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ABSTRACT

Optimization techniques are widely used in many research and engineering areas.

This dissertation presents numerical and geometric optimization methods for solving

geometric and solid modeling problems.

Geometric optimization methods are designed for manufacturing process plan-

ning, which optimizes the process by changing dependency relationships among ge-

ometric primitives from the original design diagram. Geometric primitives are used

to represent part features, and dependencies in the dimensions between parts are

represented by a topological graph. The ordering of these dependencies can have a

significant effect on the tolerance zones in the part. To obtain tolerance zones from

the dependencies, the conventional parametric method of tolerance analysis is de-

composed into a set of geometric computations, which are combined and cascaded to

obtain the tolerance zones in the geometric representations. Geometric optimization

is applied to the topological graph in order to find a solution that provides not only

an optimal dimensioning scheme but also an optimal plan for manufacturing the

physical part. The applications of our method include tolerance analysis, dimension

scheme optimization, and process planning.

Two numerical optimization methods are proposed for local and global surface

parameterizations. One is the nonlinear optimization, which is used for building the

local field-aware parameterization. Given a local chart of the surface, a two-phase

method is proposed, which generates a folding-free parameterization while still being

aware of the geodesic metric. The parameterization method is applied in a view-

dependent 3D painting system, which constitutes a local, adaptive and interactive

painting environment. The other is the mixed-integer quadratic optimization, which
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is used for generating a quad mesh from a given triangular mesh. With a given cross

field, the computation of parametric coordinates is formulated to be a mixed-integer

optimization problem, which parameterizes the surface with good quality by adding

redundant integer variables. The mixed integer system is solved more efficiently

by an improved adaptive rounding solver. To obtain the final quadrangular mesh,

an isoline tracing method and a breadth-first traversal mesh generation method are

proposed so that the final mesh result has face information, which is useful for further

model processing.
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1. INTRODUCTION

Optimization problems arise in many research topics of computer graphics, and

are probably even more common in geometric modeling. Any designed optimization

problem usually involves optimizing some criteria of merit, such as the distortion of

surface parameterization. The aim of solving optimization problems is to figure out

the configuration that best achieves the desired criterion among all configurations

in the possible design space. Common steps for applying optimization in modeling

are: finding a mathematical representation (analytic or numeric) of the geometric

problem, including modeling the objective function and constraints of the original

problem; finding the appropriate numerical or topological method for solving the

problem; reconstructing the optimal solution. Furthermore, optimization in geomet-

ric modeling has its own special characteristics.

First, the formulation of optimization is versatile, i.e., the structure of the op-

timization is neither straight nor unique. Take surface parameterization as an ex-

ample. The final goal is usually to minimize the distortion after unwrapping the

surface. Therefore, the optimization is to to minimize a metric that measures the

distortion essentially. Different researchers proposed different metrics, such as angle

metric (conformal mapping), distance metric (isometric metric), etc. Though differ-

ent metrics produce different parametric results, no universal criteria can be applied

to order preferences among all those metrics. The formulation of the optimization

is perhaps more decided by the the application background, which, in consequence,

provides versatility for building the optimization.

Second, because of the complications of the formulation, conventional numeric

solvers sometimes cannot be applied directly, i.e., there are requirements of modi-
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fying or improving existing numeric algorithms for solving the optimization. Take

surface quadrangulation as an example. Essentially, it is a seamless global parame-

terization, which can be formulated to be a mixed-integer optimization (MIQ) for pa-

rameterization, and a quadratic optimization for grid generation. The mixed-integer

optimization is an NP-hard problem. We usually pursue an approximated optimal

solution. However, the approximated solution must fit the application background,

which means the relaxation of the optimum solution is somehow very limited. How

to formulate an appropriate numerical solver becomes another critical problem in

optimization for geometric modeling.

Third, despite the versatility of formulation and the speciality of the numerical

solver, the scale of the geometric problem itself also proposes challenges to the design

of optimization. On one hand, it is very common to formulate an optimization

that has more than hundreds of thousands of variables. On the other hand, many

geometric applications require the optimization to be finished in an acceptable time

cost, or even in real time. These contrary goals require us to invent a more efficient

optimization process that fulfills requirements from real applications.

Because of all those special characteristics of optimization in geometric model-

ing, we proposed new optimization formulations for existing modeling problems and

propose new numerical and topological methods for solving the optimization with

these formulations.

Specifically, we work on three geometric modeling problems utilizing the opti-

mization techniques.

1.1 Local Parameterization

The first problem is local surface parameterization for 3D paintings. 3D model-

ing systems form the basis for many of the most widely used graphics applications.
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The ability for a designer to model not only the geometry but also the color and

appearance of a model (which we will refer to by the generic term “painting”) is a

critical aspect of any such modeling system. Painting has a long history in computer

graphics [24, 51]. Hanrahan et al. [24] proposed an direct painting system. Pedersen

et al. [51] proposed a painting technique for implicit surfaces. Igarashi et al. [28]

proposed an adaptive paradigm for interactive texture paintings. Although interfaces

have long provided the ability to paint directly on a 3D model, the colors are usually

stored in a 2D domain, such as in a texture map. Despite its widespread use and

several advantages, texture mapping has several shortcomings in the context of 3D

painting. 3D painting usually requires only a local surface parameterization, while

many parameterization methods are global and have some limitations to be applied

directly to 3D painting, such as computing time being too high for real-time parame-

terization and the presence of obvious texture distortions. In particular, the need to

determine a map (including the unfolding process, seams, and dealing with multiple

charts), and then for the texture artist to consider the orientation of this mapping

while painting something nominally 2D, can be problematic. In recent years, methods

have emerged that address these shortcomings. One of the key works is by Schmidt et

al. [58], who provided an efficient local parameterization for 3D painting. This work

is extended by the stroke parameterization proposed by Schmidt et al. in [57]. They

tried to minimize the distortion of textures by approximating the exponential map.

