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ABSTRACT

There is a growing concern over reliability, power consumption, and performance

of traditional Von Neumann machines, especially when dealing with complex tasks

like pattern recognition. In contrast, the human brain can address such problems

with great ease. Brain-inspired neuromorphic computing has attracted much research

interest, as it provides an appealing architectural solution to difficult tasks due to

its energy efficiency, built-in parallelism, and potential scalability. Meanwhile, the

inherent error resilience in neuro-computing allows promising opportunities for lever-

aging approximate computing for additional energy and silicon area benefits. This

thesis focuses on energy efficient neuromorphic architectures which exploit parallel

processing and approximate computing for pattern recognition.

Firstly, two parallel spiking neural architectures are presented. The first archi-

tecture is based on spiking neural network with global inhibition (SNNGI), which

integrates digital leaky integrate-and-fire spiking neurons to mimic their biological

counterparts and the corresponding on-chip learning circuits for implementing the

spiking timing dependent plasticity rules. In order to achieve efficient parallelization,

this work addresses a number of critical issues pertaining to memory organization,

parallel processing, hardware reuse for different operating modes, as well as the trade-

offs between throughput, area, and power overheads for different configurations. For

the application of handwritten digit recognition, a promising training speedup of

13.5x and a recognition speedup of 25.8x over the serial SNNGI architecture are

achieved. In spite of the 120MHz operating frequency, the 32-way parallel hardware

design demonstrates a 59.4x training speedup over a 2.2GHz general-purpose CPU.

Besides the SNNGI, we also propose another architecture based on the liquid state
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machine (LSM), a recurrent spiking neural network. The LSM architecture is fully

parallelized and consists of randomly connected digital neurons in a reservoir and

a readout stage, the latter of which is tuned by a bio-inspired learning rule. When

evaluated using the TI46 speech benchmark, the FPGA LSM system demonstrates

a runtime speedup of 88x over a 2.3GHz AMD CPU.

In addition, approximate computing contributes significantly to the overall en-

ergy reduction of the proposed architectures. In particular, addition computations

occupy a considerable portion of power and area in the neuromorphic systems, es-

pecially in the LSM. By exploiting the built-in resilience of neuro-computing, we

propose a real-time reconfigurable approximate adder for FPGA implementation to

reduce the energy consumption substantially. Although there exist many mature

approximate adders, these designs lose their advantages in terms of area, power, and

delay on the FPGA platform. Therefore, a novel approximate adder dedicated to

the FPGA is necessary. The proposed adder is based on a carry skip model which

reduces carry propagation delay and power, and the resulting errors are controlled

by a proposed error analysis method. Also, a real-time adjustable precision mecha-

nism is integrated to further reduce dynamic power consumption. Implemented on

the Virtex-6 FPGA, it is shown that the proposed adder consumes 18.7% and 32.6%

less power than the built-in Xilinx adder in two precision modes, respectively, and

that the approximate adder in both modes is 1.32x faster and requires fewer FPGA

resources. Besides the adders, the firing-activity based power gating for silent neu-

rons and booth approximate multipliers are also introduced. These three proposed

schemes have been applied to our neuromorphic systems. The approximate errors

incurred by these schemes have been shown to be negligible, but energy reductions

of up to 20% and 30.1% over the exact training computation are achieved for the

SNNGI and LSM systems, respectively.
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1. INTRODUCTION

Although conventional Von Neumann computers are widely used to deal with var-

ious problems such as numerical and algorithmic computations, the man-made ma-

chines require tremendous power, energy, and space resources for processing, commu-

nications, and storage. When it comes to more complicated tasks like pattern recog-

nition, text reading, and language learning, the performances of the conventional

architecture are greatly limited. On the contrary, the human brain can solve such

problems with ease, demonstrating vastly superior energy and space efficiency and

showing even better performance than supercomputers [19]. As an appealing archi-

tectural solution, brain-inspired neuromorphic computing has emerged as a promising

solution to overcome these underlying constraints of the traditional machines [40].

Neuro-computing shows good energy efficiency, potentially improved scalability, and

great suitability for pattern recognition problems. The built-in parallel processing

mechanism within the human brain also offers opportunities to increase the compu-

tation speed considerably.

At the same time, the inherent fault tolerance and error resilience within the neu-

romorphic systems allow remarkable potential benefits for hardware VLSI systems.

The unique computational structure and inherent resilience of the neuromorphic

architectures can be leveraged for significant hardware cost reduction in terms of

power, energy, area, and runtime. These benefits can be achieved through approx-

imate computing, which has drawn a large amount of research interest as it trades

minor computation precision for substantial hardware overhead saving [1] [2] [3].

The key observation of approximate computing is based on the following: a common

characteristic of many tasks, such as media signal processing (audio, video, image),

1



pattern recognition, machine learning, and data mining, is that often a perfect result

is not necessary and a less-than-optimal result is sufficient [39]. Therefore, the full

precision of computation can be relaxed to gain energy efficiency and speedup. An-

other motivation to adopt approximate computing is that arithmetic computations

such as additions and multiplications occupy the majority of silicon area, power

consumption, and computation time, especially in the neuromorphic VLSI systems.

Thus, replacing full precision arithmetic with approximation designs would signifi-

cantly benefit the whole hardware system. In addition, a power gating scheme could

also be integrated to turn off redundant resources in real-time to further reduce

dynamic power consumption.

This thesis proposes two hardware design techniques for energy efficient parallel

neuro-computing: 1) parallel spiking neural architectures for pattern recognition and

2) energy efficient approximate computing for neuromorphic hardware systems.

1.1 Parallel Spiking Neural Architectures for Pattern Recognition

The first contribution of this thesis is the parallel spiking neural architectures for

pattern recognition. In order to explore different types of neural networks and corre-

sponding learning mechanisms, we propose two spiking neural network architectures,

both of which are built on Leaky Integrate-and-Fire (LIF) neuron models [13] and

support on-chip learning process.

The first architecture is based on spiking neural networks with global inhibition

(SNNGI) using an unsupervised learning rule. As shown in Fig. 1.1, the network

structure consists of two layers of excitatory neurons (input and output layers) with

fully connected inhibitory neurons implementing the global inhibition and winner-

take-all mechanisms. The plastic synaptic weights between the input and output

layers are stored in local memory and trained by on-chip learning circuits realizing the

2
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Figure 1.1: The network structure and architecture of the SNNGI.

spike-timing dependent plasticity (STDP) rule [15]. The LIF Arithmetic Unit (LAU)

within this architecture computes the dynamic and updates the membrane potential

of each spiking neuron according to the LIF model. All parameters regarding a

spiking neuron such as spike timing, firing activity, and membrane potential are

stored in the Neuron Units (NU). Importantly, the proposed architecture addresses

several critical issues pertaining to efficient parallelization of the update of membrane

potentials, on-chip storage of synaptic weights, as well as the consideration of data

dependency. Two parallel architectures are proposed to achieve fast computation

for both training and recognition processes. The first parallel scheme supports K-

way parallel processing where K membrane potentials are updated simultaneously

through K ways of LAU, local synaptic memory, and NU port. The other scheme

still processes the LIF computation serially, but a modified LAU with supporting

multi-bank local memory is introduced in order to finish the linear combination of

all pre-synaptic weights in a single clock cycle. In addition, the trade-offs between

throughput, hardware cost, and power overhead for different configurations of these

two parallel schemes are thoroughly investigated. The proposed SNNGI architectures

are implemented on a Xilinx Virtex-6 FPGA. Notably, for the task of handwritten

3



Input Neurons Reservoir Neurons Readout Neurons

Plastic synapses

LE 1

LE 2

LE 135 

Input 
1

Input 
2

Input 
100

LE  i

1

1

1

8

8

8

8

R
_

Sp
ik

e
 [

 1
3

5 
: 

1
 ]

1

1

1

1

135

Reservoir

16 16 16 16 OE 1

OE 2

OE 10

BRAM
A
W’
W

135

135

135

Teacher1

Teacher2

Teacher10

Spike 
Out 1

Spike 
Out 10

Training Unit

W’
W Spike 

Out 2

W’
W

Excite1 

A

A

Excite2 

Excite10 

BRAM

BRAM

Baseline 
Design

SNG Only Approximate 
Addition Only

Adjustable
Precision

w/ all these 
technqiues

En
er

gy
 a

n
d

 A
cc

u
ra

cy

19.8J
17.8J

17.1J
15.9J

13.8J

99.4% 99.4% 99.2% 97.0% 96.4%

10.3% 13.8%
19.8%

30.2%

Liquid Neuron

Reservoir

Readout Stage

Output 
Neuron 

Input

Liquid Neuron

Liquid Neuron

Liquid Neuron

Liquid Neuron

Liquid Neuron

Liquid Neuron

Output 
Neuron 

Output 
Neuron 

Output 
Neuron 

Liquid neurons are randomly connected to each other.

Figure 1.2: The architecture of the LSM.

digit recognition, the parallel SNNGI system demonstrates a promising speedup over

a general-purpose CPU and a highly competitive recognition performance.

Besides the SNNGI, we also propose another parallel architecture based on the

Liquid State Machine (LSM) [16], a recurrent spiking neural network model, for

real-world pattern recognition problems. As illustrated in the Fig. 1.2, the LSM

architecture consists of a digital reservoir with fixed synapses and a readout stage

that is tuned by a biologically plausible supervised learning rule [7]. To fully exploit

the advantage of distributed computing, all spiking neurons, whether in reservoir or

readout stage, are processed in parallel with supporting private memory. A number of

critical parallelization issues pertaining to interconnection of liquid neurons, storage

of synaptic weights, and design of arithmetic blocks are addressed in this work. When

evaluated using the TI46 speech corpus [53], the FPGA LSM system demonstrates

a great recognition performance and provides a remarkable speedup over a general-
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purpose CPU.

In the work of parallel neuromorphic architectures, our key contributions are as

follows:

• Developed and parallelized the complete software simulation for SNNGI based

on Y. Zhang’s prototype code.

• Designed and implemented the SNNGI hardware system including data flow,

control flow, and interface on FPGA.

• Designed the parallelism schemes for SNNGI and analyzed their trade-offs with

Q. Wang.

• Developed a complete LSM hardware system based on Q. Wang’s LSM core.

• Developed an embedded system for the LSM IP and solved IO-bound and

memory-bound issues.

1.2 Energy Efficient Approximate Computing for Neuromorphic Systems

Our second contribution is to apply proposed approximate computing schemes to

the neuromorphic hardware systems for considerable energy saving. To achieve this,

a novel FPGA-based approximate adder with real-time adjustable precision is pro-

posed. Although there exist many approximate adder designs [58] [59] [60] [61] [62]

with good energy-efficiency in ASIC implementations, these designs lose their ad-

vantages in the FPGA platform, especially when compared to the highly optimized

built-in Xilinx FPGA adder [28]. Therefore, a novel approximate adder dedicated to

the FPGA implementation is necessary. The proposed adder is based on the carry

skip model [58], which reduces the critical carry propagation delay and power by

predicting the carry-in based only on a limited number of less significant input bits.

5



Since the skipped carry could incur unexpected error, an error analysis scheme is

introduced to guarantee the accuracy of each compromised carry prediction unit.

Also, with the Carry-Chain Primitive [54] on FPGA implementing the fast carry

logic, highly efficient carry propagation and partial addition are achieved. In order

to further reduce dynamic power consumption, a real-time adjustable precision mech-

anism is integrated into the approximate adder. Besides the addition operations, the

precision of multiplications in the neuromorphic systems can also be approximated in

order to save power and area. Thus, booth approximate multipliers [20] are adopted

to replace the built-in full precision ones in the multiplication-intensive systems. In

addition to these approximate arithmetic units, we propose another scheme called

Silent Neuron Gating (SNG) [45] in order to reduce dynamic power consumption for

the spiking neural networks. SNG is a firing activity based power gating approach

which detects those silent neurons that rarely fire and turn them off in real-time

operation. To combine SNG with approximate arithmetic, a multi-mode adjustment

policy for each neuron is also introduced so that the operational precision of each

neuron can be changed in real time for further energy reduction.

Implemented on Virtex-6 FPGA, it is shown that the proposed approximate adder

outperforms the built-in Xilinx adder in terms of delay, area overhead, and power

consumption. To evaluate the performance of these approximate computing schemes

under neuromorphic applications, the same environment setups in the parallel neu-

romorphic architectures are used. The approximate errors of these approximate

schemes have been shown to be negligible but the benefit in terms of energy saving

is significant.

In the work of approximate computing, our key contributions are as follows:

• Designed and implemented the FPGA-based approximate adder with real-time

6



adjustable precision.

• Developed the Silent Neuron Gating scheme with Q. Wang.

• Integrated the approximate multiplier into neuromorphic systems.

• Analyzed the trade-offs of the approximate computing under neuromorphic

applications with Q. Wang.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the background

of brain-inspired neuromorphic and approximate computing as well as related works

in the literature. Two parallel neuromorphic architectures and their applications

to pattern recognition are presented in Chapter 3. After proposing three novel ap-

proximate computing schemes in Chapter 4, energy efficient neuromorphic hardware

systems are presented in Chapter 5. Finally, we summarize this thesis work and

discuss future work in Chapter 6.
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2. BACKGROUND AND RELATED WORKS

In this chapter, we present an overview of neuromorphic architectures and ap-

proximate computing. It begins with the biological motivation of neuromorphic com-

puting, then gives reviews of the spiking neural networks and liquid state machine.

