424 }

425 c l o s e $EP ;

426 }

427

428## Print emis s ion p r o b a b i l i t i e s

429 sub p r i n t e m i s s i o n m a t r i x

430 {

431 open (OUT, ” | gz ip −c > ${ e p o u t f i l e }” ) # $$ i s our p roce s s id

432 or d i e ”Can ’ t open f i l e ’ ${ e p o u t f i l e } ’ $ ! ” ;

433 # Reverse hash

434 my %reve r s e ha sh = r e v e r s e %emis s ion hash ;

435 # Print to OUT

436 pr in t OUT ”\ t ” ;

437 f o r (my $ j =0; $j <=3; $ j++)

438 {

439 my $key = $reve r s e ha sh { $ j } ;

440 pr in t OUT ”$key\ t ” ;

441 }

442 pr in t OUT ”\n” ;

443 f o r (my $ i =0; $i <=3; $ i++)

444 {

445 my $key = $reve r s e ha sh { $ i } ;

446 pr in t OUT ”$key\ t ” ;

447 f o r (my $ j =0; $j <=3; $ j++)

448 {

449 p r i n t f OUT ”%.5 f \ t ” , $emis s ion matr ix [ $ i ] [ $ j ] ;

450 }

451 pr in t OUT ”\n” ;

452 }

453 c l o s e OUT;

454 }

455

456##############################################################################

A.1.4 Generation of random sequences

1#! / usr / bin /env bash

2 shopt −s extg lob
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3

4 a b s p a t h s c r i p t=”$ ( r e a d l i n k −f −e ”$0” ) ”

5 s c r i p t a b s d i r=”$ ( dirname ” $ a b s p a t h s c r i p t ” ) ”

6 sc r ipt name=”$ ( basename ”$0” . sh ) ”

7

8TEMP=$ ( getopt −o h l : r − l help , l ength : , rna −n ” $scr ipt name . sh” −− ”$@” )

9

10 i f [ $? −ne 0 ]

11 then

12 echo ” Terminating . . . ” >&2

13 e x i t −1

14 f i

15

16 eva l s e t −− ”$TEMP”

17

18# Defau l t s

19 l ength=10

20 bases=”ACTG”

21

22 whi le t rue

23 do

24 case ”$1” in

25 −h|−−help )

26 cat ” $ s c r i p t a b s d i r ”/${ sc r ipt name } he lp . txt

27 e x i t

28 ; ;

29 − l |−− l ength )

30 l ength=”$2”

31 s h i f t 2

32 ; ;

33 −r |−−rna )

34 bases=”ACUG”

35 s h i f t

36 ; ;

37 −−)

38 s h i f t

39 break

40 ; ;

41 ∗)
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42 echo ” $scr ipt name . sh : I n t e r n a l e r r o r ! ”

43 e x i t −1

44 ; ;

45 esac

46 done

47

48# Run

49 cat /dev/urandom | t r −dc ” $bases ” | f o l d −w ” $length ” | head −n 1

1#! / usr / bin /env bash

2 shopt −s extg lob

3

4 a b s p a t h s c r i p t=”$ ( r e a d l i n k −f −e ”$0” ) ”

5 s c r i p t a b s d i r=”$ ( dirname ” $ a b s p a t h s c r i p t ” ) ”

6 sc r ipt name=”$ ( basename ”$0” . sh ) ”

7

8 i f [ $# −eq 0 ]

9 then

10 cat ” $ s c r i p t a b s d i r /${ sc r ipt name } he lp . txt ”

11 e x i t 1

12 f i

13

14TEMP=$ ( getopt −o hd : t : c : l : p : − l help , ou td i r : , threads : , chr : , l ength : , p r e f i x : −n ”

$scr ipt name . sh” −− ”$@” )

15

16 i f [ $? −ne 0 ]

17 then

18 echo ” Terminating . . . ” >&2

19 e x i t −1

20 f i

21

22 eva l s e t −− ”$TEMP”

23

24# Defau l t s

25 outd i r=”$PWD”

26 chr=5

27 l ength =2000

28 p r e f i x=” simulated genome ”