Melvael et al. [42] presented an algorithm to approximate the polar coordinates of

the exponential map by the geodesic distance on triangular and general polygonal

meshes. The geodesic field can be obtained by approximated methods in [59, 64, 14].

Sethian [59] proposed the level set method for computing geodesic distance. Xu et al.

[64] improved the performance of the original fast sweeping method for computing

geodesic distance. Crane et al. [14] utilized the heat transfer equation to model the
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geodesic distance field. These incremental unwrapping methods are efficient and easy

to implement. These methods distribute the parameterization distortion unevenly

in the texture space, so that painting results are more reasonable to users. However,

those methods have limitations for 3D paintings. The major problem is that incre-

mental unwrapping methods often fail to give high quality parameterization of the

surface. Since they are sensitive to the surface connectivity, they have a very high

chance to have triangle foldings even with meshes of good quality. They may also

fail easily when applied to surfaces with sharp or complicated local features, so that

they are not suitable on diverse surface topologies. Therefore, while those methods

work well in some standard situations, these limitations can cause significant texture

distortion and error in many other cases.

In our work, we present a two-phase method that not only provides awareness of

the geodesic metric but also is insensitive to the local surface connectivity so that

triangle foldings can be avoided for most cases and the distortion distribution guided

by the geodesic metric is maintained in the texture space.

1.2 Global Parameterization

The second problem is quadrangulation via global surface parameterization. Prob-

lems of surface quadrangulation and parameterization have received a lot of attention

in the fields of graphics and modeling. The interest comes from the initial motivation

of quadrangulation, that is converting raw surface data into high quality, compact,

and regular representations. These representations support much further processing,

such as texture mapping and surface deformation in graphics, and high precision

finite element analysis in engineering. The difficulties of this problem include the

distribution and control of distortion which affects the quad mesh quality, the per-

formance of the internal linear solver which defines the performance of the whole
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quadrangulation process, and the topological correctness of the final mesh extrac-

tion.

Most recent methods use two techniques, field aligned optimization and global

segmentation, to generate quad meshes. The cross field usually provides two orthog-

onal directions for each (discrete) point on surfaces. Therefore, the cross field can

be defined by the intrinsic smoothed principal curvature field, which uses two prin-

cipal directions as the guiding directions, or by some field obtained by optimization

techniques. Recently, the design of this field has been formulated as a minimiza-

tion problem for certain types of functions so that the optimal solution generates

the aligned smooth cross field. Singular points of the field are usually identified by

finding points that violate some geometric property on surfaces. The cross field is

then used as input to many parameterization methods for the computation of para-

metric coordinates. As part of this, the model is typically segmented into several

patches according to the positions of singular points. All patches are homeomorphic

to a disc so that they can be parameterized by one of several local parameterization

methods. This process propagates the surface distortion to those singular points and

boundaries of surfaces. Since patches will be combined as part of mesh generation,

the parametric coordinates along the seams between patches are required to match

on both sides. This requirement is usually treated as a constraint during parameter-

ization. To demonstrate the final quad mesh, many methods only show their results

by drawing isolines of integer grids in parametric space. However, it has been shown

that the generation of the quad mesh with a correct topological structure is not a

trivial task. Thus, mesh extraction is also raised as an interesting topic for research.

We focuses on the parametric coordinates computation and the quad mesh ex-

traction stages of this process. Meanwhile, we propose a solution for extracting a

quad mesh after parameterization rather than simply drawing isolines of integer grids

5



on models, which is more appropriate for further model processing.

1.3 Geometric Optimization for Process Planning

The third problem is process planning. In parts manufacturing, the quality of

finished parts is determined by both design and manufacturing tolerances, which de-

termine the dimensional and geometric properties of the part. Engineers are required

to select appropriate machining processes and equipment so that the requirements

of the design tolerances are met. This process is usually called process planning.

The traditional way to design an appropriate process plan is a time consuming task

that requires the engineer to iterate the process of designing, testing, and modifying

the solution until all the design requirements are satisfied. Recently, computer aided

process planning (CAPP) has drawn considerable attention as a way to simplify this

process. Key techniques related to CAPP include tolerance modeling, tolerance anal-

ysis, and tolerance allocation. The tolerances determined in the design phase serve

as the basis for the manufacturing tolerances, which are used to reflect individual

manufacturing operations.

Our work is on design tolerances. We present a new geometric model for toler-

ance modeling and propagation, geared toward tolerance analysis in process plan-

ning. Our aim is to decompose a big chunk of analytic computations of conventional

tolerance analysis into a series of geometry computations. We first decompose the

part into basic geometric primitives, or features. Because those primitives are to

be manufactured in a common part, we know they are related and that there are

dependencies between them, which could be represented by a graph structure. We

first decouple the primitives into several co-related primitive groups. In each group,

the geometric position of a certain primitive (target primitive) is decided by the re-

maining primitives (reference primitives). Linear parametric geometric uncertainty
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model (LPGUM), proposed by Joskowicz et al. [29], approximates tolerance zones

with linear precision. This allows us to use the LPGUM model to model the tol-

erance zone for the target primitive, because all its variations have been obtained.

Next, we formulate a method for cascading the decoupled primitive groups, so that

the tolerances can be transferred between groups. Using those cascading techniques,

we could obtain the tolerance zones for all primitives by traversing the embedded

graph structure representing the dependencies. The tolerance zones thus obtained

provide a worst case estimation on dimensions, represented as a geometric polytope.

Finally, we provide a computational optimization method which can improve the

quality of the existing process plan so that the tolerance of the parts could be mini-

mized as much as possible. The optimization problem itself is an NP hard problem.

We propose an efficient approximated dynamic programming solver which utilizes

the optimal substructure.
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2. RELATED WORK

Since we focus on formulating novel optimizations in geometric modeling, we

survey previous works related to our research.

2.1 Local Surface Parameterization for 3D Paintings

Since our work focuses on providing a novel local parameterization for 3D painting

systems, we survey previous work from two parts, techniques on local parameteriza-

tion and the design of 3D painting systems.