It also deals with existing neuromorphic VLSI systems and discusses their issues and

limitations. In addition, the notion of approximate computing is introduced and

several approximate adders are briefly reviewed.

2.1 Neuromorphic Computing

There is a growing concern over reliability, power consumption, and performance

of traditional Von Neumann machines, especially when dealing with complex tasks

like pattern recognition and language learning. On the other hand, the human brain

can solve such problems with great ease. The human brain can also adapt to the

new environment and acquire new knowledge and information through an excellent

learning process. More importantly, the brain addresses these difficult tasks with

much improved energy and space efficiency, and show even better performance than

supercomputers [19]. The slower operational speed of the biological neurons within

the brain may have contributed to their incredible energy efficiency. To be specific,

the brain only consumes approximately 10−16J per operation per second, while the

conventional machine needs 10−6J per operation per second [4].

Brain-inspired neuromorphic computing has attracted much research interest, not

only because of its application as an useful tool in the field of pattern recognition,

but also as an approach of increasing the understanding of mammalian brains and

finally gaining our knowledge of consciousness and intelligence.

Although a myriad of applications such as signal processing and pattern recogni-
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Figure 2.1: Biological neuron anatomy [6].

tion can be realized by software models on Von Neumann machines, software simula-

tion of complex biologically plausible models is intrinsically slow and necessitates

huge space and energy consumption to solve these real-world problems. Brain-

inspired neuromorphic hardware systems provide an appealing architectural solu-

tion to these problems. They show suitability, good scalability, and great power

efficiency for pattern recognition. At the same time, the built-in fault tolerance

and error resilience within neural architectures provide promising opportunities to

leverage approximate computing for additional energy and silicon area benefits.

2.1.1 Biological Motivations

The brain of an adult human is shown to have a densely interconnected network

which consists of around 1011 neurons and over 1014 synapses [5]. The biological

nervous systems within the brain have motivated the creation and development of

artificial neural networks which become the keystone of neuromorphic computing.
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Neurons serve as the basic elements of the brain’s nervous system. A myriad

of neurons connect to each other, which forms a neural network. The specialized

interconnections among the neurons are called synapses. Fig. 2.1 shows the details

of neurons and synapses. The neuron primarily includes three components – the

dendrites, the axon, and the cell body/soma. The soma includes the nucleus which

serves as the neuron’s heart. The dendrites receive neural activities from other

neurons through highly branched extensions. A neuron possesses plenty of dendrites

which form the dendritic tree. Compared to the dendrites, axons are typically thinner

and much longer. Each neuron has only a single axon to transmit neural activities

to other neurons through synapses. In other words, the axon and dendrites could be

regarded as the signal transmitter and receiver, respectively. Neural activities and

other information of the neural network are encoded in electrical impulses which are

spike trains. The spike trains are transmitted from a pre-synaptic neuron to a post-

synaptic one. The computation of the neural dynamic is processed by integrating all

incoming spike trains from pre-synaptic neurons and then generating action potential

once the membrane potential of the neuron reaches a certain threshold [40].

2.1.2 Spiking Neural Networks (SNNs)

Inspired by increasingly in-depth study of learning mechanisms in biological

nervous systems of brains [8] [9] [10], spiking neural networks (SNNs) were devel-

oped as the third generation of artificial neural networks (ANNs). SNNs have been

proven to be more powerful in terms of computation than the previous generations

of ANNs [11]. The traditional artificial neural networks process neural information

with real-valued numbers. However, SNNs could utilize both the presence and timing

of spike trains as a means of communication among the spiking neurons.

As shown in Fig. 2.2, the spiking neurons, the basic elements of the SNNs, exploit

10
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spike trains as input and output. The spike trains are transmitted from a pre-

synaptic neuron to a post-synaptic one through a synapse and then influence the

internal state of the post-synaptic neuron. The internal state can be represented

by the membrane potential which can either be enhanced or weakend according to

different types of neurons and synaptic characteristics such as strength of the synaptic

connections. To be specific, excitatory pre-synaptic neurons potentiate the potential

whereas inhibitory neurons depress. The internal state of each spiking neuron is

updated by temporally integrating all incoming spike trains over time. Whenever its

potential accumulates to a particular threshold, the post-synaptic neuron fires and

the generated spike train could be either transmitted to other spiking neurons in the

SNN or read off to the external environment [40]. This behavior of spiking neuron

can be modeled by various ways, using models such as the Leaky Integrate-and-Fire
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(LIF) and the Hodgkin-Huxley (HH) models [12]. The spiking neurons throughout

this thesis are based on the widely adopted LIF model [13].

Similar to biological brains, SNNs also need to learn. This is done through

an adaptation process named synaptic plasticity which adjusts the strength of the

synaptic connections among the neurons over time. In some cases, the adjustment is

performed according to the increased or decreased activities of these synapses. Spike

timing dependent plasticity (STDP) is one of such biological learning processes.

STDP updates the strengths of connections depending on the relative timing of

neural inputs and output spikes. The timing dependency of pre- and post-synaptic

spikes was experimentally characterized in detail by Bi and Poo [14]. Not only has

the STDP been exploited in VLSI based neuromorphic systems but also it has been

recognized in various tasks such as signal processing and pattern recognition [15]. In

general, STDP follows the form of Hebbian learning, which means that the update

of a synaptic weight is a function of the relative timing between the pre- and post-

synaptic firing events as illustrated in Fig. 2.3. In this example, the STDP rule is

mathematically described by W = W + ∆W = W + fSTDP (tpost − tpre) where tpre

and tpost denote the spike timings of the pre- and post-synaptic neurons, respectively.

And W represents the synaptic weight and fSTDP the STDP learning function [40].

2.1.3 Liquid State Machines (LSMs)

Inspired by the powerful neocortex in the brain, the liquid state machine (LSM)

was proposed [16]. The LSM is a special type of the SNNs with recurrent connections

and its general structure is shown in Fig. 2.4. In this case, the LSM is composed of

three layers of spiking neurons – the reservoir, the input, and the output/readout.

Input spike trains would be received by the corresponding neuron on the input layer

and then would be sent to the reservoir through a flexible number of random con-
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nections. The reservoir consists of a group of spiking neurons which connect to each

other either purely randomly [35] or in a way following certain distributions of spa-

tial locations of neurons [16]. Because of various recurrent connections formed by

these topologies, the reservoir possesses a temporal behaviour which records the his-

tory of its input. Due to these reasons, the LSM is extremely powerful to deal with

time-varying patterns such as video signals and speech signals [33] [34]. After the

input trains have been received, the reservoir generates nonlinear dynamic responses

represented by the spiking activities of each liquid neurons. All liquid activities are

then projected to the output layer though plastic weights which are adjusted ac-

cording to adopted learning rules. Furthermore, the LSM has been proven to own

universal computational power for temporal patterns. According to [16], the LSM

model follows a rigorous mathematical framework so that its computational power

for real-time input is guaranteed. Namely, any mapping from input temporal func-

tion to output function can be approximated by the LSM with arbitrary degree of

precision. This theory of LSMs covers spike trains as the means of communication,

which leads to practical digital implementations.
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When it comes to the implementation, the neuron and synapse models would in-

fluence the overall performance of the system considerably. We utilize the LIF neural

model and the second-order dynamic synaptic model to guarantee the computational

power of the LSM. In hardware implementation, the dynamics of each neuron are

computed by the digitized equation [7]:

V n
m = V n−1

m − V n−1
m

τm

+
∑
i

∑
j

Wmi · e
−
Tn−Tij−Dij

τs1 ·H(T n, Ti,j +Di)

τs1 − τs2

−
∑
i

∑
j

Wmi · e
−
Tn−Tij−Dij

τs2 ·H(T n, Ti,j +Di)

τs1 − τs2

(2.1)

where Vm denotes the membrane potential of the mth neuron. τm denotes the time

constant. j and i are indices of pre-synaptic neurons. Wmi denotes the synaptic

weight regarding to the i-th pre-synaptic neuron. Tij represents the timing of the jth

spike emitted from the ith pre-synaptic neuron. S(·) is the synaptic response. Di is

the corresponding synaptic delay. τs1 and τs2 denote the time constants of the second

14



order response. 1
τs1−τs2

is to normalize the second order dynamical response function.

H(·) represents a step function [7].

In order to achieve efficient hardware implementation, the learing rule also re-

quires detailed consideration. The conventional learning rules, such as backpropa-

gation [34] and the off-line learning rule [33], increase the complexity and cost of

the hardware implementation. To obtain a hardware-friendly learning process of the

LSM, we have adopted the bio-inpired learning rule which was proposed in [7]. This

rule can processs the online input signal without the expensive intermediary stor-

age, and the synaptic weight update in this rule only depends on the spike activities

between pre- and post-synaptic neurons without involving global communications.

This biological motivated rule also exploits the calcium concentration within a bio-

logical cell which indicates the instantaneous activities within a specific time window

as suggested in [17]. As a result, the level of calcium concentration triggers the plas-

ticity of related synaptic weights. The following equations describe this learning

rule. 
wi → wi + ∆w with prob. p+ if cθ < cr < cθ + ∆c

wi → wi −∆w with prob. p− if cθ > cr > cθ −∆c,

(2.2)

where wi denotes the synaptic weight of the ith pre-synaptic neuron. ∆w represents

the increasing/decreasing granularity. The probabilities of the weight update are

p− and p+. Also, cθ denotes threshold to trigger the weight update event. ∆c is

the margin width of the threshold to generalize the classification better. cr and

cd represent the real and desired activity of the calcium concentration of a neuron,

respectively [7]. Besides, the internal calcium concentration level is positively related

to the dynamics of the neurons.

Teacher signals are employed to guide the firing activities and calcium concen-
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Figure 2.5: The supervised learning flow for the LSM.

tration of the neurons, and thus to lead to the desired synaptic adaption so that

a supervised learning is realized in the LSM system. The detailed learning flow is

illustrated in Fig. 2.5.

2.1.4 Neuromorphic VLSI Systems

Admittedly, the artificial neural networks including spiking neural network and

rate-based networks could be implemented on the conventional computers to mimic

the behavior of the biological brains. However, the software simulations are highly

inefficient because the computations on Von Neumann machines require tremendous

capacity, energy, and runtime. On the contrary, the VLSI implementation of neural

systems can achieve significant efficiency in terms of area, power, and speed. The

inherent parallelism of VLSI neuromorphic systems also provides better imitation
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Figure 2.6: The block diagram of the digital neurosynaptic core [38].

to the functions of the human brain. Recently, there have been several attempts to

implement SNNs in VLSI [38] [18].

The first work is a digital neurosynaptic core with crossbar memory [38], as shown

in Fig. 2.6. It is composed of 256 digital neurons, 1024 individually addressable axons,

and 1024×256 programmable binary synapses implemented with an SRAM crossbar

array. It processes neural information following an event driven manner in order to

save energy dissipation greatly. The detailed operation in each time step t can be

described by two phases. In the first phase, a set of input spike-events A are sent

to the neurosynaptic core and then sequentially decoded to the corresponding axon

blocks which activate the SRAM’s rows to read out all of its connections and type G,

where presence of synaptic connection is denoted as W = 1. Through this process,

the decoded inputs are sent to the neurons circuits and the membrane potentials V

are updated appropriately. After the serial update of all the neural dynamics, the

axon rows deactivate the SRAM and wait for next axon events. In the second phase,
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a synchronization event is sent to all the digital neurons and each neuron checks

whether its membrane potential reaches specific threshold, where a spike could be

generated, encoded, and then sequentially sent off the chip through the encoder.

Also, the leak term is applied to the neurons. During the two phases of processing,

the neurosynaptic core implements the neural update described by Eqn. 2.3, where

Vi(·) is the membrane potential of the ith neuron at the time step t, Li the leakage

parameter, Aj the activity of the jth axon, Wji the connection flag between the axon

j and neuron i, Si the value that the neuron i weighs its synaptic input, and Gj the

axon type [38].

Vi(t+ 1) = Vi(t) + Li +
K∑
j=1

[Aj(t)×Wij × S
Gj
i ] (2.3)

However, this design does not include an on-chip learning mechanism which is the

most time- and energy-consuming part of the SNNs so the chip necessitates loading

of synaptic weights into the crossbar after the off-chip learning. Since the synaptic

weights within the crossbar SRAM are not trainable, the number of applications of

the chip is limited. Also, this work does not explore the advantage of the inherent

error tolerance of the neuromorphic systems.

The second work is a reconfigurable digital neuromorphic processor with a mem-

ristive synaptic crossbar [49] [48]. As shown in Fig. 2.7, this architecture supports

an arbitrary number of N digital neurons and on-chip learning process. One of the

key contribution of this work is to utilize the memristor nano-devices to store both

synaptic weights and network connectivity with great efficiency in terms of area and

power. In order to expedite read and write accesses of this memristive crossbar,

efficient accessing schemes and interface circuits are developed. With 256 neurons

and 64K synapses, the power and area overhead of this architecture are 6.45 mW
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Figure 2.7: The architecture of the digital neuromorphic processor [49].

and 1.86 mm2, respectively, when implemented in a 90-nm CMOS technology. The

functionality of this architecture is validated by realizing an unsupervised learning

based character recognition system [49] [48]. In addition, the inherent error resilience

of neuro-computing is also exploited by the novel approximate adder and compara-

tors [58].