29 bases=”ACTG”
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30 threads=2

31

32# Options

33 whi le t rue

34 do

35 case ”$1” in

36 −h|−−help )

37 cat ” $ s c r i p t a b s d i r ”/${ sc r ipt name } he lp . txt

38 e x i t

39 ; ;

40 −d|−−outd i r )

41 outd i r=”$2”

42 s h i f t 2

43 ; ;

44 −t |−−threads )

45 threads=”$2”

46 s h i f t 2

47 ; ;

48 −c|−−chr )

49 chr=”$2”

50 s h i f t 2

51 ; ;

52 − l |−− l ength )

53 l ength=”$2”

54 s h i f t 2

55 ; ;

56 −p|−−p r e f i x )

57 p r e f i x=”$2”

58 s h i f t 2

59 ; ;

60 −−)

61 s h i f t

62 break

63 ; ;

64 ∗)

65 echo ” $scr ipt name . sh : I n t e r n a l e r r o r ! ”

66 e x i t −1

67 ; ;

68 esac
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69 done

70

71# Star t time

72 s t a r t t i m e=”$ ( date +”%s%3N” ) ”

73

74# Temp and output

75 o u t f i l e=”${ outd i r }/${ p r e f i x } . f a ”

76 t e m p f i l e=”${ outd i r }/${ p r e f i x }”

77 export o u t f i l e

78 export t e m p f i l e

79 export l ength

80

81# Outdir

82 mkdir −p ” $outd i r ”

83

84# Generate a f i l e f o r each chromosome

85 seq 1 ” $chr ” | xargs −I {} −−max−proc ” $threads ” bash −c \

86 ’ echo ”>random seq {}” >> ’ ${ t e m p f i l e } {} . tmp ’ && random sequence generator . sh −

l ’ $ length ’ >> ’ ${ t e m p f i l e } {} . tmp ’ ’

87

88# Concatenate a l l chromosomes and f i l t e r

89 seq 1 ” $chr ” | xargs −I {} −−max−proc 1 bash −c \

90 ’ cat ’ ${ t e m p f i l e } {} . tmp ’ >> ’ $ o u t f i l e ’ ’

91

92# Remove temp f i l e

93 rm −f ${ t e m p f i l e }∗tmp∗

94

95# Time e lapsed

96 end time=”$ ( date +”%s%3N” ) ”

97 echo ”Time e lapsed : $ ( ( $end time − $ s t a r t t i m e ) ) ms”

A.1.5 Scoring results analysis

1### t−t e s t

2## 1−mers

3 read . t a b l e ( ’ random seq 10 summary 1 . txt ’ )−>r 10 1

4 read . t a b l e ( ’ random seq 20 summary 1 . txt ’ )−>r 20 1

5 read . t a b l e ( ’ random seq 30 summary 1 . txt ’ )−>r 30 1

6 read . t a b l e ( ’ random seq 40 summary 1 . txt ’ )−>r 40 1
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7 read . t a b l e ( ’ random seq 50 summary 1 . txt ’ )−>r 50 1

8 read . t a b l e ( ’ random seq 60 summary 1 . txt ’ )−>r 60 1

9

10 read . t a b l e ( ’ t rue seq 10 summary 1 . txt ’ )−>t 10 1

11 read . t a b l e ( ’ t rue seq 20 summary 1 . txt ’ )−>t 20 1

12 read . t a b l e ( ’ t rue seq 30 summary 1 . txt ’ )−>t 30 1

13 read . t a b l e ( ’ t rue seq 40 summary 1 . txt ’ )−>t 40 1

14 read . t a b l e ( ’ t rue seq 50 summary 1 . txt ’ )−>t 50 1

15 read . t a b l e ( ’ t rue seq 60 summary 1 . txt ’ )−>t 60 1

16

17 s t a t s 10 1=t . t e s t ( r 10 1 [ 1 : 2 5 0 , 2 ] , t 10 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

18 s t a t s 20 1=t . t e s t ( r 20 1 [ 1 : 2 5 0 , 2 ] , t 20 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