For local surface parameterization, a very wide range of techniques have been ap-

plied over the past decade to address the problems of distortion and performance in

surface parameterization. We refer to the work presented by Floater [20] for a litera-

ture survey on methods of authalic (area-preserving), conformal (angle-preserving),

and isometric (length-preserving) mapping, as well as some hybrid methods. Most

methods can be applied to a whole surface or its local chart if they are homeomorphic

to a disc. Strictly speaking, though applicable, they are not good for local param-

eterization, which usually has a center point. Those methods only distribute the

distortion as evenly as possible while ignoring the distribution of distortion, which

is affected a lot by the shape and the boundary of the local chart, so that high dis-

tortions can happen anywhere on the mapped texture. To overcome those problems,

Schmidt et al. [58] proposed the decal map, a local method that approximates the

exponential map on the surface chart. Melvaer and Reimers [42] approximated the

exponential map using the geodesic metric. The center information is considered

naturally by the exponential map in both methods. However, some high texture

distortions as well as frequent triangle foldings cannot be overcome, and discontinu-

ities of color will appear across the texture atlas. Schmidt’s recent work [57], though
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extending the decal map, still lacks explicit avoidances of the sensitivity to the mesh

connectivity and frequent triangle foldings. Besides those methods, the method pre-

sented by Liu et al. [41], built on the isometric setting, is related to our work. The

as-rigid-as-possible (ARAP) energy is formulated for optimization so as to parame-

terize texture coordinates, which is a nonlinear parameterization that is solved by a

local/global technique. The local/global framework provides the possibility to add

constraints that make the system aware of the geodesic metric without breaking the

isometric setting.

For 3D painting, several techniques for directly painting on models have been

proposed in recent years. These methods allow a user to paint on the 3D view of the

model, with the 3D information translated to the 2D texture map. While this is a

very useful feature in many cases, often painting on a 2D canvas is more desirable.

The main issue is that while painting brushes and strokes are usually defined by

2D patterns, the 3D surface is not typically planar, and thus discontinuities and

distortion arise during painting. The parameterization can also be avoided by using

3D structures to represent textures when constructing the 3D painting system. One

option is an octree, which provides different texture resolutions over different parts of

the 3D model. Benson and Davis[4] used octree for storing textures. Gibbs et al. [21]

implemented painting system over octree textures. Another data structure, explored

by Lefebvre and Hoppe [35], is a hash table, which packs sparse data into a compact

table while retaining efficient random access. Lefebvre et al. [36] also presented the

texture mapping method over surfaces. Zwicker et al. [67] implemented a texture

mapping system over the structure of point cloud. Carr et al. [11] implemented a real-

time texture painting system over surfaces. Kalnins et al. [31] implemented a user

interactive texture mapping system. Texture look-ups are very efficient, but they do

not allow different resolutions of textures over the surface of the 3D model. Another
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way to avoid the texture mapping is by associating the color data directly with the

polygonal mesh. Color data at polygon edges can be duplicated by techniques in

[10]. The color offset can be inferred from the edge by techniques in [9]. Yuksel et

al. [65] proposed mesh colors to store textures over polygon faces. Image editing

techniques [49] can also be utilized over the structure of mesh colors.

2.2 Global Surface Quadrangulation

Global quadrangulation has been proposed along with the development of pa-

rameterization techniques. The trend of research interests has been moving from

models that are homeomorphic to a disc to models that are homeomorphic to a

sphere or shapes having a more complicated topological structures. The basic idea

is to segment the model into several disc-like patches, parametrize each and stitch

them together. Dong et al. [18] used the Morse-Smale complex to the generate high

level patch layout. Each patch was further refined to generate the quad mesh. This

method was improved later by Huang et al. [26] to consider singular point positions,

orientations and feature alignments. However, both methods are not fully automatic

since high level quad layouts are always required. The concept of the cone singularity

was then introduced by Kharevych et al. [33]. This work allowed concentration of the

distortion at a small number of singularities. This work was extended by Ben-Chen

et al. [3] with a greedy scheme to decide and extract singularities. Both methods

produce conformal parameterizations with lower distortion, but do not account for

features such as sharp edges. Zhang et al. [66] proposed a method for applying

wave functions on surfaces to generate quad meshes while respecting features on the

surface.

Recently many methods have been proposed that are based on the idea of two-

phase parameterization: the design of a guiding field and then segmentation consid-
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ering singularities. Ray et al. [53] proposed a non-linear parameterization method

which was guided by a low level vector field. Kalberer et al. [30] used the smoothed

principal curvature field as the guide field for quad generation. The concept of

branch points was introduced to segment the model, which was similar to singular-

ities. Bommes et al. [6] proposed a method that contributed to two phases: the

guide field design and the parameterization. They formulated the two phases to be

two mixed-integer quadratic problems and proposed a greedy numeric solver which

generated smooth results for both phases efficiently. Following this idea, Li et al. [38]

proposed an implementation on meshless surfaces. Bommes et al. [5] later proposed

a method for generating sparse quads on models. Bommes et al. [7] also presented

the numeric solver for the internal optimization problem. Ebke et al. [19] provided a

robust implementation for the quad mesh extraction. Gunpinar et al. [23] provided

a segmentation method for quadrangulation in reverse engineering. This two-phase

idea provided possibilities for feature and orientation controls. However, positions

of singularities and layouts of segmenting seams affect the distortion distribution.

Finding an optimal solution for both phases, which is an NP-hard problem, has

become the major focus of quadrangulation research in recent years. Myles et al.

[46] proposed a greedy method to approximate the solution for placing singularities

and segmenting the model. This method was later extended by Myles et al. [47]

for placing cones with feature alignments. Very recently, Peng et al. [52] studied

the uniqueness of quadrangulation on several input shapes. However, their method

still requires surface segmentation. Meanwhile, while most methods focus on auto-

matic quadrangulation, Tierny et al. [61] presented a system that provides a highly

customized solution for subjective quad mesh design.

Since many parameterization methods are field guided, the design of the field,

especially the N-symmetry field, is also a core problem in quadrangulation. Ray et al.

