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ABSTRACT 

This research investigated impedimetric lab-on-a-chip biosensors for selective 

detection of foodborne pathogen, Listeria spp., using aptamers. Listeria was chosen as a 

model target due to its impact on the agricultural and food industries. The overall 

research goal of this project is to bridge the gap to address the need for real-time, highly 

sensitive and reliable biosensing platforms to meet the demands of on-site analysis of 

food products. The research objective was to develop a miniaturized aptamer biosensor 

that was designed and fabricated to carry out the detection of the bacteria in a simple and 

practical way. Miniaturization of the sensor enhanced the sensitivity and response time 

and allowed integration of various functionalities as a lab-on-a-chip platform. The 

research methods utilized the bottom-up approach of nanotechnology and 

dielectrophoresis techniques to improve the performance of miniaturized sensor. Pt-

IMEs were functionalized with internalin A aptamers for selective binding of internalins 

in the cell membrane of the target bacteria, Listeria spp., via metal-thiol self-assembly.  

The aptamer biosensor was validated by taking measurements to detect foodborne 

pathogen, Listeria monocytogenes, in an off-the-shelf food product, i.e. vegetable broth 

at bacteria concentrations ranging from 10 to 107 CFU/mL. The sensitivity value was 

calculated to be 186.51 Ω/log(CFU/mL)] with the detection limit of 4.82 ± 0.01 

CFU/mL within 12 min, which is one of the lowest detection limits reported to date. 

The combination of biosensor miniaturization, aptamer functionalization of 

electrodes, electrochemical impedance spectroscopy and dielectrophoresis techniques for 

selective detection of Listeria spp. bacteria enhanced response time, limit of detection, 
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range of bacteria concentration, sensitivity and selectivity over other published 

biosensors. The developed aptasensor could be easily employed for the detection of 

other foodborne pathogenic bacteria to ensure food safety and public health. 
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1 CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Rationale and Significance 

1.1.1 Need for pathogenic detection using biosensor in food safety  

The Centers for Disease Control and Prevention (CDC) has estimated that up to 

48 million illnesses, 128,000 hospitalizations, and 3,000 deaths each year in the United 

States are caused by foodborne pathogens (CDC, 2011b, 2013a). Regardless of strict 

controls and regulations to prevent foodborne pathogens in our food supply network, 

there is an increase in foodborne infections incidence that continues to be an important 

public health problem in the United States (CDC, 2013b). Detection methods that are 

fast, sensitive, and require little expertise or training are especially desirable for “point of 

care” (i.e., non-laboratory) settings (Duncan, 2011). Lab-on-a-chip based biosensors 

serve as portable diagnostic tools that are being integrated with various bioassay 

operations that allow the devices to rapidly sense pathogenic bacteria for field 

applications such as environmental monitoring (Dutse & Yusof, 2011).  The traditional 

methods including total viable counts (TVC) or aerobic plate counts (APC), enzyme-

linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR), real-time 

PCR (rtPCR) in the food industry that are used to detect foodborne pathogens are 

laborious, time consuming and expensive (Alocilja & Radke, 2003). To date, few rapid, 

sensitive, and portable biosensors have been demonstrated in field conditions for food 

safety applications. Thus, real-time, highly sensitive and reliable biosensing methods are 
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needed to detect pathogens in food products to ensure public health and promote food 

safety.  

1.1.2 Significance of the designed lab-on-a-chip aptamer based biosensor  

This research project contributed to the area of lab-on- chip biosensing 

applications through the study of aptamer functionalized electrodes and integration of 

dielectrophoresis techniques for real-time sensing of foodborne pathogenic bacteria. 

Viable and non-viable bacteria were distinguished using DEP assisted aptamer based 

biosesnor and it can be further used by the food industry to determine whether a serious 

threat is purposed by live or dead bacteria after a sterilization process and to validate 

other intervention processes. For instance, dead Listeria monocytogenes does not cause 

harm or fatal threats so it is vital to detect live bacteria. While many research groups are 

working on aptamer based biosensors or aptasensors to selectively detect the targeted 

pathogens and other are using dielectrophoresis techniques to attract and capture the 

bacteria to the working electrodes, this project represented the first attempt to combine 

these two methods: functionalized electrodes with aptamers and combined 

electrochemical impedance spectroscopy and dielectrophoresis techniques, in a 

biosensor for selective capture of pathogens to ultimately improve biosensor’s response 

time, sensitivity and detection limits.  

1.2 Research Overview and Objectives 

The research goal of this project was to develop a miniaturized and portable 

aptamer based biosensor to detect foodborne pathogen, Listeria spp., in food products. 

The technical merit of this study was in the design of a miniaturized aptamer-based 
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biosensor to achieve the following functions: i) ability to capture bacteria in suspension 

onto an interdigitated microelectrode array electrodes functionalized with optimum 

concentration of Listeria-aptamers, ii) enhanced capture of target bacteria using 

dielectrophoresis techniques, iv) ability to distinguish between viable and non-viable 

bacteria, v) ability to detect Listeria in food samples (vegetable broth) and in the 

presence of other interferents. 

Hypothesis: Aptamer based miniaturized biosensor would feature enhanced sensitivity 

and response time to capture and detect Listeria spp. in food products. 

This miniaturized aptasensor platform is expected to significantly improve the 

field of pathogenic detection due to the limitation of conventional technologies. The 

research objectives would bridge this gap by addressing a need for on-site analysis to 

meet the demands of current food processors and regulatory agencies. The research plan 

was to accomplish the following objectives:  

(1) Evaluate the performance matrix of multiple interdigitated biosensor using 

electrode surface area and sensitivity analysis 

(2) Functionalize platinum electrode with Listeria monocytogenes aptamers for 

selective binding of Internalin A in the cell membrane of the target bacteria, L. 

innocua and L. monocytogenes. 

(3) Determine the miniaturized aptamer biosensor response to bacteria detection, 

Listeria innocua, based on electrochemical impedance spectroscopy. 

(4)  Evaluate the aptamer biosensor using dielectrophoresis techniques to detect 

foodborne bacteria, Listeria innocua. 
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(5) Determine the aptamer biosensor response to viable and non-viable Listeria 

innocua using dielectrophoresis and electrochemical impedance spectroscopy 

techniques.  

(6) Evaluate the aptamer biosensor selectivity for Listeria innocua using 

Staphylococcus aureus as an interferent using dielectrophoresis and 

electrochemical impedance spectroscopy techniques.  

(7) Validate aptasensor for analysis of foodborne pathogen, Listeria monocytogenes, 

in off-the-shelf food product, i.e. vegetable broth.  

The thesis is organized to address the above objectives as follows: Chapter II 

addresses objective (1), Chapter III addresses objectives (2) & (3), Chapter IV addresses 

objectives (4) to (7), Chapter V concludes the final results, and Chapter VI provides 

future recommendations.  The milestones of this project are summarized in the time-line 

schematic in Appendix A.  

1.3 Background and Literature Review 

Despite strict regulations to control the presence of foodborne pathogens in our 

food supply, there is an increasing incidence of illnesses and deaths from contaminated 

foods resulting in estimated cost of $14.6 - $16.3 billion per year (Anekwe & Hoffmann, 

2013). Foodborne bacteria such as Listeria monocytogenes can have profound negative 

effects on humans including fatal infectious diseases. Listeria monocytogenes, for 

example, is one of the most common foodborne pathogens that cause infections globally, 

and it is the third leading cause of death from food poisoning (Cartwright et al., 2013). A 

person with Listeriosis usually has fever and muscle aches, sometimes preceded by 
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diarrhea or other gastrointestinal symptoms, but it can also lead to more serious clinical 

symptoms such as sepsis in the immune-comprised patients, stillbirth and miscarriages 

in pregnant women, meningoencephalitis in infants and adults, and febrile gastroenteritis 

(Schlech & Acheson, 2000).  Listeria monocytogenes is identified as a common 

foodborne pathogens found in milk and dairy products, various meats and meat products, 

seafood and fish products, and more recently in fresh produce that cause approximately 

1,600 illnesses, and 260 deaths each year in the United States, according to the Centers 

for Disease Control and Prevention (CDC, 2011b, 2013a). The most recent outbreaks of 

Listeriosis were associated with Blue Bell ice cream products in February 2015 when the 

pathogenic bacteria were isolated in chocolate chip country cookie sandwiches and great 

divide bars (CDC, 2015a). In September 2015, multistate outbreak of Listeriosis was 

linked to soft cheeses distributed by Karoun Dairies, Inc. (CDC, 2015c). In 2014, 

Listeriosis outbreaks were linked with dairy products from Roos Foods, cheese from 

Oasis Brands, Inc., prepackaged caramel apples from Bidart Bros., sprouts from 

Wholesome Soy Products, Inc., (CDC, 2014a, 2014b, 2015b, 2015d). The largest 

Listeriosis outbreak in U.S. history occurred in 2011 associated with cantaloupe from 

Jensen Farms. Centers for disease control and prevention (CDC) reported 147 illnesses, 

33 deaths, and 1 miscarriage occurred among residents of 28 states (CDC, 2011a). Thus, 

the ability to determine whether foods are contaminated with foodborne pathogens 

remains an important research goal. 
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1.3.1 Conventional methods for detection of bacterial pathogens 

L. monocytogenes is a Gram-positive, non-spore-forming, facultative anaerobic 

rod that can adapt to and grow in a wide range of environmental conditions, including 

refrigeration temperatures (2-4 ºC) and acidic and high salt environments (Gandhi & 

Chikindas, 2007). Currently, the detection and identification of foodborne pathogens in 

food industry is determined by conventional techniques such as aerobic plate counts 

(APC) or total viable count (TVC), enzyme-linked immunosorbent assay (ELISA), and 

polymerase chain reaction (PCR). APC or TVC are the oldest bacterial detection 

techniques that use selective media in order to detect a particular bacteria species. The 

selected media can contain inhibitors to stop or delay the growth of non-targeted strains 

and optical methods, mainly ocular inspection, are used to count growing colonies of 

specific bacteria (Lazcka, Del Campo, & Munoz, 2007). TVC or APC methods are 

accurate but expensive and time consuming requiring 5-7 days for complete analysis, 

requiring a pre-enrichment step (Yoon & Kim, 2012). For example, standard method NF 

EN ISO 11290-1 for the detection of L. monocytogenes relies on the ability of bacteria to 

multiply to visible colonies that can take up to 7 days to yield results (Leonard et al., 

2003). An advantage of APC or TVC is that it detect viable bacteria. The disadvantage 

of APC or TVC methods is that viable bacteria can enter in dormancy state where they 

become non-culturable (viable-but non-culturable (VBNC)), therefore leading to 

underestimation of bacterial count or failure to isolate pathogen from a contaminated 

sample (Velusamy, Arshak, Korostynska, Oliwa, & Adley, 2010).  Some faster methods 

to detect L. monocytogenes include ALOA® by AES laboratorie that can reduce the 
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detection time to 3 days using a chromogenic medium in conjunction with a Listeria 

monodisk (Artault, Blind, Delaval, Dureuil, & Gaillard, 2001).  Another method 

developed by Vermicon Identification Technology (VIT®) consist of a commercial test 

system based on fluorescently labeled gene probes that took 27 hours to complete the 

analysis (Stephan, Schumacher, & Zychowska, 2003).  

ELISA typically uses a sandwich structure, which involves the immobilization of 

the antigen-specific antibody on the substrate and then antigen is added to form an 

antigen antibody complex. The complex is then exposed to the second antibody, which 

binds to the antibody portion of the complex creating a sandwich structure. The signal is 

detected based on an enzyme attached to the second antibody, which converts to a 

measurable color once second antibody is attached to the antibody antigen complex 

(Lazcka et al., 2007). PCR is a nucleic acid amplification technology based on isolation, 

amplification and quantification of a short DNA sequence including the targeted 

bacteria’s genetic material (Lazcka et al., 2007). ELISA can detect the pathogens faster 

but it has low affinity and poor stability as compared to colony counting and PCR, 

because it requires multiple steps of reagent addition and rinsing (Yoon & Kim, 2012). 

The ELISA system including Listeria-tek and a direct immunofluorescence kit (DIR) 

was used to detect Listeria using milk, meat, and cheese samples with total assay time of 

48-72 hours (Nayak, Kotian, Marathe, & Chakravortty, 2009). However, ELISA is not 

reliable in distinguishing between viable and non-viable bacteria cells (Wang, He, & Shi, 

2007). Advantages of PCR techniques include accuracy (10-20 hours analysis); 

however, sensitivity of the polymerase enzyme to environmental contaminants, 
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generations of false positives through the detection of naked nucleic acids, and 

difficulties in quantification are limiting factors for the use of PCR for the direct 

detection of microbial contamination (Leonard et al., 2003). Due to the small DNA 

fragment needed for detection, PCR results may be based on DNA from non-viable cells 

(Wang et al., 2007). Therefore, PCR cannot distinguish between viable and non-viable 

cells.  PCR based detection of Listeria spp. in food samples are reported in studies done 

by Shearer, Strapp, and Joerger (2001), Hoffman, Gall, Norton, and Wiedmann (2003), 

and Murphy, McLauchlin, Ohai, and Grant (2007). Real-time PCR (rtPCR) is faster than 

PCR, but from industrial point of view it is not cost effective and requires trained 

technicians for analysis. These existing detection methods are performed in a 

microbiology laboratory and are time-consuming; therefore, not suitable for on-site 

analysis to meet the demands of current food processors and regulatory agencies 

(Alocilja & Radke, 2003). Hence, real-time, highly sensitive, reliable, and accurate 

portable technologies to detect pathogens in food products are in high demand.  

1.3.2 Biosensors 

In recent years, intensive research studies of rapid-screening methods for food 

safety have been focused on development of biosensor platforms for reliable and faster 

results than conventional techniques. Biosensor is an integrated bioreceptor-transducer 

device which is able to detect a chemical or biological target using a biological 

recognition element and translate the information using a measurable signal, i.e., 

electrical, optical, mass- or temperature-based (Thévenot, Toth, Durst, & Wilson, 2001). 

A bioreceptors or the biological recognition elements are the molecular species that 
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utilizes a biochemical mechanism for recognition, which is a key to specificity for 

biosensor technologies. The biorecognition elements can include antibody/antigen, 

enzymes, nucleic acids/DNA, cellular structures/cells, biomimetic and bacterio-phage 

(phage) (Velusamy et al., 2010). The biochemical mechanism used by the biorecognition 

element to recognize the target analyte generates biological interactions that are 

converted into measurable electrical signals by the transducer for an electrochemical 

biosensor. The electrical signal is amplified by the signal processor that can be easily 

interpreted; the acquired signal is based on the waveform input signal, which is 

computed by any shift changes in the waveform input signal. The wide variety of 

bioreceptors and transducers that can be used to detect analyte provides flexibility for 

biosensors that can be implemented in wide variety of clinical diagnostics, food analysis, 

and environmental monitoring applications (Velusamy et al., 2010).  

The biosensor research and development area started with the defining paper by 

Clark reporting his invention of the oxygen electrodes in 1955. The first generation 

glucose oxidase (GOx) biosensor was introduction in 1962 by Clark and Lyons which 

led to quick explosion in biosensor research field (Grieshaber, MacKenzie, Voeroes, & 

Reimhult, 2008). The oxygen levels were measured in a solution by first immobilizing a 

thin layer of glucose oxidase enzyme over an oxygen electrode. The device monitored 

the oxygen change consumed by the enzyme-catalyzed reaction at oxygen electrode and 

compared the differential current by using a counter electrode (Wang, 2001).  Since the 

development of the first glucose biosensor many other sensing technologies and 

biosensing devices has been developed because biosensors offer many advantages 
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including faster detection time, target specificity, real-time data collection, and 

simplified sample preparations (Arora, Sindhu, Dilbaghi, & Chaudhury, 2011; 

Grieshaber et al., 2008). The biosensors used for the detection of foodborne pathogens 

can be classified into three categories including optical, piezoelectric, and 

electrochemical.  

1.3.2.1 Optical-based biosensors 

Optical biosensor utilized optical properties changes as the sensing transduction 

signal to detect the molecular interactions between the biological recognition element 

and the target analyte. Two types of detection methods can be realized in optical 

biosensing 1) fluorescence-based detection and 2) label-free detection. Fluorescence-

based detection is measured by the intensity of labeled target analyte or biorecognition 

element tagged with dyes or fluorescent proteins. The intensity indicates the presence of 

the target molecules and the strength of interaction between the recognition element and 

the target molecule (Velusamy et al., 2010). Green fluorescent protein (GFP) was shown 

to detect Listeria monocytogenes by inserting the GFP inside the bacteria cells 

(Fortineau et al., 2000). This method requires laborious labeling process that can 

interfere with the function of a biomolecule and the number of fluorophores cannot be 

controlled making quantitative analysis challenging (Fan et al., 2008).   

The direct detection of the targeted bacteria or analyte due to change in electrical 

properties of the electrode surface when the targeted bacteria or analyte interact with the 

functionalized surface of biosensor is consider to be label-free. Labels including 

fluorophores, magnetic beads, and active enzymes are not required for electrochemical 
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measurements (Daniels & Pourmand, 2007). One label-free optical detection technique 

is based on the measurement of refractive index (RI) induced by biomolecular 

interactions between the targeted bacteria and bioreceptor, which is proportional to the 

sample concentration or surface density instead of total sample mass (Fan et al., 2008; 

Leonard et al., 2003). Surface plasmon resonance (SPR) is a widely used label-free 

optical technique, which depends on the dielectric properties of the medium adjacent to 

the metal surface affected by the binding of targeted molecules to the surface, which 

changes the incident angle at a given wavelength (Tokarskyy & Marshall, 2008). 

BIAcoreAB developed SPR commercial system to detect Escherichia coli O157:H7 

bacteria using antibodies with the detection limit of 5 x 107 CFU/mL (Tokarskyy & 

Marshall, 2008). L. monocytogenes was also detected using BIAcore 3000 biosensor 

using polyclonal antibody with detection limit of 1 x 105 CFU/mL in 30 minutes. L. 

monocytogenes and antibody were incubated followed by separation of free unbound 

antibody with a stepwise centrifugation process. The response was inversely 

proportional to the cell concentration when free antibody was passed over an anti-Fab 

ligand-coated sensor chip surface. The signal was detected by measuring the proportion 

of unbound antibody, thus inversely estimating the amount of analyte present and an 

indirect estimation of cell concentration was determined (Leonard, Hearty, Quinn, & 

O’Kennedy, 2004).  The advantages of optical biosensors include that they are not 

affected by electromagnetic interference, capable of remote sensing, and can provide 

multiplexed detection within a single device (Fan et al., 2008). The disadvantages of 

using SPR-based biosensors is that they are sensitive to ambient temperature drift and to 



 

12 

 

maximize the performance of the biosensor this parameter should be controlled, 

expensive to perform, and the equipment currently available is large in size (Lazcka et 

al., 2007).  

1.3.2.2 Piezoelectric biosensors 

Piezoelectric biosensors are another group of sensors used in pathogenic 

microorganism detection that are mass sensitive detectors generating and transmitting 

acoustic waves that operate on the basis of an oscillating crystal that resonates at a 

fundamental frequency (Arora et al., 2011). The crystal oscillations at its natural 

resonant frequency are caused by two excitation electrodes that apply electrical field to a 

sandwiched crystal between the electrodes.   The crystals are coated with the 

biorecognition elements and when exposed to the targeted molecule a change in resonant 

frequency of the crystal occurs, which correlates to mass changes at the crystal surface 

(Leonard et al., 2003).  The advantages of piezoelectric biosensors include that they are 

label-free, sensitive, low-cost, easy to use, and on-line analysis for antigen-antibody 

interactions (Leonard et al., 2003).  

Quartz crystal microbalance (QCM) is the most common type of piezoelectric 

biosensors. Generally, QCM consist of a thin disk of AT (single rotation cut at 

34,0  == θϕ ) cut quartz, which is cut at an angle of +35° 15’ along the z-axis 

(Leonard et al., 2003). Su and Li (2004) demonstrated QCM biosensor for E. coli 

O157:H7 detection based on immobilized antibodies on an AT-cut quartz crystal Au 

electrode surface. Antibodies were attached onto the surface via either protein-A or NHS 

ester derived from 6-mercaptohexadecanoic acid (MHDA) and frequency shift detected 
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from the biosensor resonant frequency was correlated to the bacteria concentration. The 

QCM biosensor detected E. coli O157:H7 in the range of 103 – 108 CFU/mL within 30-

50 minutes. In another study by Babacan, Pivarnik, Letcher, and Rand (2002), protein A 

antibody was immobilized on the surface of QCM biosensor for the detection of 

Salmonella Typhimurium with the low detection limit of 106 CFU/mL in 40 minutes. 

The disadvantages of piezoelectric biosensors are associated with long incubation times 

between bacteria and antibodies, crystal surface regeneration problems due to number of 

washing and drying steps (Leonard et al., 2003).  

1.3.2.3 Electrochemical biosensors 

Electrochemical biosensors are the most studied for a broad spectrum of 

applications due to the inherent advantages of their robustness, easy miniaturization, low 

detection limits, small analyte volumes, and simplicity to use, as exemplified by the 

Clark-type glucose biosensor discussed above (Grieshaber et al., 2008). The method 

designed for direct monitoring of bio-recognition element and antigen interactions 

without the need for labeling has been attractive as an alternative to the traditional 

methods. The label-free methods provide faster detection methods when combined with 

the bio-recognition elements such as monoclonal antibodies, aptamers, or enzymes 

(Prodromidis, 2010; Tokarskyy & Marshall, 2008). Electrochemical biosensors are able 

to detect the targeted bacteria by sensing the changes in the electrical properties caused 

by biochemical reactions (Grieshaber et al., 2008). Based on the electrical parameters 

such as current, potential, conductance, and impedance; electrochemical biosensors can 
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be classified into amperometric, potentiometric, conductometric, and impedimetric, 

respectively.  

Amperometric biosensor detects the targeted analyte by measuring the current 

generated by reduction and oxidation of an electroactive species due to molecular 

interaction of biorecognition element and analyte at the working electrode. The applied 

potential is maintained between working and reference electrodes. The potential is the 

driving force for the oxidation and reduction reaction of an electroactive species 

(Velusamy et al., 2010). There are numerous amperometric biosensors employed to 

detect foodborne pathogens including a L. monocytogenes study by Chemburu, Wilkins, 

and Abdel-Hamid (2005) that detected 50 CFU/mL in milk and chicken extract samples 

within 30 minutes. Amperometric biosensors offer the advantage that they are sensitive, 

small, robust, economical rapid and portable. However, these sensors can suffer from 

poor selectivity and require electroactive species oxidation or reductions for detection to 

occur which can be limiting depending of the analyte (Leonard et al., 2003). 

Potentiometric biosensor uses ion selective electrodes to detect the targeted 

bacteria by an enzyme-catalyzed reaction that generates or consumes a species. The 

potentiometric device consists of a perm-selective outer layer and a bioactive material 

such as enzyme that measures the electrical potential difference or electromotive force 

(EMF) between two electrodes at near zero current that provides logarithmic 

concentration dependent response (Leonard et al., 2003; Velusamy et al., 2010). The 

commonly used potentiometric devices include filed effect transistor (FET). The 

advantages of potentiometric biosensors are that they are portable, inexpensive, and 
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facilitate continuous monitoring in, in situ conditions (Arora et al., 2011). There are only 

few potentiometric devices that have been used to detect foodborne pathogens because 

of their limited flexibility to change the biorecognition element based on Debye 

screening length ( Dλ ). Debye screening is defined as a distance where moving charge 

carriers screen out of the external electric filed and electrical potential difference should 

take place within Dλ  normally less than 10 nm. If using biorecognition element such as 

antibodies in FET devices, the biomolecular interactions occur beyond 10 nm from the 

gate surface due to the height of antibody. Therefore, these interactions would be beyond 

the Debye screening length to measure any electrical potential differences (Lee, Kim, & 

Kim, 2009). E. coli O157:H7 has been reported to be detected by potentiometric device 

by Ercole, Del Gallo, Mosiello, Baccella, and Lepidi (2003) with detection limit of 10 

CFU/mL in 1.5 hours using blended lettuce, sliced carrots, and arugula in a stomacher to 

form liquid medium.  

Conductometric based biosensors detects analytes by measuring the electrical 

conductivity that corresponds to a change in the ionic species concentrations. The 

conductometric device consists of two metal electrodes separated by known distance and 

alternating current (AC) voltage is applied across the electrodes to monitor the change in 

conductance between two electrodes during interactions between biorecognition element 

and targeted bacteria (Velusamy et al., 2010). Muhammad-Tahir and Alocilja (2003) 

developed conductometric biosensor to detect E. coli spp. with the lower detection limit 

of 7.9 x 101 CFU/mL in 10 minutes.  Nutrient broth from Difco Laboratories (Detroit, 

MI) was used for E. coli enrichment and was serially diluted in 0.1% of peptone water to 
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obtain varying concentrations of the bacteria. The advantage of conductometric based 

biosensor is that no reference electrode is required; they are suitable for miniaturization 

and mass production using thin-film technology. The disadvantage of using this type of 

biosensor is that the sensitivity of the measurement is hindered by the parallel 

conductance of the sample solution (Thévenot et al., 2001). 

Finally impedimetric based biosensors measures the impedance change in a 

response to small amplitude sinusoidal excitation input when the molecular interactions 

take place at the surface of the working electrode. Unlike potentiometric and 

conductometric biosensors, there is no need for charge transfer between electrode and 

analyte/biorecognition agent such as an oxidation/reduction reaction or charged analyte 

to measure electrical properties at the electrode surface. Impedance is solely based on 

the attachment of analyte to the surface of the electrode and its effect on the electrical 

properties of the biosensor (Leonard et al., 2003). Therefore, providing direct 

measurements due to molecular interactions between the analyte and surface of the 

electrode by monitoring electrical properties. The development of impedimetric 

biosensors has been widely employed to detect foodborne pathogens in recent years 

(Yang & Bashir, 2008). Impedimetric electrochemical biosensors drew a lot of attention 

in past decade because these sensors are considered as promising candidates for on-site 

applications due to their ease of miniaturization, label-free capabilities, low cost, and the 

ability to integrate into multi-array or microprocessor-controlled diagnostic tools, and to 

control remotely (Prodromidis, 2010).  
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1.3.3 Electrochemical impedance based biosensors 

Impedance based biosensors uses electrochemical impedance spectroscopy 

technique (EIS) to detect the target analyte, such as foodborne pathogenic bacteria. EIS 

is an alternating current method that describes the response of the electrochemical cell 

by measuring current to a small amplitude sinusoidal voltage signal as a function of 

frequency (Prodromidis, 2010). The resulting current sine-wave shifts in time with 

respect to the input voltage sine wave which can be described as a ratio )(/)( tItV

defined as impedance ( Z ) in Ohms. The ratio can be written as:  
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where oV (Volts) and oI (Amperes) are the maximum voltage and current signals, f (Hz) 

is the frequency, t is time (seconds), φ  (degrees) is the phase shift between the voltage-

time and current-time functions, Y is the complex conductance or admittance (Siemens) 

(Y. Wang, Ye, Z.,Ying, Y., 2012). Impedance is a complex value that depends on 

multiple factors in an electrochemical cell such as electrode kinetics, redox reactions, 

diffusion phenomena and molecular interactions at the electrode surface. These factors 

can be described by the impedance modulus, )"()'(|| 22 ZZZ += , where 'Z is the real 

part and "Z is the imaginary part of the complex impedance modulus measured in Ohms 

(Lasseter, Cai, & Hamers, 2004). EIS is evaluated using either Nyquist or Bode plots. In 

Nyquist plot, the imaginary impedance component "Z is plotted against the real 

impedance component 'Z and in Bode plot, impedance modulus Z and the phase shift 
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φ are plotted against the logarithm of the excitation frequency (Y. Wang, Ye, Z.,Ying, 

Y., 2012). The broad frequency range from anywhere between 1 Hz to 1 MHz could be 

applied for EIS analysis and Nyquist and Bode plots are generated to understand the 

behavior of the biosensor over a range of frequencies. Bode plots produce total 

impedance modulus versus log frequency over a broad applied frequency range, which 

can be used to identify significant total impedance changes between the bare and target-

analyte on an analyte concentration dependence manner. Nyquist plots are further used 

to confirm significant impedance changes between the bare and target-analyte samples at 

different analyte concentrations by comparing the imaginary impedance component "Z

and the real impedance component 'Z  over an applied frequency range (Dastider, 

Barizuddin, Dweik, & Almasri, 2013). 

