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ABSTRACT

Many natural and engineering systems are governed by nonlinear partial dif-

ferential equations (PDEs) which result in a multiscale phenomena, e.g. turbulent

flows. Numerical simulations of these problems are computationally very expensive

and demand for extreme levels of parallelism. At realistic conditions, simulations

are being carried out on massively parallel computers with hundreds of thousands of

processing elements (PEs). It has been observed that communication between PEs as

well as their synchronization at these extreme scales take up a significant portion of

the total simulation time and result in poor scalability of codes. This issue is likely to

pose a bottleneck in scalability of codes on future Exascale systems. In this work, we

propose an asynchronous computing algorithm based on widely used finite difference

methods to solve PDEs in which synchronization between PEs due to communication

is relaxed at a mathematical level. We show that while stability is conserved when

schemes are used asynchronously, accuracy is greatly degraded. Since message ar-

rivals at PEs are random processes, so is the behavior of the error. We propose a new

statistical framework in which we show that average errors drop always to first-order

regardless of the original scheme. We propose new asynchrony-tolerant schemes that

maintain accuracy when synchronization is relaxed. The quality of the solution is

shown to depend, not only on the physical phenomena and numerical schemes, but

also on the characteristics of the computing machine. A novel algorithm using re-

mote memory access communications has been developed to demonstrate excellent

scalability of the method for large-scale computing. Finally, we present a path to

extend this method in solving complex multi-scale problems on Exascale machines.
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CHAPTER I

INTRODUCTION

I.A. Overview

Many natural and engineered systems and processes can be accurately described

by partial differential equations (PDEs). This includes fluid mechanics, electromag-

netism, quantum mechanics as well as common simple processes in continuum media

such as diffusion and wave propagation. In aerospace engineering, PDEs are widely

used in understanding problems in aerodynamics, propulsion, structural design and

control systems. Due to the complexity of the governing equations as well as the

geometrical aspects of the problems, analytical solutions are not known in practical

applications. A common example from aerodynamics and propulsion is the tur-

bulence phenomena, which is governed by the celebrated Navier-Stokes equations.

These equations are highly non-linear nature and result in a multi-scale phenomena,

as depicted in Fig. I.1.

Advances in computing technology have made numerical simulations an indis-

pensable research tool in understanding problems at great detail. At realistic con-

ditions, the complexities involved in the above mentioned phenomena and systems

typically require massive computational resources. In the last few decades, this com-

putational power has been realized through increasing levels of parallelism. Current

state-of-the-art simulations are being done routinely on hundreds of thousands of pro-

cessing elements (PEs) with Petascale supercomputers (e.g. Jagannathan & Donzis,

1



Figure I.1. Illustration of multi-scale nature of turbulence. Left: Velocity 
magnitude contour in an incompressible isotropic turbulent flow (Maqui 
& Donzis, 2011). Right: Iso-surfaces of chemical species in a turbulent 
jet flame (Yoo et al., 2011).

2012; Lee et al., 2013).

I.B. Literature review

In parallel simulations, when a problem is decomposed into a number of PEs,

solving a PDE typically requires communication between PEs to compute spatial

derivatives. As the number of PEs increases, this communication becomes more

challenging (e.g. Jagannathan & Donzis, 2012; Lee et al., 2013) and affects the scala-

bility of codes. In fact, this may well be a major bottleneck at the next generation of

computing systems (Dongarra et al., 2011) which may comprise an extremely large

number of PEs. At those extreme levels of parallelism, even small imbalances due to

noise (Hoefler et al., 2010) in otherwise perfectly balanced codes can represent enor-

mous penalties as PEs idle waiting to receive data from other PEs. This is especially

2



critical when, as commonly done, a global synchronization is imposed at each time

step to finalize all communications as well as to obtain information to determine the

time-step size in unsteady calculations subjected to a so-called Courant-Friedrichs-

Lewy condition. Thus, in order to take advantage of computational systems at

extreme levels of parallelism, relaxing all (especially global) synchronizations is of

prime necessity (Dongarra et al., 2011).

To understand the evolution of state-of-the-art turbulence simulations over the

latest several decades, we plot graphs of the peak computational power and the

highest Reynolds number in the simulations of incompressible homogeneous isotropic

turbulence. It is interesting to note that the increasing Reynolds number has been

realized by exploiting the parallelism and there has not been any change in the

numerical method used in these simulations (Rogallo, 1981; Ishihara et al., 2009;

Donzis & Sreenivasan, 2010).

Currently, several efforts are in place to relax synchronizations at both hardware

as well as software levels (Dongarra et al., 2011). In terms of communications be-

tween PEs, messages can now be sent and received using asynchronous non-blocking

algorithms. At a mathematical level substantial efforts have been devoted to asyn-

chronous algorithms in different contexts such as linear systems of equations or more

general fixed-point formulations Bertsekas & Tsitsiklis (1989); Frommer & Szyld

(2000). Asynchronous linear solvers have been used in the context of PDEs to solve

linear systems required in the computations but global synchronizations are typically

still required. Due to the importance of increasing parallelism, other approaches have

also been investigated such as explicit-implicit methods (e.g. Tavakoli & Davami,

3
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circles)that has been acheived in the simulations of incompressible homo-
geneous isotropic turbulence.

2006) though, again, some type of synchronization at some point during the calcu-

lations is typically unavoidable or so-called discrete event-driven simulations (e.g.

Karimabadi et al., 2005). Work exploiting asynchrony to solve directly problems

governed by time-dependent PDEs, however, has been more limited. For example,

some studies that focused on PDEs (Amitai et al., 1992, 1994) were limited to a

particular class of PDE (heat equation) and the order of accuracy of the resulting

schemes remained low. Further extensions to higher orders has also been limited

(e.g. (Amitai et al., 1996) for second order schemes).
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I.C. Objective of the present work

The objectives of the current work are to:

1. investigate the effect of asynchrony on the numerical properties of standard

finite difference schemes

2. devise a statistical framework to analyze numerical properties of schemes

3. present an asynchronous computing method based on finite difference schemes,

which relaxes synchronization processes at a mathematical level, to solve PDEs

4. provide a novel methodology to derive asynchrony-tolerant schemes of arbitrary

accuracy

5. design implementation algorithms and demonstrate the numerical and compu-

tational performance in practical applications

5



CHAPTER II

ASYNCHRONOUS COMPUTING∗

II.A. Concept

Our interest is in the general linear PDE:

∂u

∂t
=
∑

d=1,D

βd
∂du

∂xd
(2.1)

with D being the highest derivative in the PDE and the constants βd’s determine the

characteristic of the different physical processes represented by the different terms.

Particular cases of interest are the wave equation (D = 1 with β1 6= 0), the heat

equation (D = 2 with β1 = 0 and β2 6= 0), and the advection-diffusion equation

(D = 2 with β1 6= 0 and β2 6= 0).

For illustration purposes consider the unsteady one-dimensional heat (or diffu-

sion) equation

∂u

∂t
= α

∂2u

∂x2
, (2.2)

where u(x, t) is the temperature at a spatial location x ∈ [0, l] and time t and α is

the thermal diffusivity of the medium. With N uniformly distributed grid points,

Eq. (2.2) can be discretized using a second-order central difference in space and

first-order forward difference in time to obtain a numerical scheme with well-know

∗Parts of this chapter have been used from “Asynchronous finite-difference schemes for partial

differential equations”, Diego A. Donzis and Konduri Aditya, Volume 274, 1 October 2014, Pages

370-392, with permission from Elsevier under license number 3842150790850.
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characteristics (Tannehill et al., 1997):

un+1
i − un

i

∆t
= α

un
i+1 − 2un

i + un
i−1

∆x2
+O(∆t,∆x2) (2.3)

where un
i is the temperature at a point x = xi and time level n.

Here xi = i∆x with ∆x = l/N being the grid spacing and i = 1, . . . , N . We will

assume, unless explicitly mentioned, periodic boundary conditions. The time step

size is ∆t. The last term represents the order of the truncation error in time and

space for this approximation.

The scheme in Eq. (2.3) can be rewritten in the following form

un+1
i = un

i +
α∆t

∆x2

(

un
i+1 − 2un

i + un
i−1

)

(2.4)

which shows that to advance the solution from time level n to n + 1, one needs

the value of the function at neighboring points at time level n. This is trivially

implemented in a serial code where all the values un
i are available in the PE’s memory

(Fig. II.1(a)).

Consider, however, the case where the discretized domain is divided among a

specified number of PEs (say 2, as in Fig. II.1(b)). Computations at interior points

remain trivial as the required information is available locally to the PEs. Updating

the values at grid points close to PE boundaries, however, require values from other

PEs, that is, either un
i−1 or un

i+1 from the corresponding neighboring PEs. These

values are typically communicated over the network into buffer (or “ghost”) arrays.

Computations are halted until all PEs receive data in these so-called halo exchanges.

For later use, we define set I which contains all the physical grid points. The

buffer points in the grid belong to set B. The set of points I, where computations
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are carried out, is further divided into two subsets. II is the set of all interior grid

points; that is, if i ∈ II then computing derivatives at xi does not require data from

other PEs. If, on the other hand, computing the derivative at xi does make use of

data from other PEs, then i is a boundary point and we have i ∈ IB. Obviously

II ∩ IB = ∅. The number of elements in II and IB will be denoted by NI and NB

respectively.

i−1 i i+1

Interior point

Physical boundary point

PE boundary point

Buffer point

i+1

(a)

(b)

ii−1

PE 0

PE 1

Figure II.1. Discretized one-dimensional domain. (a) Domain in serial
codes. (b) Same domain decomposed into two PEs.

In applications, especially at extreme scales, the computing time may be much

smaller than the communication time. This may result in a significant waiting time

in large computing systems and have a profound effect in the scalability of the code.

Furthermore, even if computation time is comparable to or larger than communica-

tion time, a global synchronization such as that described above, could cause sub-

stantial idling time if additional tasks (even if small) are required by one or a subset

of PEs forces all PEs to wait for a single (the slowest) PE to finish its computations.

This may also be an issue with respect to system noise at very large scales (Hoefler

et al., 2010).
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These problems can be avoided by relaxing these synchronizations and allowing

all PEs to continue calculations regardless of the status of the messages that are to be

received by the corresponding PEs. In the context of Fig. II.1, PE 1 is not required

to wait for the most updated value un
i−1, but instead, can compute derivatives using

uñ
i−1 where ñ is the latest time level available to PE 1 at xi−1. This modifies the finite

difference equation Eq. (2.4) for points close to PEs boundaries. In particular, the

expressions for the leftmost and rightmost grid points in each PE are, respectively,

un+1
i = un

i +
α∆t

∆x2

(

un
i+1 − 2un

i + uñ
i−1

)

(2.5)

un+1
i = un

i +
α∆t

∆x2

(

uñ
i+1 − 2un

i + un
i−1

)

. (2.6)

In the most general case, ñ could be n, (n − 1), (n − 2), etc., which, can further

vary for different buffer points and time levels. The occurrence of a particular level

for ñ depends on how fast the communications take place, which in turn depends on

a number of factors like hardware, network topology, network traffic, message size,

etc. some of which may be unpredictable and turn the process into a random one.

Since ñ will be essentially a random variable†, we associate the occurrence of

each time level with a probability. While in principle ñ could take any value, it is

convenient for the analysis (and necessary in terms of accuracy as we show below) to

limit the number of past time levels the scheme could use. If the number of allowable

time levels is L, then ñ ∈ {n, n− 1, ...., n− L+ 1}. Let pk[i] be the probability of

having ñ = n − k̃i at a grid point i, where the random delay k̃i can take the values

†In order to distinguish random from deterministic variables, we will use a tilde ( ˜ ) over the

variable for the former.
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Parameter Symbol

Grid resolution N

Number of PEs P

Maximum number of time levels L

Probability of ñ = (n− k) at xi pk[i]

Number of points in stencil 2S + 1

Table II.1. Parameters used in the study of the properties of asynchronous
schemes. N : number of grid points; P : number of processing elements; L:
maximum level allowed for delays; pk[i]: probability of observing a delay of
k at grid point i; S: number of grid points on each side of a grid point used
to compute a derivative. For a symmetric finite difference the number of
grid points in the stencil is 2S + 1;

k̃i = 0, 1, ..., L − 1, then the probabilities at any grid point xi are obviously related

by
L−1
∑

k[i]=0

pk[i] = 1. (2.7)

The probability of having asynchronous computations at a buffer point i is thus

(1− p0[i]).

Such asynchronous numerical schemes will be a viable option only if they are

shown to be stable, consistent and accurate. Interestingly, the computed solution

will not only depend on grid resolution and timestep, but also on the parameters

that influence ñ. Table II.1 lists the parameters we will use to study the properties

of finite differencing schemes under asynchronous conditions.
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II.B. Stability

An obvious requirement for any scheme to be usable in practice is that it has to

be stable. For deterministic schemes well-known techniques such as von Neumann

analysis have been used extensively to prove stability (Hirsch, 1994). The main idea

is to take advantage of the linear nature of the governing PDE in which case errors

due to, for example, finite precision arithmetic, evolve according to the same PDE.

By using a Fourier series to represent this error, one can easily determine under what

conditions a particular mode (characterized by its wavenumber) will grow unbounded

in time in which case the scheme is said to be unstable. If all the modes are either

damped or conserve their amplitude in time, the scheme is said to be stable. The

important parameter here is the amplification factor G which is defined as the ratio

of the error between successive iterations. In the case of Eq. (2.2) discretized as

in Eq. (2.4), it is readily shown (Hirsch, 1994) that the condition for stability is

rα ≤ 1/2 where rα ≡ α∆t/∆x2.

When asynchrony is allowed across PE boundaries, however, there are two dif-

ficulties that prevent us from utilizing von Neumann stability analysis. First, von

Neumann analysis requires the discretized equation to be the same across the entire

domain. This is not the case when k̃i 6= 0 at some i ∈ IB. Second, the specific

value of k̃i (and therefore ñ) at those points is essentially a random variable which

complicates further the applicability of von Neumann analysis.

The so-called matrix formulation, on the other hand, provides the flexibility

needed to incorporate these complexities in a unified framework that allows us to

compare stability characteristics with the original synchronous scheme. This is the
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approach we will follow in this work.

II.B.1. Synchronous schemes

Consider again Eq. (2.6) written in the following form

un+1
i = rαu

n
i−1 + (1− 2rα)u

n
i + rαu

ñ
i+1. (2.8)

If the scheme is completely synchronous (i.e. ñ = n always) and we assume a periodic

domain, we can write

V
n+1 = A

n
V

n. (2.9)

where V n = [un
1 un

2 . . . un
i . . . un

N ]
T (superscript T stands for transpose) is a vector

of size N and the N ×N (cyclic tridiagonal) matrix A
n is given by

A
n =





































(1− 2rα) rα 0 . . rα

rα (1− 2rα) rα 0 . .

0 rα (1− 2rα) rα 0 .

. .
. . . . . . . . . .

0 . . rα (1− 2rα) rα

rα 0 . . rα (1− 2rα)





































(2.10)

Although the elements of this array are clearly independent of the value of n, the

superscript in A
n is maintained for later analysis.

It is well known from Hirsch (1994) that the stability of such a scheme is de-

termined by the spectral characteristics of the matrix A
n (in particular its largest

eigenvalue). However, as will be clear momentarily a more general treatment is

needed for our asynchronous schemes. We, thus proceed by noting that the evolu-
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tion in time can be represented by

V
n+1 = A

n
V

n = A
n
A

n−1
V

n−1 = · · · = A
n
A

n−1 . . .A0
V

0 (2.11)

where V 0 is the initial condition. In order for the scheme to be stable one requires a

bounded solution with no amplification of perturbations. Due to the linear nature of

the governing equation, the error evolves according to Eq. (2.11) as well and, thus,

the system is stable when

||V n+1||/||V 0|| ≤ 1 . (2.12)

where || · || is an appropriate norm. Using the property that ||AB|| ≤ ||A||||B|| for

any matrix norm and matrices A and B, it is easy to see that Eq. (2.12) is satisfied

if

||An||||An−1|| . . . ||A0|| ≤ 1 . (2.13)

Since in our case A
n is independent of n (i.e. An = A

n−1 = · · · = A
0), it follows

that the system is stable when the matrix in Eq. (2.10) satisfies ||An|| ≤ 1. To track

the largest perturbation, we use the ∞-norm which is defined, for any matrix B with

elements bij, as ||B||∞ = maxi
∑

j |bij|. In our present case the condition

||An||∞ ≤ 1 (2.14)

for stability is readily shown to reduce to

|rα|+ |1− 2rα|+ |rα| ≤ 1. (2.15)

Trivially, this is satisfied for 0 < rα ≤ 1/2, a well-known result Hirsch (1994) for

Eq. (2.8).
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II.B.2. Asynchronous schemes

Consider again Eq. (2.8) but now with ñ being a random variable. For simplicity

in the exposition, we will consider the case where ñ can only take the values n or

n− 1. If we define the vector W n as the concatenation of the values of un
i for all i’s

and the values of un−1
i also for all i’s we can write

W
n+1 = C̃

n
W

n (2.16)

where W
n is of size 2N and given by

W
n+1 =







V
n+1

V
n






(2.17)

or explicitly,

W
n+1 = [un+1

1 un+1
2 . . . un+1

i . . . un+1
N | un

1 un
2 . . . un

i . . . u
n
N ]

T (2.18)

and the 2N × 2N random matrix C̃
n
can be divided into four N ×N blocks as

C̃
n
=







Ã
n

0 Ã
n

1

I 0






(2.19)

with I and 0 being the identity and zero matrices respectively, both of size N ×N .