11



[55] proposed a method to design the N-symmetry direction field in a linear manner.

Crane et al. [13] provided a smooth connection on the surface to facilitate the design

of vector fields. However, both methods require one to specify singularities manually.

Bommes et al. [6] used MIQ to train the cross field. Ray et al. [54] used geometry

features to identify singularities automatically. Knoppel et al. [34] provided the

globally optimal formulation of the N-symmetry field on surfaces.

2.3 Geometric Optimization for Tolerance Modeling

Process planning usually pursues high precision part processing, which can be

measured by tolerances in geometric modeling. Tolerances can be represented by

analytical functions or geometric zones. A key part of tolerance modeling is repre-

senting the zone within which geometric characteristics of a model may vary. Akella

et al. [1] represented tolerance zones as simple geometric entities that are guaranteed

to bound the features of the model. They can be thought of as a representation of

the uncertainty in the geometric position.

Geometric variations can also be modeled as higher dimensional geometric ob-

jects, such as polytopes or dual-cones, which represent the region as intervals of the

coefficients of their algebraic parameterization. Roy et al. [56] modeled variations

as polytopes. Mujezinovic et al. [44] proposed techniques for modeling variations

over polygon faces. Davidson et.al. [15] proposed techniques for modeling varia-

tions over round faces.Tolerances of part features such as form, orientation, and size

can be represented in this way, though further computation on such models can be

very complicated. Tolerance analysis covers techniques that compute the variations

of tolerances for worst case estimation or statistical expectation. Hong et al. [25]

presented broad reviews of the area are available. Shen et al. [60] presented recent

updates on tolerance analysis methods. Brost et al. [8] presented an automatic de-
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sign paradigm for the 3D part assembly with the consideration of tolerances. Though

many techniques can be employed for tolerance analysis in the design phase, toler-

ance propagation is the core part of process planning. Tolerance propagation refers

to the determination of one tolerance zone based on others. When manufacturing one

feature of a part, engineers have to use other features as the geometric or dimension-

ing references. Thus, tolerances in the references must be propagated to the feature

referring to it. Typically propagation involves a series of computational geometry

operations. However, because the tolerances are modeled in different spaces (world

space and local part-centric space), the representation and the transformation of

tolerances is not straightforward. For high-dimensional representations, the compu-

tation of tolerance propagation relies on computational techniques in high dimension

that are notorious for difficulty with implementation and robustness. Several lines

of prior research have proposed methods addressing propagation.

Tolerance charting methods, which evaluate tolerance propagation based on en-

gineers’ experience, are a traditional way of handling tolerances. Computer-aided

tolerance charting methods [37] have been developed to reduce the iteration of phys-

ical trial-and-error runs. Shortcomings of tolerance charting are that it cannot deal

with complex spatial tolerance propagation issues or geometrical tolerances. To over-

come this problem, methods for modeling tolerance propagation in higher dimensions

have been presented. One kind of method uses the small displacements torsor (SDT),

presented by Clement et al. [12]. Villeneuve et al. [62] proposed tolerance models

for manufacturing 3D parts by SDT. Another kind of method, Technologically and

Topologically Related Surfaces (TTRS), forms any part as a tree representing the

succession of surface associations, presented by Desrochers et al. in [17]. Tolerance

information can be tracked along the stacking chain in the graph. The stacking up

of parts could be simulated by a Monte Carlo method to estimate tolerance prop-
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agation. Huang et al. [27] proposed techniques to evaluate tolerance-based process

planning by random simulation. Barkallah et al. [2] proposed techniques to evaluate

manufacturing tolerances using statistical tolerance models. This has the advantage

of simplicity and flexibility, however the drawbacks of such methods are that it can

be very time consuming and have poor computational accuracy at small to medium

sample sizes. A third kind of method tries to find a feasible assembly plan on a graph

structure by representing the related parts with the consideration of tolerances [50].

This method bridges the gap between its generalized tolerance model and previous

models so that it could be incorporated with previous assembly planning methods.

Though this method formulates a general framework for tolerance estimation, its

contribution to optimal planning is limited.

Regardless of the representation of the zones themselves, the most common and

straightforward implementations represent the tolerance zones independently. Unfor-

tunately, as tolerances are propagated the dependencies between zones is then lost,

causing over-estimation of the zones. One way of exploiting dependencies between

the tolerance zones is by analyzing sensitivity to parametric variations using the

technique proposed by Giordano et al. [22]. Ostrovsky et al. [50] computed relative

positions for parts during the assembly planning by analyzing parametric sensitiv-

ity. Recently, a new method for describing dependencies of geometric uncertainties

has been proposed by Oskowicz et al. in [29]. The original model is extended to

more geometric objects by Myers et al. in [45]. This method, called LPGUM (Lin-

ear Parametric Geometric Uncertainty Model), uses a first-order approximation of

the uncertainty zones of geometric primitives. The dependencies of uncertainties

are derived from sensitivity matrices. Despite the promise of LPGUM and similar

methods, they have to this point been shown to handle only very simple operations

on very basic primitives, and thus have not been practical for modeling tolerance
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zones of real parts. Further, no tolerance propagation model has been designed, and

thus tolerance zones cannot be cascaded. As a result, these methods were not (yet)

suitable for tolerance analysis during the process planning phase.
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3. NONLINEAR OPTIMIZATION FOR FIELD-AWARE

PARAMETERIZATION*

Field-aware parameterization is a technique designed for composing strokes in 3D

painting systems. Xu et al. [63] proposed a field-aware parameterization. We propose

a field-aware local parameterization utilizing the nonlinear optimization. The first

section discusses this original motivation and contributions of our work. The next

two sections cover method details, including the mechanism and the implementation.

In the last section, we demonstrate the application of our method by some painting

results in our 3D painting system.