 Impedance biosensors have been designed for a number of biorecognition 

elements but the most common for detecting foodborne pathogens are antibodies. 

Impedimetric based biosensors that are directly immobilized by the antibodies on the 

surface of the biosensor electrodes to capture targeted bacteria are called impedimetric 

immunosensors. The attachment of the bacteria cells onto the antibodies is monitored by 

the change in electrical properties over a range of frequency due to insulating properties 

of the cell membrane (Y. Wang, Ye, Z.,Ying, Y., 2012). Direct immobilization of 

antibodies is called label-free detection to measure the impedance changes caused by 

antibody-antigen interactions, which provides faster detection time, low cost, simple 

detection protocols, and high specificity over the indirect methods. Indirect methods can 
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include pre-concentration steps of the bacteria cells onto the surface of the electrodes 

without the use of a biorecognition element.  

Other biorecognition elements such as aptamers, bacteriophages, and lectins have 

been also used to detect pathogenic bacteria in impedimetric biosensors. The sensitivity 

of impedimetric sensors compared to other sensors was considered to be lower, however; 

over the last decade it has been improved by using miniaturized interdigitated 

microelectrodes array (IMEs) to enhance the detection limits (sensitivity). Yang, Li, and 

Erf (2004a) developed an electrochemical impedance immunosensor by immobilizing 

anti-E. coli antibodies onto the surface of IMEs for the detection of E. coli O157:H7 

with the detection limit of 106 CFU/mL in the presence of ferrocyanide [Fe(CN)6]3-/4- 

redox solutions.  Impedance based biosensors offer rapid, portable, and inexpensive 

detection of foodborne pathogenic bacteria. The impedimetric biosensors have many 

advantages including that they are label-free simplifying assembly process and lowering 

the cost, rapid with detection time generally lower than 30 minutes and provides 

miniaturization realization helping to improve the sensitivity and minimize the testing 

sample volumes. Although impedimetric biosensor offer so many advantages yet there is 

no commercial product based on impedance biosensors that have launched successfully 

in the biosensing market for foodborne pathogens detection. The limitation in label-free 

biosensors is the poor affinity (i.e.; pathogen binding to capture probe) in complex 

solutions. Due to this limitation, biosensors have failed to compete with PCR and ELISA 

in applied pathogen detection within the food industry.  To date, no reliable, rapid, 

sensors have been demonstrated in field conditions for food safety applications that can 
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detect as few as 1 viable target cell in 25 g of food. Therefore, further efforts should be 

continued to develop commercial products based on impedance biosensors to detect 

foodborne pathogenic bacteria with improved stability, reduced volume, increased 

sensitivity and lower costs (Wang, Ye, & Ying, 2012).  

1.3.4 Interdigitated microelectrodes array in impedance measurements 

Miniaturized impedance biosensors based on lab-on chip systems utilize 

microfabrication techniques to fabricate microelectrode arrays (Dutse & Yusof, 2011). 

In biosensing, microelectrodes have been used for various sensing devices due to small 

ohmic potential drop, fast establishment of steady-state signals, faster response time, and 

increased signal-to-noise ratio (Cohen & Kunz, 2000; Kim et al., 2004; Zoski, 2006). 

Micro-fabrication techniques can be used to produce microelectrodes with the variation 

of sizes and/or shapes as compared to conventional methods that are limited to one size 

and/or shape. More specifically, interdigitated microelectrode arrays (IMEs) can be 

fabricated using lithography techniques allowing controlled dimensions of the 

microelectrodes to study electrochemical behavior. IMEs are defined as alternating 

microelectrodes connected to one another that are separated by known distance 

(Varshney & Li, 2007).  

There are several design parameters that could affect the sensitivity of the 

interdigitated microelectrodes array including width, height, gap, and material.  These 

parameters determine the electrode performance in an electrochemical cell and changing 

one parameter can have positive effect in one aspect and negative effect in another. For 

example, when increasing an electrode width can increase the surface area of the 



 

21 

 

electrode to allow more target binding, however; it can also increase the signal-to-noise 

ratio (Stulík, Amatore, Holub, Marecek, & Kutner, 2000). In principle, IMEs have three 

main advantages over conventional electrodes for biosensing: (1) an enhanced sensitivity 

over conventional macro electrodes due to sub-micron electrode width and spacing, 

therefore increasing the surface area; (2) fabrication by lithographic techniques allowing 

reproducible and low cost devices; and (3) direct biosensing using impedimetric methods 

instead of fluorescent, enzymatic or electrochemical labels  (4) enhanced portability 

(Laureyn et al., 2000). 

1.3.5 Aptamer based impedance biosensors 

Nucleic acid aptamers are artificial short single stranded oligonucleotides, either 

DNA or RNA, that are selected by combinatorial libraries which can bind to target 

molecule with high affinity. Aptamers are selected through in vitro process known as 

systematic evolution of ligands by exponential enrichment (SELEX) (Song, Wang, Li, 

Fan, & Zhao, 2008). SELEX is a chemical selection method that uses a randomized 

oligonucleotides library (1013 to 1015 fragments) mixed with the target bacteria or 

molecule to amplify and isolate the bound oligonucleotides sequence to the targeted 

molecule. This amplification and isolation process is performed by using polymerase 

chain reaction. The amplified sequences are repeated through multiple cycles, 6-20 

rounds, by mixing with the targeted molecule until high affinity and high specificity 

aptamer sequence is achieved (Stoltenburg, Reinemann, & Strehlitz, 2007). The affinity 

of aptamers for their targets is comparable to, and in some instances higher than, 

monoclonal antibodies that have been used for detecting the target analyte, such as 
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bacteria. As compare to antibodies aptamers offer many advantages: 1) aptamers are 

composed of nucleic acids that are chemically synthesized with high purity avoiding 

batch-to-batch variations; 2) during the synthesis process aptamers can be modified with 

different functional groups such as –HS, -NH2, and biotin that can immobilized onto the 

electrode surface based on user specific applications; 3) aptamers are highly stable and 

reusable after simple thermal melting of the DNA duplex allowing for biosensor 

regeneration (Y. Wang, Ye, Z.,Ying, Y., 2012).  

Nucleic acid aptamers based impedimetric biosensors contain immobilized 

nucleic acid that captures target analyte by matching its complementary base pair 

sequences and transform the biorecognition molecule into impedance signal. In recent 

years, aptamer based biosensor technology platform is creating interest because it 

promises equally reliable results in a shorter time than aforementioned traditional 

detection methods. Due to aptamers inherent advantages of simple production, easy 

storage, good reproducibility, target versatility, easy modification, and convenient 

regeneration, they are considered to be ideal biorecognition elements for biosensor 

applications (Kärkkäinen et al., 2011). Recent efforts have expanded the library of 

aptamers for common foodborne pathogens; therefore, aptamers are being used to 

construct biosensors called aptasensors. 

A number of aptasensors devices have been developed for monitoring various 

foodborne pathogens including Salmonella Typhimurium with detection of 600 CFU/mL 

in phosphate buffer saline solution within 10 minutes by Labib et al. (2012). Another 

study performed by Wu et al. (2012) detected Escherichia coli O157:H7 with a detection 
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range of 104 – 108 CFU/mL in 2 hours using fecal samples. In another study by Ohk, 

Koo, Sen, Yamamoto, and Bhunia (2010), L. monocytogenes was detected with a 

detection limit of 103 CFU/mL in pure solution and 102 CFU/25 g of food sample after 

18 hours. Luo et al. (2012) developed an aptasensor for the detection of E. coli O111 

with detection limit of 1.1 x 102 CFU/mL in phosphate buffer saline and 3.1 x 102 

CFU/mL in milk within 3.5 hours. However, to date, few, rapid, sensitive aptasensors for 

Listeria detection have been demonstrated in field conditions for monitoring food safety. 

1.3.6 Dielectrophoresis based impedance biosensors 

In addition to aptasensors, researchers have also used dielectrophoretic 

impedance measurement (DEPIM) technique with biosensors to improve the capture 

efficiency of foodborne pathogens. Dielectrophoresis, DEP, can overcome the detection 

limit due to limited physical sensitivities of the transducers and low immune-capture 

efficiency of the immobilized antibodies on the electrode surfaces (Suehiro, Ohtsubo, 

Hatano, & Hara, 2006; Yang, 2009). DEP has been used to manipulate biological cells 

for filtering, focusing, sorting, and trapping in desired position and orientation (Cheng, 

Chang, Hou, & Chang, 2007).  

Dielectrophoresis is a mechanism where at a given alternating excitation input, 

interdigitated microelectrodes generates electrostatic force-field that attracts the 

polarized bacteria close to the force-field (Suehiro et al., 2006; Yang, 2009). 

Dielectrophoresis is the electrokinetic motion of dielectrically polarized particles in non-

uniform electrical fields (Yang, 2009). Most biological cells or bacteria behave as 

dielectric particles in external fields, DEP can attract polarized particles to the high field, 
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in order to trap bacteria onto an interdigitated microelectrode chip (Suehiro, Hatano, 

Shutou, & Hara, 2005). The trapped bacteria onto the surface of the electrodes increase 

the impedance of the biosensor and consequently sensitivity. 

Interdigitated microelectrode arrays (IMEs) has been proven to be the most 

suitable for dielectrophoresis for its relative ease of micro-scale generation and 

structuring of an electric field. The advantage of integrated dielectrophoresis is that it 

provides speed, flexibility, controllability and ease of application to automation (Li & 

Bashir, 2002). The study conducted by Yang (2009) of DEP assisted techniques has 

shown two significant functions in the biochip platforms using IMEs to improve the 

detection (i) DEP can concentrate bacterial cells from the suspension to different 

locations on the chip surface, which make it very useful in manipulating bacterial cells in 

biosensors and biochips; (ii) DEP can make bacterial cells in close contact with the 

immobilized antibodies on the chip surface, which can effectively improve the immuno-

capture efficiency (Yang, 2009).  

DEP assisted bacteria detection has been used for various IMEs devices 

including the detection of E. coli (Cheng et al., 2007; Suehiro, Hamada, Noutomi, 

Shutou, & Hara, 2003; Suehiro et al., 2005; Suehiro, Noutomi, Shutou, & Hara, 2003; 

Suehiro et al., 2006), L. monocytogenes (Koo et al., 2009), and Salmonella (Yang, 

2009). The lowest detected bacteria concentration among these studies was 102 CFU/mL 

using optical methods to measure the bacteria capture efficiency suspended in DI water 

by applying DEP signal for 15 min.  
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DEP has also been employed for the separation of viable and non-viable cells, 

and it can be further used in the food industry to determine whether a serious threat is 

purposed by live or dead bacteria after a sterilization process and to validate other 

intervention processes. DEP can separate live and dead bacteria utilizing the difference 

of dielectric properties between live and dead bacteria cells, which are different due to 

increased cell porosity of dead bacteria (Li & Bashir, 2002). For instance, dead Listeria 

monocytogenes does not cause harm or fatal threats so it is vital to detect live bacteria. 

There are various studies that demonstrate the separation or detection of viable and non-

viable bacteria (Li & Bashir, 2002; Suehiro, Hamada, et al., 2003). These studies use 

optical method to detect the separation of viable and non-viable Escherichia coli cells 

with the lowest concentration of 105 CFU/mL suspended in DI water with applied DEP 

signal for 5 minutes 

The performance criteria of a biosensor include sensitivity, selectivity, range, 

limit of detection and response time. These performance parameters are not specific to 

biosensor type, but generalized to the detection of the target analyte and it is applicable 

to any analytical method. Sensitivity is described by the change in response that results 

from a unit change in concentration of an individual analyte. Selectivity is biosensor’s 

ability to distinguish different pathogens/analytes present in the solution (Thévenot et al., 

2001). Limit of detection refers to the range of the bacteria/analyte concentration that 

biosensor can detect. The lower detection limits can be determined as a signal/noise ratio 

of 3, where noise is defined as the standard deviation of the control test without 

bacteria/analyte (J. Wang, 2006). The response time of the biosensor is based on the time 
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taken to prepare a sample and its ability to obtain a detectable signal. Biosensor range 

could be determined based on the detectable linear response signal obtained over a range 

of bacteria/analyte concentration, i.e., biosensor should be able to discriminate between 

the response signal over a bacteria/analyte concentration range (J. Wang, 2006). In other 

words, the linear range of a concentration dependence is referred to as the biosensor 

dynamic range (Cunningham, 1998). 
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2 CHAPTER II  

BIOSENSOR FABRICATION AND DEVICE COMPATIBILITY 

2.1 Overview 

Biosensors based on lab-on-a-chip for bacteria detection have been emerging as a 

viable alternative to traditional techniques such as total viable counts (TVC),  enzyme-

linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR). The 

traditional methods are time consuming, expensive, and require specialized facilities and 

trained personnel. Impedance biosensors based on lab-on-a-chip system have been used 

for the detection of pathogenic bacteria using interdigitated microelectrodes array to 

achieve enhanced sensitivity and response time. In this study, an optimized design based 

on multiple interdigitated microelectrodes (IMEs) array was used for the detection of 

pathogenic bacteria. The IME based biosensor was fabricated using the Aggiefab facility 

at Texas A&M University (College Station, TX). 

The electrode performance of multiple interdigitated microelectrodes (IMEs) 

array based biosensor was characterized by using electrochemical techniques including 

cyclic voltammetry and direct current potential amperometry measurements of reversible 

redox species. IMEs with different geometric electrode gap were fabricated by 

microfabrication lithographic techniques. All electrode measurements were performed 

via a 3 electrode set-up with Ag/AgCl as reference electrode. The electroactive surface 

area (ESA) of designed 25, 50, 100 μm IMEs was calculated from cyclic 

voltammagrams using Randles-Sevick equations with values of 0.7181 ± 0.0196, 0.1436 

± 0.0018, and 0.0718 ± 0.0024 cm2, respectively. Cyclic voltammetry was carried out in 
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4mM Fe(CN)6/1M KNO3 solutions at a switching potential of  750 mV with 10 seconds 

quiet time at scan rates from 10, 20, 50, 75, and 100 mV∙s-1. The sensitivity was 

calculated from DCPA using H2O2 (0.58 M increments in phosphate buffered saline, 

PBS, pH 7.4 at room temperature) with the values of 21.39 ± 0.1335 and 5 ± 0.0298 μA 

mM-1 for 50 and 100 μm IMEs, respectively. A direct relationship was observed between 

surface area and sensitivity. Based on highest sensitivity results, 50 μm IME device was 

chosen to further functionalize with aptamers (Listeria monocytogenes-aptamers) via 

metal-thiol self-assembly for Listeria spp. detection. 

2.2 Introduction 

Listeria monocytogenes have caused major food pathogenic outbreaks globally 

and it is identified as third leading cause of death from food contamination (Cartwright 

et al., 2013). Current methods to detect foodborne pathogens are laborious and can take 

several days to produce results. These methods include total viable counts (TVC), 

enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR). 

Real-time PCR (rtPCR) is faster than PCR, but it is expensive and requires trained 

technicians for data analysis (Yoon & Kim, 2012). As a result, there is a demand for a 

real-time, highly sensitive, reliable, and accurate portable technologies to detect 

pathogens in food products.  

Electrochemical biosensors referred as amperometric, potentiometric, 

conductimetric, or impedimetric have been developed in recent years for rapid, sensitive, 

selective detection of foodborne pathogenic bacteria to ensure food safety and security 

(Wang et al., 2012). Impedance based electrochemical biosensors uses the change in 
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electrical properties of materials in response to a sinusoidal potential excitation signal 

with small amplitude measuring current (Prodromidis, 2010) . Impedimetric biosensors 

works based on the impedance change due to binding of target molecules to the capture 

probes including antibodies, DNA, proteins, and other biorecognition elements 

immobilized on the surface of the electrodes (Radke & Alocilja, 2005a; Varshney & Li, 

2009).  

Impedimetric biosensors based on lab-on chip systems utilize microfabrication 

techniques to fabricate interdigitated microelectrodes array (Dutse & Yusof, 2011). 

Interdigitated comb fingers consist of a series of parallel microband electrodes connected 

together in alternating sequence to form an array. Interdigitated microelectrodes array 

have been integrated with impedance biosensors in order to miniaturize the conventional 

electrodes and enhance the sensitivity (Varshney & Li, 2009). In biosensing, 

microelectrodes have been used for various sensing devices due to small ohmic (iR) 

drop, fast establishment of steady-state mass transfer, and small capacitive charging 

currents (Cohen & Kunz, 2000; Kim et al., 2004). Microfabrication techniques can be 

used to produce microelectrodes with the variation of sizes and/or shapes as compared to 

conventional methods that are limited to one size and/or shape. More specifically, 

interdigitated microelectrodes (IMEs) can be fabricated using lithography techniques 

allowing controlled dimensions of the microelectrodes to study electrochemical 

behavior. In principle, IMEs have three main advantages over conventional electrodes 

for biosensing: (1) an enhanced sensitivity over conventional macro electrodes due to 

sub micron electrode width and spacing, therefore increasing the surface area; (2) the 
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fabrication by lithographic techniques allowing reproducible and low cost devices; and 

(3) direct biosensing using impedimetric methods instead of fluorescent, enzymatic or 

electrochemical labels  (4) enhanced portability (Laureyn et al., 2000). 

Various IMEs designs have been implemented in biosensor’s design for detection 

of the targeted bacteria. The design parameters that affect the overall principle of the 

IMEs sensitivity and selectivity include electrode width, height, and length, spacing 

between electrodes, and electrode material. The use of the material depends on the 

intended application, ionic species involved, and inertness of the material to the 

environment, and fabrication ease and suitability. Several materials have been used for 

impedance detection of IMEs such as platinum (Pt), gold (Au), and titanium oxide 

(TiO2) (Gómez-Sjöberg, Morisette, & Bashir, 2005; Gómez, Bashir, & Bhunia, 2002; 

Radke & Alocilja, 2004; R. Wang, Ruan, Kanayeva, Lassiter, & Li, 2008). Platinum was 

used to design the electrodes in this study due to its inert properties, excellent sensitivity 

for ferrocyanide oxidation and reduction reactions, and most importantly the ease of 

fabrication onto the silicon dioxide substrate. A study shown by (Min & Baeumner, 

2004) demonstrated that there is no significant effect of number of electrodes on signal 

to noise (S/N) ratio as compared to the other parameters because signal value is 

proportional to the surface area of the entire IMEs array, whereas background noise is 

proportional to the area of the electrodes only (Varshney & Li, 2009). Therefore, 

increasing the number of electrodes will also increase the background noise leading to 

no change in the S/N ratio. Therefore, fixed active area of 0.81 cm2 was used for 

multiple electrode gaps in this study. The S/N ratio was increased by using optimal 
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height of 70 – 140 nm for ferrocyanide redox reactions, according to (Min & Baeumner, 

2004) studies. The electrode height of 100 nm was achieved in this study using platinum 

deposition. The ratio of the gap size between electrodes to the width of each electrode is 

key to increasing the sensitivity for the detection of redox species among the other 

design parameters. Several electrode gaps and widths have been used for IMEs to study 

the detection of pathogenic bacteria (Varshney & Li, 2009). In this study, electrode gaps 

of 15, 25, 50, and 100 μm with electrode width were investigated based on the size of 

the targeted bacteria between 2 and 4 μm and limitation of the mylar mask resolution 

used for the fabrication of the IMEs. The sensitivity of electrode width and gap size was 

determined in this study.  

Several impedance-based biosensors have been developed for the detection of 

pathogenic bacteria based on interdigitated microelectrodes array using specific and non-

specific bio-recognition elements immobilized onto the surface of the IMEs. For 

instance, Yang et al. (2004a) showed IMEs coated surface with anti-Escherichia coli 

antibodies for the detection of E. coli O157:H7. The detection range of the biosensor 

was 4.36 x 105 to 4.36 x 108 CFU/mL measured in the presence of ferri/ferrocyanide 

solution. Radke and Alocilja (2004) used open gold interdigitated microelectrode array 

chip with immobilized antibodies to detect E. coli O157:H7 by performing impedance 

measurements by immersing the electrodes into a known concentration of bacteria 

suspended in peptone water. The biosensor was found to be sensitive for the detection 

range from 105 to 107 CFU/mL. The minimum detection limit of the sensor was 

improved from 105 to 104 CFU/mL using the same methodology and electrode setup in 
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pure cultures and romaine lettuce wash water. The immobilized antibodies on the 

electrode surface were selective for the detection of target bacteria, E. coli O157:H7, in 

the presence of non-target bacteria, Salmonella infantis (Radke & Alocilja, 2005a, 

2005b). The use of a biorecognition element directly on the surface of the interdigitated 

microelectrodes provides specificity to the biosensor by bringing the targeted bacteria 

within few nanometers of the sensing electrodes maximizing the effect that the targeted 

bacteria has on impedance (Varshney & Li, 2009).  

Another method for detecting pathogenic bacteria cells with IMEs includes the 

use of magnetic beads coated with bio-recognition elements, instead of their 

immobilization onto the surface of the electrodes, for specific separation and 

concentration of cells before impedance measurements (Varshney & Li, 2009). 

Varshney and Li (2007) demonstrated a label-free impedance biosensor based on gold 

IMEs to detect E. coli O157:H7 in food samples that were separated by using magnetic 

nanoparticle-antibody conjugates (MNAC) functionalized with anti-E. coli antibodies 

before applying impedance. After the separation of conjugated targeted bacteria and 

antibody using magnetic beads, the bacteria cells were resuspended in a mannitol 

solution and uniformly spread on to the IMEs surface by placing a magnet underneath 

the microchip. This impedance biosensor based on IMEs and MNAC was able to detect 

a minimum of 7.4 × 104 and 8.0 × 105 CFU/mL of E. coli O157:H7 in pure culture and 

ground beef samples, respectively. To further improve the detection limit of the target 

bacteria, E. coli O157:H7, the same techniques were used in a microfluidic device 

embedded with gold IMEs; where a small volume of 60 nL was used to detect the 
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bacterial cells (Varshney, Li, Srinivasan, & Tung, 2007). This further improved 

impedance biosensor was able to detect a minimum of 1.6 × 102 and 1.2 × 103 CFU/mL 

of E. coli O157:H7 in pure culture and ground beef samples, respectively; with detection 

time of 35 minutes from sampling bacteria from food matrix to measurement.  

Interdigitated microelectrodes array have been used for foodborne bacteria 

detection based on metabolites produced as a result of bacterial growth by measuring the 

change in the electrical conductivity of the medium during growth of microorganism. 

Gomez et al. (2002) showed a platinum IMEs embedded in a flow cell to detect 

metabolic activity of live and heat-killed bacterial cells in a low conductivity medium 

specifically designed to maximize the change in conductance of the medium due to 

growth of L. innocua, E. coli, L. monocytogenes.  After 2 hours of off-chip incubation at 

37°C, the limit of detection of live cells distinguished from the same number of heat-

killed cells in low conductivity medium was 100 cells for L. innocua, 200 cells for L. 

monocytogenes, and 40 cells for E. coli. Yang et al. (2004b) designed an open (non-

microfluidic) IMEs device used for the detection of Salmonella Typhimurium in milk 

samples using selective medium as a pre-enrichment growth and also to determine the 

specificity of the biosensor to the targeted bacteria. The impedance system was able to 

detect a range of S. Typhimurium from 4.8 to 5.4 x 105 CFU/mL after a pre-enrichment 

growth step of 9.3 and 2.2 hours, respectively. The biosensor selectivity was determined 

in the presence of L. monocytogenes, E. coli O157:H7, and Pseudomonas aeruginosa 

with selective medium consisting of selenite cystein broth supplemented with 

trimethylamine oxide and mannitol, for S. Typhimurium.  
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Even though there have been many studies on using IMEs-based biosensors to 

detect foodborne pathogens, to date, no reliable, rapid, sensors have been demonstrated 

in field conditions for food safety applications that can detect as few as 1 viable target 

cell in 25 g of food. The main goal of this study was to design and fabricate platinum 

interdigitated microelectrodes (IMEs) array to miniaturize the biosensor in order to 

enhance sensitivity while using aptamers as the biorecognition element, on the surface of 

the electrodes for capture and detection of Listeria spp. in food products. In order to 

achieve this goal the first step was to optimize the IMEs design. IMEs with various 

electrode gap geometries were fabricated and the electrodes’ performance was 

characterized by electrochemical techniques including cyclic voltammetry and direct 

current potential amperometry. 

2.3 Materials and Methods 

2.3.1 Chemicals, reagents, and equipment 

Silicon wafer (4 inches) with wet thermal oxide thickness of 90 and 300 nm with 

the resistivity of 0.001-0.005 Ohm-cm was purchased from University Wafer (Fremont, 

CA). Platinum pellets, Pt, 99.99% pure, 1/8” diameter were obtained from Kurt J. Lesker 

(Jefferson Hills, PA). LOR 3A, non UV sensitive polymer, was purchased from 

MicroChem (Newton, MA). AZ 5214 E-positive photoresist, AZ 726 MIF-standard 

photoresist developer, AZ 400T-photoresist stripper were purchased from EMD 

Performance Materials (Sommerville, NJ). Mylar mask was ordered from CAD/Art 

Services, Inc (Bandon, OR). Potassium ferrocyanide trihydrate was purchased from 

Ward’s Science (Rochester, NY) and potassium nitrate was purchased from Alfa Aesar 
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(Ward Hill, MA). Hydrogen peroxide (3 wt %) was purchased from a local HEB store 

(College Station, TX). Silver conductive epoxy was purchased from Allied Electronics 

(Austin, TX). Silver/silver chloride (Ag/AgCl) standard reference electrode and platinum 

auxiliary electrodes were purchased from BASi (West Lafayette, IN). Verteq photoresist 

spinner, Karl Suss MA6 mask aligner, Lesker PVD 75 e-beam evaporator, dicing saw, 

and hotplate were used to fabricate the interdigitated microelectrode array biosensor at 

the Aggiefab facility at Texas A&M University (College Station, TX). CHI 600E 

potentiostat (Austin, TX) with CHI6044e software was used for electrochemical 

analysis. Bruker Dektak Profilometer (Tucson, Arizona) was used to measure the 

features on the wafer.  

 The biosensor was fabricated using a platinum array of interdigitated 

microelectrodes (IME) commonly referred to as comb fingers connected to a larger 

contact pad on each side of the silicon dioxide substrate and silver conductive was used 

to perform the wire bonding for analytical testing. The thickness of wet thermal oxide is 

90 and 300 nm on 4 inches silicon wafer. Table 2.1 lists the elements of the biosensor. 

The layout for the IME design was drawn in DraftSight (Waltham, MA) as shown in 

Figure 2.1. The electrodes were consisted of four different type of electrode gap 

including 15, 25, 50, and 100 μm. The electrode gap was considered based on the size of 

target bacteria cell and the best electrode gap was chosen based on sensitivity and 

effective electrode surface area. Thus, there were eight devices in total with two replicas 

for each Si wafer. Each interdigitated microelectrodes array width was 25 μm with total 

active area of 0.81 cm2 and bonding pads 200 x 200 μm. Within the total active area of 
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0.81 cm2, the number of electrodes changed for each IMEs with different electrode gap.  

 
 
 
Table 2.1. Elements of biosensor design consisting of a platinum array of interdigitated 
microelectrodes. 
 
Element  Dimensions 
Substrate 4” SiO2 wafer with thermal oxide layer  
Active area  0.81 cm2

 
 

Electrode width   25 μm  
Electrode gap  15, 25, 50, and 100 μm  
Bonding pads 2 mm x 2 mm 
Metal layers Ti-15 nm & Pt-100 nm  

 
 
 

 
 
 
 
Figure 2.1. Interdigitated microelectrodes array sensor layout. 
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2.3.2 Fabrication method 

The fabrication process consisted of several steps of photolithography processing 

including dual layer lift-off and electro-deposition requiring one layer mask step. Mylar 

mask was used to delineate interdigitated microelectrodes array and bonding pads. The 

fabrication process is shown in Figure 2.2, a cross-sectional view of the IMEs using dual 

layer lift off process. The fabrication process consisted of first coating the wafer with 

positive photoresist by using a spin coater to coat 1.5 microns of LOR 3A and AZ5214E. 

