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ABSTRACT

User interfaces often account for a majority of application code and defects. High

quality user interfaces come with equally high development costs—lower than the cost

of multitudes of users coping with low quality user interfaces, but higher than the

mild frustration experienced by any individual user. Thus, the economics of software

lead to a situation where barely passable user interfaces abound. That most user

interface code comes from bespoke attempts to implement vague human interface

guidelines is a leading cause of high cost and low quality.

This thesis introduces a novel formalism for user interfaces based on ordered con-

straint systems. Using explicit models for the values and relationships in a user

interface, several reusable algorithms are defined for rich user interface behaviors,

including value propagation, dataflow visualization, pinning, scripting, command ac-

tivation, widget enablement, and context-sensitive help. Developers can leverage

provably correct implementations of such desirable features for free, raising the qual-

ity of user interfaces while lowering their production cost.

Some of these behaviors have been implemented in a JavaScript framework, Hot-

Drink, for web user interfaces, and a C++ framework, Adam, for desktop user in-

terfaces. Experiments have demonstrated higher developer productivity, fewer lines

of code, fewer defects, and fewer components when compared to conventional user

interface frameworks.
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1. INTRODUCTION

This thesis outlines novel abstractions for user interface behaviors that make it

easier and cheaper to build high-quality user interfaces.

1.1 Motivation

Users pay a cost in time for user interfaces that are defective, confusing, or lacking

crucial or useful functionality. Lazar et al. [48, 13] observe that one-third to one-half

of the time spent on a computer is wasted due to frustrating experiences—and list

poor user interfaces as one of the three main causes of user frustration.

Even a small waste of effort becomes significant when aggregated over a large

number of users. For example, ApplyTexas (www.applytexas.org) is an online com-

mon application that must be used by all students wishing to matriculate to state

universities in Texas. In one section, excerpted in Figure 1.1, students must include

a list of up to ten extracurricular activities, 23 fields for each of them, in order of im-

portance. For the student who fails to notice this last requirement, changes his/her

mind, or forgets an activity, the user interface offers no other means to reorder activ-

ities than copy-pasting each field individually (a single swap of two activities requires

3 × 23 = 69 copy-paste operations). Similar issues occur practically everywhere: in

e-commerce sites, travel bookings, tax form preparation software, “in-house” admin-

istrative applications, and so forth.

On the other hand, software budgets are strained by the high cost of developing

graphical user interfaces. More than 50% of applications’ design and programming

effort has been reported to be devoted to user interfaces [60]. Between 30% and

60% of application source code pertains to user interfaces [50, 60, 64] (a number as

high as 85% has been reported for a large “shrink wrap” application [65]), and this

1
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Figure 1.1: Sample section from ApplyTexas common college application.
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code has been observed to contain a disproportionately high number of defects [64].

Examples abound of software that is late to market, over budget, incomplete, and

rife with bugs [42]. Myers’ analysis [58] from two decades ago on the reasons for

why user interface programming is difficult continues to be valid: with today’s user

interface frameworks and libraries, user interface programming remains complex and

laborious.

One could expect to mitigate the problems by demanding that more programming

resources were expended on systems with a large number of users. One finds, however,

that commercially successful systems with very large user bases are certainly not

immune to defects and problems in user interfaces. Paraphrasing the views from an

industrial collaborator, user interface defects tend to be given low severity, and they

often have a work-around. This means that they are the first defects to be deferred—

and once a version of the product has shipped with user interface defects, unless there

is an outcry from users, product management will not re-open the defect and the

cycle perpetuates: bad user interfaces create expectations of bad user interfaces. [72]

The problem is that when the per-user cost of low quality is low, or seemingly

low, software producers get away with quality that should be unacceptable, but

is nevertheless accepted. A quick back-of-the-envelope calculation with conservative

time estimates reveals that the amount of ApplyTexas users’ time wasted collectively

every year is at least a thousand times greater than the time the system’s developers

saved by not implementing a sorting feature and offering it to users, like the one that

appears in Figure 1.2.

An individual user’s reaction to a usability problem often involves some grum-

bling, an attempt to find a work-around, and then soldiering on. The blog post “Ev-

erything’s broken and nobody’s upset” [36] by Scott Hanselman characterizes this

sentiment well (towards the state of software in general, not just user interfaces).

3



Figure 1.2: Sample from Figure 1.1 amended with buttons for changing the order of
entries and for inserting new entries (above or below).
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The imbalance between the low per-user cost of experiencing low quality and the

high per-developer cost of producing high quality rewards producing barely passable

quality. We conclude that the way to improve the quality of user interfaces, and

thus user experience, is to change this imbalance by lowering the cost of producing

high-quality user interfaces.

1.2 Approach

One path to reducing the cost of development in user interface programming is

to raise the level of reuse. Past experience has demonstrated that software systems

utilizing reusable components tend to be more robust and less costly than their hand-

crafted counterparts [6, 20, 62]. Software development resources can be re-targeted

away from the costly and routine (and perhaps also intellectually less rewarding) user-

interface programming, and our interactions with computers will be less frustrating

and more productive.

In the prevailing approach to programming graphical user interfaces, a given

framework [4, 53, 77] provides a selection of widgets as reusable software compo-

nents, and the programmer implements a user interface as a composition of widgets

by specifying the interactions between the components. The interactions are typi-

cally expressed using imperative object-oriented code placed in event handlers. Even

in user interfaces with relatively simple functionality, interactions between compo-

nents are often surprisingly complex. Consequently, the event-handling logic that

expresses the interactions is similarly complex, often scattered to many locations in

the program, and seldom reusable across user interfaces. A quote from the developer

documentation of a widely used framework suggests this state of affairs is widely ac-

cepted: “Since what a controller does is very specific to an application, it is generally

not reusable even though it often comprises much of an application’s code.” [2, §1]

5



The network of relationships among user interface components is an example of

an incidental data structure [39]—a data structure that has neither an explicit en-

coding in the program nor an explicit run-time representation accessible to the rest of

the program. Such data structures cannot be operated on by generic, reusable algo-

rithms. Instead, they are manipulated with incidental algorithms, similarly emerging

from the combined behavior of locally defined actions, and with no explicit encod-

ing in the program. This thesis identifies the incidental data structures and algo-

rithms common in user interfaces and develops abstractions that can encode those

commonalities as explicit, reusable components. The benefit is that rich features,

including some that are explored in computer-human interaction research but not

widely adopted in mainstream software, can be included in user interfaces “for free”.

6



2. SETTING*

Clear, unambiguous definitions and running examples are essential to effectively

conveying the concepts covered in this document. They are introduced here.

2.1 Definitions

Where possible, the definitions below respect common conventions of usage in

the literature, but some are restricted to avoid ambiguity.

A user interface (UI) sits as a layer between a user and a system. If the user’s

goal is a specific system state, then they reach that goal by continually evaluating

the state of the system and choosing an action that will transition the system to

a new state. The user interface’s role is to assist the user in that process by (1)

executing actions on behalf of the user and/or (2) reporting to the user the effects

of their actions and/or the current state of the system. A user interface need not

perform both functions, but a generalized discussion, as presented here, will consider

both. User interfaces exist in many domains, but this document is only concerned

with software user interfaces.

Communication between user and user interface occurs in the context of interface

languages, one each for input and output [37]. Each language has a vocabulary of

terms from which expressions in the language are assembled. Terms come in many

* Portions of this chapter are reprinted from Jaakko Järvi, Mat Marcus, Sean Parent, John
Freeman, and Jacob N. Smith. Property models: from incidental algorithms to reusable com-
ponents. In GPCE’08: Proceedings of the 7th international conference on Generative program-
ming and component engineering, pages 89–98, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-267-2. doi: 10.1145/1449913.1449927. URL http://doi.acm.org/10.1145/1449913.1449927
Copyright 2008 ACM; John Freeman, Jaakko Järvi, Wonseok Kim, Mat Marcus, and Sean Par-
ent. Helping programmers help users. In GPCE’11: Proceedings of the 10th ACM interna-
tional conference on Generative programming and component engineering, pages 177–184, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0689-8. doi: 10.1145/2047862.2047892. URL
http://doi.acm.org/10.1145/2047862.2047892 Copyright 2011 ACM.
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forms. As a simple example, a command-line interface may accept input terms as

string arguments and produce output terms as a stream of text, or it may accept

input terms as a stream of text and produce output terms as a collection of files.

Richer forms of interaction can be found in graphical user interfaces (GUIs),

which are the focus of this research. Input for GUIs includes discrete events such

as keystrokes, mouse clicks, and touch gestures. Output is typically visual elements

drawn on a screen, e.g., labels, buttons, or tables. Note that GUIs may provide

visual representation of user input, e.g., by filling a textbox with characters as the

user presses keys, but such representation should not be confused with input as

defined here.

A family of design patterns has emerged to help structure user interfaces in soft-

ware; one early and oft cited pattern is Model-View-Controller (MVC) [46]:

• The model is a collection of domain-specific objects, each of which has methods

for inspecting or mutating its state. Model objects use the Observer pattern [30,

§5] to notify dependents (e.g., views and controllers) of changes.

• Views are visual representations of data in the model. Upon being notified of

a change in the model, each view consults the model for relevant data and then

refreshes its display. Views are hierarchical and each controls the layout of its

children. Views may commonly be called widgets, controls, or elements.

• Controllers are paired with views, and they handle user input. They trigger

changes in the model by calling methods on the model objects. By responding

to changes in the model, they can coordinate with each other and even change

their own behavior.

In the basic MVC pattern, views are considered stateless and domain logic is fully

encapsulated within the model. The model can be ignorant of the UI, allowing

8



it to be reused. MVC promotes a strong separation between the domain and its

presentation, which was a significant technological advance when it originated.

The separation is not clean, however. First, views must assume that all of their

state is stored in the model. Some state, however, is highly specific to the view

(e.g., the currently selected item in a list widget) and does not belong in the model.

Second, views must know how to retrieve their state from the model, which pre-

vents them from being reused with other models. Lastly, views depend heavily on

their controllers to handle input. Refinements of the basic MVC pattern have since

appeared to cope with these shortcomings:

• A Presentation Model [18] is a layer between the model and the views. It

isolates presentation-related state and logic, separating it from the model, and

provides an interface around the model that is friendly to the views (as in the

Adapter pattern [30, §4]).

• Passive Views [19] are “dumb” objects containing only display logic. Instead

of observing the model and querying it for state, a Passive View waits for a

controller to update it.

• In the Model-View-Presenter (MVP) pattern [67], views assume some of the

responsibility of the controllers in MVC, converting all user input to a stream

of events for the presenter. The presenter maps events from the views into

commands (following the Command pattern [30, §5]) for the model.

Evolving MVC with important aspects of these patterns yields the setting for the

research outlined in this document, a relatively recent pattern called Model-View-

ViewModel (MVVM) [34]:

• Models are the same as in MVC.

9



• Views are passive and handle all user input. They expose an interface for

observing interactions and updating the display.

• The view-model is a Presentation Model and presenter. It holds state specific

to the presentation and acts as an adapter for the model.

• Bindings are an implicit component of MVVM that connect the views to the

view-model. Bindings observe views for user input events and then call methods

on the view-model. Similarly, they observe the view-model for changes and

directly update the views.

This separation allows views (often packaged into widget toolkits) and models to

be reused among multiple UIs. Only the view-model and bindings must be imple-

mented separately for each UI.

2.2 Examples

Gaps may exist between the concepts in the user’s mind and those in the UI.

The user must translate his intentions into expressions in the UI’s input interface

language and likewise interpret expressions in the UI’s output interface language.

The quality of a UI can be judged by the level of assistance it gives the user in

accomplishing a goal, that is, the extent to which it minimizes the cognitive effort

required from the user to cross these gaps. Paraphrasing Hutchins et al [37], the

gulf of execution is bridged by matching the facilities of the input language to the

thoughts of the user, and the gulf of evaluation is bridged by creating expressions in

the output language that are readily perceived and evaluated.

In MVVM, the nouns and verbs of the UI’s interface languages are the values

and commands in the view-model as represented by the views. Thus, one function of

a high-quality software UI is to help the user construct parameters for a command.

10



Figure 2.1: Dialog for resizing an image.

This section describes two small command dialogs demonstrating high-quality fea-

tures. They will be used throughout the rest of this document to relate abstract

concepts to real UIs.

2.2.1 Resizing an image

Consider the dialog appearing in Figure 2.1 for resizing an image. The associated

command expects new horizontal and vertical dimensions for the image in pixels, but

the dialog can be more flexible. Here, as an alternative to specifying new absolute

dimensions, the user may scale dimensions as percentages relative to their initial

values. Further, the user has the option to maintain the original aspect ratio so

that changes in the height are proportionally reflected in the width, and vice versa.

By offering a variety of means to choose parameters for the resize command, the

UI bridges the gulf of execution by more directly supporting the different thought

processes of users, e.g., “I want the image to have a fixed size” versus “I want the

image to be twice as large”.

The UI keeps values consistent according to fixed relationships. If the user edits

the relative height, the absolute height will change; if the option to preserve aspect

11



ratio is selected, then the relative and absolute widths will change as well. At any

point, regardless of the path taken to a particular state of the UI, the user can see

what argument values will be passed to the resize command, which helps span the

gulf of evaluation.

In a large UI, the dataflow may become confusing to the user. A high quality UI

may further reduce the gulf of evaluation by visualizing the dataflow, e.g., by drawing

arrows overlaying the view to show the network of dependencies among values.

2.2.2 Booking a hotel room

Figure 2.2 shows a dialog that could be part of an application for booking a hotel

room. The reservation service needs check-in and check-out dates to query room

availability. By adding a field for the number of nights, the UI offers three ways to

specify the dates—from any two fields, the third can be derived. The UI gets to pick

which field is third, and the user may not like the choice, so the UI offers a toggle

next to each field to lock its value.

Additionally, the command expects a list of ages for child guests, if any. The user

must first select the number of children, after which the UI presents a corresponding

number of age selections; thus, the UI avoids a clutter of unnecessary elements that

may confuse the user.

Finally, the UI guards execution of the command by disabling its button whenever

certain conditions are unmet—namely, whenever the number of nights to book is not

positive.

2.3 State of the Art

The examples above illustrate a few UI features such as maintaining dependencies

among values, disabling commands, and hiding irrelevant views. The main service

offered by a typical GUI library is to translate user actions to events and deliver the

12



Figure 2.2: Dialog for booking a hotel room.

events to the correct event handler functions. A UI programmer writes the event

handlers and registers them to listen to particular events. The UI logic is dispersed

and often duplicated throughout the event handlers. Furthermore, the state of the

UI is shared among them, eliciting a complex, ad hoc network of dependencies.

Figure 2.3 illustrates such a network derived from an implementation, within an

object-oriented GUI framework, of the image resizing dialog from Figure 2.1.

This thesis explains how the features described above (and others) can be im-

plemented as generic algorithms and reused across UIs. Instead of writing event

handlers, programmers declare values and define relationships among them with

orthogonal, imperative functions. Event handlers become automatically generated

boilerplate.
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Figure 2.3: Network of dependencies forming an incidental data structure among
the UI components and event handlers in an object-oriented implementation of the
image resize dialog shown in Figure 2.1. Edges correspond to the relations “event
handler writes a value” or “event handler reads a value”.
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3. FOUNDATION*

The data structure used to implement the reusable algorithms presented in Chap-

ter 5 is a collection of three specific graphs derived from a kind of data-flow constraint

system [79] tailored to the domain of user interfaces, as described in this chapter.

3.1 Constraint System

A data-flow constraint system S is a tuple 〈V,C〉, where V is a set of variables and

C a set of constraints. Each variable in V has an associated value. Each constraint in

C is a tuple 〈R, r,M〉, where R ⊆ V , r is an n-ary relation (n = |R|) among variables

in R, and M is a non-empty set of constraint satisfaction methods, or just methods.

If the values of the variables in R satisfy r, the constraint is satisfied. Executing

any method m in M enforces the constraint by computing values for some subset

of R, using another disjoint subset of R as inputs, such that the relation r becomes

satisfied. The input and output variables of a method m are denoted as ins(m) and

outs(m), respectively, and determine its direction. A method is considered a “black

box”—it is the programmer’s responsibility to ensure that a constraint is satisfied

after any of its methods is executed.