3.1 Parameterization for 3D Painting Systems

In our work, we present a two-phase method that not only provides awareness of

the geodesic metric but also is insensitive to the local surface connectivity so that

triangle foldings can be avoided for most cases and the distortion distribution guided

by the geodesic metric is maintained in the texture space. The features of our sys-

tem fall into four major areas. First, we provide an efficient incremental unwrapping

method, of which the result provides approximate geodesic polar coordinates for

each vertex. Note that the parameterization distortion, guided by the geodesic field,

distributes unevenly in the texture space. Second, the geodesic field can be repre-

sented by affine transformations of geodesic gradients, which acts as the reference

for alignments in the second parameterization phase. We incorporate the geodesic

field into an isometric parameterization framework to remove the sensitivity to the

∗Part of this section is reprinted with permission from Texture mapping for 3D painting using
 

geodesic distance by Songgang Xu and John Keyser. Proceedings of the 18th Meeting of the ACM 
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages 163–163, San Francisco, 
CA, USA, 2014. Copyright 2014 by ACM. DOI 10.1145/2556700.2566650.
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surface connectivity and the triangle foldings for most cases. Third, we derive two

methods on the gradient field of geodesic distance, which requires less information

over the geodesic field and produces comparable results. Last, we incorporate our

local parameterization technique into a novel 3D painting system, which allows users

to paint on the surface directly.

(a) Geodesic field (b) Incremental (c) Gradient field (d) Folding Re-
moval

(e) Result

Figure 3.1: Field-aware parameterization pipeline.

We demonstrate the pipeline of our parameterization method in Figure 3.1. The

first phase obtains the approximated polar coordinates for the local charts. In phase

two, we inherit the isometric framework while trying to reflect the geodesic field.

Though geodesic distance can be constrained in existing parameterization methods

on optimization, those types of constraints are usually nonlinear, which implies the

solution is not globally optimal and the computing complexity is increased. In our

method, we represent the geodesic field using a set of affine transformations, which

are blended into an isometric framework. We also represent the geodesic field using

its intrinsic gradients, upon which we build two methods aligned with those gradi-

ents. Those formulations allow us to build linear systems, which are efficient for

computation. The isometric setting of the optimization allows us to remove trian-

gle foldings for most general cases. However, if the folding still happens, we use a
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post processing method to resolve it. Utilizing this novel two-phase parameteriza-

tion technique, we build our 3D painting system that provides a local adaptive and

interactive painting environment. We explain our method following this pipeline in

next sections.

3.2 Local Chart Parameterization

In this section, we explain our parameterization techniques in two phases: incre-

mental unwrapping and field-aware parameterization.

3.2.1 Incremental Unwrapping

Most local parameterization methods utilizing incremental unwrapping are based

on the approximation of the local chart by the exponential map, which builds cor-

respondences between points on the continuous surface and the tangent plane at a

given initial center point. The geodesic metric or its approximation are usually used

for measuring the distance between the center point and other points on the surface

in order to map points from the surface to the tangent plane. In exact algorithms

for computing geodesic distance, roots for different vertices are maintained during

the computation, which is ignored in fast marching. As presented by Joseph et al.

[43], for a convex manifold model, we know all the geodesic paths share the same

root, the initial point. This property means the geodesic path on a convex manifold

has a simple structure such that it goes through the starting point followed by a

sequence of edges. This inspired us to find an approximated method for geodesic

distance on general mesh models by assuming the property always holds. For each

vertex other than the starting point, we can associate it with its geodesic distance

and the polar angle on the mapping field. This allows us to build an exponential

map using geodesic paths on the model.

We follow the traditional incremental unwrapping technique to build our un-
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wrapping paradigm. Vertices are tagged with different states with respect to the

computation process: Alive if the vertex has been updated with a fixed geodesic

value, Close if the vertex has been accessed but the geodesic value is not fixed, and

Far if the vertex has not been accessed. The whole unwrapping paradigm is divided

into three steps, initialization, propagation and construction of polar coordinates.

Initialization. We first compute the geodesic distance and the polar angle for

vertices on the 1-ring of the center point o. If o is a vertex, we unwrap the 1-ring of

the initial point to its discrete tangent plane decided by the discrete normal at this

vertex. If the point is interior to a triangle, the tangent plane is the triangle that

contains the point. All vertices adjacent to the initial point are marked Alive.

o

ba

c

αβ

(a) Center solver
o

a b

c
d

e

α β

(b) Side solver
o

b
a

d

c

(c) Passive solver

Figure 3.2: Three local solvers.

Propagation. We compute geodesic distance for vertices beyond the 1-ring using

the Alive vertices. In detail, for one vertex, we try to find two Alive vertices in

the same triangle by traversing its neighbors. Figure 3.2 shows three basic solvers
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for propagation. For the center solver in Figure 3.2a and side solver in Figure 3.2b,

assume we are updating vertex c. We find two Alive vertices a and b. Then we use

the geodesic distance and the polar angles of a and b to compute that of c. If the

vertex has only one Alive neighbor, then we use the passive solver in Figure 3.2c to

update it. The center solver in Figure 3.2a deals with the case where the geodesic

path of c goes through the edge ab. In 4abc, a and b are tagged Alive, i.e. we

have their geodesic distance δ(a) and δ(b) as well as the polar angles τ(a) and τ(b)

We assume that the three vertices share the same root o. We can obtain δ(c) = |oc|

as
√
|bc|2 + |bo|2 − 2 · |bc| · |bo| · cos 6 cbo. τ(c) can be obtained by rotating τ(b)

by the angle 6 boa· β
β+α

. Note that we should try each adjacent pair of Alive vertices

of neighbor c and use the result from the pair that generates the minimal geodesic

distance.