19 s t a t s 30 1=t . t e s t ( r 30 1 [ 1 : 2 5 0 , 2 ] , t 30 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

20 s t a t s 40 1=t . t e s t ( r 40 1 [ 1 : 2 5 0 , 2 ] , t 40 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

21 s t a t s 50 1=t . t e s t ( r 50 1 [ 1 : 2 5 0 , 2 ] , t 50 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

22 s t a t s 60 1=t . t e s t ( r 60 1 [ 1 : 2 5 0 , 2 ] , t 60 1 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

23

24## 3−mers

25 read . t a b l e ( ’ random seq 10 summary 3 . txt ’ )−>r 10 3

26 read . t a b l e ( ’ random seq 20 summary 3 . txt ’ )−>r 20 3

27 read . t a b l e ( ’ random seq 30 summary 3 . txt ’ )−>r 30 3

28 read . t a b l e ( ’ random seq 40 summary 3 . txt ’ )−>r 40 3

29 read . t a b l e ( ’ random seq 50 summary 3 . txt ’ )−>r 50 3

30 read . t a b l e ( ’ random seq 60 summary 3 . txt ’ )−>r 60 3

31

32 read . t a b l e ( ’ t rue seq 10 summary 3 . txt ’ )−>t 10 3

33 read . t a b l e ( ’ t rue seq 20 summary 3 . txt ’ )−>t 20 3

34 read . t a b l e ( ’ t rue seq 30 summary 3 . txt ’ )−>t 30 3

35 read . t a b l e ( ’ t rue seq 40 summary 3 . txt ’ )−>t 40 3

36 read . t a b l e ( ’ t rue seq 50 summary 3 . txt ’ )−>t 50 3

37 read . t a b l e ( ’ t rue seq 60 summary 3 . txt ’ )−>t 60 3

38

39 s t a t s 10 3=t . t e s t ( r 10 3 [ 1 : 2 5 0 , 2 ] , t 10 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

40 s t a t s 20 3=t . t e s t ( r 20 3 [ 1 : 2 5 0 , 2 ] , t 20 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

41 s t a t s 30 3=t . t e s t ( r 30 3 [ 1 : 2 5 0 , 2 ] , t 30 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

42 s t a t s 40 3=t . t e s t ( r 40 3 [ 1 : 2 5 0 , 2 ] , t 40 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

43 s t a t s 50 3=t . t e s t ( r 50 3 [ 1 : 2 5 0 , 2 ] , t 50 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

44 s t a t s 60 3=t . t e s t ( r 60 3 [ 1 : 2 5 0 , 2 ] , t 60 3 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

45
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46## 5−mers

47 read . t a b l e ( ’ random seq 10 summary 5 . txt ’ )−>r 10 5

48 read . t a b l e ( ’ random seq 20 summary 5 . txt ’ )−>r 20 5

49 read . t a b l e ( ’ random seq 30 summary 5 . txt ’ )−>r 30 5

50 read . t a b l e ( ’ random seq 40 summary 5 . txt ’ )−>r 40 5

51 read . t a b l e ( ’ random seq 50 summary 5 . txt ’ )−>r 50 5

52 read . t a b l e ( ’ random seq 60 summary 5 . txt ’ )−>r 60 5

53

54 read . t a b l e ( ’ t rue seq 10 summary 5 . txt ’ )−>t 10 5

55 read . t a b l e ( ’ t rue seq 20 summary 5 . txt ’ )−>t 20 5

56 read . t a b l e ( ’ t rue seq 30 summary 5 . txt ’ )−>t 30 5

57 read . t a b l e ( ’ t rue seq 40 summary 5 . txt ’ )−>t 40 5

58 read . t a b l e ( ’ t rue seq 50 summary 5 . txt ’ )−>t 50 5

59 read . t a b l e ( ’ t rue seq 60 summary 5 . txt ’ )−>t 60 5

60

61 s t a t s 10 5=t . t e s t ( r 10 5 [ 1 : 2 5 0 , 2 ] , t 10 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

62 s t a t s 20 5=t . t e s t ( r 20 5 [ 1 : 2 5 0 , 2 ] , t 20 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

