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ABSTRACT

In the context of computational fluid dynamics (CFD), accurate simulation of

turbulent flows remains a challenging field of research. Although direct numerical

simulation (DNS) and large-eddy simulation (LES) are able to capture the turbulent

flow features to a great extent, they are not viable for complex engineering flows. On

the other hand, Reynolds-averaged Navier-Stokes (RANS) models involve too many

simplifying assumptions, making them inadequate to capture complex flow features.

Variable resolution (VR) bridging methods such as the Partially-averaged Navier-

Stokes (PANS) model fill the gap between these two limits by allowing a tunable

degree of resolution from RANS to DNS.

The goal of this dissertation is to investigate the the PANS model capabilities

in providing significant improvement over RANS predictions at slightly higher com-

putational expense and producing LES quality results at significantly lower compu-

tational cost. This research work is divided into three main studies. The objective

of each study is: (i) investigate the model fidelity at a fixed level of scale resolution

(Generation1-PANS/G1-PANS) for smooth surface separation, (ii) derive the PANS

closure model in regions of resolution variation (Generation2-PANS/G2-PANS), and

(iii) validate G2-PANS model for attached and separated flows.

The key contributions of this dissertation are summarized as follows. The tur-

bulence closure model of varying resolution, G2-PANS, is developed by deriving

mathematically-consistent commutation residues and using energy conservation prin-

ciples. The log-layer recovery and accurate computation of Reynolds stress anisotropy

is accomplished by transitioning from steady RANS to scaled resolved simulations us-

ing the G2-PANS model. This represents a major advantage of PANS as most other
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hybrid approaches encounter significant errors in the log-layer region. Finally, several

smooth-separation flows on the NASA turbulence website have been computed with

high degree of accuracy at a significantly reduced computational effort over LES us-

ing the G1-PANS and G2-PANS models. These results along with strong theoretical

foundations demonstrate that PANS has the potential to become a transformative

CFD approach for scale-resolving turbulence simulations.
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1. INTRODUCTION

Turbulent flow is characterized by rapid and chaotic variation of flow properties

(i.e velocity, pressure and etc.) in space and time. Turbulence is triggered by in-

stabilities inherent in many flows. Turbulence consists of a continuous spectrum of

scales ranging from largest to smallest. The wide range of scales inherent in a tur-

bulent flow stem from interactions between fluctuations of different wavelengths and

directions. This interaction is very complex as it is rotational, fully three dimensional

and time-dependent. Nearly, all flows of practical engineering interest are turbulent.

Turbulent flows exhibit irregularity, enhanced mixing, rotationality, and rapid

energy dissipation. Due to the inherent irregularity, turbulent flows are often treated

statistically rather than deterministically. Further, turbulent flows are influenced by

a strong three-dimensional vortex generation mechanism known as vortex stretching

which is the main reason behind the energy cascade (transfer of energy from larger

flow structures to smaller structures). Turbulence dissipation occurs due to the

conversion of kinetic energy to internal energy via intensified viscous action.

1.1 Historical perspective on turbulence

The problem of turbulence has been an intriguing topic of research among the

greatest physicists and engineers of the 19th and 20th centuries. This phenomenon

was first recognized as a distinct flow behavior by the great artist in the 15th century,

Leonardo da Vinci. He sketched the artwork illustrated in Fig. 1.1 to depict the

turbulent flow and described it with a remarkably modern note:

. . . the smallest eddies are almost innumerate, and large eddies are

rotated only by large eddies and not by small ones, and small eddies are

turned by small eddies and large [46].

1



Figure 1.1: Leonardo da Vinci sketch of turbulent flow

This phenomenon in the fluid flow was named turbolenza by da Vinci, and hence

is the origin of the current name, turbulence.

Navier and Stokes introduced equations which are believed to embody physics of

all fluid flow including the turbulent ones in the early to mid 19th century. These

equations are non-linear and difficult to solve. There have been a few attempts to

solve Navier-Stokes equations analytically which are all accompanied by some sort of

simplification and often unrealistic assumptions. Little progress toward understand-

ing turbulence has been made by analytical solution of Navier-Stokes equations and

the early studies on turbulent flows are mainly focused on experimental analysis until

the emergence of computational tools.

As noted previously, da Vinci realized turbulence as a distinct physical process

in fluid flow around 500 years ago. However, there was no substantial progress in

understanding turbulent flow until the late 19th century. Osborne Reynolds was

among the first scholars to experimentally investigate the transition from laminar

to turbulent flow [45]. He injected a dye streak into flow passing through a pipe

with smooth transparent walls. During these experiments, he identified a single di-
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mensionless parameter, later called the Reynolds number, which was responsible for

the observed flow behavior and transition to turbulence. In addition, Reynolds con-

cluded that a detailed understanding of turbulence is difficult due to its randomness

and introduced the concept of decomposing the flow variables into mean and fluc-

tuating parts. This viewpoint of Reynolds is still followed by majority of people in

turbulence community to come up with feasible methods to predict turbulent flow

behavior. Boussinesq [5] postulated that the turbulent stresses are linearly propor-

tional to mean strain rate. This hypothesis is still the keystone in developing most

of the turbulence models.

The next major contribution was the ”mixing length theory” of Prandtl [42]

which proposed a functional form for the eddy viscosity (introduced by Boussinesq

[5]) for some simple flows. Based on an analogy between turbulent eddied and

molecules/atoms of a gas, this theory proposed a way to construct eddy viscosity

from a length and velocity (time) scale determined from kinetic theory.

The next big step in analysing turbulence was taken by a British mathematician

and physicist, G. I. Taylor, during the 1930s. He employed advanced mathemati-

cal and statistical methods to the turbulence literature by introducing correlations,

Fourier transforms and power spectra. In his paper [53], he defined turbulence as a

random phenomenon and established statistical approaches to investigate homoge-

neous, isotropic turbulence. He also conducted a wind tunnel experiment to show

success of his analytical methods in predicting the turbulent flow behavior. Besides,

he developed ”Taylor hypothesis” which is specifically valuable for analysing the ex-

periments and converting temporal behavior to spatial behavior. Other important

works in that period are those of [54], [8]. In addition, in 1941, A. N. Kolmogorov

[26] developed the most important and well cited theories of turbulence.
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During 1970s and 1980s, most studies focused on numerical computation rather

than experimental/analytical investigations. The first direct numerical simulation

(DNS) of turbulent flow was performed by Orszag and Patterson [40]. However,

DNS simulation of turbulent flows has been always challenging, especially with in-

creasing Reynolds number, due to the presence of wide range of length and time

scales and the necessity to resolve them. Therefore, majority of scientific and en-

gineering calculations of turbulent flows, at high Reynolds numbers, are based on

some degree of turbulence modeling.

1.2 Turbulence modeling

The complexity of a turbulence calculation is usually related to the the informa-

tion we seek for a specified application. In some applications, we may only want to

inquire about the friction coefficient, separation size or heat transfer coefficient. In

these cases, a simple mathematical model of turbulence might suffice and provide

the required information. Following this idea, it was in 1972 that Reynolds-averaged

Navier Stokes (RANS) approach was started to develop [32] and [31]. However, if

we desire a complete time history of every aspect of a turbulent flow, only a direct

simulation of Navier-Stokes equation [40] and/or a large eddy simulation (LES) of

a turbulent flow [9] are needed which require vast computer resources and accurate

numerical schemes. Most engineering applications fall within these two limits, and

thus a model which suggests the simplicity of the first category and some accuracy

level of the second category will be an ideal and practical way to approach turbulent

flow simulations.

In other words, computationally-intensive approaches like DNS and LES pro-

vide the most accurate solutions for the turbulent flow. However, application of

these methods is limited for high Reynolds number flows due to the extraordinary
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computational resource required which is beyond the current capabilities. RANS

simulations, on the other hand, are computationally inexpensive but resolve only the

mean velocity field, while the fluctuating fields are all modeled. Since the accuracy

of RANS simulations for many engineering applications is inadequate and DNS/LES

calculations are not viable, it has been suggested that variable resolution methods

would be computationally more suitable as they can provide any intermediate level

of resolution.

Partially-averaged Navier-Stokes (PANS) model [15, 16] is a hybrid method that

is intended to bridge smoothly between RANS and LES/DNS. In PANS, the accuracy

of results can be optimized based on available computational resources. In the RANS

method, only the unsteady mean flow i.e. scales that are comparable to the geometry

of the flow are resolved, whereas all other scales are modeled. In LES, all the large

scale motions or energy carrying eddies are computed exactly, and the small scale

motions that are more universal in nature, are modeled [41].

To illustrate the operative regions of PANS, a typical spectrum of energy as a

function of wavelength for turbulent flow is shown in Fig. 1.2. The relative cut-off for

unresolved flow scales is shown for RANS, PANS, and LES. The cut off parameters

fk and fε for PANS are defined as the ratio of the unresolved to resolved turbulent

kinetic energy and dissipation, respectively. Value of fk close to zero indicates DNS

and the value of unity is essentially a RANS simulation.

PANS is based on the premise that physical phenomena contributing to accurate

predictive computations reside in flow scales that are not resolved in RANS but are

significantly larger than the smallest LES scales. PANS seeks to resolve only up to

the scales that critically contribute to the desired objective function, excluding the

computationally expensive small scales. Thus, PANS does not seek to combine two

models (RANS and LES) in different regions, it rather provides a closure model for
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any intermediate degree of scale resolution.

Figure 1.2: Energy spectrum of turbulent flow with relative URANS, PANS, and
LES spectrum cut-off

1.3 Dissertation objectives

The first generation of the PANS model (G1-PANS) has been tested for several

benchmark and complex flow geometries [30, 25, 38, 2, 3, 10], and promising results

have been obtained. However, comprehensive assessment studies over a broader

range of flow physics needs to be performed for the G1-PANS model. Therefore, the

objective of the first study is to further evaluate model capabilities in predicting the

turbulent flow features associated with flow separation over smooth curved surfaces.

The simulations are carried out with fixed fk throughout the entire computational

domain.

In the next step of PANS progression, closure modeling in region of varying fk has

been investigated. The objective of this study is to develop the second generation

of the PANS model known as G2-PANS for variable resolution calculations based

on sound physical concepts. This study is aimed to demonstrate the ability of the
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G2-PANS model to accurately capture the boundary layer physics in wall-bounded

turbulent flows and separation process from smooth curved surfaces.

To achieve these objective, this dissertation is divided into three distinct studies.

Specification and main objectives of each study are presented in the following sub-

sections.

1.3.1 Simulation of smooth-surface separation using G1-PANS model

The objective of this study is to investigate the flow separation from smooth

curved surfaces using G1-PANS Model. Flow over periodic hill and wall-mounted

hump are considered for this study. Flow over periodic hill geometry exhibits com-

plex flow features and was introduced in ERCOFTAC/IAHR workshop [36] as a

benchmark test-case for turbulence modeling validation. Wall-mounted hump con-

figuration is also a challenge flow in the NASA turbulence resource website, and is

generally considered a very difficult case to predict.

The following goals are investigated for the simulation of smooth-surface separa-

tion by G1-PANS method:

1. Establish the model fidelity in high Reynolds number flows at a fixed level

of scale resolution throughout the computational domain-that is, fk = const.

(< 1) and fε = 1;

2. Assess the PANS method in predicting the turbulent flow features of the sep-

aration process associated with smooth curved surfaces

3. study the effect of cut-off length scale and grid size on flow statistics and

structures

4. Recovery of the PANS filter parameter is sought as to check the validity of

calculations (known as internal consistency criteria)
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5. Anisotropy of the flow will be investigated by constructing the anisotropy-

invariant maps.