The matrices Ã
n

0 and Ã
n

1 contain a random component due to ñ which can be

introduced as follows. In previous sections, we have defined k̃i to be the (random)

delay seen by a PE which requires the value of the function at that point i ∈ IB.

This is related to ñ as ñ = n − k̃i. In our simplified case, k̃i can take the value of

0 or 1 and the probabilities associated with each of these outcomes is p0[i] and p1[i],
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respectively. Then we can write:

Ã
n

0 =





































(1− 2rα) (1− k̃2)rα 0 . . rα

rα (1− 2rα) (1− k̃3)rα 0 . .

0 rα (1− 2rα) (1− k̃4)rα 0 .

. .
. . . . . . . . . .

0 . . rα (1− 2rα) (1− k̃N)rα

(1− k̃1)rα 0 . . rα (1− 2rα)





































(2.20)

which is identical to Eq. (2.10) except for the factors (1− k̃i) in the elements above

the diagonal. The matrix Ã
n

1 is:

Ã
n

1 =





























0 k̃2rα 0 . . 0

0 0 k̃3rα 0 . .

0 0 0 k̃4rα 0 .

. .
. . . . . . . . . k̃Nrα

k̃1rα 0 . . 0 0





























. (2.21)

Note that the random elements appearing only above the diagonal is due to the use

of Eq. (2.8) which has delays only on the right boundary for simplicity.

From the definitions above it is easy to see the effect of k̃i on the scheme. For a

given i, if k̃i = 0 then the element (i− 1, i) in Ã
n

1 will be zero and the scheme will be

governed by Ã
n

0—that is a classical synchronous scheme with ñ = n. If on the other

hand k̃i = 1, then the element (i − 1, i) in Ã
n

0 will be zero, and the corresponding

element (i− 1, i) of Ã
n

1 will be rα—that is an asynchronous scheme with ñ = n− 1.

Thus, the random variable k̃i is responsible for switching between the two different

schemes that result from ñ = n and ñ = n− 1.
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We can now analyze the stability of the scheme described by Eq. (2.8). Just like

Eq. (2.11) for synchronous schemes, we can write the evolution of the solution as

W
n+1 = C̃

n
W

n = C̃
n
C̃

n−1
W

n−1 = · · · = C̃
n
C̃

n−1
. . . C̃

0
W

0. (2.22)

The stability criterion

||W n+1||/||W 0|| ≤ 1 (2.23)

is now satisfied if

|||C̃
n
C̃

n−1
. . . C̃

0
|| ≤ ||C̃

n
||||C̃

n−1
|| . . . ||C̃

0
|| ≤ 1 . (2.24)

Obviously, this inequality holds if the norm of each individual matrix on the left-

hand-size is less than unity.

Anticipating the use of the ∞-norm, we note that the (i − 1)-th row of C̃
n
is

given by

[0 . . . rα (1− 2rα) (1− k̃i)rα 0 . . . 0 . . . k̃irα 0 . . . ] (2.25)

Thus, the absolute row sum to be considered to compute the ∞-norm from this row

is

|rα|+ |(1− 2rα)|+ |(1− k̃i)rα|+ |k̃irα| (2.26)

Now it is readily seen that since k̃i is 0 or 1, then the contribution for the sum of the

last two terms is always |rα| independent of k̃i. Furthermore, since all the rows in

the upper half of C̃
n
have identical structure (with the same absolute row sum) and

the contribution from rows in the lower half is, trivially, |1|, we find that the scheme

will be stable when

|rα|+ |(1− 2rα)|+ |rα| ≤ 1, (2.27)
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which is identical to Eq. (2.15). Stability for the asynchronous scheme is then also

assured when 0 < rα ≤ 1/2.

We thus arrive at the conclusion that if the base synchronous scheme is stable

(in the norm sense described in section II.B.1), the asynchronous equivalent will also

be stable (in the same sense). The property that enables this is the invariance of the

norm of C̃
n
to random switching between numerical schemes.

While the results above were derived for the heat equation with a particular

space and time discretization, the main conclusion can be generalized to a much

broader class of problems and conditions. This is presented in Donzis & Aditya

(2014).

II.C. Consistency and accuracy

II.C.1. General considerations

We now turn to the issue of the consistency and accuracy. A finite difference

equation (FDE) at a point in the discretzed domain, is an approximation of a partial

differential equation (PDE) with associated truncation error (E), i.e., PDE = FDE

+ E. Typically the truncation error is conveniently studied using a Taylor expansion

of each term in the FDE about a grid point i and time level n.

Let us consider again Eq. (2.8) with ñ = n (synchronous) and rewrite it by

substituting the expansions un
i+1 = un

i + u′∆x+ u′′∆x2/2! + u′′′∆x3/3! + . . . , un
i−1 =

un
i −u′∆x+u′′∆x2/2!−u′′′∆x3/3!+. . . , and un+1

i = un
i +u̇∆t+ü∆t2/2!+

...
u∆t3/3!+. . . ,

where space derivatives (denoted by primes) and time derivatives (denoted by a dot

over the variable) are always evaluated at (i,n) and therefore the subscripts and
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superscripts are omitted for convenience in the notation. After rearrangement, it is

easy to show that, to leading order, the truncation error is

En
i = −

ü

2
∆t+

αu′′′′

12
∆x2 +O(∆t2,∆x4). (2.28)

When ∆x → 0 and ∆t → 0, we can see that the truncation error has a limiting

behavior En
i → 0, showing that the FDE is consistent with the corresponding PDE

at point i. The formal accuracy of a given scheme is defined as the power law

exponent of the leading order terms in the truncation error. From Eq. (2.28), it is

clear that the scheme Eq. (2.4) is first order in time and second order in space.

When asynchronous computations are allowed, ñ is a random variable which can

take values n, n− 1, n− 2, . . . . The truncation error at a particular point and time

step, then, becomes also a random variable. If, for example, ñ = n− 1 in Eq. (2.8),

(i.e. k̃i+1 = 1), the truncation error is given by

Ẽn
i |k̃i+1=1 = −

ü

2
∆t+

αu′′′′

12
∆x2 − αu̇

∆t

∆x2
+ αu̇′

∆t

∆x
−

αu̇′′

2
∆t

+O(∆x3,∆t2,∆xp∆tq) (2.29)

where we have extended the notation on the truncation error to indicate the location

and value of the delay (k̃i+1 = 1). As indicated in Eq. (2.29), higher order terms

involving the product of ∆x and ∆t are present due to data now being used at

multiple time levels. These are here indicated by the variables p and q which are, in

this case, bounded from below by -2 and 1, respectively.

The first two terms in Eq. (2.29) are identical to the leading order terms for the

synchronous scheme (Eq. (2.28)). The additional terms are the result of the appear-

ance of delayed values at i + 1. It is interesting to observe that these contributions
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could actually grow as fast as ∆x−2 ∼ N2 for fixed ∆t as one refines the grid. Thus,

consistency with the original governing equation requires careful considerations of

how the time step size and grid spacing are reduced for more accurate solutions. We

will expand on this issue momentarily.

For an arbitrary delay k at grid point i+ 1 (i.e. k̃i+1 = k) we can also find

Ẽn
i |k̃i+1=k = −

ü

2
∆t+

αu′′′′

12
∆x2 − αku̇

∆t

∆x2
+ αku̇′

∆t

∆x
−

αku̇′′

2
∆t

+O(∆x3,∆t2,∆xp∆tq), (2.30)

which obviously reduces to Eq. (2.28) for k = 0 (no delay). Since, as discussed in

section II.B, stability is governed by the parameter rα = α∆t/∆x2, it is convenient

to rewrite the above equation as

Ẽn
i |k̃i+1=k = −

rαü

2α
∆x2 +

αu′′′′

12
∆x2 − rαku̇+ rαku̇

′∆x−
rαku̇

′′

2
∆x2

+O(∆x3,∆t2,∆xp∆tq), (2.31)

which shows the drastic effect of utilizing standard schemes in an asynchronous

manner. Specifically, if rα is kept constant in refining the discretization in time

and space, then the third term on the right-hand-side represents a zeroth order

contribution. That is, errors will not decrease under grid refinement. The scheme is

thus not consistent with the original PDE.

This decrease in accuracy is not specific to the second-order space discretization

used as an example. As discussed in more detail below, for any order of a (finite-

difference) discretization of Eq. (2.1), asynchrony will result in truncation errors

containing terms proportional to k̃i∆x−d∆t where d goes from 1 to D in the most

general case. If, because of a stability constraint, the time step size is determined
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according to a condition ∆t ∼ ∆xp where p < D, then terms that grow with in-

creasing resolution (i.e. terms proportional to 1/∆xD−p) will appear. If p = D, then

zeroth-order terms will be present.

We note however, that the remarks above correspond to the truncation error at

a point with a given value of ñ. However, delays are only expected at PE boundaries

(i ∈ IB) and not at interior points. Furthermore, even for grid points in IB, delays

are random and will depend on the particular realization of the simulation. A more

general description of accuracy is thus needed to study these asynchronous schemes.

In particular, accuracy will depend, in principle, on the original scheme, the number

of PEs (number of boundaries where delays are expected), and the statistics of k̃i

at each PE boundary which in turn will typically depend on architectural details of

computing nodes, processors, network, etc. as well as the specific resource usage (e.g.

by other users) at the time of the simulations. We thus now proceed to introduce

some definitions in which all these elements can be taken into account.

II.C.2. Statistical description of truncation error

Consider a one-dimensional periodic domain with N grid points which is decom-

posed into P PEs leading also to P boundaries between processors. Our objective

here is to quantify the error in order to obtain the order of accuracy. In doing so, we

recognize that there are two elements that need to be considered in defining these

concepts. First, the truncation error structure is not homogeneous in space. As dis-

cussed above for the heat equation, zeroth-order terms may appear at PE boundary

points but the scheme is still second-order accurate in interior points. Second, even
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at boundary points the appearance of these terms is random. In particular, these

additional terms due to asynchrony will appear with a probability (1−p0[i+1]), where

p0[i+1] is the probability of having no delay at point i + 1, that is k̃i+1 = 0. Thus, a

probabilistic definition of the error seems appropriate in order to define convergence

properties.

We first define two types of averages for a variable f : a space average and

an ensemble average. In general, the space average could be taken over the entire

domain or a subset of grid points (e.g. PE boundary points). If the average is over

the entire domain the space average is 〈f〉 =
∑

i=1,N fi/N . If, instead, the average is

taken over PE boundary points or interior points, the average is 〈f〉
B
=
∑

i∈IB
fi/NB

or 〈f〉
I
=
∑

i∈II
fi/NI , respectively (the subscript in the angular brackets denotes

the subset of grid points over which the average is taken). Ensemble averages, which

take into account the stochastic nature of the delays, will be denoted by an overline

f .

Consider the (space and ensemble) average error over the entire domain at time

step n:

〈E〉 =
1

N

∑

i=1,N

En
i . (2.32)

Since the truncation error for i ∈ IB is random and for i ∈ II is not, it is convenient

to split the sum into interior and boundary points

〈E〉 =
1

N

[

∑

i∈II

En
i +

∑

i∈IB

Ẽn
i |k̃i+1

]

. (2.33)

where ensemble averages are only needed for the asynchronous regions at PE bound-

aries (second term on the right-hand-side). We now proceed to estimate the two

different terms inside the brackets.

21



For interior points, there is no random component and the error at each i is

simply given by Eq. (2.28). Thus, to leading order we can write

∑

i∈II

En
i ≈

∑

i∈II

(

−
ü

2
∆t+

αu′′′′

12
∆x2

)

, (2.34)

or in terms of rα

∑

i∈II

En
i ≈

∑

i∈II

(

−
ürα
2α

+
αu′′′′

12

)

∆x2

≈ ∆x2
∑

i∈II

Ks

≈ NI〈Ks〉I∆x2. (2.35)

For the last step we have used the fact that for the space average ofKs ≡ −(ürα/2α)+

(αu′′′′/12), which is defined here for convenience (subscript s stands for synchronous),

the sum contains NI terms corresponding to the number of interior grid points. For

a central-difference scheme with a stencil size 2S + 1, the number of grid points in

the domain where delays can be observed (if delays are expected only on one side

of the stencil) is SP where P is, as before, the number of PEs which, for periodic

boundary conditions, is equal to the number of PE boundaries. Thus the number of

grid points in II is NI = (N−SP ) which appears multiplying 〈K〉
I
in Eq. (2.35). The

assumption of delays only on one side does not affect the generality of the results and

is made only for clarity in the exposition. If delays are present on both sides, some

expressions will have different prefactors but all conclusions regarding the accuracy

of the scheme will still be valid.

For the second sum over IB in Eq. (2.33), the truncation error is given by

Eq. (2.30). Clearly when k̃i+1 = 0, which happens with probability p0[i+1], we recover

a synchronous scheme and the second sum is similar to Eq. (2.35) with the difference
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that the prefactor is now the number of grid points at boundaries, which is NB = SP .

If, on the other hand k̃i+1 > 0, then the other terms in the truncation error appear.

The ensemble average, to leading order, can be then estimated as

Ẽn
i |k̃i+1

≈
L−1
∑

k=0

pk[i+1]Ẽ
n
i |k̃i+1=k

≈
L−1
∑

k=0

pk[i+1]

(

−
ü

2
∆t+

αu′′′′

12
∆x2 − αku̇

∆t

∆x2
+ αku̇′

∆t

∆x
−

αku̇′′

2
∆t

)

≈

(

−
ü

2
∆t+

αu′′′′

12
∆x2

)

+
L−1
∑

k=0

pk[i+1]

(

−αku̇
∆t

∆x2
+ αku̇′

∆t

∆x
−

αku̇′′

2
∆t

)

≈

(

−
ü

2
∆t+

αu′′′′

12
∆x2

)

+

(

−αu̇
∆t

∆x2
+ αu̇′

∆t

∆x
−

αu̇′′

2
∆t

) L−1
∑

k=0

pk[i+1]k.(2.36)

where we have used the fact that
∑

k=0,L pk[i+1] = 1. Finally, we can write

Ẽn
i |k̃i+1

≈

(

−
ü

2
∆t+

αu′′′′

12
∆x2

)

+

(

−αu̇
∆t

∆x2
+ αu̇′

∆t

∆x
−

αku̇′′

2
∆t

)

k̃i+1 (2.37)

where k̃i+1 is the ensemble average of the delay given by k̃i+1 =
∑

k=0,L pk[i+1]k.

The first and second parenthesis contain the synchronous and asynchronous terms,

respectively. Clearly, for synchronous conditions we have k̃i+1 = 0 always, and thus

k̃i+1 = 0 making the last term in Eq. (2.37) equal to zero. It is also interesting to

note that the average error increases linearly with the mean delay.

In terms of rα we can rewrite Eq. (2.37) as

Ẽn
i |k̃i+1

≈

(

−
rαü

2α
∆x2 +

αu′′′′

12
∆x2

)

+

(

−rαu̇+ rαu̇
′∆x−

rαu̇
′′

2
∆x2

)

k̃i+1 (2.38)

If we now take the sum over IB following Eq. (2.35), we obtain

∑

i∈IB

Ẽn
i |k̃i+1

≈ NB〈Ks〉B∆x2 +

(

− rαNB〈u̇〉B + rαNB〈u̇
′〉

B
∆x

−NB
〈u̇′′〉

B

2
∆x2

)

k̃ (2.39)
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For simplicity, we have assumed that the statistics of the delays are homogeneous in

space such that k̃i+1 is independent of i (i.e. the k̃i+1 are i.i.d.) and thus the subscript

i+ 1 has been dropped. If the statistical behavior of k̃i+1 does depend on i, one can

still take this into account in the above formulation by using the space average 〈k̃〉
B

instead of simply k̃.