63 s t a t s 30 5=t . t e s t ( r 30 5 [ 1 : 2 5 0 , 2 ] , t 30 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

64 s t a t s 40 5=t . t e s t ( r 40 5 [ 1 : 2 5 0 , 2 ] , t 40 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

65 s t a t s 50 5=t . t e s t ( r 50 5 [ 1 : 2 5 0 , 2 ] , t 50 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

66 s t a t s 60 5=t . t e s t ( r 60 5 [ 1 : 2 5 0 , 2 ] , t 60 5 [ 1 : 2 5 0 , 2 ] , a l t e r n a t i v e=’ l e s s ’ )

67

68### Summary

69 out=as . data . frame ( cbind ( c ( s t a t s 10 1$p . value , s t a t s 20 1$p . value ,

70 s t a t s 30 1$p . value , s t a t s 40 1$p . value ,

71 s t a t s 50 1$p . value , s t a t s 60 1$p . va lue ) ,

72 c ( s t a t s 10 3$p . value , s t a t s 20 3$p . value ,

73 s t a t s 30 3$p . value , s t a t s 40 3$p . value ,

74 s t a t s 50 3$p . value , s t a t s 60 3$p . va lue ) ,

75 c ( s t a t s 10 5$p . value , s t a t s 20 5$p . value ,

76 s t a t s 30 5$p . value , s t a t s 40 5$p . value ,

77 s t a t s 50 5$p . value , s t a t s 60 5$p . va lue ) ) )

78 colnames ( out )=c ( ’1−mers ’ , ’3−mers ’ , ’5−mers ’ )

79 wr i t e . t ab l e ( out , f i l e=’ pva lues . txt ’ , quote=F, sep=’ \ t ’ , row . names=F)

80

81### Plot s

82 read . t a b l e ( ’ s c o r e s 1 . txt ’ )−>s1

83 read . t a b l e ( ’ s c o r e s 3 . txt ’ )−>s3

84 read . t a b l e ( ’ s c o r e s 5 . txt ’ )−>s5
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85 colnames ( s1 )=c ( ’ random ’ , ’ t rue ’ )

86 colnames ( s3 )=c ( ’ random ’ , ’ t rue ’ )

87 colnames ( s5 )=c ( ’ random ’ , ’ t rue ’ )

88

89 x=seq (10 ,100 ,10)

90

91# Ratios

92 s1 r a t i o s=log ( s1 [ , 2 ] / s1 [ , 1 ] )

93 s3 r a t i o s=log ( s3 [ , 2 ] / s3 [ , 1 ] )

94 s5 r a t i o s=log ( s5 [ , 2 ] / s5 [ , 1 ] )

95

96# Plot

97 pdf ( ” s c o r i n g . pdf ” )

98 par (mar=c (5 , 5 , 1 , 1) )

99 p lo t (x , s5 r a t i o s , pch=16, type=”b” , c o l=” blue ” , xlab=” Sequences l ength ” ,

100 ylab=expr e s s i on ( l og ( s [ t rue ] / s [ random ] ) ) )

101 l i n e s (x , s3 r a t i o s , pch=15, type=”b” , c o l=” red ” , xlab=”” , ylab=”” )

102 l i n e s (x , s1 r a t i o s , pch=14, type=”b” , c o l=” green ” , xlab=”” , ylab=”” )

103 l egend ( ” t o p l e f t ” , l egend=c ( ”5−mers” , ”3−mers” , ”1−mers” ) ,

104 t ex t . c o l=c ( ” blue ” , ” red ” , ” green ” ) ,

105 pch=c (16 ,15 ,14) ,

106 c o l=c ( ” blue ” , ” red ” , ” green ” ) )

107

108 dev . o f f ( )

A.1.6 SEQC results analysis

1#! / usr / bin /env Rscr ip t

2

3# Read in seqc s c o r e s

4 read . t a b l e ( ’ seqc s c o r e s . txt ’ , sep=” ” )−>seqc

5

6# Random s c o r e s f o r sequence l ength 100

7 random=c (5 . 442 e−61 ,2.21893034881624 e−60 ,2.254 e−61)