LOR 3A, non UV-sensitive, photoresist was used for dual layer liftoff. AZ5214E 

positive photoresist and UV-sensitive was used to coat on top of LOR 3A. Soft bake step 

was performed after each coating to ensure the adhesion of each photoresist to the wafer. 

UV exposure was performed to delineate the desired pattern for IMEs with the exposure 

dosage of 90 mJ/cm2 for 25 seconds using soft contact. The wafer was developed in 

AZ5214E developer to outline the microelectrode pattern with the bonding pads using 

one layer mask step. Since, positive photoresist was used; the UV exposure dissolved the 

photoresist and opened the desired pattern area on the silicon wafer for the metal 

deposition as depicted in Figure 2.2. After inspecting the wafer under the microscope, 

electron beam evaporation system (e-beam evaporator) was used to deposit the two 

metals, titanium (Ti) and platinum (Pt). Ti was deposited as a sacrificial layer to achieve 

adhesion of platinum layer with the thickness of 15 nm of Ti and 100 nm of Pt. Finally, 

liftoff step was performed to strip photoresist with AZ 400T resist remover from the 

unexposed wafer surface. Appendix A and B explains the detailed process of dual layer 

lift-off and platinum electrode deposition.  
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Next, dicing saw with diamond blade was used to dice the fabricated biosensor 

chips before the wire bonding step. Spindle speed of 25 krpm and 0.5 mm/s forward cut 

blade speed was used to dice the microchips. AZ5214E, photoresist was coated on the 

fabricated sensors before dicing. The microchips were first cleaned with photoresist 

remover, and then washed with 100% pure ethanol and DI water for 2 minutes before 

attaching the wires with the conductive silver epoxy to the bonding pads followed by 

curing at 65 °C for one hour in the oven.  

 
 
 

 
 
 
 
Figure 2.2. Fabrication process of interdigitated microelectrodes (IMEs) on Si substrate. 
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Step 2 

Step 3 

Step 4 

Step 5 
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2.3.3 Cyclic voltammetry method 

Cyclic Voltammetry (CV) was used to understand the electrochemical behavior 

of interdigitated microelectrodes (IMEs) array biosensor. CV is widely used technique to 

study a reversible redox couple reaction which consists of sweeping the potential of a 

working electrode immersed in an electrolyte solution and measuring the resulting 

current. The potential of a working electrode is controlled versus a reference electrode, 

i.e. silver/silver chloride (Ag/AgCl), which increases linearly with a fixed scan rate or a 

slope in a triangular waveform as shown in Figure 2.3. The triangular potential sweeps 

the potential between two values known as switching potentials causing forward and 

reverse scans. During a forward and reserve scan, oxidation current and oxidation 

current peaks can be determined at a fixed potential. The oxidative current peak is 

followed by a sharp decrease due to electron transport diffusion limited and similar trend 

is observed under the reductive current peak (Kissinger & Heineman, 1983; Rahimi & 

Mikkelsen, 2011; Van Benschoten, Lewis, Heineman, Roston, & Kissinger, 1983). The 

output signal, potential versus current, is shown in the Figure 2.3 below.  
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Figure 2.3. (A) Typical excitation signal for cyclic voltammetry, a triangular potential 
waveform with switching potential at 0.8 and -0.2 V versus reference electrode. (B) 
Typical cyclic voltammogram of ferrocyanide redox species. 
 
 
 

CV was performed using a three-electrode cell (C-3) potentiostat, CHI 600E, at 

room temperature. In this study, CV of three different geometric IMEs was performed to 

measure the surface area with gap size of 25, 50, and 100 μm. One of the two 

interdigitated array electrodes was connected to the working electrode, and the other was 

connected to the counter electrode, and to Ag/AgCl, which was used as a reference 

electrode; and all electrodes were connected to the potentiostat. The platinum working 

electrode was used to apply the potential to the electrolyte solution to study the charge 

transfer behavior at the Pt electrode. The Pt counter electrode was used to pass the 

current to balance the charge added or removed at the working electrode, thus 

completing the electrochemical circuit. Silver/Silver chloride (Ag/AgCl) was used to 

measure and control the potential of working electrode. CV of different geometric IMEs 

A B 
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was carried out to determine the surface area in 4mM Fe(CN)6/1M KNO3 solution at a 

switching potential of  0.75 V versus a Ag/AgCl reference electrode with 10 seconds 

quiet time at scan rates from 10, 20, 50, 75, and 100 mV.s-1. The electroactive surface 

area of a IMEs was evaluated by redox peaks, current vs. potential plots and Randles-

Sevcik Equation 2.1 (Vanegas et al., 2014) 

 ( ) 2/12/12/351069.2 CAvDnip ×=  (2.1) 

where ip (A) is the reduction peak obtained from the cyclic voltammogram, n is the 

number of transferred electrons in the redox reaction, D is the diffusion coefficient (6.70 

x 10-6 cm2s-1), C is the molar concentration of ferricyanide solution (4 mM), A is the 

electroactive surface area (cm2) of the electrode and v is the potential scan rate (V s-1). 

The value of n is equal to one for CV using Fe (CN)63− with the following half reaction 

taking place at the electrode (Vanegas et al., 2014): 

 𝐹𝑒(𝐶𝑁)63− +  𝑒−  
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯�  𝐹𝑒(𝐶𝑁)64− (2.2) 

The slope k can be obtained from Equation 2.1 by linear relationship between ip and v1/2.  

Cottrell plot (ip versus v1/2) with linear regression gives the value of k and electroactive 

surface area (A, cm2) can be expressed as (Vanegas et al., 2014): 

 𝐴 = 𝑘/((2.69 𝑥 105)𝑛3/2𝐷1/2𝐶) (2.3) 

A series of scan rates are used and the corresponding ip values are recorded to 

obtain the Cottrell plots and electroactive surface area of the interdigitated 

microelectrodes (IMEs) array biosensor.  
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2.3.4 Direct current potential amperometry method 

DC potential amperometry (DCPA) was used to demonstrate the sensitivity of 

the biosensor. A constant voltage is applied to the working electrode versus reference 

electrode and the resulting current-time dependence was measured. Potential 

amperometry was conducted in phosphate buffered saline (PBS) solution with pH of 7.4 

at a constant potential of +500 mV versus Ag/AgCl reference electrode. All electrode 

chemical measurements were performed in 15 mL PBS via a 3-electrode set-up using 

platinum working and counter electrodes and Ag/AgCl as reference electrode. 

Successive 2 μL aliquots of H2O2 were injected to the PBS to increase the H2O2 

concentration by 0.584 M increments while the redox current associated with the 

oxidation of H2O2 was measured at a working potential of 500 mV. The working 

potential (+500 mV) was chosen to ensure desirable amperometric sensitivity and a low 

probability of oxidizing interference compounds (Shi et al., 2011). The current output 

was measured at constant potential while successively injecting hydrogen peroxide 

(H2O2) in the stirred working solution (450 rpm) at 2 minutes intervals to allow the 

electrical signal to reach steady state (Vanegas et al., 2014). The i-t curves (current vs. 

time) from potential amperometry were used to evaluate the performance of the different 

geometric IMEs biosensors in terms of sensitivity and response time. Sensitivity was 

calculated from the slope of the linear portion of concentration versus current curves (μA 

mM-1) (Vanegas et al., 2014). 
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The electrode electroactive surface area and sensitivity were used to determine 

performance of the IMEs and to compare the efficiency of different IMEs geometries by 

calculating current density defined as (Vanegas et al., 2014): 

 𝐾 = 𝑖/𝐴 (2.4) 

where K is the current density (μA mM-1 cm-2), i is the amperometric sensitivity (μA 

mM-1) and A is the electroactive surface area of the electrode.  

2.3.5 Statistical analysis 

JMP v. 11 Software (SAS Institute, Cary, NC) was used for all statistical 

analyses. Means, error bars and standard deviations were calculated based on triplicate 

tests. Differences between variables i.e., electrode surface area and sensitivity among 

three electrode gap sizes, were tested for significance using one-way analysis of variance 

(ANOVA) and significantly different means (p < 0.05) are separated using Tukey’s 

Honestly Significant Differences (HSD) test.  

2.4 Results and Discussion 

2.4.1 Biosensor fabrication results  

Figure 2.4 shows the fabricated wafer and diced biosensor with attached wire 

bonds.  Interdigitated electrodes with three different electrode gaps including 25, 50, and 

100 μm were successfully fabricated. Table 2.2 shows the dimensions on the fabricated 

biosensors with multiple interdigitated microelectrodes array and Figure 2.5 shows the 

profilometer measurements. However, electrode gap with 15 μm showed to have short-

circuited connection between interdigitated electrodes by making a conductive path 

across two electrodes of different combs. This was due to fabrication limitations of 



 

44 

 

mylar mask resolution. Therefore, interdigitated electrodes with gap size of 25, 50, and 

100 μm were used to further characterize electrodes’ performance. 

 
 
 

 
 
 
 
Figure 2.4. Fabricated IMEs on silicon dioxide wafer and diced biosensor with wire 
bonding. 
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Figure 2.5. The gap size of 50 μm interdigitated electrode array with Dektak 
profilometer (Tucson, AZ) measurement. 
 
 
 
Table 2.2. Dimensions after biosensor fabrication. 
 
Element Design dimensions (μm) Profilometer measurements 
Electrode gap 25 12-15 μm 
Electrode gap 50 35-40 μm 
Electrode gap 100 82-87 μm 
Electrode width 25 22-27 μm 
Ti & Pt thickness n/a 110 - 115 nm 

 

 

 

 

 

 

 

25 μm 
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2.4.2 Cyclic voltammetry results 

2.4.2.1 Comparison of electroactive surface area (ESA) 

Cyclic voltammetry (CV) of potassium ferricyanide at bare Pt microelectrodes of 

three different geometries in KNO3 supporting electrolyte was performed to estimate the 

electroactive surface area. The potential scan was cycled between -0.75 V and +0.75 V 

versus an Ag/AgCl reference electrode at varying scan rates of 10, 20, 50, 75, and 100 

mV/s. The cyclic voltammograms for the bare electrodes of each electrode gap size 

followed expected trends as shown in Figure 2.6 A, Figure 2.7 A, and Figure 2.8 A. The 

CVs exhibited a sigmoid curve, a response characteristic of a reversible couple with 

well-defined redox peaks and indicating diffusion controlled reaction at the electrode-

solution interface in which the diffusion layer is smaller than the surface area of the 

microelectrode (Vanegas et al., 2014). Cottrell plots were prepared using the oxidation 

peak with the corresponding scan rates as shown in Figure 2.6 B, Figure 2.7 B, and 

Figure 2.8 B to calculate the electroactive surface area of each electrode gap size. The 

trend of these plots was linear indicating that as the scan rate was increased, oxidation 

peak was also increased. The slope was obtained from Cottrell plots and Equation 2.1 

was used to calculate the electroactive surface area of each biosensor (IMEs) with 

different electrode gap. 

 

 

 

 



 

47 

 

 

 
 
 
 
Figure 2.6. (A) Representative CV of bare 25 μm Pt-IMEs device in 4 mM ( ) −3

6CNFe / 1 
M KNO3 at different voltage scan rates. (B) Characteristic Cottrell plot of a bare 25 μm 
Pt-IMEs. 
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Figure 2.7. (A) Representative CV of bare 50 μm Pt-IMEs device in 4 mM ( ) −3

6CNFe / 1 
M KNO3 at different voltage scan rates. (B) Characteristic Cottrell plot of a bare 50 μm 
Pt-IMEs.  
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Figure 2.8. (A) Representative CV of bare 100 μm Pt-IMEs device in 4 mM ( ) −3

6CNFe / 
1 M KNO3 at different voltage scan rates. (B) Characteristic Cottrell plot of a bare 100 
μm Pt-IMEs. 
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The electroactive surface area of 25, 50, and 100 μm IMEs were 0.7181 ± 0.0196 

cm2, 0.1436 ± 0.0018 cm2, and 0.0718 ± 0.0024 cm2, respectively. The electroactive 

surface area of 25 μm was significantly larger than 100 μm electrode gap showing one 

order of magnitude difference due to higher number of platinum comb fingers. The 

electroactive surface area of IMEs including 25, 50, and 100 μm significantly increased 

(p < 0.05) as the electrode gap size decreased. Thus, the cyclic voltammetry analysis 

demonstrated that the electroactive surface area (ESA) was influenced by the electrode 

gap size.  

The CV data showed that as the electrode gap size increased, the oxidation 

current values decreased. The oxidation peaks at the scan rate of 100 mV/s for 25, 50, 

and 100 μm microelectrode gaps were 672 ± 6.18 , 232 ± 5.20, and 156 ± 0.96 μA, 

respectively. The calculated electroactive surface areas and the oxidation peak currents 

indicated that the resistance of 100 μm micro electrode gap device is significantly higher 

(p < 0.05) than the 25 and 50 μm. Figure 2.9 shows a comparison of electroactive 

surface area in the presence of potassium ferrocyanide reversible redox couples. The 

electrode’s electroactive surface areas of three gap sizes were significantly different 

based on p < 0.05. These results reflect that the numbers of electrodes were decreased as 

the electrode gap was increased. The electrode gap size of 100 μm had less number of 

electrodes as compared to 25 and 50 μm given that the electrode width (25 μm) and 

active area (0.81 cm2) in the sensor layout remained the same for all electrodes. 

Therefore, the electroactive surface area (ESA) results are in agreement with the 

fabricated electrode area.  
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Figure 2.9. Comparison of electroactive surface area (ESA) of multiple interdigitated 
microelectrodes array electrode gap sizes. Surface area columns that display different 
letters above their error bars represent significantly different values among three 
electrode gap size (p < 0.05). Error bars denotes the standard error of the arithmetic 
mean of three replicates. 

 
 
 
2.4.3 Direct current potential amperometry results 

The electrocatalytic activity of the three different devices was characterized in 

terms of the amperometric sensitivity to H2O2; since H2O2 is the electroactive 

intermediate for oxidase-based biosensors (Elzanowska, Abu‐Irhayem, Skrzynecka, & 

Birss, 2004). The detection of H2O2 is important in various applications such as glucose 

oxidase (GOx), in which H2O2 is produced in an enzymatic reaction involving glucose 

and molecular oxygen (Wang, 2001). The reaction at the electrode can be described as 
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below: 

 𝐻2𝑂2  
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
�⎯⎯⎯⎯⎯�  𝑂2 +  2𝐻+ +  2𝑒− (2.5) 

A typical dynamic potential amperometry curve of bare Pt electrodes for 50 and 

100 μm are displayed in Figure 2.10A and Figure 2.11A.  The amperometric sensitivity 

was calculated using the slope of linear regression for current and H2O2 concentration as 

illustrated in Figure 2.10B and Figure 2.11B. The average sensitivity values of 50 and 

100 μm IMEs devices were 21.39 ± 0.1335 μA/mM and 5.36 ± 0.0298 μA/mM, 

respectively. The sensitivity values of the two electrode gaps were significantly different 

at p < 0.05.  The response time of both devices was less than 5 s showing a stable 

response. The sensitivity of 50 μm IMEs device was significantly higher than 100 μm 

IMEs device as expected from the cyclic voltammetry data. Higher electroactive surface 

area of the electrodes was directly related to the higher sensitivity of the sensor. The 

current density was also calculated using Equation 2.4 that exhibits 148.96 ± 20.15 μA 

mM-1 cm-2 for 50 μm IMEs device and 74.65 ± 2.40 μA mM-1 cm-2 for 100 μm IMEs 

devices. The 50 μm electrode gap size exhibited excellent sensing properties with 

surface area of 0.1436 ± 0.0018 cm2 and current density of 148.96 ± 20.15 μA mM-1.  
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Note that the amperometric sensitivity data was not reported for 25 μm electrode 

gap due to charge overflow error from the CHI 600E potentiostat/impedance analyzer 

(Austin, TX) while increasing the concentration of H2O2. This indicates that the 

instrumentation was unable to read the current response from the 25 μm IMEs device 

due to high current density passing through the electrodes. The sensitivity defined by the 

CHI manufacturer is current/voltage (A/V) and ranges from 1x10-12 to 1x10-1 (CH 

Instruments User Manual, 2014). The A/V value at 25 μm electrode gap exceeded the 

1x10-1 and, therefore, the system read current overflow error. An instrument that would 

cover larger range of current can be used to detect the changes at the 25 μm electrode 

gap or a current divider setup can be implemented to reduce the current flow between the 

electrodes.  
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Figure 2.10. (A) Representative amperometric sensing of bare 50 μm Pt-IMEs device in 
15 mL PBS (pH 7.4) at working potential of 500 mV. The current response to 2 μL 
successive injections of 0.584 M H2O2 (injection times are indicated by vertical arrows). 
(B) Characteristic Cottrell plot of a bare 50 μm Pt-IMEs. 
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.  
 

 
              
 
 
Figure 2.11. (A) Representative amperometric sensing of bare 100 μm Pt-IMEs device in 
15 mL PBS (pH 7.4) at working potential of 500 mV. The current response to 2 μL 
successive injections of 0.584 M H2O2 (injection times are indicated by vertical arrows). 
(B) Characteristic Cottrell plot of a bare 100 μm. 
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Table 2.3 summarizes the performance characteristics of the three electrode gap 

sizes using cyclic voltammetry and potential amperometry techniques. Electrode’s 

electroactive surface area, sensitivity and current density were calculated to identify the 

best sensor design to continue on further studies on biosensor design for the detection of 

the bacteria pathogen.  

 
 
 
Table 2.3. Summary of electroactive surface area, sensitivity and current density of three 
bare Pt IMEs. 
 

Electrode gap 
(μm) 

Surface Area 
 (cm2) 

Sensitivity 
 (μA mM-1) 

Current Density  
(μA mM-1 cm-2) 

25 0.7181a ± 0.0196 NR NR 
50 0.1436b ± 0.0018 21.39a ± 0.1335 148.96a ± 20.15 
100 0.0718c ± 0.0024 5.360b ± 0.0298 74.65b ± 2.40 

 NR = Not reported due to charge overflow. 
a,b Means within a column which are not followed by a common superscript letter are 
significantly different (p < 0.05). Values are shown as the mean ± standard deviation of 
three independent repetitions. 
 
 
 
 These results shows that the interdigitated microelectrodes array with 50 μm was 

able to detect the current response with the highest sensitivity as compare to 100 μm 

electrode gaps. Macroelectrode studies performed by Chaturvedi et al. (2014) using Pt/Ir 

working electrode (BASI MF-2013, 1.6 mm diameter, 7.5 cm length, 6 mm shaft 

diameter, CTFE plastic body) reported the electroactive surface area (ESA) and 

sensitivity based on similar techniques followed in this study. The electrode surface was 

modified using nanoceria-platinum-graphene (nPt-RGO-nCe-nPt) nanocomposites to 

enhance the ESA and sensitivity of the biosensor. Cyclic voltammetry was used to 
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determine the ESA in 4 mM −3
6)(CNFe / 1 M KNO3 and direct current potential 

amperometry was used to calculate the sensitivity of the metal-graphene hybrid 

nanocomposites by injecting hydrogen peroxide. The reported values for ESA and 

sensitivity were 0.062 ± 1.5 cm2, and 11.1 ± 1.5 (μA mM-1), respectively. These results 

show that the ESA and sensitivity values have drastically improved by changing the 

electrode size and geometries to micro-scale when compared to the macro-scale as 

observed for the interdigitated microelectrodes array. 

In this study, the current response controlled by H2O2 concentration is suggested to 

be analogous to expected response to bacteria concentration. The ionic concentration of 

the medium or solution conductivity changes by adding hydrogen peroxide 

concentration which would be analogous to adding live bacteria which changes the 

solution conductivity. The device characteristic were defined by current response in a 

standard electrolyte solution to understand the behavior of IMEs.   

2.5 Conclusions 

In this work, Pt-based IMEs biosensors with different electrode size gap were 

fabricated and characterized using cyclic voltammetry (CV) measurements of reversible 

redox species in potassium ferrocyanide and direct current potential amperometry 

(DCPA) in phosphate buffered saline solution . The bottom-up microfabrication 

techniques were used to fabricate the IMEs based biosensors with microelectrode gap of 

15, 25, 50, and 100 μm. The IMEs devices with 15 μm were not used due to the 

fabrication limitation of mylar mask. These characterization tools allowed the 

understanding of sensing response of biosensor relative to the solution concentration and 
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electrode gaps. As the surface area increased, the sensitivity of the biosensor also 

increased.  

The potentiostat was unable to read current response due to high current density 

flow on the electrode surface of IME device with 25 μm electrode gap.The trend in 

enhanced sensitivity over the conventional macro electrodes was due to the sub-micron 

electrode width and spacing, therefore increasing the electroactive surface area and 

sensitivity as compared to the aforementioned results in a study performed by 

Chaturvedi et al. (2014).  The best suitable electrode design was 50 μm IMEs based on 

the electroactive surface area and highest sensitivity results. Therefore, 50 μm IMEs 

biosensor was selected to be used in the following Chapter III to carry out further 

experimentation by functionalizing electrodes with aptamers to capture and detect the 

targeted bacteria.    
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3 CHAPTER III  

BIOSENSOR FUNCTIONALIZATION WITH APTAMERS AND 

IMPEDIMETRIC DETECTION OF LISTERIA SPP. 

3.1 Overview  

Impedance biosensors based on lab-on-a-chip system have been used for the 

detection of pathogenic bacteria using interdigitated microelectrodes array to achieve 

enhanced sensitivity and response time. The traditional methods including total viable 

counts (TVC), enzyme-linked immunosorbent assay (ELISA), and polymerase chain 

reaction (PCR) are time consuming, expensive, and require specialized facilities and 

trained personnel. Optimized designed for lab-on-a-chip biosensor was selected as 

discussed in Chapter II for bacteria detection. Interdigitated microelectrodes (IMEs) 

array with electrode gap size of 50 μm was used and functionalized with Listeria 

monocytogenes aptamers, selective to protein internalin A, via metal-thiol self-assembly 

for Listeria spp. detection. Six aptamer concentrations including 100, 150, 200, 300, 

400, and 800 nM were reduced using dithiothreitol (DTT) protocol and functionalized on 

the IMEs surface. Electrochemical impedance spectroscopy analysis was used to 

characterize the biosensor and detect Listeria spp. without the need for label 

amplification and pre-concentration steps reducing the detection time. The optimized 

aptamer concentration of 800 nM was selected to capture the bacteria through protein 

binding. The aptasensor was developed to detect wide range of bacteria concentration 

from 10 to 106 CFU/mL. The aptasensor was capable to detect bacteria concentration at 

lower limit of 5.39 ± 0.21 CFU/ml with sensitivity of 268.1 ± 25.40 (Ohms/log 
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[CFU/mL]) in 17 min. The aptamer based biosensor offers a portable, rapid and sensitive 

alternative for food safety applications.  

3.2 Introduction 

In recent years, many studies on rapid-screening methods for food safety have 

been focused on development of biosensor platforms for reliable and faster results than 

conventional techniques such as aerobic plate counting (APC), enzyme-linked 

immunosorbent assay (ELISA), and polymerase chain reaction (PCR) (Wang et al., 

2012). A number of devices have recently been developed for monitoring foodborne 

pathogens based on immobilization of capture agents, i.e., the bio-recognition element 

component of a biosensor, such as aptamers (Iliuk, Hu, & Tao, 2011; Song et al., 2008). 

Aptamers are synthetic oligonucleotides, either DNA or RNA, that have an ability to 

bind specifically to target molecule or bacteria such as cell surface proteins, extracellular 

biomolecules, or viruses (Kärkkäinen et al., 2011; Torres-Chavolla & Alocilja, 2009). 

Aptamers are selected through a in vitro process known as systematic evolution of 

ligands by exponential enrichment (SELEX) (Song et al., 2008). SELEX is a chemical 

selection method which is based on random RNA or ssDNA oligonucleotide library 

consisting of a multitude of fragments (1013 to 1015) with different sequences. The 

SELEX procedure can be summarized by the repetition of successive steps consisting of 

selection (binding, partition, and elution), amplification, and conditioning (Stoltenburg et 

al., 2007). In the first SELEX process, the oligonucleotide library and the target 

molecules are incubated for binding. The target-bound oligonucleotides are isolated by 

several stringent washing steps and eluted. Subsequently, target-bound oligonucleotides 



 

61 

 

are amplified by polymerase chain reaction.  Finally, amplified sequences are used for 

the conditioning step, which is a repetition of the selection round. Multiple cycles of 

selection rounds, 6 to 20 SELEX rounds, are performed to achieve three-dimensional 

structures that are highly affine and target-specific aptamers (Shangguan, Tang, 

Mallikaratchy, Xiao, & Tan, 2007; Stoltenburg et al., 2007). Due to aptamers inherent 

advantages of simple production, easy storage, good reproducibility, target versatility, 

easy modification, and convenient regeneration, they are considered to be ideal 

recognition elements for biosensor applications (Kärkkäinen et al., 2011). Recent efforts 

have expanded the library of aptamers for common foodborne pathogens; therefore, 

aptamers are being used to construct biosensors called aptasensors.  

Aptasensor has been designed to detect various pathogens including an aptamer-

based sensor, which was developed utilizing impedimetric detection of Salmonella 

Typhimurium via aptamers self-assembly onto a gold nanoparticle-modified screen-

printed carbon electrode (Labib et al., 2012). Another aptamer-based biosensor was 

developed using gold nanoparticles for detection of Escherichia coli O157:H7 based on 

colorimetric detection (Wu et al., 2012). An antibody-aptamer functionalized fiber-optic 

biosensor for detection of Listeria monocytogenes in food was designed with detection 

limit of 103 CFU/ml in pure solution and 102 CFU/25g of food sample (Ohk et al., 2010). 

A gold electrode aptamer-based sensor was designed for E. coli O111 detection based on 

a target-induced aptamers displacement strategy with detection limit of 1.1 x 102 

CFU/ml in phosphate buffer saline and 3.1 x 102 CFU/ml in milk (Luo et al., 2012).  
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However, to date, few, rapid, sensitive aptasensors for Listeria detection have been 

demonstrated in field conditions for monitoring food safety. 

Electrochemical impedance spectroscopy (EIS) technique has been employed for 

the detection of foodborne pathogens over other categories such as optical based 

biosensors that require light (e.g., surface Plasmon resonance or fluorescence) and 

piezoelectric biosensors that use mechanical motion (e.g., quartz crystal microbalance or 

resonant cantilever) due to their low cost, low power, ease of miniaturization, portability, 

simplicity, faster, response, and label-free detection capabilities (Daniels & Pourmand, 

2007).  EIS is used to monitor the impedance change at the electrode-solution interface 

when the target analyte interacts with the functionalized surface of the electrodes 

designed to capture it. Impedance changes occur due to change in electrical properties at 

the electrode surface solely due to the presence of the target analyte (Daniels & 

Pourmand, 2007). Impedance based biosensors do not require special reagents and are 

preferred for label-free detection of target bacteria. 

EIS is an alternating current (AC) method that describes the response of an 

electrochemical cell to a small amplitude sinusoidal voltage signal as a function of 

frequency. The output is measured in impedance (Z) defined as the ratio V(t)/I(t) 

resulting from current sine wave, which differs in time (phase shift) with respect to the 

perturbing (voltage) wave (Prodromidis, 2010). The measured impedance can be 

demonstrated by the following Equation 1.1:  
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where  is the potential at time t,  (Volts) is the amplitude of the signal, and  

(radians/s) is the radial frequency. The relationship between radial frequency  and 

frequency, , can be expressed as . The response signal, , is shifted in phase 

( ) and has a different amplitude than  (Amperes), (Gamry Instruments Application 

Note, 2007). 