* Portions of this chapter are reprinted from Jaakko Järvi, Mat Marcus, Sean Parent, John
Freeman, and Jacob N. Smith. Property models: from incidental algorithms to reusable compo-
nents. In GPCE’08: Proceedings of the 7th international conference on Generative programming and
component engineering, pages 89–98, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-267-2.
doi: 10.1145/1449913.1449927. URL http://doi.acm.org/10.1145/1449913.1449927 Copyright 2008
ACM; Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Algorithms for
user interfaces. In GPCE’09: Proceedings of the 8th international conference on Generative program-
ming and component engineering, pages 147–156, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-267-2. doi: 10.1145/1621607.1621630. URL http://doi.acm.org/10.1145/1621607.1621630
Copyright 2009 ACM; John Freeman, Jaakko Järvi, Wonseok Kim, Mat Marcus, and Sean Par-
ent. Helping programmers help users. In GPCE’11: Proceedings of the 10th ACM interna-
tional conference on Generative programming and component engineering, pages 177–184, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0689-8. doi: 10.1145/2047862.2047892. URL
http://doi.acm.org/10.1145/2047862.2047892 Copyright 2011 ACM.
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V

name description value

vih initial height 1500 (px)

vah absolute height 1500 (px)

vrh relative height 100 (%)

viw initial width 2100 (px)

vaw absolute width 2100 (px)

vrw relative width 100 (%)

vpr preserve ratio true

vok resize image resize(vah, vaw) (command)

(a) The variable set. There is one constraint system variable for each value and command
in a view-model. Here, vok represents the command object executed whenever the “OK”
button is clicked.

C

R r M

{vih, vah, vrh} vrh = 100
vah
vih

vrh←100
vah
vih

vah←
vrh
100

vih

{viw, vaw, vrw} vrw = 100
vaw
viw

vrw←100
vaw
viw

vaw←
vrw
100

viw

{vpr, vrh, vrw} vpr ⇒ vrh = vrw vpr ⇒ vrh←vrw

vpr ⇒ vrw←vrh

{vok, vah, vaw} vok = f(vah, vaw) vok←f(vah, vaw)

(b) The constraint set. Constraints tie together related values. In the last constraint, f is
a non-invertible function that constructs a resize command object from its arguments.

Table 3.1: Constraint system for image resize dialog in Figure 2.1.
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The view-model of a UI can be represented as a data-flow constraint system.

For example, Table 3.1 shows the constraint system underneath the image resizing

example from Section 2.2.1. There is one variable for each value and command. In

this case, they correspond directly to elements of the UI, but in general a view-model

may have values or commands with no corresponding view. Similarly, there may be

views (e.g., the cancel button) with no corresponding variable in the view-model.

Constraints connect groups of related variables, and they offer a few degrees of

flexibility:

• The relations represented by constraints can be arbitrary. They are often

equalities (e.g., the associations among the initial, absolute, and relative values

for each dimension), but not always (e.g., the implication which conditionally

ties the relative values for each dimension).

• Methods may be single-output or multi-output.

• Constraints may have one or more methods. One-way constraints are typically

suitable for relationships involving a non-invertible function (e.g., a checksum)

or for tying a command to its parameters. Multi-way constraints support

alternative constructions. Figure 3.1 demonstrates a few ways methods can be

specified for a constraint among four variables.

As they are used here, constraints and methods are subject to a few restric-

tions, listed below and named for convenience. The reasons for these restrictions

are explained in detail throughout the chapter. A constraint system satisfying these

restrictions is well-formed.

(WF-1) Every method must use all of the variables in its constraint as either an
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w x

y z

a b

c d

(a) Four one-output methods.

w x

y z

a b

c

(b) Three one-output methods.

w x

y z

a

bc

d

(c) Four two-output methods.

w x

y z

a b

c

(d) Two one-output methods and
one two-output method.

Figure 3.1: Some possible method arrangements for a constraint among four vari-
ables. In these diagrams, variables are circles, methods are squares, and methods are
connected to their inputs with dashed lines and outputs with solid lines. The con-
straint can have one single-output method to compute each variable (a) or a subset
of those (b). In the latter case, some variable(s) (z here) are used as inputs only.
The constraint may instead have multi-output methods to some pairs of variables
(c), or a mixture of single-output and multi-output methods (d).

input or an output (but not both).

∀〈R, ·,M〉 ∈ C, ∀m ∈M, {ins(m), outs(m)} is a partition of R

This is known as method restriction [71, p. 56], and it is trivially satisfied:

if a variable is not an output of a method, then it can be considered an

(ignored) input without changing the method.
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(WF-2) Two constraints may not share the exact same variables.

∀〈R1, ·, ·〉, 〈R2, ·, ·〉 ∈ C,R1 6= R2

(WF-3) One method’s outputs may not be a subset of another method’s outputs.

∀m1,m2 ∈M, outs(m1) 6⊆ outs(m2)

3.2 Constraint Graph

This section develops the view of a constraint system as a graph. It begins with

a “global” view of a graph for the entire constraint system and then discusses how to

infer the individual constraints. The graph representation described differs slightly

from prior works [79] where multi-way data-flow constraint systems are represented

as undirected graphs with auxiliary information that expresses how the undirected

graph can be directed. In the representation here, such auxiliary data is unnecessary.

A data-flow constraint system S is in a one-to-one correspondence with an ori-

ented, bipartite graph G = 〈V + M,E〉, with vertex sets V and M representing the

variables and methods of the system, respectively, and E the directed edges that

connect each method with its input and output variables. Where u, v ∈ V and

m ∈ M , the edge (u,m) indicates that the variable u is an input of the method

m, and (m, v) that m outputs to the variable v. The graph is oriented, that is,

(a, b) ∈ E ⇒ (b, a) 6∈ E, because for each method m, ins(m) and outs(m) are dis-

joint according to WF-1. This graph is called the constraint graph. Figure 3.2 shows

the constraint graph of the constraint system from Table 3.1.

The grouping of methods and variables into constraints is not explicit in the

representation G = 〈V + M,E〉, but it is uniquely determined by G and the notion
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vrh

vah

vih

vrw

vaw

viw

vpr

vok

Figure 3.2: Constraint graph for constraint system in Table 3.1. The drawing con-
ventions are the same used for Figure 3.1. Constraints are not marked explicitly;
methods with the same neighborhood of variables belong to the same constraint.
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of a vertex’s neighborhood (nbh). For a graph 〈V,E〉 and vertex a ∈ V , nbh(a) = {b ∈

V | (a, b) ∈ E ∨ (b, a) ∈ E}. Intuitively, method vertices with the same neighborhood

all belong to the same constraint. Assuming method restriction (WF-1), all method

vertices of the same constraint have the same neighborhood, and with uniqueness

among constraints (WF-2), two methods from different constraints cannot have the

same neighborhood. Formally, if ∼nbh is the equivalence kernel of nbh in M , defined

by m1 ∼nbh m2 ⇔ nbh(m1) = nbh(m2), then the method vertices of each constraint

are an equivalence class in the quotient set M/∼nbh . Therefore, two methods m1 and

m2 belong to the same constraint if and only if [m1]nbh = [m2]nbh . The rest of this

document omits the subscript ·nbh and just uses [·] and ∼.

Thus, the elements of the quotient set M/∼ correspond to the constraints of the

original constraint system S; in other words, for any method vertex m in G, [m] is a

set of method vertices in G, and it identifies a constraint in S.

3.3 Solving

The constraint satisfaction problem for a constraint system is to find a valuation

of the variables such that each constraint is satisfied. Each constraint can be satisfied

independently by executing one of its methods. However, to ensure consistency over

the whole system, methods should be chosen and executed in an order such that

once a variable has been read from or written to by one method, no other method

will write to it.

A solution to a data-flow constraint system is thus characterized by a partially

ordered set of methods. Each valid execution order of methods within a solution is

often called a plan [28]. Depending on the constraint system, a solution may or may

not exist, and may or may not be unique. If a solution exists for a given constraint

system, the system is satisfiable; otherwise it is over-constrained. If more than one

21



solution exists, the system is under-constrained.

The algorithm to ensure consistency among the values in a UI maintains the

view-model in a state where all constraints are satisfied. Whenever a variable’s value

changes—possibly as the result of user interaction—some constraints may no longer

be satisfied. The system is brought back to a satisfied state by computing and

executing a new plan. New values of changed variables are then reflected back to the

view.

Often the constraint system of a view-model is underconstrained. That is, many

different solutions exist, and each solution corresponds to a different direction of

flowing data in a user interface. For example, in the dialog for booking a hotel stay,

data could flow from the check-in date and check-out date variables to the number of

nights variable; or it could flow from the check-in date and number of nights variables

to the check-out date variable.

Stay constraints and constraint hierarchies [11] are used to select among the many

possible solutions that arise in a view-model. Each variable in the system is given a

stay constraint. A stay constraint consists of a single stay method with one output

and no inputs—it is a constant function. Formally, the set of stay constraints in a

constraint graph G is:

stays(G) = { [m] | m ∈M, |outs(m)| = 1, |ins(m)| = 0}.

Conceptually, every time the value of a variable changes, the stay method of that

variable’s stay constraint is constructed anew, so that its constant function returns

the current value of the variable. Thus, executing a stay method for a variable leaves

the variable unchanged. The constraint graph from Figure 3.2 with stay constraints

added appears in Figure 3.3. (Most figures will omit stay constraints as they are
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Figure 3.3: Constraint graph from Figure 3.2 with stay constraints. Stay methods
are depicted as double-border rectangles.

implicit.)

Since not all stay constraints and programmer-defined constraints can be satisfied

simultaneously, a solution can be found only after some constraints are retracted.

To decide which constraints to retract, constraints are organized into levels within

a hierarchy. The rank of a constraint within the hierarchy is called its strength.

Multiple constraints may share the same strength, meaning they belong to the same

level of the hierarchy. Intuitively, the best solution is the one allowed by retracting

the fewest and weakest constraints. The “locally-predicate-better” comparator [27]

defines this precisely: if one solution enforces a constraint that the other does not,
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and every stronger constraint is either retracted in both solutions or enforced in

both solutions, then the former solution is locally-predicate-better (hereafter, simply

better) than the latter.

Hierarchical constraint systems are adapted here to make suitable models for UI

behavior. The highest strength is assigned to the programmer-defined constraints to

indicate that no solution can retract them. All stay constraints are weaker, and their

strengths are unique and totally ordered according to their variable’s priority. Every

time a variable is changed by a client, it is assigned the highest priority among

all variables. Thus, the more recently edited variables will have higher priority,

indicating that the preservation of those variables’ values should be favored. With

this strength assignment, the best solution tends to follow the principle of least

surprise [38] for the user.

Definition 1 (Ordered constraint system). The combination of (a) a constraint

system with (b) stay constraints for each variable (c) whose strengths are unique

and totally ordered is an ordered constraint system.

3.4 Solution Graph

A solution for a constraint system can be explicitly represented as a subgraph

of the constraint graph, called a solution graph. The notation G[V ] indicates the

vertex-induced subgraph of G: if V is a subset of G’s vertex set, G[V ] is the graph

whose vertex set is V and whose edge set includes all edges of G with both endpoints

in V . Thus, if Gc = 〈V + M,E〉 is a constraint graph, then Gs = Gc[V + M s] is a

solution graph of Gc iff (1) M s ⊆M ; (2) Gs is acyclic; (3) ∀v ∈ V, in-degree(v) ≤ 1;

(4) |M s/∼| = |M s|; and (5) |M s/∼| = |M/∼|. The third condition establishes that

no two methods output to the same variable, the fourth that every constraint in the

solution graph has exactly one method, and the fifth that every constraint in the
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Figure 3.4: Possible solution graphs for the constraint graph in Figure 3.2. Stay
constraints are implicit: one exists for every variable with in-degree 0.

constraint graph maps to exactly one constraint in the solution graph.

The last two conditions together guarantee that the solution graph contains ex-

actly one method from every constraint in the constraint graph. This restriction

must be relaxed for hierarchical constraint systems where some constraints may be

retracted in a solution: (5) |M s/∼| ≤ |M/∼|.

In an ordered constraint system, every variable has a retractable stay constraint.

Hence, if there exists a solution with a variable v with in-degree 0, then there exists

a better solution that includes the stay method for v. In other words, for the best1

solution to an ordered constraint system: (3) ∀v ∈ V, in-degree(v) = 1.

The order of methods in a plan is implicit in the solution graph, as a topological

order of method vertices. A few solution graphs for the constraint graph in Figure 3.2

appear in Figure 3.4.

The locally-predicate-better ordering among solutions for a hierarchical constraint

system can be expressed precisely in terms of solution graphs. Formally, let s :

1Proved later to be unique.
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M/∼ → Z∗ be a strength assignment function that maps a constraint to its strength.

(Instead of Z∗, any totally ordered set could be used.) Let >s define a relation among

strengths such that, for c1, c2 ∈ M/∼, if s(c1) >s s(c2) then c1 is stronger than c2.

Additionally, let <s, =s, = /s, ≤s, and ≥s have corresponding meanings. In the

examples here, >s is equivalent to < in Z∗, e.g. 0 is the highest strength.

Let seqs map a set of constraints to an ordered sequence of the constraint strengths

assigned to each constraint by s:

seqs : {C} → (Z∗)

{[m1], [m2], . . . , [mk]}7→ (s([m1]), s([m2]), . . . , s([mk])),

where s([m1]) ≥s s([m2]) ≥s · · · ≥s s([mk])

With this, the locally-predicate-better comparator for solution graphs (using >d
s to

denote the lexicographical “greater than” operator between sequences according to

the >s “greater than” operator between elements) can be defined as follows:

Definition 2 (“Locally-predicate-better” relation for solution graphs). Let Gc =

〈V +M,E〉 be a hierarchical constraint graph, s : M/∼ → Z∗ a strength assignment

function, and Gs
1 = Gc[V +M1] and Gs

2 = Gc[V +M2] two solution graphs of Gc. Gs
1 is

locally-predicate-better than Gs
2 (written Gs

1 �s G
s
2) iff seqs(M1/∼) >d

s seqs(M2/∼).

Intuitively, the set of methods included in a solution graph corresponds to a sequence

of the methods’ constraints’ strengths, in decreasing order of strength. (Remember

that decreasing order of strength will appear as increasing order of numerical value

according to the definitions above.) These sequences are compared lexicographi-

cally: a greater sequence represents a stronger set of constraints. Such a comparison

exhibits a couple important properties:
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• After removing all common constraints from any two given solutions, the one

left enforcing the strongest constraint is better:

(0, 1, 1) >d
s (0, 1, 2, 3)

• A solution is better than every solution enforcing a proper subset of its con-

straints:

(0, 1, 1, 2) >d
s (0, 1, 2)

(0, 1, 1, 2) >d
s (0, 1, 1)

3.4.1 Solving algorithm

A derivative of the QuickPlan algorithm [79] is used to find the best solution graph

for a given hierarchical constraint system and strength assignment function. Quick-

Plan is guaranteed to find such a graph if one exists, and fail otherwise. QuickPlan

is “optimistic”, starting from an over-constrained system and temporarily retracting

constraints until a solution can be found. Then, it improves the solution (if possi-

ble) by attempting to restore retracted constraints, one-by-one. The algorithm here

omits the first stage, starting directly from a system that is known to be solvable

and moving immediately to the improvement phase, and simplifying further because

each stay constraint has a unique strength. Nevertheless, the essence of the algorithm

remains the same.

The notions of free variable and method are essential in describing the algorithm:

Definition 3 (Free variable, free method). Let G = 〈V + M,E〉 be a constraint

graph. A variable v is free in G if ∀mi,mj ∈ M,mi ∈ nbh(v) ∧ mj ∈ nbh(v) ⇒

[mi] = [mj]. A method m is free in G if ∀v ∈ outs(m), v is free. The set of free
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variables of a constraint c ∈M/∼ is denoted frees(c) = {v ∈ V | nbh(v) ⊆ c}.

A variable is free if it is connected to no more than one constraint; that is, any

methods for which it is an input or output all belong to the same constraint. A free

method outputs to only free variables, meaning it can satisfy a constraint without

restricting which method is used to satisfy any other constraints in the system.