8

9 r a t i o s 1=cbind ( l og ( seqc [ , 1 ] /random [ 1 ] ) , rep (1 , 6 ) )

10 r a t i o s 3=cbind ( l og ( seqc [ , 2 ] /random [ 2 ] ) , rep (3 , 6 ) )

11 r a t i o s 5=cbind ( l og ( seqc [ , 3 ] /random [ 3 ] ) , rep (5 , 6 ) )

12
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13 seqc df=as . data . frame ( rbind ( r a t i o s 1 , r a t i o s 3 , r a t i o s 5) )

14 colnames ( seqc df )=c ( ” Ratio ” , ”kmer” )

15# Plot

16 pdf ( ” seqc s c o r i n g 1 . pdf ” )

17 par (mar=c (5 , 5 , 1 , 1) )

18 boxplot ( Ratio ˜ kmer , data=seqc df , lwd = 2 , c o l=’ blue ’ , yl im=c (0 ,30 ) ,

19 xlab=”k−mer s i z e ” , ylab = expr e s s i on ( l og ( s [SEQC] / s [ random ] ) ) )

20 dev . o f f ( )

A.1.7 Viterbi results analysis

1# Before

2 read . t a b l e ( ’ b e f o r e /random seq 10 summary 1 . txt ’ )−>b 10 1

3 read . t a b l e ( ’ b e f o r e /random seq 10 summary 3 . txt ’ )−>b 10 3

4 read . t a b l e ( ’ b e f o r e /random seq 10 summary 5 . txt ’ )−>b 10 5

5 read . t a b l e ( ’ b e f o r e /random seq 20 summary 1 . txt ’ )−>b 20 1

6 read . t a b l e ( ’ b e f o r e /random seq 20 summary 3 . txt ’ )−>b 20 3

7 read . t a b l e ( ’ b e f o r e /random seq 20 summary 5 . txt ’ )−>b 20 5

8 read . t a b l e ( ’ b e f o r e /random seq 30 summary 1 . txt ’ )−>b 30 1

9 read . t a b l e ( ’ b e f o r e /random seq 30 summary 3 . txt ’ )−>b 30 3

10 read . t a b l e ( ’ b e f o r e /random seq 30 summary 5 . txt ’ )−>b 30 5

11 read . t a b l e ( ’ b e f o r e /random seq 40 summary 1 . txt ’ )−>b 40 1

12 read . t a b l e ( ’ b e f o r e /random seq 40 summary 3 . txt ’ )−>b 40 3

13 read . t a b l e ( ’ b e f o r e /random seq 40 summary 5 . txt ’ )−>b 40 5

14 read . t a b l e ( ’ b e f o r e /random seq 50 summary 1 . txt ’ )−>b 50 1

15 read . t a b l e ( ’ b e f o r e /random seq 50 summary 3 . txt ’ )−>b 50 3

16 read . t a b l e ( ’ b e f o r e /random seq 50 summary 5 . txt ’ )−>b 50 5

17 read . t a b l e ( ’ b e f o r e /random seq 60 summary 1 . txt ’ )−>b 60 1

18 read . t a b l e ( ’ b e f o r e /random seq 60 summary 3 . txt ’ )−>b 60 3

19 read . t a b l e ( ’ b e f o r e /random seq 60 summary 5 . txt ’ )−>b 60 5

20

21# After

22 read . t a b l e ( ’ a f t e r /random seq 10 c o r r e c t e d 1 summary 1 . txt ’ )−>a 10 1

23 read . t a b l e ( ’ a f t e r /random seq 10 c o r r e c t e d 3 summary 3 . txt ’ )−>a 10 3

24 read . t a b l e ( ’ a f t e r /random seq 10 c o r r e c t e d 5 summary 5 . txt ’ )−>a 10 5

25 read . t a b l e ( ’ a f t e r /random seq 20 c o r r e c t e d 1 summary 1 . txt ’ )−>a 20 1

26 read . t a b l e ( ’ a f t e r /random seq 20 c o r r e c t e d 3 summary 3 . txt ’ )−>a 20 3