6. Outline the need for near-wall modeling of the G1-PANS model for high Re

wall-bounded turbulent flow calculations

1.3.2 Near-wall modeling of the PANS method

This represents one of the most important challenges in modern-day turbulence

research. Available computational resources demand spatio-temporal variation in

resolution for calculating complex engineering flows. However, implementing a vari-

able resolution model is not a trivial task due to the interaction between resolved

and unresolved fields. The objective of this study is to derive the PANS model for

the bridging region based on energy conservation principles. Then, the validity of

assumptions and mathematical derivations are tested for turbulent channel flow sim-

ulation. The simplicity of the channel flow allows a thorough examination of several

aspects of the proposed closure which are discussed in detail in section 3.

The objectives of the this study can be summarized as:

1. Develop a bridging region closure model in the PANS framework for variable

resolution calculations near the wall

2. Validate the model against DNS data for turbulent channel flow simulations at

different Reynolds numbers and compute the mean flow properties as well as

determining the instantaneous unsteady features

3. Study the effect of the energy scale transfer terms on the flow domain and

accuracy of the results

4. Investigate the influence of resolution variation location on the resolved scales

near the wall, and consequently on mean flow statistics
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5. Evaluate the ability of the model at high Reynolds numbers flow calculations

where DNS and LES could be extremely costly and not feasible to perform

1.3.3 Simulation of smooth-surface separation using G2-PANS model

Results from wall-modeled PANS computations of the flow over mounted hump

are investigated using the second generation of the PANS model. In this work, the

details of G2-PANS simulations have been presented. The primary objectives of this

work can be summarized as

1. Asses the ability of the G2-PANS model in predicting flow separation from a

smooth body, and the subsequent reattachment and flow recovery

2. Investigate the reattachment and separation point at different grid resolutions

and filter parameters

3. Visualization of unsteady flow structures and interpreting the flow behavior

1.4 Outline

The remainder of the dissertation is arranged as follows. Each of the studies

detailed in subsections 1.3.1-1.3.3, are presented in Secs. 2, 3, and 4, respectively.

This work concludes with a summary in Sec. 5.
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2. SIMULATION OF SMOOTH SURFACE SEPARATION USING G1-PANS

2.1 Introduction

Flow separation over smooth curved surfaces occurs in many engineering applica-

tions such as flow over wings and airfoils, turbine blades, ships, automobile bodies and

curved obstructions in pipes. Reliable and accurate modeling of this phenomenon is

important for effective and safe design of the aforementioned industrial components.

The prediction of flow separation over curved and continuous surface is challenging

due to the spatial and temporal fluctuations of the separation line and failure of the

law of the wall assumption for separated shear layer regions. Separation from curved

surfaces differs from the one from sharp edges in that the point or line of separation

is not fixed in space and is very sensitive to external flow properties, turbulence level

and development of streamwise pressure gradient [4].

For practical engineering applications involving flow separation, there are several

design parameters which are essential to be accurately estimated. These parameters

are mainly associated with the separation point, size of the recirculation zone, and

reattachment point. Accurate prediction of the separation process depends on several

factors given a particular flow geometry and simulation procedure. Figure 2.1 shows

a sketch of a flow geometry which involves smooth-surface separation and identifies

the main important physics regarding that. As seen in this figure, the flow separation

occurs between a curved wall and a thin shear layer. There are mainly two sources of

unsteadiness inherent in this flow geometry which are the Kelvin-Helmholtz (K.H.)

and Tollmein-Schlichting (T.S.) instabilities. The former one occurs in a flow due

to existence of inflection point in the velocity field, and the latter one happens in a

developing boundary layer. Figure 2.1 illustrates the spots where these instabilities
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are developed and affects the separation and reattachment locations. Based on this

figure, it can be inferred that prediction of the important locations in a separated

flow depends on:

1. Separation-point

(a) flow behavior unlike the sharp-edge separation

(b) Inflow

(c) Accurate representation of BL coherent structures (e.g., T.S. waves)

2. Recirculation-zone

(a) How well the thin shear layer is resolved

(b) Recovering the K.H. instability

3. Reattachment-point

(a) Resolving both BL and shear layer structures

(b) Accurately capturing the Kelvin-Helmholtz and Tollmein-Schlichting in-

stabilities

Figure 2.1: Separation physics

These features associated with smooth-surface separation imply that a great ex-

tent of physical and computational sophistication is required for modelling flow sep-
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aration over curved surfaces. To address the fidelity of different turbulence closure

models in this matter, flow over periodic hill [36] and flow over wall-mounted hump

[47] are considered in this research work.

2.2 Governing equations for the PANS model- generation 1

The first generation of the PANS model (G1-PANS) is derived for a fixed level

of scale resolution. A brief description of the G1-PANS model is presented in this

section.

The development of all the hybrid models commences from the incompressible

Navier-Stokes equations and continuity equation:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − ∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

, (2.1)

∂Ui
∂xi

= 0. (2.2)

The difference between URANS and PANS/LES lies in how the averaged or filtered

velocity equations are obtained from Equation 2.1. URANS uses an averaging oper-

ator leading to equations that describe the mean velocity field. On the other hand,

PANS/LES uses a generalized homogeneous filter to decompose the velocity into

resolved and unresolved part [29]:

Vi = Ui + ui, Ui = 〈Vi〉, 〈ui〉 6= 0 (2.3)

By applying the filter which is not variable in time/space to the Navier-Stokes equa-

tions, the momentum equations for the resolved field are given as:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −∂τ(Ui, Uj)

∂xj
− ∂〈p〉

∂xi
+ ν

∂2Ui
∂xj∂xj

, (2.4)

τ(Ui, Uj) = 〈UiUj〉 − 〈Ui〉〈Uj〉. (2.5)
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The term τ(Ui, Uj) in eqn. 2.4 represents the “sub-filter stress”, given by eqn. 2.5

[12]. The sub filter stress term (SFS) is modeled differently in various turbulence

models.

LES: The generalized sub-filter stress in LES is modeled via Boussinesq-type

approximation [12, 39, 28]:

τij = τ(Vi, Vj) =
2

3
kδij − νTSij (2.6)

where νT , and k are the “unresolved eddy viscosity” and the “unresolved kinetic

energy” respectively. Sij is the resolved strain-rate tensor defined as:

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.7)

In LES Smagorinsky model, the unresolved eddy viscosity is modeled algebraically

by assuming that the energy production and dissipation are in equilibrium, resulting

in the following relationship [13]:

νT = C∆2|S|, where |S| = (2SijSij)
1/2 (2.8)

Here, ∆ is the grid spacing and C is a subgrid scale constant determined from

decaying isotropic turbulence. If the filter cut-off is in the inertial range, then the

values of the Smagorinsky constant (Cs =
√
C) usually lie between 0.18 to 0.23. In

the dynamic Smagorinsky model, the model parameter C is not constant, rather it

is calculated from the energy content of the smallest resolved scales [14]. In order to

make the model self-contained, an additional test filter (∆̂ > ∆ ) is introduced and
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C = Cd(x, y, z, t) is dynamically adjusted based on the following identity:

Lij = Tij − τ̂ij (2.9)

where Lij = ûi uj − ûi ûj is the Loenard stress, and Tij = ûiuj − ûi ûj is the ‘test-

level’ subgrid scale stress or subtest stress. It is assumed that the subtest stress can

also be expressed with eddy viscosity model:

Tij −
1

3
δijTkk = −2C∆̂2|Ŝ|Ŝij (2.10)

Incorporating equations 2.6, 2.8 and 2.10 into 2.9, we obtain an equation for de-

terming C [13]:

Lij −
1

3
δijLkk = αijC − β̂ijC (2.11)

where,

αij = −2∆̂2|Ŝ|Ŝij (2.12)

βij = −2∆2|S|Sij (2.13)

G1-PANS: The filtering procedure in PANS modeling is similar to LES, which

separates the flow into resolved and unresolved features. However, in PANS, rather

than cut-off length scale or grid size, the unresolved-to-total ratios of kinetic energy

and dissipation are the resolution control parameters and their value must be in

commensurate with grid size [17].

fk =
ku
k

; fε =
εu
ε

; fω =
ωu
ω

;
f
3/2
k

fε
=

1

C
1/3
µ

(
∆

L

)
(2.14)
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where, ∆ = (∆x ×∆y ×∆z)
1/3 is the grid dimension and L ≡ k1.5/ε is the integral

scale of turbulence.

In PANS, the sub-filter stress term in eqn. 2.5 is also modeled with Boussinesq

approximation:

τij = τ(Ui, Uj) =
2

3
kuδij − νu

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. (2.15)

where νu is the “unresolved eddy viscosity” defined as νu = ku/ωu = Cµk
2
u/εu.

The final model equations for the unresolved kinetic energy, ku and the unresolved

dissipation, εu can be obtained from spectral or fixed-point analysis [51, 15]:

Dku
Dt

= (Pu − εu) +
∂

∂xj

[(
ν +

νu
σku

)
∂ku
∂xj

]
(2.16)

Dεu
Dt

= Cε1Pu
εu
ku
− C∗ε2

ε2u
ku

+
∂

∂xj

[(
ν +

νu
σεu

)
∂εu
∂xj

]
(2.17)

Cε1 and C∗ε2 are obtained by investigating homogeneous shear turbulence (HST)

and decaying isotropic turbulence (DIT). In the above equations, σku and σεu are

the transport coefficients for the PANS model which need to be determined. Two

proposals are developed to obtain these coefficients [15, 16]. The first approach given

the name ”zero transport model (ZTM)” assumes that the resolved fluctuations do

not contribute to the net transport of unresolved kinetic energy. Based on this

assumption, the following equations are obtained for the turbulent Prandtl numbers

for the G1-PANS ZTM model:

σku = σk
f 2
k

fε
, σεu = σε

f 2
k

fε
(2.18)
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In the second approach, the transport of unresolved kinetic energy is assumed to be

proportional to the eddy viscosity of the resolved fluctuations which is referred as

maximum transport model (MTM). In this case, the transport coefficients are given

by

σku = σk, σωu = σω (2.19)

Derivation of σku and σεu from equilibrium boundary layer analysis shows consistency

with the assumptions made for the ZTM model. Therefore, G1-PANS ZTM model

is selected for the majority of calculations in this report. Figure 2.2 summarizes

the procedure to obtain the model coefficients [44]. The scale dependent model

coefficients are thus given as

C∗ε2 = Cε1 +
fk
fε

(Cε2 − Cε1); σku,εu = σk,ε
f 2
k

fε
(2.20)

The standard RANS values are used for other coefficients:

Cµ = 0.09; Cε1 = 1.44; Cε2 = 1.92; σk = 1 σε = 1 (2.21)

Similarly, the G1-PANS ku − ωu equations can be derived as [29]:

∂ku
∂t

+ Uj
∂ku
∂xj

= Pu − β∗kuωu +
∂

∂xj

[
(ν + νu/σku)

∂ku
∂xj

]
, (2.22a)

∂ωu
∂t

+ Uj
∂ωu
∂xj

= α
ωu
ku
Pu − β′ω2

u +
∂

∂xj

[
(ν + νu/σωu)

∂ωu
∂xj

]
(2.22b)

β′ = αβ∗ − αβ∗

fω
+ β

fω
.; σku,ωu = σk,ω

fk
fω

; fω = fε
fk

(2.23)
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where, the values of the RANS closure coefficients are: β∗ = 0.09, α = 5/9, β = 0.075,

σk = 2.0, and σω = 2.0.