Finally we substitute Eq. (2.39) and Eq. (2.35) into Eq. (2.33), and using the

fact that NI〈f〉I +NB〈f〉B = N〈f〉 for any quantity f , we obtain

〈E〉 ≈ 〈Ks〉∆x2 +
NB

N
k̃

(

−rα〈u̇〉B + rα〈u̇
′〉

B
∆x− rα

〈u̇′′〉
B

2
∆x2

)

. (2.40)

A number of interesting observations can be made from this result. First, for zero

delays we recover second order convergence from the first term of Eq. (2.40). Second,

we note that even a very small amount of asynchrony (which results in k̃ > 0)

decreases the order of convergence significantly. In particular as ∆x decreases to

zero, the leading order term is the first one in parenthesis. Asymptotically, we then

have

〈E〉 ≈ −
NB

N
k̃rα〈u̇〉B

≈ −S
P

N
k̃rα〈u̇〉B , (2.41)

where we have used NB = SP . For all other parameters constant, we can now write

(using ∆x = l/N)

〈E〉 ∼
P

N
∼ P∆x, (2.42)

showing that the original second-order scheme drops to first order (for the average

error 〈E〉) when asynchrony is present for a constant number of PEs, P . However,

it is interesting to note the situation in which the number of PEs grow with the
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size of the problem N , which would correspond to so-called weak scaling when the

parallel performance of a code is investigated. This is indeed, a common situation in

applications where an increase in computational power available is typically used to

increase computational work through finer grids to achieve more realistic conditions

or include more physical content in the simulations. In such a case, P/N is constant

and Eq. (2.42) shows that the error does not depend on ∆x (that is a zeroth-order

term) rendering the scheme inconsistent with the original equations. This highlights

an interesting aspect of asynchronous schemes (and perhaps a number of numerical

algorithms designed to run at so-called exascale (Dongarra et al., 2011)), namely,

the tight link between the numerical scheme and the computational system on which

they are run. This is explored in more detail later on.

The decrease in formal accuracy we just explored, while asympotically true,

might not be an issue in some practical simulations. From Eq. (2.40), it can be seen

that if simulations are performed with a large number of grid points per PE (small

NB/N) and on a fast network (such that k̃ is very small), then for realistic grids, the

asynchronous contribution to the error (the entire second term on the right-hand-

side) may be small and errors follow the synchronous second-order accuracy. The

exact transition from the formal accuracy of the base scheme to zeroth or first order

in asynchronous schemes cannot, in principle, be determined a priori. In Ch. V we

show actual numerical experiments where these issues are explored.
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II.C.3. Generalizations

The results in the previous section were derived for a particular discretization

scheme of the heat equation. In this section we show how the conclusions found in

that case indeed extend to a much wider set of situations.

First, we note that while we have used the average error 〈E〉, the asymptotic

result Eq. (2.41) also holds if one uses an L1 norm to characterize the error (i.e. the

space average of the absolute value of the error). This is clear if one considers that

one of the terms in Eq. (2.38) (the zeroth-order term) is much larger than all the

others for large N . After space averaging, we obtain

〈|E|〉 ≈ (NB/N)|k̃|rα〈|u̇|〉B ∼ P/N ∼ P∆x. (2.43)

This measure is typically more sensible in practice than the simple mean value since

this eliminates the possibility of error cancellations during the averaging procedure.

The decrease of accuracy when common finite difference schemes are used asyn-

chronously, is in fact very general. For example, if the second derivative on the

right-hand-side of the heat equation is discretized using a longer stencil (higher or-

der of accuracy), the truncation error pertaining to asynchronous terms retain the

same form of the second parenthesis in Eq. (2.37), the only difference being the nu-

merical coefficients for the different terms. For example, for a fourth-order central

discretization of the second derivative ∂2u/∂x2 = (−uñ
i+2 +16uñ

i+1 − 30un
i +16un

i−1 −

un
i−2)/12∆x2 +O(∆x4), where both values at i+ 1 and i+ 2 are delayed, we obtain
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an analogous to Eq. (2.37)

Ẽn
i |k̃i+1=k̃i+2=k ≈

(

−
ü

2
∆t−

αu′′′′

90
∆x4

)

+

(

−
5

4
αku̇

∆t

∆x2
−

7

6
αku̇′

∆t

∆x
−

αku̇′′

2
∆t

)

k̃i+1 (2.44)

with the first parenthesis being identical to the truncation error for the synchronous

scheme, that is O(∆t,∆x4). Again, asymptotically the first term in the second

parenthesis will dominate (if one uses a constant rα for stability) leading to Eq. (2.41)

with a prefactor 5/4.

The generality of this results can be easily seen if one of the terms in the spatial

derivative of a consistent scheme is delayed. In that case, the Taylor expansion for

that particular term will contain the standard spatial error related to the derivative

and terms in ∆t due to the necessary expansion in time. More formally, consider an

approximation to the d-th derivative at location i as

∂du

∂xd
≈

S
∑

j=−S

bju
n
i+j

∆xd
. (2.45)

Assume that the value of the function experiences a delay of k at i + 1, that is

k̃i+1 = k. Then,

∂du

∂xd
≈

· · ·+ b1 un−k
i+1 + . . .

∆xd
, (2.46)

where b1 is the appropriate coefficient at i + 1 for the given discretization. The

Taylor expansion of the only term explicitly written in the numerator is un−k
i+1 =

un
i + [u′∆x+ u′′∆x2/2! + u′′′∆x3/3! + . . . ] + [−ku̇∆t+ ük2∆t2/2!− k3...u/3! + . . . ] +

[−ku̇′∆x∆t− ku̇′′∆x2∆t/2 + . . . ]. The first bracket is identical to the expansion for

synchronous schemes. The last bracket contains some cross terms involving both ∆t
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and ∆x. It is the second bracket, however, that contains the more problematic con-

tributions. It comprises terms in powers of ∆t starting with ku̇∆t. When introduced

into Eq. (2.46), the result is the term

Cdku̇
∆t

∆xd
, (2.47)

where Cd is a combination of numerical prefactors determined by the original PDE,

and the discretization scheme used. In general, the leading order terms in the lo-

cal truncation error (i.e. at a particular point) of the discretized general equation

Eq. (2.1) due to asynchrony will be

D
∑

d=1

Cdβdku̇
∆t

∆xd
. (2.48)

Note that this local truncation error will appear only for the subset of grid points

i ∈ IB.

When ∆t is chosen as a power law in ∆x (due to, e.g., stability constraints)

clearly the highest derivative in the original PDE will be the leading order term in

the truncation error. In the case of the advection-diffusion equation, for example,

the original PDE contains first and second order derivatives, and then the two terms

∆t/∆x and ∆t/∆x2 will be present (actually the former will be present even if

the original equation contained only a second derivative because, as shown under

Eq. (2.46), higher-order terms also include ∆x∆t which when divided by ∆x2 yields

a term ∆t/∆x).

A few important conclusions can be made about the truncation error induced

by asynchrony. First, if the space resolution is fixed (i.e. fixed ∆x), the local trunca-

tion error will be first order in time regardless of the order of accuracy of the time
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integration. Second, if a stability criterion requires a condition on βD∆t/∆xD, then

the local truncation error will always have zeroth-order terms which will not vanish

as resolution increases. As clear from our analysis leading to Eq. (2.43), however, if

P is constant, the space average over IB leads to an additional factor ∆x. Thus, the

average truncation error will be first order.

The stability criterion based on βD∆t/∆xD can be analytically shown for simple

model equations: for the wave equation one needs rc = c∆t/∆x ≤ 1 and for the heat

equation rα = α∆t/∆x2 ≤ 1/2. For more complex equations such as the advection-

difussion equation which contain both convective as well as diffusive terms, if the time

step is selected according to the diffusive condition ∆t = rα∆x2/α then the local

truncation error will contain terms of order rα∆x and rα (i.e. first and zeroth order,

respectively). If on the other hand the time step is chosen according to a convective

condition ∆t = rc∆x/c then the truncation error will contain terms of the form rc

and rc/∆x. The magnitude of the last term actually increases under grid refinement;

when averaged in space, though, the truncation error due to asynchrony becomes

zeroth order. However, the stability for this equation requires ∆t to be controlled by

rα asymptotically and thus the average truncation error is asymptotically first order.

Due to the number of possible combinations of paramaters, we include a sum-

mary of the results in this section in Table II.2 for the general equation Eq. (2.1) with

an arbitrary finite difference discretization in space and a two-level discretization in

time. The second and third columns indicate the leading order term in the local (i.e.

at a grid point) and the averge truncation error, respectively for the conditions listed

in the first column. The first two rows correspond to the case of a fixed number of
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PEs; the third and fourth correspond to the case of P/N constant (i.e. weak scal-

ing); the last two rows correspond to a more general setting with ∆t ∼ ∆xq (to be

discussed below).

Parameters held constant local En
i 〈E〉 or 〈|E|〉

P , rD 1 ∆x

P , ∆t 1/∆xD 1/∆xD−1

P/N , rD 1 1

P/N , ∆t 1/∆xD 1/∆xD

P , ∆t/∆xq ∆xq−D ∆xq−D+1

P/N , ∆t/∆xq ∆xq−D ∆xq−D

Table II.2. Summary of leading terms in the local (for i ∈ IB), and average
truncation error due to asynchronicity for different scenarios. First col-
umn indicates the conditions under which grid refinement (i.e. ∆x → 0)
is conducted. The variable rD = βD∆t/∆xD corresponds to the result-
ing parameter from the highest derivative in the problem (for the heat,
wave and advection-diffusion equations it will correspond to rc, rα and rα
respectively.)

We conclude this section by noting that an important finding of our analysis,

is that the numerical characteristics of schemes used in an asynchronous fashion to

exploit extreme levels of parallelism, are intrinsically linked to architectural details

of the computational system as well as the manner in which the problem is scaled

up. For example, for fixed number of PEs, we have shown the scheme is first-order

accurate on the average error. However, if both problem size as well as PE count

grow in proportion to each other, the scheme is inconsistent. This, can clearly be
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alleviated if ∆t is chosen in a different way than what a stability condition would

suggest. For example, for the heat equation with a first-order forward difference

in time and a second-order central difference in space, choosing ∆t ∝ ∆x3, would

ensure a second-order formal order of convergence for the average error. If a general

relation ∆t ∼ ∆xq is used, then the resulting schemes will have the convergence

properties described in the last two rows of Table II.2. Obviously, for realistic large-

scale problems, a value of q beyond that required for stability reasons, may likely lead

to prohibitively small time steps which may render the entire simulation unfeasible.

II.D. Summary

In this chapter, we have presented the concept of asynchronous computing,

based on finite differences, to solve PDEs on parallel machines. We have investigated

numerical properties of standard schemes using a novel statistical framework. We

found that, though, schemes continue to remain stable in the presence of asynchrony,

their accuracy is significantly affected. We have characterized the average error in

terms of physical, numerical and computational parameters. Theoretical predictions

show that the average error is dominated by term due to asynchrony, which is first

and zeroth order accurate under strong and weak scaling of simulations, respectively.
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CHAPTER III

ASYNCHRONY-TOLERANT SCHEMES

III.A. Concept

Let u(x, t) be a function of spatial coordinate x and time t, which is governed

by a time-dependent PDE in a one-dimensional domain. Fig. III.1 illustrates the

discretized domain which is decomposed into P number of PEs. Let i and n represent

an arbitrary grid point in the domain and time level such that u(xi, tn) = un
i . In

this chapter, we assume that the grid points are uniformly distributed in the domain

with a spacing ∆x. A finite-difference to approximate a spatial derivative at point i

and time level n can be expressed, in the most general case, as

∂du

∂xd

∣

∣

∣

∣

n

i

=

J2
∑

j=−J1

cju
n
i+j +O(∆xa), (3.1)

where d is the order of the derivative. J1 and J2 are the number of points to the left

and right of point i in the stencil. cj is the appropriate coefficient or weight of un
i+j

such that the scheme is accurate to an order a in space. The term O(∆xa) represents

the truncation error of the scheme.

i+1ii−1

PE 0

PE 1Communication
No synchronization

Figure III.1. Discretized one-dimensional domain in decomposed into two
PEs (P = 2).

Usually, the numerical solution of a transient PDE is obtained by advancing an
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initial condition according to an algebraic finite-difference equation in small steps

of time ∆t. During each time advancement, say, marching from a time level n to

n+1, spatial derivatives are computed at each grid point using Eq. (3.1). In general,

these computations are trivial to implement in a serial code, as the value of the

function at all the grid points will be locally available in the memory of the PE.

However, if the domain is decomposed in multiple PEs, computations at points near

PE boundaries may need values of the function at stencil points that are computed

in the neighboring PEs. Usually, such values are communicated into buffer or ghost

points, as shown in Fig. III.1. Note that the number of values communicated across

the left and right PE boundaries is equal to J1 and J2, respectively. Let I represent

the set of physical grid points in the domain and B represent the set of buffer points.

We divide the set I further into two more. The set of grid points near PE boundaries,

denoted by IB, whose computations need data from the neighboring PEs. And, the

complementary set of interior points II , whose computations are independent of

communication between PEs. In commonly used parallel algorithms, computations

at a point i ∈ IB cannot be advanced until the communication between PEs is

complete. This is typically ensured by enforcing communication synchronization

after messages are issued from one PE to another. As mentioned earlier, with a large

number of PEs such synchronizations become expensive and result in poor scalability

of codes at extreme scales. We refer to this as synchronous computing.

In the case of asynchronous computing, communication between PEs is initiated

at each time step, however, the data synchronization is not enforced. This means,

we cannot ensure that the time level of the function at buffer points is n. It can
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be n, n − 1, n − 2, ... depending on the status of messages from successive time

advancements. Due to the random nature of the arrival of messages at different PEs

Hoefler et al. (2008), the availability of a particular time level at a buffer point is also

random. Let ñ = n− k̃j be the latest available time level at a buffer point j, where

k̃j is the corresponding random delay at that point∗. Note that ñ can be different

at different locations and time steps. If we restrict the maximum allowable delay

levels to L, then ñ ∈ {n, n− 1, ..., n− L+ 1} and k̃j ∈ {0, 1, ..., L− 1}. The scheme

in Eq. (3.1), when asynchrony is allowed, can be rewritten as

∂du

∂xd

∣

∣

∣

∣

n

i

≈
J2
∑

j=−J1

cju
n−l
i+j , (3.2)

where l = 0 for i + j ∈ I and l = k̃i+j for i + j ∈ B. Unlike the scheme in

Eq. (2.45) which contains a single time level, this scheme uses multiple time levels

when some of the points in the stencil belong to the set B. It has been shown in

Donzis & Aditya (2014) that the accuracy of commonly used finite-differences in such

an asynchronous fashion significantly affects the accuracy. In particular, accuracy

drops to first order regardless of the original finite difference used. Thus, we proceed

to derive asynchrony-tolerant schemes that maintain accuracy even when there is a

communication delay.

∗In order to distinguish random from deterministic variables, we will use a tilde ( ˜ ) over the

variable for the former.
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III.B. Asynchrony-tolerant schemes

III.B.1. General methodology

Taylor series and the method of undetermined coefficients provide a systematic

procedure to derive finite-difference schemes. As we show momentarily, this approach

can also be used to construct asynchrony-tolerant schemes to approximate spatial

derivatives. Let un−l
i+j represent the function at a generic point i+j in the stencil with

an arbitrary delay of l levels to compute a spatial derivative at a point i and time

level n. Using the L possible time delays, we can express an asynchrony-tolerant

scheme as

∂du

∂xd

∣

∣

∣

∣

n

i

≈
J2
∑

j=−J1

L−1
∑

l=0

c̃lju
n−l
i+j , (3.3)

where c̃lj, for the range of j and l, are the appropriate coefficients that have to be

determined. Note that this scheme represents the most general case with the function

at all possible time levels at each point in the stencil. However, depending on the

delay at each grid point and time step, which is given by k̃i+j , only one or few time

levels may be used in approximating the derivative.

The random nature of k̃i+j is, now, embedded into c̃lj. The merits of using older

time levels not just at buffer points, but also at interior points will be shown later.

The coefficients in the scheme expressed in Eq. (3.3) can be obtained by imposing

constraints on different terms of the Taylor series, upon expansion of the function at

each combination of point and time level in the stencil. Let us consider the Taylor

series of un−l
i+j about the point i and time level n. The series is an expansion in two
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variables, namely ∆x and ∆t, which is given by

un−l
i+j =

∞
∑

η=0

∞
∑

ζ=0

u(η,ζ) (j∆x)η(−l∆t)ζ

η!ζ!
, (3.4)

where u(η,ζ) denotes the ηth and ζth partial derivative in space and time of u evalu-

ated at i and n. When l = 0, the function corresponds to a synchronous value of u.

This makes the terms in the series a function of ∆x only:

un
i+j =

∞
∑

η=0

u(η,0) (j∆x)η

η!
(3.5)

To obtain the constraints that will assure a given order of accuracy, we substitute

the Taylor series of u in the right hand side of Eq. (3.3).

J2
∑

j=−J1

L−1
∑

l=0

c̃lju
n−l
i+j =

J2
∑

j=−J1

L−1
∑

l=0

c̃lj

∞
∑

η=0

∞
∑

ζ=0

u(η,ζ) (j∆x)η(−l∆t)ζ

η!ζ!