The total impedance accounts for the combined opposition of all the components 

within the electrochemical cell (resistors, capacitors, inductors) to the flow of electrons 

and ions (Prodromidis, 2010). In this study, aptamers, as the biorecognition element, are 

used to functionalize the interdigitated microelectrode array for selective binding of 

Internalin A in the cell membrane of the target bacteria, Listeria spp. Internalin A 

(In1A), a surface protein, is one of the major invasion proteins involved in pathogenesis 

that represent a complex family of leucine-rich-repeat-containing protein that interacts 

with E-cadherin leading to bacteria growth in the host cells (Ohk et al., 2010). In1A is 

found in all L. monocytogenes strains and serves as a molecular marker for the detection 

of the pathogenic bacteria (Bierne, Sabet, Personnic, & Cossart, 2007). Aptamer specific 

for In1A was used in this research to detect Listeria innocua. Listeria innocua, is a non-

pathogenic microorganism, which has been shown to be an excellent surrogate for 

Listeria monocytogenes (Buzrul & Alpas, 2004). In this study, the optimization of 

various aptamer concentrations loading on the surface of IMEs was determined based on 

the saturation point derived from the electrochemical impedance analysis. Optimized 

aptamer concentration was used at saturation point to cover the maximum surface area of 

0E 0E ω

ω

f fπω 2= tI

φ 0I
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the interdigitated microelectrodes array to maximize the capture of the bacteria cells and 

consequently biosensor performance. Furthermore, optimized aptamer concentration was 

used to evaluate the response of miniaturized aptasensor to detect Listeria innocua in 

phosphate buffered solution. Aptasensor performance parameters were measured and 

compared to current published biosensors.  

3.3 Materials and Methods 

3.3.1 Chemicals, reagents, and equipment  

Listeria monocytogenes thiol SS-C6 aptamers that target protein Internalin A 

(A8, 5′-ATC CAT GGG GCG GAG ATG AGG GGG AGG AGG GCG GGT ACC 

CGG TTG AT-3′, 47 mers) were purchased from GeneLink (Hawthrone, NY). 

Ethylenediaminetetraacetic acid (EDTA), disodium salt, dihydrate was purchased from 

EMD Performance Materials (Sommerville, NJ).  Potassium chloride (KCl) and sodium 

chloride were purchased from EM Science (Hatfield, PA). TRIS 

(Hydroxymetyl)aminomethane, potassium phosphate dibasic (K2HPO4), and sodium 

phosphate monobasic monohydrate (Na2HPO4) were obtained from J.T.Baker Chemical 

(Phillipsburg, NJ). Sodium phosphate monobasic monohydrate (H2NaO4P.H2O) was 

purchased from Sigma Aldrich (St. Louis, MO). Potassium ferrocyanide trihydrate 

(K4Fe(CN)6.3H2O ) was purchased from Ward’s Science (Rochester, NY). Sulfuric acid 

and hydrogen peroxide were purchased from Avantor Performance Materials (Center 

Valley, PA). DL-Dithiothreitol was obtained from Sigma Aldrich (St. Louis, MO). 

Sodium acetate (NaC2H3O2.3H2O) was purchased from MCB Reagents (Cincinnati, 

OH). Lab-line squaroid 3618 vacuum oven (Grand Island, NY), Cody ultrasonic cleaner 
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CD-2800 (Beijing, China), and VWR Scientific Model V centrifuge (Houston, TX), 

were used to perform the thiol modified oligo disulfide reduction protocol. CHI 600E 

potentiostat/impedance analyzer and CHI6044e software (CH Instruments, Austin, TX) 

were used to analyze electrochemical response of aptamer functionalized electrodes and 

the detection of Listeria spp. Tryptose phosphate broth (TPB) and buffered peptone 

water (BPW) were purchased from HiMedia (Mumbai, India). Oxford Listeria-selective 

agar and Oxford Listeria-selective supplement were purchased from EMD Performance 

Materials (Sommerville, NJ). 

3.3.2 Disulfide reduction of thiol modified aptamers 

Thiol labeled aptamers for L. monocytogenes  consisted of  47-mer and it targets 

the internalin A (InlA) protein (Labib et al., 2012); the 3’ end was modified with a 

terminal thiol group. Studies by Ohk et al. (2010)  shows a gel purification of the 47-mer 

aptamer with a thiol terminus and 6 carbon spacer at the 3’ end for adsorption to 

platinum. The design of thiolated aptamers consists of three segments: (1) a thiol (-SH) 

or disulfide (-SSR) terminus, (2) a linker or spacer, i.e. –S-H-(CH2)6OH, and (3) the 

aptamer sequence (Balamurugan, Obubuafo, Soper, & Spivak, 2008).  

GeneLink (Hawthrone, NY) supplied oligonucleotides in desalted, lyophilized, 

and disulfide form. Disulfide thiol modifier, dithiol phosphoramidite (DTPA) was used 

by the manufacturer leading to the addition of two thiol groups. Disulfide modified 

Listeria thiol aptamers are reduced using the dithiothreitol (DTT) reduction protocol 

provided by the manufacturer (GeneLink, 2011). Briefly, DTT was used to form two 

free thiols from disulfide bonds by preparing 100 mM DTT solution in sodium 
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phosphate buffer, (pH 8.3 –8.5). In 2 mL eppendorf tube, 400 μL of 100 mM DTT 

solution was directly added to thiol aptamers and left at room temperature for 1 hr to 

reduce the thiol groups. In order to remove the traces of DTT in thiolated aptamers 50 

μL of 3 M sodium acetate (pH 5.2) was added and mixed properly using a vortex. 

Ethanol precipitation was used to separate the thiolated aptamer from the solution. 

Absolute ethanol (1.5 mL) was added, vortexed, and stored at -80 oC for 20 minutes. The 

thiolated aptamers were obtained in pellet form after centrifugation at 12,000 rpm for 10 

minutes. The supernant was discarded and the pellet was vacuum dried at room 

temperature and 30 in Hg pressure for 20 minutes to remove any traces of solvents. 

Drying the pellet completely was crucial in order to re-dissolve the aptamers in the 10 

mM TriS, 1mM EDTA, pH 7.5 buffer (TE buffer). Figure 3.1 illustrates the reduction of 

disulfide bonds to thiol bonds using DTT protocol.  

The aptamers were reconstituted in TE buffer following the manufacturer’s 

protocol (GeneLink, 2004). In order to make a stock solution of 100 μM of thiolated 

aptamers, 27 μL was dissolved in TE buffer solution and stored at -80°C for further 

dilutions.  
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Figure 3.1. DTT reduction of disulfide bonds to two thiol bonds. The molecular diagram 
was obtained from GeneLink (Hawthorne, NY) (GeneLink, 2014).  
 
 
 
3.3.3 Aptamer functionalization onto interdigitated microelectrode array 

The aptamers were attached to the platinum IMEs surface using the sulfur atoms 

of the thiol group forming a self-assembled monolayers (SAM) (Balamurugan et al., 

2008) as shown in figure 3.1. The mechanism of aptamer attachment via SAMs is 

through covalent adsorption in the thiol form (aptamer-linker-SH). Figure 3.2 illustrates 

the schematic of aptamer attachment to the interdigitated microelectrode array. The 

advantage of using a direct Pt-SH bond to the IMEs includes a rapid covalent reaction 

and formation of a stable monolayer (Zhang & Yadavalli, 2011).  
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Figure 3.2. Schematic of Listeria monocytogenes aptamers attachment to the platinum 
IMEs.  
 
 
 

The platinum IMEs were first cleaned with piranha solution with the ratio of 3:1 

concentrated sulfuric acid to hydrogen peroxide. Piranha solution was used to remove all 

the organic residues from the surface of the IMEs. The biosensor microchip was 

immersed in the solution for one minute without exposing the bonding pads with the 

silver conductive epoxy. If the silver conducting epoxy was exposed to the piranha 

solution, it would decompose the organic epoxy comprising the integrity of the electrical 

connection. The biosensor microchip was thoroughly washed with DI water for one 

minute to ensure proper removal of piranha solution residues from the surface. 

Following cleaning, the microchip was air dried and used for functionalization of the 

aptamers. The stock solution of 100 μM Listeria monocytogenes aptamers was further 

diluted to various concentrations of 100, 150, 200, 300, 400, and 800 nM in 10 mM TriS, 

1mM EDTA, pH 7.5 buffer (TE buffer). Then, 65 μL of each concentration was used to 
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functionalize the biosensor by drop coating and air drying for two hours inside a 

biosafety cabinet. Thiol-terminated aptamers were attached to the platinum electrodes by 

self assembling on the surface via covalent adsorption. After two hours, the unbound 

aptamers were washed off in 10 mL PBS solution (pH 7.4) followed by DI water rinsing. 

The aptamer coated biosensor was used immediately for further testing. For each loading 

of aptamer concentration, IMEs biosensor was cleaned with piranha solution and loaded 

with the desired concentration. The impedance value of bare Pt-IMEs was measured 

before loading the biosensor with each aptamer concentration. The impedance values of 

bare Pt-IMEs were used to confirm the adsorption of the thiolated aptamers onto the 

surface of the IMEs by comparing the impedance values before and after the aptamer 

coating.  

3.3.4 Bacteria culturing 

Prior to use, Listeria innocua (NRCC B33076) cultures were stored at -80°C. 

The bacteria was resuscitated by removing 100 μL of an inoculum from the frozen 

culture and incubated in TPB for 24 hours at 37°C. Two successive transfers were 

performed in TPB media for 24 hours at 37°C. After the initial three transfers, to ensure 

the working culture was at the desired bacterial concentration of 107 – 108 CFU/mL, 

weekly transfers were made in TPB, incubated for 24 h at 37oC, and kept in the 

refrigerator at 5°C. Further, serial dilutions were made to achieve 107-10 CFU/mL in 9 

mL BPW. The dilutions were spread-plated onto Oxford Listeria-selective agar plates 

supplemented with Oxford Listeria-selective supplement and incubated at 37oC for 24 h 
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to count the bacteria colonies during each testing to ensure the correct bacterial 

concentrations. 

3.3.5 Electrochemical Impedance Spectroscopy  

3.3.5.1 Optimization of the aptamer loading concentration  

Electrochemical impedance spectroscopy (EIS) is an alternating current (AC) 

method that describes the response of an electrochemical cell to a small amplitude 

sinusoidal voltage signal as a function of frequency. The output signal can be described 

as impedance (Z, Ohms) in terms of voltage (V, Volts) and current (I, Amperes),

, which is a complex number defined as . is a real in-phase 

component of the total impedance which measures the resistance of the electrochemical 

cell whereas is an imaginary out-of-phase component that is associated with the 

capacitance of the cell (Lasseter et al., 2004). 

The operating principle was based on the interdigitated microelectrodes (IMEs) 

array fabricated on the silicon dioxide surface, which functioned as the electrical 

transducer of the biosensor. The IMEs were functionalized with Listeria monocytogenes 

aptamers via covalent adsorption, which consisted of the biological transducer of the 

biosensor. When the aptamer based biosensor was tested in a solution, the presence of 

aptamers on the biosensor surface caused the impedance to change across the IMEs. This 

impedance change was measured and correlated to the various aptamer concentrations 

that were loaded onto the IMEs surface to determine the saturation point.  

The total impedance measured across IMEs accounts for the combined 

opposition of all the components within the electrochemical cell (resistors, capacitors, 

IVZ /= "' iZZZ += 'Z
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inductors) to the flow of current (Prodromidis, 2010). Further, these components can be 

explained by the physical interactions occurring on the surface of IMEs caused by the 

molecular interactions of the aptamers with the IMEs and the solution (Yang & Li, 

2005).  

In this study, electrical impedance spectroscopy (EIS) was carried out in a 

solution of PBS (pH 7.4) using a two -electrode setup on CHI 600E 

potentiostat/impedance analyzer. One of the two interdigitated array electrodes (IMEs) 

was connected to the working electrode, and the other IMEs was connected to the 

reference and counter electrodes of the CHI 600E potentiostat/impedance analyzer. 

Figure 3.3 shows the experimental setup for the electrochemical impedance spectroscopy 

analysis method. A sine-modulated AC potential of 100 mV was applied across the 

IMEs and impedance was measured for a frequency range of 1 Hz to 100 kHz at 30 

points per decade.  Bode plot (log frequency versus impedance) and Nyquist plot 

(imaginary versus real impedance) were generated to analyze the aptamer 

functionalization at various concentrations. The saturation point was determined by 

comparing the impedance value at each concentration relative to the bare platinum 

interdigitated microelectrode array.  
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Figure 3.3. Detection of Listeria spp. using IMEs aptasensor. 

 
 
 

Electrochemical impedance analysis was used to characterize the aptamer based 

biosensor response with increasing concentration of Listeria spp., Listeria innocua 

(NRCC B33076), from 10 to 106 CFU/mL. Aptamer functionalized IMEs impedance 

without bacteria addition was measured and established as a baseline to detect the 

impedance difference after introducing the bacteria cells. The applied potential was 100 

mV (AC) with a frequency range of 1 Hz to 100 kHz at 30 points per decade.  PBS (pH 

7.4) was used to run the analysis with functionalized IMEs immersed in 17 mL PBS 

solution. The bacteria cells at each concentration were immobilized on the aptamer 

coated IMEs for 15 minutes to allow successful binding to the aptamers. During this 
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time the solution was stirred at 450 rpm using magnetic stirrer at room temperature. The 

bacteria cells were added incrementally onto the aptamer coated IMEs from the diluted 

bacteria concentration in BPW solution. The desired volume of 17 μL from BPW 

solution was added to 17 mL PBS to achieve the bacteria concentration ranging from 10 

to 106 CFU/ml. The impedance measurements were taken after the stirring was turned 

off and solution was stagnant. The bonding pads were not exposed to the PBS solution. 

The capacitor stabilizer was turned on in the CHI6044e software and the electrodes were 

grounded in order to minimize the charge buildup onto the surface of the electrodes.  

Nyquist plots (imaginary impedance versus real impedance) and Bode plots (impedance 

vs. frequency) were generated to analyze the total impedance response of the biosensor 

with increasing bacteria concentration from 10 to 106 CFU/mL. The total impedance 

change was correlated to the bacteria concentration by measuring the baseline of the 

aptamer coated IMEs without bacteria. The difference in impedance was calculated as 

the change in impedance at the bacteria concentration from the baseline and plotted as a 

calibration curve to determine the sensitivity, range, and lower detection limits of the 

aptamer based biosensor. The total impedance was measured at 1 Hz based on the 

spectrum of EIS scan from 1 Hz to 100 kHz.  

3.3.6 Statistical analysis 

JMP v. 11 Software (SAS Institute, Cary, NC) was used for all statistical 

analyses. Means, error bars and standard deviations were calculated based on triplicate 

tests. Differences between variables was tested for significance using one-way analysis 

of variance (ANOVA) and significantly different means (p <0 .05) was separated using 
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Tukey’s Honestly Significant Differences (HSD) test.  The lower detection limits were 

determined as a signal/noise ratio of 3, where noise was defined as the standard 

deviation of the aptamer coated platinum interdigitated microelectrode array without 

bacteria as a control test. Sensitivity was determined from the linear correlation of 

impedance change versus bacteria concentration. Biosensor range was determined based 

on the detectable impedance signal obtained over a range of bacteria concentration from 

10 to 106 CFU/mL (Tolba et al., 2012; J. Wang, 2006).Impedance change was measured 

from the baseline of the biosensor defined as impedance determined at aptamer coated 

IMEs without bacteria. Detection time was measured based on the time allowed for the 

bacteria to interact with functionalized aptamer coated IMEs (15 minutes) and time to 

run EIS scan from 1 Hz to 100 kHz (2 minutes). 

3.4 Results and Discussion 

3.4.1 Characterization of aptamer loading onto the interdigitated microelectrode 

Aptamer functionalized IMEs were characterized by electrochemical impedance 

spectroscopy (EIS).  EIS was used to describe the response of platinum interdigitated 

microelectrodes biosensor (Pt-IMEs) as a result of low amplitude sinusoidal signal with 

sweeping frequency range of 1 Hz to 100 kHz. The characterization of SAMs at the 

electrode surface due to increasing aptamer concentrations were carried out using 

impedance magnitude measured in PBS solution.  

The adsorption of the thiolated aptamers, also known as the molecular interface, 

onto the IMEs were expected to obstruct the current flow in the presence of buffer 

solution, therefore increasing the resistance on the surface of electrodes. This 
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phenomenon was measured using the impedance value which can describe the 

contributions of aptamer binding to the platinum interdigitated microelectrodes. The 

total impedance plotted in Figure 3.4 can be written in real and imaginary parts of the 

impedance as (Lasseter et al., 2004). is the total impedance 

measured in Ohms, is the real resistance measured in Ohms and is the imaginary 

part also measured in Ohms.  

Bode plot in Figure 3.4 demonstrates the behavior of the aptamer biosensor at 

different aptamer loading over the entire frequency range from 1 Hz to 100 kHz. The 

inset shows the impedance values for different aptamer loading at 1 Hz frequency. This 

data was also presented in an alternative form using the Nyquist plot as shown in Figure 

3.5. As mentioned earlier, Nyquist plots were used to show real and imaginary 

impedance values which reflect the resistance and capacitance of the electrochemical 

cell; respectively, over the entire range of frequency spectrum (1 Hz to 100 kHz). Due to 

the intricate 3D structures of aptamers, the bimolecular interfaces (i.e., aptamer and 

buffer solution) were combined in total impedance, which represents the physical 

interactions of Pt-IMEs, the aptamer, and the buffer solution.  
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Figure 3.4. EIS analysis (total impedance vs. frequency) of aptamer loading at various 
concentrations onto IMEs in PBS solution over the frequency spectrum ranging from 1 
Hz to 100 kHz. The inset shows the impedance values for various aptamer loading 
concentrations at 1 Hz. 
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Figure 3.5. Nyquist plot of aptamer loading at various concentrations in PBS solution 
over the frequency spectrum ranging from 1 Hz to 100 kHz. The inset shows the 
impedance values for various aptamer loading concentrations at 1 Hz.  is real 
impedance in Ohms and is imaginary impedance in Ohms representing resistance and 
capacitance of the biosensor. 
 
 
 

The physical interactions in the electrochemical cell between electrodes surface, 

analyte, and solution could be explained by the Randles equivalent circuit model shown 

in Figure 3.6. The circuit includes ohmic resistance of the solution ( ), Warburg 

impedance ( ), double layer capacitance ( ), and electron transfer resistance ( ). 

Ideally, and are not affected by the electrode surface modifications because these 
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components represent the properties of the bulk solution and diffusion of the redox 

probe; whereas and  are affected by the electrode surface modifications because 

they are related to the dielectric and insulating features at the electrode and solution 

interface (Yang & Li, 2005; Yang, Li, & Erf, 2004a).  

 
 
 
Figure 3.6. The Randles equivalent circuit model for the EIS measurements with the Pt-
IMEs. represents double layer capacitance; is the electron transfer resistance; 
is the Warburg impedance; represents the resistance of the solution. 
 
 
 

The above circuit model could be used to study the impedance response of the 

biosensor for the aptamer coated IMEs and the interaction between aptamer surface and 

bacteria. Based on the study by Yang and Li (2005) the Randles equivalent circuit was 

used to fit the data to determine the circuit components based on the interdigitated 

microelectrode array immobilized with antibody to detect E. coli. In their study, the 

solution resistance and Warburg impedance remained relatively unchanged, 0.038% and 

8.2% respectively, when the bare surface of the electrode was modified. However, these 

two circuit components may change when bacteria is introduced into the solution 

depending on the bacteria concentration and type of solution.  The double layer and 
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charge transfer resistance were changed significantly with 12.5% and 80.1% when the 

electrode surface was modified with antibody. The same principle could apply to the 

biosensor used in our study and Table 3.1 summarizes the expected changes in the 

circuit components relative to the bare electrode in PBS solution.  

 
 
 
Table 3.1. Expected outcome based on the aptamer coated IMEs and bacteria 
interactions. 
 
Circuit Component Surface modification 

(aptamer coating) 
Injection of bacteria into 
the solution  

 (Ω) Unchanged Small changes 
( Ω s1/2) Unchanged Small or large changes 
 (μF) Changed  Changed 
 (Ω) Changed  Changed  

 
 
 
 Typically, fitting the measurements of the total impedance into the circuit model 

such as, Figure 3.6, requires tuning the circuit components such that the error between 

the predicted and measured impedance is minimized by several constraints such as 

fixing components’ values. For example in Table 3.1 one could use an optimization 

software to fit the measured impedance for fixed values of and while tuning 

and . Theoretically, there are multiple solutions for this problem and the results may 

significantly vary depending on the search algorithm used in the optimization regardless 

of the fit quality. Moreover, when the number of varying components increases in the 

circuit, the number of possible solutions will further increase. This is exactly analogous 

to the aptamer coating of Pt-IMEs or/and the injection of the bacteria into the solution 
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where all the circuit components ( , , , and ) are changing in the optimization 

model. Prior to coating the IMEs with aptamers the circuit model in Figure 3.6 was fitted 

to the EIS data of the bare Pt-IMEs in PBS solution. The optimal values of the circuitry 

were obtained from CHI6044e software based on the best-fit between EIS measurements 

and simulated circuit with a reported total error value of 7.03%. The circuit components’ 

( , , ,and ) values for the Pt-IMEs were 88.26 Ω, 1.95 x 10-3 Ω s1/2, 1.093 x 

10-5 μF, 3410 Ω, respectively. After loading the Pt-IMEs with 800 nM aptamer 

concentration, the new circuit components for the EIS measurements were obtained from 

the CHI6044e software. Table 3.2 shows the parameters obtained to fit the model 

described in Figure 3.6. The EIS data for 800 nM aptamer concentration was run twice 

under the same optimization constraints; however, the results were not conclusive. 

Therefore, optimization is not a trivial problem and further studies are required to 

understand the equivalent circuit model needed to understand the dynamic system of 

aptamer coating, interaction of bacteria at the IMEs and aptamer surface and in the PBS 

solution.  

 
 
 
Table 3.2. Optimization parameters using CHI6044e software for 800 nM aptamer 
loading onto IMEs. 
 

Run Optimization 
error % 

(Ω) (Ω) ( Ω s1/2) (μF) 

Optimization 1 6.88 95.71 3.89 x 104 5.017 7.69 x 10-6 
Optimization 2 6.96 95.66 2.86 x 105 8.83 x 107 8.29 x 10-5 
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At frequencies above 1 kHz, the impedance vs. log frequency curves converged 

to impedance values lower than 885 Ohms for six aptamer concentration loadings (100, 

150, 200, 300, 400, 800 nM) and also for the bare IMEs. This impedance convergence is 

shown in Figure 3.4 by the overlapping curves seen after 10 Hz. The same results were 

observed from the Nyquist plot in Figure 3.5, which shows increasing frequencies in the 

direction from right to left for each treatment on the Nyquist plot. The real and 

imaginary impedance values were overlapped at 100, 150, 200, 400, and 800 nM 

aptamer concentrations. The inset in Figure 3.5 shows the real versus imaginary 

impedance values at lower frequencies below 10 Hz.  

Figure 3.4 and Figure 3.5 established that at frequencies below 10 Hz the 

impedance response to the aptamer loading had high and distinct values due to the 

addition of the aptamer deposition onto the electrodes, with the aptamers being 

responsible for the resistance increase on the electrode surface. The results indicated that 

the total impedance of the system increased, which is an expected trend due to increase 

in resistance as thiolated aptamers were adsorbed onto the electrode surface. Formation 

of SAMs of the thiolated aptamer onto the IMEs surface substantially increased the 

impedance values at 100, 150, 200, 300, 400, and 800 nM as compared to the bare IMEs 

indicating the formation of dense layers. The impedance value is significantly higher (p 

< 0.05) than the bare Pt-IMEs at any given aptamer concentration loading (Figure 3.4 

and Figure 3.5).  

In contrast, at higher frequencies the relationship between the total impedance 

value and the aptamer loading were not strongly correlated in distinct patterns as shown 
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in Figure 3.4, Figure 3.5, and Figure 3.7. These results showed that the impedance was 

decreased with no distinctive trend as the aptamers were loaded onto the surface of the 

IMEs as compared to Figure 3.8 which shows a distinct trend and biosensor reaching 

steady state with the impedance values. Figure 3.7 shows the total impedance values at 

1, 10, 100 kHz. These frequencies were chosen to show impedance values at different 

frequency magnitudes over the entire frequency spectrum. The difference in impedance 

values of six aptamer concentrations relative to the bare Pt-IMEs were significantly 

decreased (p < 0.05) with the exception of 400 nM, which showed no significant 

difference (p > 0.05) from the bare Pt-IMEs. The impedance difference among 100, 150, 

200, 300, and 400 nM were negligible. Aptamer loading generated no distinct pattern 

and the biosensor did not reach any steady state at 1, 10, and 100 kHz as shown in 

Figure 3.7. Moreover, at each aptamer concentration there is no difference among total 

impedance values at 1, 10, and 100 kHz. Therefore, the comparison at the higher 

frequencies did not provide a good indication on how the aptamers were deposited onto 

the electrode surface. Similar results of overlapping curves at higher frequencies for 

Bode and Nyquist plots were obtained based on the studies by Dastider et al. (2013) and 

Radke and Alocilja (2004). These studies explained that the high frequency above 1 kHz 

might correspond to the ohmic resistance of the solution, which is indicated by the 

convergence of the impedance curves shown in Figure 3.4. The biosensor was able to 

detect the electrical signal at low frequencies below 10 Hz induced by the adsorbed layer 

of thiolated aptamers onto the IMEs. The presence of aptamers on the IMEs surface 

caused the impedance change due to the formation of SAMs, which inhibited the current 
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flow between the biosensor IMEs. Based on these results, the frequency of 1 Hz was 

selected to determine the saturation limit of the aptamer loading as it showed the most 

distinguishable impedance changes among the treatments (Figure 3.4 and Figure 3.5).  

 
 
 

 
 
 
 
Figure 3.7. Impedance values at higher frequencies for various aptamer concentrations in 
PBS solution at 1, 10, 100 kHz. Error bars were based on the standard deviations of 
means in triplicate tests. Different letters indicate significance at P < 0.05. 
 
 
 

When the aptamer based biosensor was tested in PBS solution, the presence of 

aptamers on the biosensor surface caused the impedance to change across the IMEs. This 

impedance change was measured and correlated to the various aptamer concentrations 
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that were loaded onto the IMEs surface to determine the saturation point at the selected 

frequency of 1 Hz. Figure 3.8 illustrated the impedance magnitude at 1 Hz used to 

determine the saturation point of aptamer loading. The impedance values versus the 

aptamer concentrations were plotted at each concentration.  

 
 
 

 
 
 
 
Figure 3.8. EIS analysis at 1 Hz for aptamer loading onto interdigitated microelectrodes 
array in PBS solution at 1 Hz. Error bars were based on the standard deviations of means 
in triplicate tests. Different letters indicate significance at P < 0.05. 
 
 
 

The impedance values of six aptamer concentrations loading were significantly 

higher (p < 0.05) than the bare Pt-IMEs shown in Figure 3.8. The significant increase (P 
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< 0.05) in the impedance values relative to the bare Pt-IMEs demonstrated that the 

aptamers were successfully adsorbed onto the surface of the IMEs biosensor. The 

impedance values started to saturate at 300 nM and the IMEs biosensor reached steady 

state between 400 and 800 nM where the difference was between 15 to 20% relative to 

the bare. The measured impedance values of the biosensor at each aptamer concentration 

(100, 150, 200, 300, 400, 800 nM) is due to the double layer capacitance of the IMEs 

and aptamer interface, solution resistance, and charge transfer resistance from the bulk 

solution. These variables can change slightly and these variabilities could be caused by 

the IMEs cleaning process or the random aptamer attachment to electrode surface. 

Although the ideal trend of the impedance response to aptamer loading should follow an 

asymptomatically converging function until it reaches saturation, due to the 

aforementioned variables, the impedance response possesses dynamics that shows slight 

fluctuations in Figure 3.8. However, the dynamic system described in the Figure 3.8 has 

reached steady state values between 400 and 800 nM. The 800 nM aptamer 

concentration is a safer design parameter, which guarantees that the electrodes are fully 

coated with Listeria monocytogenes aptamers. Additional experiments were performed 

to confirm the aptamer loading selection and it is shown in Figure 3.9. The experiments 

were conducted in 5mM ( ) −3
6CNFe / 100 mM KCl solution using the same procedures 

described in section 3.3.5.1 and to test the hypothesis that the impedance saturate at 

800nM in a solution different than PBS. The aptamer concentration ranging from 100 to 

3200 nM was selected to understand the behavior of the aptamer coated IMEs for 

concentrations above 800 nM. This analysis in 5mM ( ) −3
6CNFe / 100 mM KCl solution, 
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shown in Figure 3.9, confirms our hypothesis, where no significant changes (P > 0.05) in 

impedance response were measured above 800 nM aptamer loading, reaching saturation. 