However, this work has not fully explored the potential parallelism and dis-

tributed computation of neuromorphic systems. Besides, only simple application

is evaluated but complex tasks, such as handwritten digits and speech signal recog-

nition, are not explored.

In addition to these works in VLSI implementations of conventional SNNs, there

exist hardware implementations of the liquid state machine as well [50] [51]. The [51]

proposes a VLSI implementation of the LSM with dendritically enhanced readout

stage (LSM-DER), which focuses on the design of the readout stage of LSMs and the

p-Delta learning rule. This design achieves several improvements when compared to

the perceptron readout stage trained by traditional p-Delta algorithm. The basic

neuron model upon which the readout stage of this work is based is called dendrite
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Figure 2.8: The dendrite neuron model [51].

neuron as shown in Fig. 2.8.

The dendrite neuron has m branches, each of which has k synapses. x represents

the d dimensional input which activates the synapses. The output response of jth

branch is computed by zj = b(
∑k

i=1wijxij), where b() denotes a nonlinear activation

function and wij represents synaptic weight. To combine together all the branch

responses, the output of the neuron is described below, where f() is the output

conversion function [51].

f(x) =
m∑
j=1

zj =
m∑
j=1

b(vj) =
m∑
j=1

b(
k∑
i=1

wijxij) (2.4)

Although this work employs new neuron model and corresponding learning rules,

it suffers from several drawbacks. Firstly, the LSM-DER can only deal with simple

tasks like two-class classification. Secondly, structure plasticity and the learning rule

in the LSM-DER is less biologically plausible. In addition, the introduced structure

plasticity within the connections between the liquid neurons and the readout neurons

might increase the hardware complexity and cost.

Besides this work, [50] also proposes an compact hardware implementation of
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the LSM. This work is an FPGA LSM implementation where the LSM processor

architecture is dedicated for real-time speech recognition. However, this work has

not explored the advantage of distributed computing in the neuromorphic system

and the inherent error tolerance.

2.2 Approximate Computing

As the computing devices become increasingly mobile and embedded, energy and

power efficiency have become the primary concerns in architectural and system de-

signs. Meanwhile, there are increasing demands of computational tasks including

signal processing, pattern recognition, machine learning, data mining, and neuro-

morphic computing. Importantly, a common feature of these tasks is that a perfect

result is not always necessary and a less-than-optimal result might be sufficient. For

example, in media processing, a wide range of image sharpness/resolution is accept-

able. Also, in data mining, it is hard to distinguish between a good result and the

best one [39]. Similarly, there is certain level of error tolerance in tasks processed

by the human brain. Due to these reasons, a novel paradigm named approximate

computing has become promising to provide significant energy efficiency by relaxing

computational precision in many applications as mentioned above [41] [42] [43] [44].

Approximate computing offers remarkable opportunities for the architectural and

system design to reduce the hardware cost in terms of power, energy, area, and

computation time.

Arithmetic computation is the fundamental operation in various applications and

thus arithmetic design is crucial to achieve approximate computing. Since the FPGA-

based approximate adder design is one of key contributions of this thesis, many

existing approximate adder models are briefly reviewed. Firstly, Y. Kim proposes

a carry-skip based approximate adder which employes parallel carry prediction that
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exploits the inputs from the less significant bits. Also an error magnitude reduction

mechanism is adopted to minimize the error once detected [58]. Although it achieves

significant precision of the computation and much shortened worse case delay, the

hardware area overhead is also considerable. In [60], a dithering approximate adder is

proposed in order to produce a zero-centered error distribution by mixing the under-

and over-estimating logic. However, the multiple conditional bounding blocks cause

extra overhead of area and power. [61] proposes an approximate adder where each

bit utilizes only a fixed number of less significant bits for carry prediction to shorten

the delay. The disadvantage of this design has to do with the large numbers of carry

predictors, which results in considerable area and power dissipation. Besides, in order

to save power and energy on the less significant part of the adder, several approximate

adders are divided into an exact part for more significant bits and an approximate

lower part which exploits an OR logic [59] or an XOR function [64] to estimate the

computation of the lower bits. Therefore, high error rates are inevitable in this kind

of approach. In addition, the ACA in [62] is proposed as a configurable adder to

achieve decent trade-off between power and accuracy but the extra sub-adders and

complex error compensation logic give rise to extra power consumption and area

overhead. Furthermore, [63] achieves fast critical path delay through parallel carry

speculation but the hardware costs of multiple sub-adders are substantial.

Although the existing approximate adders still gain energy efficiency with reason-

able performance in the ASIC implementation, these designs lose their advantages

on the Virtex FPGA platform and are outperformed by the built-in full-precision

adders on the FPGAs. Therefore an approximate adder design dedicated to the

FPGA implementation is essential. In this work, we proposes a novel FPGA-based

approximate adder architecture with real-time adjustable precision in order to achieve

high efficiency and performance for the systems implemented on FPGAs.
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3. NEUROMORPHIC ARCHITECTURES∗

3.1 Two Parallel Neuromorphic Architectures

In this chapter, two parallel spiking neural architectures are presented. The first

architecture is based on spiking neural network with global inhibition (SNNGI) which

includes digital LIF spiking neurons and the corresponding on-chip learning circuits.

To achieve efficient parallelization, this work addresses many key problems pertaining

to memory organization, parallel processing, and trade-offs between energy consump-

tion, hardware cost, and throughput for different configurations. For the application

of handwritten digit recognition, a promising training speedup of 13.5x and a recog-

nition speedup of 25.8x over the serial SNNGI architecture are achieved. In spite of

the 120MHz operating frequency, the 32-way parallel hardware design demonstrates

a 59.4x training speedup over a 2.2GHz general CPU. Besides the SNNGI, we also

propose another architecture based on the Liquid State Machine (LSM). The LSM

architecture is fully parallelized and consists of randomly connected digital neurons

in a reservoir and a readout stage, the latter of which is tuned by a bio-inspired

learning rule. When evaluated using the human speech benchmark, the FPGA LSM

system demonstrates a runtime speedup of 88x over a 2.3GHz AMD CPU.

3.2 Spiking Neural Network with Global Inhibition Architecture

3.2.1 SNNGI: Network Structure

This proposed neuromorphic architecture is based on the spiking neural network

with global inhibition (SNNGI) which is a certain type of SNNs designed for image

∗Part of this chapter is reprinted with permission from “Liquid state machine based pattern
recognition on FPGA with firing-activity dependent power gating and approximate computing” by
Q. Wang, Y. Li, and P. Li, 2016. In Proc. of IEEE Intl. Symposium of Circuits and Systems,
c© 2016 IEEE.
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Figure 3.1: The spiking neural network with global inhibition for image recognition.

recognition. Fig. 3.1 illustrates the general topology of the SNNGI which consists of

2-layers of spiking neurons. In the input layer, all white neurons are excitatory and

they receive the external input spikes from the environment where each training pat-

tern enters the input layer as encoded spikes. There are six green inhibitory neurons

fully connected to the input neurons, which introduces strong negative feedbacks to

the excitatory input population. Due to the global inhibition on input layer, extra

firing activities resulting from the extra external spike trains are suppressed so that

the robustness of this system is guaranteed. In the output layer, the white neurons

are excitatory with global inhibitory neurons on the top. Because of the similar neg-

ative feedback of this inhibition, the winner-take-all (WTA) mechanism is realized

in this network. In this figure, the synaptic weights involving inhibitory neurons are

all fixed, while the feed-forward synapses between input and output layer are plastic

as shown in red. These plastic synapses are able to adapt their strengths depending

on an adopted biologically inspired STDP learning rule [23]. During this unsuper-

vised learning process, each synapse adjusts it strength depending on the temporal

relationship of spikes of the corresponding pre- and post-synpatic neurons.
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The neurons in SNNGI are based on the LIF model as mentioned in the previous

chapter. For the digital hardware implementation, the neural dynamic is simplified

and digitized as the follows:

v(t) = v(t− 1) +
∑

Ipre − vleak (3.1)

where v(t) denotes the membrane potential at the biological time step t.
∑
Ipre

represents the input stimulation from all its pre-synaptic neurons, and vleak is a

constant leakage value.

Algorithm 1 presents the pseudo-code of the unsupervised STDP learning process

for this SNNGI. Vmem andW denote the membrane potential and the synaptic weight,

respectively. E is the input spike to each neuron from the external environment and

S indicates whether a neuron fires or not. N is equal to the total number of neurons.

Lfisrt and Llast present the indices of the first excitatory neuron and the last one

in the output layer, respectively. Mfisrt and Mlast denote the indices of the first

excitatory neuron and the last one in the input layer, respectively.

For each training pattern entering the input layer, the unsupervised learning is

performed for a large number of iterations represented by the outer-most loop of the

algorithm. During each iteration, the Vmem of i-th neuron is computed considering

the spikes from its pre-synaptic neurons. To be specific, the membrane potential is

mainly increased by a scaled version of W (j, i) · S(j), where W (j, i) is the weight of

the synapse between the j-th and i-th neuron and S(j) is the firing flag. Also, the

potential is influenced by the external input spike, E(i), and by the constant leakage,

VLEAK . Note that the amplitude of the external spike, KEXT , is purely random,

which emulates the random current injections into a biological cell. Once updated,

the membrane potential of each neuron is compared with a threshold, Vthreshold, in
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Algorithm 1 Pseudocode of the STDP learning for SNNGI.

Given an input training pattern
for t = 1 to Iteration num
/* Update membrane potentials */

for i = 1 to N

Vmem(i) = Vmem(i) + KSY N
∑N

j=1W (j, i) · S(j)

+KEXT · E(i)− VLEAK
end for

/* Check the firing activities */
for i = 1 to N

if (Vmem(i) ≥ VThreshold)
S(i) = 1, Tfire(i) = t, Vmem(i) = Vrest

else
S(i) = 0

end if
end for

/* Update synaptic weights using the STDP learning rule */
for i = Lfirst to Llast

if (S(i) == 1)
for j = Mfirst to Mlast

∆T (j) = t− Tfire(j)

A+(j, i) = A+(j, i) · e(
∆T (j)
τ1

)
+ offset1

A−(j, i) = A−(j, i) · e(
∆T (j)
τ2

)
+ offset2

∆W (j, i) = A+(j, i) + A−(j, i) + offset3
W (j, i) = W (j, i) + ∆W (j, i)

end for
end if

end for
end for (sufficient iterations)
return W
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order to check the neural firing activity. The Vmem above the threshold means that

the corresponding neuron fires and its firing flag S is set. At the same time, its

firing time stamp, Tfire, is recorded as the current biological time t and then Vmem

is reset to the resting potential Vrest. Otherwise, the S is reset if Vmem is below the

threshold. In addition, the update of Vmems has the potential to be parallelized in

hardware implementations.

After that, the strength of each synapse is adapted according to the STDP learn-

ing rule. If a specific neuron fires, all its pre-synaptic neurons are accessed and their

up-to-date firing timings are fetched. Then the adaption of a synaptic weight is de-

rived from the relative timing difference between the post- and pre-synaptic neurons.

In general, a smaller ∆T tends to result in a larger update of the synaptic strength.

Due to this reason, the parameters τ1 and τ2 are negative values. Furthermore, the

synaptic parameters A+ and A− limit the maximal synaptic adaption. Once synaptic

weights are updated, a new iteration will start.

3.2.2 SNNGI: Serial Baseline Neuromorphic Architecture

In this subsection, the neuromorphic SNNGI architecture and its control flow are

presented in detail. Many key issues including data dependency, storage organization,

and potential parallel processing are addressed.

Fig. 3.2 describes the overall platform of the proposed SNNGI system. The

Matlab application on the host PC converts the benchmark patterns into spike

trains which are then sent to a Xilinx ML605 evaluation board through an Universal

Asynchronous Receiver/Transmitter (UART) interface. When both the training and

recognition processes finish, the results are sent back to the host PC. The proposed

FPGA-based SNNGI processor is composed of three major components: Neuron

Unit, LIF Arithmetic Unit, and STDP Unit. The strengths of plastic synapses are
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Figure 3.2: The proposed SNNGI system running on the Xilinx ML605 board.

stored in block RAMs (BRAMs) on the FPGA chip. The access to these BRAMs

is implemented by a synapse read/write interface. As shown in Fig. 3.3, the con-

trol flow of this system is managed by a system controller following a synchronous

manner. Each biological time step consists of three operational stages – the spike

I/O (I/O), the neuron operation (NOS), and the learning operation (LOS). For the

I/O stage, the processor communicates with the PC through a spike I/O buffer and

the UART interface. During the NOS, the membrane potential of each neuron is

calculated and the corresponding firing activity and firing time are recorded. Then

the processing moves onto the LOS, and the synaptic weights are updated following

the STDP learning. Also, a pipeline process is integrated into these stages such that

the I/O and the LOS operate at the same time since no control nor data hazards are

detected.