= u(0,0)

J2
∑

j=−J1

L−1
∑

l=0

c̃lj + u(1,0)∆x

J2
∑

j=−J1

L−1
∑

l=0

jc̃lj −

u(0,1)∆t

J2
∑

j=−J1

L−1
∑

l=0

lc̃lj − u(1,1)∆x∆t

J2
∑

j=−J1

L−1
∑

l=0

c̃lj +

u(2,0)

2
∆x2

J2
∑

j=−J1

L−1
∑

l=0

j2c̃lj +
u(0,2)

2
∆t2

J2
∑

j=−J1

L−1
∑

l=0

l2c̃lj + . . .(3.6)

The linear combination of the function values, in the above equation, represents a

scheme when (i) the coefficient of the d-th derivative of u in space is unity, and (ii)

high order terms are eliminated according to the desired accuracy of the scheme.

Let a be the desired order of accuracy in space. This means that the leading

order term in the truncation error should vary with the grid spacing as ∆xa. In

the Taylor series of the function for synchronous schemes, as in Eq. (3.5), the higher

order terms can be readily identified as the ones with the power of ∆x less than d+a.
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However, when asynchrony is present this is not obvious. The terms in the series can

now be a function of either or both ∆x and ∆t, which are usually not independent.

In order to identify higher order terms, let us assume the relation ∆t ∼ ∆xr. Such a

relation is often obtained from analysis of the scheme’s numerical stability or other

constraints posed by the physics of the problem. Using this relation, we can arrive

at the condition to identify higher order terms that need to be eliminated to obtain

a scheme of order a. This expression is: η+ rζ < d+a. Using Eq. (3.6), we can then

summarize the constraints as

J2
∑

j=−J1

L−1
∑

l=0

c̃lj
(j∆x)η(−l∆t)ζ

η!ζ!
=



















1 for (η, ζ) = (d, 0)

0 for η + rζ < d+ a; (η, ζ) 6= (d, 0).

(3.7)

Clearly, the first condition in the above equation makes the coefficient of the d-th

derivative term on the right hand side of Eq. (3.6) unity. The second condition

will set to zero all the necessary higher order terms to obtain an overall accuracy

a. For a given stencil, these conditions give rise to a system of linear equations.

The number of equations in the system is one more than the number of higher order

terms that have to be eliminated from Eq. (3.6). Let Ac̃ = b represent this system,

where A is the coefficient matrix whose elements are a function of j and l, c̃ is the

vector of variables that contains coefficients in the scheme and b is the vector with

zero elements except for the row corresponding to the order of the derivative to be

approximated. The solution to this system determines the coefficients of the scheme.

Before getting into the discussion on the choice of stencil, we make a few obser-

vations regarding the linear system when asynchrony is present. To aid the discussion

we express the terms in the Taylor series of the function at the generic stencil point,
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un−l
i+j , in a matrix format as shown in Fig. III.2. This provides a simple format to

visualize different terms in the series and help us easily identify the terms on which

the conditions in Eq. (3.7) have to be imposed. In this graphical representation, we

u
u(0,1)

(l∆t)

u(0,2)

(l∆t)2
u(0,3)

(l∆t)3
. . .
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Figure III.2. Terms in the Taylor series of un−l
i+j illustrated in a matrix

format. Constant in each term are omitted for clarity. Lines A, B and C
represent η + rζ = d+ a for different sets of parameters.

omit constants in each term for the sake of clarity.

In words, Eq. (3.7) implies constraints on the term containing the derivative of

order (d, 0) and on all the terms that satisfy the inequality η + rζ < d + a, that is,

all terms above the η + rζ = d + a line in Fig. III.2. With this representation, we

can easily separate terms that need to be eliminated from those that do not. To

illustrate this, let us choose d = 1, a = 2 and r = 1, which corresponds to a second-

order approximation of the first derivative, using a convective-type CFL condition
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such that ∆t ∼ ∆x. For these parameters, conditions are imposed on the terms with

(η, ζ) = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2))}, which are the terms above the line

A in the figure. If asynchrony is absent, that is, l = 0, the only terms that are non-

zero in the table belong to the first column. This show that, for a given accuracy,

the number of terms on which conditions are imposed is larger when asynchrony is

present, which thus results in a larger linear system.

The increase in the number of equations also depends on r, which relates ∆t

and ∆x. For example, the situation for r = 2 is also shown in Fig. III.2 with line B.

The number of terms above the line B is less than A, which implies that a higher r

will reduce the number of higher order terms due to asynchrony for a given accuracy.

The other aspect is the increase in stencil size with increase in accuracy. In

commonly used synchronous schemes, a successive increase in the order of accuracy

will impose condition on one more term in the Taylor series, corresponding to line C

in Fig. III.2 with l = 0. This adds an additional equation to the linear system that

can be solved by adding one more grid point to the stencil. However, in deriving

asynchrony-tolerant schemes more than one additional equation may be added to

the system, as exemplified above. Thus, we expect the stencil of asynchrony-tolerant

schemes to grow larger than commonly used synchronous schemes when the accuracy

is increased.

III.B.2. Choice of stencil

In principle one can choose a stencil that consists of different points and time

levels to approximate spatial derivatives. However, the stencil of commonly used
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synchronous schemes are constructed exclusively with spatial grid points. This is

because of two reasons.First, the function at the synchronous time level is available

for spatial derivative evaluation at all points in the domain. Second, as argued in

Donzis & Aditya (2014), and elaborated in section III.B.1 above, this choice avoids

the additional terms that will appear in Taylor series when the stencil consists of

delayed time levels. When asynchrony is present, on the other hand, as is clear

from Eq. (3.3), the function can belong to multiple time levels. Thus, we can take

advantage of using the function at delayed time levels in deriving asynchrony-tolerant

schemes. To understand this let us recall the tabular representation of the Taylor

series of un−l
i+j , as shown in Fig. III.3. We can classify terms into four groups, as
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(l∆t)
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Figure III.3. Terms in the Taylor series of un−l
i+j illustrated in a matrix

format. Constants in each term are omitted for clarity. Different colors
represent terms from different groups, as explained in section III.B.2.

represented by the four different colors in the figure. Terms in blue are a function

of ∆x alone. These terms will appear in the Taylor series of the function when

j 6= 0. Similarly, terms that are a function of ∆t only are shown in green and they
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appear when l 6= 0. Terms in red are a function of both ∆x and ∆t, and these

appear when j 6= 0 and l 6= 0. The term u in black is a function of neither ∆x nor

∆t and is present in the Taylor series of the function at any point and time level.

In order to eliminate specific terms in the truncation error, it is apparent that we

cannot arbitrarily choose the points and time levels in a stencil. They have to be

selected according to the number of terms in each of these groups. For example, if

a linear system consists of three equations that correspond to condition on terms

that belong to red group, then the scheme would need the function evaluated at a

minimum of three combinations of j and l such that j 6= 0 and l 6= 0. If not, the

linear system may not have a solution or may have a solution which correspond to

stencils completely biased towards the synchronous side of the stencil, like forward

and backward differences.

The choice of stencil has consequences also in terms of the performance of simu-

lation codes on parallel machines. Expanding the stencil in space will lead to larger

message sizes to be sent over the network, which may be too expensive at extreme

scales. Using multiple levels in time will keep the messages relatively smaller, but

will increase the memory requirements at each PE. This choice, thus, would require

information on the specific computing system to be used for the simulation.

The rectangular box in Fig. III.4 illustrates the layout of the stencil used in

expressing the general scheme in Eq. (3.3). However, as mentioned earlier, not all

the time levels at all points are requir ed to approximate the derivative. Instead, one

can limit the number of time levels at each grid point in such a w ay to introduce the

exact number of coefficients that would make the linear system solvable. Eq. (3.3),
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Figure III.4. Discretized one-dimensional domain in decomposed into two
PEs.

then, becomes:

∂du

∂xd

∣

∣

∣

∣

n

i

≈
J2
∑

j=−J1

l̃2(j)
∑

l=l̃1(j)

c̃lju
n−l
i+j , (3.8)

where l̃1(j) and l̃2(j) are the lower and upper limits on the time levels used at the

point i+ j. These limits are computed according the latest time level available and

the number of time levels chosen at that point in the stencil. As an example, in

Fig. III.4 we identify a stencil to solve a system with four equations. At the two

interior points the latest available time level is n, which has a zero delay. Thus, the

limits are l̃1(j) = l̃2(j) = 0, for j ∈ {−1, 0}. As specified before, the latest available

time level at the buffer point is given by ñ = n− k̃i+1, and we use two successive time

levels at this point. The limits on the time level at this point are then l̃1(1) = k̃i+1

and l̃2(1) = k̃i+1 + 1.

A choice of stencil will lead to a scheme only when there exists a solution to the

resulting linear system Ac̃ = b. Since b 6= 0 due to the first condition in Eq. (3.7),

the system is non-homogeneous and has a unique solution only when the matrix A
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is non-singular or has a full rank. If NA is the size of the linear system, then the

matrix has full rank when rank(A) = NA. We obtain the scheme by solving the

system and substituting the coefficients into Eq. (3.8). On the other hand, when

rank(A) < NA, the matrix is singular and the linear system possesses either no

solution or infinite solutions. We can distinguish these two cases by computing the

rank of the augmented matrix A|b. If rank(A) 6= rank(A|b), then the system is

inconsistent and the choice of stencil does not result in a scheme. In the case where

rank(A) = rank(A|b), the linear system is consistent, but has infinite solutions.

The linear system, then, contains two or more equations that are linearly dependent.

This means that for the choice of stencil, conditions on at least two of the terms are

mathematically equivalent or condition on at least one of the terms can be obtained

from linear transformation of others. In such a situation, we can get a scheme with

greater accuracy with the same stencil. In some cases, it is possible to construct a

smaller linear system with linearly independent equations, which can be solved by

reducing the stencil size accordingly. The greater the number of linearly dependent

equations, the smaller will be the linear system with linearly independent equations.

This suggests that a judicious selection of grid points and time levels can be used

to increase the number of linearly dependent equations in the resulting system, and

thus reduce the stencil size which in turn reduces computations as well as the size

of communication messages. This will be of interest in deriving asynchrony-tolerant

schemes, which demand larger stencil due the presence of terms due to asynchrony.

Let us recall the second condition from Eq. (3.7), imposed to eliminate the terms

due to asynchrony in deriving a scheme. After cancelling out the term ∆xη∆tζ/η!ζ!,
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which is constant across the equation corresponding for each (η, ζ), we get

J2
∑

j=−J1

l̃2(j)
∑

l=l̃1(j)

c̃ljj
ηlζ = 0. (3.9)

It is evident from the above equation that the existence of linearly dependent equa-

tions rests on the values of j and l which are defined by the stencil, as well as η

and ζ which represent the order of the derive corresponding to the equation. As

mentioned earlier, the function in the stencil can belong to multiple time levels. The

time level of the function at the interior points has a zero delay, that is l = 0, and

hence, will not appear in equations corresponding to asynchrony terms. If we choose

a single uniform time level with a delay k̃i+j = k̃ for all i+ j ∈ B in the stencil, then

l̃1(j) = l̃2(j) = k̃ which leads to a uniform value of lζ in Eq. (3.9). The equation

then reduces to
∑

i+j∈B

c̃k̃j j
η = 0, (3.10)

which is independent of ζ, and shows that for a given η, equations corresponding to

ζ > 0 are linearly dependent. With reference to Fig. III.3, when we eliminate a term

in the red or green groups, all the other terms in the corresponding row that are

in the same group are also eliminated. This illustration shows that it is possible to

choose a stencil which results in linearly dependent equations in a system. Of course,

there are other ways to obtain such systems, but we will not discuss them here.

We conclude this section by summarizing the steps to derive asynchrony-tolerant

schemes.

1. Identify the terms on which conditions have to be imposed for a given d and a

2. Identify an appropriate stencil (J1, J2, l̃1(j), l̃2(j)) according to the terms in the
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list

3. Compute the rank of the matrix A

• rank(A) = NA: unique solution

• rank(A) < NA and rank(A) 6= rank(A|b): no solution, identify a new

stencil

• rank(A) < NA and rank(A) = rank(A|b): infinite solutions, add more

conditions to get greater accuracy or reduce the system size with only

linearly independent equations and adjust the stencil size

4. Solve for c̃ and substitute the coefficients into general scheme

III.B.3. Alternative approach

It is often necessary to use schemes with a specific structure in terms of sten-

cil and the corresponding coefficients to either improve computational performance

or satisfy numerical properties. In the context of asynchrony-tolerant schemes, it

is desirable to use schemes at PE boundary points that are similar in nature to

those at interior points. Such an implementation may improve the overall stability

of a numerical method and relieve the natural tendency of concentrated errors in

the spatial distribution near PE boundaries (e.g. see Fig. (3) in Donzis & Aditya

(2014)). Though the method described earlier gives the flexibility to choose a par-

ticular structure for the stencil, there is not much control over the nature of the

resulting coefficients in the scheme. This is because the necessary conditions im-

posed on the terms on the right hand side of Eq. (3.6) are all solved in a single linear
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system. And, explicit conditions on the coefficients have to be added to the linear

system to address this issue.

In an alternative approach to derive schemes, we propose to impose necessary

conditions (similar to Eq. (3.7)) on the set of terms arising from Taylor series in a

step-by-step process. In each step, a subset of higher order terms are eliminated,

while retaining the derivative order term using a particular stencil. This process is

repeated until the desired accuracy is achieved. Linear systems of smaller size can be

constructed in each step to enforces the conditions and obtain the coefficients. The

procedure described in bullet 3 in the summary of section III.B.1 should be used in

computing the solution of these systems.

We now proceed to outline the procedure to derive schemes similar to central dif-

ferences using this approach, and will later provide a detailed illustration in example

3.

Central difference schemes are widely used in solving parabolic and elliptic

PDEs, and are shown to have low numerical dissipation, necessary to resolve all

scales in multi-scale phenomena Hirsch (1994). If we consider the structure of central

difference schemes, it can be characterized by a symmetric stencil about the point of

computation, and symmetry coefficients (in absolute value). A general synchronous

central difference scheme can be expressed as

∂du

∂xd

∣

∣

∣

∣

n

i

≈
J
∑

j=0

φj

(

un
i+j + (−1)dun

i−j

)

, (3.11)

where J determines the size of stencil and φj are the appropriate coefficients. Let

us consider this stencil in the presence of asynchrony. In practical simulations each

PE, typically, is assigned a large number of grid points. When asynchrony is allowed
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in such cases, delays are experienced only on one side of the stencil, that is, either

on the left or right about the point of computation i for i ∈ IB. If we assume the

delay on the left side, which implies i− j is a buffer point, then the terms in the sum

in Eq. (3.11) take the form
(

un
i+j + (−1)dun−l

i−j

)

. To maintain the above mentioned

symmetries in asynchrony-tolerant schemes, we use this sum to eliminate some of

the higher order terms and retain the derivative order term in the Taylor series in

the first step. We consider coefficients to be symmetric, if they are so when l = 0,

that is, when there is a zero delay. As delay is present only at i − j, none of the

terms due to asynchrony in the expansion of un−l
i−j are cancelled out in the sum of the

function at the two points. However, some of the terms, which are not a function of

∆t, cancel out depending on the order of derivative d. If d is odd, then terms that

correspond to even power of ∆x cancel out, as shown next.

Consider the difference un
i+j − un

i−j where we choose l = 0 to simplify the anal-

ysis. The conclusions, though, are valid for arbitrary delays l > 0. A Taylor series

expansion can then be written as

un
i+j − un

i−j = 2

[

u(1,0) (j∆x)

1!
+ u(3,0) (j∆x)3

3!
+ u(5,0) (j∆x)5

5!
+ . . .

]

(3.12)

Similarly, if we consider the sum, un
i+j + un−l

i−j , terms with odd powers of ∆x will

vanish. This reduces some of the terms on which conditions need to be imposed, as

we move on to the next step. A further decrease in the number of conditions can be

achieved by artificially imposing the same delay of l levels on the other side of the

stencil, that is,
(

un−l
i+j + (−1)dun−l

i−j

)

. The Taylor series expansion of this difference,
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for odd d, is

un−l
i+j − un−l

i−j = 2

[

u(1,0) (j∆x)

1!
+ u(1,1) (j∆x)(−l∆t)

1!1!

+u(3,0) (j∆x)3

3!
+ u(1,2) (j∆x)(−l∆t)2

1!2!
+ . . .

]

, (3.13)

which shows that all the terms with even powers of ∆x, regardless of the power of

∆t, are absent. Indeed, imposing this artificial delay on the function at the interior

point, though demands additional storage of more time levels at each grid point, will

lead to a smaller number of constraints. Thus, schemes with delay on both sides will

need a smaller stencil to compute derivatives.

In Mudigere et al. (2014), this approach was used to recover the drop in accuracy

due to delay in communication in central difference schemes. The authors further

suggested that imposing delay on both sides of the stencil in central differences would

suffice to maintain the accuracy under asynchronous conditions. However, it can be

shown from Taylor series expansion that the schemes cannot be accurate beyond

second order under the conditions they presented. It is essential to increase the

stencil size to achieve higher order accuracy when asynchrony is present, as shown

in this work.

The remaining higher order terms can be eliminated by expanding the stencil

with additional terms of the form
(

un
i+j + (−1)dun−l

i−j

)

for different values of j or l.