Figure 2.2: Boundary layer analysis

URANS: In URANS, eqn. 2.5 becomes the familiar Reynolds stress term, where

the filter 〈〉 denotes an average. With two-equation URANS models, the Reynolds

stress term is given by:

uiuj =
2

3
kδij − νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.24)

where νT is the eddy viscosity, defined as νT = Cµk
2/ε = k/ω. When fk = fε = 1.0

in PANS formulation, we recover the evolution equations for URANS.

2.3 Flow over periodic hill

Rapp and Manhart [43] carried out an experimental study for the flow over pe-

riodic hills at Reynolds numbers in the range of 5600 to 37000 using particle image

velocimetry and laser doppler anemometry. The experiment was performed in a wa-
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ter channel with 10 hills in the streamwise direction to ensure periodicity for the

range of Reynolds numbers under investigation. In order to minimize the effect

of side walls on the flow statistics, the spanwise direction was extended to 18 hill

heights. They observed formation of secondary vortex structures due to the unsta-

ble curvature of streamlines on the windward side of the hills particularly at low

Reynolds numbers. They also noticed frequent break up of the separation bubble

and strong intermittency in the location of the reattachment line. It was also found

that the reattachment length decreases with increasing Reynolds number.

Computer simulations of flow over periodic hills have been performed by several

researchers. Frohlich et al. [11] provided extensive statistical and structural features

of the flow obtained from a highly resolved large eddy simulation (LES) at Re=10590.

They indicate that a high level of spanwise turbulence intensity results from splatting

of large-scale eddies originating from the shear layer above the recirculation zone.

They report a strongly time-dependent separation line, unsteady reattachment and

large scale structures for the flow over periodic hill. They also identify spanwise

rollers originating from Kelvin-Helmholtz instability in the shear layer. In another

study on the current flow geometry, Breuer et al. [6] present a complementary

numerical and experimental investigation for different Reynolds numbers in the range

of 100-10590. They perform LES and direct numerical simulations (DNS) on very

fine grids and established an experimental set-up to examine the flow behavior and

place confidence in their numerical results. They observe existence of a very small

recirculation region at the crest of the hill for Re=10590 which does not exist for

the lower Reynolds numbers. They also find a decreasing trend of the reattachment

length with increasing Reynolds number. Additionally, they notice steady and two-

dimensional flow for Re=100 and three dimensional and chaotic flow for Re≥200.

It is noteworthy that the LES and DNS simulations [6] at Re=5600 were per-
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formed on 13.1 and 231 million grid nodes, respectively. For practical applications,

it is important to develop and validate more affordable ’hybrid’ computational tech-

niques that are viable for high Reynolds numbers. The subject of this study is the

so-called bridging techniques which includes partially integrated transport modeling

(PITM) and partially-averaged Navier-Stokes (PANS) method.

Chaouat and Schiestel [7] simulate the flow over periodic hills using PITM for

Re=37000 and compare their results against experimental data [43]. Simulations

are performed on coarse and medium grid sizes and aimed to achieve a reasonable

agreement with experimental data [43] at low computational cost. At the finest grid

size of 0.9 million cells, the mean turbulence quantities are well predicted. Chaouat

and Schiestel [7] also demonstrate the failure of Reynolds stress transport model

to predict the correct behavior of mean velocity and stress components at different

streamwise locations. It was also observed that PITM method may not be accurate

if the grid is too coarse especially in the spanwise direction.

The objective of this work is to perform a comprehensive investigation of flow over

periodic hills using G1-PANS to examine the effect of cut-off wave number and grid

resolution at two different Reynolds numbers. Various statistics and flow features

from G1-PANS will be compared against available experimental data, LES [11] and

partially integrated transport modeling (PITM) [7] results.

2.3.1 Simulation procedure

The computational domain and flow configuration are summarized in Fig. 2.3.
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Figure 2.3: Flow configuration

The geometry and domain dimensions are consistent with [11, 7]. A body fitted,

curvilinear grid very similar to the one studied in [11] is generated for the flow geom-

etry. The hill height (h) is one-third of the total channel height. In the streamwise

direction, the domain extends from one crest to the next for a total of 9h. In the

spanwise direction, the domain size is 4.5h. The flow is periodic in both streamwise

and spanwise directions and no slip boundary condition is used at the bottom and

top walls. The special features associated with this flow geometry makes it suitable

for turbulence modeling validation. Frohlich et al. [11] discussed that streamwise

periodicity removes uncertainties posed by the inlet and outlet boundary conditions.

Besides, they argued that extending domain size in streamwise and spanwise di-

rections has minor effects on the flow structure and statistics. Flow is driven by

pressure gradient which is added as a source term to the momentum equation. The

flow Reynolds number is calculated based on the following equation

Re =
Ubh

ν
(2.25)

where, Ub is the bulk velocity.

PANS simulations are performed over a range of fk values. It is important to

investigate the mean flow properties after flow has reached statistically steady state
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condition. For LES calculation [11], mean quantities were collected after 23 flow-

through times and over a time period of 55T. The time to start averaging and the

averaging period for PANS calculations depend on the cut-off length scale; the lower

the cut-off ratio, the higher averaging period is required to obtain the steady flow

statistics. It is also important to note that the mean flow properties are also averaged

in the spanwise direction. A summary of the various test cases simulated in this study

are given in Table 2.1 which details the range of fk values along with various grid

resolutions investigated in this study.

OpenFoam [24], an open source finite volume code written in C++, is used to

solve the equations. Out of the many available solvers in OpenFOAM, an incom-

pressible transient solver, ChannelFOAM, is used with a second order accurate spatial

discretization scheme. The Backward time scheme, which is second order accurate,

is applied for time integration.

21



Table 2.1: Details of the test cases simulated

Study fk fε Grid Averaging Period

Re=10590

fk study 0.35 1 150× 100× 60 10T-15T

fk study 0.25 1 150× 100× 60 10T-24T

fk study 0.15 1 150× 100× 60 18T-36T

LES - - 196× 128× 186 23T-55T

Re=37000

fk study 1 1 150× 100× 60 10T-15T

fk study 0.35 1 150× 100× 60 10T-15T

fk study 0.25 1 150× 100× 60 10T-24T

fk study 0.15 1 150× 100× 60 18T-36T

Resolution study 0.35 1 150× 100× 60 10T-15T

Resolution study 0.35 1 100× 100× 30 10T-15T

Resolution study 0.15 1 150× 100× 60 18T-36T

Resolution study 0.15 1 100× 100× 30 18T-36T

PITM (Fine Grid) - - 160× 100× 60 -

PITM (Coarse Grid) - - 80× 100× 30 -

2.3.2 Results

In the PANS approach, the degree of resolution is controlled by fk which is the

purported ratio of the modeled-to-total kinetic energy. After the simulation, it is
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possible to compute the actual fraction of the modeled eddy viscosity:

fν =
νu
νt

(2.26)

where νu is the sub-filter eddy viscosity and νt is the total eddy viscosity.

The ”a posteriori” fraction, fν is given the name, recovered eddy viscosity frac-

tion. If the closure model performance is consistent with flow physics, then the

recovered value must be close to f 2
k . Comparison of specified f 2

k and recovered fν

serves as an important internal consistency test of the model performance. We will

perform this consistency test whenever possible.

Variation of fν along the normal direction at streamwise locations of x/h=0.05,

2, 6 and 8 are shown in Fig. 2.4 for the PANS simulations with input fk values

of 0.35, 0.25 and 0.15 at Re=10590. The prescribed f 2
k is also shown in this plot

for comparison. This figure indicates that the contribution of modelled stresses is

reduced as fk decreases. The recovery of the filter parameter is observed to be good

for almost the entire domain particularly in the middle region away from the walls for

the PANS simulations. The poor recovery of the cut-off parameter close to the top

wall is due to the fact that coarse grid resolution is intentionally applied at the region

close to this boundary. It is shown that flow behavior in the top-wall region does

not affect the separation process at the bottom wall region [11]. This study reveals

that the PANS calculations for all fk values studied here are internally consistent.
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Figure 2.4: Recovery of the f 2
k at different locations for Re=10590

2.3.2.1 Re=10590

PANS simulations with fk=0.35, 0.25 and 0.15 are performed on 0.9 million grid

nodes for Re=10590 to obtain mean velocity and turbulence quantities profiles. The

results are then compared against LES calculation on 4.7 million grid nodes [11]

and experimental data [43]. It is worth mentioning that all the simulations are

performed with second order accuracy in time and space. However, both RANS and

PANS calculations are performed on a grid size which is around 5 times coarser than

the LES grid.

fk-dependence study Figure 2.5 depicts the mean velocity profile at four stream-

wise locations of x/h=0.05, 2, 6 and 8 for different fk values. Based on the exper-

imental study [43], the selected positions are associated with the most important

physics occurring in this flow configuration. At x/h=0.05, there is a peak in near-
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wall streamwise velocity which is attributed to the flow acceleration towards the

windward slope of the hill. As can be seen from Fig. 2.5a, RANS model completely

fails to predict the flow acceleration near the wall, whereas PANS results at all of

the selected fk values are in good agreement with experimental data.
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Figure 2.5: Streamwise velocity profiles at different locations for Re=10590

The next location, x/h=2, is in the middle of recirculation zone where the bound-

ary layer is detached and there is an interaction between the free shear layer sep-

arating from the hill crest and the reverse flow further below. Although the near

wall velocity is accurately recovered by all turbulence models, poor prediction of

the RANS simulation for streamwise velocity near the top boundary is seen in Fig.

2.5b. The flow is in the post reattachment region at x/h=6 where flow recovery
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from the low energy separated region is very well represented by the PANS simula-

tion with fk=0.15. At x/h=8, the flow is accelerated on the windward slope of the

hill. This feature is again well captured by PANS simulations. As can be seen from

Fig. 2.5d, the near wall velocity for RANS simulation is noticeably lower than the

corresponding PANS values.

Comparison of the PANS results with LES data reveals that prediction of mean

velocity profile for the PANS simulation with fk=0.15 is superior than the LES

study for the entire streamwise locations. However, deviation of the PANS results

from experimental data with other fk values is evident in the vicinity of the upper

wall, while LES calculation is close to the experimental values almost over the entire

domain. Application of appropriate wall function close to the upper wall in LES

calculation in contrast to no wall treatments for the PANS simulation could be

responsible for the discrepancy.

Interpreting the behaviour of turbulence stresses provides a substantial aid to

model validation and development. Figures 2.6-2.8 show the streamwise, vertical

normal stresses and shear stress profiles at the same locations. The total stress is

computed as the sum of resolved and modeled stresses. It is apparent from Figs.

2.6-2.8 that the RANS model calculations deviate from the reference data at most

streamwise locations of the channel. Overall, good quantitative agreement is ob-

served for the stress profiles computed by the PANS especially considering that the

calculations are performed on a much coarser grid than LES. Specifically, the stress

components predicted by the PANS simulation with fk=0.15 is in the same level of

accuracy compared to the LES data, while using a grid that is significantly smaller.

Some deviation of the PANS results with fk=0.25 and 0.35 compared to LES and

experiment is seen for wall-normal stress profiles. This is due to the fact that the

modeled stress component contributes significantly to the total. As is well known,
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Figure 2.6: Streamwise stress profiles at different locations for Re=10590

modeling does not accurately represent flow anisotropy. Besides, it was seen from

figure 2.5 that the streamwise velocity profile is over-predicted by the PANS cal-

culations with fk=0.25 and 0.35 close to the upper wall. This can influence flow

development in the channel which is controlled by the bulk velocity at the hill crest.