The Planner algorithm (Algorithm 1) finds a solution graph for a given con-

straint graph. It starts with an empty set of methods and adds a free method from

the constraint graph. The free method’s constraint is removed from the constraint

graph, and the algorithm iterates until the graph has no more constraints. The state

of the algorithm is captured in two sets of methods: Ms are the methods that are

part of the solution, and Mu the methods of the as yet unsatisfied constraints.

Algorithm 1 Planner(G〈V +M,E〉)
1: Ms ← ∅, Mu ←M
2: while Mu 6= ∅ do
3: if no free methods in G[V +Mu] then
4: return “no solution”
5: m← some free method in G[V +Mu]
6: Mu ←Mu \ [m]
7: Ms ←Ms ∪ {m}
8: return G[V +Ms]

Algorithm 2, Hierarchy Solver, finds the best solution graph given a hier-

archical constraint graph G and a strength assignment function s. The maximal

value of s, i.e., the strength of non-retractable constraints, is denoted as must. The

Hierarchy Solver algorithm first divides the methods of the constraint system

into those of non-retractable constraints, Ms, and retractable constraints, Mu. If
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Planner cannot solve the graph of just the non-retractable constraints, then the

entire constraint system is not satisfiable. Otherwise, Ms becomes the set of methods

of satisfiable constraints, which the algorithm tries to expand.

On each iteration, the algorithm attempts to add to Ms the methods of the

strongest retractable constraint(s), M>
u . If the constraint graph remains satisfiable,

the new methods are kept; otherwise, they are discarded. When there are no more

constraints to try, the solution of the most recent satisfiable constraint graph is the

best solution graph.

Although Hierarchy Solver can be used to solve a general hierarchical con-

straint system, important properties of ordered constraint systems affect its behavior

and serve to prove (further below) that the solution returned, if any, is unique. In

particular, the initial retractable constraints Mu are the stay constraints, and during

each iteration of the loop, M>
u is guaranteed to be a unique constraint—in fact, it is

a set of exactly one stay method.

Algorithm 2 Hierarchy Solver(G〈V +M,E〉, s)
1: Ms ← {m ∈M | s([m]) = must }, Mu ←M \Ms

2: if Planner(G[V +Ms]) has no solution then
3: return “no solution”
4: while Mu 6= ∅ do
5: M>

u ← {m ∈Mu | ∀mi ∈Mu, s([m]) ≥ s([mi])}
6: if Planner(G[V +Ms ∪M>

u ]) succeeds then
7: Ms ←Ms ∪M>

u

8: Mu ←Mu \M>
u

9: return Planner(G[V +Ms])

With the assumptions that some (small) constants bound each of (1) the number

of constraints to which any variable belongs, (2) the number of variables that any
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constraint involves, and (3) the number of distinct constraint strength values, Zanden

shows [79] that QuickPlan’s worst-case time complexity is O(n2), where n is the

number of constraints in the system. In an ordered constraint system, condition

(3) does not hold: the number of distinct constraint strengths is relative to the

number of variables in the system. This assumption is not critical; even without

it, O(n2) is an upper-bound of the asymptotic complexity of the above algorithm:

Hierarchy Solver is linear in the number of constraint hierarchies, and Planner

is linear in the number of total constraints. Whether a solution exists at all can be

determined in linear time. A polynomial bound is possible thanks in part to method

restriction (WF-1) [78].

3.4.2 Uniqueness

Due to the special structure of ordered constraint systems, if a best solution graph

exists, it is unique—this is a crucial property for the predictability of UIs built with

constraint systems.

Lemma 3.4.1. At most one solution graph Gs = 〈V + M s, Es〉 for the constraint

graph Gc = 〈V +M,E〉 exists, such that ∀v ∈ V, ∃m ∈M s, (m, v) ∈ Es.

Proof. Zanden [79] showed that Gs has at least one free method. Let F = frees([m])

be the free variables for any free method m. Since m is free, outs(m) ⊆ F . Since

[m] is the only constraint attached to the variables F , and m is the only method in

[m] that exists in M s, then ∀v ∈ F \ outs(m), insGs(v) = ∅. However, by definition,

∀v ∈ V, insGs(v) 6= ∅. Therefore outsGc(m) cannot be a proper subset of F , and

must be equal to F . Because of WF-3, [m] does not contain other free methods in

Gc.

Thus, every satisfiable constraint graph must contain at least one free method,

which is the unique choice for its constraint in any solution graph where every variable
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is an output of a method. This constraint can be removed from Gc, yielding a new,

smaller, well-formed constraint graph G′c = Gc[V \ frees([m])+M \ [m]]. The lemma

is true for Gc iff the lemma is true for G′c. For an empty constraint graph (no

variables, methods, or edges) the lemma is trivially true.

Theorem 3.4.2 (Uniqueness of best solution graph). If 〈Gc, s〉 is an ordered con-

straint graph, then there exists at most one best solution graph of Gc with respect to

s.

Proof. Let 〈Gc, s〉 be an ordered constraint graph. Let Gs
1 = 〈V + M1, E1〉 and

Gs
2 = 〈V + M2, E2〉 be best solution graphs of Gc with respect to s. Assuming

Gs
1 6= Gs

2 leads to a contradiction.

First, Gs
1 and Gs

2 necessarily enforce the same constraints. Since all solution

graphs enforce all non-retractable (i.e. non-stay) constraints, Gs
1 and Gs

2 could only

differ in what stay constraints they enforce. Since the strength of each stay constraint

is unique, stays(Gs
1) 6= stays(Gs

2) ⇒ seqs(stays(Gs
1)) 6= seqs(stays(Gs

2)), and thus

either Gs
1 �s G

s
2 or Gs

2 �s G
s
1, violating the assumption that both solutions are best.

Therefore, stays(Gs
1) = stays(Gs

2).

It remains to show that M1 = M2, i.e., that if two best solution graphs enforce

the same set of constraints, the methods selected from each constraint are the same.

Every variable in a best solution graph is an output of some method. Consider the

subgraph G′c = Gc[V + M ′] of Gc = 〈V + M,E〉 where M ′ = M \ {m | [m] ∈

stays(Gc) ∧ [m] /∈ stays(Gs
1)}. That is, G′c is Gc excluding the stay methods that

do not appear in the solution Gs
1. The solution graphs of G′c where ∀v ∈ V, ∃m ∈

M ′, (m, v) ∈ edges(G′c) (every variable is an output of some method) are the best

solution graphs of Gc with respect to s. According to lemma 3.4.1, at most one such

solution graph exists.
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3.4.3 When the solution graph does not change

Certain changes to a constraint system do not alter the best solution graph.

Namely, a solution can be reused when the strength of an enforced stay constraint

increases. In other words, editing a variable with an enforced stay constraint does

not change the solution. Among other applications, this analysis can be used to

avoid the work of computing a new solution graph.

Lemma 3.4.3 (Increasing the strength of an enforced stay constraint does not change

the best solution graph). Let 〈Gc, s1〉 be an ordered constraint graph where Gc = 〈V +

M,E〉, Gs its best solution graph, and c some constraint in stays(Gc) that is enforced

in Gs. Let s2 be a strength assignment function such that ∀c1, c2 ∈M/∼\{c}, s1(c1) <

s1(c2)⇒ s2(c1) < s2(c2), ∀c3 ∈ stays(Gc) \ {c}, s1(c) > s1(c3)⇒ s2(c) > s2(c3), and

〈Gc, s2〉 an ordered constraint graph. The best solution graph of 〈Gc, s2〉 is Gs.

Proof. Let Gc = 〈V +M,E〉, 〈Gc, s1〉 and 〈Gc, s2〉 ordered constraint graphs, Gs
1 the

best solution graph of 〈Gc, s1〉, and c a constraint in Gs
1. The assumption ∀c1, c2 ∈

M/∼ \ {c}, s1(c1) < s1(c2) ⇒ s2(c1) < s2(c2), states that the relative order of

strengths of two constraints other than c does not change from s1 to s2. Consider the

case where the change from s1 to s2 is such that c “jumps” over exactly one constraint

in the ordering induced by the strength assignment: ∃!c′ ∈ M/∼ \ {c}, s1(c′) >

s1(c) ∧ s2(c) > s2(c
′). Name the best solution graph of 〈Gc, s2〉 as Gs

2.

If Gs
1 and Gs

2 enforce the same stay constraints, then the second half of the proof

for Theorem 3.4.2 shows that Gs
1 = Gs

2. All constraints other than c and c′ retain

in Gs
2 the enforcement status they held in Gs

1 because their relative order with all

other constraints is unchanged. It remains to show that c, after becoming stronger

in s2, and c′, after becoming weaker, are the same way. A constraint (c) that is

enforced when it is stronger than some set of constraints (call it C) should remain
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enforced after becoming stronger than a superset of those constraints (C ∪ {c′}). If

c′ is retracted in Gs
1, it cannot be enforced in Gs

2 where it is weaker. If c′ is enforced

in Gs
1 where c did not need to be retracted, then c′ must be enforced in Gs

2 as well.

Finally, the above change to s1 where c moves over exactly one stronger constraint

can be repeated arbitrarily many times, from which the lemma follows.

The lemma implies that several other transformations can preserve the best so-

lution graph:

• a retracted stay constraint can be given a weaker strength;

• any contiguous region of retracted stay constraints can be permuted arbitrarily;

and

• any contiguous region of enforced stay constraints can be permuted arbitrarily.

3.4.4 When the solution graph does change

It is possible to determine the extent of changes to the best solution graph induced

by changes to the strength assignment function. Van Zanden observed that whenever

QuickPlan attempts to enforce a previously retracted constraint, it must examine

only the “upstream” constraints [79, §5.2]. A constraint c1 is upstream from another

constraint c2 if, in the solution graph, there is a path from a method in c1 to any of

the output variables of any method in c2.

In the special case of constraint systems for UIs, the strength assignment function

changes in a limited, predictable way: when a variable is *edited* (that is, its value

is changed from outside of the constraint system), its stay constraint is given the

highest strength; all other strengths are left unchanged. Since a stay constraint has

only one method with one output, its upstream constraints are all the constraints

33



with methods in its variable’s ancestor (directed acyclic) graph: every variable and

method reachable from the variable in the transpose of the solution graph. Therefore,

after a variable is edited, the only constraints that may need different satisfying

methods are those constraints with methods in the variable’s ancestor graph.

Note that such incremental solving does not change its complexity, which remains,

in the worst case, quadratic in the number of constraints. In practice, however, it

typically exhibits linear performance.

3.5 Evaluating

Execution of the methods in a plan, in order, is called evaluation. Because all

methods in a constraint are assumed to enforce the constraint equally well, execution

of a method can be omitted if the inputs that the method used in the last evaluation

have not changed. This strategy is implemented in a lazy evaluation algorithm whose

semantics are given in Figure 3.5.

For a constraint graph Gc = 〈V + M,E〉, ν is a valuation of variables in V and

edges in E. The valuation ν maps a variable to the tuple 〈t, p, q〉, where t is the

current value of the variable; p a flag indicating whether the value of the variable is

“computed,” i.e., up-to-date; and q a flag indicating whether the value has changed

since the last evaluation. For clarity, instead of Boolean values, p can have values

computed and uncomputed, and q the values changed and unchanged. Further, ν maps

all edges e = (v,m) ∈ E to one of the values used or unused. The former signifies that

when the code of the method m was executed, the value of the variable v was read,

the latter that it was not. Consequently, ν is overloaded so that the expressions ν(v)

and ν(e) are both valid. The notation [v 7→ val ]ν represents the valuation function

identical to ν, except that the variable v maps to val; the analogous notation applies

for edges.
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The following metavariables appear in the definition of the evaluation semantics,

with primes, subscripts, and superscripts as appropriate: Gs for solution graphs; V

for sets of variables; u and v for variables; m for methods ( · is a special value for m

that indicates “no method”); t for values of variables; q for values of the changed-flag;

ν for valuation functions; µ for mapping a method to the code of the method and to

two sequences of variables indicating the input and output variables of the method;

and f for the code of a method. The underscore symbol “ ” is a placeholder variable

that binds to anything, similarly to how it is used in, say, Haskell or ML.

Figure 3.5 defines the functions that evaluate new values for variables, both indi-

vidually and altogether. The notation func | ν → t | ν ′ has the following meaning:

the function func (either eval or evalmany) is evaluated within the context of the

current valuation ν, which produces a new valuation ν ′ and the result t. The symbol

“·” indicates that the function has no result.

The evalmany function, defined by the rules EvalMany and Evalmany-Empty,

simply invokes eval for each variable in a set in some order. Each call to eval traverses

the dependencies in the solution graph upwards and evaluates all variables that

are necessary for determining the value of the current variable, and then executes

the method of the current variable. Along the way, the information on used input

variables is collected and maintained to avoid recomputing a method if its inputs are

known to have not changed.

The eval function defines how to obtain the value of a single variable. Besides

the variable whose value should be obtained, eval has two other parameters: the

method m that requested the value of the variable and the current constraint graph

Gs. The method parameter accepts the value “·”, which indicates that the value of

the variable is not requested by a method.

The rules Eval-Computed and Eval-ComputedNoMethod define the course of
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Eval-Computed
ν(v) = 〈t, computed, 〉 m 6= ·

eval(v,m,Gs) | ν → t | [(v,m) 7→ used]ν

Eval-ComputedNoMethod
ν(v) = 〈t, computed, 〉
eval(v, ·, Gs) | ν → t | ν

Eval-Inputs
ν(v) = 〈 , uncomputed, 〉

{m′} = insGs(v) V in = insGs(m′) v′ ∈ V in ν(v′) = 〈 , uncomputed, 〉
evalmany(V in, Gs) | ν → · | ν ′ eval(v,m,Gs) | ν ′ → t | ν ′′

eval(v,m,Gs) | ν → t | ν ′′

Eval-Unchanged
ν(v) = 〈 , uncomputed, 〉 {m′} = insGs(v) V in = insGs(m′)
∀vini ∈ V in, ν((vini ,m

′)) = used⇒ ν(vini ) = 〈 , computed, unchanged〉
{vout1 , . . . , voutl , . . . , voutk } = outsGs(m′)

v = voutl ν(vout1 ) = 〈t1, , q1〉 · · · ν(voutk ) = 〈tk, , qk〉
ν ′ = [vout1 7→ 〈t1, computed, q1〉, . . . , voutk 7→ 〈tk, computed, qk〉]ν

eval(v,m,Gs) | ν ′ → t′ | ν ′′

eval(v,m,Gs) | ν → t′ | ν ′′

Eval-Changed
ν(v) = 〈 , uncomputed, 〉

{m′} = insGs(v) {vin1 , . . . , vinl , . . . , vinn } = insGs(m′)
ν(vin1 ) = 〈 , computed, 〉 · · · ν(vinn ) = 〈 , computed, 〉 ν((vinl ,m

′)) = used
ν(vinl ) = 〈 , , changed〉 ν ′ = [(vin1 ,m

′) 7→ unused, . . . , (vinn ,m
′) 7→ unused]ν

µ(m′) = 〈f, (uin1 , . . . , uinn ), (uout1 , . . . , uoutk )〉
f(ν ′, λν.(eval(uin1 ,m

′, Gs) | ν), . . . , λν.(eval(uinn ,m
′, Gs) | ν)) → (t′1, . . . , t

′
k) | ν ′′

ν(3) = [uout1 7→ 〈t′1, computed, changed〉, . . . , uoutk 7→ 〈t′k, computed, changed〉]ν ′′
eval(v,m,Gs) | ν(3) → t′ | ν(4)

eval(v,m,Gs) | ν → t′ | ν(4)

Evalmany-Empty

evalmany(∅, Gs) | ν → · | ν

EvalMany
eval(v, ·, Gs) | ν → · | ν ′ evalmany(V ′, Gs) | ν ′ → · | ν ′′

evalmany({v} t V ′, Gs) | ν → · | ν ′′

Figure 3.5: Semantics for lazy evaluation of a solution graph Gs with valuation ν.
Functions insGs and outsGs are overloaded for both methods and variables, so that
they return the sets of incoming and outgoing vertices in Gs.
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action in the case where the computed-flag of the requested variable is set. This

indicates that the value of the variable is up-to-date and its value is returned im-

mediately. The Eval-Computed applies when some method is asking for the value

of a variable and thus it additionally sets the used-flag of the “variable to method”

edge. Eval-ComputedNoMethod matches when the evaluation request comes from

evalmany, rather than from executing a method.