This can be done either in a single or multiple steps, and both of them will ensure

symmetry in the coefficients. Assuming delay on the left of the stencil, the resultant

asynchrony-tolerant scheme takes the form:

∂du

∂xd

∣

∣

∣

∣

n

i

≈
J
∑

j=0

l̃2(−j)
∑

l=l̃1(−j)

φ̃l
j

(

un
i+j + (−1)dun−l

i−j

)

(3.14)
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It is often useful to derive asynchrony-tolerant schemes that reduce to central

difference schemes when all delays are zero, that is k̃j = 0 for j ∈ B. Such schemes

can be derived by expanding the stencil in space, using the sum at different j, to

eliminate terms that are not a function of ∆t. And, use the sum at different levels

in time to cancel out the terms due to asynchrony. This approach, which contains

the essence of the alternative procedure, presented in this section will be illustrated

in detail as Example 3 below.

III.B.4. Classification of schemes

In arriving at asynchrony-tolerant schemes there are several choices available in

terms of choosing points and time levels in a stencil and on the nature of coefficients.

We first provide a simple classification of asynchrony-tolerant schemes based on these

choices, then we present some examples.

Let us consider the stencil of the general asynchrony-tolerant scheme in Eq. (3.8),

which is given by the limits J1 and J2 in space and l̃1(j) and l̃2(j) in time. If

J1 = J2, the number of points are equal on either sides of the point of computation

i. We refer to this as a symmetric stencil in space. Else, J1 6= J2 and the stencil

is asymmetric. Regarding the nature of the delays, schemes can potentially have

different delay values at different points in a stencil. However, enforcing a uniform

delay across all the buffer points in a scheme, that is k̃i+j = k̃ for all i+ j ∈ B, may

lead to linearly dependent conditions and a simpler implementation of schemes. We

can, thus, classify schemes according to the presence or absence of uniform delay in

schemes. In addition to the uniformity of delays, schemes can also be classified with
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respect to the time levels chosen at interior points. The function at these points can

be either at the synchronous time level or at artificially imposed levels which, as we

have shown, provide some numerical advantages.

Schemes can also be classified on the basis of the nature of coefficients. When

asynchrony is present, a stencil with symmetric points may not necessarily give rise

to symmetry in coefficients. This due to non-uniform time levels in the stencil at

these points. To obtain symmetry in coefficients, like in standard central difference

schemes, we have earlier proposed to use a sum or difference of the function at

symmetric grid points. In this regard, we classify schemes with symmetric coefficients

as the ones which have |c̃0−j| = |c̃0j | (i.e. when k̃i+j = 0). A summary of these

classifications is given in Table III.1.

Feature Classification

Layout of symmetric asymmetric

grid points J1 = J2 J1 6= J2

Nature of delay unconstrained uniform delay

at buffer points k̃i+j = K̃ ∀ i+ j ∈ B

Artificial delay zero delay non-zero delay

at interior point k̃i+j = 0 ∀ i+ j ∈ I k̃i+j ≤ 0 ∀ i+ j ∈ I

Coefficients symmetric asymmetric

|c̃0−j| = |c̃0j | |c̃0−j| 6= |c̃0j |

Table III.1. Summary of classification of asynchrony-tolerant schemes.
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From the discussions in previous sections, it is clear that each of these classifi-

cations will have consequences in terms of numerical properties and computational

performance of schemes. We will now proceed to derive three asynchrony-tolerant

schemes and demonstrate how the conditions corresponding to the classification can

be implemented in arriving at them.

Example 1: first derivative - second order accurate (d = 1, a = 2)

Using r = 2, conditions in Eq. (3.7) are imposed on terms that satisfy the inequality

η + 2ζ < 3. This gives rise to a linear system with four equations corresponding to

the terms with (η, ζ) = {(0, 0), (1, 0), (2, 0), (0, 1)} in the Taylor series. The next step

is to select a stencil with the function defined at four different combinations of points

and time levels. Let, as before, n− k̃i+j be the latest available time level at a point

i+j ∈ B with j > 0. Further, let us choose the function set {un
i−1, u

n
i , u

n−k̃i+1

i+1 , u
n−k̃i+2

i+2 }

to construct the linear system Ac̃ = b. The results is
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(3.15)

The rank of the coefficient matrix in the above equation is 4, which is equal to the

size of the system. Thus, the choice of stencil results in a scheme without any further
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adjustments. After solving for the coefficients, we obtain the scheme as

∂u

∂x

∣

∣

∣

∣

n

i

i =
(−4k̃i+1 + k̃i+2)u

n
i−1 + 3k̃i+1u

n
i − k̃i+2u

n−k̃i+1

i+1 + k̃i+1u
n−k̃i+2

i+2

2(3k̃i+1 − k̃i+2)∆x

+O

(

6k̃i+1 − k̃i+2

18k̃i+1 − 6k̃i+2

∆x2,
k̃i+1k̃i+2

3k̃i+1 − k̃i+2

∆t

)

. (3.16)

(3.17)

Note that the coefficients are a function of the random delay at buffer points. It is

easy to see by inspection that this scheme has to be complemented in two specific

circumstances. First, when 3k̃i+1− k̃i+2 = 0 the approximation has an infinite value.

This can be avoided by artificially altering the delays such that 3k̃i+1 − k̃i+2 6= 0.

Second, when the function at both the buffer points is at a synchronous time level,

i.e., no delay. In this case, an implementation of the above scheme will result in an

indeterminate form. In that case one can use

∂u

∂x

∣

∣

∣

∣

n

i

=
−3un

i−1 + 3un
i − un−k̃

i+1 + un−k̃
i+2

4∆x
+O

(

∆x2, k̃2∆t
)

, (3.18)

which is obtained by substituting k̃i+1 = k̃i+2 = k̃ and simplifying the expression in

Eq. (3.17). It is interesting to see that the coefficients in the above scheme, with

a uniform delay across the buffer points, are independent of the delay value, which

eliminates the limitations of the scheme in Eq. (3.17). Similar schemes can be derived

by considering delays on the left of the stencil.

Example 2: second derivative - second order accurate (d = 2, a = 2)

The relationship between the time step and grid spacing is assumed as ∆t ∼ ∆x.

For these set of parameters, Eq. (3.7) enforces conditions on 21 terms in the Taylor

series, which are highlighted in red in Fig. III.5. The resulting linear system has 21
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Figure III.5. Terms in the Taylor series of un−l
i+j illustrated in a matrix

format. Constants in each term are omitted for clarity. Conditions in
Eq. (3.7) are imposed on the red color terms.

equations which, in principle, will need the function at 21 combinations of points and

time levels. However, Eq. (3.9) has shown that a stencil with only two time levels, n

for interior points and n−k̃ for buffer points, will lead to linearly dependent equations

in the system. We use this choice of stencil to reduce the size of the linear system.

Choosing the limits {J1, J2} = {5, 6} in space and assuming the buffer points are on

the right side of the stencil, leads to a smaller linear system with 11 equations that

has a unique solution. Upon solving the system, the resulting asynchrony-tolerant
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scheme is

∂2u

∂x2

∣

∣

∣

∣

n

i

=
1

12∆x2

[

35un
i−5 − 164un

i−4 + 294un
i−3 − 236un

i−2 + 71un
i−1 − 45un−k̃

i+1

+225un−k̃
i+2 − 450un−k̃

i+3 + 450un−k̃
i+4 − 225un−k̃

i+5 + 45un−k̃
i+6

]

+O
(

∆x4, k̃∆x3∆t
)

. (3.19)

Note that a single linear system has been used to obtain the above scheme.

Example 3: second derivative - fourth order accurate (d = 2, a = 4)

In this example, we will use the alternative step-by-step approach described in sec-

tion III.B.3 to derive an asynchrony-tolerant scheme that reduces to a standard

central difference scheme in the absence of delays. If we consider the Taylor series

of u at a generic point and time level in a stencil, and assume ∆t ∼ ∆x2, conditions

have to be imposed on terms with

(η, ζ) = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0),

(0, 1), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2)}. (3.20)

In order to maintain a symmetry in the stencil points and coefficients, we use the sum

(

un
i+j + un−l

i−j

)

in the first step, which eliminates the terms with (η, ζ) = {(1, 0), (3, 0)}

upon Taylor series expansion. In the second step, conditions are enforced on the

terms that are only a function of ∆x or the terms with ζ = 0 by expanding the stencil

in space. These are the three terms corresponding to (η, ζ) = {(0, 0), (2, 0), (4, 0)},

which result in three equations using the function
(

un
i+j + un−l

i−j

)

for j = 0, 1, 2.
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(3.21)
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After solving the equations we obtain the linear combination of the function that

is free from necessary higher order synchronous terms. We can express the linear

combination as

∂2u

∂x2

∣

∣

∣

∣

n

i

=
−un

i+2 + 16un
i+1 − 30un

i + 16un−l
i−1 − un−l

i−2

12∆x2
+O(∆x4, l∆t, l∆t/∆x2). (3.22)

When l = 0, the terms due to asynchrony disappear from the above expression, and

clearly represents the standard fourth order central difference scheme. In the next

step, we eliminate the remaining higher order terms which appear due to asynchrony.

If we expand the stencil further in space, which corresponds to j > 2, then the

scheme would possess the required symmetries, but will not reduce to the fourth

order central difference in the absence of delay. On the other hand, when the stencil

size is increased in time, i.e., l ∈ {k̃, k̃+1, k̃+2, . . . }, we get a scheme that resembles

a standard central difference. The conditions on the six asynchrony terms from the

set in Eq. (3.20), need Eq. (3.22) at six time levels. However, with the use of multiple

time levels, the resulting linear system has three linearly dependent conditions. We

find that conditions on terms with the same ζ are all mathematically equivalent. This

reduces the size of the linear system that uses the linear combination in Eq. (3.22)

at l ∈ {k̃, k̃ + 1, k̃ + 2} to three equations:















−k̃ 5∆t
4∆x2 −(k̃ + 1) 5∆t

4∆x2 −(k̃ + 2) 5∆t
4∆x2

k̃2 5∆t2

8∆x2 (k̃ + 1)2 5∆t2

8∆x2 (k̃ + 2)2 5∆t2

8∆x2

1 1 1





























φ̃−k̃0
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φ̃−k̃−22















=















0

0

1















(3.23)

The solution to this linear system results in the scheme
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∂2u

∂x2

∣

∣

∣

∣

n

i

=
1

2
(k̃2 + 3k̃ + 2)

−un
i+2 + 16un

i+1 − 30un
i + 16un−k̃

i−1 − un−k̃
i−2

12∆x2

−(k̃2 + 2k̃)
−un

i+2 + 16un
i+1 − 30un

i + 16un−k̃−1
i−1 − un−k̃−1

i−2

12∆x2

+
1

2
(k̃2 + k̃)

−un
i+2 + 16un

i+1 − 30un
i + 16un−k̃−2

i−1 − un−k̃−2
i−2

12∆x2

+O
(

∆x4, k̃(k̃ + 1)(k̃ + 2)∆t3, k̃(k̃ + 1)(k̃ + 2)∆t3/∆x2
)

. (3.24)

Note that, like the scheme in example 1, the coefficients in the above scheme are a

function of the random delay k̃. However, unlike Eq. (3.17) in example 1, this scheme

can take any delay value in the range [0, L− 1].

III.C. Error analysis

In previous sections, we presented a method to derive asynchrony-tolerant schemes

of arbitrary accuracy. As explained earlier, these schemes are, typically, used at PE

boundaries (i ∈ IB) where asynchrony is experienced. The number of computations

that are carried out asynchronously in a domain depends on the number of PEs used

to solve the problem, the stencil size of schemes used at interior points and statistics

of the random delays, which in turn depend on the characteristics of communica-

tions in a computing system. These dependencies bring new challenges while trying

to understand the overall accuracy of these asynchrony-tolerant schemes. First, due

to the random nature of the delay, the associated truncation error is also random

in nature. Second, schemes to compute spatial derivatives at interior points are not

the same as asynchrony-tolerant schemes at PE boundary points and have, thus,

different truncation errors. These issues result in a non-homogeneity of error in the
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domain, both in space as well as time.

In our previous work Donzis & Aditya (2014), we have proposed a statistical

description to analyze the overall error and determine the accuracy of the numerical

solution. We follow a similar procedure in this work. Before we develop the error

analysis, we present some necessary definitions that will be used. First, let us define

the probability of having a time level ñ = n− k̃i at a grid point i as pk[i]. The sum

of probabilities of all levels at point i is obviously

L−1
∑

k[i]=0

pk[i] = 1. (3.25)

To obtain the statistics of the error, we define two types of averages for a variable f : a

space average and an ensemble average. The space average can be performed over all

points in the set I or the subsets II and IB. If the average is over the entire domain,

that is i ∈ I, it is denoted by angular brackets and given by 〈f〉 =
∑

i=1,N fi/N . On

the other hand, the average over the points in the subsets II and IB are given by

〈f〉
B
=
∑

i∈IB
fi/NB and 〈f〉

I
=
∑

i∈II
fi/NI , respectively. The random nature of

delays is taken into account by ensemble averages, which is denoted by an overline

f .

A common measure of the error incurred by using a finite difference represen-

tation of the original PDE is given by the so called truncation error. Formally, it is

given by the difference between the PDE and the approximate finite difference equa-

tion, that is E = PDE−FDE. As introduced in Donzis & Aditya (2014) and Ch. II,

the assessment of the error of asynchrony schemes which are random in nature and

heterogeneous in space, can be done by applying the two averages described above.
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That is,

〈E〉 =
1

N

∑

i=1,N

En
i , (3.26)

where En
i is the truncation error at the point i and time level n. Due to the non-

uniform expression for the truncation error at interior and PE boundary points, it is

convenient to split the error according to the two sets of points:

〈E〉 =
1

N

[

∑

i∈II

En
i +

∑

i∈IB

Ẽn
i

]

(3.27)

Note that the error due to interior points does not possess randomness due to delays

and are, hence, unaffected by the ensemble average. On the other hand, errors at

PE boundary points have both random asynchronous and deterministic synchronous

components. This allows us to further split the error in the set IB as

〈E〉 =
1

N

[

∑

i∈II

En
i +

∑

i∈IB

En
i |s +

∑

i∈IB

Ẽn
i |a

]

, (3.28)

where the subscripts s and a denote the synchronous and asynchronous components,

respectively. It is clear that in the absence of delays Ẽn
i |a = 0.

The order of accuracy of a scheme will depend on the leading order term in

each of the error terms in the above equation. These terms comprise the sum of the

truncation error due to all terms in the original PDE, including the time derivative.

Thus, it is important to choose the accuracy of time integration to match the order

of accuracy of space derivatives. We will discuss this topic next and then present an

example to illustrate the effect of asynchrony on the error. We will end this section

with a generalization of the results on accuracy of asynchronous schemes.
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III.C.1. Time integration

To understand the effect of time discretization on the overall order of accuracy,

let us consider the equation ∂u/∂t = f , where f depends on spatial derivatives of

u, integrated using Euler scheme. The scheme is first order in time with the leading

order term being−u(0,2)∆t/2. As mentioned in section III.B.1, if we assume a relation

of the form ∆t ∼ ∆xr, then the leading order term is equivalent to O(∆xr) in space.

When the accuracy of the space derivatives is greater than r, the total error will,

very likely, be dominated by the temporal term and will dictate the order of accuracy

of the solution.

Thus, if a certain order is desired for space derivatives, it is important to select

a time discretization with the same (or greater) order to keep the overall order

unchanged. We will follow this practice as we demonstrate the accuracy of the

proposed asynchrony-tolerant schemes next. For this, we choose linear multi-step

method to compute the time derivative. A general expression with T time steps is

given by

un+1
i = un

i +∆t
T−1
∑

m=0

βmf
m
i , (3.29)

where the coefficients βm determine the particular temporal scheme Stoer & Bulirsch

(2013).

The advantage of using a temporal scheme of the form Eq. (3.29) is that the

terms fm
i can be computed using asynchrony-tolerant schemes and are thus,free of

asynchrony errors to the desired order of accuracy. Thus, so will the linear combi-

nation of fi at different time steps. For example, if one uses an asynchrony-tolerant

scheme which is fourth order accurate, with r = 2 (i.e. ∆t ∼ ∆x2), then one needs
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a temporal scheme with second order accuracy to maintain fourth order accuracy

globally. This can be accomplished by a two-step Adams-Bashforth method

un+1
i = un

i +∆t

(

3

2
fn
i −

1

2
fn−1
i

)

, (3.30)

which is readily shown to be second order in time Stoer & Bulirsch (2013). The

generalization to higher orders is straightforward.

III.C.2. Example: heat equation with fourth-order accurate asynchrony-tolerant schemes

Let us consider the 1D heat equation,

∂u

∂t
= α

∂2u

∂x2
, (3.31)

where u(x, t) is the temperature and α is the thermal diffusivity of the medium.