Nevertheless, the outcome of the present PANS calculations for averaged stream-

wise velocity and stress profiles represents a significant improvement over RANS at

a computational expense that is much lower than LES.

Flow anisotropy The Reynolds stress anisotropy tensor is defined by

bij =
< uiuj >

< ukuk >
− 1

3
δij (2.27)
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Figure 2.7: Normal stress profiles at different locations for Re=10590

< uv > /U2
b

-0.015 -0.01 -0.005 0 0.005 0.01

y
/h

1

1.5

2

2.5

3

x/h = 0.05

RANS

fk=0.35

fk=0.25

fk=0.15

LES

Exp.

(a)
< uv > /U2

b

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

y
/h

0

0.5

1

1.5

2

2.5

3

x/h = 2

RANS

fk=0.35

fk=0.25

fk=0.15

LES

Exp.

(b)

< uv > /U2
b

-0.03 -0.02 -0.01 0 0.01 0.02

y
/h

0

0.5

1

1.5

2

2.5

3

3.5

x/h = 6

RANS

fk=0.35

fk=0.25

fk=0.15

LES

Exp.

(c)
< uv > /U2

b

-0.04 -0.02 0 0.02

y
/h

0.5

1

1.5

2

2.5

3

x/h = 8

RANS

fk=0.35

fk=0.25

fk=0.15

LES

Exp.

(d)

Figure 2.8: Shear stress profiles at different locations for Re=10590
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Since the trace of bij is zero, the anisotropy tensor has two independent invariants

which is preferred to be identified by parameters, ξ and η given by

ξ =

(
bijbjkbki

6

) 1
3

η =

(
−bijbij

3

) 1
2

(2.28)

For periodic hill flow, ξ and η can be obtained from the total Reynolds stress con-

sisting of modelled and resolved stresses. The states of the Reynolds stress tensor

correspond to the specific points in the ξ-η plane. As discussed by Lumley & New-

man [34] and Lumley [33], the realizable states of turbulence lie within a curvilinear

triangle in the ξ-η plane. The limits of the triangular domain corresponds to axisym-

metric contraction, axisymmetric expansion and two-component turbulence.

Figure 2.9 shows the flow anisotropy at several locations in the streamwise direc-

tion. By looking at this plot, important observations can be inferred. First, all the

data for Reynolds stress tensor invariants are delimited by the Lumley triangle which

proves that the realizability constraint is satisfied for PANS calculation at all the lo-

cations. The flow is almost isotropic in the middle of the domain and it becomes

anisotropic as we move towards the wall. As seen in Fig. 2.9, the near wall values for

ξ and η are approaching the two-component turbulence state on the Lumley triangle.

However, for the lower wall region, the way that two-component turbulence state is

approached is different for separated region and far beyond the reattachment loca-

tion. Figure 2.9 indicates that the approach to two-dimensionality occurs along the

axi-symmetric contraction line for x/h ≤6, while at x/h=8, this approach is along

the axisymmetric expansion line. This is consistent with LES findings [11].
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Figure 2.9: Invariant map along vertical direction at four streamwise locations for
Re=10590

While the anisotropy level of the flow can be qualitatively observed by the

Reynolds stress invariants through Lumley triangle, it can be quantitatively mea-

sured by calculating the flatness parameter. This parameter, proposed by Lumley

combines the invariants of the Reynolds stress tensor reducing to the following equa-

tion for the flatness parameter

A = 1 + 9

(
bijbjkbki

3
− bijbij

2

)
(2.29)

Value of A goes to one for isotropic flows and it goes to zero at two-component

turbulence state. Figure 2.10 shows the flatness parameter for PANS and LES cal-

culations at several streamwise locations. Good agreement of the PANS data with
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LES simulation is observed at all the locations with the value of A around 0.8 in the

central region. This result further confirms that the flow is anisotropic near the wall,

while in the core region becomes isotropic.

This section demonstrates that PANS calculation satisfies the realizability con-

dition and is able to predict anisotropy of the flow at different regions inside the

channel.
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Figure 2.10: Distribution of the flatness parameter, A, at four streamwise locations
for Re=10590

2.3.2.2 Higher Reynolds number simulations

We now proceed to examine the performance of PANS at higher Reynolds number

of 37000. Specially, we seek to demonstrate that the computational advantage of
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PANS over LES increases with higher Reynolds number. Indeed, at this Re, LES

computations are prohibitively expensive. Hence, we compare PANS results directly

against experimental data.

fk-dependence study We first investigate the effect of varying fk on flow statis-

tics. In this section, all the studies are performed on the finest grid of about 0.9

million grid nodes. This grid permits computations of fk > 0.15. Figure 2.11 shows

the streamwise velocity profiles at four locations of x/h=0.05, 2, 4 and 8. The results

are shown for resolutions: fk=0.35, 0.25 and 0.15. The PANS results are compared

against RANS k−ω model, PITM method [7] and experimental data [43]. It can be

observed from these plots that PANS results agree well with data particularly at the

lowest cut-off parameter, fk=0.15. The flow is expected to reattach at x/h=4 which

is well predicted by PANS and PITM method. It is important to note that RANS

predicts more elongated separation bubble.
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Figure 2.11: Streamwise velocity profiles at different locations for Re=37000

An important observation from Fig. 2.11 is that the agreement on streamwise

velocity profile with experimental data improves progressively with lower fk values.

Among the RANS, PITM and PANS data, the best agreement is achieved for PANS

with fk=0.15 wherein a wider range of turbulence length scales are resolved in the

highly unsteady regions.

Figures 2.12, 2.13 and 2.14 show the components of stress tensor at the four

streamwise locations. For shear stress profiles, at x/h=0.05, the maximum value for

< u′v′ > at y/h ≈ 1.6 is related to the local minimum of streamwise velocity. As

can be seen, this peak value is well captured by PANS simulation for fk=0.15. At

the next two locations, x/h=2 and x/h=4, the peak value of shear stress is over

predicted by the PITM simulation, whereas PANS results are in close agreement
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Figure 2.12: Shear stress profiles at different locations for Re=37000
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Figure 2.13: Streamwise stress profiles at different locations for Re=37000
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Figure 2.14: Vertical stress profiles at different locations for Re=37000

with experimental data. Location at x/h=8 is post reattachment region where the

flow recovers from upstream separation. Poor prediction of the separated region by

the RANS model results in over-prediction of shear stress at this location. Overall,

Figs. 2.11 and 2.12 indicate that the mean flow quantities are well predicted by

PANS simulation at all the cut-off ratios investigated here. The results for fk=0.15

compares the best with the experimental data.

For the streamwise Reynolds stress component, the experimental data and PANS

results are in close agreement. Contradictory to the RANS calculation, the location

of the peak values and distribution of the data are well estimated by the PANS

simulations and have been successively improved by lowering the cut-off parameter

to fk=0.15. However, for the vertical Reynolds stress component, both the hybrid

methods, PANS & PITM, have notable deviations from experimental data at some
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streamwise locations. As explained in the previous section, misprediction of the

streamwise velocity close to the upper wall affecting the mass flow rate imposed to

the domain and second order accuracy of the schemes could be responsible for this

error.

2.3.2.3 Flow structure

We now investigate the detail of the flow features in different regions of the com-

putational domain. Contours of the instantaneous velocity field from the RANS

and PANS calculations are depicted in Fig. 2.15. It is immediately evident that

RANS flow field is nearly steady as anticipated. The PANS field is, as expected

unsteady and the degree of detail increases with decreasing fk value. The size of flow

structures is best examined using the so-called Q-criterion. The scalar Q defined by

−1
2

(SijSij − ΩijΩij) shows the balance between the rotation rate and strain rate and

it provides a qualitative basis for visualizing vortex structures. Figure 2.16 shows

existence of eddies with wide range of scales for the PANS calculations, while for

the RANS simulation, no flow structure is seen. Evidently, by reducing the filter

parameter, fk, more scales of motion are resolved and flow unsteadiness is better

captured. The PANS simulations show that the whole recirculation region is influ-

enced by large-scale energetic eddies with strong deformation and three dimensional

interactions, none of which are captured in RANS calculations.

The time-averaged streamline contours are shown in figure 2.17 for the RANS

and PANS calculations. Figure 2.17 indicates that the size of separation bubble is

bigger in the RANS calculation which occupies more than 50 percent of the stream-

wise direction. By reducing fk, the separated region shrinks down in both x and y

directions.
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(a) (b)

(c) (d)

Figure 2.15: Instantaneous velocity profile, Re=37000: (a) RANS, (b) fk=0.35, (c)
fk=0.25, (d) fk=0.15

(a) (b)

(c) (d)

Figure 2.16: Q isosurfaces, Re=37000: (a) RANS, (b) fk=0.35, (c) fk=0.25, (d)
fk=0.15
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(a) (b)

(c) (d)

Figure 2.17: Time-averaged streamlines, Re=37000: (a) RANS, (b) fk=0.35, (c)
fk=0.25, (d) fk=0.15

2.3.2.4 Separation and reattachment locations

Figure 2.18 plots the friction coefficient for different fk values. Figure 2.18 shows

that separation is delayed for the RANS simulation and is extended to farther down-

stream direction to reattach. However, both PITM and PANS calculations seem to

follow the same pattern for flow separation and reattachment. Another interesting

observation of this plot is the flow behaviour right after reattachment. After reat-

tachment and partial recovery, the flow appears to be prone to separation at around

x/h=7.2 where it decelerates moving towards the downstream hill resulting in a local

minimum in the friction coefficient plot. However, the flow accelerates on the wind-

ward slope of the hill and that is the reason for sharp rise of the friction coefficient

just upstream of the hill crest.

Table 2.2 summarizes the reattachment locations for all the simulations along

with the experimental location which are also plotted in Fig. 2.19. It is seen from

Fig. 2.19 (a) that estimation of the reattachment location improves dramatically
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Figure 2.18: Friction coefficient

with decreasing fk. RANS is in error by about 40% whereas fk = 0.15 case is within

5% of the experimental data. Accurate prediction of the reattachment location by

reducing fk is also observed in Fig. 2.19 (b) for the higher Reynolds number case.

2.3.2.5 Grid-resolution study

In this section, the grid sensitivity of the PANS simulations with cut-off ratios

of fk=0.15 and fk=0.35 is investigated for two grid sizes. It must be noted that

the coarser grid still supports fk = 0.35 while is marginally adequate for fk = 0.15.

The details on the grid sizes is summarized in Table 2.1. As seen in Table 2.1, the

coarse grid is generated by reducing the grid nodes in the streamwise and spanwise

directions while keeping the resolution fixed in the normal direction. The results

from the PANS simulations are compared with PITM results at almost the same

grid sizes which are specified in Table 2.1.