The rules Eval-Inputs, Eval-Unchanged, and Eval-Changed define what to

do when the value of a variable has not yet been computed. Consider evaluating the

value of the variable v. All these three rules examine the method m′ that outputs to

v in the current solution graph, and the input variables of m′.

Eval-Inputs matches if any input variable of m′ is still uncomputed. The rule

invokes evalmany to evaluate the input variables, then invokes eval for v again.

Eval-Unchanged matches when all the input variables of m′ are computed and

all the input variables that are used by m′ are unchanged. In this case, it is not

necessary to execute the method m′ again. The new valuation marks all of the

output variables of m′ as computed, but does not change their values or changed-

flags. Finally, eval is invoked again for v to effect the possible update of the used-

flag for an edge from v to some method m. Note that the premise v = voutl in

Eval-Unchanged is redundant; it is included to make it obvious that v is one of the

output variables of m′. Further, if m′ is a stay method, it has no inputs, and thus

Eval-Unchanged applies and retains v’s valuation unchanged.

Eval-Changed matches when all the input variables of m′ are computed and at

least one input variable of m′ has changed. If this is the case, the code of m′ needs to

be executed. This entails (1) retrieving the code f of m′, (2) constructing a callback

function for each input variable of f that will obtain the value of the input variable

by another call to eval, (3) passing the callbacks to f , and (4) executing f . If the
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code of a method invokes any of its callbacks, a new call to eval results, where the

method requesting the value of the variable is m′. This call will eventually reach

Eval-Computed, which will set the corresponding used-flag of the edge to m′. Once

the method f returns, the values in the tuple it returns are written to the output

variables of m′ (v is one of them) and the computed- and changed-flags of these

output variables are set as well.

The correctness of the evaluation phase depends on methods never copying and

saving the current valuation: the same shared state should always be used when

invoking any of the callbacks of a method, and not held after the method returns.

Note also that since arbitrary code is allowed to be executed in methods, termination

cannot be guaranteed.

3.6 Evaluation Graph

The used/unused distinction for method input edges calculated during evaluation

is captured in a subgraph of the solution graph called the evaluation graph. Input

variables are passed to a method by name: to obtain a value of one of its input

variables, a method must explicitly ask for it. Only if a method m asks for the value

of its input variable v during execution of the method is the edge (v,m) included in

the evaluation graph. The variable v and the input edge (v,m) are said to be used

by the method m. Assuming a solution graph Gs = 〈V + M,EV + EM〉, where EV

are the edges whose target vertex is in V , and EM the edges whose target vertex is

in M , the evaluation graph Ge is the subgraph of Gs induced by the edges EV +Eu

where Eu ⊆ EM are the used input edges. That is, Ge = 〈V +M,EV + Eu〉.

A possible evaluation graph for the solution in Figure 3.4a appears in Figure 3.6.
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vrh

vah

vih

vrw

vaw

viw

vpr

vok

Figure 3.6: Possible evaluation graph for the solution graph in Figure 3.4a. The
difference is subtle, but the edge from vrh to the method that writes vrw is missing.
The method essentially acts as a stay method because the user has elected to not
preserve the image’s aspect ratio.

3.7 Summary

The three graphs described above—the constraint graph, solution graph, and eval-

uation graph—have the following interpretations with respect to UIs: the constraint

graph represents all dependencies that could ever be in effect in a view-model; the

solution graph represents the dependencies that could be in effect with the current

order of updates to the variables of a view-model, for any values of those variables;

and the evaluation graph represents the dependencies that are currently in effect for

the current order of updates to the variables, for their current values.
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4. ALGEBRA*

This chapter examines hierarchical multi-way data-flow constraint systems as a

commutative monoid [41]. This correspondence appears to be missing from the early

literature. Maybe it is not all that surprising, or maybe the authors working on

constraint systems did not bother to make the connection explicit—the elements

of such a connection, such as the operation of adding a constraint to an existing

constraint system and its impact on the system’s solution, have been described [28,

25].

Investing in understanding how a data structure conforms to well-known algebras

is beneficial. It can make properties of the data structure easily apparent. For

example, when viewed as a monoid, solving a constraint system becomes a fold of

the monoid’s binary operation over the system’s constraints. In turn, the connection

simplifies and clarifies many aspects of hierarchical multi-way data-flow constraint

systems, easing new paths of research.

4.1 Constraint Systems as Monoids

To view constraint systems as a commutative monoid, consider methods to be

graphs directly following the construction of constraint graphs as given in Section 3.2.

That is, the method graph of a method m ∈ M of some constraint C = 〈R, r,M〉

is a graph with one method vertex m, variable vertices R, and edges (u,m) for each

u ∈ ins(m) and (m, v) for each v ∈ outs(m). To not confuse the different views of

* Portions of this chapter are reprinted from Jaakko Järvi, Magne Haveraaen, John Freeman,
and Mat Marcus. Expressing multi-way data-flow constraint systems as a commutative monoid
makes many of their properties obvious. In Proceedings of the 8th ACM SIGPLAN workshop
on Generic programming, WGP ’12, pages 25–32, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1576-0. doi: 10.1145/2364394.2364399. URL http://doi.acm.org/10.1145/2364394.2364399
Copyright 2012 ACM.
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a method, an undecorated method name, say m, refers to the single method vertex,

and a method name decorated with the superscript ·g, say mg, refers to the method

graph.

A single constraint like C is in itself a constraint system. C can be satisfied by

executing any of its methods; any of C’s method graphs mg will, by construction,

meet the requirements of a solution graph, as described in Section 3.4 (in short, no

variable is assigned a value twice, or assigned after being read). This set of solution

graphs, each a directed acyclic graph with at most one in-edge to each variable

vertex, represents all possible solutions of the constraint system arising from the

single constraint C.

In our monoid, the carrier set is the set of all constraint systems, each repre-

sented by its set of solution graphs. A system of a single constraint is thus trivially

represented by that constraint’s method graphs.

The composition operator in this monoid is a refinement of graph union. Opera-

tionally, it takes two constraint systems, forms the cartesian product of their two sets

of solution graphs, computes the graph union of each pair of this product, and dis-

cards those graphs that are not solution graphs. Formally, let A = {ag1, a
g
2, . . . , a

g
m}

and B = {bg1, b
g
2, . . . , b

g
n} be constraint systems (sets of solution graphs). Then

our monoid operation is defined as A + B = {cg | ag ∈ A, bg ∈ B, cg = ag ∪

bg, cg a solution graph}. This operator is both associative and commutative because

of the associativity and commutativity of graph union.

As a simplification, a constraint system can be regarded as a single constraint,

and its solution graphs regarded as method graphs of that constraint. Consider a

constraint system of two constraints, A = 〈Ra, ra,Ma〉 and B = 〈Rb, rb,Mb〉. When

composed, they form a single constraint C = 〈Rc = Ra∪Rb, rc = ra∧ rb,Mc = Ma +

Mb〉. Each method mc ∈ Mc is the union of some two methods, call them ma ∈ Ma
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and mb ∈ Mb. To consider mc a method itself, we must define its sets of input and

output variables. Because outputs cannot be shared when composing method graphs,

we must keep track of the full set of outputs as we compose: outs(mc) = outs(ma)t

outs(mb). Method restriction (WF-1: a method must use all of its constraint’s

variables as either input or output) then dictates that ins(mc) = Rc \ outs(mc).

Note that ins(mc) ⊂ ins(ma)∪ ins(mb) when any outputs of one method are inputs

to the other.

The identity element is the singleton set, whose sole element is the null graph.

This is easily seen:

{ag1, a
g
2, . . . , a

g
m}+ {({}, {})}

= {ag1 ∪ ({}, {}), ag2 ∪ ({}, {}), . . . , agm ∪ ({}, {})}

= {ag1, a
g
2, . . . , a

g
m}.

Note that the empty set is an absorbing element of the constraint composition

operator; the cartesian product of a set with an empty set is an empty set. Further,

the + operation is idempotent : for all constraints C, C+C = C. This follows, as the

union of two different method graphs from the same constraint is cyclic, and thus the

only method graphs that remain in the result are the unions of each method graph

with itself; and graph union is idempotent.

The size of A + B can be up to m × n methods. For it to be interesting to

compose constraints, the constraints must share variables, often in ways that will

disqualify many combinations of methods. Figure 4.1 shows the constraint graph

arising from the composition of two constraints, each containing three variables;

two of the variables are shared. The example from which these two constraints

arise is modeling the relation of a rectangle’s width w, height h, and area A; and,

respectively, its width, height and perimeter p. Each constraint has three methods:
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A

w

h

p

Figure 4.1: Graph of a constraint composed of two other constraints. The first
represents a three-way relation between A, w, and h; the second a three-way relation
between p, w, and h.
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Figure 4.2: All method graphs of the constraint graph in Figure 4.1.
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any one variable can be computed from the other two. Instead of 3× 3 methods, the

combined constraint has five methods. Figure 4.2 shows all these method graphs.

4.2 Implementation in Haskell

A concrete implementation of the abstract algebra can help demonstrate the

correspondence. Figure 4.3 shows a Haskell implementation of the monoid. The

necessary module import statements are included on lines 1–5 to make the code

complete and executable. Various modules are imported as qualified to make it clear

in which libraries various functions are defined.

As explained in Section 3.2, all structure of a constraint system can be recov-

ered from the constraint graph. That is, one does not need to maintain auxiliary

information of which method vertices belong to which constraints; or of which “el-

ementary” constraints the system was composed. We can thus leverage a general

purpose graph library, and directly represent methods, constraints, and constraint

systems as graphs. Here, we use Haskell’s Data.Graph.Inductive library, based on

Erwig’s Functional Graph Library (FGL) [16].

The graph, method, and constraint type definitions are shown on lines 7–11. The

graph type is G.Gr NodeKind (). The first type parameter of G.Gr represents the

type of the label of nodes, the second the type of the label of edges. A node in

the FGL graph is a pair of an integer and a label. The integer is a node’s unique

identifier. The label type NodeKind indicates whether a node represents a variable

or a method. An edge is a triple, whose elements are an integer (source), integer

(target), and a label. The source and target integers each should refer to an existing

node identifier. No additional information is necessary for edges, hence the label

type is unit.

The method and constraint types directly follow the definitions above: a method
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1 import Data.Monoid
2 import qualified Data.Graph.Inductive as G
3 import qualified Data.Graph.Analysis.Algorithms.Common as GA
4 import qualified Data.List as L
5 import Data.Maybe (catMaybes)
6

7 data NodeKind = VarNode | MetNode deriving (Eq, Show)
8

9 type Method = G.Gr NodeKind ()
10

11 data Constraint = Constraint [Method] deriving Show
12

13 methodUnion :: Method −> Method −> Maybe Method
14 methodUnion g1 g2 =
15 let ns1 = G.labNodes g1
16 ns2 = G.labNodes g2
17 es1 = G.labEdges g1
18 es2 = G.labEdges g2
19 common = L.intersect ns1 ns2
20 g = G.mkGraph (ns1 ‘L.union‘ ns2) (es1 ‘L.union‘ es2)
21 in
22 if all (<= 1) (map (G.indeg g . fst) common) &&
23 null (GA.cyclesIn g)
24 then Just g
25 else Nothing
26

27 instance Monoid Constraint where
28 mempty = Constraint [G.empty]
29 mappend (Constraint as) (Constraint bs) =
30 Constraint $ catMaybes [a ‘methodUnion‘ b | a <− as, b <− bs]

Figure 4.3: Implementation of a data-flow constraint system planner in Haskell.

is a graph and a constraint a list of methods, also graphs. The general graph type

Gr.G can represent any graphs, including ones that are not valid method graphs.

Further, a list of method graphs might not constitute a valid constraint. We assume

as an unchecked precondition that methods and constraints are always well-formed.

Indeed, constraints are typically constructed with dedicated functions that guarantee

well-formedness.

The workhorse of the monoid’s binary operation is the function methodUnion.
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This function computes the union of two graphs, but only accepts the result if it

is a candidate solution graph. The FGL library does not provide a graph union

function, so we implement here a simple graph union operation (methodUnion). The

methodUnion function extracts both two lists of nodes and two lists of edges from its

argument graphs, uses the list union function to combine the lists into one of each

kind, and then reconstructs a graph from them.

The resulting graph is checked against the requirements for a solution graph on

lines 22 and 23. The first checks that no variable is an output of more than one

method. This check is only necessary for the variables that are common to both of

the composed graphs. The function fst accesses the node index of a labeled node,

G.indeg computes the number of incoming edges of a node. The second line checks

whether the resulting graph contains cycles.

Taking advantage of the methodUnion function, Constraint can be made an in-

stance of the Monoid type class without much effort. The identity element (called

mempty in Haskell) is a singleton list of methods, where the method is the empty

graph. The binary operation, mappend, applies methodUnion to each combination

of the operands’ methods, and collects the results in a list. The catMaybes function

prunes the Nothing values that result from the failed method unions where the result

does not satisfy the conditions of a solution graph.

With constraints defined as monoids, writing a planner algorithm becomes quite

straight-forward. Assuming a constraint system is a list of constraints, the list of

all possible plans/solution graphs for it, as a single Constraint, is obtained with the

following function:

1 plans : : [ Constra int ] −> Constra int

2 plans = mconcat
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Expanding mconcat, plans = foldr mappend mempty.

4.3 Constraint System Properties as Monoid Properties

The monoid-view makes it easy to study the strength assignment’s impact to

the solution. To find the best locally-predicate-better solution, one starts from the

original under-constrained system as the current solution, and adds stay constraints

to it in the order from the strongest to the weakest. The results of additions that

fail (return the absorber element) are ignored. For concreteness, we express this

in Haskell. The order of the list of constraints passed to prisolve determines the

strength assignment:

1 i sAbsorber ( Constra int [ ] ) = True

2 i sAbsorber = False

3

4 p r i s o l v e : : [ Constra int ] −> Constra int

5 p r i s o l v e l s = fo ldl1 (\ a b −> l et sum = a ‘mappend ‘ b in

6 i f i sAbsorber sum then a else sum) l s

Understanding the mapping from strength assignments to the set of possible plans

is desirable in user interface design. Questions such as “can the user interface ever

override the value of any variable that a user is editing?” or “if variables x, y, and z

are edited in this order, will the user interface modify either x or y; and if so, which?”

are sometimes hard to answer conclusively based on complex event handling logic.

With the help of the monoid-view, the first question is answered by confirming

that adding any of the stay constraints alone to the original under-constrained system

yields a satisfiable constraint. Assuming the stays are the stay constraints of all vari-

ables, cs the original under-constrained constraint system (composed into one con-

straint), the query can be written in Haskell as any (isAbsorber . (mappend cs)) stays.

The second question can be answered by adding the stay constraints of the variables
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z and y to the original system, then those of z and x, and observing the possible

solutions.

The impact of a change in the strength assignment is a source of interesting

questions. In particular, what changes may require recomputing a new solution

graph? Some properties that are obvious with the monoid view are:

• Increasing the strength of an enforced constraint does not change the best

solution graph.

• Decreasing the strength of an unenforced constraint does not change the best

solution graph.

Since the best solution graph is the sum of a sequence of constraints, which is

commutative and associative, adding the same constraints in a different order yields

the same solution. The question then is could strengthening an enforced constraint

so that it surpasses some unenforced constraint in the preference order enable that

constraint to be enforced. Let [] denote the absorber constraint, and a, b, and c some

constraints s.t. s(a) ≥ s(b) ≥ s(c). If a and c are enforced in the best solution but

b is not, then a + b = [] and a + c 6= []. Clearly (a + b) + c = [] = (a + c) + b and

thus b cannot be enforced even if c is added to the solution first. The same reasoning

applies to the second case, weakening an unenforced constraint, here moving b later

than c. We note that in the two related cases, decreasing (respectively increasing)

the strength of an enforced (unenforced) constraint, the best solution graph may

change.