The above equation is solved on a uniform grid shown in Fig. III.1 with periodic

boundary conditions.The equation is approximated with the second order Adams-

Bashforth scheme shown in Eq. (3.30) and standard fourth order central difference

for the space derivative at interior points.At the PE boundary points, the space

derivative is computed with the asynchrony -tolerant scheme Eq. (3.24) derived in

Example 3.

Using Taylor series, the truncation error at interior points is

En
i =

(

−
1

6
u(0,3) −

1

4
αu(2,2)

)

∆t2 −
1

90
αu(6,0)∆x4 +O

(

∆x6,∆t3,∆x4∆t
)

. (3.32)

As mentioned above, at PE boundary points, the truncation error can be split into

the synchronous and asynchronous components,

Ẽn
i |k̃=k = En

i |s + Ẽn
i |a,k̃=k. (3.33)
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Because by construction, the asynchrony-tolerant scheme in Eq. (3.24) reduces to the

standard central difference in the absence of delay, the synchronous component of

the error, En
i |s, is the same as Eq. (3.32). Note that this scheme assumes a uniform

delay at buffer points. Hence, we drop the subscript for k̃ in the above expression.

The asynchronous component of the error, considering delays only on the left side of

the stencil, can be readily shown to be

Ẽn
i |a,k̃=k = −

5

24

(

k3 + 3k2 + 2k
)

αu(0,3) ∆t3

∆x2
+O

(

k3∆t3/∆x
)

. (3.34)

The leading order term in the error remains the same when the delays are experienced

on the right of the stencil. Clearly, when k̃ = 0, we have Ẽn
i |a,k̃=k = 0 and thus also

its ensemble average. On the other hand, if k̃ > 0, then the ensemble average is

Ẽn
i |a ≈

L−1
∑

k=0

pkẼ
n
i |a,k̃=k

≈
L−1
∑

k=0

pk

(

−
5

24

(

k3 + 3k2 + 2k
)

αu(0,3) ∆t3

∆x2

)

≈

(

−
5

24
αu(0,3) ∆t3

∆x2

) L−1
∑

k=0

pk
(

k3 + 3k2 + 2k
)

≈

(

−
5

24
αu(0,3) ∆t3

∆x2

)

(

k̃3 + 3k̃2 + 2k̃
)

, (3.35)

where moments are given by k̃n =
∑

k=0,L−1 pkk
n. It is interesting that the average

error under the presence of asynchrony, depends not just on the mean of the delay as

in Donzis & Aditya (2014), but also on its higher order moments. The implication of

this result, is that in assessing the performance of asynchronous numerical schemes

a certain degree of details about the architecture of the computing system would

be needed, such as the probability density function of the delays k̃. Conversely,

61



one can quantitatively compare the performance of different computing systems by

comparing moments of k̃.

We now substitute the leading order terms in Eqs. (3.32) and (3.35) into Eq. (3.33).

Assuming the statistics of the delays are homogeneous in space, the average error is

〈E〉 ≈
1

N

[

∑

i∈II

((

−
1

6
u(0,3) −

1

4
αu(2,2)

)

∆t2 −
1

90
αu(6,0)∆x4

)

+
∑

i∈IB

((

−
1

6
u(0,3) −

1

4
αu(2,2)

)

∆t2 −
1

90
αu(6,0)∆x4

)

+
∑

i∈IB

((

−
5

24
αu(0,3) ∆t3

∆x2

)

(

k̃3 + 3k̃2 + 2k̃
)

)

]

. (3.36)

In the above equations, the first two sums on the right hand side are due to syn-

chronous computations and can be conveniently combined by noting that I = II ∪

IB.To determine the spatial accuracy of the solution, we use the stability parameter

rα = α∆t/∆x2 to substitute time step ∆t in terms of ∆x. This corresponds to r = 2

in the formulation presented in section III.B.1. The above equation then reduces to

〈E〉 ≈
1

N

[

∑

i∈I

(

−
1

6
α2r2αu

(0,3) −
1

4
α3r2αu

(2,2) −
1

90
αu(6,0)

)

∆x4

+
∑

i∈IB

(

−
5

24
α4r3αu

(0,3)

)

(

k̃3 + 3k̃2 + 2k̃
)

∆x4

]

, (3.37)

which can be rewritten as

〈E〉 ≈

[

−
1

6
α2r2α〈u

(0,3)〉 −
1

4
α3r2α〈u

(2,2)〉 −
1

90
α〈u(6,0)〉

]

∆x4

+

[

NB

N

(

k̃3 + 3k̃2 + 2k̃
)

(

−
5

24
α4r3α〈u

(0,3)〉B

)]

x.
4. (3.38)

The average error is clearly seen to possess components due to synchronous and asyn-

chronous computations.Either of the terms can dominate the average error depending
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on physical parameters (e.g. α, initial conditions, etc.), numerical parameters (e.g.

∆x, rα, etc.), and simulation parameters (e.g. P , network performance, etc.). If the

synchronous part dominates the overall error, then the resulting scheme is fourth

order accurate, that is 〈E〉 ∼ O(∆x4). If, on the other hand, the asynchronous

component dominates, the error is given by

〈E〉 ≈
P (J1 + J2)

N

(

k̃3 + 3k̃2 + 2k̃
)

(

−
5

24
α4r3α〈u

(0,3)〉B

)

∆x4, (3.39)

where we have used NB = (J1 + J2)P , with J1 and J2 being the stencil size in space

at interior points. Using N = L/∆x, where L is the length of the domain, and for

all other parameters kept constant, the average error is found to scale as

〈E〉 ∼
P

N

(

k̃3 + 3k̃2 + 2k̃
)

∆x4

∼ P
(

k̃3 + 3k̃2 + 2k̃
)

∆x5 (3.40)

Interestingly, the order of accuracy of the numerical method now depends on how

the problem is scaled on a parallel machine. In the case of weak scaling, where the

computational effort per PE is kept constant, that is P/N = const, the error varies

as ∆x4 and the method is fourth order accurate in space. On the other hand, when

the total computational effort is kept constant (N = const) and the simulations are

carried out on increasingly large number of PEs, the average error is 〈E〉 ∼ O(∆x5)

and the method is fifth order accurate. We also observe that the error scales linearly

with P .
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III.C.3. Generalization

We now proceed to generalize the expressions for average error (〈E〉) presented

in Eq. (3.40). For this, we restate the conditions and assumptions that lead to

Eq. (3.40). First, we assumed that the asynchronous component dominates the

overall error. Second, the asynchrony-tolerant scheme used in the analysis is fourth

order accurate, which lead to an O(∆x4) leading term due to asynchrony. We have

also assumed a uniform random delay in the stencil, that is k̃i+j = k̃ for all i+j ∈ B.

Also, the scheme uses three successive asynchronous time levels (with delays k̃, k̃+1,

k̃ + 2), which results in a cubic polynomial in k in the leading order error term.

With the above observations, we can arrive at a general case which uses asynchrony-

tolerant schemes with T number of successive asynchrony time levels and is accurate

to an order a. If asynchrony component dominates the average error, then it is easy

to generalize Eq. (3.40) as:

〈E〉 ∼
P

N
∆xa

T
∑

m=1

γmk̃m

∼ P∆xa+1

T
∑

m=1

γmk̃m (3.41)

Note that the average error still scales linearly with the number of PEs. However,

higher order moments of the delay are necessary to characterize the error when the

stencil size of asynchrony-tolerant schemes is expanded in time. A minimum accuracy

of order a is then assured, regardless of how simulations are scaled up.
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III.D. Summary

In this chapter, we have presented a methodology to derive asynchrony-tolerant

schemes of arbitrary accuracy. We have also provided an alternative approach to ob-

tained schemes that resemble widely used central difference schemes in the absence of

asynchrony. A simple classification of the schemes based on the structure of stencil

and nature of coefficients has been presented. Sample derivations of asynchrony-

tolerant schemes that belong to different classes are shown to illustarte the proposed

methodolgy. We, later, provided a procedure to analyze the overall error in a nu-

merical method which uses standard synchronous scheme at the interior points and

asynchrony-tolerant scheme at the PE boundary points in the domain. Theoretical

predictions show that the average error not just depends on the mean of the random

delay, but also on its higher order moements.
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CHAPTER IV

IMPLEMENTATIONS

In this chapter, we turn our attention to actual application of the asynchronous

computing method to solve PDEs. We provide two different implementations to eval-

uate the numerical and computational performance of the proposed method. In the

first implementation, delays experienced due to asynchrony are artificially imposed

using a random number generator. Such an implementation will permit a complete

control over the statistics of message delays and allows us to assess the theoreti-

cal predictions, made in the previous chapters, in different parameter regimes. The

second implementation is an approach to use the asynchronous computing method

in simulation of real life applications on massively parallel supercomputers. The

implementation uses communications based on Message Passing Interface (MPI) to

exchange information between different PEs in an asynchronous fashion. Before pre-

senting the two implementations, we briefly define the problem used in numerical

simulations.

IV.A. Problem definition

For the simulations, our focus will be on the advection-diffusion equation as it

contains both first and second derivatives. The interest of this equation is well known

in fluid mechanics as it governs the time evolution of fluid flow phenomena involving
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convection and diffusion processes. The equation is

∂u

∂t
+ c

∂u

∂x
= α

∂2u

∂x2
(4.1)

where u = u(x, t) is the velocity, c is the convection speed and α the viscosity

coefficient. If c is a constant, the equation is linear and possess simple analytical

solution with which we can compare our theoretical developments. This provides

a systematic way to compare the results from numerical simulation and verify the

accuracy of the schemes. When c = u, Eq. (4.1) is nonlinear in nature and is the

celebrated viscous Burgers’ equation. This equation helps us understand the effect

of asynchrony on multi-scale phenomena.

In this problem, we assume an initial condition given by a sum of sinusoidal

waves in a periodic domain of length 2π:

u(x, 0) =
∑

κ

A(κ) sin(κx+ φκ) (4.2)

where κ is the wavenumber, and A(κ) and φκ are the amplitude and phase angle

corresponding to a particular wavenumber κ. The analytical solution of Eq. (4.1)

and Eq. (4.2), indicated by a subscript a, when c is a constant is readily found to be

ua(x, t) =
∑

κ

e−ακ
2tA(κ) sin(κx+ φκ − ct). (4.3)

The reason for including the phase φκ is to avoid situations in which the PE

boundaries coincide with specific features of the solution which may lead to very

particular conditions in the truncation error. As an example, suppose we solve the

heat equation with initial conditions given by a single sine wave and that the number

of processors P is such that the PE boundaries are co-located with the zero crossings
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of this initial condition. From Eq. (4.3) with c = 0, it is clear that the solution at

the zero crossings (and PE boundaries) will not change with time, that is u̇ = 0.

Thus, the average over all boundary points will also vanish: 〈u̇〉
B
= 0. By looking

at Eq. (2.40), we see that the leading order term vanishes and thus the resulting

scheme is of higher order that it would in a more general condition. To avoid these

very particular cases, the phases are chosen randomly for different wavenumbers and

the results are averaged over this space too.

The numerical solutions of Eq. (4.1) and Eq. (4.2) are obtained with different

standard synchronous schemes as well as asynchrony-tolerant schemes. The details

of the schemes used in particular simulation are provided along with results in the

next chapter.

IV.B. Implementation I

To illustrate this implementation, we discretize Eq. (4.1) using second order

central differences in space and a forward first order difference in time. For grid

points close to a PE boundary on the right, we have

un+1
i − un

i

∆t
+ c

uñ
i+1 − un

i−1

2∆x
= α

uñ
i+1 − 2un

i + un
i−1

∆x2
. (4.4)

A similar expression can be written for grid points close the PE boundary on the

left, which will have delays on i− 1, instead of i+ 1.

As mention in the beginning of this chapter, in order to have complete control

over the statistics of message delays and compare against the theoretical predic-

tions, we use random number generators to simulate these delays. In particular,

the delays on both sides are drawn from uniform distributions in the interval [0, 1]
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with some initial random seed. For a given L, we arbitrarily set the probabilities

{p0[i+1], p1[i+1], . . . , pL−1[i+1]} corresponding to delays k̃i+1 = 0, 1, 2, . . . , L− 1 respec-

tively by comparing each random number to the corresponding partition of [0, 1] into

L bins. Since in our numerical experiments we use i.i.d. random sequences at the

different PE boundaries, there is no dependence on location and we will thus drop

the subscript i+1 for simplicity and write {p0, p1, . . . , pL−1}. For example, for L = 3,

the set {p0, p1, p2} = {0.6, 0.3, 0.1} represents the situation where the probability of

having k̃i+1 = 0 (i.e. no delay), k̃i+1 = 1 and k̃i+1 = 2 is 0.6, 0.3 and 0.1, respectively.

In this case the mean k̃i+1 is easily found to be
∑

k=0,2 pkk = 0.5. Ensemble averages

in practice are taken by running multiple simulations with different initial seeds for

the random number generator.

To compare against our theoretical predictions in previous sections, we define

the error at grid point i and time level n as En
i = un

i − ua(xi, tn) with ua(x, t) from

Eq. (4.3) and take the different averages presented in Ch. II.

IV.C. Implementation II

In this section, we present a highly scalable asynchronous implementation to

solve PDEs on massively parallel machines, which exploits the relaxation of syn-

chronization between PEs at a mathematical level. We first understand the fea-

tures that are necessary to facilitate asynchronous computations. We then present

a novel asynchronous communication algorithm based on two different communi-

cation models available with the current MPI standard. Later we provide details

of the asynchronous implementation, and also, discuss commonly used synchronous
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implementation to compare our results on scalability. Let us review the mathemat-

ical requirements that are necessary to carry out asynchronous computations using

asynchrony-tolerant schemes. Fig. IV.1 compares the stencil size of schemes under

asynchrony relative to a synchronous scheme. If the size of the asynchrony-tolerant

scheme is same as synchronous scheme, then the computational effort remains the

same. However, such schemes will have relatively lower accuracy. As discussed in

Ch. III, it is necessary to increase the size of stencil to maintain the accuracy similar

to synchronous schemes. When the stencil size is increased in space, the asynchrony-

tolerant scheme will result in larger message size. On the other hand, an increase in

stencil size in time will lead to additional storage or memory requirements. These

consequences, in regard to the computational performance, should be taken into

account while selecting schemes for simulations.

Consider a typical example of asynchrony-tolerant scheme to understand the

implementation requirements of asynchronous computing method.

∂2u

∂x2

∣

∣

∣

∣

n

i

=
1

2
(k̃2 + 3k̃ + 2)

−un
i+2 + 16un

i+1 − 30un
i + 16un−k̃

i−1 − un−k̃
i−2

12∆x2

−(k̃2 + 2k̃)
−un

i+2 + 16un
i+1 − 30un

i + 16un−k̃−1
i−1 − un−k̃−1

i−2

12∆x2

+
1

2
(k̃2 + k̃)

−un
i+2 + 16un

i+1 − 30un
i + 16un−k̃−2

i−1 − un−k̃−2
i−2

12∆x2
(4.5)

For the above scheme, the necessary features that have to be present in the imple-

mentation are:

• asynchronous or non-blocking communication calls to overlap computations

and communications

• storage of data from multiple time levels
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Synchronous

Asynchronous

AT: space

AT: time

Poor accuracy

Larger message
size

Increase memory
requirement

Figure IV.1. A schematic comparing stencil of different schemes to com-
pute spatial derivative. The point i ∈ IB and schemes need function values
from neighboring PE. The consequences due to the schemes relative to
synchronous case are listed on the right side.

• communication of time stamp of the data to obtain the value of k̃i

• synchronize communications only when k̃i > L− 1

• atomicity while accessing data

We now proceed show a communication algorithm that will provide these features.

IV.C.1. Asynchronous communication algorithm

Commonly used synchronous implementations usually carry out communication

of data between PEs in a two step process. In the first step, messages are issued to

initiate the transfer of data, and in the next step a synchronization process is issued

to ensure the completion of communication. As discussed in Ch. I, this synchro-

nization process significantly affects the scalability of applications. The exchange of
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information is directly done between the compute arrays, which store the function

values at all the grid points in a PE.

A simple extension of the above described method to asynchronous communi-

cations is shown in Fig. IV.2. Multiple levels are used at the buffer points to accom-

modate the requirement of different time levels. However, determining the target

location of successive messages at the buffer points and keeping track of their time

stamp becomes a confusingly difficult task. Also, this method poses atomicity issues

while accessing the values of the function. To overcome these issues, we propose a

novel algorithm where messages are sent to auxiliary arrays in the target PE, instead

of directly sending them to compute arrays. Unlike synchronous communications for

which MPI standard provides several options for communication and synchronization

calls, there exists only two options for asynchronous communications:

1. Two-sided non-blocking (MPI Isend/MPI Irecv)

2. One-sided Remote Memory Access (RMA) (MPI accumulate)

We discuss the algorithm based on these two methods below.

B

B

PE0

compute array

contains values of u
B

B

PE1

✛
✛

n-2

n-1

n ?

This is a mess!