Figures 2.20-2.23 show the mean streamwise velocity and stress profiles for both

PANS and PITM calculations on the coarse and fine grid sizes. As seen in these
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Table 2.2: Reattachment locations for different simulations

Study fk fε (x/h)Reattach.
Re=37000

RANS 1 1 4.92

PANS 0.35 1 3.92

PANS 0.25 1 3.73

PANS 0.15 1 3.72

PITM [7] - - 3.63

Exp. [43] - - 3.76

Re=10590

RANS 1 1 5.97

PANS 0.35 1 5.38

PANS 0.25 1 4.55

PANS 0.15 1 4.44

LES [11] - - 4.6

Exp. [43] - - 4.21
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Figure 2.19: Reattachment location for different fk (a) Re = 10590 (b) Re = 37000
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Figure 2.20: Streamwise velocity (symbols for Exp. and RANS are consistent with
Fig. 2.11)

plots, at almost all the locations, the mean quantities are hardly distinguishable

for the PANS simulations on the two grids. Regarding the PANS calculations, the

only noticeable difference between the results of the two grid resolutions is observed

at x/h=2 and x/h=4 for fk=0.15. This is expected since as fk is reduced, the

grid should be fine enough to capture the small turbulence length scales. Another

important finding is that PITM results are sensitive to grid resolution. For instance,

for the coarse grid, PITM is not able to recover the peak velocity near the wall at

x/h=0.05. The separation bubble is also extended farther than x/h=4 for the PITM

calculation. The same conclusion can be made about the stress profiles for the PANS

and PITM data. This strong sensitivity of PITM results to grid resolution is related

to the filter parameter in this method which is dependent on the grid size.
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Figure 2.21: Shear stress (symbols for Exp. and RANS are consistent with Fig. 2.12)
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Figure 2.22: Streamwise stress component (symbols for Exp. and RANS are consis-
tent with Fig. 2.12)
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Figure 2.23: Vertical stress component (symbols for Exp. and RANS are consistent
with Fig. 2.12)

2.4 Flow over wall-mounted hump

The experiment for this flow geometry was originally designed and investigated

by Seifert and Pack [52]. In this experiment, flow passes over a curved surface,

and it separates as a result of strong adverse pressure gradient. As shown in Fig.

2.24, the experimental configuration consists of a Glauert-Goldschmied type body

mounted over a splitter plate with two side end-plates. This flow is nominally two-

dimensional although there are side-wall effects near the end-plates (3D features).

For the experimental set-up, the hump has a chord length of 0.42 m. The free

stream Mach number is 0.1, low enough to consider the flow incompressible. The

flow Reynolds number is approximately 2.23× 106 per meter, or 9.36× 105 based on

the hump chord length. The experimental database is used for the development and
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Figure 2.24: Experimental set-up for hump flow configuration

validation of new and existing turbulence models.

A validation workshop on synthetic jets and turbulent separation control was held

in Williamsburg, Virginia in 2004 [48]. Flow over mounted hump simulation was

selected as one of the three test cases where CFD results from several investigators

were presented. This problem was chosen to compare results with experimental

data [52, 19] as existing RANS/LES/hybrid methods continue to have problems

in accurately predicting the separation bubble characteristics and recovery of the

flow. Three configurations of the wall-mounted hump case were considered in the

workshop: (1) flow separation over the hump with no flow-control (base line case),

(2) the effects of suction though a slot, and (3) an oscillatory zero-net mass-flux

jet through the slot. The outcome of this workshop was that the RANS methods

are wrongly predicting the flow features as they do not account for the spanwise

variations and structures. Therefore, the urge of high fidelity modeling approach

was recognized by the researchers. In this study, the no flow-control configuration

or baseline case is investigated.

Various RANS modeling approaches such as the Spalart-Allmaras(SA) [27], k−ω

[35], shear stress transport model (SST)[22], and several versions of k − ε models

[35, 20] are used in the past to model flow separation for the current flow geometry.
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Noticeable mismatch for the mean velocity, stress components and surface friction co-

efficient compared to the experimental data was seen for these RANS family models.

Several other investigators found a better prediction of the reattachment location

using the DES, DDES, and zonal hybrid RANS/LES models [49]. However, still

there were discrepancies with experimental data for the second order statistics.

Some researches have evaluated LES and ILES models for the current flow sim-

ulation. It is important to mention that the LES simulations were performed on re-

markably much more expensive computational grids that then corresponding RANS

and hybrid RANS/LES approaches. You et al. [56] simulated this problem with

LES model and obtained good prediction of reattachment length, mean velocity and

stresses for this flow configuration. Avdis et al. [1] although predicted the mean

velocity and reattachment size closely to experiment, the turbulent stresses were sig-

nificantly over predicted by their ILES model. In LES study of Saric et al. [50], the

parameters agreed well with experiment only within the separation bubble and they

deviated from experiment in the post-reattachment region.

The unsteadiness generated for the flow separation studied in Sec. 2.3 is induced

by the flow geometry and maintained by defining the periodic inflow/outflow bound-

ary conditions. The purpose of this section is to further evaluate G1-PANS method

for computing a turbulent, separated flow where the inflow/outflow boundary con-

ditions are not periodic and the proper simulation of the incoming flow upstream of

the curved surface is critical.

2.4.1 Simulation procedure

The Reynolds number based on the free-stream velocity U∞ and the hump chord

C is 935,892. A schematic of the non-orthogonal, body-fitted mesh is shown in Fig.

2.25. Table 2.3 lists the computational studies directed towards the configuration
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Figure 2.25: 201× 96× 30 grid resolution of the hump flow simulation

shown in Fig. 2.25. For each study, the numbers of cells in the streamwise, wall-

normal and spanwise directions are given, along with the numerical strategy (LES,

PANS, RANS). The dimensionless wall distance of the closest computational nodes,

y+ ≈ 1 is considered for the lower wall.

Table 2.3: Details of the test cases simulated

Study fk fε Grid Averaging Period

Re=935,892

RANS 1 1 201× 60× 20 10T-15T

PANS 0.2 1 201× 96× 30 10T-15T

LES - - 768× 96× 128 -

Same as the procedure taken in LES simulation [1, 37], in order to reduce the

size of computational domain, a precursor channel flow simulation is performed to

allow development of a turbulent boundary layer upstream of the hump. Then, the

outflow profiles of the channel flow simulation are fed to the hump flow simulation as

the inflow condition. Therefore, for all the RANS and PANS computations, steady

RANS profiles were imposed at the inlet plane placed at x/c = −0.8C upstream of
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Figure 2.26: Schematic of the hump configuration, including the domains used in
the main simulation and the simulation generating inflow conditions

the hump leading edge. This procedure is shown in Fig. 2.26.

The flow is considered to be periodic in spanwise direction. The convective outlet

is applied at the outflow, while the inflow boundary condition is set from the precursor

simulation. The bottom boundary is wall and either wall/symmetry plane boundary

conditions are applied to the top boundary. It has been shown that the two choices of

boundary type for the upper wall is not influencing the flow separation process for the

hump flow [50]. The computational domain extends from x/C= -0.8 to x/C = 3 in

the streamwise direction. In the cross-stream direction, y/C = 0 corresponds to the

surface containing the hump, and the domain extends to y/C = 0.909, corresponding

to the wall of the wind tunnel in the experiment. The flow is developed for 10 flow-

through times, and the instantaneous fields are then averaged for a period of 5

flow-through times. The details of the boundary conditions and solvers for the hump

flow simulation are given in table 2.4.

For the precursor channel flow simulation, velocity at the inlet is set to 34.6m/s,

and the pressure gradient is zero. At the outlet, gradients of all flow variables except

pressure is zero. The pressure is set arbitrarily to zero at the outflow because the

algorithm takes into account variations in pressure, and not the absolute value. The
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lower wall is a viscous no-slip wall. At the wall, k is set to zero, and ω is set to the

value suggested in [55].

Table 2.4: Simulation set-up in OpenFoam for the hump simulation

Settings Choice

Simulation type 3D Unsteady

Solver Transient incompressible (pisoFoam)

Temporal discretization Backward (second order accurate)

Spatial discretization Gauss Linear (second order accurate)

Pressure-velocity coupling PISO

Turbulence model G2-PANS k − ω

Boundary Type

Inflow RANS inflow

Outflow Zero Gradient/Convective outlet

Bottom patch Viscous wall

Top patch Viscous wall/Symmetry

Lateral Periodic

2.4.2 Results

Figure 2.27 shows the mean flow statistics for the G1-PANS calculation of the

hump flow as well as the corresponding results for RANS and LES [1]. The statistics

are shown at several streamwise locations in the separated region and reattachment

location. As shown in this figure, for the early separated region, the mean velocity

is predicted with a good accuracy by all models. However, the difference between
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Figure 2.27: G1-PANS simulation of flow over mounted hump

different simulation approaches appears in the vicinity of the reattachment location,

x/c = 1.1 for the mean velocity profile. As seen in Fig. 2.27 (c), early and delayed

reattachment is predicted by the G1-PANS and RANS models, respectively. Looking

at the stress profiles depicted in Figs. 2.27 (d)-(f) reveals remarkable over-prediction

of pick value of shear stress in the separation region and under-estimation of the

peak value in the reattachment region for both G1-PANS and LES simulations.

These results indicate that the key instability mechanisms inherent in this flow
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are not resolved accurately due to the lack of grid resolution for G1-PANS and LES

calculations. In other words, the G1-PANS simulation of the developing boundary

layer upstream of the hump and separated region downstream of the hump is highly

sensitive to the grid resolution. Several strategies are addressed in [21] to improve the

G1-PANS predictions which mainly include adaptation of higher grid resolution and

unsteady inflow generation using the Lund’s recycling-rescaling method. Since using

a high grid resolution is not practical for engineering flows, the near wall modeling

of the PANS method is discussed in the next section.
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3. NEAR WALL MODELING OF THE PANS METHOD

3.1 Introduction

An strategy to drastically reduce computational cost in high fidelity simulations

for a wide range of industrial applications is to couple PANS with the RANS Model.

The idea of developing a unified hybrid RANS/PANS model is inspired by the fact

that the PANS model posses the same structure as RANS regarding the transport of

unresolved kinetic energy, dissipation and definition of the unresolved eddy viscosity.

In this approach, the near wall scales are modeled by the RANS model, and therefore

the near wall grid size and time-step constraint are considerably relaxed. With this

type of modelling, steady RANS calculation is used for near wall calculation, and

unsteady PANS simulation is utilized where it is needed in the domain. Therefore,

PANS closure model is employed throughout the whole domain and transition from

RANS to PANS is controlled by smooth variation in the filter parameter, fk.

As mentioned earlier, the first generation of the PANS model is obtained for a

constant filter parameter. PANS model derivation for a variable resolution calcula-

tion is addressed first by Girimaji and Wallin [18] for a temporally varying resolution.

They developed the model based on energy conservation rules and validated that for

decaying isotropic turbulence. They discussed that the commutation errors arise

in the governing equations for turbulence quantities and momentum equation as a

result of resolution variation which can not be neglected. These errors are addressed

by including extra terms in the governing equations which can be significant if the

prescribed filter parameter variation is considerable.

While the PANS closure model development for the temporal variation of filter

parameter is addressed in [18], the scope of this section is to develop appropriate
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turbulence closure model for bridging between different resolutions in space, and

particularly near-wall region. Seamless transition from region of low-resolution near

the wall to high-resolution away from the wall is controlled using the PANS filter

parameter. Commutation effects as a result of filter variation are modelled using ad-

ditional term in the turbulent kinetic energy equation. In addition, to conserve the

total turbulent energy due to the interaction of unresolved and resolved flow fields,

innovative strategies are proposed. This study identifies some important challenges

regarding the numerical stability and appropriate implementation of the energy con-

servation principles.

Model development and analysis have been performed for turbulent channel flow

simulation at low and high Reynolds numbers. The objective of the current study

is twofold. First, it is aimed to demonstrate that the G1-PANS model developed

for constant filter parameter is able to accurately capture the flow physics given the

required amount of grid resolution for a specified Reynolds number. Second objec-

tive is to develop the second generation of the PANS model for variable resolution

calculations near the wall. The ability of the developed model is then evaluated to

simulate turbulent channel flow at high Reynolds numbers where the constant res-

olution approach could be extremely costly and not viable to perform. The results

are compared with DNS data of turbulent channel flow [23].