Figure 3.8 and Figure 3.9 showed that the biosensor reached the maximum 

loading of the bio-recognition element, aptamers, onto the platinum interdigitated 

microelectrode array at 800 nM. Hence, 800 nM aptamer loading was chosen to coat the 

biosensor for Listeria spp. detection based on the results discussed in this section. 

Furthermore, EIS analysis showed to have the ability to sense the covalent binding of the 

thiolated aptamers onto the IMEs surface without the use of any kind of labels and 

directly converted the SAMs formation into measurable electrical signal. EIS analysis 

have been used in previous studies to determine binding affinity constants, KD, of 

enzymes and antibodies among other compounds due to its label-free capabilities 

(Daniels & Pourmand, 2007). 
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Figure 3.9. EIS analysis at 1 Hz for aptamer loading onto interdigitated microelectrodes 
array in 5mM ( ) −3

6CNFe / 100 mM KCl solution at 1 Hz.  Different letters indicate 
significance at P < 0.05. 
 
 
 
3.4.2 Detection of Listeria spp. using IMEs aptasensor  

Listeria innocua is commonly used as a non-pathogenic surrogate organism for 

Listeria monocytogenes due to their genetic and metabolic similarities and importance to 

the food industry (Buzrul & Alpas, 2004; Milillo et al., 2012).  The operating principle 

of functionalized IMEs with aptamers were discussed in section 3.3.5.1, the same 

principle was applied to understand the behavior of the Listeria monocytogenes aptamers 

binding to the membrane protein of Listeria spp. (i.e., internalin A) to the. This binding 
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added another element to the electrochemical cell further increasing the impedance from 

the aptamer coated IMEs by obstructing the current flow. 

Figure 3.10 was obtained from the measured total impedance versus log 

frequency. The inset shows that the aptamer-bacteria binding resulted in increased 

impedance as the bacteria concentration was increased at the frequency of 1 Hz. The 

impedance values were measured at 1 Hz for the reasons mentioned above, which 

resulted in impedance increase with the increase in bacteria concentration. At low 

frequency, 1 Hz, the impedance values were directly proportional to the increasing 

concentration of the bacteria cells whereas at the higher frequencies the values were 

independent of the bacteria concentration and showed no significant difference (P > 

0.05). Figure 3.11 shows the Nyquist plot for the entire frequency range of 1 Hz to 100 

kHz and the inset depicts the real and imaginary impedances at lower frequencies. The 

direction of increasing frequencies is from right to left on the Nyquist plot (Figure 3.11). 

The overlapping of impedance values at higher frequencies above 1 kHz in Figure 3.10 

andFigure 3.11 showed no distinct pattern whereas at lower frequencies below 10 Hz the 

impedance values were increased (p < 0.05) as the bacteria concentration was increased.  

Hence, the impedance values at 1 Hz were used to determine biosensor 

performance’s parameters, i.e., range, sensitivity, detection time, and limit of detection 

calculations.  
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Figure 3.10. Detection of L. innocua using aptamer coated IMEs in PBS solution over 
the frequency spectrum ranging from 1 Hz to 100 kHz. Bacteria concentration ranged 
from 10 to 106 CFU/mL. The inset showed the total impedance values at 1 Hz.  
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Figure 3.11. Nyquist plot of L. innocua detection in PBS solution over the frequency 
spectrum ranging from 1 Hz to 100 kHz. Bacteria concentration ranged from 10 to 106 
CFU/mL. The inset shows the impedance values below 10 Hz.  is real impedance and 

is imaginary impedance representing resistance and capacitance of the biosensor. 
 
 
 

The aptamer coated IME impedance was used to calculate the difference between 

impedances after the bacteria was introduced. The capture of the bacteria onto the 

modified IMEs with aptamer was further illustrated in Figure 3.12 through the 

normalized impedance change (NIC) percentage calculated based on the Equation (3.2) 

below:  
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(3.2) 

Figure 3.12 was obtained based on the normalized impedance change versus log 

bacteria concentration. The NIC value caused by the bacteria was found to increase 

linearly with the number of cells present in the solution that would bind to the biosensor 

surface. For Listeria innocua detection, a linear relationship was found between the NIC 

(%) and the logarithmic concentration of bacteria,  in (CFU/mL), which was 

depicted by the following equation:    

The sensitivity value was calculated to be 0.7424 ± 0.0703 (

) from the linear regression. The experimental data confirmed the hypothesis that the 

modified IMEs with Listeria monocytogenes aptamers for selective binding of Listeria 

spp. were able detect the Listeria cells. The Listeria monocytogenes aptamers were 

designed to target Listeria spp. protein, internalin A which is located at the membrane 

surface,  allowing the aptamer binding sites to capture the bacteria at the sensor surface; 

therefore increasing the impedance on the surface of the interdigitated microelectrodes 

(Ohk et al., 2010). The change in the impedance of the sensor is directly proportional to 

the number of bacteria immobilized on the sensor’s surface. The increased NIC as seen 

in the Figure 3.12 confirmed that the resistance of the aptamer coated interdigitated 

microelectrodes was increased due to increasing concentration of bacterial cells in the 

PBS solution.  
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Figure 3.12. Normalized impedance change (%) versus Listeria innocua concentration 
ranging from 10 to 106 CFU/mL in PBS measured at 1 Hz using aptamer coated IMEs. 
Error bars were based on the standard deviations of means from triplicate tests. 
 
 
 

A calibration curve for detection of Listeria innocua was obtained by plotting 

impedance difference (∆Z) versus logarithm of bacteria concentration. Impedance 

difference was calculated using Equation 3.3:  

 
 

(3.3) 

y = 0.7424 log(CL. innocua) + 2.7941 
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where bacteriaZ  the total impedance (Ohms) measured for a given bacteria concentration 

and aptamerZ  is the total impedance (Ohms) measured without bacteria and it was 

considered the baseline of the aptamer coated IMEs biosensor.  

The results are shown in Figure 3.13 as a function of total impedance difference 

at 1 Hz for six bacteria concentration whereas figure 3.12 normalized the impedance 

difference by multiplying by 100. Figure 3.13 demonstrated a linear relationship found 

between (Ohms) and the bacteria concentration,  in log (CFU/ml), to be 

depicted by the following equation . The 

sensitivity was determined to be 268.1 ± 25.40 (Ohms/log [CFU/mL]). The lower 

detection limit (LDL) was calculated based on the signal/noise of 3 where noise is 

defined as measured impedance, aptamerZ (control experiment), which is the aptamer 

coated IMEs without the bacteria.  . The LDL Equation 3.4 was used as described below:  

  (3.4) 

where  is the slope and is y-intercept of the linear calibration plot shown in Figure 

3.13,  is the impedance ( aptamerZ ) standard deviation of the control experiment (Tolba 

et al., 2012; J. Wang, 2006). The lower detection limit and its standard deviation of the 

aptasensor for L. innocua were found to be 5.39 ± 0.21 CFU/mL. The total detection 

time from introducing the bacteria samples to impedance measurements was 17 minutes. 

The protein binding of bacterial cells to the aptamer surface was allowed for 15 minutes 

while stirring the solution at 450 rpm at room temperature, followed by the EIS analysis 

which in average would take 2 min. These results indicated that the aptasensor was 
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capable of detecting L. innocua, at a significantly low detection limit using a linear 

calibration curve throughout a wide range of bacteria concentration without the need for 

labels or pre-concentration, therefore, decreasing the detection time.  

 
 
 

 
 
 
 
Figure 3.13. Detection of L. innocua in PBS solution using aptamers functionalized 
IMEs through impedance changes measured at 1 Hz. Listeria innocua concentration 
ranged from 10 to 106 CFU/mL. Error bars were based on the standard deviations of 
means in triplicate tests. Lower detection limit (LDL) line was determined based on 
signal/noise ratio multiplied by 3. 
 
 
 
 

ΔZ = 268.1log(CL.innocua) + 1009 
R² = 0.9653 

0.00 

1000.00 

2000.00 

3000.00 

4000.00 

5000.00 

6000.00 

0.1 1 10 100 1000 10000 100000 1000000 

Im
pe

da
nc

e 
di

ff
er

en
ce

. ∆
Z 

[O
hm

s]
 

Bacteria concentration [CFU/mL] 

Impedance difference versus Listeria innocua concentration 

LDL 



 

95 

 

The total impedance Bode and Nyquist plots, sensitivity, and lower limit 

detection results demonstrated the binding of L. innocua to Listeria monocytogenes 

aptamers-functionalized IMEs. The combination of specific protein biorecognition via 

covalently adsorbed aptamers onto the surface of electrodes with EIS detection method 

provided a sensitive, rapid, and label-free biosensor. The developed miniaturized 

aptamer based biosensor was able to monitor direct electrochemical changes using 

impedance to detect bacteria attachment to the aptamers. The developed impedance 

aptasensor to capture Listeria spp. had lower detection limit, higher sensitivity, and 

shorter detection time as compared to the biosensors reported in the literature shown in 

Table 3.3. Table 3.3 summarized the impedance based biosensors used to detect Listeria 

spp. on various electrode types. The study by (R. Wang et al., 2008) showed the 

detection range from 102 to 107 CFU/mL for Listeria monocytogenes; however, no linear 

correlation was found for this bacteria range. The studies performed in the past used 

antibodies or growth medium in order to detect Listeria as compared to the aptamers 

which offer the advantage of chemical synthesis with high purity avoiding batch-to-

batch variations and longer shelf-life (Wang et al., 2012). The study performed by Tolba 

et al. (2012) reported an impedimetric biosensor using the cell wall binding domain 

(CBD) of bacteriophage-encoded peptidoglycan hydrolases (endolysin) immobilized on 

a gold screen printed electrode (SPE) using amine-coupled chemistry for the detection of 

Listeria bacteria cells in PBS solution. The disadvantage of this method was that it 

required long pre-conditioning steps for the electrodes of 16 hours immersing in a 1 mM 

ethanolic solution of 11-mercaptoundecanoic acid (MUA) at room temperature in order 
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to detect the bacteria (Tolba et al., 2012). Furthermore, the linear range and detection 

limits reported are for significantly high bacteria concentrations (104 to 109 CFU/mL) 

that do not meet the required detection levels in the food industry (below 10 CFU/mL). 

 
 
 
Table 3.3. Comparison of lab-on-a-chip impedimetric biosensors for detection of 
Listeria spp. 
 

Biosensor type Impedance 
detection 
technique 

Detection 
time 

Limit of 
detection 

[CFU/mL] 

Bacteria 
range 

[CFU/mL] 

Reference 

Flow cell with 
embedded Pt-

IMEs 

Metabolites 
produced by 

bacterial cells as a 
result of growth 
in Tris-Gly-Dext 

(no 
biorecognition 

element) 

2 hrs 

1.9 x 107 – L. 
innocua 

3.80 x 107 – L. 
monocytogenes 

107 to 109 (Gómez et 
al., 2002) 

TiO2 nanowire 
bundle 

microelectrodes 

Biorecognition 
element – 

antibodies (Abs) 
50 minutes 4.7 x 102 102 to 107 

(R. Wang 
et al., 
2008) 

Gold screen 
printed electrodes 

(SPE) 

Immobilization of 
biorecognition 

element-
Endolysin on SPE 

30 minutes 

1.1 x 104 – pure 
bacteria culture 
1.1 x 105 – 2% 

milk 

104 to 109 (Tolba et 
al., 2012) 

Pt-IMEs 

Biorecognition 
element – Listeria 

monocytogenes 
aptamers 

17 minutes 5.39 101 to 106 This study 

 
 
 
3.5 Conclusions  

An impedimetric aptasensor was developed using miniaturized interdigitated 

microelectrodes (IMEs) array with the biorecognition element, Listeria monocytogenes 

aptamers, for rapid, sensitive and lower detection limit of Listeria spp. in PBS solution. 

The loading of aptamer onto the IMEs surface was optimized using covalently 
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adsorption and EIS analysis. Listeria monocytogenes aptamers were reduced using DTT 

reduction protocol and six aptamer concentration were functionalized onto the IMEs 

surface. The aptamer based biosensor was saturated at 800 nM, which was used to 

functionalize the IMEs surface to detect the targeted bacteria. Electrochemical 

impedance spectroscopy analysis was able to detect the surface modification due to 

aptamers attachment and protein binding of Listeria innocua; providing a direct 

technique for Listeria spp. detection without the need for label amplification or sample 

pre-concentration steps. The aptasensor was capable to detect bacteria  throughout a 

wide range of bacteria concentration from 10 to 106 CFU/mL with a sensitivity value of 

268.1 ± 25.40 (Ohms/log [CFU/mL]) and lower detection limit of 5.39 ± 0.21 CFU/mL 

in 17 min, which are lower than the values reported previously in the literature. In this 

study, real-time, highly sensitive, rapid and portable aptamer based biosensor was 

demonstrated to detect Listeria spp. and could be used in future food safety applications. 

The developed biosensor could be implemented in field conditions to detect foodborne 

pathogens in food products to ensure public health and to promote food safety. 
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4 CHAPTER IV  

APTASENSOR ASSISTED WITH DIELECTROPHORESIS FOR ENHANCED 

BACTERIA DETECTION 

4.1 Overview 

Dielectrophoresis (DEP) technique has been used in combination with label-free 

impedimetric biosensors to improve the capture efficiency of the target bacteria and 

ultimately detection. However, there is still a need to reduce detection limits for real-

time, highly sensitive and reliable biosensing platforms to meet the demands of on-site 

analysis of food products. Furthermore, DEP can be used to distinguish between live and 

dead bacteria in the food industry to determine whether a serious threat is purposed by 

live or dead bacteria after a sterilization process and to validate other intervention 

processes. The primary goal of this chapter was to develop a method based on the DEP 

mechanism to detect and distinguish between viable and non-viable bacteria. The 

optimal operating settings of the biosensor were determined by varying the frequencies 

ranging from 0.5, 1, 10, 100, 600 kHz to 1 MHz. The non-viable Listeria innocua and 

Staphylococcus aureus were used based on the hypothesis that the Listeria 

monocytogenes aptamers were selective to only viable Listeria spp. Chapter II 

demonstrated that these aptamers, which bind to membrane protein internalin A, were 

able to detect viable Listeria cells. Optimal DEP force at 10 kHz frequency and 4.24 Vpp 

(peak-to-peak voltage) was applied to conduct the experiments for viability and 

selectivity. EIS analysis from 1 Hz to 100 kHz at 100 mV amplitude was applied to 

determine the total impedance of the biosensor in the experiments.  The normalized 



 

99 

 

impedance percent change was calculated over three frequency regions from low (500 – 

1000 Hz) to medium (1 – 600 kHz) to high (600 – 1000 kHz) for bacteria concentration 

of 10, 102, and 104 CFU/mL. Normalized impedance change of 14.13 % was found to be 

in 1 – 600 kHz frequency region for the three bacteria concentrations and it 

demonstrated maximum bacteria capture efficiency. These results showed that DEP 

force enhanced the bacteria capture efficiency. Based on these results, the combination 

of DEP-EIS techniques were used to detect the aptamer selectivity for viable and non-

viable bacteria. Heat inactivated Listeria innocua was used to determine the biosensor 

response to non-viable bacteria in buffered peptone water. The developed aptasensor 

assisted with DEP was able to detect the viable and non-viable bacteria by using 

impedance difference measurement analysis with sensitivity values for viable Listeria 

spp. of 17.37 Ω/log(CFU/mL)] with lower detection limit of 7.44 ± 0.075 CFU/mL 

within 12 minutes. S. aureus was used as an interferent to detect  Listeria spp. in BPW 

solution over the bacteria concentration range of 10 – 106 CFU/mL. The developed 

biosensor showed that it was capable of distinguishing the two bacteria using impedance 

difference analysis with Listeria spp. sensitivity value of 91.28 Ω/log(CFU/mL)]. The 

lower detection limit was calculated to be 5.68 ± 0.025 CFU/mL for viable Listeria spp. 

within 12 minutes. The impedance based biosensor was also used to detect Listeria 

monocytogenes in off-the-shelf product, vegetable broth, at the same DEP-EIS 

conditions used for viability and selectivity methods with the detection limit of 4.82 ± 

0.01 CFU/mL in 12 min for bacteria ranging from 10 to 107 CFU/mL, with one of the 

lowest detection limits and detection times reported to date. 
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4.2  Introduction  

In chapter III, electrochemical impedance spectroscopy (EIS) analysis was able 

to detect Listeria innocua by measuring impedance changes at the electrodes surface and 

by using aptamers as the biorecognition element. The total impedance value of the 

biosensor significantly increased as the bacteria concentration ranging from 10 to 106 

CFU/mL increased. Furthermore, the method described in Chapter III followed the 

traditional test techniques where biosensors are typically immersed in a large solution 

volume containing bacteria (17 mL phosphate buffer saline). In particular, the biosensor 

was freely immersed in the solution and its surface was not in the direction of bacteria 

sedimentation, i.e., electrodes were positioned vertically instead of horizontally. 

Therefore, bacteria attachment was probabilistic and dependent on the kinematics of 

bacteria in the solution. To overcome these shortcomings, microfluidic channels are 

often used to increase the concentration of bacteria at the biosensor’s surface. However, 

using microfluidic channels in biosensors can limit the shelf-life of the device by making 

more difficult to reuse or clean the biosensor. Further microfluidic device requires an 

additional fabrication process, such as PDMS (polydimethylsiloxane) molding.  

Toward these challenges, this chapter aimed to improve the detection method of 

the aptamer-functionalized biosensor by using reduced sample volumes and 

dielectrophoresis (DEP) at an optimized frequency signal to improve the capture 

process. DEP act as magnet to polarized bacteria, however; the DEP electrostatic field 

size is typically narrow, and would only collect polarized bacteria that are at a close 

distance to the electrodes surface.  This provides an improvement over the capture 
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process discussed in Chapter III. In addition, sampling a smaller volume contained in a 

chamber enabled the design of a portable device. Furthermore, with a reduced volume 

there is a reduction in bacteria exposure and contamination compared to a larger sample 

volume. In Chapter III, the capture mechanism was based on the random movement of 

bacteria without external force. The aptasensor provided a strong attachment using 

aptamers but did not attract the bacteria from solution to the surface.  

Dielectrophoresis (DEP) techniques have been used in addition to label-free 

impedimetric methods to improve the capture efficiency of foodborne pathogens. 

Previous studies have used DEP to overcome the detection limit due to limited physical 

sensitivities of the transducers and low immune-capture efficiency of the immobilized 

antibodies on the electrode surfaces (Suehiro et al., 2006; Yang, 2009). DEP has been 

used to manipulate biological cells for filtering, focusing, sorting, and trapping in desired 

position and orientation (Cheng et al., 2007). Several other methods have been used for 

manipulation, concentration, and separation of biological particles that use various kinds 

of physical forces from mechanical, hydrodynamic, ultrasonic, optical, and electro-

magnetic principles (Li & Bashir, 2002). Among these methods, dielectrophoresis 

techniques are proved to be the most suitable on micro-fabricated electrodes because of 

its relative ease of micro-scale generation and structuring of an electric field on the 

microchips (Li & Bashir, 2002).  

Dielectrophoresis is the electrokinetic motion of dielectrically polarized particles 

in non-uniform  external electric fields, DEP can attract polarized particles to the  

electric field, in order to trap bacteria onto an interdigitated microelectrode chip (Suehiro 



 

102 

 

et al., 2005). The trapped bacteria onto the surface of the electrodes increase the 

impedance of the biosensor and consequently improve detection. In particular, when a 

non-uniform form AC electrical field is applied, DEP forces occur on bacteria cells that 

interact with field-induced electrical polarization (Li & Bashir, 2002). The time-

averaged DEP force exerted by the electrodes on a dielectric sphere in a medium can be 

represented in Equation 4.1 as:  

 rmscmm EfrF 23
0 ]Re[2 ∇= εεπ  (4.1) 

 
where 𝜀0 [C/Vm] is the vaccumm dielectric constant, 𝜀𝑚 [C/Vm] is the permittivity of 

the particle, r [μm] is the particle radius (in this case bacterial radius), 𝐸𝑟𝑚𝑠 [V/m] is the 

root mean square value of the electric field (Yang, 2012). 𝑅𝑒[𝑓𝑐𝑚] is the real part of the 

Clausius-Mossotti factor (𝑓𝑐𝑚) defined Equation(4.2 as:   
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where )(* σεε ppp j−=  and ωσεε /)(*
mmm j−=  are defined as the relative complex 

permittivities of the particle and the medium, respectively; σ [S/m] is the conductivity, 𝜀 

[C/Vm] is the permittivity, ω [radians/s] is the angular frequency of the applied electric 

field, and 1−=j  (Yang, 2012). The force acting on the particle is varied by the 

frequency, which is indicated by the real part of frequency dependent term [ ]f cmRe . A 

particle can experience positive or negative DEP forces depending on the particle 

relative polarization with respect to the suspending medium, for example, the particle 

will experience positive DEP when [ ] 0Re >f cm  moving the particle towards stronger 
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electrical field region. Whereas, a particle will experience negative DEP when 

[ ] 0Re <f cm  moving the particle towards weaker electrical field region (Li & Bashir, 

2002; Yang, 2009).    

DEP assisted bacteria detection has been used for various devices including the 

detection of Escherichia coli, L. monocytogenes, and Salmonella. (Gómez-Sjöberg et al., 

2005) studied the detection of the Listeria cells using interdigitated microelectrode array 

(IMEs) biosensor that incorporated DEP as a trapping tool to collect bacteria into a 

microfluidic chamber followed by impedance measurements of bacteria growth. The 

biosensor contained two sets of IMEs, one set was used to concentrate and capture the 

bacteria cells from a main channel into a small chamber (400 pL) using dielectrophoresis 

and the other set of IMEs was for monitoring the impedance change in the small 

chamber by detecting bacteria’s metabolic activity. The bacteria were incubated in the 

small chamber for a minimum of 12 hours at 37° C in Luria-Bertani (LB) broth. The 

bacteria’s metabolism detection was based on impedance method and was conducted for 

1 hour after the incubation time with the bacteria ranging from 104 to 105 CFU/mL with 

lower detection limit of 8.0 x 104 CFU/mL. In other studies by (Yang, 2009) and (Koo et 

al., 2009), DEP technique was used to effectively enhance the antibody capture 

efficiency in biosensor/biochip platforms to improve the detection of bacteria cells. The 

immuno-capture efficiencies of antibodies immobilized on solid surfaces to bacteria 

cells are generally considered very low ranging from 0.01 to 16% so DEP technique has 

been used to enhance the capture efficiency (Yang, 2012). For example, DEP enhanced 

immunocapture of Salmonella cells were used on a non-flow IMEs based biosensor and 
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the bacteria cells were captured by the immobilized antibodies on the surface of IMEs in 

a study performed byYang (2009). DEP signal was applied for 15 or 30 minutes to 

capture the bacteria cells and then the immune-captured bacteria cells were detected by 

the sandwich format ELISA (enzyme-linked immunosorbent assay) and quantitative 

signal was produced by absorbance measurements at 450 nm. The lower detection limit 

on chip ELISA detection with DEP assistance was 5.0 x 104 CFU/mL for bacteria 

ranging from 104 to 107 CFU/mL within ~1 hour. The immuno-capture efficiency with 

DEP enhancement was 3-5 folds higher (64.7 – 105.2%) compared to without DEP. 

(Koo et al., 2009) reported a DEP enhanced biosensor based on IMEs for the detection 

of Listeria monocytogenes by immobilizing a heat shock protein 60 (Hsp60) onto the 

surface of the electrodes. The capture efficiency was increased 60% when DEP force 

was applied for 5 minutes at the beginning of the final 1 hour incubation step at room 

temperature. The bacteria cells were detected by fluorescence microscopy images after 

normalizing the cell counts from nine images. The lower detection range was 107 

CFU/mL for the bacteria concentration ranging from 106 to 107 CFU/mL.  

According to the studies by (Yang, 2009) and (Koo et al., 2009) DEP assisted 

immuno-capture techniques have showed two significant functions in the biochip 

platforms to improve the detection (i) DEP can concentrate bacterial cells from the 

suspension to different locations on the chip surface, which make it very useful in 

manipulating bacterial cells in biosensors and biochips; (ii) DEP can make bacterial cells 

in close contact with the immobilized antibodies on the chip surface, which can 
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effectively improve the immuno-capture efficiency and ultimately detection (Yang, 

2012). 

DEP has also been employed to study the selective capture of viable bacteria in 

combination with IMEs based biosensing platforms. Viability test studies the separation 

of the viable and non-viable cells, which could play an important role in the food 

industry to determine whether live or dead bacteria purpose a serious threat after a 

sterilization process. For instance, dead Listeria does not purpose harm or fatal threats to 

consumers, so it is vital to detect live bacteria. Both live and dead bacteria exhibit 

different electrical properties and polarization boundaries depending on the applied 

frequency. The bacterium cell membrane consists of a thin lipid bi-layer, which contains 

many proteins making it highly insulating with conductivity values of approximately 10-

7 S/m whereas the conductivity values of the cell interior (i.e., cytoplasma) would be 

approximately 1 S/m due to the presence of many dissolved charged molecules.  The 

conductivity of dead bacteria cell membrane could increase by a factor of 104 due to an 

increase in the permeability of the cell membrane and free exchange of cell contents 

with external medium through small pores (Li & Bashir, 2002). There are few studies 

that demonstrate the selective separation or detection of viable and non-viable bacteria. 

For example, (Li & Bashir, 2002) used DEP force to separate live and dead Listeria 

innocua onto IMEs by utilizing the difference of electrical properties between live and 

dead cells. The separation efficiency was determined by counting the live and dead cells 

collecting at the electrodes and the viability of the cells was characterized by a rapid 

epifluorescence staining method. The dielectrophoretic separation of live and heat-
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treated L. innocua cells was achieved in DI water with the efficiency of 0% at bacteria 

concentration of 105 CFU/mL within 20 minutes. In other study by (Suehiro, Hamada, et 

al., 2003), reported detection of viable and non-viable E. coli strain K12 bacteria onto 

interdigitated microelectrode arrays. The working principle was based on the difference 

of the electrical properties of live and dead bacteria. Optimal frequency of 1 MHz was 

determined at fixed voltage magnitude (3 V peak-to-peak) at which only viable type 

bacteria could be trapped. Using this DEP technique selective trapping of viable bacteria 

was measured by using impedance (conductance, μS) with the lower detection range of 5 

x 105 CFU/mL from bacteria concentration ranging from 105 to 106 CFU/mL within 15 

minutes.   

The lowest detection limit using DEP techniques of foodborne pathogen bacteria 

was reported to be 102 CFU/mL for E. coli by (Suehiro et al., 2005) with detection time 

of 3 hours. Lower detection time has been reported within 15 minutes for foodborne 

pathogen bacteria; however, with high bacteria concentration of 105 CFU/mL (Suehiro, 

Noutomi, et al., 2003). Therefore, further studies are needed to improve both the 

detection limit and time using DEP techniques. DEP is desirable in bacteria detection 

due to its easy implementation with miniaturized biosensor devices, non-destructive 

methods during the detection of the bacteria, and most importantly it can be used to 

manipulate, concentrate, separate or trap bacteria in the desired area for detection. To 

date no biosensors based on IMEs have been reported that are integrated with DEP 

technique and aptamers for the rapid, sensitive and reliable detection of foodborne 

pathogens. 
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In this study, dielectrophoresis (DEP) is used as a mechanism that generates 

electrostatic force-field that attracts the polarized bacteria close to the force-field using 

IMEs coated with aptamers. The hypothesis behind using DEP was that aptamer coated 

electrodes would provide a strong binding that maintains the trapped bacteria attached 

close to the electrode surface when the DEP signal is removed; therefore, increasing the 

impedance. The increase in the impedance was measured using EIS. The purpose of EIS 

test was to determine if significant amount of bacteria was deposited and remained 

attached to the surface after each DEP test. The number of bacteria, which are attracted 

from the solution to the surface of aptamer coated IMEs depends on potential magnitude 

(peak-to-peak voltage), frequency, and shape of input signal. Commonly used DEP 

signal is a sinusoidal input, which proved to have a good overall trapping efficiency 

(Cheng et al., 2007; Li & Bashir, 2002; Yang, 2009). Generally, in a linear model, the 

frequency magnitude of the input signal affects the strength of the electrostatic field 

output as given in Equation 4.1. In this study, bacteria capture efficiency was studied by 

DEP force applied at several high frequencies from 0.5, 1, 10, 100, 600 kHz to 1 MHz at 

fixed potential magnitude of peak-to-peak voltage of 4.24 Vpp for 30 minutes. Optimal 

frequency and time was selected based on impedance signals reaching steady state.  