The baseline architecture of the proposed SNNGI processor is shown in Fig. 3.4.

The synaptic weights and parameters, such as W , A+ and A−, are stored in the
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BRAMs. The details of the two major components, the LIF Arithmetic Unit (LAU)

and the Neuron Unit (NU), are illustrated in Fig. 3.5. The LAU is utilized to update

the membrane potentials of each spiking neuron. The NU contains three important

register files which store the membrane potentials (Vmem), the firing time stamps

(Tfire), as well as the activity flags (S) for each neuron. In the phase of NOS, the LAU

reads out the Vmem and the S from the NU, the synaptic weights from the BRAM,

and the external spikes from the spike I/O buffer, and then writes the updated

Vmem back to the NU. The computation of
∑
W (j, i) · S(j) in the potential update

may consume plenty of clock cycles and accordingly the NOS usually dominates the

entire processing in terms of runtime. When the membrane potentials within the NU

are updated for current biological time step, the NU checks the firing activities of

each neuron by comparing its potential with Vthreshold. TGlobal represents the current

biological time generated by a global timer in the top-level global control unit. As

mentioned earlier, the amplitude of the external spike is a random value which is

produced by a random number generator (RNG) based on Linear Feedback Shift

Registers (LFSRs).

Fig. 3.6 shows the design details of the proposed STDP unit which is used to adapt
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Figure 3.5: The proposed LIF arithmetic unit (LAU) and neuron unit (NU).
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Figure 3.6: The proposed STDP learning unit.

the synaptic strength depending on the temporal difference of firing events between

neurons. If there are Noutput neurons in the output layer and Ninput neurons in the

input layer, the total number of the plastic synapses to be updated is Noutput×Ninput.

Each plastic synapse is associated with two parameters A+ and A− which are based

on the current state of the synapse. Also, the change of the synaptic weight W is

calculated with these two parameters during the LOS. Several pre-computed lookup

tables are introduced to implement the exponential functions for updating A+ and

A−.

Furthermore, the proposed SNNGI system has two operational modes – the train-

ing mode and the recognition mode. During the recognition process, the system

requires both less energy consumption and computation time than the system in

training phase because the synaptic weights in recognition mode are fixed instead of

being updated. Also, many components in the system, such as the NU, the LAU,

and the BRAM for the synaptic weights, are reused in the recognition mode, which

leads to considerable saving of hardware resources because no additional functional

blocks are required.
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3.2.3 SNNGI: Parallel Architectures

3.2.3.1 SNNGI: Motivation for Parallel Architectures

In the LAU shown in Fig. 3.5, the computation of
∑
W (j, i) ·S(j) is implemented

by an accumulator of W s controlled by Ss. Therefore, the serial baseline SNNGI

architecture shown in Fig. 3.4 consumes Npre clock cycles to update a single Vmem if

this specific neuron has Npre pre-synapses. The Vmem of each neuron is computed in

serial, namely, one by one, during which the LAU may require hundreds to thousands

of clock cycles to accumulate the pre-synaptic weights. In the LOS phase, only the

excitatory neurons in the output layer are scanned and corresponding plastic pre-

synapses are not adapted unless the excitatory output neuron fires. To be specific,

the update of pre-synaptic weights will be skipped if its output neuron does not

fire. Although these schemes enjoy a low hardware cost, they still suffer from a slow

processing speed due to lack of parallelism.

The storage of synaptic weights also requires detailed considerations for both the

serial baseline architecture and several parallel architectures that will be discussed

later. Block RAMs are built upon the embedded memory primitives of the FPGA

chips. Also, it is often more efficient to implement memories using these on-chip

resources which are large in capacity while supporting high-speed accesses. Assuming

that the SNNGI consists of 800 output neurons and 784 input neurons so there are

627,200 (800×784) variable plastic weights with only 10 different constant weights for

the inhibitory synapses. Considering that these constant weights of all the inhibitory

synapses are fixed and have limited number of values, they are integrated into the

arithmetic logic circuits. Therefore, only the plastic synapses necessitate large on-

chip memories and they are stored in the BRAMs as the most efficient way.

In order to demonstrate the desirability of parallel architectures for the SNNGI,
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Figure 3.7: The detailed timing diagram of the baseline SNNGI.

temporal processing steps in the baseline architecture are analyzed. Fig. 3.7 illus-

trates the detailed timing diagram of operations in the serial baseline SNNGI archi-

tecture. A large number of biological time steps are required to train a single pattern.

As mentioned earlier, the actual processing of each biological time step consists of

only two stages, namely, the NOS and the LOS, due to the pipeline effect. As shown

in Fig. 3.7, the LAU and the BRAM storing the synaptic weights dominate the time

utilization, while other blocks consume a much less portion of the overall processing

time. Considering that the update of synaptic weights is only performed for the

firing post-synaptic neurons and that the firing rates of the output neurons are low

in practice, the workload for LOS is very small. It is evident that the majority of the

runtime is occupied by the membrane potential updating in the NOS so this work

mainly focuses on the parallel processing during the NOS while the adaption of the

synaptic weights during the LOS is still a serial process.
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Figure 3.8: Two parallel processing schemes for the SNNGI.

3.2.3.2 SNNGI: Proposed Parallel Architectures and Memory Organization

We propose two parallel schemes for the SNNGI architecture. Assume that there

are N and M neurons in the input and output layers, respectively. The input neurons

are labeled from 1 to N , and the output neurons are labeled from N + 1 to N +M .

The first parallel architecture is shown in Fig. 3.8 (a) which supports K-way parallel

processing during the NOS where K membrane potentials are updated simultane-

ously. This scheme utilizes the same LAU design of Fig. 3.5 which takes a large

number of clock cycles to serially compute the linear combination of all pre-synaptic

weights.

In addition, we explore another parallel scheme for the SNNGI as shown in

Fig. 3.8(b) which allows the calculation of
∑
Wji · Sj for each neuron to be com-

pleted in a single clock cycle. To achieve this, N BRAMs need to be instantiated

to support the parallel synapse readout so that all pre-synaptic weights associated

with each neuron are read out simultaneously and then sent to a modified LAU to
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Figure 3.9: The proposed parallel SNNGI architecture with K-way parallel process-
ing based on LIP.

update the Vmem.

In Algorithm 1, the index of the current post-synaptic neuron is denoted by i and

the index of its pre-synaptic neuron is denoted by j. Therefore, to be convenient,

the parallel scheme in Fig. 3.8(a) is referred to as the “Loop-I Parallelism (LIP)”,

and the scheme in Fig. 3.8(b) is referred to as the “Loop-J Parallelism (LJP)”.

The K-way parallel architecture based on the LIP is illustrated by Fig. 3.9.

The plastic weights as mentioned earlier are stored in K BRAMs and the weights

associated with each output neuron are all in the same BRAM. Ideally, if the workload

of the NOS is well balanced, each LAU performs the potential update of M/K

excitatory output neurons and the K LAUs work in parallel. The potential update

of other neurons is parallelized in the same way. Although the total capacity of the

register files (Vmem, S and Tfire) within the NU remains the same, multiple data
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ports are introduced in the NU to support parallel accessing of the K LAUs.

Fig. 3.10 illustrates the N -weight parallel architecture based on LJP, which cor-

responds to Fig .3.8(b). As mentioned above, N synaptic weights are read out simul-

taneously and sent to a modified LAU which is shown in Fig.3.10(b). The modified

LAU contains an N-input adder tree in order to compute the linear combination

of all pre-synaptic weights for each neuron in parallel. Unlike the original LAU in

Fig. 3.5, this modified LAU is able to update each Vmem in a single clock cycle.

The architecture in Fig. 3.10 can significantly accelerate the NOS if the size of the

SNN is not very large. However, this parallel scheme suffers from a bad scalability.

To be specific, the size of N -input adder tree increases with the size of the SNN and

the larger adder tree can introduce higher hardware overhead and propagation delay

which limits the system clock rate. Although the critical path delay may be reduced

by pipelining, both the power and the area utilization would still increase rapidly

with the size of the network in this architecture. Therefore, LIP is more competitive

than LJP for large networks.

3.2.4 SNNGI: Implementation and Results

3.2.4.1 SNNGI: Design Platform

The proposed SNNGI neuromorphic architectures have been designed in Verilog

and implemented on Xilinx ML605 Evaluation Board [28]. The proposed neuro-

morphic systems are able to operate at a clock frequency of 133.288 MHz accord-

ing to the timing analysis conducted as part of the synthesis flow. We employ

an MMCM (Mixed Mode Clock Manager) block to generate the actual clock rate

120MHz. The proposed SNNGI architectures are designed and synthesized follow-

ing a hierarchical/bottom-up manner, which allows straightforward reuse of baseline

building blocks such as the NU, the LAU, and the STDP Unit among targeted archi-
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tectural variants. The power consumption of each architecture is obtained by using

XPower Analyzer with static measurement approaches, which offers detailed power

analysis of the designs on Xilinx FPGA [55].

3.2.4.2 SNNGI: Performances for Handwritten Digit Recognition

In order to demonstrate the performance of different neuromorphic architectures,

we utilize the SNNGI systems to solve a handwritten digit recognition problem with

images from MNIST, a popular public domain dataset of handwritten digits with the

28x28 resolution [22]. The MNIST benchmark contains 60,000 images for training

and 10,000 images for recognition. To achieve an acceptable performance for the

MNIST benchmark, we instantiate the SNNGI network with 784 and 800 excitatory

neurons in the input and output layer, respectively, as illustrated by Fig. 3.11. There

are also 6 inhibitory neurons in the input layer and 1 inhibitory neuron in the output

layer. The pixels of each 28x28 image are converted to spike trains entering the

input layer of the SNNGI, as shown in Fig. 3.11. The occupation rate of each spike

train is based on the grey level of the corresponding pixel. To be specific, a “black”

pixel is converted to a spike train with the highest occupation rate, while there isn’t

any spike generated for the“white” pixel. These spike trains are considered as the

external input spikes for the SNNGI systems.

The receptive fields of the output neurons after the training are shown in Fig. 3.12.

It is clear that the receptive fields are well shaped by the training. The proposed

SNNGI hardware system achieves a recognition rate of 89.1% over the complete

MNIST dataset and the corresponding software simulation achieves a recognition

rate of 90.0%.

A recent publication [31] proposes the software-based spiking neural networks

with unsupervised learning for the MNIST recognition. The recognition plot provided
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Figure 3.12: The receptive fields obtained after training 60,000 images of handwritten
digits.

in [31] shows that an accuracy of 88.6% can be achieved by a network with 800

excitatory neurons in the output layer, 2,384 neurons and 1,267,200 synapses in total.

However, our proposed work achieves highly competitive recognition performances

with a much smaller overall network complexity, i.e. 1,591 neurons and 638,208

synapses. This is the case for both our software simulation based on floating-point

arithmetic and hardware implementation based on fixed-point arithmetic.

Further improvement of the performance of our SNNGI systems is limited by

the FPGA on-chip resources. Due to the Virtex-6 FPGA chip, the system can only

support 800 output neurons which become the bottleneck of the recognition rate.

In general, the larger the size of the output layer is, the better the recognition

performance becomes, because more classes of pattern sketches can be held in the

larger output layer. When it comes to a smaller set of the pattern benchmark, such

as 2400 MNIST samples, the SNNGI system with 800 output neurons achieves a
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recognition rate of 96.4%.

3.2.4.3 SNNGI: Tradeoffs between Speedup and Hardware Overheads

As mentioned earlier, we have presented two parallel SNNGI architectures. In

order to obtain a good recognition performance for the digit recognition task, the

SNNGI network size should be large, which disqualifies LJP-based architectures as a

competitive solution. Therefore, we mainly focus on the LIP architecture in experi-

ments.

Table. 3.1 compares K-way parallel architectures of different degrees of paral-

lelism in terms of the runtime, energy consumption, and resource cost. The runtime

is the processing time of each image during training. The energy consumption is

derived from the actual runtime, the power consumption, and utilization of building

blocks. It is clear that the parallel design with K=32 achieves a speedup of 13.5x

over the baseline design with K=1. Also, as the degree of parallelism increases, the

runtime gets shorter and shorter and becomes saturated rapidly. At the same time,

the energy consumption and the hardware area increase as well, because additional

resource and power overheads are introduced to support parallel processing. As can

be seen, the increase in energy is relatively slow from K=1 to K=8 but becomes

much faster when K=32. This is due to the saturation of parallelism and the linear

increase in hardware cost, which makes the energy consumption relatively larger.

The software C++ program corresponding to the serial baseline hardware design

is evaluated on the AMD Opteron 6174 processor, which is a general purpose CPU

clocked at 2.2GHz. This single-thread program takes 989.7s in average to process

each image during training, which is 4.4x longer than the runtime of the proposed

serial hardware design. Furthermore, our 32-way parallel hardware design is 59.4x

faster than the single-thread C++ program for training each image.
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Table 3.1: The comparison of the serial and 5 LIP designs during training (for each
image). K denotes the degree of parallelism.