For a general triangulation, the geodesic path of c might not go through the edge

ab. It might be on the left (Figure 3.2b) of vertex a or on the right of vertex b,

in which case we use the “side solver” technique. Whether to use the center solver

or the side solver can be decided by examining the angles 6 obc and 6 oac. If both

are less than or equal to π, we apply the center solver. Otherwise, we apply the

side solver. We use an unfolding technique to find two Alive vertices across a set of

triangles. In 4 abc, though a and b are Alive (indicated by red dots), the geodesic

path through c does not go across edge ab. Since the angle sum 6 cab + 6 bao > π,

we know the path is on the left side of a. Starting from edge ca, we unfold triangles

sharing vertex a, until we find one Alive vertex that neighbors a where the geodesic

path goes across the edge connecting them both. In Figure 3.2b, we first unfold

4 cad. d is not Alive, so we continue to unfold 4 dae. e is Alive and co crosses

ea. We stop unfolding and solve for δ(c), the length of oc in 4 cea. Similar to the

center solver we can find τ(c) by rotating τ(a). A symmetric approach will unfold
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triangles around vertex b.

The center solver and the side solver assume we always find two adjacent Alive

neighbors around c. But this is not always true especially when c is a saddle point.

In this case, we use the passive solver in Figure 3.2c, which updates a new vertex

using just one Alive neighbor. The distance value for c, δ(c), is set to the minimum

value of δ(a) + |ac| among all Alive vertices, a, adjacent to c. c also inherits the

polar angle τ(a) from a.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Parameterization result comparisons. Incremental unwrapping results
(right) compared with other methods on isometric (left) and conformal (middle)
settings. Top rows shows the texture mapping result. Bottom line shows the area
distortion distribution.
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Polar Coordinates Construction. After finishing propagation, we don’t have to

construct geodesic paths explicitly to obtain polar angles of vertices. Each vertex v

has been associated with its geodesic distance and its polar angle, i.e, the polar co-

ordinates, which are easily transformed to the texture coordinates. The connectivity

of the mesh vertices ensures we can always update a vertex successfully from one

of the three solvers, ensuring termination. Figure 3.3 shows comparisons between

our incremental unwrapping method, the method (least squares conformal map) in

the conformal setting, and the method (as-rigid-as-possible map) in the isometric

setting.

(a) ARAP (b) Incremental (c) Hard alignment

(d) ARAP (e) Incremental (f) Hard alignment

Figure 3.4: Mapping result comparisons.

We find that those methods that are adaptive to global parameterization are not
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Our Method Fast Marching Exact
Model Faces time (s) max abs ave rel time(s) max abs ave rel time (s)
Plane 2,048 0.029 0.00% 0.00% 0.029 1.01% 1.10% 0.042
Sphere 3,840 0.062 0.00% 0.00% 0.058 0.21% 0.10% 0.12
Cat 24,192 0.41 1.23% 0.33% 0.38 2.31% 1.65% 1.78
Face 35,568 0.57 1.75% 0.25% 0.53 2.23% 1.04% 1.51
Armadillo 69,184 1.18 1.11% 0.72% 1.12 1.36% 1.18% 2.78
Bunny 69,451 1.12 0.49% 0.18% 1.05 0.91% 0.89% 3.24

Table 3.1: Comparison of our method with fast marching methods for accuracy and
performance.

sensitive to the center information. Therefore, the incremental unwrapping method

results in better parameterization than those methods despite the triangle foldings.

The distortion comparison verifies that global methods try to distribute distortion

evenly while incremental unwrapping tries to lower the distortion around the center.

Figure 3.4 shows more mapping result comparisons. Left three sub-figures show

that the original ARAP gives out regular grid textures, however, the global texture

size is not correct; the incremental one has good metric awareness but has texture

defects caused by triangle foldings; the result of our new system has both a regu-

lar grid and good awareness of metric. The right three sub-figures shows the area

distortions of three methods. The last figure shows that our method has the lowest

distortion around the texture center (red dot) while pushing most distortion to the

patch boundary. As an approximated method for computing geodesics, we compare

our results with the original fast marching method numerically in both accuracy and

performance. We use the accurate method proposed in [43] to obtain the precise

geodesic distance δ̃(v) for each vertex. Table 3.1 reports the maximal absolute dif-

ference |δ̃(v)−δ(v)| as the percentage of the object diameter and the average relative

difference |δ̃(v) − δ(v)|/δ̃(v). As shown in Table 3.1, our method has better accu-

racy than fast marching while achieving very similar performance. Figure 3.5 shows

isolines over surfaces by using our method for computing geodesic distance.
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Figure 3.5: Isolines on models.

Similar to many other incremental unwrapping methods, our parameterization

results may still have triangle foldings. The field-aware optimization in the next part

overcomes this problem while still keeping the geodesic metric information. We note

that Crane et al. [14] presented a method computing geodesic distance via heat flow.

We didn’t adopt this method because it distributes the numerical error evenly in

the computing domain. Therefore, there is no guarantee that the chart center has

more accurate distance values which might cause higher distortion when mapping

the texture.

3.2.2 Field-Aware Parameterization

In this part, we make an isometric parameterization (ARAP) to be aware of the

geodesic metric. ARAP assumes that only rotational transformations are allowed for

triangle faces during the parameterization. However, this assumption is so strong

that it hardly allows us to form a parameterization for a general surface. Therefore,

ARAP measures the difference between the real affine transformation matrix and the

rotational matrix of each triangle. The energy for optimization is the summation of
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individual differences as below,

EARAP =

|T |∑
t=1

At||Jt −Rt||2F , (3.1)

where At is the area of triangle t, Jt is the affine transformation from the original 

triangle t to its image in the parameterization space, Rt is the rigid transformation 

matrix, and |T | is the number of triangles. Since we have the geodesic field which 

also acts as a parameterization, we can use the corresponding affine transformation 

matrix to represent the parameterization information naturally. We present a method 

augmenting ARAP.