Selectivity of aptamer to viable and non-viable Listeria spp. was evaluated in this 

study and also biosensor response was investigated in the presence of interferent 

bacteria, Staphylococcus aureus. A unique combination of DEP-EIS technique was used 

to determine the biosensor response to the viable bacteria and selectivity experiments 

based on optimal frequency (10 kHz) and time (10 minutes). Comparative methods were 



 

108 

 

developed to test the hypothesis that the IMEs functionalized with Listeria 

monocytogenes aptamer would only establish a strong binding with Listeria spp.. DEP 

technique was used to improve the capture efficiency by attracting bacteria to the surface 

of aptamer-coated IMEs. Finally, DEP force was applied to detect Listeria 

monocytogenes in vegetable broth using 10 kHz for 10 minutes at peak-to-peak voltage 

of 4.24 Vpp. 

4.3 Materials and Methods 

4.3.1 Materials and equipment 

Detailed descriptions of chemicals and equipment used for the aptamer biosensor 

fabrication are listed in Chapter II from 2.3.1 through 2.3.3 sections. Buffered peptone 

water (BPW) was purchased from HiMedia (Mumbai, India). Staphylococcus aureus 

(ATTC 25923)  and L. monocytogenes Scott A 46 (ATCC 15313) were purchased from 

American Type Culture Collection and cultured in tryptic soy broth (TSB) bought from 

HiMedia (Mumbai, India). Oxford Listeria-selective agar and Oxford Listeria-selective 

supplement were purchased from EMD Performance Materials (Sommerville, NJ). 

Petrifilms were purchased from (3M aerobic plate count, St. Paul, MN). Vegetable broth 

was purchased from a local grocery store, H-E-B (College Station, TX). Autoclave from 

Sanyo (Westbury, NY) Model MLS-3751/3751L was used for thermal sterilization of 

the bacteria. Sulfuric acid and hydrogen peroxide were purchased from Avantor 

Performance Materials (Center Valley, PA). Surebonder (Wauconda, IL) hot glue gun 

and glue sticks were used for small volume chamber. Silicone rubber was purchased 

from Momentive Performance Materials Inc. (Huntersville, NC) to attach the biosensor 
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with cured hot glue. DeWalt blade  (1/4”-1/2”) was purchased from DeWalt Industrial 

Tool Co. (Towson, MD) to cut a slit in an acrylic plastic container (Oklahoma City, OK) 

with 1” width and 1” height . CHI 600E potentiostat/impedance analyzer and CHI6044e 

software (Austin, TX) was used to analyze the electrochemical response of static DEP-

EIS and dynamic DEP modes. Marker Gene Live: Dead/cytotoxicity assay kit was 

purchased from Marker Gene technologies, Inc (Eugene, OR). Microscopy and imaging 

center facility at Texas A&M University (College Station, TX) was used for microscopy 

imaging. Zeiss Axiophot (Thornwood, NY) was used with Plan Apochromat 25x/0.8 

dipping objective lens from Zeiss microscopy (Thornwood, NY).  

4.3.2 Theory and application of EIS and DEP-EIS 

A unique combination of dielectrophoresis and electrochemical impedance 

spectroscopy (EIS) measurements was developed to improve capture efficiency of the 

targeted bacteria. In this study, bacteria capture efficiency was studied based on 

impedance changes that can be described based on two modes 1) static DEP-EIS 

technique, where the biosensor device impedance was measured after the DEP signal 

was turned off, and 2) dynamic DEP impedance technique, where the biosensor device 

impedance was measured during active DEP test.  

4.3.2.1 Static DEP-EIS method 

EIS impedance measurements were carried out following the DEP tests. The 

DEP was conducted for excitation signal input of various sinusoidal frequencies at fixed 

amplitude of 1.5 Vpp. The purpose of this test was to measure the change of total 

impedance of the aptamer based biosensor due to entrapment of bacteria while DEP 
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signal was turned off.  Then, the magnitude of impedance was measured at low 

frequency, 1 Hz, to determine if significant amount of bacteria was deposited and 

remained attached to the biosensor surface after each DEP frequency test.  The 

experiment started with measuring EIS impedance of biosensor for a fixed volume, 0v , of 

buffered peptone water (BPW) solution without bacteria. DEP signal was applied across 

the electrodes for a fixed runtime at frequencies input of 500 Hz, 1, 10, 100, 600 kHz 

and 1 MHz expressed as },...,1{ nifi == . Then, the BPW solution was replaced with a 

fixed volume ( 0v ) containing bacteria and EIS scan was ran. DEP signal of known 

frequency ( if ) was applied across the electrodes and then the signal was turned off.  A 

quick EIS test scan was conducted to cover a range of frequency from 1 Hz to 1 MHz. 

Following the EIS test, another DEP test signal at frequency 1+if  was fed to the 

biosensor. The process was repeated to cover all the DEP frequencies ranging from 500 

Hz, 1, 10, 100, 600 kHz and 1 MHz. Finally, the previous steps were repeated for several 

bacteria concentrations of 102, 103, and 104 CFU/mL. Figure 4.1 demonstrates the 

predictive behavior of bacteria alignment onto the aptamer coated IMEs in a successive 

DEP-EIS test that could be based on the following mechanisms: 

a. The spatial distribution of bacteria within the vicinity of interdigitated 

microelectrodes (IMEs) in Figure 4.1b is a function of electrostatic field, which 

means impedance is a function of frequency input and can be related to Equation 

5.1. 

b. The alignment of the bacteria due to applied DEP force could be illustrated as 

Figure 4.1c. This would reflect an increase in binding between aptamer and 
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bacteria, consequently; an increase in bacteria numbers attached to the ligand site 

(aptamer binding site for Internalin A protein of bacteria) would increase the 

total impedance of the biosensor as seen in Chapter III. The overall impedance of 

the device would increase because the surface resistance of the IMEs would 

increase by obstructing the current flow. On the other side Figure 4.1d shows that 

if applied DEP force had no effect on the alignment of the bacteria then the 

capture would be just based on random attachment to the aptamer functionalized 

IMEs as shown in Figure 4.1a. Impedance change would be similar with and 

without DEP force. 

c. The number of attached bacteria to the aptamers may increase while frequency is 

changed from one value if  to another 1+if . The total impedance signal may 

follow one of the following responses during the frequency change: 

i. No change to the impedance as the frequency is increased from if to 1+if . 

This would mean that during this step  the bacteria accumulation on the 

aptamer surface reached a saturation point or peak point at if .  

ii. Decrease of the impedance as frequency is increased. This would mean 

that there is no peak or saturation point and reflect that binding strength 

between bacteria- aptamer and aptamer-IMEs might be weak. This could 

happen because change in frequency might disassemble the attached 

aptamers or bacteria on the surfaces of IMEs. 

iii. Increase of impedance as frequency is increased. This would mean that 

changing in frequency is an additive process where bacteria would be 
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able to attach to the open ligand sites as the electrostatic forces are 

increased in magnitude. This is depicted in Figure 4.1e, where an increase 

in frequency from if  to 1+if  has led to an accumulation of bacteria to the 

aptamers coated IMEs. 

 

  

 
 
 
Figure 4.1. Schematics of bacteria alignment and binding to aptamer in a successive 
DEP-EIS test. (a) Suspended bacteria. (b) Alignment of bacteria during DEP signal at 
frequency of if . (c) Bacteria alignment after DEP signal at if  was removed. (d) 
Realignment of bacteria following DEP signal of frequency 1+if . (e) Realignment of 
bacteria following removal of DEP signal of frequency 1+if . 
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4.3.2.2 Dynamic DEP impedance method 

The bacteria alignment, described in Figure 4.1 is a highly dynamic and 

probabilistic system whose measured impedance is instantaneous, i.e., time dependent. 

The time-response of a biosensor depends on the time taken by the bacteria cells to bind 

to the aptamer functionalized Pt-IMEs and the electrical field generated by DEP forces. 

The electrical field generated by DEP forces was shown to be effective at small 

distances above the electrode surface measured in microns for IME and particle sizes of 

2-4 μm dispersion (Park, Zhang, Wang, & Yang, 2011). To optimize the capture of the 

bacteria, smaller volumes would allow larger number of bacteria to be concentrated in an 

effective electrical field as compared to using larger solution volume. Therefore, a small 

chamber was designed for the DEP testing. 

Furthermore, the goal of this study was to monitor the impedance signal for a 

time period ( t∆ ) until the dynamic system reaches steady state.  This would determine 

the runtime of the DEP-EIS test. The value of impedance would follow the same 

argument made previously for DEP-EIS technique discussion except that in dynamic 

DEP impedance technique instantaneous impedance was measured, i.e., the dynamic 

impedance response. Figure 4.2 shows the schematic of the dynamic system with 

sinusoidal input and the real-time impedance measurement output. This impedance was 

recorded while running the DEP experiments as discussed in Section 4.4.2. The small 

volume chamber is discussed in Section 4.3.3.  
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Figure 4.2. DEP dynamic model. 

 
 
 
Given the complexity of bacteria movement discussed earlier, the optimal 

operating conditions of biosensor were determined using static DEP-EIS and dynamic 

DEP modes. As mentioned above in static DEP-EIS mode the biosensor impedance was 

measured after the DEP signal was turned off and in the dynamic DEP mode the 

biosensor impedance was measured during active DEP test. The DEP frequency 

magnitude and time based on biosensor performance was determined to further perform 

viability and selectivity tests (S. aureus and vegetable broth experiments) discussed in 

4.3.6, 4.3.7, and 4.3.8, respectively. The frequency was selected among 500 Hz, 1, 10, 

100, 600 kHz and 1 MHz.  

4.3.3 Aptamer coated interdigitated microelectrodes and biosensor assembly 

Aptamer stock solution preparation and immobilization onto the interdigitated 

electrodes (Pt-IMEs) was described in Chapter III section 3.3.3 expect that, for this study 

dip coating was used instead of drop coating the aptamers. Initially, the IMEs were 

cleaned with the piranha solution with the ratio of 3:1 concentrated sulfuric acid to 
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hydrogen peroxide. Piranha solution was used to remove all the organic residues from 

the surface of the IMEs. The IMEs were immersed in the piranha solution for one minute 

without exposing the bonding pads with the silver conductive epoxy. The IMEs were 

thoroughly washed with DI water for one minute to ensure proper removal of piranha 

solution residues from the surface. After, cleaning IMEs were air dried and used for 

functionalization with the aptamers. The stock solution of 100 μM Listeria 

monocytogenes aptamers (Genelink, Hawthrone, NY) was further diluted to 800 nM 

aptamer concentration in TE (10 mM Tris, 1mM EDTA, pH 7.5) solution. IMEs were 

dip coated in the 800 nM aptamer solution using 85 μL solution overnight under 

refrigeration at 5°C. Thiol terminated aptamers were attached to the Pt-IMEs by self 

assembling on the surface via covalent adsorption. The unbound aptamers were rinsed in 

10 mL of PBS followed by DI water completing the biosensor assembly.  

In this study, smaller volume of solution was spread on the top of Pt-IMEs to reduce the 

time for bacteria cells to concentrate and assemble onto aptamer functionalized IMEs. 

The dispensed solution formed an ellipsoid shape because of the hydrophobic forces 

between the solution and the silicon substrate. In addition, smaller volume was used 

because the spatial distribution of DEP force above the electrodes is dependent on the 

applied electric field and the dispersion of particles. The small volume chamber was 

designed as shown in Figure 4.3. Briefly, a slit was cut with a sharp blade to fit the 

biosensor into an acrylic plastic chamber to hold 400 μL. The chamber was filled with 

hot glue (silicone-based) up to 2 mm to the surface of the plastic chamber. The biosensor 

was inserted through the slit after the hot glue hardened (approximately 10 minutes). 
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Then, the biosensor microchip was attached to the cured glue (silicone-based) using 

silicone rubber to create a micro-chamber to hold liquid sample for bacterial detection 

testing using dielectrophoresis techniques.  

 
 
 

 
 
 
 

Figure 4.3. Small volume biosensor chamber and biosensor microchip connected to 
electrochemical analyzer. 

 
 
 
4.3.4 Bacteria culturing  

Prior to use, Listeria monocytogenes (ATCC 15313), Listeria innocua (NRCC 

B33076), and Staphylococcus aureus (ATTC 25923) cultures were stored at -80°C.  

Listeria monocytogenes and Listeria innocua bacteria were resuscitated by removing 

100 μL of an inoculum from the frozen culture and incubated in TPB for 24 hours at 
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37°C. Two successive transfers were performed in TPB media for 24 hours at 37°C. 

After the initial three transfers, to ensure the working culture was at the desired bacterial 

concentration of 107 – 108 CFU/mL, weekly transfers were made in TPB, incubated for 

24 h at 37oC, and kept in the refrigerator at 5°C. Further, serial dilutions were made to 

achieve 107-10 CFU/mL in 9 mL BPW. The dilutions were spread-plated onto Oxford 

Listeria-selective agar plates supplemented with Oxford Listeria-selective supplement 

and incubated at 37oC for 24 h to count the bacteria colonies during each testing to 

ensure the correct bacterial concentrations. Staphylococcus aureus (ATTC 25923) was 

cultured as described for Listeria spp. expect tryptic soy broth (TSB) was used for 

growth broth and serial dilution was plated on petrifilms. Petrifilms was incubated for 24 

hours at 37°C before counting the colony growth to ensure the correct bacteria 

concentrations. Thermal sterilization cycle (121oC for 15 min) was used to inactivate L. 

innocua (NRCC B33076) bacteria cells. Similarly, vegetable broth was sterilized using 

thermal sterilization cycle (121oC for 15 min) prior to testing.  

4.3.5 Detection of Listeria innocua using combined DEP-EIS experiment 

A unique combination of dielectrophoresis and electrochemical impedance 

spectroscopy measurements were developed to determine the capture efficiency of the 

targeted bacteria. DEP-EIS techniques were applied using CHI 600E 

potentiostat/impedance analyzer with CHI6044e software (Austin, TX). DEP-EIS were 

conducted in BPW solution and experimental setup included the small volume chamber 

to hold sample liquid with three electrode configuration. One of the two interdigitated 

array electrodes was connected to the working electrode, and the other was connected to 
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the reference and counter electrodes on the impedance analyzer. The IMEs were 

functionalized with thiolated aptamer as discussed in Section 4.3.3. The capacitor 

stabilizer was turned on in the CHI6044e software and the electrodes were grounded in 

order to minimize the charge buildup onto the surface of the electrodes.  

DEP was applied with the peak-to-peak voltage of 4.24 Vpp for 30 minutes at 500 

Hz, 1 kHz, 10 kHz, 100 kHz, 600 kHz, and 1 MHz. The impedance-time method was 

selected in CHI6044e software to run DEP experiments. The test was run for 30 minutes 

and steady state signal of DEP was studied to determine the time for the subsequent tests 

for viability and selectivity (for S. aureus and Listeria monocytogenes in vegetable 

broth). For EIS analysis, a sine-modulated AC potential of 100 mV was applied across 

the IMEs and impedance was measured for a frequency range of 1 Hz to 1 MHz at 12 

points per decade. EIS plot (log frequency versus impedance) and Nyquist plot 

(imaginary versus real impedance) were generated to analyze the bacteria capture 

efficiency ranging from 10 to 107 CFU/ml at various frequencies.  

DEP-EIS experiments were designed by first applying the DEP signal followed 

by measuring the impedance signal. Initially, BPW solution without bacteria at a fixed 

volume of 350 μL was first tested without applying DEP force and total impedance was 

measured with EIS scan. After that DEP signal was applied across the electrodes for 30 

minutes at a frequency input of 500 Hz, 1, 10, 100, 600 kHz or 1 MHz expressed as

},...,1{ nifi == . Then, BPW solution was replaced with 10 CFU/mL bacteria 

concentration suspended in 350 μL BPW and DEP-EIS analysis was run. DEP signal of 

known frequency ( if ) was applied across the electrodes and then the signal was turned 



 

119 

 

off. A quick EIS test scan was conducted to cover a range of frequency from 1 Hz to 1 

MHz. Following the EIS test, another DEP test signal at frequency 1+if  was applied to 

the biosensor. The process was repeated to cover all the DEP frequencies ranging from 

500 Hz, 1, 10, 100, 600 kHz to 1 MHz. Finally, these steps were repeated for bacteria 

concentrations of 10, 102 and 104 CFU/mL using a freshly functionalized biosensor 

microchip for each concentration. 

4.3.6 Aptasensor selectivity to viable and non-viable Listeria innocua experiment 

A combination of DEP-EIS techniques was implemented to determine aptamer 

based biosensor response to viable versus non-viable bacteria. However, only EIS data 

was used to analyze the results to determine the aptamer selectivity to the viable versus 

non-viable bacteria cells. The frequency of 10 kHz for 10 minutes was determined for 

DEP signal input as discussed in Section 4.4.2. DEP was applied with the peak to peak 

voltage of 4.24 Vpp. The total impedance of viable and non-viable bacteria was 

determined using optimal 800 nM aptamer concentration for IMEs. EIS test was run at 

frequency range of 1 Hz to 1 MHz at 12 points per decade and 100 mV potential.  

The viability test procedures were developed considering that the non-viable 

bacteria had higher conductivity than viable bacteria (Li & Bashir, 2002). The rationale 

behind developing a viability protocol was that the non-viable bacteria would not attach 

to the aptamers due to denaturing of Internalin A (In1A) protein on the cell membrane of 

the bacteria since Listeria monocytogenes aptamers were selected to recognize In1A to 

capture the bacteria. Therefore, adding non-viable before viable bacteria allowed to test 

the difference between total impedance change in the same experiment, i.e.; without 
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using a new sensor. In theory, the increase in impedance signal would be higher for 

viable cells than for non-viable cells. The following procedures were used to run the 

viability test:  

1. DEP signal with the peak to peak voltage of 4.24 Vpp was applied to a small 

BPW solution volume (350 μL) without bacteria at the optimal frequency of 10 

kHz was applied for 10 minutes. EIS scan, at frequency range of 1 Hz to 1 MHz 

at 12 points per decade and 100 mV potential, was run after DEP signal was 

turned off to establish the baseline of the biosensor after DEP-EIS test. 

2. The selectivity of the aptamer to non-viable bacteria, L. inoccua, was determined 

by adding 50 μL to the initial volume, 350 μL, followed by DEP and EIS scan 

(DEP-EIS test). The impedance change measured from the baseline would be due 

to the presence of non-viable bacteria in the solution and/or attached to the 

aptamers coated IMEs. 

3. BPW solution with non-viable bacteria was removed and the biosensor was 

rinsed with DI water. Next, BPW solution, 350 μL, without bacteria was added 

and DEP-EIS test was performed, to this solution to record a new baseline. This 

step was performed to remove the bacteria from the solution making sure the 

impedance change measured was only due to the bacteria that were in direct 

contact with the aptamer coated-electrodes. 

4. Viable, L. innocua was added to 350 μL and a final DEP-EIS test was performed. 

The impedance change measured from the new baseline would be due to the 
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presence of viable bacteria in the solution and/or attached to the aptamers coated 

IMEs. 

5.  BPW with viable bacteria solution from step 4 was removed and the device was 

rinsed with DI water. Following, BPW solution, 350 μL, without bacteria was 

added and DEP-EIS test was performed. This step was performed to remove the 

bacteria from the solution making sure the impedance change measured is only 

due to the bacteria that is in direct contact with the aptamer coated IMEs. 

6. These procedures were repeated for various bacteria concentrations, i.e.; 10, 100, 

and 1000 CFU/mL.  

4.3.7 Aptasensor selectivity to Listeria innocua using an interferent 

Staphylococcus aureus experiment 

The same principles and protocols were followed as discussed in Section 4.3.6 

for viability experiments. The concentration of Staphylococcus aureus (ATTC 25923) 

and Listeria innocua (NRCC B33076) ranging from 10 to 106 CFU/mL were used to 

determine the selectivity of the biosensor to the Listeria monocytogenes aptamers used 

to capture Listeria spp. The aptasensor was said selective to Listeria innocua if the 

relative impedance change was higher for Listeria innocua than for Staphylococcus 

aureus. The relative impedance comparison included: 1) impedance change measured 

before and after washing off the bacteria from the aptasensor surface, and 2) impedance 

change measured before and after loading each bacteria onto aptasensor surface. These 

criteria were used to determine if the Listeria monocytogenes aptamers were selective to 

Listeria spp. DEP was applied with the peak to peak voltage of 4.24 Vpp for 10 minutes 
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at 10 kHz. EIS test was run at frequency range of 1 Hz to 100 kHz at 12 points per 

decade and 100 mV potential.  

4.3.8 Detection of Listeria monocytogenes in off-the-shelf product experiment 

The aptasensor was tested for the detection of Listeria monocytogenes for 

concentrations ranging from 10 to 107 CFU/mL inoculated in in vegetable broth using 

DEP-EIS test .Vegetable broth was sterilized using thermal sterilization (121oC for 15 

min) to ensure that only the targeted bacteria were present during the testing. Control 

samples, i.e.; non-inoculated vegetable broth, were tested to determine the baseline for 

the aptamer coated IMEs biosensor using total impedance as the method to compare and 

quantify the inoculated sample with L. monocytogenes. The small volume set-up 

containing the aptasensor was first used with 350 μL of vegetable broth solution without 

bacteria for the baseline measurements followed by the addition of 50 μL increments of 

Listeria monocytogenes with concentrations ranging from 10 to 107 CFU/mL into the 

vegetable broth.  

4.3.9 Microscopy imaging  

Optical microscopy of stained bacteria is the only commonly method used to 

examine the alignment of bacteria during the DEP process (Cheng et al., 2007; Koo et 

al., 2009; Li & Bashir, 2002). Zeiss Axiophot microscope (Thornwood, NY ) with 

dipping objective lens (Plan Apochromat 25x/0.8 magnification, Zeiss microscopy 

(Thornwood, NY )) and BPW solution was used for imaging studies. Images were 

collected using the CoolSNAP CF monochrome CCD camera from Roper Scientific, Inc. 

(Tucson, Arizona). BPW was used due to its colorless properties as compared to PBS 
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solution. Dipping objective lens were used to dip into the BPW solution to reduce the 

working distance from the lens to the IMEs as compare to regular objective lens. 

Live/Dead staining reagents were prepared using Marker Gene Technologies protocol 

(Marker Gene Technologies). Live and dead bacteria cultures of Listeria innocua were 

prepared by washing the cells three times in PBS solution. Briefly, 2 mL of 108 CFU/mL 

Listeria innocua in PBS were centrifuged at 13,000x g for 30 seconds. The bacteria cells 

were collected at the bottom of the vial and re-suspended in 2 mL of PBS solution. This 

procedure was repeated three times to wash the cells for proper bacteria staining. Both 

live and dead bacteria cells (200 μL) were re-suspended in 200 μL of live and dead 

staining dyes. Then, 30 μL of the stained bacteria cells were further diluted into 500 μL 

of BPW solution and used for imaging of live and dead Listeria innocua. The bacteria 

concentration used for imaging was 104 CFU/μL or 107 CFU/mL. The images were 

obtained before and after applying the DEP force at 10 kHz for 5 min and 4.24 Vpp. 

Real-time images were captured during the DEP test to see the alignment of the bacteria 

cells onto the aptamer coated IMEs. Images were also taken after washing the biosensor 

with DI water to monitor the bacteria attachment after applying the DEP test. The 

images were captured for both live and dead bacteria cells.  

4.3.10 Statistical analysis 

MatLAB v8.3 and statistical toolbox software (MarthWork, Inc., Natick, MA) 

was used for all statistical analyses. Means and standard deviations were calculated 

based on triplicate tests.  Differences between variables was tested for significance using 

one-way analysis of variance (ANOVA) and significantly different means (p < 0.05) was 
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separated using Tukey’s Honestly Significant Differences (HSD) test. The lower 

detection limits was determined as a signal/noise ratio of 3, where noise is defined as the 

standard deviation of the control test without bacteria (Tolba et al., 2012; J. Wang, 

2006). 

4.4 Results and Discussion  

4.4.1 Detection of Listeria innocua using combined DEP-EIS   

Figure 4.4A - 4.4C show the total impedance magnitude of captured L. innocua 

onto the aptamer functionalized IMEs measured after various DEP frequencies were 

applied including 500 Hz, 1, 10, 100, 600 kHz, and 1 MHz with the peak to peak voltage 

of 4.24 Vpp for 30 minutes.  The EIS signal was measured after the DEP signal was 

turned off at various bacteria concentrations with the frequency sweeping from 1 Hz to 1 

MHz, amplitude of 100 mV, and 12 points per decade points. In addition, a smaller 

sample volume was dispensed over the biosensor surface. This allowed for direct contact 

of the bacteria to the IMEs electrodes using a thin liquid layer on top of the IMEs; 

therefore, improving the capture process. The total impedance versus log frequency is 

shown in Figure 4.4A - 4.4C for bacteria concentrations of 10, 102, and 104 CFU/mL, 

respectively.  

The total impedance value increased as the applied DEP frequency increased for 

all bacteria concentrations tested (Figure 4.4A – 4.4C) suggesting that applied DEP 

signal captured the bacteria from the solution and trapped it onto the aptamer 

functionalized IMEs surface.  The theory discussed in Section 4.3.2 illustrated that 

increased impedance with changing frequency from if  to 1+if  was a result of an 
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additive process where bacteria was able to attach to the open ligand sites (aptamer 

binding sites) as the electrostatic forces were increased in magnitude. This trend showed 

that increasing DEP frequency signal led to bacteria accumulation at the aptamer binding 

sites despite of the polarity changes that might have occurred due to the nature of 

bacteria interaction with the DEP signal (Yang, 2009). In addition, this additive process 

showed  the ability of the aptamer coated IMEs to not allow the bacteria to be released 

back to the solution proving that the bacteria to aptamer binding is strong regardless of 

the applied DEP signal. The binding affinity, KD, of Listeria monocytogenes aptamers 

that binds to the membrane protein Internalin A at the targeted bacteria, Listeria spp., is 

83.50 μM (GeneLink, 2004). The KD values for both aptamers and antibodies are on 

similar magnitude order; however, aptamers offer the advantage of simple production 

and modification, reproducibility, and target versatility  (Dong, Xu, Yong, Chu, & 

Wang, 2014).  Figure 4.14 shows the imaging results of bacteria attachment to the 

aptamers after applying the DEP signal. These results led to an important conclusion that 

the functionalized Listeria monocytogenes aptamers that selectively bind to internalins 

proteins of the target bacteria is an excellent capture probe regardless of the frequency 

applied by the DEP signal. In other words, the aptamer coating was not compromised 

due to the effects of the electrical fields generated by DEP during the duration of the 

experiment because the aptamers were able to show increased impedance values as the 

frequency was changed. 
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Figure 4.4. EIS curves followed by the DEP test at various frequencies at L. innocua 
concentration of (A) 10 CFU/mL, (B) 102 CFU/mL, and (C) 104 CFU/mL. BPW with 
dotted blue line on the graph demonstrates impedance measurement, aptamerZ , of aptamer 
coated IMEs without bacteria concentration, i.e. 0 CFU/mL and without DEP force 
applied . The solid black line (BPW + bacteria) shows impedance measurement, 1Z , 
without applying DEP force at bacteria concentration of 10 CFU/mL. 1Z  represents the 
biosensor baseline. The total impedance measurement, fZ , of the captured bacteria onto 
the aptamer coated IMEs after applying DEP force at frequencies of 500 Hz, 1, 10, 100, 
600 kHz, and 1 MHz shown as ( 51,..., ++ iii fff  + bacteria) on the graph. 
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Figure 4.4. Continued. 
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Figure 4.5A – 4.5C show the impedance change, )( 1ZZZ f −=∆ , in Ohms at the 

applied DEP frequencies of 500 Hz, 1, 10, 100, 600 kHz, and 1 MHz for bacteria 

concentration of 10, 102, and 104 CFU/mL, respectively. As mentioned above, fZ was 

defined as total impedance measured by EIS following the DEP signal at a given 

frequency and 1Z  was the baseline impedance of an aptamer coated IMEs with a given 

bacteria concentration measured by EIS before applying the DEP signal. The graphs 

generated in Figure 4.5A - 4.5C illustrate the total impedance magnitude change versus 

log frequency scale for three bacteria concentrations. The graphs were classified into 

low, medium, and high frequency regions: 1) 500-1000 Hz, 2) 1-600 kHz, and 3) 600-

1000 kHz. Within each region, the relationship between impedance change and 

frequency was linearly proportional at the three bacteria concentrations. These results 

further confirm that the increase in impedance is due to accumulation of bacteria at 

IMEs surface as the electrical field is increased by changing the frequencies through 

three regions.  