K=1 K=2 K=4 K=8 K=32
Runtime (s) 226.95 121.86 66.53 38.8 16.8
Energy (mJ) 953.56 990.60 1021.56 1071.06 1339.83

LUTs 72,311 74,717 77,043 79,956 97,287
FFs 50,999 52,282 53,800 55,348 58,826

BRAMs 3 4 6 10 34

The LJP-based design implementing the parallel processing scheme in Fig. 3.8(b)

is also evaluated for the same benchmark. In this case, the large adder tree in the

modified LAU contains 1,568 inputs, namely, 784 parallel synaptic weights and 784

parallel spike events, which introduces considerable propagation delay. As a result,

the maximal operational frequency becomes only 57 MHz. In this LJP design, the

training runtime for processing each image is 18.8s, which is slightly longer than that

of the 32-way LIP design. As the same time, despite a lower clock frequency, the

corresponding energy consumption is 1,358.5 mJ, which is higher than that of the

32-way LIP design.

When it comes to the recognition mode of the SNNGI system, both the STDP

unit and the BRAMs for A+ and A- remain inactive. Therefore, the recognition

runtime is much shorter than training time because there is no LOS in the recognition

phase. Table 3.2 compares proposed LIP designs in terms of the runtime, energy

consumption, and resource cost during recognition.

It is evident that the speedup increases almost linearly with the degree of par-

allelism in NOS because the LOS which is not parallelized does not exist in the

recognition mode. For example, when K=32, the speedup over the baseline design

is 25.8x. Also, as the degree of parallelism increases, the recognition mode shows a

more linear runtime reduction than the training mode. Therefore, the energy dissi-
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Table 3.2: The comparison of the serial and 5 LIP designs during recognition (for
each image).

K=1 K=2 K=4 K=8 K=32
Runtime (s) 218.33 112.95 57.60 29.10 8.40
Energy (mJ) 847.36 872.90 898.34 923.16 1127.25
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Figure 3.13: The structure of the liquid state machine [45].

pation during recognition increases slower than that of the training mode, as shown

in Table 3.2.

3.3 Liquid State Machine Architecture

3.3.1 LSM: Network Structure

As mentioned in the previous chapters, the LSM is composed of a reservoir re-

ceiving external spikes from environments and a readout stage that is tuned by a

supervised learning rule. The recurrent loops within the randomly connected reser-

voir give rise to decaying transient memories in liquid responses. As for readout

neurons, a biologically inspired learning rule is utilized to adapt the plastic synapses

for classification tasks [7]. Fig. 3.13 shows the overall structure of a LSM.
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In this LSM, spiking neurons are based on the LIF model and synapses are based

on the second-order model. The dynamics are updated by

Vmem(t) = Vmem(t− 1) · (1− 1

τ
) +

EP − EN
τEP − τEN

− IP − IN
τIP − τIN

+ I (3.2)

where Vmem(t) denotes the membrane potential at biological time step t and τ the

first-order time constant. EP , EN , IP and IN represent the state variables of the

second order responses, and τEP , τEN , τIP and τIN are the time constants [7].

Also, these state variables are computed as follows



EP (t) = EP (t− 1)(1− 1/τEP ) +
∑
wi · E+(i)

EN(t) = EN(t− 1)(1− 1/τEN) +
∑
wi · E+(i)

IP (t) = IP (t− 1)(1− 1/τIP ) +
∑
wi · E−(i)

IN(t) = IN(t− 1)(1− 1/τIN) +
∑
wi · E−(i)

(3.3)

where wi represents the synaptic weight associated with the i-th pre-synaptic neuron.

E+(i) and E−(i) are the spiking events from the i-th pre-synaptic neurons. Both of

them are equal to 0 if the i-th pre-synaptic neuron doesn’t fire. E+(i) is set to one

only if the corresponding pre-synaptic neuron is excitatory and fires. Similarly, E−(i)

is set to one only if the corresponding pre-synaptic neuron is inhibitory and fires.

To implement the bio-inspired supervised learning rule, an additional current

injection into each readout neuron is employed to influence its firing activity, as

shown by I in Eqn. 3.2. These injections are utilized as the teacher signals of this

biologically plausible learning rule where Calcium concentration C is computed as

44



follows, where E(t) denotes the spiking event at the current time step.

C(t) = C(t− 1)− C(t− 1)

τc
+ E(t) (3.4)

In addition, the synaptic weights of the readout stage are calculated by the fol-

lowing equations, where P+ and P− represent the potentiation and depression prob-

abilities, respectively. Cθ and ∆C denote the Calcium concentration threshold and

margin width, respectively.


wi = wi + ∆w with P+ if Cθ < C < Cθ + ∆C

wi = wi −∆w with P− if Cθ > C > Cθ −∆C

(3.5)

3.3.2 LSM: Overall Hardware Architecture

The LSM structure in this work consists of 135 liquid neurons within the reservoir

and 10 output neurons in the readout stage. 80% of the 135 liquid neurons are

excitatory and the rest 20% of them are inhibitory. The synaptic weights among the

reservoir are fixed values and each liquid neuron has a full connection to the readout

stage through the plastic synapses.

Fig. 3.14 describes the overall architecture of the hardware LSM, which is com-

posed of a reservoir unit (RU) and a training unit (TU). The liquid neurons are

realized by digital units called liquid elements (LEs), which work in parallel to com-

pute the liquid responses. The readout neurons are implemented by output elements

(OEs) and all OEs calculate the corresponding synaptic weights in parallel. Plastic

synaptic weights are stored in the block RAMs (BRAMs). The external input spikes

are sent to their target LEs via a crossbar switching interface. Output spikes result-

ing from the LEs are buffered in a wide register called R Spike. Then, the spikes
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in R Spike are sent back to other LEs via a second crossbar switch. Meanwhile,

the spikes in R Spike are also sent to each OE in the TU. To implement supervised

learning, teacher signals are employed to modulate the firing activity of each OE and

to realize a specific form of Hebbian learning. A group of constant vectors (such as

the Excite i in Fig. 3.14) are utilized to inform each OE which LEs are excitatory or

inhibitory.

The detailed data flow of a LE is shown in Fig. 3.15, where each LE receives up to

8 1-bit external input (signal Sin) and 16 1-bit internal spikes from other LEs (signal

SR). These numbers are defined by the connectivity to the external inputs and the

random connections within the reservoir. Meanwhile, Ein and ER denote whether

the corresponding pre-synaptic neuron is excitatory or inhibitory. To implement

(3.3), a Synaptic Response Unit (SRU) is designed as shown in Fig. 3.16. Membrane

potential Vmem is calculated based on EP , EN , IP and IN generated from the SRU.

Once Vmem reach a certain threshold Vth, the LE fires and sends out a 1-bit spike

before Vmem is reset to Vrest. Also, the signal W corresponds to wi in (3.3), which is

the fixed weight for the LE.

The OE also needs a similar block to compute the state variables as the SRU

in Fig. 3.16, except that the internal fixed synaptic weight W is replaced by the

plastic synaptic weight. Besides, each OE requires additional logic to implement

(3.4) and (3.5). Once updated, a synaptic weight is written back to the BRAM. The

probability in (3.5) is simply implemented by a comparator and a random number

generator.

3.3.3 LSM: Flow Control

The proposed LSM system can be trained to deal with speech recognition tasks.

The speech benchmark [53] contains hundreds of pattern samples and each pattern
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Figure 3.15: The liquid element of the liquid state machine [45].
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Figure 3.16: The synaptic response unit of the liquid state machine [45].

sample is transformed into 77 spike trains with over 500 time steps. All these pat-

terns enter the LSM one after another during each training iteration. To achieve

considerable performance of training and recognition, many training iterations are

necessary. Detailed training process is described the Fig. 3.17.

3.3.4 LSM: FPGA Implementation and Results

The proposed LSM architecture is implemented on a Xilinx Virtex-6 FPGA.

Resource utilization of the FPGA to implement the whole LSM system is shown in

Table. 3.3. The LSM system can run at the operational frequency of 390MHz and the

energy consumption of the entire training process (50 iterations for all benchmark

samples) is only 19.7J.
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Start Training

End

Finished Enough Cycles (10~30)?

Run LIF(2nd Order) Computation for All Liquid Neurons in Parallel 

External Input Spikes (77 Channels) [Current Time Step]
+

Internal Reservoir Spikes (135) [Previous Time Step]

Store Firing Spikes of All Liquid Neurons (into R_Spike)

Using Updated Reservoir Spikes (R_Spike) 
[Current Time Step]

Run LIF and Cal Concentration Update under Guidance of Teachers for 
All Output Neurons in Parallel 

Run Bio-inspired Learning Rule using Updated Cal Concentration for All  
Output Neurons in Parallel 

Finished Every Column 
(Biological Time Step)?

Finished Every Pattern (500)?

Yes

No, Next Column (Time Step)

No, Next Pattern

Yes

No, Next Cycle

Yes

Liquid Responses

Training Process

Figure 3.17: The training flow of the LSM hardware system.
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Table 3.3: FPGA resource utilization of the LSM implementation [45]. (FFs: Flip-
Flops, BELs: Basic Element of Logics, BRAM: Block RAMs.)

RU TU

FPGA Resource Cost
22,140 FFs 10 BRAMs

136,306 BELs 2,590 FFs
15,890 BELs

In order to evaluate the performance of the LSM system, a subset of speech

benchmark TI46 [53] is adopted, which contains 500 speech samples of 10 digits from

five different human speakers. With an operating frequency of 390 MHz, the LSM

system finishes 50 training iterations in 10.205 s. On the contrary, a single thread

C++ program of the same algorithm running on the 2.3 GHz AMD OpteronTM

Processor requires a runtime of 15 minutes. Therefore, the LSM system achieves an

88x speedup compared to the C++ program running on a general-purpose CPU.

The recognition process of the LSM is almost the same as the training, except that

the teacher signals in TU are turned off and the synaptic weights are not updated.

A particular speech sample is successfully recognized if the OE representing this

sample’s true speech class fires with the highest frequency. For 500 TI46 benchmark

samples [53], our LSM system achieves a nearly perfect recognition rate of 99.4%.

3.3.5 LSM: System-on-Chip Implementation and Results

In addition to the LSM implementation on Virtex-6 FPGA, we also managed

to implement it on the System-on-Chip platform - Zynq-7000 All Programmable

SoC (ZC706 Evaluation Board) [57]. The Zynq-7000 SoC is based on the Xilinx

All Programmable SoC architecture, which integrates a feature-rich dual-core ARM

Corte-A9 based processing system (PS) and 28 nm Xilinx programmable logic (PL)

in a single chip. The PS includes dual ARM CPUs, on-chip memory, external mem-
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Figure 1:  the block diagram of LSM with all the input/output signals. 

Table I. Description of the signals of LSM processor 

 Direction # of bits Description 

Rst input 1 Reset signal  (Active High) 

Clk input 1 Clock signal 

switch input 1 To inform the Reservoir about switching input samples; 
Swtich = 1 when LSM reaches the end (time) of an input sample. 

Mode input 1 Inform the Training unit about the current operating mode. 
Mode = 0 for training;  Mode = 1 for recognition 

Pattern input 77 External input spikes for the current time step 

Teach 0~9 input 2 Teacher signal for supervised learning of Training Unit 
2’b01 is potentiation;   2’b10 is depression;   2’b00  is no operation; 

state output 4 State of the Training Unit, this signal is only for debug 

 
R_state 

output 3 State of the Reservoir. When R_state = 3’b001, the LSM requires a new 
“Pattern column” from the external environment. In other words, 
stimulations for the next time step should be sent to Pattern port 
when R_state ==1.  

cs 1~10 output 1 “Current spike” indicates the firing activity of each output neuron. 

 
cnt_fire 1~10 

output 11 “Counter of firing events” to record the firing activity of each output 
neuron. You need to sample the value when “Switch” signal is high. 
The Output neuron with the highest firing frequency is the winner. 

 

Figure 3.18: The computation core of the LSM.

ory interfaces, and a rich set of peripheral connectivity interfaces. This Zynq SoC

platform is chosen to implement the entire LSM system in order to have a better

demonstration with convenient interfacing between the chip and the host PC. Also,

it enables real-time speech input or video input for the LSM system. Noted is that

the Zynq SoC platform can solve the IO-bound and memory-bound problems which

are common issues in the big-data processing hardware systems.

The original computation core of the LSM system is shown in Fig. 3.18. Al-

though it contains the majority of computational logic and necessary local memory

as mentioned in previous subsections, a considerable number of IO controls and data

transactions are required to run this computation core smoothly. In practical imple-

mentations, this core suffers from both the IO-bound and memory-bound issues.

In order to solve these two major problems, a complete LSM system is imple-

mented on the Zynq-7000 SoC chip. As illustrated in Fig. 3.19, the LSM SoC system

consists of three major blocks: the Zynq Processing System, the LSM IP block,

and the Central DMA. The PS controls all software and the interfacing between
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the external memory (DDR RAM) and the Programmable Logic through the Slave

High-Performance port. Also, the PS serves as the global master of the every block

in this diagram through master ports. The second block, the Central Direct Memory

Access (DMA), is actually a Xilinx IP, which could burst a large amount of data from

source address in DDR RAM to the destination in PL side (the Block RAM). The

DMA is exploited to solve the memory-bound issue. Finally, the LSM core resides

in the LSM IP block which contains two layers of logic – LSM IP wrapper and the

LSM block. The innermost LSM computation core is packaged up by the LSM block

which contains the complete IO and memory control flow. Also, a clock gating mech-

anism within this block is adopted to save dynamic powers of the LSM core. After

the LSM block is realized, another LSM IP wrapper is essential not only because the

LSM device needs AXI bus interface so that it can be docked into the SoC system

but also because local memory (BRAM) controlling is essential for the LSM system.