In constraint graphs for user interfaces, increasing the strength of an enforced

constraint is a common occurrence. Every time a user changes focus and updates a

new variable, this variable is given the highest strength. A determination must be

made whether the change can impact the best solution graph, that is, the direction
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of data propagation in the user interface.

Finally, the monoid view allows for specializing constraint systems. Even though

there may be many constraints, the number of possible solution graphs of the entire

constraint system may be small. In cases where the number of solutions is not small

for the entire system, there may be subsets of constraints for which there are only a

small number of solutions. Such subsets of constraints are candidates for composing

into a single constraint. Both the determination of which constraints should be

composed and the actual composition are easy in the monoid view. Determining the

optimal subsets to compose, however, can be computationally expensive with the

rather simplistic constraint representation here.

In some cases it might be beneficial to get rid of the entire constraint solver. For

example, HotDrink [22] is a JavaScript library for building web user interfaces based

on ordered constraint systems (described in Chapter 6). When loading a page, the

browser loads an implementation of a constraint system solver and a specification

of a constraint system, both in Javascript. Typically the constraint system stays

unchanged after loading, in which case an alternative is to translate the entire con-

straint system into a specialized sequence of branching instructions. When the total

number of plans for a constraint system is small, the branching logic may be quite

simple. The monoid-view is helpful for implementing these kinds of analyses and

translations.
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5. BEHAVIORS*

With an ordered constraint system as a view-model, rich UI behaviors can be

implemented as generic, reusable algorithms over the three graphs—constraint, so-

lution, and evaluation—described in Chapter 3 [39, 40, 23]. Concretely, this means

that a GUI programmer can create user interfaces with these features for little or no

additional cost.

This chapter presents algorithms for propagating values, visualizing dataflow,

pinning values, recording and replaying user interface scripts, activating and deac-

tivating commands, generating context-sensitive help, and enabling and disabling

values. For each of them, we define a formal semantics, which serves as a spec-

ification for the corresponding algorithm, allowing us to unambiguously verify its

correctness. Contrast that with the typical means of implementing these behaviors:

ad hoc estimations of human interface guidelines, different for each platform and

open to interpretation [7, 52, 3].

* Portions of this chapter are reprinted from Jaakko Järvi, Mat Marcus, Sean Parent, John
Freeman, and Jacob N. Smith. Property models: from incidental algorithms to reusable compo-
nents. In GPCE’08: Proceedings of the 7th international conference on Generative programming and
component engineering, pages 89–98, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-267-2.
doi: 10.1145/1449913.1449927. URL http://doi.acm.org/10.1145/1449913.1449927 Copyright 2008
ACM; Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Algorithms for
user interfaces. In GPCE’09: Proceedings of the 8th international conference on Generative program-
ming and component engineering, pages 147–156, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-267-2. doi: 10.1145/1621607.1621630. URL http://doi.acm.org/10.1145/1621607.1621630
Copyright 2009 ACM; John Freeman, Jaakko Järvi, Wonseok Kim, Mat Marcus, and Sean Par-
ent. Helping programmers help users. In GPCE’11: Proceedings of the 10th ACM interna-
tional conference on Generative programming and component engineering, pages 177–184, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0689-8. doi: 10.1145/2047862.2047892. URL
http://doi.acm.org/10.1145/2047862.2047892 Copyright 2011 ACM.
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5.1 Value Propagation

Consider the image resize example dialog from Section 2.2.1. If the user edits

the absolute height, the relative height must change to preserve the three-way rela-

tionship among the initial, absolute, and relative height values. If the aspect ratio is

preserved, the change will flow into the values for width as well, and on down to the

parameters for the resize command itself. This process is called value propagation.

As discussed on page 9, in the MVVM pattern, the role of maintaining consistency

between the internal view-model and its visual representation (the view) falls to

bindings.

Bindings are typically implemented as event handlers. Each handler works in

one of two directions, updating the view-model in response to activity in the view,

or vice versa. Among other semantic events, a view might generate events from

user interactions, and a variable might generate events from changes in its value.

In this example, clicking the “OK” button leads directly to executing a “resize”

command, but some handlers might have more responsibilities. Changing any single

number field may result in changes to the three others, depending on the value of

the “preserve ratio” option. As the values and relationships in a UI grow, the event

handlers may need to be revisited and extended.

With a view-model based on an ordered constraint system, these event handlers

can be implemented generically. Each event handler connects exactly one element in

the view to exactly one variable (representing either a value or a command) in the

view-model. No event handler is left with the responsibility of managing relationships

among view-model values; that logic is left to the constraint system, and the handler

is reduced to just modifying a view-model variable on behalf of the user (an edit) or

refreshing a view to reflect changes in the view-model.
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Formally, the state of a view-model’s ordered constraint system, the current con-

figuration, is a tuple J = 〈Gs, s, ν〉, where Gs is a solution graph of the ordered

constraint graph Gc = 〈V +M,E〉 with respect to s, a strength assignment function,

and ν is a valuation of variables in V and edges in E.

Assuming a constraint graph Gc = 〈V + M,E〉 and a current configuration J =

〈Gs, s, ν〉, assigning a new value, say t, for some variable v has the following effect

on J :

1. A new strength assignment s′ is computed from s, such that the stay constraint

of v will become the strongest of the stay constraints, and the relative order of

other stay constraints remains the same. Thus, variable v is given the highest

priority.

2. If necessary (according to the analysis in Section 3.4.3), the solver algorithm

is run to produce a new solution graph G′s; otherwise, G′s = Gs.

3. A new valuation ν ′ is computed from ν as follows: the value of v is set to t; the

computed-flag of every variable is set to uncomputed; the changed-flag is set to

changed for v and to unchanged for all the other variables; and the used-flag is

set to used for all edges (v′,m′) from variables to methods for which (v′,m′) is

not an edge in Gs but is an edge in G′s. A method is not executed if it can be

seen that its used inputs have not changed. The above treatment of used-flags

makes sure that all new methods of G′s that were not included in Gs will be

executed during evaluation.

4. The evalmany function, shown in Figure 3.5, is applied to the set V . It produces

a new valuation ν ′′.

The result of the above steps is a new current configuration 〈G′s, s′, ν ′′〉. The event
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handlers for each variable v ∈ V such that ν(v) = 〈 , , changed〉 are then executed

to refresh the corresponding views.

Going back to the example, editing the absolute height will assign the highest

strength to the stay constraint for absolute height in the ordered constraint system.

Whether or not the solution must be recomputed, it must include methods for the

constraints that assign to the relative height, then to the relative width, then to the

absolute width, then to the resize command. Evaluating that graph will calculate

values for all of the other variables. Any changes in their values will lead to invoking

bindings that update the views attached to them. The result is consistency among

the variables in the view-model (the application’s perspective of the state) and the

view objects (the user’s perspective).

5.2 Dataflow Visualization

When an edit of one value triggers changes in other values, it can be unclear

to the user which values are changing and for what reasons: changes may happen

too quickly or inconspicuously to notice; it may appear that they are all directly

related to the edited value, which could be misleading; or values may change in

ways unexpected by the user. Each of these complications contributes to a gulf of

evaluation with respect to value propagation.

Consider the image resizing dialog. It provides two ways of editing the image

dimensions—either absolutely, in pixels, or relatively, in percentages—with the op-

tion to preserve the ratio between the image’s height and width. The values of all

four textboxes and the checkbox are tied together in a complex, multi-way relation-

ship. If the user edits one of the numeric values, the other three could change. To

understand this behavior, a user will need to know which values currently affect

which others.
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Visualization techniques could help bridge the gulf of evaluation by communi-

cating this information to the user, but they are often tedious or complicated to

implement in traditional GUI frameworks. Consequently, such features rarely get

written. However, ordered constraint systems open new possibilities because the

network of dependencies among variables is readily available in the evaluation graph:

a variable’s value is affected by its ancestors and affects its descendants. A generic

implementation of a visualization can thus be written once and then reused among

all UIs with an ordered constraint system view-model.

We implemented a generic visualization of dependencies for GUIs and conducted

experiments with this behavior [23]. For each method in the evaluation graph, an

arrow is drawn connecting the widgets bound to its inputs and outputs. (Conse-

quently, this means the arrow might have multiple heads or multiple tails or both.)

To prevent confusion, an arrow is drawn only if the outputs had changed as a result

of the most recent evaluation. These arrows are displayed, one at a time, according

to the order of the methods’ evaluation; an example is shown in Figure 5.1. To avoid

interrupting casual use of the interface, the dataflow illustration is triggered only

upon the explicit request of the user, indicated by clicking a button.

Now, the animation makes the relationships behind the interface explicit and

clear, and thus fosters understanding in the user. Further, this behavior works for

all interfaces built with ordered constraint systems for no additional cost.

We identified some potential improvements. In one way, the animation seemed

to play too quickly. The time an individual relationship was displayed seemed too

short for digesting the information the visualization was trying to convey. In another

way, the animation seemed to play too slowly. If the user wanted to focus on one

particular relationship, which was often the case, then he would have to wait for

the animation to get to that point, and then wait for it to complete before seeing
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Figure 5.1: Implementation of the image resize dialog from Section 2.2.1 with an
arrow visualizing one method in the evaluation graph.
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it again. The animation could have conformed better to how the user wanted to

consume the relationship information—typically the user was interested in just one

or two relationships out of the whole graph.

Consequently, a more desirable alternative to animation may be to allow the user

to glance at individual relationships separately and at their own pace. Contextual

information for a field would include arrows connecting it to the the fields from which

it was computed, and to the fields computed from it. This contextual information

could be displayed, say, along with existing menus upon right-clicking a field. By dis-

playing the network of dependencies in localized chunks, the UI avoids presenting too

much information at once and cluttering the display. Finally, a more sophisticated

layout algorithm could be used to produce more visually appealing arrows.

In the bigger picture, however, the experiment suffices to demonstrate that an

ordered constraint system enables a data flow visualization to be described and im-

plemented in a generic, reusable manner, and thus make it worth the while to invest

more on improving the visualization, to eventually benefit a large class of user inter-

faces.

5.3 Pinning

A rich user interface may automatically, without consent from the user, change

values in order to enforce relationships among them. Even though reasonable heuris-

tics are applied, the behavior may be unexpected to the user. In the hotel reservation

dialog from Figure 2.2, consider this sequence of user actions:

1. The user enters a check-in date.

2. The user enters a check-out date.

3. The user realizes he did not mean to stay for the calculated number of nights,
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so he changes the number of nights value.

The user’s expectations may or may not agree with the heuristic that an ordered

constraint system follows. If the user is editing the nights in order to correct his

last edit to the check-out date, then he might expect the check-out date to change

accordingly. However, since the check-out date was edited more recently, the system

assumes that the user would rather preserve that value, so it changes the oldest value:

the check-in date.

In a more complicated interface with more relationships, one can imagine that

such a turn counter to user’s expectations could lead to the undoing of a larger portion

of the user’s work. No rule can be “correct” in all cases, as sometimes there is no

single unsurprising dataflow. The expectation of the user interface’s most natural

behavior may, for different users (or even for the same user) in identical situations,

be different. A rich UI should thus provide means to the user to control the preferred

dataflow.

One possible control mechanism allows the user to “protect,” or pin, certain

values as he moves along. Pinning does not prevent the user from further editing

the value. It simply guarantees that the system will not automatically change the

pinned value as a reaction to the user changing some other value. In Figure 2.2, each

of the check-in, check-out, and number of nights fields is accompanied by a checkbox

that, when checked, pins the corresponding variable in the view-model.

Implementing pinning with event handlers is laborious, and thus it is seldom

seen. We found only a single paper discussing it [44], and very few applications

supporting it. However, pinning is straightforward in an ordered constraint system,

which enables a generic implementation of the feature. As explained in Section 3.3, a

stay constraint keeps a variable’s value unchanged. The desired effect is thus attained
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if the stay constraint of the pinned variable is promoted to the same strength as that

of the programmer-defined constraints, that is, the highest (must) strength. This

guarantees that the stay constraint will be enforced in all solution graphs, and thus

the pinned variable is not overwritten by any method.

Pinning is not without complications, though. Pinning a variable expands the

set of constraints that must be enforced in each plan. If enough variables are pinned,

the property model could become overconstrained, leaving it unsolvable. To prevent

this, the pinning option can be disabled for widgets bound to variables that, if

pinned, would result in an overconstrained system. Additionally, since editing a

variable has the same effect as pinning it (i.e. promoting its stay constraint to highest

priority), input widgets attached to such variables can be disabled, indicating that

the variable’s value is derived in all solutions given the existing set of pinned variables.

Identifying a variable as “pinnable” is straightforward: a single run of the con-

straint solver suffices to determine if the system can still be solved after a particular

variable is pinned. Furthermore, after pinning a variable, it may be that some other

variables are derived in all possible plans. Any user edits to such values will be over-

written. To prevent confusion, widgets bound to such variables should be disabled.

These variables can be identified as well: after removing from constraints any meth-

ods that write to pinned variables, any variables written by a method in a constraint

with no other methods will be derived in all solutions.

To summarize, using an ordered constraint system to model a UI enables a simple,

reusable implementation of pinning. From an application programmer’s perspective,

they need only create view objects to represent pins (checkboxes are a common

choice) and bind them to the “pinned” flag for a variable. The solver, as part of its

algorithm, promotes pinned variables to highest strength before computing a solution

graph. The evaluator handles bindings that enable and disable the pin view objects
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for pinnable and unpinnable variables, respectively.

5.4 Scripting

A script is a sequence of actions that may be re-executed, or “played back”, in

a context different from which it was recorded. Scripting is a feature rarely found

in user interfaces because in traditional frameworks it typically involves duplicating

user interface code. Some applications try to implement scripting by recording a

sequence of UI events, which can lead to a degraded user experience (often in the

form of a flickering UI) as the script is replayed.

Consider the image resizing dialog in the case where the preserve ratio flag is

unset, and the relative dimensions have been edited most recently, say to 50% each.

In this case, the resulting absolute width and height, 750 and 1050 respectively,

are derived variables. The initial height and width values were populated from the

model. Such initial values, i.e., those that are picked up from a particular (model)

context rather than the user, are input variables. The set of non-derived, non-input

variables, that is, the set of variables supplied directly by the user that contribute in

some way to the executed command, are referred to as contributing variables.

As described above, a script should record the relative dimensions and the pre-

serve ratio flag. That way, when the script is played back later against an image with

initial dimensions 600 by 800, it will have the intended effect of scaling the image by

50% in each dimension, down to 300 by 400. Had the script failed to recognize the

user’s intent, and stored the absolute dimensions, it would have incorrectly sized the

second image to 750 by 1050.

Solution graphs can distinguish derived variables from non-derived variables.

Non-derived variables are those with no in-edges (except from a stay method). Of

non-derived variables, those that have been edited by the user (a distinction that

60



can be tracked with a flag initialized to false and set to true upon editing) are con-

tributing.

Playback of scripts can also utilize an ordered constraint system. A recorded

action in a script specifies which command to execute together with the context-

independent values that contribute to synthesizing the parameters for the command.

When a script is executed in a particular context, the application (1) constructs an

ordered constraint system for the command specified in the script, (2) populates the

input variables from the context-dependent data and the contributing variables from

values recorded in the script, (3) solves and evaluates the constraint system, and (4)

executes the command.

5.5 Command Activation

Programmers often follow “rules of thumb” offered by user interface guidelines

for the deployment platform [7, 52, 3] to guide the decisions on when to enable and

disable widgets. The advice may differ between the guides, but certain universally

accepted reasons can be identified. To discuss these reasons, two forms of enablement

are distinguished: enablement of widgets that launch commands (such as command

buttons) and enablement of widgets that allow users to interactively edit the widgets’

value (such as text and list boxes, and radio buttons). Although these behaviors fall

under the general scope of enablement, the reasons for decisions to enable or disable

a widget are unrelated, and the mechanisms governing those decisions completely

different. The former mechanism is called command activation and the latter widget

enablement. Both are significant sources of complexity in GUIs’ event handling logic

in the predominant GUI programming paradigm.