Augmentation method. We  use  Jacobian Gt to indicate  the  transformation  from 

the original triangle t to its image in the geodesic field. The energy function of our 

new field-aware system can be formulated by a blending parameter λ1 > 0 as below,

EAUG =

|T |∑
t=1

At||Jt −Rt||2F + λ1At||Jt −Gt||2F . (3.2)

For clarity, we call this parameterization method the augmentation method. The

local-global method, which solves the nonlinear problem in ARAP, can be used again

to solve the new field-aware system. In detail, during the local phase, ARAP uses sin-

gular value decomposition to obtain Rt; in the global phase, ARAP solves a stitched

Poisson equation as below,

∑
j∈N(i)

[cot θi,j + cot θj,i](ui − uj) =

∑
j∈N(i)

[Rt(i,j) cot θi,j +Rt(j,i) cot θj,i](xi − xj), (3.3)

where i = 1, . . . , |T |, N(i) indicates vertex neighbors around vertex i, xi is the
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coordinates of vertex i, and ui is the parameterization coordinates of vertex i. Here

pair (i, j) indicates the half-edge from vertex i to j, and θi,j is the angle opposite

to the half-edge (i, j). In the field-aware system, we can compute Rt and Gt in the

local phase. In the global phase, the field-aware Poisson equation is formulated by

considering Gt and the blending parameter λ1 for all triangles as,

(1 + λ1)
∑
j∈N(i)

[cot θi,j + cot θj,i](ui − uj) =

∑
j∈N(i)

[(Rt(i,j) + λ1Gt(i,j)) cot θi,j +

(Rt(j,i) + λ1Gt(j,i)) cot θj,i](xi − xj).

Hard field alignment. The field-awareness in system (3.2) is achieved by blending 

the affine transformation matrices, which encapsulate information of the geodesic 

field. Instead of using this full-fledged information, we can instead align with just 

the gradient field over the geodesic distance during the global optimization phase,

which also produces comparable results. In detail, the Poisson equation in (3.3) can

be represented by submatrices as

L 0

0 L

 ·
U
V

 =

bu

bv

 , where L is the discrete

Laplace-Beltrami operator matrix, U and V are vectors formed by the u-components

and v-components of texture coordinates respectively, and bu and bv are correspond-

ing right sides of the linear system. Since each vertex on the local chart is associated

with a geodesic value after obtaining the geodesic distance, we have defined a scale

field MC on the chart. We map MC to the texture space by the correspondence of

vertices between the surface space and the texture space. The new scale field MT

transfers the metric information from the surface domain to the texture domain.

For one triangle t, assume vertex indices are i, j and k. The gradient on this face
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is dt = [gk · (uj−ui)+gi · (uk−uj)+gj · (ui−uk)]
⊥, where gi is the geodesic distance

we’ve obtained during the incremental unwrapping phase. We have |T | equations

in this form from which to build a linear system related to gradients over the field.

Assume the matrix on the left side of this system is K, formed by gi, and the right

side is [gu,gv]
T , formed by uv-components. Then we obtain a field-aware system asK 0

0 K

 ·
U
V

 =

gu

gv

 . Let KT be the transpose of K. We combine the field-aware

system with the original ARAP system by another blending parameter λ2 > 0,

L+ λ2K
TK 0

0 L+ λ2K
TK

 ·
U
V

 =

bu + λ2K
Tgu

bv + λ2K
Tgv

 . (3.4)

Relaxed field alignment. Under some conditions, artists might prefer regular grids 

rather than aligning the texture with the field on both directions and magnitudes. We 

allow alignment with directions only by adding relaxing variables into face gradients, 

which allows the system to be field-aware in a mild way. Within the isometric setting, 

we add st for triangle t and align with stdt. Therefore, st provides the relaxation for 

the direction alignment. Assume Λ is a set of diagonal matrices composed by st, and 

gu
D and gvD are diagonalized gu and gv respectively. System (3.4) can be relaxed as


λ2K

TK + L 0 λ2K
TgDu

0 λ2K
TK + L λ2K

TgDv

λ2(K
TgDu )T λ2(K

TgDv )T λ2(g
D
u )TgDu + λ2(g

D
v )TgDv



U

V

Λ

 =


bu

bv

0

 . (3.5)

This system can be obtained from a direct relaxed system as below,
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λ2KTK + L 0 λ2K
TgDu

0 λ2K
TK + L λ2K

TgDv



U

V

Λ

 =

bu

bv

 . (3.6)

Our goal is to augment the left side of the linear system to have 3×3 submatrices.

From symmetry of this term, we know the system should be in the form as


λ2K

TK + L 0 λ2K
TgDu

0 λ2K
TK + L λ2K

TgDv

λ2(K
TgDu )T λ2(K

TgDv )T X



U

V

Λ

 =


bu

bv

0

 . (3.7)

We need to figure out what X is.

If we view gradient equations as constraints of the ARAP system, another direct

relaxed system can be formed as,



L 0 0

0 L 0

λ̃2K 0 λ̃2g
D
u

0 λ̃2K λ̃2g
D
v




U

V

Λ

 =



bu

bv

0

0


.

This system cannot be solved directly because the left side is not a square matrix.

We compute the left side in its quadratic form as


λ̃22K

TK + LTL 0 λ̃22K
TgDu

0 λ̃22K
TK + LTL λ̃22K

TgDv

λ̃22(K
TgDu )T λ̃22(K

TgDv )T λ̃22(g
D
u )TgDu + λ̃22(g

D
v )TgDv

 . (3.8)

Compare (3.7) and (3.8). We have found a possible term for X = λ2(g
D
u )TgDu +

λ2(g
D
v )TgDv , where λ2 = λ̃22. Since this method only aligns with directions over the
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(a) ARAP (b) Augmentation (c) Hard (d) Relaxed

Figure 3.6: Comparisons of different parameterizations.

gradient field approximately, we call it the relaxed (field) alignment method.

Figure 3.6 shows results of ARAP, the augmented field-aware system by blend-

ing the affine transformation, the hard alignment system and the relaxed alignment

system. Since the relaxed system isn’t aware of the magnitude of the field gradients,

it is not as sensitive to the geodesic metric as the hard alignment system. However,

the awareness of directions of gradients provides a reasonable compromise between

ARAP and the incremental unwrapping. As we know, given good initial texture

coordinates (such as obtained by the incremental unwrapping), the original ARAP

can converge very quickly in a few iterations. In our experiment, we found it usually

converged within twenty iterations for those local charts on the surface. After aug-

menting the original method with the new geodesic information, the linear system is

bigger than before. However, the convergence speed is faster than before. It usually

took five to ten iterations to converge to a stable status, and the triangle foldings

were removed in most cases. We believe that since the ARAP framework always ob-

tained the signed rotational transformation in the local part, this prevented foldings

very effectively.