 
 
 



 

129 

 

 

 

 
 
 
Figure 4.5. Impedance change vs. DEP frequency. ∆Z is relative to the baseline defined 
as aptamer coated electrodes with BPW bacteria solution before applying DEP signal at 
(A) 10 CFU/mL, (B) 102 CFU/mL, and (C) 104 CFU/mL. 
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Figure 4.5. Continued. 

 
 
 
A normalization factor was used to study the percentage increase in total 

impedance before and after applying DEP signal for the three bacteria concentrations 

studied. The normalization factor, N , is defined as a dimensionless quantity, and it is 

calculated by normalizing the impedance change as described on Equation 4.3:  

 100*)]/()[( 11 aptamerf ZZZZN −−=  (4.3) 
 

where aptamerZ  is the impedance (Ohms) of the aptamer coated IMEs at zero bacteria 

concentration without DEP signal. These total impedances were measured from EIS test 

and the values were determined at 1 Hz based on the discussion in Chapter III. 1ZZf −  

described the total impedance change (Ohms) occurred only due to applied DEP signal, 

which is measured at given frequency and bacteria concentration. aptamerZZ −1  described 

the impedance change only due to bacteria attachment onto the aptamer coated IMEs 
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before applying DEP signal. Therefore, the normalization Equation 4.3 expresses the 

percentage increase of bacteria due to applying DEP-EIS technique, and it is calculated 

relative to the EIS technique. The normalization curves of each concentration were 

shown in Figure 4.6A - 4.6C for bacteria concentration of 10, 102, and 104 CFU/mL, 

respectively. The sensitivity of DEP was obtained from the linear slopes in Figure 4.6A -

4.6C, where the slopes were in low, medium, and high frequency regions. Sensitivity is 

calculated based on the Equation 4.4 measured in percentage increase over log frequency 

[1/Hz]: 

 ( )








−

=
∆
∆

=

1

2

12

log
log

f
f
NN

f
NS  

(4.4) 
 

Table 4.1, summarizes the sensitivity for each region for each bacteria concentration. 

The percent increase in each region at all bacteria concentrations was positive which 

signified the total impedance values have increased from the baseline, which measured 

impedance of bacteria on aptamer coated electrodes before applying DEP signal. Thus, 

proving that the DEP signal assisted to trap bacteria onto the aptamer coated IMEs 

further increasing the capture efficiency of the biosensor. Normalized percentage change 

of impedance in each frequency is shown in Table 4.1. The highest increase is observed 

in the frequency region of 1 – 600 kHz implying better capture efficiency as compare to 

the other frequency regions.   
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Figure 4.6. Normalized impedance and sensitivity with respect to the baseline with BPW 
solution at (A) 10 CFU/mL, (B) 102 CFU/mL, and (C) 104 CFU/mL. 
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Figure 4.6. Continued. 
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Figure 4.6. Continued.  
 
 
 
Table 4.1. DEP sensitivity values measured in impedance percentage increase over log 
frequency [1/Hz] at different frequency regions. 
 

Listeria 
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10 10.62 7.4 2.42 15.5 8.35 4.3 
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4.4.2 Dynamic DEP impedance method characterization 

Dynamic DEP impedance was measured while DEP signal was active to study 

the dynamic impedance response of the biosensor .The test was carried out to 

characterize biosensor response to dynamic DEP and impedance analysis, and whether 

its impedance measurement provides a conclusive indication of the capturing 

mechanism. Impedance versus time and impedance versus phase angle were generated to 

understand the conditions for the biosensor to reach steady state based on bacteria 

interactions with aptamer coated IMEs. Optimal time and frequency magnitude were 

determined for DEP force based on the dynamic impedance response results and later 

used to perform viability and selectivity experiments discussed in the following Sections 

4.4.3 and 4.4.4. Figure 4.7A – 4.7F shows the impedance versus time and phase versus 

time plots at DEP frequencies of 500 Hz, 1, 10, 100, 600 kHz  and 1 MHz with a 

bacteria concentration of 102 CFU/mL. The impedance versus time plots shows the 

impedance signal variance during an active DEP signal. The impedance standard 

deviations for DEP frequencies of 500 Hz, 1 kHz, 10 kHz, 100 kHz, 600 kHz, and 1 

MHz were 863 Ω, 366 Ω, 9.7 Ω, 7.4 Ω, 163 Ω, and 40360 Ω, respectively. Peaks in 

impedance signal were observed at 1 MHz. The phase versus time plots for each DEP 

frequency can be described as scattered for 500 Hz, 1 kHz, and 100 kHz, steady for 10 

kHz, and switching for 600 kHz and 1 MHz. At 500 Hz and 1 kHz, the phase was 

scattered between 180 to -180 degrees and at 10 kHz was steady at -90 degrees. At 100 

kHz, the phase was scattered at zero degree. The phase was switching between 180 to -

180 degrees with a distinct signal at zero for 600 kHz and 1 MHz. 
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Figure 4.7. Impedance versus time and phase versus time are shown at DEP frequencies 
of (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, (D) 100 kHz, (E) 600 kHz, and (F) 1 MHz for L. 
innocua at a concentration of 102 CFU/mL. 
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Figure 4.7. Continued. 
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Figure 4.7. Continued.  
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Figure 4.8A – 4.8F shows impedance versus phase plots at various DEP 

frequencies. At 500 Hz and 1 kHz the plots were scattered and at 10 kHz the impedance 

data was concentrated at -90 degrees phase and 100 Ω. At 100 kHz, the impedance data 

was scattered between 20 to -20 degrees and the impedance showed an increasing trend 

over phase.  At 600 kHz, the impedance data was distinctively peaked at 180, -180, and 

0 degrees. The same trend was observed at 1 MHz with some scattered points. Based on  

Figure 4.7A – 4.7F and Figure 4.8A – 4.8F that show DEP frequencies signal results, the 

frequency of 10 kHz was chosen because impedance was not changing over time for a 

fixed bacteria concentration providing reliable and quantifiable results  The impedance 

signal was shown to be steady for 30 minutes at 10 kHz. The time frame of 10 minutes 

was chosen to allow time for bacteria and aptamer interactions to take place. The system 

readings are based on Control and Signal theory, -90 degree shift in the phase diagrams 

indicated that the model could be represented by a first order linear dynamic system. 

This system is stable with one pole representing the following transfer function written 

in Laplace domain  

 ( ) ( )as
KsZ
+

=  
(4.5) 

 

where  K  is the system gain and as −=  is the system pole. The solution of this system 

is a decaying exponential function (Ogata, 2010). Secondly, it showed that the 

impedance measurement readings had small variance. Unlike other frequencies, this 

provided enough certainty in reading the impedance output.  The behavior could be due 

to electrostatic interference between the solution and the electric field generated by 
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comb fingers discussed in Figure 4.1. Similar trends as discussed in this section were 

seen in DEP signal for bacteria concentrations at 10 and 104 CFU/mL. The results are 

compiled in Appendix A showing the same trends.   

 
 
 

 
 
 
 
Figure 4.8. Impedance versus phase are shown at (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, 
(D) 100 kHz, (E) 600 kHz, and (F) 1 MHz DEP frequencies for L. innocua at a 
concentration of 102 CFU/mL. The legend data implies impedance data on the graph. 
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Figure 4.8. Continued. 
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Figure 4.8. Continued. 
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Figure 4.8. Continued. 
 
 
 
4.4.3 Aptasensor selectivity to viable and non-viable Listeria innocua 

Figure 4.9 show the Bode plots (log frequency versus total impedance) generated 

using the viability protocol discussed in Section 4.3.6. The viability procedures as 

described in Table 4.2 included measuring the total impedance by EIS scan from 1 Hz to 

1 MHz after applying the DEP signal at 10 kHz for 10 minutes. The biosensor was 

cleaned with piranha solution before coating the IMEs with 800 nM aptamer 

concentration. Table 4.2 also discusses the expected results based on the developed 

procedures and the results that were achieved after running the experiments. 
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discussed below:  

1) Before washing: Impedance measurements due to bacteria presence in both: the 

aptamers coated IMEs and in the BPW suspension. The impedance magnitude 

obtained in step 2 and 4 in Table 4.2 describes that the measurements were taken 

after the addition of viable and non-viable bacteria.  

2) After washing: Impedance measurements solely due to the bacteria attachment to 

the aptamers coated IMEs after washing. The impedance measurements in step 3 

and 5 as described in Table 4.2 provided the impedance magnitude after 

removing viable and non-viable bacteria suspension followed by rinsing the 

device.  
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Table 4.2. Viable and non-viable test procedures with comparison between expected and 
experimental data**. 
 

Procedures Expected impedance 
results 

Experimental impedance 
results 

1) 350 μL of BPW 
solution without bacteria 
was used to determine the 
impedance of the aptamer 
coated IMEs biosensor by 
applying DEP and EIS 
(DEP-EIS) tests. 

The resulting impedance,
BPWZ , would represent the 

overall impedance due to 
the aptamer coating on the 
IMEs surface, i.e., 
baseline. 

 

The resulting impedance, 
BPWZ , represented the 

overall impedance due to 
the aptamer coating on the 
IMEs surface. 

 

 

2) 50 μL of non-viable L. 
innocua was added to the 
initial volume, 350 μL, 
followed by DEP-EIS test. 

The resulting impedance,
viablenonZ − , would represent 

the overall impedance due 
to the aptamer coating on 
IMEs and the presence of 
the non-viable bacteria in 
the BPW solution. 

 

The resulting impedance,
viablenonZ − , represented the 

overall impedance due to 
the aptamer coating on the 
IMEs and the presence of 
the non-viable bacteria in 
the BPW solution. 

 
** 
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Table 4.2. Continued.  
 

Procedures Expected impedance 
results 

Experimental impedance 
results 

3) BPW solution with 
non-viable bacteria was 
removed and the device 
was rinsed with DI water. 
Next, BPW solution, 350 
μL, without bacteria was 
added and DEP-EIS test 
was performed to record 
impedance value.  

The resulting impedance,
viable-nonwashedZ , would 

represent the impedance of 
the aptamer coating on the 
IMEs surface; 
hypothetically it should be 
the same as BPWZ , because 
non-viable bacteria should 
not be selective to the 
aptamers. 

 

The resulting impedance, 
viable-nonwashedZ , represented 

the total impedance of the 
aptamer coating on the 
IMEs and bacteria trapped 
at the IMEs edges; 
therefore, the impedance 
was greater than BPWZ .  

 

 

4) 50 μL of viable, L. 
innocua was added to 350 
μL and a final DEP-EIS 
test was performed. 

The resulting impedance,
viableZ , would represent the 

impedance due to the 
aptamer coating and the 
protein binding of bacteria 
to the aptamers.  
 
 
 
 

 

The resulting impedance, 
viableZ , represented the 

impedance due to the 
aptamer coating and viable 
bacteria binding, trapped 
non-viable bacteria at the 
IMEs edges, and the 
presence of viable bacteria 
in the suspension.  
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Table 4.2. Continued. 
 

Procedures Expected impedance 
results 

Experimental impedance 
results 

5) BPW with viable 
bacteria solution from step 
4 was removed and the 
device was rinsed with DI 
water. BPW solution, 350 
μL, without bacteria was 
added and DEP-EIS test 
was performed. 

The resulting impedance,
viablewashedZ , would 

represent the impedance of 
the aptamer coating with 
attached viable bacteria to 
aptamer coated IMEs; 
hypothetically it should be 
the same as viableZ . 

 
 
 

 

The resulting impedance, 
viablewashedZ , represented the 

impedance of the aptamer 
coating on the IMEs, viable 
bacteria attachment to the 
aptamers, and trapped non-
viable bacteria at the IMEs 
edges. The washing 
process could possibly trap 
more live bacteria at the 
edges of the IMEs.  

 
** 

 

 
 
 

Figure 4.9, 4.10, and 4.11 shows the same trend for all bacteria concentrations 

that the total impedance increased as it was measured at each step mentioned in Table 

4.2 reflecting experimental impedance results. Figure 4.12 shows the total impedance 

values measured as viable and non-viable bacteria were introduced into the BPW 

solution at 10, 102, and 103 CFU/mL. The experimental results represented in Figure 

4.12 were different from the expected results because the total impedance comparisons 

did not take non-viable bacteria trapped at the edges of the IMEs into consideration. The 

-- -- - -

+
Viable bacteria. Ligand site. Aptamer film. Electrode. Medium.

-
Non viable bacteria. Chamber.
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following comparison was developed to conclude the viability test. The impedance 

difference from the step 1 was used to compare the magnitudes for the viable and non-

viable L. innocua. The impedance differences from BPWNV ZZ − were compared to 

BPWV ZZ −  and BPWNVwashed ZZ − to BPWVwashed ZZ − . Figure 4.12 summarized these 

comparisons and the same trends were observed between two sets at different bacteria 

concentrations.   

 
 
 

 

 
 
 
Figure 4.9. Total impedance measurements of viable and non-viable L .innocua for 10 
CFU/mL after DEP-EIS test at 10 kHz for 10 min. 
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Figure 4.10. Total impedance measurements of viable and non-viable L .innocua for 100 
CFU/mL after DEP-EIS test at 10 kHz for 10 min. 
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Figure 4.11. Total impedance measurements of viable and non-viable L .innocua for 
1000 CFU/mL after DEP-EIS test at 10 kHz for 10 min. 
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Figure 4.12. Impedance change of viable ( VwashedV ZZ , ) and non-viable ( NVwashedNV ZZ , ) L. 
innocua relative to aptamer coated IMEs impedance ( BPWZ ) determined based on DEP-
EIS technique at 10 kHz for different bacteria concentrations. 
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further confirmed by the Zeiss Axiophot microscopic images in Figure 4.13 and Figure 

4.14. The optical results in Figure 4.13 shows that the non-viable L. innocua was washed 

away from the top of the aptamer coated IMEs after washing and rinsing the biosensor. 

However, the trapped non-viable bacteria were visible at the edges of the IMEs 

increasing the impedance of the biosensor after washing due to the factors discussed in 

Table 4.2. Figure 4.14 illustrates the attachment of the viable bacteria during the DEP 

signal and after washing the biosensor. The Listeria stayed on the IMEs after cleaning 

the biosensor; therefore, showing that the Listeria monocytogenes aptamers were 

selective to viable Listeria innocua and not to the non –viable bacteria.  

 
 
 

 
 
 
 
Figure 4.13. Detection of 107 CFU/mL non-viable Listeria innocua on aptamer coated 
IMEs: (a) DEP is turned off. (b) During 10 kHz DEP force at 10 seconds. (c) During 
10kHz DEP force at 290 seconds (d) After washing. 
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(c) (d)
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Figure 4.14. Detection of bacteria concentration 107 CFU/mL viable Listeria innocua 
onto the aptamer coated IMEs: (a) During 10 kHz DEP at 120 secs. (b) After washing. 
 
 
 

In addition sensitivity value was determined between viable and non-viable 

bacteria for bacteria concentration from 10 - 103 CFU/mL before and after washing the 

biosensor as shown in Figure 4.15. The lower detection limits were summarized in Table 

4.3. The sensitivity value before washing  step for non-viable L. innocua was shown by 

the following equation: 8426.0R;7.466)log(C57.11 2
NV =+=∆Z  and for viable L. 

innocua before washing step was given by the following equation: 

.4054.0R;2.941)log(C43.22 2
V =+=∆Z  The sensitivity value after washing step for 

viable L. innocua is given by the following equation: 

.9451.0R;9.1238)log(C37.17 2
V washed =+=∆Z  The sensitivity value after washing step 

for non-viable bacteria was shown to be negative due to the non-repeatable cleaning 

procedures which varied the bacteria attachment at the electrode edges and on top of the 

aptamer coated IMEs. The detection limit based on the logarithmic curve fitting was not 

(a) (b)
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calculated due to the negative slope of the sensitivity value. From the aforementioned 

sensitivity values, viable Listeria has higher sensitivity values as compared to the non-

viable bacteria further supporting the claim that aptamers are selective solely to viable 

bacteria. The developed aptasensor assisted with DEP was able to detect the viable and 

non-viable bacteria by using Z∆ measurement analysis with sensitivity values of 11.57 

and 17.37 Ω/log(CFU/mL)] for non-viable and viable Listeria spp., respectively. The 

lower detection limit was calculated to be 7.88 ± 0.073 and 7.44 ± 0.175 CFU/mL for 

non-viable and viable Listeria spp., respectively within 12 minutes. The detection of 

viable and non-viable bacteria by the aptasensor showed promising results and 

improvement over the previously published work.  
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Figure 4.15. Impedance difference change measured at 1 Hz relative to the aptamer 
coated IMEs for viable and non-viable L. innocua.  
 
  
 
Table 4.3. Sensitivity and lower limit detection limit of viable and non-viable L. innocua 
for three bacteria concentrations (10, 100, and 1000 CFU/mL). 
 
Impedance difference [Ω] Sensitivity 

[Ω/log(CFU/mL)] 
Lower detection limit, 
LOD [CFU/mL] 

BPWNV ZZ −  11.57 7.88  
BPWwashed ZZ −NV  -8.69 N/A 

BPWZZ −V  22.43 7.20 

BPWZZ −V  17.37 7.44 
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In summary, this method described the selectivity of the aptamer to viable 

bacteria in the presence of non-viable bacteria, where the total impedance increase was 

regarded to viable Listeria innocua attached onto the aptamer coated IMEs. This can be 

explained by calculating =∆ DiffZ ( NVwashedVwashed ZZ − ), which eliminated the impedance 

of non-viable bacteria, but counts the impedance increased by viable Listeria innocua. 

Therefore, the biosensing method with L. monocytogenes coated aptamers IMEs would 

be selective to viable bacteria if the difference DiffZ∆  is greater than zero. For all 

concentration, the values DiffZ∆  were non-zero, indicating that the biosensor was 

definitely selective to viable Listeria spp. bacteria. The values for DiffZ∆ at 10 CFU/mL 

was 586.60 ± 52.12 Ω, at 100 CFU/mL was 463.3 ± 26.14 Ω, and at 1000 CFU/mL was 

706.6 ± 66.46 Ω.  

The viability protocol was developed based on the selective binding nature of the 

aptamers that allowed only viable bacteria attachment to the surface. This allowed the 

testing of non-selective species to the aptamers during the same run and the impedance 

measurements were recorded. The advantages of this protocol could be that it is a three 

step test to detect viable and non-viable bacteria and no calibration curve of the 

biosensor is required given that cleaning procedures are implemented to remove the 

trapped bacteria.  Typically, a calibration curve is obtained by running the biosensor in a 

given solution where the baseline impedance is known. In this protocol, a field 

technician can utilize the findings reported here to detect the pathogenic bacteria by 

using three simple steps: 1) measure the impedance of the biosensor in a given solution 

such as PBS or BPW in a small closed chamber 2) load a small sample volume of the 
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food product into the chamber, and then mechanically shake the chamber while the DEP 

force is activated. The electrical field attracts the polarized bacteria to the aptamer 

surface. Mechanical shaking generates kinetic motion in the fluid that assist the bacteria 

to enter in contact with the aptamer surface. Therefore, the total impedance will increase 

as a result of trapping bacteria onto the aptamer surface.  3) Dispense the fluid from 

previous step and replace it with the solution specified in step 1, then measure the 

impedance. If the impedance in step 3 is greater than step 1 then we detect viable 

Listeria spp. Otherwise, non-targeted bacteria species or non-viable Listeria spp .are 

present provided that cleaning procedures are implemented to remove the trapped 

bacterial cells at the electrode edges. 

The disadvantage of this protocol is that it requires standardized cleaning 

protocol to remove bacteria at the edges of the IMEs without comprising the aptamer 

attachment onto the surface of IMEs and bacteria binding with the aptamer ligand sites. 

The cleaning procedures used in this protocol did not result in clean edges as shown in 

microscopy images and Table 4.2 discussion on expected result column.  Some of the 

possible methods to improve the cleaning could include tunable ultrasound treatment, 

directed jet flow of water or blowing inert gas at optimal velocities.  

The previous studies on viable and non-viable detection of Listeria innocua are 

discussed in Section 4.1 by (Li & Bashir, 2002). This research group reported the lower 

detection limit of 105 CFU/mL in DI water within 20 minutes based on the 

epifluoresence method while applying DEP force to separate the viable and non-viable 

bacteria onto the different regions of the electrodes. In other study by (Suehiro, Hamada, 
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et al., 2003), reported detection of viable and non-viable E. coli strain K12 bacteria 

suspended in 0.1 M mannitol solution using IMEs based on the difference of the 

electrical properties of live and dead bacteria. Optimal frequency of 1 MHz was 

determined at fixed voltage magnitude (3 V peak-to-peak) at which significantly 

conductance (μS) increase was observed for viable as compare to the non-viable bacteria 

cells. Using this DEP technique the conductance comparison between viable and non-

viable bacteria was measured with the lower detection range of 5 x 105 CFU/mL from 

bacteria concentration ranging from 105 to 106 CFU/mL within 15 minutes.   

The developed protocol based on the aptasensor in this study could be easily 

employed to detect viable from non-viable Listeria spp. based on the sensitivity values. 

Thus, potentially replacing standard colony counting methods by following the methods 

described in this study.    

4.4.4 Aptasensor selectivity to Listeria innocua using an interferent 

Staphylococcus aureus  

 Figure 4.16A – 4.16F show the total impedance curves after applying the DEP-

EIS technique to determine the aptasensor selectivity to Listeria spp. using 

Staphylococcus aureus as an interferent. The same rationale as viability protocol was 

applied to determine the specificity of the Listeria monocytogenes aptamer coated IMEs, 

which were designed to bind Internalin A protein found on the cell membrane of Listeria 

spp. and S. aureus was used to test the hypothesis instead of heat inactivated L. innocua. 

The detailed theory and explanations were discussed in Sections 4.3.7 and 4.4.3.  
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Protocols were discussed in Table 4.2 for the detection of viable bacteria and 

similar experimental procedures were followed to perform biosensor behavior to an 

interferent, S. aureus. In this study, the impedance measured with S. aureus was denoted 

as aureusSZ .  before rinsing and aureusSwashedZ .  after washing the biosensor device measured 

in steps 2 and 3, respectively. Similarly, the impedance for L. innocua was characterized 

as innocuaLZ .  before washing and innocuaLwashedZ .  after washing the biosensor.  

 
 
 

  
 
 
 
Figure 4.16. The total impedance measurements after DEP-EIS test at 10 kHz and 
different bacteria concentration of L. innocua and S. aureus (A) 10 CFU/mL, (B) 102 
CFU/mL, (C) 103 CFU/mL, (D) 104 CFU/mL, (E) 105 CFU/mL, and (F) 106 CFU/mL. 
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Figure 4.16. Continued. 
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Figure 4.16. Continued. 
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Figure 4.16. Continued. 
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Figure 4.16. Continued. 
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Figure 4.16. Continued. 
 
 
 
 Figure 4.16A – 4.16F show the same trend as seen in viable and non-viable 

results, which illustrated that the total impedance measured at 1 Hz increased with 

increasing bacteria concentration from 10 – 106 CFU/mL from before and after washing 

steps performed in the biosensor, as discussed in the Section 4.4.3. DEP-EIS technique 

was applied at DEP signal at 10 kHz for 10 minutes followed by the EIS scan from 1 Hz 

to 1 MHz. These results can be compared with the Table 4.2 discussion that showed that 

the impedance values did not show the expected results designed for the selectivity 

protocol. Figure 4.17 illustrates the impedance differences between S. aureus and 

Listeria innocua. The trend shows that the Listeria innocua impedance change values 
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(∆Z) were significantly higher than the one for S. aureus from before and after washing 

steps performed in the biosensor.  

 
 
 

 
 
 
 
Figure 4.17. Impedance change of S. aureus ( aureusSwashedaureusS ZZ .. , ) and L. innocua (

innocuaLwashedinnocuaL ZZ .. , ) relative to aptamer coated IMEs impedance ( BPWZ ) determined 
based on DEP-EIS technique at 10 kHz for 10 min for bacteria concentrations ranging 
from 10 to 106 CFU/mL.  
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evaluated to describe the selectivity of aptamers to Listeria innocua with impedance 

difference contributed only by Listeria innocua in the presence of S. aureus. The values 

for DiffZ∆  measured in Ohms for 10 CFU/mL is 390 ± 97.72, 102 CFU/mL is 350 ± 

98.22, 103 CFU/mL is 497 ± 110.01, 104 CFU/mL is 550 ± 202.62, 105 CFU/mL is 587 

± 92.70 and 106 CFU/mL is 480 ± 200.55.  The advantages and disadvantage of this 

protocol was discussed in the viability Section 4.4.3. The developed biosensor was able 

detect Listeria spp. in the presence of an interferent, S. aureus, from bacteria 

concentrations ranging from 10 to 106 CFU/mL. The sensitivity and lower detection 

limits values of S. aureus and L. innocua are shown in Figure 4.17 and Table 4.4 for 

before and after washing steps performed in the biosensor. Based on these results the 

sensitivity values are higher (P < 0.05) for L. innocua as compared to the S. aureus 

implying that the developed biosensor is more sensitivity to targeted bacteria Listeria 

spp. The sensitivity values over the bacteria concentration range of 10 – 106 CFU/mL 

were calculated for S. aureus  and Listeria spp. with the values of 32.05 and 91.28 

Ω/log(CFU/mL)], respectively. The lower detection limit determined to be 6.74 ± 0.022 

and 5.68 ± 0.025 CFU/mL for S. aureus  and viable Listeria spp., respectively within 12 

minutes. The developed aptasensor was also able to detect the impedance response at 

bacteria concentration of 107 CFU/mL; however, the results are not included in the linear 

range analysis. The results are shown in Appendix E for bacteria concentration at 107 

CFU/mL for Listeria innocua. 
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Figure 4.18. Impedance difference change measured at 1 Hz relative to the aptamer 
coated IMEs for S. aureus and L. innocua. 
 
 
 
Table 4.4. Sensitivity and lower limit detection limit of Staphylococcus aureus and 
Listeria innocua for different bacteria concentration. 
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In summary, the sensitivity for Listeria spp. were higher in the presence of S. 

aureus/ L. innocua than non-viable/viable L. innocua with the values of 91.28 and 17.37 

[Ω/log(CFU/mL)] respectively. The aptasensor has a better sensitivity in the presence of 

S. aureus as compared to non-viable L. innocua because S. aureus has less interference 

with the viable L. innocua than in the presence of non-viable L. innocua. This might be 

due to the increased charge polarity of heated treated cells as compared to viable S. 

aureus and L. inncoua. 