Figure IV.2. A schematic of communications used in common syn-
chronous implementations.
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IV.C.1.a. Two-sided non-blocking communications

In the asynchronous communications using two-sided non-blocking calls, we first

create two auxiliary buffer arrays, Bsend and Brecv, of size J1 or J2 (depending on left

or right PE boundary) in one dimension and L time levels in the other dimension,

as shown in the schematic in Fig. IV.3. For simplicity we present only the commu-

nication of data into left PE boundary in the figure. The purpose of the auxiliary

arrays is to send, receive and store data from multiple time levels, while maintaining

atomicity. At each time advancement, function at the latest computed time level (n)

in the compute array are first copied into one of the levels in Bsend array at the source

PE. Once the copy is complete, the source PE can proceed with the further computa-

tions in the compute array. The latest function values are then sent from Bsend to an

equivalent time level in Brecv at the target PE using MPI Isend/MPI Irecv. No explicit

synchronization like MPI wait all is imposed in this algorithm, unless k̃i > L− l. Ac-

cording to the status of communication of each time level, which is determined using

MPI test, necessary function values are copied from Brecv into the compute array at

target PE to evaluate spatial derivatives at PE boundary points. In the schematic,

communication of nth time level is still under progress. Hence, time levels n− 1 and

n− 2 are copied into compute array.

The communication algorithm using two-sided calls is easy to apply in an asyn-

chronous implementation. However, this algorithm involves several unnecessary over-

heads, as both source and target PEs are involved in the communication (by posting

Isend/Irecv) even when data synchronization is relaxed. An ideal algorithm will be

the one where only the source PE carries out asynchronous communications with-
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✛
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✛

✻
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❄
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n

Isend/Irecv

Communication in progress at n

Check using MPI Test

Communication finished

at n-1 and n-2,

send them for computations

compute array u

Brecv Bsend

Figure IV.3. An illustration of asynchronous communication algorithm
using non-blocking Isend/Irecv. Data are sent from the cells S in PE1 to
cells B in PE0.

out hand shaking with the target PE. The latest one-sided RMA communications

provide such possibility, which is discussed next. Note that these communications

are difficult to implement in a solver, and thus, the above described method is also

useful in some circumstances.

IV.C.1.b. One-sided RMA communications

Fig. IV.4 illustrates the communication algorithm using one-sided RMA com-

munications. In this method, messages can be sent directly from compute array at

source PE, and hence, an auxiliary Bsend is not necessary. At the target PE, messages

are, however, received in Brecv. According to RMA communication model, memory

location of Brecv has to be exposed as a window (using MPI Win allocate), which will

be visible to other PEs over the network to send messages. At each time advance-

ment, function at the latest computed time level (n) is sent to one of time levels in

Brecv using MPI Accumulate. Unlike two-sided communications, there is no explicit
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function that can determine progress of communications in this model. Hence, we

create an additional array Bchg to track the progress. In the initialization step of the

asynchronous implementation (which will be discuss momentarily), arrays Brecv and

Bchg are initialized with the same values in the corresponding time levels. Once the

time loop in the implementation begins, messages are sent to successive time levels

in Brecv in a cyclic ring fashion. In each time advancement, the memory locations

of different time levels in both the arrays are compared. If values in the array at a

particular time level are unequal, then it indicates completion of a communication.

Else, the communication corresponding to that time level is still under progress. In

the case of completion of communication, the latest values are copied from Brecv to

Bchg. The time levels necessary for computations are copied from Bchg, according to

the status of messages in each time level.

BB

BB

PE 0 (target)

B B

B B

S S

PE 1 (source)

0

1

2

3

4

5

←

←

←

←

←

←

n-2

n-1

n

MPI Accumulate

Status of communication?

✛

✛
✛

Bchg

Compare values in Brecv with

Bchg at each step

Expose Brecv

as a window (MPI Win)

compute array u

Brecv

Figure IV.4. An illustration of asynchronous communication algorithm
using one-sided RMA model. Data are sent from the cells S in PE1 to
cells B in PE0.
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IV.C.2. Synchronous Implementation (SI)

A simple synchronous implementation starts with simulation initialization pro-

cess which involves calculating size/limits of arrays for the computational variables,

imposing the initial conditions, determining neighboring PEs and setting up com-

munication. For RMA communications, we also setup the buffer grid points as

windows using MPI Win allocate in this step. Communications are carried out in a

synchronous fashion, as discussed in section IV.C.1. Once the initialization process

is complete, simulation is advanced in time from the initial conditions according to

discretized governing equations. This is done in a time loop that involves calcula-

tion of time step, computation of the solution at next time level and communication

of the updated values at the boundaries. Following is an illustration of the algorithm.

1. Initialize

2. Begin time loop

2a. Communicate values at time level n

2b. Calculate time step (∆t)

2c. Compute Ui
n+1 = f (Ui

n), i ∈ I

End time loop

IV.C.3. Asynchronous Implementation (AI)

The asynchronous implementation begins with initialization process, similar to

the synchronous implementation. Once this is complete, time evolution of the so-

lution is started. For the first L time steps, computations are advanced according

to the time loop in synchronous implementation. This is necessary to populate the

auxiliary buffers with function values at different time levels in order to maintain ac-
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curacy under asynchrony. After the synchronous time loop, the different time levels

in the auxiliary arrays are index to obtain the time stamps. When communications

are done according to one-sided algorithm, Bchg is created and initialized with same

values as in Brecv, in this step. Up on completion of the indexing process, the solution

is further evolved according to asynchronous time loop, as illustrated below. Note

that the computations at the interior points in the domain are overlapped with the

asynchronous communications. This will lead to significant improvements in scala-

bility and fully exploits the asynchronous nature of the computations.

1. Initialize

2. Begin synchronous time loop to populate Brecv

2a. Communicate values at time level n

2b. Calculate time step (∆t)

2c. Compute Ui
n+1 = f (Ui

n), i ∈ I

End synchronous time loop

3. Index values in Brecv and create Bchg

4. Begin asynchronous time loop

4a. Initiate communication of values at time level n

4b. Calculate time step (∆t)

4c. Compute Ui
n+1 = f (Un) ∀i ∈ II

4d. Check communication status

4e. Synchronize if delays k > L− 1

4f. Pick n− k and n− k − 1 for computations at IB

4g. Compute Ui
n+1 = f

(

U
n,Un−k,Un−k−1

)

∀i ∈ IB

End asynchronous time loop
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IV.D. Summary

In this chapter, we have presented two different implementations to apply asyn-

chronous computing method in solving practical problems. The first implementation

simulates delays due to asynchrony using a random number generator. This imple-

mentation allows us to evaluate numerical properties of asynchronous method under

a wide range of conditions. The second implementation is a highly scalable algorithm

to simulation problems on massively parallel computers. We have presented a novel

asynchronous communication approach that will relax synchronizations as well as

hides the communication with computations at interior points in the domain. This

implementation will be used to evaluate the computational performance of the pro-

posed asynchronous method. Results using both the implementations are presented

in the next chapter.
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CHAPTER V

RESULTS∗

In this chapter, we present results from numerical simulations to understand the

numerical and computational performance of the asynchronous computing method.

The numerical performance of both standard synchronous and asynchrony-tolerant

schemes is studied using Implementation I presented in Ch. IV. Later, we demon-

strate computational performance of the asynchronous method using Implementation

II.

V.A. Numerical performance

V.A.1. Standard schemes

In this section, we now solve the linear advection-diffusion equation using Euler

scheme and second order central differences for time and space derivatives, respec-

tively. In Fig. V.1 we show a typical realization of a simulation with N = 128, P = 4,

L = 2 and {p0, p1} = {0.3, 0.7} and an initial condition given by a single wave with

κ = 2. In part (a) we show the time evolution of velocity obtained with synchronous

(dashed red line) and asynchronous (solid black line) schemes. As expected, the

initial wave is convected to the right at a speed of c with a decreasing amplitude due

to the effect of viscosity. From this figure the difference between the two solutions is

∗Parts of this chapter have been used from “Asynchronous finite-difference schemes for partial

differential equations”, Diego A. Donzis and Konduri Aditya, Volume 274, 1 October 2014, Pages

370-392, with permission from Elsevier under license number 3842150790850.
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hardly seen. However, this is apparent in part (b) where we show the error for both

schemes. As expected the asynchronous solution presents higher errors. We also see

that errors seem to be larger at PE boundaries (vertical dashed lines) and spread to

inner regions of the domain as time proceeds. This is not surprising as the evolution

of error is, for linear systems, governed by the same PDE as u itself.

We note that since these errors appear at PE boundaries and are typically

localized in space, the effect on statistical features of the solution may be small.

For some applications, these localized (and bounded) errors may not affect specific

quantities of interest. For example, in high-Reynolds number turbulence, a great deal

of interest is in statistical features of the flows due to the tremendous complexity of

instantaneous fields. A few examples, include the calculation of the mean turbulent

kinetic energy and dissipation, scaling of spectra and structure functions all of which

are typically insensitive to (numerical) perturbations at scales smaller than the so-

called Kolmogorov scale (e.g. Watanabe & Gotoh, 2007; Ishihara et al., 2009). High-

order moments of velocity gradients, on the other hand, could become a challenge

(Donzis et al., 2008). As we will show momentarily, however, these errors can be made

smaller with finer grids with specifically designed schemes. Numerical experiments

related to these issues will be presented in section V.A.2.

We now turn to a statistical description of the error with more realistic initial

conditions. The initial condition comprises a range of wavenumbers (typically span-

ning a decade or so) with random phases and for simplicity only two possible delays

are allowed (L = 2): k̃i+1 = 0 and 1. Note that in this case the probabilities are given

by {p0, p1} where p1 = 1− p0. Thus, p0 is enough to characterize the simulations.
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Figure V.1. Typical time evolution of the numerical solution of the
advection-diffusion equation using synchronous (dashed red lines) and
asynchronous (solid black lines) schemes. (a) The velocity field. (b)
Error En

i = un
i − ua(xi, tn). Vertical dash-dotted lines correspond to PE

boundaries. Simulation parameters: N = 128, P = 4, L = 2, with
{p0, p1} = {0.3, 0.7} for the asynchronous scheme.

The ensemble and space average error 〈|E|〉 is shown in Fig. V.2 as a function

of resolution N for fixed rα, and different set of the probabilities. The error was

calculated at a normalized time of tc/l = 0.08 (l is the length of the domain). We

have verified that the conclusions below are the same for longer times as well.

The synchronous (deterministic) case corresponds to p0 = 1 (solid red line)

which is seen to be second order. When asynchrony is introduced we have p0 < 1

and we clearly see that the formal order of accuracy drops to one as predicted by

the theory for constant values of P and rα (Eq. (2.42)). For a given resolution, we

can also see that the numerical value of the error increases as p0 decreases, that is as

the probability of having delayed values increases. The inset shows the same error

as a function of p0 (squares) at the largest resolution available. The good agreement

between the data and the best linear fit (solid line through data points) support a
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linear relation between 〈|E|〉 and p0. This is consistent with Eq. (2.41) since the

mean delay in the present case (L = 2) is simply k̃ = 1− p0.
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Figure V.2. Average error for the advection-diffusion equation with con-
stant rα = 0.1. Different lines correspond to p0 = 1 (red), 0.6 (green), 0.3
(blue), and 0.0 (magenta). Dashed lines with slopes -2 and -1 are included

for reference. Inset: 〈|E|〉 versus p0 for the largest resolution in the main
figure. Symbols are from simulations and the solid line is a linear best fit.

To test the more general claim in Eq. (2.41) that the error is linearly dependent

on the average value of the delay k̃, we have performed simulations with different

values of L and probability sets with the same mean value of k̃. A set of results is

shown in Fig. V.3 with different colors for different values of k̃. The dependence on

k̃ instead of L or {p0, p1, . . . } is seen by observing the collapse of, for example, the

red squares (L = 2, {0.3, 0.7}) and the red solid line (L = 4, {0.6, 0.2, 0.1, 0.1}) both

with k̃ = 0.7. The same observation can be made for the other set of simulations at

k̃ = 1 (magenta) and 3 (blue). The inset shows a larger set of simulations with a
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wide range of values of k̃ (with different combinations of L and probabilities). The

solid line is a best linear fit through the data points essentially confirming the linear

dependence in Eq. (2.41).
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Figure V.3. Effect of mean value of delay on the average error for the
advection-diffusion equation with constant rα = 0.1 and P = 32. Different

colors correspond to different values of the average delay: k̃ = 0.7 (red),
1.0 (magenta) and 3 (blue). Squares, solid lines and circles correspond
to L = 2, 4 and 8 respectively. Dashed line with slope -1 is included for

reference. Inset: 〈|E|〉 as a function of k̃ for the largest resolution in the
main figure with P = 32.

Since in future computing systems, the number of PEs may be extremely large,

it is also important to understand the behavior with P . Eq. (2.42) predicts that the

average error is proportional to P/N . Thus, in an exercise of so-called strong scaling

(that is, keeping the problem size, N , constant and progressively increasing the

number of PEs, P ) the average error 〈|E|〉 is first order in ∆x and grows linearly with

P . These two predictions are indeed supported by our simulations. In Fig. V.4(a)
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we clearly see asymptotic first order accuracy. For small PE counts (red line), we

can see the transition from second order to first order which is also predicted by

Eq. (2.40) . As P increases, the numerical value of the error increases for fixed N . In

the inset, we show again 〈|E|〉 as a function of P at the largest resolution in the main

figure (N = 1024). The linear increase with P is clearly seen as symbols appear to

be very well aligned with the best linear fit shown as the solid line.
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Figure V.4. Effect of number of PEs on the average error for the
advection-diffusion equation with constant rα = 0.1. (a) Cases with con-
stant P . Different lines correspond to P = 2 (red), 8 (green), 32 (blue) and

128 (magenta). Inset: 〈|E|〉 versus P for the largest resolution (N = 1024)
in the main figure. (b) Cases with constant P/N . Different lines corre-
spond to P/N = 1/64 (black), 1/32 (blue), 1/16 (green) and 1/8 (red). Inset:

〈|E|〉 versus N/P for the largest resolution (N = 1024) in the main figure.
Dashed lines with slope -2 and -1 are included for reference.

As discussed in section II.C.2, in a number of applications the number of PEs

is increased proportionally to the work load (weak scaling). In this case Eq. (2.42)

shows that the error is constant. This result is also supported by our simulations in

Fig. V.4(b) where grid refinement does not lead to any decrease in the average error.
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The inset shows that the asymptotic value of 〈|E|〉 increase linearly with P/N as

predicted by Eq. (2.42).

There is another important consequence of using common finite differences in

an asynchronous fashion. One of the objectives of using asynchronous schemes is to

avoid global synchronizations. However, in many realistic simulations where diffusion

effects are small, the time step is determined by a convective stability condition

which is computing from the maximum velocity in the entire domain. In such a case,

obtaining a consistent time step across all PEs, requires a global synchronization. If

a good estimate of the maximum velocity in the problem is known a priori, however,

then a constant ∆t can be set based on this knowledge to satisfy the convective

condition everywhere. While this avoids a global synchronization, the accuracy of the

scheme is strongly modified. This can be seen from Eq. (2.48) and Table II.2 which,

with D = 2 at constant P , results in an average error scaling as 1/∆xD−1 = 1/∆x.

These predictions are in fact consistent with the numerical data shown in Fig. V.5(a)

where convergence transitions from ∆x2 to 1/∆x for asynchronous schemes (blue

lines). For synchronous schemes, that is p0 = 1.0, the transition is from ∆x2 to a

constant (red lines) since the truncation error stemming from the time discretization

is proportional to ∆t and thus remains constant as the space discretization error

decreases with N . The effect of decreasing ∆t in both cases is, as expected, a

reduced numerical value of the error.

Even if a global maximum velocity can be determined efficiently, the use of a

convective condition (that is rc = c∆t/∆x kept constant in our linear case) results

in higher derivatives providing divergent terms in the truncation error. This is also
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Figure V.5. Convergence properties with different relations between time
step size and grid spacing for the advection-diffusion equation. (a) Cases
with constant ∆t. Different lines correspond to ∆t = 1 × 10−5 (circles),
5×10−6 (squares), and 1×10−6 (diamonds). (Note that time steps are small
because they need to be chosen such that the stability condition is satisfied
at the largest resolution.) Red and blue lines correspond to p0 = 1.0
(synchronous) and 0.3, respectively. (b) Cases with constant rc = c∆t/∆x.
Red, green and blue lines correspond to p0 = 1.0 (synchronous), 0.3, and
0.0, respectively. Dashed lines in both panels are reference power laws
with slope noted next to the corresponding line.

seen from the last two rows in Table II.2. For the case of the advection-diffusion

equation (D = 2) with a convective condition (q = 1 in the table) and constant P ,

the average error is also constant as the grid is refined. Fig. V.5(b) shows again this

theoretical result to be consistent with the numerical data. The figure also shows the

standard synchronous scheme which is seen to be first order. This is expected since

the time discretization which is O(∆t), becomes O(∆x) when rc is kept constant.