The result of command parameter synthesis is a set of parameters, possibly sub-

ject to preconditions, for a command. Ideally, a user interface avoids constructing
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command objects from parameters that do not satisfy the preconditions. A UI may

thus be expected to provide a “latch” that controls when a command object can be

constructed. The canonical form of such a latch is activating and deactivating the

“OK” button of a dialog. Consider the hotel booking example from Section 2.2.2.

The dialog in Figure 2.2 for booking a hotel room will launch a command to reserve a

room when the “Book” button is clicked, but it may be desirable to keep this button

inactive if the check-out date comes before the check-in date, or if the check-in date

comes before the current day. Alternatively, the button could be kept activated,

but an error diagnostic is shown to the user if it is clicked. The generic behavior

for command activation outlined here is neutral on these matters; the behavior is a

policy decision made in the presentation layer that sits on top of the view-model.

In the view-model, command objects are held in variables. Preconditions are

expressed as Boolean variables computed from other variables and associated with

command variables, establishing dependencies in the constraint system between each

command and the variables that determine its availability. Thus, a command ac-

tivation algorithm can determine that a command widget should be deactivated if

the variable to which the widget is bound depends on a precondition variable with a

false value.

5.6 Explaining Command Availability

From the perspective of the user, a couple of issues surround the behavior de-

scribed above. First, a user may not understand why a particular command widget

is deactivated. As stated above, programmers can express these reasons through

preconditions in the property model. However, since they appear only in the user

interface code, the user may not know what they are and, consequently, have a lim-

ited understanding why a command widget is deactivated. From a prior experience,
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when trying to change a password to a web system, an error message simply repeated

that the new password entered did not satisfy the requirements of a valid password.

The requirements were mostly revealed through trial and error. A large portion of

the users of that system might fail in the same task on the first, second, or even third

try.

To alleviate the above problem, help text can be automatically generated that

describes the reasons why a command widget is deactivated. If the programmer adds

a natural language description to the precondition variable, then it can be presented

to the user as an explanation for a deactivated command widget. The explanation

could be included with other contextual information, such as the dataflow visualiza-

tion described in Section 5.2.

The second problem is that even after reading an explanation, a user may not

know the actions necessary to re-activate a command widget. The constraint sytem

can reveal which variables are responsible (to varying degrees) for the failed precondi-

tion. The user can be directed to the widgets bound to those variables and expected

to deduce how to interact with them to satisfy the precondition. The responsible

variables are the ancestors, in the evaluation graph, of the failed precondition, i.e.,

the variables that contributed to its false value. A UI can find the interactive widgets

that are bound to those variables and reference their labels in the help text.

A UI is not limited to just this implementation, however. To varying degrees,

other variables could be considered responsible for a failed precondition, including all

variables that can reach it in the constraint graph. In some cases, such variables could

be edited to affect the precondition’s value, providing an alternative means to satisfy

it. Additionally, instead of just listing the interesting widgets in the explanation, a

UI could highlight them when the user hovers over each name. This should resolve

situations where it may not be clear to the user which widgets are being referenced.
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The generation of help text is completely orthogonal to and works in harmony

with the dataflow visualization described in Section 5.2. After marking values that

are violating the precondition, the user can see the network of relationships among

them to better determine a root cause.

5.7 Widget Enablement

The intuitive reason for disabling a value widget is when the value of the widget

cannot affect any command in the view-model. Consider again the hotel booking

dialog. Part of the form asks for the number and ages of child guests. Depending

on the number of children, a corresponding number of age entry fields should be

provided; in this particular example, that number is two. However, if the user selects

a lower number, one or both of the age entry fields will be unnecessary because the

view-model variables to which they are bound will not affect any command (here,

there is only the “book” command); they are irrelevant. In response, the UI may

choose to visually indicate their disablement, e.g., by hiding or shading them.

There are two reasons why editing the value of some variable v could affect a

variable o: (1) there exists a currently active functional dependency from v to o, or

(2) editing v could create a functional dependency from v to o.

Again, the current functional dependencies are represented by the evaluation

graph, and the solution and constraint graphs can be analyzed to predict changes

to the functional dependencies triggered by an edit of a variable. Rephrasing the

rationale above in terms of the graphs, a variable v could affect a variable o if (1)

v reaches o in the evaluation graph, or if (2) editing v would change the strength

assignment in a way that could result in an evaluation graph in which v reaches

o. These conditions can be queried for every variable in an ordered constraint sys-

tem after every user interaction. In this way, widget enablement can be completely
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automated, with no additional effort from application programmers.

The most precise algorithm to determine these conditions is to, in turn, (1) give

each variable the highest priority; (2) generate a new solution graph; (3) generate a

new evaluation graph with the edges present in both the old evaluation graph and

the new solution graph, and the edges present in the new solution graph that are

not present in the old solution graph; and (4) determine if v reaches o. This option

can be expensive to compute. A generic, close approximation follows:

A value of a variable v cannot affect another variable o if for every variable

w that is (1) an ancestor of v in the solution graph, and (2) reachable from

v in the constraint graph, then (3) w does not reach o in the evaluation

graph.

To see why this is correct, note that the solution graph is a directed acyclic

graph. Each variable v in the solution graph sits at the root of an ancestor (directed

acyclic) graph consisting of every variable reachable from v (including v itself) in the

transpose of the solution graph. The ancestors of v are the variables in its ancestor

graph. Discussion of methods and constraints in the ancestor graph refers to the

methods, and their constraints, in the solution graph that are connected only to

members of the ancestor graph.

The ancestor graph of v partitions the variables of the solution graph: partition

A consists of the ancestor graph, partition B is everything else. There may exist

paths from A to B, but there can be no path from B to A: because every variable

in A can reach v, any variable in B with a path to A would be an ancestor of v and

thus belong to A.

Any ancestor reachable from v in the constraint graph is called a reachable an-

cestor. If v is edited (and thus given highest priority), then the only constraints
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that could have different methods selected in the new solution graph must be in v’s

ancestor graph. This implies the following: in an evaluation graph, v can reach some

set of variables; if v is edited, it could reach a superset of those variables, and the

difference must come from its reachable ancestors. In other words, if none of its

reachable ancestors reaches a particular variable, then there is no way that editing

v can make it reach that variable.

5.8 Summary

The above sections discuss several rich GUI features that are tedious to imple-

ment. With an ordered constraint system, though, there exists a generic, reusable

algorithm for each of them. These algorithms are possible because an ordered con-

straint system explicitly models the dependencies within a UI, unlike conventional

event handlers, and because we have devised formalisms for the behaviors. With

reusable implementations, programmers can greatly reduce the cost of building high

quality user interfaces.
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6. IMPLEMENTATION: HOTDRINK*

HotDrink [22, 24] is an open-source JavaScript library for constructing web UIs

based on ordered constraint systems and the MVVM pattern. For UI programmers,

it provides an embedded domain-specific language for incrementally building the vari-

ables, constraints, and methods in an ordered constraint system, as well as facilities

for binding (in HTML or JavaScript) view elements to view-model variables.

Rich UI behaviors are implemented as generic algorithms over the three graphs

of the constraint system (as described in Section 3.7). Application developers can

generally take advantage of them with no additional code, or at most a single state-

ment “switching on” the behavior. Researchers can add new behaviors, and for ones

that fit a specific pattern, HotDrink provides a plugin API.

Throughout the code examples below, all aspects of the HotDrink API live in the

hd namespace.

6.1 Constructing View-Models

Consider implementing with HotDrink the view-model for the image resizing

dialog from Figure 2.1 whose constraint system appears in Table 3.1. For each

of the (identical) relationships among the initial, absolute, and relative values for

each dimension, the programmer needs to define three variables, as in Figure 6.1.

In HotDrink, variables hold values. Each variable’s value can be read by calling

the variable as a function with no arguments or written by calling it with the new

value as the only argument. Variables may be initialized upon definition (with the

* Portions of this chapter are reprinted from John Freeman, Jaakko Järvi, and Gabriel Foust.
Hotdrink: a library for web user interfaces. In Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, GPCE ’12, pages 80–83, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1129-8. doi: 10.1145/2371401.2371413. URL http://doi.acm.
org/10.1145/2371401.2371413 Copyright 2012 ACM.
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1 var i n i t = hd . v a r i a b l e ( 1 5 0 0 ) ;
2 var abs = hd . v a r i a b l e ( 1 5 0 0 ) ;
3 var r e l = hd . v a r i a b l e ( ) ;

Figure 6.1: Definition of three HotDrink variables.

1 hd . c o n s t r a i n t ( )
2 . method ( abs , function ( ) { return i n i t ( ) ∗ r e l ( ) / 100 ; })
3 . method ( r e l , function ( ) { return 100 ∗ abs ( ) / i n i t ( ) ; } ) ;

Figure 6.2: Definition of a HotDrink constraint among the variables in Figure 6.1.

argument to hd.variable) or during the first evaluation.

After defining variables, the programmer may define a constraint among them

and incrementally add methods; Figure 6.2 shows how to relate the variables from

Figure 6.1. Each method is a function that should compute some outputs (given as

the first argument of the method function call) from some inputs. Instead of writing

the values of output variables directly, a method may opt to return their new values.

The full listing of the HotDrink view-model for the image resizing example ap-

pears in Figure 6.3. All of the variables and constraints are grouped within a con-

structor for a view-model “class” (at least, JavaScript’s approximation of a class).

The above constraint is abstracted into a function, threeway. Another constraint

ties together the relative dimensions and the preserve ratio option. The final call

to hd.command constructs both a variable and a one-way constraint from a single

method definition; the variable returned is the output of the method.

6.2 Adding Generic Behaviors

Generic UI behaviors in HotDrink typically have a graph algorithm component.

Algorithms are fed information about incremental changes in the ordered constraint
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1 var threeway = function ( abs , i n i t , r e l ) {
2 hd . c o n s t r a i n t ( )
3 . method ( abs , function ( ) { return i n i t ( ) ∗ r e l ( ) / 100 ; })
4 . method ( r e l , function ( ) { return 100 ∗ abs ( ) / i n i t ( ) ; } ) ;
5 } ;
6

7 var ViewModel = hd . model ( function ( ) {
8

9 this . i n i t i a l w i d t h = hd . v a r i a b l e ( 2 1 0 0 ) ;
10 this . r e l a t i v e w i d t h = hd . v a r i a b l e ( 1 0 0 ) ;
11 this . abso lu te width = hd . v a r i a b l e ( ) ;
12

13 threeway (
14 this . abso lute width ,
15 this . i n i t i a l w i d t h ,
16 this . r e l a t i v e w i d t h ) ;
17

18 this . i n i t i a l h e i g h t = hd . v a r i a b l e ( 1 5 0 0 ) ;
19 this . r e l a t i v e h e i g h t = hd . v a r i a b l e ( 1 0 0 ) ;
20 this . a b s o l u t e h e i g h t = hd . v a r i a b l e ( ) ;
21

22 threeway (
23 this . ab so lu t e he i gh t ,
24 this . i n i t i a l h e i g h t ,
25 this . r e l a t i v e h e i g h t ) ;
26

27 this . p r e s e r v e r a t i o = hd . v a r i a b l e ( true ) ;
28

29 hd . c o n s t r a i n t ( )
30 . method ( this . r e l a t i v e w i d t h , function ( ) {
31 i f ( this . p r e s e r v e r a t i o ( ) ) {
32 this . r e l a t i v e w i d t h ( this . r e l a t i v e h e i g h t ( ) ) ;
33 }
34 })
35 . method ( this . r e l a t i v e h e i g h t , function ( ) {
36 i f ( this . p r e s e r v e r a t i o ( ) ) {
37 this . r e l a t i v e h e i g h t ( this . r e l a t i v e w i d t h ( ) ) ;
38 }
39 } ) ;
40

41 this . ok = hd . command( function ( ) {
42 return hd . fn ( r e s i z e ) (
43 this . abso lu te width ( ) , this . a b s o l u t e h e i g h t ( ) ) ;
44 } ) ;
45

46 } ) ;

Figure 6.3: Implementation in HotDrink of the view-model for the image resize dialog
from Figure 2.1.
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system: variables with changed priorities and/or values, and methods that have been

executed since the last evaluation. They produce output in the form of markers on

variables, and events associated with changes in those markers. View elements can

react to or ignore such events as appropriate. In most cases, HotDrink provides a

sensible default reaction for view elements as part of the bindings.

For example, the widget enablement behavior tags each variable according to

whether it can reach a command variable in either the current evaluation graph or

in the solution graph resulting from their edit (see Section 5.7 for details). HotDrink

bindings for input widgets will watch for changes to that tag and enable or disable

their widgets as appropriate. In our prototype implementation, pinning was imple-

mented in the same way. When the user pinned a variable, it would directly set

a flag on that variable. Then, the pinning behavior would identify which variables

could not be pinned or edited without overconstraining the system, and mark them

so. Any input widgets bound to such variables, in addition to their pin markers,

would all be disabled by their bindings.

Behaviors are not limited to this pattern, however. In the example above, after

constructing the view-model, no special code was needed to enable value propagation

or dataflow visualization. Some behaviors, however, provide methods for creating

special variables that are to be mixed in the view-model definition; still others must

be “switched on” as they impose some run-time cost that isn’t suitable for every UI.

Consider the hotel booking example, whose view-model is given in Figure 6.4.

The precondition function creates a special Boolean variable, a one-way constraint

that outputs it with the method given as the second argument, and connects it to

the command given as the first argument. Bindings created by the library know how

to check the command’s activation status and reflect it in the view as appropriate.

Further, the enablement behavior described in Section 5.7 must be enabled itself
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after the view-model definition.

It is important to note that, other than corresponding HTML descriptions of the

views, these JavaScript listings are complete implementations of the example user

interfaces. Further, they have no trace of code managing the details of command

activation or widget enablement; such features are provided by the framework.
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1 var ViewModel = hd . model ( function ( ) {
2

3 this . check in = hd . v a r i a b l e (new Date ("25 March 2013" ) ) ;
4 this . checkout = hd . v a r i a b l e (new Date ("28 March 2013" ) ) ;
5 this . n i gh t s = hd . v a r i a b l e ( ) ;
6

7 hd . c o n s t r a i n t ( )
8 . method ( this . n ights , function ( ) {
9 return ( this . checkout ( ) − this . check in ( ) ) / MS IN DAY ;

10 })
11 . method ( this . checkin , function ( ) {
12 return new Date (
13 this . checkout ( ) . getTime ( ) − ( this . n i gh t s ( ) ∗ MS IN DAY ) ) ;
14 })
15 . method ( this . checkout , function ( ) {
16 return new Date (
17 this . check in ( ) . getTime ( ) + ( this . n i gh t s ( ) ∗ MS IN DAY ) ) ;
18 } ) ;
19

20 this . nk ids = hd . v a r i a b l e ( 0 ) ;
21 this . ages = [
22 hd . v a r i a b l e ( 0 ) ,
23 hd . v a r i a b l e ( 0 ) ,
24 hd . v a r i a b l e (0 )
25 ] ;
26

27 this . book = hd . command( function book ( ) {
28 return hd . fn ( book ) ( this . check in ( ) , this . checkout ( ) ,
29 hd . toJS ( this . ages . s l i c e (0 , this . nk ids ( ) ) ) ) ;
30 } ) ;
31

32 hd . p r e cond i t i on ( this . book , function ( ) {
33 return this . n i gh t s ( ) > 0 ;
34 } ) ;
35

36 hd . p r e cond i t i on ( this . book , function ( ) {
37 return this . check in ( ) >= today ( ) ;
38 } ) ;
39

40 } ) ;
41

42 ViewModel . behav ior s (hd . enablement ) ;

Figure 6.4: Implementation in HotDrink of the view-model for the hotel booking
dialog from Figure 2.2.
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7. EXPERIMENTS*

The value in reusable user interface behaviors is measured by how much easier

application development comes, primarily in terms of programmer time and defect

count for a given level of functionality. To measure results, we compared several GUIs

written with ordered constraint systems to their counterparts built with conventional

approaches, both qualitatively and quantitatively (where possible).

7.1 ApplyTexas

As described in the introduction (§ 1.1), the common application for Texas high

school students matriculating to college, known as ApplyTexas, has a section where

applicants can list their extracurricular activities, up to ten with 23 individual fields

for each, in order of importance. The form has a fixed structure, meaning it cannot

expand or reorder to accommodate users, and it uses no JavaScript, so the HTML

for each activity is duplicated. It is difficult for users to use, and it was tedious for

the author to write.