27 read . t a b l e ( ’ a f t e r /random seq 20 c o r r e c t e d 5 summary 5 . txt ’ )−>a 20 5

28 read . t a b l e ( ’ a f t e r /random seq 30 c o r r e c t e d 1 summary 1 . txt ’ )−>a 30 1
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29 read . t a b l e ( ’ a f t e r /random seq 30 c o r r e c t e d 3 summary 3 . txt ’ )−>a 30 3

30 read . t a b l e ( ’ a f t e r /random seq 30 c o r r e c t e d 5 summary 5 . txt ’ )−>a 30 5

31 read . t a b l e ( ’ a f t e r /random seq 40 c o r r e c t e d 1 summary 1 . txt ’ )−>a 40 1

32 read . t a b l e ( ’ a f t e r /random seq 40 c o r r e c t e d 3 summary 3 . txt ’ )−>a 40 3

33 read . t a b l e ( ’ a f t e r /random seq 40 c o r r e c t e d 5 summary 5 . txt ’ )−>a 40 5

34 read . t a b l e ( ’ a f t e r /random seq 50 c o r r e c t e d 1 summary 1 . txt ’ )−>a 50 1

35 read . t a b l e ( ’ a f t e r /random seq 50 c o r r e c t e d 3 summary 3 . txt ’ )−>a 50 3

36 read . t a b l e ( ’ a f t e r /random seq 50 c o r r e c t e d 5 summary 5 . txt ’ )−>a 50 5

37 read . t a b l e ( ’ a f t e r /random seq 60 c o r r e c t e d 1 summary 1 . txt ’ )−>a 60 1

38 read . t a b l e ( ’ a f t e r /random seq 60 c o r r e c t e d 3 summary 3 . txt ’ )−>a 60 3

39 read . t a b l e ( ’ a f t e r /random seq 60 c o r r e c t e d 5 summary 5 . txt ’ )−>a 60 5

40

41# D i f f e r e n c e means

42 d i f f 1=c ( a 10 1 [ nrow ( a 10 1) ,1]−b 10 1 [ nrow (b 10 1) , 1 ] ,

43 a 20 1 [ nrow ( a 20 1) ,1]−b 20 1 [ nrow (b 20 1) , 1 ] ,

44 a 30 1 [ nrow ( a 30 1) ,1]−b 30 1 [ nrow (b 30 1) , 1 ] ,

45 a 40 1 [ nrow ( a 40 1) ,1]−b 40 1 [ nrow (b 40 1) , 1 ] ,

46 a 50 1 [ nrow ( a 50 1) ,1]−b 50 1 [ nrow (b 50 1) , 1 ] ,

47 a 60 1 [ nrow ( a 60 1) ,1]−b 60 1 [ nrow (b 60 1) , 1 ] )

48 d i f f 3=c ( a 10 3 [ nrow ( a 10 3) ,1]−b 10 3 [ nrow (b 10 3) , 1 ] ,

49 a 20 3 [ nrow ( a 20 3) ,1]−b 20 3 [ nrow (b 20 3) , 1 ] ,

50 a 30 3 [ nrow ( a 30 3) ,1]−b 30 3 [ nrow (b 30 3) , 1 ] ,

51 a 40 3 [ nrow ( a 40 3) ,1]−b 40 3 [ nrow (b 40 3) , 1 ] ,

52 a 50 3 [ nrow ( a 50 3) ,1]−b 50 3 [ nrow (b 50 3) , 1 ] ,

53 a 60 3 [ nrow ( a 60 3) ,1]−b 60 3 [ nrow (b 60 3) , 1 ] )

54 d i f f 5=c ( a 10 5 [ nrow ( a 10 5) ,1]−b 10 5 [ nrow (b 10 5) , 1 ] ,

55 a 20 5 [ nrow ( a 20 5) ,1]−b 20 5 [ nrow (b 20 5) , 1 ] ,

56 a 30 5 [ nrow ( a 30 5) ,1]−b 30 5 [ nrow (b 30 5) , 1 ] ,

57 a 40 5 [ nrow ( a 40 5) ,1]−b 40 5 [ nrow (b 40 5) , 1 ] ,

58 a 50 5 [ nrow ( a 50 5) ,1]−b 50 5 [ nrow (b 50 5) , 1 ] ,

59 a 60 5 [ nrow ( a 60 5) ,1]−b 60 5 [ nrow (b 60 5) , 1 ] )