V.A.2. Asynchrony-tolerant schemes

As shown in previous sections, while common finite differences used in an asyn-

chronous fashion retain stability characteristics, its accuracy can be degraded sig-

nificantly making these schemes potentially unusable for real applications. Thus,
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alternative strategies are needed to make asynchronous approaches feasible for accu-

rate solutions of general PDEs.

Since leading order terms in the truncation error due to asynchrony are pro-

portional to ∆t (see e.g. Eq. (2.48)), the simplest strategy is to select the time

step according to ∆t ∼ ∆xq with appropriate values of q. For D = 2 (i.e. heat or

advection-diffusion equations) a value of q = 3 will recover the original average trun-

cation error of ∆x2 when the number of PEs is kept constant according to Table II.2.

This is indeed observed from the numerical data presented in Fig. V.6(a). However,

as noted in section II.C.3, this may render the simulations prohibitively expensive

as time step size decreases rapidly with increasing space resolution, especially when

high-order schemes are utilized. Thus, we use asynchrony-tolerant schemes which

retain a desired order of accuracy without the need to decrease the time step size

with a steep power law on the grid spacing.

In Fig. V.7, we show typical results from the simulations using an asymmetric

stencil asynchrony-tolerant scheme (see Eq. (5.1)) at PE boundary points which is,

with r = 2, first order accurate in space.

∂2u

∂x2
≈

uñ
i+2 − uñ

i+1 − un
i + un

i−1

2∆x2
+O(k∆t,∆x, k∆t/∆x) (5.1)

Comparison of Fig. V.7(b) and Fig. V.1(b) reveals smaller errors for the new scheme.

As predicted by our analysis, the scheme recovers second-order convergence asymp-

totically even under asynchronous conditions as seen in Fig. V.6(b). At lower resolu-

tions, a dependence on the probability p0 is seen but weakens as N increases. These

cases were run at rα = 0.1 and rc in the range 0.035 − 0.245 which were found to

provide a stable solution.
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Figure V.6. Recovery of convergence properties for the advection-
diffusion equation. (a) Standard scheme Eq. (4.4) with time step de-
termined as ∆t ∼ ∆x3. (b) Scheme using Eq. (5.1) with a fixed rα of 0.1.
Dashed lines in both panels are reference power laws with slope noted
next to the corresponding line. Red, green and blue lines correspond to
p0 = 1.0 (synchronous), 0.3, and 0.0, respectively.

To verify the accuracy of higher order schemes, we use simulations of linear

advection-diffusion equation approximated with Adams-Bashforth scheme for the

time derivative and fourth order central difference and fourth order symmetric stencil

symmetric coefficients asynchrony-tolerant schemes for space derivatives. In Fig. V.8,

we present convergence graphs in the cases of both strong and weak scaling of the

problem. Different lines in the graphs are for different probabilities of asynchrony.

As predicted from the theory, all the cases converge according to a slope of −4, which

shows that the schemes are fourth order accurate in space. It is interesting to note

that there is hardly any visible distinction for different probabilities of asynchrony.

This is because the errors due to asynchrony is bounded by a value of O(∆x4).
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Figure V.7. Typical time evolution of the numerical solution of the
advection-diffusion equation using the standard synchronous scheme
Eq. (4.4) with ñ = n (dashed red lines) and the new asynchronous
scheme Eq. (5.1) (solid black lines). (a) The velocity field. (b) Er-
ror En

i = un
i − ua(xi, tn). Vertical dash-dotted lines correspond to PE

boundaries. Simulation parameters: N = 128, P = 4, L = 2, with
{p0, p1} = {0.3, 0.7} for the asynchronous scheme.

V.B. Nonlinear equation

Although the theoretical predictions were done for the advection-diffusion equa-

tion, there is obvious interest also in its non-linear version, that is Burgers’ equation.

This is so because of this equation resembles a one-dimensional (and more analyti-

cally amenable) version of the full equations describing the motion of fluid flows in

important applications such as high-Reynolds numbers turbulence. In Fig. V.9(a)

we show an example of a scheme like Eq. (4.4). Specifically,

un+1
i − un

i

∆t
+ un

i

uñ
i+1 − un

i−1

2∆x
= α

uñ
i+1 − 2un

i + un
i−1

∆x2
. (5.2)

In part (a) of the figure we show results with rα = 0.1 and initial conditions given

by Eq. (4.2) with different ranges of wavenumbers and random phases. Conclusions

below are insensitive to those parameters in the initial conditions as long as the
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Figure V.8. Effect of number of PEs on the average error for the
advection-diffusion equation with constant rα = 0.1. (a) Cases with P = 16.
Different lines correspond to p0 = 1.0 (red), 0.6 (green), 0.2 (blue) and 0.0
(magenta). (b) Cases with P/N = 1/16. Different lines correspond to p0 =
1.0 (red), 0.6 (green), 0.2 (blue) and 0.0 (magenta). Dashed line with slope
-4 is included for reference.

scheme remains stable. Just as in the linear case, we observe that the accuracy

drops from second to first order and that the effect of decreasing p0 is to increase

the error linearly (inset). If the new scheme Eq. (5.1) is applied to the non-linear

equation, the scheme is now

un+1
i − un

i

∆t
+ un

i

uñ
i+1 − un

i−1

2∆x
= α

uñ
i+2 − uñ

i+1 − un
i + un

i−1

2∆x2
. (5.3)

A typical result using this scheme is shown in Fig. V.9(b). All the conclusions we

arrived at with the linear equation appear to apply equally well in the non-linear case.

However, more thorough testing as well as a deeper fundamental understanding of the

non-linear case is required to make a more generally valid claim. This is especially so

for small values of α, where increasingly large gradients (and numerical instabilities)

are known to appear.

As mentioned in section V.A, since errors may be localized in space, some sta-
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Figure V.9. Convergence for non-linear Burgers equation. (a) Results
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tistical features of the solution may be insensitive to the numerical perturbations

due to asynchrony. An example of this, is shown in Fig. V.10 where we can see

the decay of the space-averaged kinetic energy K = 〈u2〉/2 and its dissipation rate

ǫ = α〈(∂u/∂x)2〉 as a function of time. A grid convergence study for the synchronous

schemes (also seen in Fig. V.10) show thatK becomes grid-independent at N = 96 —

that is, results are indistinguishable from results at N = 128 and higher. The same

behavior is observed for asynchronous computations (dashed lines) which practically

overlap with synchronous results when the grid is fine enough for (synchronous)

results to have converged.

The decay of the dissipation rate is shown in part (b). As expected this is

more sensitive to resolution than K because ǫ depends on gradients. Thus, it is not

surprising that larger errors appear. Still grid-independent results are also attained at
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N larger than 96. Again, asynchronous and synchronous results are indistinguishable

from each other in the figure.

We then conclude that, in this case, the decay of both K and ǫ are virtually

unaffected by asynchrony for grid-converged simulations. Thus, if the interest is,

for example, in decay rates, then asynchronous computations would provide results

which are as accurate as those using synchronous schemes. Obviously, extending this

conclusion to three-dimensional, high-Reynolds number turbulence will require care-

ful examination of numerical data from asynchronous simulations. In this endeavor

it would also be important to study the behavior of other methods more suitable for

the non-linear Burgers equation when asynchrony is present.

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

10
2

(a)

t

〈K〉

(b)

t

〈ǫ〉

❄

N = 32

✂✂✌

N = 64

✏✏✏✏✶

N = 96, 128

✂
✂✂✍

N = 32

✻

N = 64 ✁
✁☛

N = 96, 128

Figure V.10. Time evolution of overall (a) kinetic energy, 〈K〉 and (b)
dissipation rate, 〈ǫ〉 of the flow at different grid resolutions. Red, black,
blue, and magenta correspond to N = 32, 64, 96, and 128 respectively.
Synchronous (solid lines) and asynchronous results (dashed lines) were
obtained with Eq. (5.2) and Eq. (5.3). Initial conditions: Eq. (4.2) with
wavenumbers κ = 6, 7, 8. Other simulation parameters: P = 16, L = 4,
{p0, p1, p2, p3} = {0.4, 0.2, 0.3, 0.1}.
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V.C. Spectral space

In this section, we study the effects of asynchronous computing method in spec-

tral or wavenumber space. Fig. V.11 illustrates the energy spectrum of the solution

evolved according to the diffusion equation. The initial condition we have used in

this simulations is single sine wave with κ = 3. As the equation is linear, one would

no additional numbers in the spectrum. This is seen with synchronous solution (red

line in the figure) which has energy only in κ = 3. On the other hand, when the solu-

tion is computed asynchronously, we observe that additional wave numbers with low

energy appear in the spectrum. This shows that the random switching of time levels

due to asynchrony results is a nonlinear process. It is interesting to see that when

asynchrony-tolerant schemes are used, the energy in the additional wavenumbers due

to asynchrony is significantly reduced.
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We now understand the effect on asynchrony in a nonlinear process. The result

shown in Fig. V.12 are obtained from the simulations of the Burgers’ equation using

second order synchronous and asynchrony-tolerant schemes. A multiscale spectrum

has been used as an initial condition. Because of the nonlinear nature of the equation,

additional wavenumber are created as the solution evolves in time. In the figure we

see that the energy is distributed across a wide range of wavenumbers. At high

wavenumbers the energy is expected to decay exponentially, which is observed in

the synchronous case. In the presence of asynchrony, the spectrum deviates from

the exponential decay at high wavenumbers. The behavior in these wavenumbers is

similar to the observations in linear case. The use of asynchrony-tolerant schemes,

again, minimize the affect of asynchrony.
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V.D. Computational performance

In this section we present results from the simulations of a 1D advection-diffusion

equation, developed using Implementation II described in Ch. IV. The computational

effort per PE in these simulations is very similar to what one would expect in mas-

sively parallel simulations. An important parameter in asynchronous simulations is

the distribution of k̃, which determines the characteristics of delay in communica-

tions. Fig. V.13 shows the distribution for two different MPI communication imple-

mentations (MPI-2 and foMPI (fast one-sided MPI, Gerstenberger et al. (2013))).

They have been obtained using a spatial average among all the PEs and an ensemble

average over 10 runs. A buffer length L = 20 has been used in the simulations, which

means that synchronization of communication is invoked only when k̃ > 20. In a

simulation, it is very likely that computations in a PE are ahead of its neighbors.

In such a case, the PE will receive delayed values with k̃ > 0 into its buffer. At

the same time, the latest values received by its neighbors can be from advanced time

levels with respect to their n, i.e., k̃ < 0. From the graph two major observations can

be made. First, foMPI implementation provides k̃ close to zero. Second, a non-zero

probability of k̃ = 20 indicating explicit synchronization of communication during

the simulations. These are due to faster communication with foMPI that will result

in better performance and more accurate solution.

To compare the overall performance of the algorithms, we present the strong-

scaling graph in Fig. V.14(a). Clearly, asynchronous method scales well much beyond

the range in which synchronous counterpart scales. Also, the scaling is nearly linear

due to the absence of any explicit synchronization during the simulation, which is
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evident from Fig. V.14(b).
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V.E. Summary

In this chapter, we have first presented results on the numerical performance of

both synchronous and asynchrony-tolerant schemes. The results from the simulations

are very well in agreement with theoretical predictions made in Ch. II and III.

The scaling of the average error with simulations parameters like number of PEs,

statistics of delay have also been presented. We have also studied the effect of

asynchrony in spectral space. We show that asynchrony creates additional scales with

low energy content. With simulations using Implementations II, we have measured

typical delays experienced on actual machine. We have shown the excellent scalability

of the asynchronous computing method.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

VI.A. Conclusion

Due to the massive levels of parallelism already available on petascale systems,

communication between PEs presents significant challenges in practical applications

for sustained performance at scale. In future exascale systems, parallelism is expected

to increase further in a significant way. Communication, global synchronizations as

well as minor load imbalances could represent major bottlenecks to scalability on

future systems.

In this work, we have proposed a highly scalable asynchronous computing method

based on finite difference schemes to solve PDEs at extreme scale such that all syn-

chronizations and communication overheads are avoided. Not only this allows for

overlap of computation and communication but it also relaxes expensive synchro-

nizations due to small but common delays across PEs which are already present in

current systems due to e.g. system noise.

We first investigated the effect of asynchrony on numerical properties of standard

synchronous schemes. We showed that these schemes remain stable when the value

of the function at one or more grid points correspond to time steps previous to the

most current one. This property was shown using bounds on the infinity-norm of the

matrix representing the evolution of the solution at every step. The use of a matrix

method to analyze stability is necessary because of the random nature of the delays
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as well as the localized nature of these delays (at PEs boundaries) which renders

a classical von Neumann analysis inappropriate in this case. Our analysis can only

give sufficient conditions, though, which in some cases may be too restrictive. We

have also analyzed the issues posed by asynchrony on consistency and accuracy of

standard schemes. We have shown that when used asynchronously widely used finite

differences may present consistency issues, which can, in principle, be mitigated by

the way in which time step size and grid spacings are reduced simultaneously. By

studying the details of the truncation error, it is clear that a zeroth-order term

always appears. However, these errors will only be present at PE boundaries. Due

to the random nature of the delays expected at PE boundaries, a statistical approach

has been used to study the convergence properties of these asynchronous schemes.

In particular we used the average of the error and the absolute value of the error

(corresponding to the 1-norm of the error) across the domain. We showed that this

error always drops to first order when asynchrony is present regardless of the order

of the original scheme. Furthermore, we found that the error is also proportional

to the number of PEs (P ) and the mean delay |k̃|, that is 〈|E|〉 ∼ |k̃|P∆x. This

is both an interesting and important result. It states that the error of the solution

depends not only on grid spacing but also on the characteristics of the system it

is run on. At extremely large levels of parallelism due to the enormous challenges

in data movement it is indeed expected that scalable codes are able to trade some

accuracy for computational performance. This scaling of the error has been verified

by thorough numerical experiments.

Since first-order methods are rarely of practical use, we have shown that it is
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possible to construct new asynchrony-tolerant schemes robust to asynchrony. By

using larger stencils, one can mitigate the errors incurred by delays in messages and

recover higher orders of accuracy. We have discussed the consequences of increasing

the stencil size in space and time on the computational performance. Using Tay-

lor series and the method of undetermined coefficients, we have presented a general

methodology to derive asynchrony-tolerant schemes of arbitrary accuracy. With care-

ful selection of points and time level in a scheme, it is possible to reduce the expected

increase of stencil size to achieve higher orders of accuracy. A simple classification

has been provided for the schemes based on their stencil layout and nature of coeffi-

cients. We have derived sample schemes that are representative of different classes in

the classification. We have analyzed the average error in a numerical method which

uses both standard and asynchrony-tolerant schemes in different regions of com-

putational domain. It has been found that the average error scales linearly with P

when asynchrony component dominates. Unlike standard schemes, the average accu-

racy with asynchrony-tolerant schemes can depend on mean as well as higher order

moments of delay. Numerical experiments have been carried out using the linear

advection-diffusion and the non-linear Burgers equation to validate the theoretical

work. Results show an excellent agreement with the theoretical predictions.

To exploit the potential of asynchronous computing method to eliminate virtu-

ally all synchronizations and communication overheads, we have developed a novel

implementation algorithm for practical applications. We have utilized modern re-

mote memory access schemes that have been shown to provide significant speedup

on modern supercomputers, to efficiently implement communications suitable for
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asynchronous-tolerant schemes. Results from 1D simulations have shown nearly lin-

ear scalability and demonstrated that the proposed method has a potential to provide

extreme scalability and may be a viable path towards the development of future ex-

ascale applications.

VI.B. Future work

In this section, we discuss some possible research directions that can be contin-

ued from the current work. We divide this section into numerical and computational

VI.B.1. Numerical

• Our work has been based on finite difference method, which in principle can be

applied to other methods like finite volume and finite element. Also, we have

carried out the analysis using 1D linear equations. This has to be extended to

higher dimensions for practical applications.

• It is important to devise a frame work to understand the stability of asynchrony-

tolerant schemes as it will expand the range of conditions in which one can

compute solutions with greater confidence.

• The properties of asynchrony-tolerant schemes, in terms of spectral resolution,

dissipative and dispersive error, etc. have to be studied. For complex problems

it may be necessary to derive these schemes which possess features like energy

conserving, flux limiting, etc.

• Using the concepts in uncertainty quantification, one can develop a model to
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predict the distribution of error due asynchrony with inputs on the distribution

of delays.

• The numerical performance of asynchronous computing method should be

tested with more complex equations like the Navier-Stokes equations and in

complex conditions like the turbulence phenomena.

VI.B.2. Computational

• In this work, we have demonstrated the computational performance of asyn-

chronous computing method using a simple 1D problem. This has to be ex-

tended to solve complex 3D problems on massively parallel machines.

• Implementation of the method has to be extended to heterogeneous architec-

tures which use accelerators like GPU or co-processors.

• The implementation of the asynchronous method should done on more high-

level implementations (e.g. STAPL), which will facilitate rapid development,

experimentations and portability of asynchronous solvers.
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