When written with HotDrink, a direct comparison is not useful for demonstrat-

ing the exclusive benefits of HotDrink. The form was originally written in such a

primitive fashion that the form’s author could have seen large benefits from using

any library for writing dynamic forms, not just HotDrink. However, it may still be

* Portions of this chapter are reprinted from Jaakko Järvi, Mat Marcus, Sean Parent, John
Freeman, and Jacob N. Smith. Property models: from incidental algorithms to reusable compo-
nents. In GPCE’08: Proceedings of the 7th international conference on Generative programming and
component engineering, pages 89–98, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-267-2.
doi: 10.1145/1449913.1449927. URL http://doi.acm.org/10.1145/1449913.1449927 Copyright 2008
ACM; Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Algorithms for
user interfaces. In GPCE’09: Proceedings of the 8th international conference on Generative program-
ming and component engineering, pages 147–156, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-267-2. doi: 10.1145/1621607.1621630. URL http://doi.acm.org/10.1145/1621607.1621630
Copyright 2009 ACM.
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useful to offer an assessment of writing part of a real-world application in HotDrink.

The data model behind ApplyTexas is very simple. There are no obvious re-

lationships among the values. Still, writing it with HotDrink allowed me to easily

implement missing features that aided users, e.g. inserting, removing, and reorder-

ing activities. For example, after I had recreated the original form, adding buttons

to promote and demote activities required adding two one-liner JavaScript methods

and two one-liner HTML buttons. HotDrink was able to automatically take care of

renumbering the activities after reordering.

ApplyTexas is a good example of the poor economics of user interfaces. The

frustrations of dealing with a list that cannot expand or reorder are small for any one

user, but add up to large amounts of wasted time that far surpass the development

effort required to alleviate them. With its support for automating rich behavior,

HotDrink is able to bring the cost of development low enough to justify the work in

more cases than before.

7.2 TodoMVC

The TodoMVC project [63] specifies a benchmark application (a simple to-do

list, pictured in Figure 7.1) and hosts example implementations of it using various

JavaScript MVC frameworks. TodoMVC provides a means to compare the strengths,

weaknesses, and styles of those frameworks.

Here, HotDrink is compared with the more popular frameworks featured in

TodoMVC, as well as a “vanilla” implementation that uses no framework. Each

candidate implements the full TodoMVC application, but without the optional rout-

ing feature1 (which is unsupported in at least HotDrink). Because each candidate

was pulled directly from the TodoMVC project, this comparison assumes that it was

1“Routing” describes the practice of mapping URIs to internal states of the application.
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Figure 7.1: TodoMVC, a to-do list web application.
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HTML JavaScript Total
Candidate Lines Bytes Files Lines Bytes Bytes

vanilla 37 1163 1 312 7382 8545
HotDrink [22] 56 2297 1 96 2226 4523
Knockout [69] 53 2448 1 123 2990 5438
Angular [33] 61 2609 5 120 2654 5263
Agility [1] 47 1661 2 169 4283 5944
Backbone [5] 55 1905 5 254 4883 6788
Ember [43] 63 2073 7 334 8689 10762

Table 7.1: Code statistics for TodoMVC implementations. Includes measurements
for lines and bytes of HTML code; files, lines, and bytes of JavaScript code; and total
bytes of code. Each implementation had a single HTML file.

written to follow its framework’s recommended best practices, and that it represents

the most common design decisions among developers working with its framework.

Each candidate features a single HTML file and one or more JavaScript files (ex-

cluding imported libraries). The number of lines and bytes in these files is charted

in Table 7.1. None of these measures can precisely capture qualitative metrics like

“programmer effort expended” or “readability”, but together they may lend an ap-

proximate sense of the landscape. The numbers of bytes among the files were included

because, while each candidate follows the coding style of its framework, the frame-

works do not all share the same line length conventions, and thus shorter line counts

may belie the extra effort required.

HotDrink allowed the shortest implementation among all candidates. It was

middle of the pack for lines and bytes of HTML, but had 20% fewer lines and 16%

fewer bytes of JavaScript than the next shortest competitor, Angular. It also tied

for the fewest JavaScript files, at one.

In each candidate’s JavaScript files, there may appear some number of functions,

categorized in the following list, along with shorthand names:
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Candidate Total CTOR MTHD DECL EVNT LMBD FREE

vanilla 28 2 9 17
HotDrink 18 2 5 8 3
Knockout 24 2 9 5 3 4 1
Angular 20 1 8 2 4 2 3
Agility 20 2 13 3 2
Backbone 27 7 17 3

Table 7.2: Counts of categories of JavaScript functions appearing in TodoMVC im-
plementations.

CTOR Class constructors.

MTHD Methods, in the object-oriented sense.

DECL Methods, in the constraint system sense.

EVNT Event handlers.

LMBD Arguments to higher-order functions, e.g. map, fold, filter.

FREE Free functions.

The counts in each of these function categories for the TodoMVC frameworks ex-

amined appear in Table 7.2. The key comparisons are between imperative event

handlers, a common source of software complexity, and declarative constraints, a

common approach to reduce that complexity (and the one chosen by HotDrink).

Like HotDrink, Knockout and Angular support declarative relationships among

values. However, they suffer limitations (e.g. allowing only one-way constraints),

and thus still require event handlers for some functionality. HotDrink is the only

framework seen that can successfully eliminate the use of all event handlers through

constraint based programming.
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Figure 7.2: The Better Meal, a web user interface built with HotDrink for a popular
online diet tracker. This screenshot features the daily log.

7.3 The Better Meal

As a testament to its real-world suitability, HotDrink is used in at least one web

application. Called The Better Meal, it is a user interface for a popular online diet

tracker. The most extensive use of HotDrink in The Better Meal is for the daily log,

as seen in Figure 7.2. It consists of a table of food entries and a few commands.

Each entry is a food item with mutable fields for meal time, number of servings,

and description, as well as immutable fields for chosen nutrients (fat, carbohydrates,

protein, and calories). Each nutrient on a food item exists in a one-to-one relationship

with its number of servings, and each nutrient group altogether exists in a many-

to-one relationship with the total for that nutrient, displayed in the top row of the

table.

Each food item tracks whether its mutable fields have changed since the last

page load or save, using a custom behavior. That status is displayed in a narrow col-

ored bar between each item’s checkbox and its meal time dropdown; green indicates

“saved”, and yellow indicates “unsaved”. The “Save” and “reset” commands below
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the table are enabled only whenever the table has any unsaved changes. The “Save”

command commits any waiting changes while the “reset” command reverts them.

Food items can be selected individually for deletion. Those selections exist in a

many-to-one relationship with a “select all” checkbox in the top row. The “Delete”

command below the table becomes enabled when any items are selected and, when

clicked, removes from the table not just those items, but also their internal relation-

ships and their participation in external relationships. The nutrient totals, “select

all” checkbox, and enablement of each command automatically adjust to match the

new status.

A notable aspect of creating The Better Meal was that the developer did not

need to worry about cleaning up the relationships for removed items. They could

instead focus on correctly implementing the usual dataflow: confirm that the item

has been removed in the remote database, and then reflect that in the user interface

by simply removing the item from a list.

7.4 Adobe

Our collaborators at Adobe deployed a C++ library implementing a similar ap-

proach to that described in this thesis. It incorporated domain-specific languages for

building constraint systems (Adam) and for laying out and binding view elements

(Eve). Teams using it to reform user interface dialogs within Adobe software saw

improvements in code size, programmer productivity, and defect rates.

In one application, the event handling and scripting code for a single dialog, which

accounted for 781 statements and contained five known logic defects, was replaced by

an Adam specification with 46 statements and no reported defects [39]. Generally,

Adobe has seen reductions in code size of a factor of 8–10 and improved quality.

One experiment observed four teams of roughly three engineers each, balanced
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Figure 7.3: The number of reported bugs during several months for three Adam
engine teams (AE1–AE3) and a traditional framework team (TF). The teams were
tasked with rewriting code for a large number of dialogs of varying complexity. The
teams each consisted of roughly three engineers, balanced in programming skills.

in programming skill as judged by their managers [40]. Each team was tasked with

rewriting dialogs and palettes (varying in complexity but distributed evenly among

the teams) for an application that formerly depended on a 32-bit-only user interface

framework. Three of the teams used the new Adam library while the fourth used a

modern, vendor-supplied, 64-bit object-oriented user interface framework.

Figure 7.3 compares the number of reported bugs over several months for the

three Adam-Eve teams (AE1–AE3) and the traditional framework team (TF). It

was rare for more than 2–3 defects per week to be found for a given Adam team,

while a conservative estimate for the defect rate for the TF team was 10–20 defects

per week. That is, the teams working in the Adam architecture produced defects at

less than twenty percent of the rate of that of the traditional framework team.

The commonly high rates of defects among user interfaces reinforces the impor-
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tance of these results. In a sample of defects in a 20,000-bug database of a major

Adobe desktop application, roughly half were in the user interface layer that this

research targets. Reviewing bugs across a range of Adobe products revealed that

roughly 40% of Adobe products’ bugs are “behavioral” in nature. Half of those were

such that they could not even have existed if the Adam library was employed.

As with any prototype system, there were challenges in adopting the Adam li-

brary. Ordered constraint systems offer a new way of approaching user interface

programming, and there is a learning curve. The supporting tool ecosystem, though

more powerful than traditional user interface builders, is not as mature as with es-

tablished frameworks. Notwithstanding these limitations, in the above study, Adam

programmers were substantially more productive than their counterparts on the TF

team. In the time period studied, the three AE teams combined completed roughly

75 dialogs and palettes, with another 50 or so underway. The TF team completed

fewer than 10 altogether. The product team did not believe they would be able to

succeed in porting to 64-bits in a single release without the Adam library.
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8. RELATED WORK*

The basic architecture of a HotDrink user interface is based on the Model-View-

Controller pattern [45]. This pattern is identified as being important for the sep-

aration of concerns in user interfaces in a recent work [32] aimed at untangling

application logic from user interfaces.

Declarative layout specifications mixed with procedural behavior specifications

are common in the area of user interfaces. Examples include the QTk module [35]

in Mozart/Oz, Glade [17], XUL [15, 56], XAML [81], and XForms [12]. Many more,

like HotDrink [22], are based on a combination of HTML, CSS, and JavaScript.

Popular frameworks include Angular [33], Backbone [5] (sometimes enhanced with

Marionnette [8]), Ember [43], Agility [1], and Meteor [51].

All of these systems require user interface authors to write event handlers to define

user interface behavior. HotDrink eschews event handlers in favor of declarative

relationships, which provides a few advantages. With event handlers, authors must

specify when any given method is executed by attaching handlers to the correct

events. With HotDrink, authors need to define how to compute variables from each

other, but not when.

* Portions of this chapter are reprinted from Jaakko Järvi, Mat Marcus, Sean Parent, John
Freeman, and Jacob N. Smith. Property models: from incidental algorithms to reusable compo-
nents. In GPCE’08: Proceedings of the 7th international conference on Generative programming and
component engineering, pages 89–98, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-267-2.
doi: 10.1145/1449913.1449927. URL http://doi.acm.org/10.1145/1449913.1449927 Copyright 2008
ACM; Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Algorithms for
user interfaces. In GPCE’09: Proceedings of the 8th international conference on Generative program-
ming and component engineering, pages 147–156, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-267-2. doi: 10.1145/1621607.1621630. URL http://doi.acm.org/10.1145/1621607.1621630
Copyright 2009 ACM; John Freeman, Jaakko Järvi, Wonseok Kim, Mat Marcus, and Sean Par-
ent. Helping programmers help users. In GPCE’11: Proceedings of the 10th ACM interna-
tional conference on Generative programming and component engineering, pages 177–184, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0689-8. doi: 10.1145/2047862.2047892. URL
http://doi.acm.org/10.1145/2047862.2047892 Copyright 2011 ACM.
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In most of these systems, the effects of event handlers do not trigger other event

handlers, in order to guarantee termination. Consequently, each event handler must

wholly contain every possible dataflow that can originate with its corresponding

event. Angular is one notable exception, where change events are fired in waves until

a fixed point in the user interface state is reached. The number of waves is limited in

order to guarantee termination, restricting the possible length of dataflows. HotDrink

allows authors to think locally, within the confines of individual constraints, while

placing no limits on the length of a dataflow.

Capturing user intent (i.e. preserving the values of more recently edited variables)

entails more state (e.g. user editing history) shared among the event handlers, as

well as branching within each dataflow that grows deeper as the flow grows longer.

That complexity may be why no event handler framework even discusses capturing

user intent. With HotDrink, user intent is captured by the semantics of an ordered

constraint system.

Knockout [69] lets authors define “computed” (dependent) variables whose values

are calculated from other variables, and “writable” computed variables effectively

implement two-way constraints where one method has exactly one input and the

other has exactly one output. HotDrink supports generalized multi-way constraints.

Angular’s “watchers” allow users to implement multi-way constraints, but doing

so will cause at least two methods to execute whenever a user edits a variable: one

whose inputs include the variable the user edited, and one whose inputs include the

changed output(s) of that method. HotDrink efficiently evaluates the solution graph

so that the minimum number of methods are executed. Further, Angular detects

changes in variables by comparing the current value of a variable with its last known

value, a potentially expensive operation, whether the variable was assigned or not.

HotDrink instead compares values only when a variable is assigned in a method.
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Rule-based systems such as Drools [68], Jess [29], and R++ [49], also support

the specification of rules for maintaining consistency across values in user inter-

faces. These systems, like HotDrink, offer the ability to express certain relationships

concisely. While they are expressive, the active dependencies are not explicitly rep-

resented in code or exposed in the runtime, unlike in the three graphs we use.

The above rule-based systems do not restrict the expressive power of the lan-

guage specifying the rules. For example, XForms supports declarative (one-way)

constraints, but also provides open-ended support for user scripts (in Javascript) to

be bound to events that can, in turn, read and write arbitrary variables in the model.

In addition to the dependencies between variables arising from the constraints, the

scripts can hide arbitrary dependencies, leading to incidental data structures that

cannot be analyzed. HotDrink controls the mutability of its variables and carefully

tracks all of the dependencies in the functions users write.

HotDrink goes further than these systems by providing an explicit model of the

dependencies among variables that enables generic algorithms for rich user interface

behaviors like scripting, enablement, and automatic help generation.

Constraint systems have been studied extensively for use in user interfaces, mostly

for automated element layout, but also for maintaining consistency across data in user

interface elements, as in command parameter synthesis. HotDrink draws from this

line of work; in particular, we use the algorithms and representations for hierarchical

multi-way dataflow constraint systems [79].

A large number of declarative, constraint-based GUI systems have been pro-

posed, for example, Sketchpad [76], Amulet [61], Garnet [57], ThingLab I [9, 10] and

ThingLab II [54], DeltaBlue [26, 28], and SkyBlue [70]. A survey of model-based de-

sign environments for user interface construction can be found in [66]. More recent

active projects that support (one-way) data-flow constraints include the OpenLaszlo
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framework [47] for developing rich Internet applications. Constraints in these sys-

tems are mainly used for layout where the simpler one-way constraints are rather

standard, e.g., in many diagram drawing tools [80]. Based on extensive experience

with the Amulet system, its authors conclude that it is unlikely that constraint sys-

tems will ever be used for much other than layout [83]. Our experience indicates a

more positive picture. Amulet and the related systems integrate a constraint solver

into a general purpose programming language, but the state of the network of func-

tional dependencies is hidden from the programmer, whereas it is explicitly modeled

and made accessible by HotDrink. This, we believe, is why we can benefit from

the constraint system formalisms and algorithms, and apply them in an area where

previously their success has been limited.

Regarding enablement logic, the Jade interactive dialog creation tool for Gar-

net [82], and similar work by Myers et al. [59] and Frank et al. [21], target the

expression of enablement logic using a constraint system. These works do not, how-

ever, attempt to devise a generic enablement algorithm. Further, apart from relieving

the programmer from coding explicit enablement and activation logic, our analysis

clearly defines the reasons why a widget should be enabled/activated or disabled/de-

activated. To improve usability, a user interface could be instrumented to show these

reasons to its user, as described in Section 5.6.