3.2 Derivation of the PANS closure model- generation 2

Assuming constant filter parameters, fk and fε, the G1-PANS model given in

Eqn. 2.4 and Eqn. 2.22 was obtained for the resolved and unresolved fields. Closure

modeling in region of resolution variation is discussed next.

Spatio-temporal fk variation: The resolution (fk) variation introduces com-

mutation effects in the momentum, turbulent kinetic energy and dissipation equa-
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tions. These effects are modeled as follows

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −∂τ(Vi, Vj)

∂xj
− ∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

− Fi; (3.1)

Dku
Dt

= Pu +DTr + PTr − β∗kuωu +
∂

∂xj

[
(ν + νu/σku)

∂ku
∂xj

]
(3.2)

Dωu
Dt

= −ωu
ku

(PTr +DTr) + α
ωu
ku
Pu − β′ω2

u +
∂

∂xj

[
(ν + νu/σωu)

∂ωu
∂xj

]
(3.3)

The extra energy transfer terms, DTr and PTr in Eqns. 3.1-3.3 are derived by taking

variation of fk into account. These terms can be obtained by inspecting the evolution

of the unresolved kinetic energy in the case of resolution variation. By definition,

the advective term of the unresolved kinetic energy in the PANS method is evolved

as

fk(
∂k

∂t
+ Uj

∂k

∂xj
) =

∂ku
∂t

+ Uj
∂ku
∂xj
− PTr (3.4)

where, k is the total kinetic energy, ku is the modelled or unresolved kinetic energy

and PTr is

PTr =
ku
Fk

Dfk
Dt

(3.5)

And the diffusion term is obtained as

fk
∂

∂xk
[(ν +

νt
σk

)
∂k

∂xk
] =

∂

∂xk
[(ν +

νu
σku

)
∂ku
∂xk

] +DTr (3.6)

where, DTr is

DTr = −ku
fk

∂

∂xk
(ν∗u

∂fk
∂xk

)− 2ν∗u
fk

(
∂ku
∂xk
− ku
fk

∂fk
∂xk

)
∂fk
∂xk

; ν∗u = ν +
νu
σku

(3.7)

Here, the subscript u denotes the unresolved parameters. If the cut-off is outside of
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the dissipative range, changing fk will not affect the dissipation and merely adds an

additional term in the ω equation as a result of the transformation from the k − ε

equations as seen in Eqn. 3.3.

The model coefficients are consistent with Eqn. 2.22. The PTr term defined in

Eqn. 3.5 is associated with the transfer of energy between resolved and unresolved

scales when there is a change of resolution in time and/or streamwise direction,

whereas the DTr term is accounting for this energy exchange in the case of wall-

normal change in the resolution. Fi in Eqn. 3.1 is the commutation term in the

momentum equation responsible for interscale energy transfer which can be modeled

by invoking energy conservation rules. By multiplying Ui to both sides of Eqn. 3.1,

the equation for the resolved kinetic energy will be obtained

DE

Dt
= −Ui

1

ρ

∂P

∂xi
+ Ui

∂

∂xk
[(ν + νt)

∂Ui
∂xk

]− UiFi (3.8)

Energy conservation principles dictate that the additional terms present in the equa-

tions for the unresolved kinetic energy 3.2 and resolved kinetic energy 3.8 should be

in balance, or in the mathematical form, the following equality must be ensured:

UiFi = PTr +DTr (3.9)

The above condition suggest the following equation for Fi

Fi =
Ui
UiUi

(PTr +DTr) (3.10)

For ease of implementation of Fi in the momentum equation, Eqn. 3.10 can also be
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interpreted as

Fi = − ∂

∂xk
(νTr

∂Ui
∂xk

) (3.11)

where νTr is called the commutation viscosity and is added to the molecular and

eddy viscosity to construct the viscous term in the momentum equation and is given

by

νTr =
PTr +DTr

2SijSij
, Sij =

1

2
(
∂Ui
∂xj

+
∂Ui
∂xi

) (3.12)

Energy transfer to the resolved scales can be obtained by a negative νTr, while with

positive value, energy is taken from resolved scales. Using the above derivation for

the PANS model, we will perform the analysis of changing resolution near the wall

to investigate wall-bounded turbulent flows at high Reynolds numbers. The PANS

filter parameter, fk is changing from 1 near the wall to arbitrary value away from

the wall. Since the small turbulence length scales associated with the dissipative

range are not resolved in the present study, fε is set to one for all calculations. Fully

developed channel flow is computed for Reynolds numbers of Reτ=uτh/ν=180-8000.

3.3 Simulation procedure of turbulent channel flow

Turbulent channel flow simulations are performed using an incompressible finite

volume solver in OpenFoam. The numerical schemes for discritizing the equations

are second order accurate in time and space.
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Table 3.1: Grid resolutions for turbulent channel flow simulations

Turbulent Channel Flow Simulation

Reynolds number Model Grid

Reτ = 180

RANS 643

G1-PANS (fk = 0.2) 64× 101× 64

DNS Ny = 97, ∆+
x = 9, ∆+

x = 6.7

Reτ = 550

RANS 643

G1-PANS (fk = 0.2) 64× 101× 64

DNS Ny = 257, ∆+
x = 13, ∆+

x = 6.7

Reτ = 950

RANS 643

G2-PANS (fk = 0.2&0.3) 64× 101× 64

DNS Ny = 385, ∆+
x = 11, ∆+

x = 5.7

Reτ = 2000

RANS 64× 80× 30

G2-PANS (fk = 0.2&0.3) 64× 101× 64

DNS Ny = 633, ∆+
x = 12, ∆+

x = 6.1

Reτ = 4200

RANS 643

G2-PANS (fk = 0.2&0.3) 64× 181× 64

G1-PANS (fk = 0.2) 64× 181× 64

DNS Ny = 1081, ∆+
x = 12.8, ∆+

x = 6.4

Reτ = 8000
RANS 643

G2-PANS (fk = 0.2) 64× 181× 64

The domain extends 4h, 2h and 2h in the streamwise, spanwise and wall-normal

directions, respectively where h is the channel half width. Periodic boundary condi-
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tion is applied in the streamwise as well as spanwise directions. Reynolds number,

Reτ is defined as uτh/ν where uτ is the friction velocity, and ν is the kinematic vis-

cosity of the fluid. Because of the periodicity of domain, flow is driven by a constant

pressure gradient which is added as a source term to the momentum equation.

In order to study flow statistics and structure, several G1-PANS and G2-PANS

simulations are performed for a range of Reynold numbers between 180 and 8000.

The simulation results are compared with DNS data [23] for Reynolds numbers up

to 4200. based on the best knowledge of the author, for the Reynolds numbers above

4200, no DNS data is available as the grid requirement becomes a critical issue.

Therefore, to investigate the ability of G2-PANS model to recover the mean velocity

profile at affordable computational cost, the higher Reynold number of 8000 is also

included in this study. Table 3.1 summarizes different test cases with their specific

grid resolution as well as those of DNS data.

3.4 Results

This section is divided into three separate important studies. First, the two

approaches in obtaining the transport coefficients of the G1-PANS closure model

are compared for the flow statistics and resolved flow scales at Reτ=180. Besides,

the G1-PANS calculations at low and high Reynolds numbers are presented in the

first part. In the second part, the G1-PANS equations are solved for a variable fk

simulation. This approach is referred as G1.5-PANS model. Finally, in order to

explore the effect of energy-scale transfer terms for a variable resolution simulation,

the G2-PANS model results are discussed.

3.4.1 G1-PANS simulations of turbulent channel flow

As discusses in Sec. 2, two limiting cases known as ZTM and MTM are pro-

posed to model the transport of the unresolved kinetic energy and dissipation. Be-
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sides, scale-dependent boundary-layer analysis for a partially-resolved boundary layer

demonstrated that the ZTM was the appropriate model for this region. In order to

provide a proof of concept for this analysis, the results for turbulent channel flow

calculations are investigated for both G1-PANS ZTM and G1-PANS MTM models

in the subsequent section.

3.4.1.1 G1-PANS ZTM vs. G1-PANS MTM

The two turbulence transport models (i.e. ZTM and MTM) in the context of the

PANS method are evaluated for the turbulent boundary layer with Reτ=180.
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Figure 3.1: Velocity profile at Reτ = 180

Figures 3.1 and 3.2 show the mean flow statistics for the two transport models

alongside with the DNS data. It is observed from Fig. 3.1 that the slope of the log

layer is accurately predicted by both models, but the MTM model fails to obtain

the right velocity profile. Overshoot in the streamwise stress and under-estimation
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of wall-normal and spanwise stresses are observed in Fig. 3.2 for the MTM model.

On the other hand, the ZTM model approximates the velocity profile and normal

stresses very close to the DNS data. Furthermore, Fig. 3.3 compares the two ap-

proaches by depicting the Z-vorticity contours. This figure displays the fact that

considerably more scales of flow specially close to the walls are resolved by the ZTM

when compared to the MTM assumption. This study demonstrates that the ZTM

approach is indeed the correct transport closure for the boundary layer analysis.
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Figure 3.2: G1-PANS simulation of turbulent channel flow for Reτ = 180(a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress
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(a) (b)

Figure 3.3: Vorticity contours for G1-PANS simulation of turbulent channel flow at
Reτ = 180(a) ZTM (b) MTM

3.4.1.2 Motivations to develop the second generation of the PANS model

The mean velocity profile obtained from the G1-PANS calculations and DNS data

for Reτ=180-4200 are shown in figure 3.4. Grid resolution of 64×101×64 is utilized

for all the Reynolds numbers. Accuracy of the G1-PANS model given the specified

grid resolution is investigated for low and high Reynolds number flows. Figure 3.4

reveals that the G1-PANS model with fk=0.2 is able to recover the log layer very well

for the two low Reynolds number cases. However, for the higher Reynolds numbers

of 2000 and 4200, the log layer mismatch is remarkable. In fact, for these Reynolds

numbers, the velocity profile is in good agreement with DNS data only in the laminar

sublayer region (y+ < 5), and mismatch occurs within the buffer layer region and

thereafter the log layer region.

Figures 3.5 and 3.6 show the second order statistics for Reτ=180 and 4200, re-

spectively. It can be inferred from figure 3.5 that the stress components are in very

good agreement with DNS data for the G1-PANS calculation and the anisotropy of

the flow is well predicted by the model at Reτ=180. Besides, Fig. 3.6 indicates sig-

nificant over prediction and under prediction of the streamwise and normal stresses

for the G1-PANS simulation particularly in near wall region at Reτ=4200.
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The velocity overshoot and wrong normal stress profiles obtained for higher

Reynolds number of 4200 for G1-PANS calculations are mainly due to the insuf-

ficient grid resolution. While the grid resolution for specified filter parameter of

fk=0.2 seems to be adequate for the low Reynolds number cases, it is substantially

low for the higher Reynolds number flows. The extent of grid refinement specifically

in the normal and spanwise directions for the DNS studies given in table 3.1 further

confirms that a huge computational domain is required in order to capture small

scale structures near the wall at Reτ=2000 and 4200. Therefore, with the current

grid, G1-PANS model is only able to capture the right flow physics at low Reynolds

number cases and for high Reynolds number flows, excessive grid refinement partic-

ularly in the near wall region is required. As discussed earlier, in order to obviate

the computational expense, variable resolution approach is followed next.
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Figure 3.4: G1-PANS simulation of turbulent channel flow at different Reτ
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Figure 3.5: G1-PANS simulation of turbulent channel flow for Reτ = 180 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress
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Figure 3.6: G1-PANS simulation of turbulent channel flow for Reτ = 4200 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress
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3.4.2 G1.5-PANS

In previous section, it was observed that the near wall length scales are not

resolved by increasing the resolution of the model, while not providing adequate

number of grid nodes in that region. Therefore, in accordance with the scope of the

hybrid models, an alternative approach is to model all the near wall scales with fully

averaged RANS model, and resolve the necessary length scales away from the wall

by lowering fk. This method requires transition from a completely steady solution

adjacent to the wall to an unsteady calculation away from the wall.