60# Ratios means

61 r a t i o 1=c ( a 10 1 [ nrow ( a 10 1) , 1 ] /b 10 1 [ nrow (b 10 1) , 1 ] ,

62 a 20 1 [ nrow ( a 20 1) , 1 ] /b 20 1 [ nrow (b 20 1) , 1 ] ,

63 a 30 1 [ nrow ( a 30 1) , 1 ] /b 30 1 [ nrow (b 30 1) , 1 ] ,

64 a 40 1 [ nrow ( a 40 1) , 1 ] /b 40 1 [ nrow (b 40 1) , 1 ] ,

65 a 50 1 [ nrow ( a 50 1) , 1 ] /b 50 1 [ nrow (b 50 1) , 1 ] ,

66 a 60 1 [ nrow ( a 60 1) , 1 ] /b 60 1 [ nrow (b 60 1) , 1 ] )

67 r a t i o 3=c ( a 10 3 [ nrow ( a 10 3) , 1 ] /b 10 3 [ nrow (b 10 3) , 1 ] ,
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68 a 20 3 [ nrow ( a 20 3) , 1 ] /b 20 3 [ nrow (b 20 3) , 1 ] ,

69 a 30 3 [ nrow ( a 30 3) , 1 ] /b 30 3 [ nrow (b 30 3) , 1 ] ,

70 a 40 3 [ nrow ( a 40 3) , 1 ] /b 40 3 [ nrow (b 40 3) , 1 ] ,

71 a 50 3 [ nrow ( a 50 3) , 1 ] /b 50 3 [ nrow (b 50 3) , 1 ] ,

72 a 60 3 [ nrow ( a 60 3) , 1 ] /b 60 3 [ nrow (b 60 3) , 1 ] )

73 r a t i o 5=c ( a 10 5 [ nrow ( a 10 5) , 1 ] /b 10 5 [ nrow (b 10 5) , 1 ] ,

74 a 20 5 [ nrow ( a 20 5) , 1 ] /b 20 5 [ nrow (b 20 5) , 1 ] ,

75 a 30 5 [ nrow ( a 30 5) , 1 ] /b 30 5 [ nrow (b 30 5) , 1 ] ,

76 a 40 5 [ nrow ( a 40 5) , 1 ] /b 40 5 [ nrow (b 40 5) , 1 ] ,

77 a 50 5 [ nrow ( a 50 5) , 1 ] /b 50 5 [ nrow (b 50 5) , 1 ] ,

78 a 60 5 [ nrow ( a 60 5) , 1 ] /b 60 5 [ nrow (b 60 5) , 1 ] )

79# Plot

80 pdf ( ” v i t e r b i . pdf ” )

81 x=seq (10 ,60 ,10)

82 par (mar=c (5 , 5 , 1 , 1) )

83 p lo t (x , r a t i o 5 , pch=16, type=”b” , c o l=” blue ” , xlab=” Sequences l ength ” ,

84 ylab=expr e s s i on ( s [ c o r r e c t e d ] / s [ random ] ) )

85 l i n e s (x , r a t i o 3 , pch=15, type=”b” , c o l=” red ” , xlab=”” , ylab=”” )

86 l i n e s (x , r a t i o 1 , pch=14, type=”b” , c o l=” green ” , xlab=”” , ylab=”” )

87 l egend ( ” t o p l e f t ” , l egend=c ( ”5−mers” , ”3−mers” , ”1−mers” ) ,

88 t ex t . c o l=c ( ” blue ” , ” red ” , ” green ” ) , pch=c (16 ,15 ,14) , c o l=c ( ” blue ”

, ” red ” , ” green ” ) )

89

90 dev . o f f ( )
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