UIDE [74, 31] and HUMANOID [55] use preconditions on commands to disable

widgets and to generate helpful explanations. UIDE also uses postconditions to ex-

plain how to enable a command widget [73, 14, 75]. The authors acknowledge that

their system is not prepared to handle situations with complex, multi-way depen-

dencies among actions and widgets; such dependencies are supported in an ordered

constraint system. Unlike UIDE, our generated help text does not attempt to pro-

vide a precise sequence of interactions for re-activating a command widget (in some
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cases, there may be many sequences to choose from), and we have not investigated

its (in)feasibility. Further, we try not to burden the programmer with specifying

postconditions for user interactions. We believe that the information available in an

ordered constraint system is enough to provide sufficient help.

The Heracles system supported pinning of its controls [44]. In Heracles, not

all constraints are enforced after each user edit, and multi-way constraints are not

supported. Thus, some of the issues facing pinning in ordered constraint systems are

avoided. Heracles also opts to pin a variable automatically upon user edit, whereas

we pin a variable upon explicit request only. The authors of Heracles, like us, cite

potentially unclear dataflow and overwritten values as motivations for pinning.
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9. CONCLUSION

Ask nearly any software engineer what they most dislike in their work and the

answer will most likely be “building the user interface.” Even working on products

where an automatic layout library frees the engineer from mundane tasks such as

placing a button at just the right pixel location, the effort to build a user interface is

onerous. For many applications, the user interface accounts for a significant portion

of the code and a majority of the defects.

A common shortcoming in modern user interfaces is that much of the functionality

is bespoke to each application. Increased reuse in the domain of user interfaces can

thus notably improve programmer productivity, improve software quality, and free

programmers to work on more rewarding tasks. With higher quality user interfaces,

our daily encounters with computer systems can become more productive, more

pleasant, and less frustrating.

Modern GUIs are typically implemented as as a web of shared state and event han-

dlers, giving rise to incidental data structures and algorithms. Some more advanced

frameworks leverage simple single-way constraint systems (losing any distinction be-

tween constraint and solution graphs), but do not track which dependency edges are

used (losing any distinction between solution and evaluation graphs). Further, many

common user interface behaviors are ad hoc implementations derived from published

human interface guidelines, different among each platform and open to interpreta-

tion. As an alternative, an ordered constraint system provides an explicit model of

the values and relationships in a user interface in addition to its interaction history.

Such an explicit model enables the development of generic algorithms for behaviors

based on well-defined formal specifications; this thesis presents examples for value
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propagation, dataflow visualization, pinning, scripting, command activation, widget

enablement, and context-sensitive help.

Reusable behaviors can change the economics of user interface construction: de-

velopers no longer need to decide whether it is worth the effort to implement advanced

features when they come built-in. “Nice-to-have” features then become “routine”

(and maybe eventually “essential”). In fact, the ordered constraint system approach

has the potential to transform the entire GUI construction process by simplifying it

to a lower class of problem. A constraint system allows creators to think locally by

defining relationships among small subsets of variables without worrying about their

interaction with other segments of the system. At that level of abstraction, mockups

from GUI designers may no longer need to be implemented by programmers, but

instead become implementations themselves.

Experiments with ordered constraint systems, both in the lab and in industry,

confirm the approach leads to increased programmer productivity, less code, and

fewer defects when compared to the employment of more traditional graphical user

interface frameworks.
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and Martin Frank. Mixed-initiative, multi-source information assistants. In

Proceedings of the 10th international conference on World Wide Web, WWW

’01, pages 697–707, New York, NY, USA, 2001. ACM. ISBN 1-58113-348-0. doi:

10.1145/371920.372185. URL http://doi.acm.org/10.1145/371920.372185.

94

http://doi.acm.org/10.1145/1449913.1449927
http://doi.acm.org/10.1145/1621607.1621630
http://doi.acm.org/10.1145/2364394.2364399
http://doi.acm.org/10.1145/2364394.2364399
http://emberjs.com
http://doi.acm.org/10.1145/371920.372185


[45] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-

controller user interface paradigm in Smalltalk-80. J. Object Oriented Program.,

1(3):26–49, 1988.

[46] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-

controller user interface paradigm in Smalltalk-80. Journal of Object Oriented

Programming, 1(3):26–49, 1988.

[47] Laszlo Systems. OpenLaszlo: a rich internet application development frame-

work, Accessed May 2012. URL http://www.openlaszlo.org.

[48] Jonathan Lazar, Adam Jones, Mary Hackley, and Ben Shneiderman. Severity

and impact of computer user frustration: A comparison of student and work-

place users. Interact. Comput., 18(2):187–207, March 2006. ISSN 0953-5438. doi:

10.1016/j.intcom.2005.06.001. URL http://dx.doi.org/10.1016/j.intcom.2005.06.

001.

[49] D. Litman, P. F. Patel-Schneider, A. Mishra, J. Crawford, and D. Dvorak. R++:

Adding path-based rules to C++. IEEE Trans. on Knowl. and Data Eng., 14

(3):638–658, 2002.

[50] Ferren MacIntyre, Kenneth W. Estep, and John M. Sieburth. The cost of user-

friendly programming: Macimage as example. J. FORTH Appl. Res., 6(2):

103–115, June 1990. ISSN 0738-2022. URL http://dl.acm.org/citation.cfm?id=

83218.83217.

[51] Meteor Development Group. Meteor, March 2015. URL https://www.meteor.

com.

[52] Microsoft Corporation. Windows Vista UX Guide: User Experience

95

http://www.openlaszlo.org
http://dx.doi.org/10.1016/j.intcom.2005.06.001
http://dx.doi.org/10.1016/j.intcom.2005.06.001
http://dl.acm.org/citation.cfm?id=83218.83217
http://dl.acm.org/citation.cfm?id=83218.83217
https://www.meteor.com
https://www.meteor.com


Guidelines, 2008. URL http://download.microsoft.com/download/e/1/9/

e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/uxguide.pdf.

[53] Microsoft, Inc. System.Windows.Forms, March 2009. URL http://msdn.

microsoft.com/en-us/library/system.windows.forms.aspx.

[54] J. Moloney, A. Borning, and B. Freeman-Benson. Constraint technology for

user-interface construction in thinglab ii. In Conference Proceedings on Object-

oriented Programming Systems, Languages and Applications, OOPSLA ’89,

pages 381–388, New York, NY, USA, 1989. ACM. ISBN 0-89791-333-7. doi:

10.1145/74877.74917. URL http://doi.acm.org/10.1145/74877.74917.

[55] Roberto Moriyon, Pedro Szekely, and Robert Neches. Automatic generation of

help from interface design models. In Proceedings of the SIGCHI conference

on Human factors in computing systems: celebrating interdependence, CHI ’94,

pages 225–231, New York, NY, USA, 1994. ACM. ISBN 0-89791-650-6. doi:

10.1145/191666.191751. URL http://doi.acm.org/10.1145/191666.191751.

[56] Mozilla. XML user interface language (XUL) 1.0. Mozilla Foundation, March

2006. URL http://www.mozilla.org/projects/xul/xul.html.

[57] B.A. Myers, D.A. Giuse, R.B. Dannenberg, B.V. Zanden, D.S. Kosbie, E. Pervin,

A. Mickish, and P. Marchal. Garnet: Comprehensive support for graphical,

highly interactive user interfaces. Computer, 23(11):71–85, November 1990.

[58] Brad A. Myers. Why are human-computer interfaces difficult to design and

implement? Technical Report CMU-CS-93-183, Carnegie Mellon University

Computer Science Department, July 1993.

[59] Brad A. Myers and David S. Kosbie. Reusable hierarchical command objects. In

96

http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://download.microsoft.com/download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/ux guide.pdf
http://msdn.microsoft.com/en-us/library/system.windows.forms.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.aspx
http://doi.acm.org/10.1145/74877.74917
http://doi.acm.org/10.1145/191666.191751
http://www.mozilla.org/projects/xul/xul.html


CHI ’96: Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 260–267, New York, NY, USA, 1996. ACM. ISBN 0-89791-777-4.

doi: 10.1145/238386.238526. URL http://doi.acm.org/10.1145/238386.238526.

[60] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’92, pages 195–202, New York, NY, USA, 1992. ACM. ISBN

0-89791-513-5. doi: 10.1145/142750.142789. URL http://doi.acm.org/10.1145/

142750.142789.

[61] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency,

Andrew Faulring, Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and

Patrick Doane. The Amulet environment: New models for effective user in-

terface software development. Software Engineering, 23(6):347–365, 1997. URL

http://citeseer.ist.psu.edu/article/myers96amulet.html.

[62] Derek L. Nazareth and Marcus A. Rothenberger. Assessing the cost-effectiveness

of software reuse: A model for planned reuse. Journal of Systems and Software,

73(2):245–255, October 2004.

[63] Addy Osmani et al. TodoMVC: A common learning application for popu-

lar JavaScript MV* frameworks, 2012. URL http://addyosmani.github.com/

todomvc/.

[64] Sean Parent. A possible future for software development. Keynote talk at the

Workshop of Library-Centric Software Design 2006, at OOPSLA’06, Portland,

Oregon, 2006. URL lcsd.cs.tamu.edu/2006.

[65] Sean Parent. Science of ‘shrink wrap’: A look inside adobe photoshop,

97

http://doi.acm.org/10.1145/238386.238526
http://doi.acm.org/10.1145/142750.142789
http://doi.acm.org/10.1145/142750.142789
http://citeseer.ist.psu.edu/article/myers96amulet.html
http://addyosmani.github.com/todomvc/
http://addyosmani.github.com/todomvc/
lcsd.cs.tamu.edu/2006


2008. URL http://stlab.adobe.com/wiki/images/c/c9/2008 01 18 indiana shrink

wrap.pdf.

[66] Paulo Pinheiro da Silva. User interface declarative models and development

environments: A survey. Interactive Systems Design, Specification, and Verifi-

cation, pages 207–226, 2001. URL http://dx.doi.org/10.1007/3-540-44675-3 13.

[67] Mike Potel. MVP: Model-view-presenter: The Taligent programming model for

C++ and Java, 1996. URL http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[68] Mark Proctor, Michael Neale, Bob McWhirter, Kris Verlaenen, Edson Tirelli,

Fernando Meyer, Alexander Bagerman, Michael Frandsen, Geoffrey De Smet,

Toni Rikkola, Steven Williams, Ben Truit, Ritu Jain, Chinmay Nagarkar, and

Denis Ahearn. Drools, 2008. URL http://www.jboss.org/drools/.

[69] Steven Sanderson et al. Knockout, March 2015. URL http://knockoutjs.com.

[70] Michael Sannella. Skyblue: A multi-way local propagation constraint solver for

user interface construction. In UIST ’94: Proceedings of the 7th annual ACM

symposium on User Interface Software and Technology, pages 137–146, New

York, NY, USA, 1994. ACM.

[71] Michael John Sannella. Constraint satisfaction and debugging for interactive

user interfaces. PhD thesis, University of Washington, Seattle, WA, USA, 1994.

[72] Adobe Software Technology Lab Sean Parent, Principal Scientist & Manager.

Private communication, 2012.

[73] Piyawadee Sukaviriya and Johannes J. de Graaff. Automatic generation of

context-sensitive ”show and tell” help. Technical Report GIT-GVU-92-18, Geor-

gia Institute of Technology, July 1992.

98

http://stlab.adobe.com/wiki/images/c/c9/2008_01_18_indiana_shrink_wrap.pdf
http://stlab.adobe.com/wiki/images/c/c9/2008_01_18_indiana_shrink_wrap.pdf
http://dx.doi.org/10.1007/3-540-44675-3_13
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.jboss.org/drools/
http://knockoutjs.com


[74] Piyawadee Sukaviriya and James D. Foley. Coupling a UI framework with au-

tomatic generation of context-sensitive animated help. In Proceedings of the 3rd

annual ACM SIGGRAPH symposium on User Interface Software and Technol-

ogy, UIST ’90, pages 152–166, New York, NY, USA, 1990. ACM. ISBN 0-89791-

410-4. doi: 10.1145/97924.97942. URL http://doi.acm.org/10.1145/97924.97942.

[75] Piyawadee Noi Sukaviriya, Jeyakumar Muthukumarasamy, Anton Spaans, and

Hans J. J. de Graaff. Automatic generation of textual, audio, and animated help

in uide: the user interface design. In Proceedings of the workshop on Advanced

visual interfaces, AVI ’94, pages 44–52, New York, NY, USA, 1994. ACM. ISBN

0-89791-733-2. doi: 10.1145/192309.192322. URL http://doi.acm.org/10.1145/

192309.192322.

[76] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication sys-

tem. In DAC ’64: Proceedings of the SHARE design automation workshop,

pages 6329–6346, New York, NY, USA, 1964. ACM.

[77] Troll, Inc. Qt: A cross-platform application and UI framework, March 2009.

URL http://www.qtsoftware.com/products.

[78] Gilles Trombettoni and Bertrand Neveu. Computational complexity of multi-

way, dataflow constraint problems. In IJCAI: Proceedings of the Fifteenth In-

ternational Joint Conference on Artificial Intelligence, pages 358–365, August

1997.

[79] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of

multiway dataflow constraints. ACM Trans. Program. Lang. Syst., 18(1):30–

72, January 1996. ISSN 0164-0925. doi: 10.1145/225540.225543. URL http:

//doi.acm.org/10.1145/225540.225543.

99

http://doi.acm.org/10.1145/97924.97942
http://doi.acm.org/10.1145/192309.192322
http://doi.acm.org/10.1145/192309.192322
http://www.qtsoftware.com/products
http://doi.acm.org/10.1145/225540.225543
http://doi.acm.org/10.1145/225540.225543


[80] Michael Wybrow, Kim Marriott, Linda McIver, and Peter J. Stuckey. Com-

paring usability of one-way and multi-way constraints for diagram editing.

ACM Trans. Comput.-Hum. Interact., 14(4):1–38, 2008. ISSN 1073-0516. doi:

http://doi.acm.org/10.1145/1314683.1314687.

[81] XAML. XAML: Extensible application markup language. Microsoft Devel-

oper Network (MSDN), 2008. URL http://msdn.microsoft.com/en-us/library/

ms747122.aspx.

[82] Brad Vander Zanden and Brad A. Myers. Automatic, look-and-feel independent

dialog creation for graphical user interfaces. In CHI ’90: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 27–34, New

York, NY, USA, 1990. ACM. ISBN 0-201-50932-6. doi: 10.1145/97243.97248.

URL http://doi.acm.org/10.1145/97243.97248.

[83] Brad Vander Zanden, Richard Halterman, Brad Myers, Rob Miller, Pedro

Szekely, Dario Giuse, David Kosbie, and Rich McDaniel. Lessons learned

from users experiences with spreadsheet constraints in the garnet and amulet

graphical toolkits. May 2002. URL ftp://cs.utk.edu/pub/TechReports/2002/

ut-cs-02-488.pdf.

100

http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://doi.acm.org/10.1145/97243.97248
ftp://cs.utk.edu/pub/TechReports/2002/ut-cs-02-488.pdf
ftp://cs.utk.edu/pub/TechReports/2002/ut-cs-02-488.pdf

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	Approach

	SETTING
	Definitions
	Examples
	Resizing an image
	Booking a hotel room

	State of the Art

	FOUNDATION
	Constraint System
	Constraint Graph
	Solving
	Solution Graph
	Solving algorithm
	Uniqueness
	When the solution graph does not change
	When the solution graph does change

	Evaluating
	Evaluation Graph
	Summary

	ALGEBRA
	Constraint Systems as Monoids
	Implementation in Haskell
	Constraint System Properties as Monoid Properties

	BEHAVIORS
	Value Propagation
	Dataflow Visualization
	Pinning
	Scripting
	Command Activation
	Explaining Command Availability
	Widget Enablement
	Summary

	IMPLEMENTATION: HOTDRINK
	Constructing View-Models
	Adding Generic Behaviors

	EXPERIMENTS
	ApplyTexas
	TodoMVC
	The Better Meal
	Adobe

	RELATED WORK
	CONCLUSION
	REFERENCES