As shown by the “Column Reader”, this block pre-feteches the necessary data from

local memory automatically in each biological time and serves the data to the LSM

computation. The LSM IP works a whole to solve the IO-bound issue.

Detailed top level control flow of this LSM SoC system is shown in Fig. 3.20.

The entire LSM SoC system has been implemented on the silicon of the Zynq

SoC chip, as shown in Fig. 3.21, where the orange part is the Zynq Processing Sys-

tem which contains two ARM cores and the blue part represents the Programmable

Logic fabrics implementing the digital LSM system. Also, the Table. 3.4 shows the

hardware resource cost of the SoC chip to implement the entire system, where FF,

BEL, BRAM and PS denote the Flip-Flop, Basic Element of Logic, Block RAM,

and Processing System, respectively. After the LSM SoC is implemented, an entire

embedded system is developed.
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START

Hardware Resetting (DMA, LSM) and Pattern Files Initialization 

Send One Pattern to the Served Location in DDR

DMA IP Transfers this Pattern from DDR to the BRAM 

DMA’s Interrupt-on-Complete Notifies CPU to Proceed

Set LSM IP and Starts

LSM Processes Each Column, 
While Column_Reader Prefeteches the Next Column

Pattern Process Done and Error Check

All Pattern Processed?
No, Process Next Pattern

Yes

All Training Cycle Done?

Recognition: Similar to Training Flow

Yes

No, Process Next Cycle

END

Figure 3.20: The control flow of the LSM SoC.

Table 3.4: Hardware cost of the LSM implementation on system-on-chip.
LSM Core LSM System-on-Chip

Hardware
Cost

FF 24,412 30,097
BEL 56,291 81,254

BRAM 10 13
PS 1 1
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Figure 3.21: The physical view of the LSM SoC.
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3.4 Summary

In this chapter, we presents two parallel spiking neuromorphic architectures on

FPGA and SoC. The proposed architectures successfully address several critical is-

sues pertaining to efficient parallelization in membrane potential computation, on-

chip storage of synaptic weights, and unique topology of the SNNs. Application of

these systems to real-world problems demonstrates the high performance and effi-

ciency of the architectural design. Also, the trade-offs between throughput, hardware

cost, and power overheads for different configurations have been thoroughly investi-

gated.
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4. APPROXIMATE COMPUTING

4.1 Approximate Adders on FPGAs

This section presents the details about the approximate adders on FPGAs. Firstly,

it begins with the limitations of the conventional approximate adders implemented

on FPGAs. Then the architecture and features of the built-in adders on the Vir-

tex FPGAs are discussed and why this adder is highly optimized is explained. In

addition, a novel FPGA-based approximated adder is proposed to outperform the

built-in adder, and details are presented. Finally, the implementations and experi-

mental results are shown to evaluate the performance of this proposed approximated

adder.

4.1.1 Limitations of Approximate Adders Implemented on FPGAs

As mentioned in the background chapter, there are already many approximate

adder models in the approximate computing area. According to the work of [58],

the comparison between several different approximate adders is shown in Fig. 4.1,

where each design is a 16-bit adder implemented in the commercial 90 nm CMOS

technology and under the same regular supply of 1.2 V. In this figure, each orange dot

represents a certain type of the adder model with the error rate within the bracket.

The horizontal dimension denotes the max combinational delay of the adder and the

vertical dimension denotes the power consumption. Also, the area of the coordinate

denotes the energy consumption as shown in this figure. Note that the values of

power, delay, and energy are normalized against the approximate adder in [58]. In

addition to different kinds of approximate adders as denoted by their authors’ names,

two traditional full-precision adders are also presented – CLA (Carry Look Ahead

Adder) and RCA (Ripple Carry Adder).
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It is evident that these approximate adders achieve better energy efficiency than

the full-precision adders in the ASIC implementations. When it comes to the FPGA

implementation, however, these designs might lose their advantages. As shown in

the Fig. 4.2, these approximate adders implemented on Virtex FPGAs perform worse

than the Xilinx built-in adders, against which this approximate adder map is nor-

malized. In this work, the built-in adder on the Xilinx’s Virtex FPGAs is denoted

as Xilinx adder, since it is the default implementation result of a simple addition

operator (+) in the Verilog HDL source code and it is automatically synthesized and

implemented through Xilinx tools such as ISE [66] and Vivado [67]. Note that the

Xilinx adder is a full-precision adder. This figure shows that approximate adders

on FPGA are both slower and less power-efficient than the Xilinx adder. More im-

portantly, these designs which generate incorrect results consume at least 2.17 times

more energy than the exact Xilinx adder.

The reasons regarding these facts have to do with two aspects. Firstly, the basic

elements upon which these approximate adders are implemented are entirely differ-

ent. In ASIC implementation, these approximate adders are built on the libraries

of logic gates and CMOS transistors and all their advantages are obtained through

this technology platform. In FPGA implementation, however, all user logics are

built on the Look-Up-Tables(LUTs), Multiplexers (MUXs), Flip-Flops (DFFs), and

other Basic-Element-of-Logics (BELs), such as Carry Logic, buffers etc., as shown

in Fig. 4.3. The original efficient approximate adders cannot have a direct mapping

from the user logic down to the silicon. Instead, these designs can only be mapped

down to the physical level indirectly through these FPGA elements. As a result, the

efficiency of original designs are flatten.

Secondly, the Xilinx adder on FPGA is highly optimized and hard to be outper-

formed by user’s custom design. To be specific, the Xilinx adder results from an
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LUTs

CLB in Virtex-6

MUXs

CARRY 
LOGIC

DFF

SLICE 1 SLICE 2

Figure 4.3: The basic elements of FPGA design.

Figure 4.4: The physical view of Xilinx built-in adder on Virtex FPGAs.

optimized combination of the LUTs, MUXs, and Carry-Logic with highly compact

placement and routing. As shown in the Fig. 4.4, the regularity demonstrates the

compactness of the Xilinx adder which makes it the best adder with the minimal

delay in Fig. 4.2.

On the contrary, the user-defined approximate adders are implemented only by

the LUTs without the benefits of other basic elements. Its placement is also much

more distributed than that of Xilinx adder, which gives rise to huge routing cost

as shown in Fig. 4.5, where the approximate adder in [58] with the configuration of

K = 2, V = 4 is implemented on Virtex-6 FPGA.
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Figure 4.5: The physical view of the approximate adder in [58] on Virtex FPGAs.

4.1.2 The Built-in Adder on Xilinx’s Virtex FPGA

The Xilinx adder is based on the RCA model and exploits both generic con-

figurable resources and dedicated carry chain elements, the latter of which achieve

highly efficient carry propagation. The Xilinx Virtex FPGAs implement these fast

carry chains by utilizing dedicated multiplexers (MUXCY) and hard-wired routing

as shown in Fig. 4.6, where A and B are the addends and C0 denotes the carry-in.

The sum bit Si is computed following Eqn. 4.1 through a primitive XOR gate. As de-

scribed in Fig. 4.6, the propagate signal pi−1 is computed by a LUT and then served

as the selection bit of a MUXCY that produces the next carry bit Ci as computed
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Figure 4.6: The built-in adder on Xilinx’s Virtex FPGA [65].

by Eqn. 4.2: if pi−1 = 0, Ci = Ai−1, otherwise Ci = Ci−1 [65].

Si = (Ai ⊕Bi)⊕ Ci = pi ⊕ Ci (4.1)

Ci = (Ai−1 ·Bi−1) + (Ai−1 ⊕Bi−1) · Ci−1 = not(pi−1) · Ai−1 + pi−1 · Ci−1 (4.2)

4.1.3 Proposed FPGA-based Approximate Adder

In order to achieve more efficient addition operation dedicated to the FPGA plat-

form, a novel FPGA-based approximate adder is proposed in this work. The design

of this adder is based on the carry skip model [58] with the carry-chain primitive

implementing the fast carry logic. Also, error control of the approximate adder can

be guided by either the generic statistics or the application-specific statistics. Be-

sides, a real-time adjustable precision mechanism is introduced to further improve

the energy efficiency.
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4.1.3.1 Carry Skip Model

Denote two inputs of the adder A and B, and the i-th bit by ai and bi, respectively.

Also, the carry propagation, the carry generation, the summation, and carry signal

of the i-th bit are represented by pi, gi, si, and ci, respectively. The boolean functions

are defined by the following equations, where ci−1 is the carry of the (i− 1)-th bit.



pi = ai ⊕ bi

gi = aibi

si = ci ⊕ pi

ci = pi−1ai−1 + pi−1ci−1

(4.3)

The unit block in this proposed adder is based on the carry skip model, as shown

in Fig. 4.7. Each unit block consists of three major components: the P/G Generator,

the k-bit Sub-Adder, and the l-bit Carry Prediction. The P/G Generator computes

the carry propagation and generation signals. The Carry Prediction calculates the

carry-in signal for the Sub-Adder only based on the previous l bits instead of all

the previous input, therefore the truncated carry prediction scheme is named as

carry skip. Once the signals from these two components are ready, the Sub-Adder

computes the carry logic and generates the k-bit partial summation. If the width

of the addition of A and B is n-bit, then the approximated adder requires this unit

blocks in total number of m=dn
k
e, because the n-bit adder is divided into multiple

unit blocks according to the width of the partial summation/the Sub-Adder. There

exit overlapping areas in adjacent unit blocks and the overlapping logic are combined

together. Also, as shown in Fig. 4.7, it is an (i)-th unit block with the input of

ai + bi with the width of (k + l) bits, because the less significant l bits are served
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Figure 4.7: The basic model of the proposed FPGA-based approximate adders.

to compute the carry prediction and the more significant k bits are to generate

the partial summation by the Sub-Adder. The outputs of the P/G Generator are

defined as pi and gi. The result of the carry prediction is denoted as cpi. The partial

summation is si.

At the beginning the addition, the P/G Generator computes ps and gs according

to the Eqn. 4.3 and serves these signals to other two components. Then the Carry

Prediction generates cp using the carry skip scheme. Finally, the Sub-Adder outputs

ss based on the carry logic and partial addition in Eqn. 4.3. Therefore, the path

delay of the proposed adder tapx is shown in the following equation, where tpg, tcp,

and tsa are the delays of the three components respectively.

tapx = tpg + tcp + tsa (4.4)

The P/G Generator is designed using AND and XOR gates for every pair of input

bits. The Carry Prediction is designed according to the Boolean logic below. Both
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these two components are implemented on FPGA by only LUTs.

cpi = gi−1 + pi−1g
i
−2 + pi−1p

i
−2g

i
−3...+ gi−l

−1∏
j=−l+1

pij (4.5)

The Sub-Adder is based on the fast carry logic and the partial addition as shown

in Fig. 4.6 and implemented by FPGA primitives of multiplexers(MUXCY) and xor

gates(XORCY), which form the Carry-Chain Primitive.

4.1.3.2 Carry-Chain Primitive on Virtex FPGA

The Carry-Chain Primitives on Virtex FPGA are the dedicated carry logic for

fast arithmetic additions and subtractions, as shown in Fig.4.8. The carry chain

runs upward and has a width of four bits, therefore it is referred as the “Carry4”

primitive. For each bit, there is a carry multiplexer and a XOR gate for computation

with corresponding selection bits. Besides, the dedicated carry path could be utilized

to cascade functions to realize wider user logic. The Carry-Chain Primitives perform

carry look-ahead logic along with the function generators. The Sx inputs are for the

propagation signals which result from the O6 outputs of function generators. The

Dx inputs are for the generation signals of the carry look-ahead logic which result

from either the O5 outputs of function generators or the BYPASS inputs of a slice.

The CYINIT denotes the first bit in a carry chain. The CIN input is utilized to

cascade slices to form a longer propagation chain. The O outputs include the sum

of the addition/subtraction. The COs are the carry out for each bit [54].

In order to achieve high efficiency and performance of the proposed approximate

adder, this Carry-Chain Primitive (Carry4) is exploited to implement the Sub-Adder

function.
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Figure 4.8: The carry-chain primitive on Virtex FPGAs [54].
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4.1.3.3 Error Control based on Error Analysis

Since it is an approximate adder design, the error control of the addition requires

careful consideration. As shown in Fig. 4.7, the computation precisions of the P/G

Generator and the Sub-Adder are always 100% and the only component generating

error in this approximate adder is the Carry Prediction with the carry skip scheme.

This work, however, proposes a statistical method to quantify the accuracy of the

Carry Prediction in terms of different widths and thus guiding the overall design

of the approximate adder. We develop an error analysis approach by making cer-

tain assumptions about the occurring probabilities of input combinations, which is

described as follows: 1) Input uniformly distributed random number into the ap-

proximate adder. 2) For each length of the carry propagation, count how often this

event happens. 3) For each width of Carry Prediction, sum up the frequency of each

propagation length covered by this width.