The model equations of G1-PANS is used for the calculations, but with variable

rather than constant fk. This approach is given the name G1.5-PANS method where

the commutation terms are not included. Turbulent channel flow simulation using

the G1.5-PANS method is performed for Reτ=4200 where the near wall region is fully

modelled. Figure 3.7 (a) shows the prescribed variation of filter parameter in near

wall region for Reτ=4200. As shown in this figure, the transition from the steady to

unsteady regions happens at 100 < y+ < 250.

The corresponding mean velocity profile is illustrated in figure 3.7 (b). The mean

velocity profile clearly shows that changing the resolution near the wall and using the

G1-PANS formulation leads to a wrong slope of the profile in the log layer region and

velocity overshoot. Also, the variation of stress components shows deviation of data

from DNS and proximity to the RANS solution as seen in Fig. 3.8. The tendency

of the current hybrid modeling approach to reach steady RANS solution indicates

that a proper energy scale transfer has not be been achieved by only changing the

resolution near the wall. Therefore, in the next section, the second generation of the

PANS model which accounts for the resolution change accompanied by including the

additional energy scale transfer terms is investigated.
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Figure 3.7: G1.5-PANS simulation of turbulent channel flow for Reτ = 4200(a) fk
variation, (b) mean velocity
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Figure 3.8: G1.5-PANS simulation of turbulent channel flow for Reτ = 4200 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress
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3.4.3 G2-PANS simulations of turbulent channel flow

The G2-PANS simulations for Reτ= 950-8000 are presented in this section. For

each case, the flow statistics are compared with well documented DNS data except

for Reτ=8000 where there is no DNS data available.

Figure 3.9a shows the variation of filter parameter at different Reynolds numbers

considered in this study. As shown in this figure for the lower Reynolds number

cases, Reτ = 950 and 2000, fk is one in the laminar sublayer and part of the buffer

layer and then is gradually reduced so that in the fully turbulent region it reaches a

constant value of 0.2. For higher Reynolds numbers of 4200 and 8000, the switch from

RANS solution is purposefully delayed to a further distance from the wall where the

laminar sublayer, buffer layer and part of the log layer is fully modeled with RANS.

This is because at higher Reynolds numbers, the range of length scales will become

wider and more small scale eddies are present in the flow domain. This implies that,

with the current grid resolutions, it is not possible to resolve the necessary amount of

scales in the buffer layer and early part of the log layer at higher Reynolds number,

and therefore they are fully modeled.

3.4.3.1 Eddy viscosity recovery

Variation of νu
ν

with y+ is shown in Fig. 3.9 (b) for the PANS simulations with

input fk values given in Fig. 3.9 (a) at different Reτ . The eddy viscosity recovery

is well observed for almost the entire domain particularly in the middle region away

from the walls for the PANS simulations. This ensures that the model performs well,

and the right level of eddy viscosity is achieved in the solution domain.
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Figure 3.9: G2-PANS simulation of turbulent channel flow (a) prescribed fk (b)
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3.4.3.2 Flow statistics

Figure 3.10 shows the mean velocity profile at different Reynolds numbers for

RANS as well as G2-PANS calculations. Remarkably, the log-layer is accurately

captured at all Reynolds numbers. It must be pointed out that most hybrid methods

exhibit a log-layer mismatch. The accuracy of G2-PANS model is attributed to the

right level of energy exchange in the region of resolution variation.

The numerical transition from steady to unsteady region is noticeable in the

velocity profile. The transition occurs at the region of rapid variation in fk.

To ensure that the correct results are obtained with the correct underlying physics,

several higher-order statistics are compared with corresponding DNS results in Figs.

3.11 and 3.12 for Reτ=950 and 2000. All of the individual Reynolds stress com-

ponents are close to the DNS results outside the laminar-sublayer for both values

of fk. Recall, the underlying model is RANS in the sublayer. Most importantly,

the simulation undergoes a numerical transition from steady RANS near the wall to

unsteady flow-field away from the wall.
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Figure 3.10: G2-PANS simulation of turbulent channel flow: mean velocity at
different Reynolds numbers

Failure of the G1-PANS and the G1.5-PANS models to accurately simulate turbu-

lent channel flow at high Reynolds numbers are associated with lack of grid resolution

and improper energy exchange near the wall region, respectively. Evolution of second

generation of the PANS model leads to a drastic reduction in computational expense

by the means of resolution variation, and results in simulation accuracy by including

the energy scale transfer terms.

3.4.3.3 Effect of changing the center of cut-off

The effect of the location of the RANS-to-PANS transition region is studied in

this section. Figure 3.13 shows the filter variation for two different cases at Reτ=950.

For case 1, resolution of the model changes in the range of 20 < y+ < 100 while for

the second case it happens within 100 < y+ < 250. The second variation implies

that all the scales within the laminar sub-layer and buffer layer are modelled, while

for the first case, these are partially resolved.

Figure 3.14 shows the mean velocity and stress profiles for the two cases. This
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Figure 3.11: G2-PANS simulation of turbulent channel flow for Reτ = 950 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress

figure infers that by moving the location of transition towards the buffer layer, ac-

curacy of the results are improved. The velocity overshoot seen for the second case

is not represented for the first case. Besides, the estimation of normal stresses near

the wall and particularly the peak values are closer to DNS for the first case.

For turbulent channel flow, instabilities stem from the buffer layer and early log-

layer region. Less accurate calculation of the second simulation is associated with

model failure in resolving the scales in these important regions. Illustration of this

fact is seen in Fig. 3.15. This figure shows Q iso-surfaces coloured by streamwise

velocity for the two different cases at 0 < y+ < 200. It is clear from this figure that

considerably more scales are resolved in the first case where the resolution variation

happened closer to the wall. Note that pushing the location of transition closer to
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Figure 3.12: G2-PANS simulation of turbulent channel flow for Reτ = 2000 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress

the wall may not result in better accuracy as the grid resolution will not suffice for

this Reynolds number.

y+
10

0
10

1
10

2
10

3

f
k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prescribed fk

G2-PANS, case 1

G2-PANS, case 2

Figure 3.13: Prescribed fk for different cases at Reτ = 950
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Figure 3.14: G2-PANS simulation of turbulent channel flow for Reτ = 950(a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress
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Figure 3.15: Q iso-surfaces(a) case 1 (b) case 2
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3.4.3.4 Stress components at higher Reτ

Figure 3.16 shows the the stress components for Reτ = 4200. It is illustrative

that overall, the agreement of stress profiles with DNS data is fully satisfactory in

this case. However, for this case, the deviation of streamwise stresses from DNS data

is noticeable unlike the profiles for Reτ=950 and 2000.
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Figure 3.16: G2-PANS simulation of turbulent channel flow for Reτ = 2000 (a)
streamwise stress (b) normal stress (c) spanwise stress (d) shear stress

Referring to figure 3.9a, for Reτ=4200 and 8000, model switches from RANS to

PANS after y+ of 100, whereas for Reτ=950 and 2000, this happened much more

earlier. The grid resolution requirement is more critical at higher Reynolds number.
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With the current grid, resolving the scales in near wall region is impractical, and

therefore for higher Reynolds numbers, this region is fully modelled with RANS. As

discussed in previous section, by moving the location of RANS-to-PANS transition

away from the wall important physical phenomena in near wall region are not cap-

tured. This affects the mean flow statistics as shown in Fig. 3.16 (a). It is worth

reiterating that for Reτ=8000, there were no available DNS data, and therefore the

stress profiles are not shown for this case.
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4. SIMULATION OF SMOOTH SURFACE SEPARATION USING G2-PANS

4.1 Introduction

As it is shown in Sec. 2, accurate computation of wall-mounted hump flow using

the G1-PANS model with fixed fk requires very refined grid resolution in near wall

region. Therefore, in this study, the flow separation over wall-mounted hump is

simulated using G2-PANS k − ω model with variable resolution near the wall. The

simulations are performed for a range of grid resolutions and fk. In Sec. 2.4, the wall-

mounted hump configuration, flow conditions and details of the numerical method

are explained. The various grids used in this study for different fk calculations

are given in Table 4.1. As shown in this table, the finest grid resolution used for

the G2-PANS calculation is 1.5 Million and the coarsest one is around 0.3 Million,

whereas this is approximately 9.4 Million for the LES simulation [1]. The results are

presented for different parameters including the separation and reattachment lengths,

first and second order statistics and surface friction coefficient and are compared with

experiment and other numerical studies.
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Table 4.1: Details of the test cases simulated

Study fk fε Grid Averaging Period

Re=935,892

RANS 1 1 201× 60× 20 10T-15T

PANS 0.2 1 201× 250× 30 10T-15T

PANS 0.2 1 201× 96× 30 10T-15T

PANS 0.2 1 201× 70× 30 10T-15T

PANS 0.2 1 201× 70× 20 10T-15T

PANS 0.25 1 201× 96× 30 10T-15T

PANS 0.3 1 201× 96× 30 10T-15T

LES - - 768× 96× 128 -

4.2 Results

In this section, the simulation results of G2-PANS are presented for the flow over

mounted hump. For G2-PANS simulations, the near wall region is modelled and

variable resolution is applied in the wall-normal direction. The resolution change

is applied far enough from the wall in order to avoid penetrating too deeply into

the boundary layer. If the PANS region would reside too close to the wall due to

insufficient resolution, lower viscosity and turbulence levels could be obtained which

possibly produces a premature separation and less accurate flow predictions.

4.2.1 Mean flow statistics

Figures 4.1-4.3 show the non-dimensional streamwise velocity U , streamwise

stress component uu, and the shear stress uv at six streamwise locations. These lo-
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cations include both the separation and post-reattachment regions. G2-PANS with

fk = 0.2 calculations on 0.6 million grid cells are compared to a LES simulation

with 9.4 million grid nodes [1], and experimental data [19]. RANS simulations are

also included for the comparison purposes. It should be noted that the LES study

did not provide the profiles for the two post-reattachment locations, x/c = 1.2 and

x/c = 1.3, and the G2-PANS results are compared only with experiment at these

locations.

Figure 4.1 shows good agreement between the experimental and simulated profiles

at x/c = 0.7− 0.9 which locate within the separation bubble. However, close to the

reattachment point at x/c = 1.1, noticeable differences are observed for various sim-

ulations. While the G2-PANS results are in very good agreement with experiment,

RANS simulation predicts a much stronger reverse flow and LES model simulates

early reattached flow.

The differences between the RANS and G2-PANS simulation become more ap-

parent at post-reattachment region, where the RANS results deviates significantly

from the data. Also, it can be inferred from Fig. 4.1 that the LES simulation predicts

larger shear layer thickness than the measured data. This is specifically visible by

looking at the upper part of the velocity profile where the estimated velocity by LES

is remarkably low. Consequently, the stresses are over-predicted by the LES simula-

tion as shown in Figs. 4.2 and 4.3. However, for the G2-PANS simulations, size of

the recirculation zone and thickness of the shear layer is very well anticipated which

are accompanied by a good prediction of stress components. Thus, the close agree-

ment of G2-PANS (0.6M cells) results with experiment represent an improvement

over LES (9.4M cells) simulation.