4.4.5 Detection of Listeria monocytogenes in off-the-shelf product  

Figure 4.19 and Figure 4.20 show the Bode and Nyquist plots for Listeria 

monocytogenes detection in off-shelf vegetable broth using DEP-EIS technique. The 

aptamer concentration of 800 nM was used to functionalize the IMEs to determine the 

baseline of the biosensor with vegetable broth. EIS scan was used to measure the total 

impedance changes due to the increasing concentration of the bacteria from 10 to 107 

CFU/mL. The presence of the Listeria monocytogenes resulted in an increase in 

impedance magnitude which could be measured at 1 Hz. The total impedance spectrum 

from Bode and Nyquist plots showed the increasing trend with the increasing 

concentration of the bacteria at lower frequencies from 1 to 10 Hz. Nyquist plot showed 

the imaginary ( "Z ) versus the real ( 'Z ) impedance values from high to low frequency. 

At higher frequencies, the total impedance values converged and similar trend was 

shown in the Bode plot. Significant change was observed at the lower frequencies; 

therefore, 1 Hz was chosen to calculate the impedance changes for the sensitivity and 

lower detection limit of the aptasensor. 
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Figure 4.19. Detection of L. monocytogenes in vegetable broth solution after applying 10 
kHz DEP signal for 10 min. (A) The total impedance versus log frequency obtained from 
EIS analysis. (B) The total impedance values at 1 Hz from the Bode plot. 
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Figure 4.20. (A) Nyquist plot of L. monocytogenes detection in vegetable broth after 
applying 10 kHz DEP signal for 10 min. (B) the total impedance values at 1 Hz. 'Z  is 
real impedance and "Z is imaginary impedance representing resistance and capacitance 
of the biosensor. 
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The lower detection limit (LDL) was calculated based on the signal to noise ratio 

of 3 where noise and signal were defined as apatmerZ (baseline experiment, 0 CFU/mL of 

L. monocytogenes) and bacteriaZ , respectively. Figure 4.21 showed the impedance change 

with respect to the baseline of the biosensor with respect to the aptamer coated IMEs. A 

logarithmic relationship was found between Z∆ (Ohms) and the bacteria concentration 

(CFU/mL) to be )9272.0;1268)ln(51.186( 2
. =+=∆ RCZ innocuaL . The sensitivity was 

determined to be 186.51 ± 23.37 (Ω/[CFU/mL]). The lower detection limit and the 

standard deviation of the aptasensor for L. monocytogenes were found to be 4.82 ± 0.01 

CFU/mL. The total detection time from introducing the bacteria samples to impedance 

(DEP-EIS technique) measurements was 12 minutes. 
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Figure 4.21. Calibration curve of L. monocytogenes obtained by plotting impedance 
difference from baseline versus bacteria concentration suspended in vegetable broth. 
Total impedance was measured at 1 Hz. Lower detection limit (LDL) of L. 
monocytogenes in vegetable broth solution using aptamers functionalized IMEs shown 
as dashed line.  
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efficiency was between 87-92% for concentrations ranging from 105 to 107 CFU/mL. 

The DEP capture efficiency was directly related to the flow rate, as the flow rate was 

increased the capture efficiency was decreased. In the same study performed by (Yang et 

al., 2006), IMEs were functionalized with a biotinylated-BSA-streptavidin-biotinylated 

monoclonal antibody sandwich structure for the detection of L. monocytogenes. The 

capture efficiency using the DEP chamber was between 20-30% with the range of 103 to 

106 CFU/ mL. In another study that used IME-based DEP device to trap and detect the 

Listeria cells was developed by (Gómez-Sjöberg et al., 2005). A microfluidic chamber 

was incorporated to use DEP force to trap the Listeria onto the IMEs surface to detect 

their metabolic activity by impedance measurements. The detection range of bacteria 

was from 104 to 105 CFU/mL and detection time was 1 hour. (Koo et al., 2009) reported 

DEP enhanced biochip for the detection of Listeria monocytogenes by immobilizing a 

heat shock protein 60 (Hsp60) onto the surface of the electrodes. The capture efficiency 

of Hsp60-coated biosensor was increased by 60% when 5 minutes of DEP was applied at 

1 kHz for 1 hour incubation time. The lower detection limit was 107 CFU/mL for the 

bacteria concentration ranging from 106 to 107 CFU/mL within approximately 3 hours. 

Their biosensor was unable to detect 106 CFU/mL. Compare to these studies the 

developed aptamer based biosensor showed significantly rapid, lower detection limits 

and broader range of detection.  

4.5 Conclusion  

DEP-EIS techniques were applied in this chapter for the detection of the viable 

and non-viable bacteria. DEP assisted aptasensors were shown to improve the sensitivity 
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over the non-applied DEP signal at three different bacteria concentrations. The 

normalized impedance percent change was calculated over three frequency regions from 

low (500 – 1000 Hz) to medium (1 – 600 kHz) to high (600 – 1000 kHz). The average 

percent change over medium region was determined to be 14.13 % over bacteria 

concentration of 10, 102, and 104 CFU/mL implying maximum capture efficiency of 

bacteria cells in 1 – 600 kHz range.  The developed aptasensor assisted with DEP was 

able to detect viable and non-viable bacteria by using impedance difference 

measurement analysis with sensitivity value of 17.37 Ω/log(CFU/mL)] Listeria spp. The 

lower detection limit was calculated to be 7.44 ± 0.075 CFU/mL for viable Listeria spp. 

within 12 minutes. These sensitivity and detection limits values of viable and non-viable 

bacteria by aptasensor showed significant improvement over the previously published 

work and promising results to implement the biosensor in the field to detect viable 

bacteria cells and potentially replacing traditional methods of plate counting S. aureus 

was used as an interferent to detect the Listeria spp. in BPW solution over the bacteria 

concentration range of 10 – 106 CFU/mL. The developed biosensor showed that it was 

capable of distinguishing the two bacteria using impedance difference analysis with 

sensitivity value of 91.28 Ω/log(CFU/mL)] for   Listeria spp. The lower detection limit 

was calculated to be 5.68 ± 0.025 CFU/mL for viable Listeria spp. within 12 minutes. 

The sensitivity values in viability and selectivity experiments were higher for viable 

Listeria spp. in the selectivity test demonstrating the biosensor response in the presence 

of S. aureus/L. innocua and viable/non-viable L. innocua.  This might be due to the 

increased charge polarity of heated treated cells as compared to viable S. aureus and L. 
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inncoua. Finally, impedimetric aptamer based biosensor using DEP-EIS technique 

demonstrated that it was able to detect Listeria monocytogenes in off-the-shelf product, 

vegetable broth, with the detection limit of 4.82 ± 0.01 CFU/mL in 12 min for bacteria 

ranging from 10 to 107 CFU/mL. Based on these results, the developed biosensor 

showed significant improvement compared to previously published biosensors and it 

could be employed to detect other pathogenic bacteria. 
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5 CHAPTER V  

SUMMARY AND CONCLUSIONS 

 In this thesis, lab-on-a-chip biosensors for selective detection of foodborne 

pathogen, Listeria spp., using aptamers as biorecognition agents were investigated. 

Listeria was chosen as a model target due to its significant impact on the agricultural, 

food industries and human health.  

The lab-on-a-chip impedimetric biosensor was developed based on the platinum 

interdigitated microelectrodes array (IMEs) for the detection of pathogenic bacteria to 

achieve enhanced sensitivity and response time. The biosensors were fabricated using 

microfabrication lithographic techniques with four different Pt-IMEs electrode gaps 

including 15, 25, 50, and 100 μm. The electrode performance was characterized by using 

electrochemical techniques including cyclic voltammetry (CV) to determine 

electroactive surface area (ESA) and direct current potential amperometry (DCPA) for 

sensitivity calculations in reversible redox species. The electrode gaps including 25, 50, 

and 100 μm were successfully fabricated whereas the electrodes with 15 μm gap showed 

to have short-circuited connection between interdigitated electrodes by making a 

conductive path across two electrodes of different combs due to fabrication limitations 

of the mylar mask resolution. The fabrication limits of 15 μm electrode gap could be 

resolved by using chrome mask designed to achieve higher resolution. A direct 

relationship was observed between surface area and sensitivity with 25, 50, and 100 μm 

electrode gaps. The electroactive surface area and sensitivity was increased as the 

electrode gap was decreased. The potentiostat was unable to read current response due to 
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high current density flow on the electrode surface of Pt-IME device with 25 μm 

electrode gap. An instrument that would cover larger range of current can be used to 

detect the changes at the 25 μm electrode gap or a current divider setup can be 

implemented to reduce the current flow between the electrodes. Based on the results 

from CV and DCPA electrochemical techniques, the electrodes with  50 μm gap  were 

selected for the detection of the bacteria.  

 Platinum interdigitated microelectrodes (IMEs) array with electrode gap size of 

50 μm was used and functionalized with Listeria monocytogenes aptamers, selective to 

protein internalin A, via metal-thiol self-assembly for Listeria spp. detection in 17 mL 

phosphate buffer saline (PBS, pH 7.4). Thiol labeled aptamers for L. monocytogenes 

consisted of 47-mer and are designed to target the internalin A (InlA) protein on Listeria 

spp. cell membrane. Electrochemical impedance spectroscopy analysis (EIS) was able to 

detect the surface modification due to aptamers attachment and protein binding of 

Listeria innocua; providing a direct technique for Listeria spp. detection without the 

need for label amplification or sample pre-concentration steps. The frequency spectrum 

from 1 to 100 kHz was applied to understand the behavior of the attached aptamers to 

the Pt-IMEs based on the impedance difference, Z∆ , that was used to compare 

impedance from the bare Pt-IMEs. The Z∆ data suggested that aptamers attachment 

were significant at 1 Hz between the bare and aptamer coated IMEs and no impedance 

differences above 10 Hz were observed. Therefore, impedance values at 1 Hz were 

analyzed for aptamer concentrations. The loading of biorecognition element, Listeria 

monocytogenes aptamers, onto the Pt-IMEs surface was optimized using covalently 
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adsorption of six aptamer concentrations including 100, 150, 200, 300, 400, and 800 nM. 

DTT reduction protocol was used to modify disulfide Listeria thiol aptamers to form two 

free thiols that provided strong bond with the platinum IMEs. The DTT reduction of 

aptamers was observed to be a crucial step for the capturing of the bacteria onto the 

electrodes, without performing DTT protocol the aptamers were washed away from the 

IMEs when the biosensor was rinsed. The developed aptasensor was saturated at 800 nM 

aptamer concentration which was used to functionalize the IMEs surface to detect the 

targeted bacteria. The use of the aptamers allowed the developed aptasensor to have 

lower detection limits of 5.39 ± 0.21 CFU/ml, sensitivity of 268.1 ± 25.40 (Ohms/log 

[CFU/mL]), and faster response of 17 minutes than a similar previously designed 

biosensors based on antibodies. 

In addition, to label-free impedimetric methods, dielectrophoresis (DEP) 

technique was used to improve the capture efficiency of foodborne pathogens of the 

aptamer-functionalized biosensor by using reduced sample volumes (350 μL) at an 

optimized frequency signal and DEP force. DEP act as magnet to polarized bacteria, 

however; the DEP electrostatic field size is typically narrow, and would only collect 

polarized bacteria that are at a close distance to the electrodes surface.  A unique 

combination of DEP and EIS techniques was utilized to develop the procedure to detect 

viable and non-viable Listeria spp. and detection of Listeria bacterial cells in the 

presence of an interferent, S. aureus.  

DEP force was applied with varying frequency and EIS with frequency spectrum 

from 1 to 1 MHz was used to measure the impedance at 1 Hz. The optimal operating 
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settings of the biosensor were determined by varying the frequencies ranging from 0.5, 

1, 10, 100, 600 kHz to 1 MHz. DEP assisted aptasensors were shown to improve the 

sensitivity over the non-applied DEP force at 10, 102, and 104 CFU/mL. The normalized 

impedance percent change was calculated over three frequency regions from low (500 – 

1000 Hz) to medium (1 – 600 kHz) to high (600 – 1000 kHz) and impedance percentage 

change over the medium region was determined to be 14.13 %. These results implied 

that frequency region from 1 – 600 kHz should be used to maximize the bacteria capture 

efficiency. Optimal DEP force at 10 kHz frequency and 4.24 Vpp (peak-to-peak voltage) 

was applied to conduct the experiments for viability and selectivity. The developed 

aptasensor assisted with DEP was able to detect the viable and non-viable bacteria by 

using Z∆ measurement analysis with sensitivity values of 11.57 and 17.37 

Ω/log(CFU/mL)] for non-viable and viable Listeria spp., respectively. The lower 

detection limit was calculated to be 7.88 ± 0.073 and 7.44 ± 0.075 CFU/mL for non-

viable and viable Listeria spp., respectively within 12 minutes. The detection of viable 

and non-viable bacteria by the aptasensor showed promising results and improvement 

over the previously published work. S. aureus was used as an interferent to detect 

Listeria spp. in BPW solution over the bacteria concentration range of 10 – 106 CFU/mL 

and sensitivity were calculated for S. aureus  and Listeria spp. with the values of 32.05 

and 79.59 Ω/log(CFU/mL)], respectively. The lower detection limit determined to be 

6.74 ± 0.022 and 5.68 ± 0.025 CFU/mL for S. aureus and viable Listeria spp., 

respectively within 12 minutes. Finally, impedimetric aptamer based biosensor using 

DEP-EIS technique demonstrated that it was able to detect Listeria monocytogenes 
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bacteria ranging from 10 to 107 CFU/mL in an off-the-shelf product, vegetable broth, 

with the detection limit of 4.82 ± 0.01 CFU/mL within 12 min with one of the lowest 

detection limits and detection times reported to date.  

In this study, real-time, highly sensitive, rapid and portable aptamer based 

biosensors demonstrated to detect Listeria spp. and could be used in future food safety 

applications replacing traditional methods such as total viable counts (TVC), enzyme-

linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR). These 

methods are considered to be long and time consuming. The developed biosensor could 

be implemented in field conditions to detect foodborne pathogens in food products to 

ensure food safety and to promote public health. The simple designing method of the 

aptasensor described in these studies could be easily modified to detect other foodborne 

pathogens by changing the aptamer specificity. The designed aptasensor offers another 

advantage of reusing the interdigitated microelectrodes array by simple cleaning steps to 

regenerate the IMEs for different measurements. Consequently, the developed 

aptasensors has the potential to be available at a competitive cost of any commercialized 

biosensor, making it feasible to be implemented in the food industry for rapid screening 

of foodborne pathogens.  
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6 CHAPTER VI 

FUTURE RECOMMENDATIONS 

Based on the findings in this research further improvement on the aptamer based 

biosensors could be achieved by addressing the following issues:  

a) Cleaning procedures should be studied to remove the attached bacteria from the

aptamer ligand sites coated on the surface of the interdigitated microelectrodes

array without comprising the aptamer integrity. This would eliminate the need to

coat the aptamer layer onto IMEs before each test. Also, the shelf-life and

reusability of aptamer coated IMEs should be studied.

b) The behavior of 15 μm and 25 μm electrode gaps should be studied by

improving the fabrication mask resolution to achieve these electrode gaps and by 

replacing current instrumentation set-up that would cover larger range of current 

to detect the changes at the electrode surface.  

c) Further cleaning procedures using microfluidic device should be explored to

remove the bacteria from the edges of the electrodes during the detection of

interference and viable/non-viable studies and to reduce the number of steps to

detect viable/non-viable and distinguish interferents.

d) The mixture sample of interferents including non-viable and S. aureus should be

studied to understand whether applied DEP force attracts more viable or non-

viable bacteria cells using the developed biosensor. The calibrations curved can

be generated at different concentrations of viable and non-viable bacteria.
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Validate the developed aptasensor response in terms of false positives and 

negatives. 

e) The detection of foodborne pathogens could be expanded based on using the 

developed aptasensor by changing the specificity of the aptamers and test on 

other food samples should be studied to obtain more information on biosensor 

performance and validate its use in food safety applications. 

f) The detection of multiple bacteria on one chip could be explored by developing 

multiplex biosensors using aptamers as a biorecognition element.  
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APPENDIX A  

PROJECT TIMELINE 

 

 
 
 
 
Figure A.1. Project milestones. 
 

 

 

December 2013, 
Device survey 
completed

March 2014, 
Launched outline of 
conceptual design

2013 2014 2015

May 2014, 1st and 
2nd Mask Design 
completed

September 2014, 
1st Device batch 
fabrication 
finished

December 2014, 
Biosensor 
performance 
matrix studies 
concluded

April 2015, 
formulated  
criteria for 
biosensing
constraints & 
boundaries

May 2015, 
Functionalized,  
characterized, 
optimized  InIA
Aptamer
concentration on 
the platinum 
electrode 

May 2015, 
Detected 
Listeria with 
functionalize
d electrodes 
and setup the 
baseline & 
calibrate the 
results

July 30th 2015, 
Devised,  tested, 
and optimized 
bacteria capture 
techniques using 
Dielectrophoresis

September  
2015, Final 
Thesis Report 

October 14th  -
2015,  Thesis 
Defense 

*dates reflect the end of the project milestone
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APPENDIX B  

DUAL LAYER LIFT OFF PROCESS 

Purpose 
Dual layer lift off process provides cleaner process with fine resolution as compared to 
standard lift-off process for depositing thin layer of metals.  
 
Equipment 

1. Photoresist Spinner and Hotplate 
2. Karl Suss MA6 Mask Aligner 
3. Lesker PVD 75 Ebeam Evap 

Materials 
1. LOR 3A: Non UV sensitive polymer  
2. AZ 5214 E: Positive photoresist  
3. AZ 726 MIF: Standard photoresist developer 
4. AZ 400T: Photoresist Stripper  
5. Metals: Chromium (Cr) and platinum (Pt)  

Process 
1. Substrate Preparation:  

a. Clean the glass substrate with piranha solution with 3:1 ratio. Keep the 
substrate in the solution for 30 minutes to 1 hour and run it under DI 
water for 5-10 minutes.  

b. Dry the substrate with N2 gun and then place it on the hotplate at 150ºC 
for 10 minutes. 
 

2.  Spin-coat LOR 3A: 
a. Coat the substrate with LOR 3A.  Make sure to center the wafer and 

avoid any bubbles while dispensing the material to get a uniform coating. 
b. Dispense 5ml of LOR 3A and follow the process parameters in Table B.1. 

 
 
 

       Table B.1. Process details for LOR 3A   
   

Thickness 1µm  
Spin Speed 2000 rpm for 40 secs 
Soft Bake 165 °C for 8 mins on a hot plate 
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3. Remove the wafer from the hot plate and let it cool before proceeding to the next 
step. 
 

4. Spin-coat AZ 5214E  
a. Continue coating with AZ 5214E on top of LOR 3A layer and follow the 

process parameters in Table B.2. 
 
 
 
       Table B.2. Process parameters for AZ 5214E 

 
Thickness 1.3µm 
Spin Speed 4000 rpm for 45 secs 
Soft Bake 110 °C for 2mins  
Exposure 90 mJ/cm2 (25 secs) soft contact 
Develop Agitate in AZ 720 MIF developer for 

3 mins. Then run the substrate under 
DI water for 1 minute and dry with 
N2 gun 

Descuum  O2  plasma for 5secs at 200W with 
4% oxygen flow rate or 150 Torr 

 
 
 

5. Deposit the metals using a PVD 75 E-beam evaporator.  The thickness of Cr is 
15nm at 0.3Å/s and Pt is 90nm at 0.5 Å/s.  Follow the detailed procedure for the 
PVD 75 in the operator’s manual and parameters are discussed in Appendix B of 
this document. 
 

6. Lift-off in AZ 400T at 60°C on the hotplate for about 30 mins.  Make sure to 
agitate the solution and rinse the wafer thoroughly once the lift-off process is 
done.  

 
7. Inspect the wafer under the microscope to ensure proper metal lift-off from the 

patterns. If there is any remaining resist, put the wafer in the resist remover.  
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APPENDIX C  

METAL DEPOSITION – E-BEAM EVAPORATOR  

Metal Deposition – Lesker PVD 75 E-beam Evaporator  

Purpose  

Thin film layer metal deposition is used by e-beam evaporation. This appendix describes 

the parameters used for silicon substrate for the Lesker PVD 75.  

Material and equipment  

1) Platinum pellets, Pt, 99.99% pure 
2) Titanium  
3) Patterned 4 inch silicon wafer 
4) Kapton tape 
5) Crucible  

Process 

1. Log into the machine and in the logbook.  
 

2. Start PC vent or run recipe and PC vent. Making sure HV for E beam should be off 
while venting.  

 
3. Run “Load Unload” recipe to open the e-beam and substrate shutter. The shutters for 

the e-beam and substrate will open, and the substrate holder will rotate to the home 
position to enable removal from the rotation rod. 

 
4. Discharge unsafe charge around the e-gun using ground rod. 
 
5. Load the patterned wafers by removing the substrate holder plate at the top of the 

vacuum chamber. 
 
6. Load the wafers onto the substrate holder with the screw-down clips and Kapton tape 

making sure the sample do not fall when the holder plate upside down.  
 
7. After fixing the wafers onto the holder plate, load substrate holder plate and samples 

into vacuum chamber.  
 
8. Change or load crucible(s) with platinum and titanium. The crucible indexer will not 

work when the chamber is open while it is in the default auto mode. 
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a. Use manual mode to select the crucible position to change or refill the 

metal pellets.  
b. Use pocket 2 to load titanium and pocket 3 for platinum.  
c. Use care to avoid touching any e-gun surfaces while loading the new 

crucible. 
d. Inspect the condition of all crucibles before running the recipe.  Do not 

use if the crucibles are cracked, or have holes in them to avoid 
overheating of the gun. With the crucible removed, inspect the copper 
surfaces of the e-gun for contamination or damage. Immediately notify a 
staff person if there is any damage or contamination of the e-gun, or if a 
new crucible is needed. 

e. When all crucibles have been loaded, rotate the e-gun pockets back to the 
original crucible using manual mode and then change to auto mode. Now 
the crucible indexer will automatically adjust the position.  

f. Change any labels in the e-gun software to properly identify the materials 
in each pocket/crucible. Change P2 to titanium and P3 to platinum.  
 

9. Check the film thickness sensor 1 in the software under “View – Sensor Settings.” If 
life is less than 40% then change the crystal.  
 

10. Close the chamber. 
 
11. Start “PC Pump” recipe on the main vacuum menu screen to begin evacuation pump. 
  
12. Roughing pump will automatically start the evacuation process followed by the turbo 

pump as the pressure drops.  
 
13. Select a process run recipe for metal deposition once the chamber pressure reaches 

5x10-6 Torr. 
 
14. Set substrate temperature to 25°C.  
 
15. Select “P2 Ti rotation” recipe and open the Sigma software (SQP) to set the 

deposition rate and other parameters.  
 
16. Select Ti process and film in SQP.  
 
17. Edit Deposition Process: Set Point (rate):  1 Å/S;  Final thickness : 0.150 kÅ; Set 

Sensor Tooling : 120%   
 
18. Set the gun profile parameters: Melt power to 15% and Deposition power to 10%. 
 
19. Close the SQP software after setting all the process changes. 
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20. Press “Run Recipe” 
 
21. After the deposition of titanium is done, follow steps from 15 through 20 to deposit 

platinum film without breaking the vacuum.  
 
22. Select “P3 Pt rotation” recipe and set Pt process and film in SQP.  
 
23. Edit Deposition Process: Set Point (rate):  0.6 Å/S;  Final thickness : 1 kÅ; Set 

Sensor Tooling : 120%   
 
24. Set the gun profile parameters: Melt power to 30% and Deposition power to 40%. 
 
25. Press “Run Recipe.” 
 
26. Once the deposition of two metals is done, vent the chamber to unload the samples. 
 
27. Run “Load Unload” recipe to vent the chamber.  
 
28. Discharge unsafe charge and make sure the substrate holder plate is not hot before 

removing the samples. If the plate is hot, wait 10-15 minutes.  
 
29. Unload the substrate holder plate and remove the samples. Remove platinum 

crucible from the pocket.  
 
30. Load the substrate holder plate and close the chamber.  
 
31. Run post roughing process to pump down the chamber. Select “Roughing” recipe 

and press run recipe.   
 
32. Leave system under rough down pressure and logout from the machine.   
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APPENDIX D  

DIELECTROPHORESIS DYNAMIC   

This appendix shows the results for 10 and 104 CFU/mL bacteria concentration for DEP 

impedance method characterization in section 5.4.2.  

 
 
 

 

 
 
 
Figure D.1. Impedance versus time and phase versus time are shown at DEP frequencies 
of (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, (D) 100 kHz, (E) 600 kHz, and (F) 1 MHz for L. 
innocua at a concentration of 10 CFU/mL. 
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Figure D.1. Continued. 

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

DEP TEST at 1 kHz with 10 CFU/mL Bacteria . Average Impedance = 1897.6166Ω
Impedance standard deviation = 

953.0403

Time (s) 

  I
m

pe
da

nc
e 

( Ω
)

 

 

 impedance data

0 100 200 300 400 500 600 700 800 900 1000
-200

0

200
Phase-Time Response 

Time (s) 

  P
ha

se
 (D

eg
re

e)

 

 

 phase data

0 100 200 300 400 500 600 700 800 900 1000
400

600

800

1000

DEP TEST at 10 kHz with 10 CFU/mL Bacteria . Average Impedance = 728.7626Ω
Impedance standard deviation = 

48.2524

Time (s) 

  I
m

pe
da

nc
e 

( Ω
)

 

 

 impedance data

0 100 200 300 400 500 600 700 800 900 1000
-50

0

50
Phase-Time Response 

Time (s) 

  P
ha

se
 (D

eg
re

e)

 

 

 phase data



 

201 

 

D 

 

 
 
 
E 

 

 
 
 
Figure D.1. Continued. 
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Figure D.1. Continued. 
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Figure D.2. Impedance versus phase are shown at (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, 
(D) 100 kHz, (E) 600 kHz, and (F) 1 MHz DEP frequencies for L. innocua at a 
concentration of 10 CFU/mL. The legend data implies impedance data on the graph. 
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Figure D.2. Continued. 
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Figure D.2. Continued. 
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Figure D.2. Continued. 
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Figure D.3. Impedance versus time and phase versus time are shown at DEP frequencies 
of (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, (D) 100 kHz, (E) 600 kHz, and (F) 1 MHz for L. 
innocua at a concentration of 10 CFU/mL. 
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Figure D.3. Continued. 
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Figure D.3. Continued. 
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Figure D.4. Impedance versus phase are shown at (A) 500 Hz, (B) 1 kHz, (C) 10 kHz, 
(D) 100 kHz, (E) 600 kHz, and (F) 1 MHz DEP frequencies for L. innocua at a 
concentration of 10 CFU/mL. The legend data implies impedance data on the graph. 
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Figure D.4. Continued. 
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Figure D.4. Continued. 
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Figure D.4. Continued. 
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APPENDIX E  

SELECTIVITY DATA 

This appendix shows the results for 107 CFU/mL bacteria concentration for selectivity of 

S. aureus which were not included in the linear range sensitivity calculations.  

 
 
 

 
 
 
 
Figure E.1. The total impedance measurements after DEP-EIS test at 10 kHz and 107 
CFU/mL bacteria concentration of L. innocua and S. aureus. 
 

100 100.02 100.04 100.06

2.55

2.6

2.65

2.7

2.75

2.8
x 104

Average EIS Signals of 107 CFU/ml Measured After Each DEP TEST at 10kHz
ZS. aureus -ZBPW = 323.3333 ± 54.892 Ω
ZL.innocua-ZBPW = 876.6667 ± 40.6171 Ω

ZWashed S.aureus -ZBPW = 683.3333 ± 43.345 Ω
ZWashed L.innocua-ZBPW = 1123.3333 ± 41.798 Ω

Frequency input (f) 

  T
ot

al
 im

pe
da

nc
e,

 Z
 ( Ω

)

 

 

BPW without bacteria
S. aureus added to BPW
BPW after washing S.aureus
L. innocua added to BPW
BPW after washing L. innocua



 

214 

 

 
 
 
 
Figure E.2. Impedance change of S. aureus ( aureusSwashedaureusS ZZ .. , ) and L. innocua (

innocuaLwashedinnocuaL ZZ .. , ) relative to aptamer coated IMEs impedance ( BPWZ ) determined 
based on DEP-EIS technique at 10 kHz for 10 min for bacteria concentration of 107 
CFU/mL. 
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