Fig. 4.9 presents the result of this method, where data are based on 32-bit addi-

tion. It is evident that the majority of carry propagation events happen only at a

short length such as 1 to 10 bits. After the length of 12 bits, longer carry propagation

rarely happens. Based on this result, the accuracy of the Carry Prediction in terms

of different widths are obtained and shown in the Fig.4.10. The horizontal dimension

shows the width and the vertical shows the corresponding computation accuracy. As

illustrated in this plot, the accuracy increases with a wider prediction and saturates

rapidly. For example, the 6-bit width already achieves a accuracy rate of 98.71%

and 4-bit width for 94.48%. Therefore, it is confident that the Carry Prediction with

small width is already sufficient for designing a highly accurate approximate adder.

Note that these results are obtained from uniformly distributed random num-

ber, thereby the quantified accuracy values guide the general design of approximate
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Figure 4.9: The probability of each propagation length with uniform random input.
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Figure 4.10: The accuracy of carry prediction with uniform random input.
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Figure 4.11: The probability of each propagation length with LSM application input.

adders. Besides, the statistical method could also be applied to specific applications

and the resulting values would then guide the approximate adder design optimized

for the certain application area. For example, the Liquid State Machine system has

adopted the same method and the results are shown in Fig. 4.11 and Fig. 4.12. It is

obvious that more propagation events aggregate into the lower lengths, which makes

accuracy of the general adder design even better.

In short, the error analysis method can guide the efficient design of the approxi-

mate adder either in general scenario or in specific application areas.

4.1.3.4 The Architecture of the Proposed Approximate Adder

The Fig. 4.13 describes the overall architecture of the proposed approximated

adder with 32-bit width. The approximate adder consists of multiple unit blocks

which form the three layers of logic in this architecture. The first layer is the P/G

Generator as defined in Eqn. 4.3. The second layer consists of multiple Carry Pre-
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Figure 4.12: The accuracy of carry prediction with LSM application input.

dictions with different widths which give rise to various accuracies. Guided by the

error analysis method, these Carry Predictions are chosen to be 6, 4, 4, 3, 3, 2, and

2 bits wide, which achieve the best trade-off between accuracy and hardware cost.

The third layer is composed of Carry4s which implement the Sub-Adder function.

The data flow is the same as mentioned in the carry skip model. Note that four

least significant bits are truncated and replaced by the propagation signals from the

first layer. Therefore further hardware resources are saved at the cost of the relaxed

precision of the least four bits.

Compared to Xilinx adders which follow the RCA model and propagate carries

over full width of the adders, the proposed approximate adder is based on the carry

skip model. Due to this reason, the proposed adder can achieve much lower delay.

What’s more, because the carries generated at the LSBs no longer propagate all

the way to the most significant bits (MSBs), the switching rates of the carry chains

are also reduced and so does the consequent dynamic power consumption. In other
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words, the splitting of the long carry can contribute to power reduction. As a result,

the proposed approximate adder is able to outperform the Xilinx adder in terms of

speed, power, and energy.

4.1.3.5 Real-time Adjustable Precision

The overall architecture of the proposed approximate adder achieves considerable

trade-off between the hardware cost and the computation accuracy. In practical

problems, however, the computation precision can be further relaxed in order to gain

even better energy efficiency. Therefore, this work further optimizes the approximate

adder with the real-time adjustable precision. To be specific, this proposed adder has

two operational modes: the Full Mode and the Light Mode. The architecture of the

Full Mode adder is the same as shown in Fig. 4.13, while in the Light Mode the lower

parts which contribute to the least significant computation precision are to be power

gated, as shown in Fig. 4.14. Through experiments, the power-gating area is chosen

to cover three components: the 6-bit P/G Generator, the 2-bit Carry Prediction,

and one Carry4, and inputs of these components are power gated. As a result, the

proposed approximate adder provides the host system multiple operational precisions

which are adjusted in real-time according to different precision demands, thus the

total dynamic power is further reduced.

4.1.4 Implementations and Results

In order to evaluate the performance of the proposed approximate adder, both

Xilinx adder and the proposed adder have been implemented on the Virtex-6 FPGA

ML605 evaluation board. The experiment resuls are shown in Table 4.1, which

compares the 32-bit Xilinx adder with the proposed adder in different modes. Metrics

such as delay, hardware cost, and power consumption are reported by ISE [66] and

XPower Analyzer [55] using the static measurement approach. To be accurate, BELs
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Table 4.1: Comparison between the Xilinx adder and the proposed approximate
adder [45].

Xilinx
Adder

Proposed Adder
Full Mode Light Mode

Delay (ns) 2.510 1.916
Number of BELs 95 93

Power (mW) @ 390MHz 17.77 14.04 11.32

(Basic Elements of Logic) are adopted to measure the hardware cost, which cover

all combinational logic components such as the multiplexers and XOR gates within

each CARRY4, and also the LUTs [56].

The proposed approximate adder consumes 18.7% and 32.6% less power than

the built-in Xilinx adder in the high- and the low- precision modes, respectively.

Also, the approximate adder in both modes is 1.32x faster and requires fewer FPGA

resources than the built-in adder.

4.2 Silent Neuron Gating

In this work, we also proposes a novel scheme named Silent Neuron Gating (SNG)

in order to reduce dynamic power consumption for spiking neural networks. The

SNG is a firing activity based power gating approach which can detect those silent

neurons that rarely fire and turn them off in real-time operation. It is based on the

observation that in the real-world applications the neural firing activities within a

spiking neural network differ significantly from one to the other. Those active spiking

neurons that fire frequently contribute much to the training and recognition of the

network. However, there exit silent spiking neurons that may not fire nor be active

at all, and therefore they contribute little to the computation of the network. Once

detected, silent neurons are power-gated in real-time to achieve energy saving. Since

those neurons are turned off, the spiking neural network no longer consists of the
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Figure 4.15: The architecture of 16x16 approximate multiplier with optimal error
compensation for each input group.

original number of neurons and thus its effective topology would be changed. Due to

this reason, the SNG can be regarded as a high-level approximate computing scheme.

4.3 Approximate Multipliers

In order to further reduce power and area overhead, the approximate multiplier

in [20] [21] is adopted. Fig. 4.15 shows the architecture of the 16x16 approximate

multiplier which is instantiated from the AAAC model [20] [21]. The Low-Precision

Computing Unit (LPCU) in the AAAC model generates an approximate product

depending on pre-truncation of the input signals, with lower precision, less power,

and smaller delay than the exact multiplier. In order to reduce the error generated by

the LPCU, a low-cost Error Compensation Unit (ECU), as shown by the Signature

Generator and MUX, is introduced to compensate the errors. Then the Combine

Unit combines the product of the LPCU with the error compensation of the ECU

and produces the final product with reduced approximate error.

Table 4.2 compares the approximate multiplier with the standard multiplier and

the multipliers provided by Xilinx. The Xilinx multipliers introduce additional hard-
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Table 4.2: Comparison of different 16-bit multipliers in terms of hardware cost and
delay.

Approximate Standard Xilinx IP Built-in
LUTs 273 376 378 97

DSP48E1 0 0 0 1
Delay(ns) 7.537 7.258 8.538 8.314

ware overhead, because we need to convert the operands and product of the mul-

tiplier into our desired fixed-point format. The first Xilinx multiplier is based on

LogiCORE Multiplier v11.2, a soft IP core provided by Xilinx [29]. This multiplier

core can be configured to implement an operand precision ranging from 2 to 64 bits

and is realized by generic FPGA resources like Configurable Logic Blocks (CLBs).

The other Xilinx multiplier is based on the dedicated DSP “DSP48E1” [30] which

involves a 25x18 hardwired ASIC multiplier. One DSP48E1 slice is flexible enough to

implement any arithmetic precision below 25x18 and cascading multiple DSP48E1

slices provides the multiplication with a higher precision. As shown in Table 4.2,

the booth multiplier adopted in this work enjoys a smaller delay than the Xilinx

multiplier. This is in part due to the fact that the desired operand format has been

integrated into the proposed multiplers so that no additional logic is required for

format conversion. Although DSP48E1 itself is a highly optimized built-in resource

provided by Xilinx, connecting the DSP48E1 slices with CLBs may incur a huge

routing delay. On the contrary, LUT-based multipliers may enjoy much reduced

routing delays within the local area of reconfigurable FPGA resources. In this sense,

this LUT-based approximate multipliers are more suitable for the FPGA platform.

4.4 Summary

In this chapter, an FPGA-based approximate adder with real-time adjustable

precision and two other approximate schemes including SNG and an approximate
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multiplier are demonstrated in order to considerably reduce energy consumption,

area overhead, and computation time. These three approximate mechanisms have

great potentials to be applied to neuromorphic hardware systems.
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5. APPLICATION OF APPROXIMATE COMPUTING TO NEUROMORPHIC

ARCHITECTURES∗

5.1 Two Evaluation Environments

The inherent resilience of neuromorphic architecture and systems can be exploited

to trade small computation error for large reduction in terms of power consumption

and hardware cost through approximate computing. When well controlled, these

proposed approximate approaches only lead to negligible performance degradation

of the system.

The SNNGI architecture offers suitable environments to apply the approximate

arithmetic, since the multiplications take up a large portion of hardware cost in the

SNNGI systems. To be specific, the multipliers occupy 71.6% area and 66.54% power

in the STDP Learning Unit, and 44.5% power consumption in the LIF Arithmetic

Unit. Also, the proposed approximate multiplier is FPGA-friendly and outperforms

the Xilinx standard multiplier. Therefore the 16-bit AAAC model based approximate

multiplier is applied to the SNNGI system on the FPGA platform.

In addition, the LSM architecture also provides good opportunities for the ap-

proximate computing to gain energy-efficiency. This is based the observation that the

computations in LSM, especially in the reservoir, are addition-intensive. Table 5.1

demonstrates the huge hardware cost of the addition in the Reservoir Unit (RU) of

the LSM. Since the default implementation of the addition is the Xilinx adder, the

figure shows the portion of the area and power of the Xilinx adder in the whole RU.

It is obvious that nearly 80% of area and over 80% power are occupied by the Xilinx

∗Part of this chapter is reprinted with permission from “Liquid state machine based pattern
recognition on FPGA with firing-activity dependent power gating and approximate computing” by
Q. Wang, Y. Li, and P. Li, 2016. In Proc. of IEEE Intl. Symposium of Circuits and Systems,
c© 2016 IEEE.
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Table 5.1: The hardware cost of Xilinx adders in the LSM (normalized).
Total Area of RU Area of Xilinx Adder Total Power of RU Power of Xilinx Adder

LUTs 1 0.7807
1 0.8239FFs 1 0.6943

BELs 1 0.7891

adders. If we were able to reduce the hardware cost of the adder, the LSM would

benefit from it greatly. Besides, the Xilinx adder resides in the critical path of the

entire architecture, which offers another chance to speedup the LSM. Furthermore,

the strong resilience within the reservoir of LSM can also be exploited to trade for

energy reductions. Due to these reasons, the proposed FPGA-based approximate

adder with real-time adjustable precision and the Silent Neuron Gating are applied

to the LSM system.

5.2 Energy-Efficient SNNGI Architecture with Approximate Multipliers

The same implementation platform and benchmarks as mentioned in subsection

3.2.4 are adopted to evaluate the effectiveness of the application of approximate

multipliers to the SNNGI system.

Table 5.2 shows the recognition performances of the SNNGI system with both

the standard/accurate multipliers and the approximate multipliers. The proposed

SNNGI system with standard multipliers achieves a recognition rate of 89.1% over

the complete MNIST dataset. If the standard multipliers are replaced by the ap-

proximate multipliers, the recognition rate over the same data set remains 87.7%,

demonstrating that the use of approximate multiplications has not much influence on

recognition performance for this application. Also, the table compares the SNNGI

with the recently work in [31]. It is obvious that even with the approximate multipli-

ers the SNNGI still achieves a highly competitive performance, although the SNNGI
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Table 5.2: Accuracy of the SNNGI systems on MNIST test set. The software simu-
lation in this work is based on floating point arithmetic but the hardware implemen-
tations are based on fixed point arithmetic.

size of
output layer

# of neurons
(synapses)

accuracy

Reference Work
Peter etal., 2015

800
2,384

(1,267,200)
88.6%

SNNGI
SW

800
1,591

(638,208)

90.0%
Standard HW 89.1%

Approximate HW 87.7%

utilizes much less number of neurons and synapses.

When it comes to a smaller benchmark set, such as 2,400 MNIST samples, the

SNNGI system with standard multipliers achieves a recognition rate of 96.4%, and

the system utilizing the approximate multipliers maintains an excellent recognition

rate of 95.8%.

Table 5.3 compares K-way parallel systems of different degrees of parallelism

and different multipliers in terms of the runtime, energy consumption, and hardware

resource cost. The runtime denotes the average processing time for each image during

training. These designs are based on the LIP architecture in Fig. 3.8(a). It is clear

that the adoption of approximate multipliers contributes to the reduction of both

energy consumption and area overhead regardless of various degrees of parallelism.