The variation of skin-friction coefficient over a region that encompasses pre and

post-reattachment is shown in Fig. 4.4 for the G2-PANS (fk = 0.2) and LES calcu-
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Figure 4.1: Streamwise velocity (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d)
x/c = 1.1 (e) x/c = 1.2 (f) x/c = 1.3
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Figure 4.2: Streamwise stress (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d)
x/c = 1.1 (e) x/c = 1.2 (f) x/c = 1.3
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Figure 4.3: Shear stress (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d) x/c = 1.1 (e)
x/c = 1.2 (f) x/c = 1.3

lations. As seen in this plot, G2-PANS prediction of Cf is closer to the experimental

values than the LES simulation. Prior to separation, friction coefficient increases as

a result of flow acceleration in that region. The LES simulation over-predicts the

friction coefficient before separation and under-predicts that in most part of the sep-

aration region. Specially, LES simulation is not able to estimate the local minimum

of Cf plot in the core of separation bubble. Although G2-PANS simulation is able to

estimate the friction coefficient reasonably well before the hump leading edge, once

separation occurs, dramatic improvement for the G2-PANS Cf values is achieved.

The locations where the value of Cf goes to zero corresponds to the separation point

and reattachment location for each computation. Fig. 4.4 further illustrates that the

LES simulation predicts early reattachment, while the G2-PANS model reattachment

is very close to experiment. The results presented in Figs. 4.1-4.4 indicate that an

accurate PANS solution can be obtained even with a grid resolution which is around
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15 times lower than the corresponding LES simulation. It is also important to prove

that with increasing grid resolution, we are able to reproduce/improve the simula-

tion results. Therefore, a mesh-independence study was conducted to identify such

a plateau in terms of the separation and reattachment point for this configuration.

Figure 4.5 shows the result of this study at four different grid resolutions in the

range of 0.3-1.5 million grid nodes for G2-PANS simulations with fk=0.2. Change

of grid resolution is particularly applied in the normal and spanwise directions as

indicated in table 2.4. The experimental reattachment and separation points are at

x/c = 1.11 ± 0.003 and x/c = 0.665, respectively. It is observed from this figure

that the separation point is estimated accurately at all the grid resolutions, and the

reattachment point prediction improves by increasing the grid resolution from 0.3 to

0.4 million nodes. No substantial improvement for the two parameters is seen for

higher grid resolution than 0.4 million. It can be further confirmed from this plot

that grid resolution of 0.6 million grid nodes is adequate for the G2-PANS simulation

with the specified fk.
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4.2.2 fk study

Mean flow statistics at selected streamwise locations for different cut-off values

are depicted in Figs. 4.6-4.8. All the calculations are performed on the grid with 0.6

million cells. The mean velocity profile shown in Fig. 4.6 clearly reveals that a better

estimation of the flow behavior is obtained by lowering the cut-off parameter. This is

particularly visible in regions close to reattachment and post-reattachment. Delayed

reattachment is seen for the G2-PANS simulations with fk = 0.25, 0.3. The delayed

reattachment can be related to the under-prediction of the second order statistics

as seen in Figs. 4.7 and 4.8. As shown in these figures, the peak values of stress

components are well captured by fk = 0.2 simulation in most of the streamwise

locations. However, still the results for all the fk values are in good agreement with

experiment specially for fk = 0.2.
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Figure 4.6: Streamwise velocity (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d)
x/c = 1.1 (e) x/c = 1.2 (f) x/c = 1.3
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Figure 4.7: Streamwise stress (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d)
x/c = 1.1 (e) x/c = 1.2 (f) x/c = 1.3
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Figure 4.8: Shear stress (a) x/c = 0.7 (b) x/c = 0.8 (c) x/c = 0.9 (d) x/c = 1.1 (e)
x/c = 1.2 (f) x/c = 1.3

4.2.3 Flow structure

Instantaneous snapshots of the hump flow is given in Figs. 4.9 and 4.10 for the

iso-surfaces of the second invariant of the velocity gradient tensor, the Q criterion

and the vorticity contours. The iso-surfaces of Q are coloured with contours of

the streamwise velocity. These figures reveal the existence of flow structures with

wide range of scales in the separated shear-layer and at the hump leading edge. As

discussed in previous sections, the level of kinetic energy and turbulent stresses of

the flow at the leading edge is critical in predicting the right behavior of the flow

after the separation. Better estimation of the mean flow statistics by lowering the

cut-off value can be explained by looking at Fig. 4.10. This figure illustrates that

more scales of the flow motion at the hump leading edge are resolved by reducing fk

which consequently results in superior estimation of the separation bubble size.
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Figure 4.9: Vorticity contours (a) RANS (b) fk = 0.3 (c) fk = 0.25 (d) fk = 0.2

(a) (b)

(c) (d)

Figure 4.10: Q iso-surfaces (a) RANS (b) fk = 0.3 (c) fk = 0.25 (d) fk = 0.2
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5. CONCLUSIONS

The overarching purpose of this work is to advance the scale-resolving PANS

approach to a frontline computational fluid dynamics (CFD) tool that can meet

the accuracy demand of complex engineering flows and afford the computational

expenses. This dissertation addresses the fidelity of model with fixed and variable

scale resolution for simulating smooth surface separation, shear flow and combination

of both at different Reynolds numbers. The main conclusions of each of the three

studies included in this document are summarized in this section.

i) Simulations of flow over periodic hill are performed using G1-PANS imple-

mented in OpenFoam for a fixed value of fk. The results for the flow Reynolds

number of 10590 are compared against an experimental study and LES. Overall,

very good agreement of the PANS simulations with literature data is obtained for

the mean flow statistics. It was shown that at this Reynolds number, the results

for the G1-PANS simulation with fk=0.15 is closely following LES data and notably

provide a better estimation of the separation bubble on a much coarser grid. Con-

structing the invariant map for the second and third anisotropy invariants showed

that all states lie within Lumley’s realizability constraints. The flow near the lower

wall is found to traverse to the two-component state along axisymmetric contrac-

tion for the separated and early reattachment region which is consistent with LES

findings.

Additionally, internal consistency criteria is set as a check for all the PANS cal-

culations. For this purpose, the ratio of modeled to total eddy viscosity within the

simulation is calculated and is investigated to recover the input value of f 2
k . The

consistency of the recovered filter parameter with the input value for all the PANS
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calculations presented in this study is seen at all the streamwise locations.

For higher Reynolds number of 37000, two studies are performed to investigate

the effect of reducing cut-off ratio, fk and grid resolution on the accuracy of the

PANS results. Results from PITM method and an experimental study are also

included for the sake of comparison. For the finest grid investigated in this work,

reducing fk value results in improved agreement with experimental data regarding

the size of separation bubble and flow statistics. For the two grid resolutions studied

here, PANS method did not show remarkable sensitivity to grid resolution. However,

PITM method failed to predict the size of separation bubble and mean quantities

accurately for the coarse grid.

Observation of flow structure for the PANS simulations divulge eddies with wide

range of scales which demonstrates the three dimensionality nature and unsteadiness

of the flow field. None of these phenomena is resolved by the RANS calculation.

The results presented in this study further illustrates that PANS method can be

useful in terms of accuracy and computational cost for simulating smooth curvature

separation.

ii) Two transport models proposed for partially-resolved flow simulations known

as zero transport model (ZTM) and the maximum transport model (MTM) were

examined for turbulent boundary layer. It is shown that the ZTM model is more

consistent with log-layer behavior, and it estimates the second order statistics better

than the MTM model. Besides, more scales of flow motion is resolved by ZTM in

near wall region.

In addition, it was concluded that the G1-PANS model is only able to recover

the boundary layer physics if adequate grid resolution is provided. Since higher

Reynolds number flow calculations demand extremely large computational domain

even for an intermediate scale resolution, employment of variable resolution in near
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wall region is investigated in this work. In order to accurately simulate variable

resolution calculations, the energy transfer from the unresolved to resolved scales in

case of decreasing resolution and vice versa in case of increasing resolution must be

accounted for. Girimaji and Wallin [18] adopted commutation error terms in the

PANS closure to appropriately model temporal variation in resolution. In this work,

similar approach is taken to identify and develop the commutation terms for both

temporal and spatial variations in fk. This modeling effort resulted in emergence of

the second generation of the PANS model (G2-PANS).

Multiple simulations of turbulent channel flow are performed in the range of Reτ

= 150-8000 using the G1-PANS and G2-PANS models. The near-wall resolution for

G2-PANS calculations is varied from fk = 1 (at the wall) to fk = 0.2 or 0.3 as required

near the center-line. The results showed that the log-layer is accurately captured at

all Reynolds numbers for the G2-PANS calculations. It must be pointed out that

the corresponding simulations with G1-PANS model on the same grids exhibited log-

layer mismatch at high Reynolds number. Besides, the individual stress components

obtained from G2-PANS simulations are close to DNS data specially in the region

outside the RANS subdomain.

Finally, the effect of resolution variation location is studied for G2-PANS calcu-

lations. It is shown that the mean flow statistics and resolved scales in near wall

region is dependent on the location of resolution variation. More accurate results are

obtained if the location of resolution change is closer to the wall providing the right

amount of grid resolution. For high Reynolds number calculations of 4200 and 8000,

this effect becomes visible due to the computational limitations of near wall region

where the fk variation is applied farther from the wall compared to Reτ=950 and

2000.

iii) G2-PANS model is validated for flow separation over wall-mounted hump.
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This flow geometry is a challenge test case as accurate simulation of separation

process is strongly dependent on precise development of turbulent boundary layer

upstream of the hump. As shown in Sec. 3, computational efforts to simulate

turbulent boundary layer can be substantially relaxed by applying G2-PANS model

which provides proper modeling of unresolved-to-resolved energy transfer. Therefore

for the hump simulation, the near wall region is modelled and variable resolution is

applied in the wall-normal direction.

The G2-PANS results are compared against RANS, LES (9.4 M grid nodes) and

experiments. The results indicate that the separation and reattachment locations for

several fk calculations and computational grid nodes in the range of 0.3M to 1.5M are

closely approximated by the PANS simulation. The flow structures illustrated that

more scales of the flow motion at the hump leading edge are resolved by reducing fk

which consequently results in superior estimation of the separation bubble size.

While RANS performs very poorly, even the coarsest PANS simulation agrees

well with data. The variation of skin-friction coefficient and mean flow statistics

for the G2-PANS calculations reveals an improvement over LES. In this study, the

ability of G2-PANS to generate LES-quality predictions at a much reduced cost is

exhibited.

5.1 Future work

The first and second version of the PANS model is tested for the smooth and

sharp-edge separation, secondary flow and complex separated flows. Although these

validation studies demonstrated potential advantages of the PANS model, the model

needs to be examined for a broad range of aviation flows including mixing layers in

all speed regimes, curved flows and flows with strong secondary motion.

Besides, In the first two generations of PANS simulations, a precursor RANS
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simulation is performed to estimate k and ε, following which fk and fε fields are

specified. This involves user intervention which is not very desirable. For automated

specification of fk and fε fields, further investigation is required.

In addition, the PANS methodology needs to be extended for the compressible

flow regime, and re-derived to account for compressibility corrections. Besides, most

of the validation studies are in the incompressible flow limit and the model should

be examined for compressible test cases.
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