Fig. 5.1 shows the trade-off between runtime and energy consumption of these de-

signs. As the degree of parallelism increases, the runtime gets shorter but the energy

consumption becomes larger. The energy reduction introduced by the approximate

multipliers reaches up to 20.1% for the serial system. However, this benefit becomes

somewhat smaller with the increasing degree of parallelism, because the runtime of

the parallelized part takes up a smaller portion of the total runtime. Although many
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Table 5.3: The comparison of the serial SNNGI and 5 LIP designs during training
(for each pattern). Std means the system with standard multipliers and Apx means
the system with approximate multipliers.

K=1 K=2 K=4 K=8 K=32
Std Apx Std Apx Std Apx Std Apx Std Apx

Runtime (s) 226.95 121.86 66.53 38.8 16.8
Energy (mJ) 953.56 761.82 990.60 794.69 1021.56 824.38 1071.06 869.8 1339.83 1115.02

LUTs 72,311 71,666 74,717 73,962 77,043 76,068 79,956 78,541 97,287 93,232
FFs 50,999 50,921 52,282 52,191 53,800 53,683 55,348 55,179 58,826 58,345

BRAMs 3 4 6 10 34

Table 5.4: The comparison of the serial SNNGI and 5 LIP designs during recognition
(for each pattern). Std means the system with standard multipliers and Apx means
the system with approximate multipliers.

K=1 K=2 K=4 K=8 K=32
Std Apx Std Apx Std Apx Std Apx Std Apx

Runtime (s) 218.33 112.95 57.60 29.10 8.40
Energy (mJ) 847.36 674.66 872.90 706.12 898.34 725.58 923.16 768.52 1127.25 925.65

approximate multipliers are employed to support the increasing LAU parallelism, the

relative benefit in energy reduction is getting smaller.

When it comes to the recognition mode of the SNNGI system, the average runtime

for processing each image is much shorter than that in training mode, because there

is no LOS in the recognition phase. Both the Table 5.4 and the Fig. 5.2 compare

the proposed parallel designs in terms of runtime and energy consumption during

recognition for each pattern. It is evident that the approximate multipliers still

benefit the overall system considerably.
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Figure 5.1: Comparison of different SNNGI designs during training (for each pat-
tern). (Standard: the system with standard multipliers, Approximate: the system
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Firing-Activity Based 
Power-Gating

Figure 5.3: The Silent Neuron Gating in the reservoir of the LSM [52].

5.3 Energy-Efficient LSM Architecture with Approximate Adders and Silent

Neuron Gating

5.3.1 Silent Neuron Gating and Its Policy

The error resilience within the randomly connected reservoir of the LSM ar-

chitecture is suitable to be exploited to implement the Silent Neuron Gating. As

mentioned in Chapter 4, SNG requires a certain policy to detect silent neurons and

then to power-gate them in real-time. We propose a SNG policy which is based

upon the following key observation of the LSM training process. Since fixed synaptic

weights are used for the reservoir, the firing activities of the liquid neurons remain

the same from one training iteration to the next. In other words, the active neurons

will always be active, while the inactive neurons will also always remain inactive over

the entire training process. Hence, those inactive LEs with a firing frequency under

a certain threshold during the first iteration will be regarded as silent neurons and

then be turned off for the rest of training iterations. This turns the fully utilized

reservoir into an energy-efficient one, as shown in Fig. 5.3. Meanwhile, the major

computation of the entire process will not be altered by SNG.
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5.3.2 Approximate Adders and Real-Time Precision Adjustment Policy

The proposed approximate adders with the width of 32 bits are applied to the

LSM architecture by replacing the Xilinx adders in the arithmetic units of all Liquid

Elements (LEs) to achieve better efficiency. However, the Output Elements (OEs)

still adopt the accurate adders to guarantee the recognition rate.

Also, we propose a real-time precision adjustment policy for the approximate

adder, which is based on the SNG policy as mentioned earlier. After silent neurons

are turned off, those surviving active neurons/LEs utilize the two-mode approximate

adder for computation. The policy for approximate additions can be described as

follows. Similar to the policy of SNG, it is easy to record the firing frequencies of

the surviving LEs in the first iteration and then divide them into two groups (more

active LEs and less active ones) through a certain threshold. Those liquid neurons

with a firing frequency above the threshold are regarded as more active, but neurons

with a frequency below the threshold become the less active ones. Since more active

neurons are expected to contribute more to the computation power of the reservoir,

their addition operation will be adjusted to the Full Mode for the rest processing

iterations. Due to the same reason, the additions of the less active neurons will be

turned to the Light Mode for better energy efficiency.

To combine the SNG with the use of approximate adders, the combined two

policies can be described in Fig. 5.4, where the fsth denotes the threshold of the

firing frequency for SNG and the fath for two mode approximate additions. The

operational mode of each LE is determined by its firing activity. Note that these

thresholds are application dependent. In this LSM architecture, the fsth is set to

zero while the fath is more flexible and results in different degrees of energy saving.
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Figure 5.4: The operational modes of each LE in LSM.

Table 5.5: Comparison of the LSM systems using Xilinx adders vs. approximate
adders in RU [45].

RU TU
System with

Xilinx Adders in RU
22,140 FFs

136,306 BELs
10 BRAMs
2,590 FFs
15,890 BELs

System with
Approx Adders in RU

22,098 FFs
135,897 BELs

5.3.3 Experimental Results

The proposed SNG and approximate additions have been applied to the LSM

system and the same implementation platform and benchmarks as mentioned in

subsection 3.3.4 are adopted.

As illustrated in Table 5.5, the proposed approximate adders contribute to hard-

ware cost reduction of the RU in the LSM system.

Table 5.6 reports the performances and power reductions during training process

achieved through the proposed approximate computing techniques with the real-

time adjustment policy. The LSM system without utilizing any of these techniques
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Table 5.6: Effects of SNG and approximate additions on the average power over
training process and the recognition rate [45].

LE Mode Rate
(%)

Power
(W)

Power
ReductionSNG Full Light

Baseline / / / 99.4 1.943 /
SNG Only 21 / / 99.4 1.742 10.3%

Approximate
Addition Only

/ 135 0 99.2 1.674 13.8%

Adjustable
Precision

/ 55 80 97.0 1.558 19.8%

All applied 18 37 80 96.4 1.355 30.2%

is referred as the baseline. When the SNG is employed to the baseline LSM, 21 silent

neurons out of 135 liquid neurons are turned off for the TI46 benchmark and the

power consumption is reduced by 10.3%. When all liquid neurons use the Full mode

approximate adders without SNG, a power reduction of 13.8% is obtained. When

the adjustable approximate additions without SNG are adopted and 80 less active

LEs are switched from the Full to the Light mode, the power overhead is reduced by

19.8%. When both SNG and approximate additions are applied, 18 silent neurons are

detected for the same benchmark, since this time the liquid responses are computed

by approximate adders which give rise to different firing frequencies compared to the

exact additions. If the more active 37 LEs are adjusted to the Full mode and the

rest 80 LEs are in Light mode, a total power reduction of 30.2% is achieved. Similar

energy efficiency is gained for the recognition phase.

Fig. 5.5 presents the result of various approximate computing schemes. It is ob-

vious that SNG is able to efficiently reduce the training energy without influencing

the recognition rate at all. The adjustable approximate additions may have a minor

compromise of the recognition performance, but the benefit in energy reduction is

substantial. In general, when the proposed schemes are applied to the LSM archi-
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tecture, significant energy saving is achieved while the recognition rate is not greatly

affected.

5.4 Summary

This chapter evaluates the performance of proposed approximate computing schemes

under neuromorphic applications. The approximate errors of these schemes have

been shown to be negligible but the benefit in terms of energy saving is significant.

To be specific, in the LSM system, the application of approximate adders with real-

time adjustable precision and SNG achieves up to 30.1% overall energy reduction at

the cost of less than 3% loss in recognition rate for the speech benchmark. In the

SNNGI system with the application of approximate multipliers, the loss in recogni-

tion rate for the handwritten digit benchmark is only 1.4% while the total training

energy is reduced up to 20% regardless of different degrees of parallelism.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis has designed and implemented energy efficient parallel neuromorphic

architectures for real-world pattern recognition problems. By addressing several

critical issues on efficient parallelism of the spiking neural architectures, we have

substantially improved the performance of two neuromorphic hardware systems. In

addition, the built-in error tolerance in neuro-computing and the proposed approx-

imate computing schemes provide remarkable energy efficiency at the cost of only

negligible degradation in computational power. We conclude this thesis work by

discussing the main contributions.

Firstly, two parallel spiking neural architectures are proposed, both of which in-

tegrate parallel neural processing to mimic their biological counterparts and on-chip

learning mechanism implementing either a supervised or an unsupervised learning

rule. The first architecture is based on SNNGI using the STDP learning rule. Impor-

tantly, the proposed SNNGI architecture addresses several key problems pertaining

to efficient parallelization of the update of neural dynamics, the storage of plastic

synapses, as well as the consideration of data dependency. Two parallel schemes of

the SNNGI are proposed to achieve fast computation for both training and recog-

nition processes. The trade-offs between hardware cost, energy consumption, and

throughput for various configurations of these two parallel schemes are thoroughly

analyzed. The proposed SNNGI architectures are implemented on a Xilinx Virtex-6

FPGA. For the MNIST image benchmark, the SNNGI systems achieve a training

speedup of 13.5x and a recognition speedup of 25.8x over the serial design. Despite

the 120 MHz operational frequency, the 32-way parallel SNNGI system demonstrates
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a 59.4x training speedup when compared to a 2.2 GHz general purpose CPU. Besides

the SNNGI, we also propose another architecture based on LSM. The LSM architec-

ture is composed of a reservoir with fixed synapses and a readout stage that is tuned

by a biologically plausible supervised learning rule. To fully exploit the advantage of

distributed computing, all spiking neurons in the LSM are processed in parallel with

supporting private memory. When evaluated using the TI46 speech benchmark, the

LSM hardware system demonstrates a highly competitive recognition performance

and provides a runtime speedup of 88x over a 2.3 GHz CPU.

Furthermore, approximate computing contributes significantly to system-level en-

ergy reduction of the proposed architectures. By leveraging the inherent resilience

of neuro-computing, we propose a real-time reconfigurable approximate adder for

FPGA implementation to reduce the energy consumption substantially. Although

there exist mature approximate adders for ASIC implementation, these designs lose

their advantages on FPGA platform and thus a novel approximate adder dedicated

to the FPGA is essential. The proposed adder is based on the carry skip model which

reduces carry-propagation delay and power, and the errors incurred by the skipped

carries are controlled through a proposed error analysis method. In order to further

reduce dynamic power consumption, a real-time adjustable precision mechanism is

integrated to this adder design. Implemented on Virtex-6 FPGA, it is shown that

the proposed adder consumes 18.7% and 32.6% less power than the built-in Xilinx

adder, in high- and low-precision mode, respectively, and that the approximate adder

in both mode is 1.32x faster and requires fewer FPGA resources. Besides the adders,

the firing-activity based power gating for silent spiking neurons that rarely fire dur-

ing computation and booth approximate multipliers are also introduced. These three

approximate schemes have been applied to our neuromorphic systems. Experiments

demonstrate that the approximate errors resulting from these schemes are only neg-
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ligible but the energy reductions of up to 20% and 30.1% over the exact training

computation are achieved for the SNNGI and LSM system, respectively.

6.2 Future Work

So far, we have successfully demonstrated the computation power of the LSM

architecture for the TI46 speech benchmark. In addition to performing only a single

task, the LSM also has the potential to support multiple tasks in parallel, because, in

spite of the same reservoir, multiple readout stages can be adapted for their specific

computational tasks. In order to achieve multi-tasking, readout neurons should be

trained independently to extract and combine the information mixed in the liquid

responses. Also, the LSM possesses an unique feature compared to the conventional

artificial neural networks – with global input information of different tasks, the com-

putational power of LSM is improved rather than weakened [16]. Therefore the

real-time multi-tasking of the LSM architecture could be a promising direction for

future work.

Another future work has to do with approximate computing. Although we have

already proposed an efficient approximate adder, it is not generic enough for all

kinds of systems. All too often different systems require various specifications of

the addition operation in terms of accuracy, error magnitude, and delay. Therefore

an EDA flow could be developed to automatically generate the most cost-effective

approximate adder under the constraints of input specifications, such as error rate,

average error, and delay. The same error analysis method could be exploited to build

the basic model for each component in the carry skip model as shown in Chapter

4. To combine these models with the input specifications, an optimization problem

could be built and then solved. Fig. 6.1 shows the prototype of the approximate

adder generator, which could produce the gate-level approximate adder with the
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• Designed a flow for approximate adder generation based on given specifications

Approximate Addition

Approximate 
Adder 

Generator
(Type: Carry-Skip)

Accuracy ≥ 95%
Error Magnitude < 100 
Delay ≤ 5 ns

Gate-Level Approx. Adder
with minimal Area & Power

Figure 6.1: The approximate adder generator.

minimal area and power for given input requirements.

Finally, the LSM SoC system on the Zynq board could be further optimized to

gain an ideal speedup and a better recognition performance for the speech benchmark

[53].
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