Finally, for most cases where the incremental unwrapping produces triangle fold-

ings, our optimization process removes those foldings. However, if any folding hap-
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(a) Before (b) After

Figure 3.7: Folding removal by applying the alignment system.

pens, a folding-free result can be guaranteed by a post processing presented by Kami

et al. [32]. Figure 3.7 shows the result before and after applying our system, i.e.,

removing the foldings, on the girl face model. We provide more examples on mapping

results of different parts of the cat model in Figure 3.8.

3.2.3 Weighted ARAP

Weighted ARAP, which assigns vertices or faces different weights, is one way to

make the original ARAP method aware of the geodesic field. In this subsection,

we describe several weighted ARAP implementations and compare them with our

field-aware parameterization method.

The first method is vertex-weighted ARAP method, which assigns different weights

to each vertex. The weight function of vertex i is wi = Reg(1.0/(gi + δ)), where gi

is the geodesic distance of vertex i, and δ is a small value for handling the case

that gi = 0. Reg is a function that regularized the weight value into the range of

(0, 1]. For this vertex-weighted setting, the linear system of ARAP in equation 3.3
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(a) ARAP (b) Incremental (c) Hard align. (d) Relaxed align.

(e) ARAP (f) Incremental (g) Hard align. (h) Relaxed align.

Figure 3.8: More examples of comparisons on ARAP, incremental unwrapping, and
alignment systems. As we see in those results from alignment, we have maintained
sensitivity to the geodesic metric while removing triangle foldings.

is transformed to be

∑
j∈N(i)

[cot θi,j + cot θj,i](wiui − wjuj) =

∑
j∈N(i)

[Rt(i,j) cot θi,j +Rt(j,i) cot θj,i](xi − xj). (3.9)

This system can also be solved by the local-global method. In the local phase,

we still extract the SO(2) matrix for each triangle. In the global phase, we view wiui

as a new variable, denoted by zi, and solve it using the same global method. ui can

be obtained by zi/wi. We apply this method on the face model. Results are shown

in Figure 3.9. We find that the vertex-weighted method is not a good solution for

field-aware parameterization by using the distance weight function.

Another method is the face-weighted ARAP method, which assigns different

31



(a) ARAP (b) Hard alignment (c) Vertex-weighted

Figure 3.9: Comparing vertex-weighted ARAP with our previous results.

Figure 3.10: Results of field-aware parameterizations.

weights to each face. The weight function of face t is wt = Reg(1.0/(gi + gj + gk)),

where gi, gj and gk are geodesic distances of vertices in triangle t. Reg is a func-

tion that regularizes the weight value into the range of (0, 1]. For this face-weighted

setting, weights of ARAP in equation 3.1 are transformed to be At/wt.

We show distortion distributions in Figure 3.10. The first group of figures shows

the result of a global method with an isometric setting. The second group of figures

shows the result of the incremental unwrapping considering the geodesic distance.

The third group of figures is the field-aware result with (hard) alignments over di-

rections and magnitudes of the geodesic gradient field. The last group of figures
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(a) ARAP (b) Hard alignment (c) Face-weighted

Figure 3.11: Comparing face-weighted ARAP with our previous results.

is the field-aware result with (relaxed) alignments only over directions of the field.

The small side figures show area distortions for each parameterization. For those

results, we conclude that the global isometric method only distributes the distortion

evenly while ignoring the texture center and the geodesic metric. Our field-aware

results consider that information so that the texture metric is more like that of the

incremental unwrapping while generating high quality parameterizations. We pro-

vide two levels of field-awareness, hard and relaxed, to provide flexible choices for

surface painting.

This system can also be solved by the local-global method. From the result, we

find that the face-weighted ARAP is not a good solution for field-aware parameteri-

zation by using the distance weight function, as shown in Figure 3.11.

3.3 Painting System Implementation

We developed our field-aware parameterization method in order to improve the

quality of real-time 3D painting. We have implemented it as a core part of our

3D painting system. The key features of our system are a view-dependent local
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parameterization and view-dependent oriented painting.

Our system stores colors using Mesh Colors [65], but would be easily adapted

to other surface-based color storage schemes, such as that in [9]. It is worth noting

that one of the challenges in using these approaches for color storage is that the

standard 2D image manipulation tools artists use to paint texture maps are not

readily available for systems that store all color data on the mesh itself. Our method,

by interactively generating local 2D maps, makes it possible to apply all the standard

2D image manipulation tools even to such 3D surfaces, without having to worry about

issues such as seams and chart boundaries.

3.3.1 View-Dependent Local Parameterization

Painting is a local behavior. In 3D systems, the canvas is a model surface. Instead

of parameterizing the whole model and unfolding it onto a planar texture space, we

want to separate the local surface region being painted and unfold it for mapping the

brush strokes. We need to create a local chart from relevant triangles falling under

the brush in the 3D screen space view. Locally, the surface might be convex, concave

or saddle. We use our two-phase method to parameterize the local surface on the

fly. Our parameterization adapts to the screen position of the painting tool and the

perspective view of the model. In detail, we have three steps to build the local chart

by our method.

Center triangle picking. Given the brush center, we pick the center triangle as

the one containing the brush center. Note that an AABB or BSP tree for the model

can help to accelerate this operation.

Boundary triangles picking. The second step aims to find the visible triangles

whose image on the screen intersects with the brush region. Instead of focusing on

all triangles covered by the brush, we only identify those intersecting the brush’s
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screen-space boundary. We call these boundary triangles, which can be obtained

using ray intersection or screen-space picking.

Local chart construction. Given the center triangle and a set of boundary trian-

gles, we construct a local chart that will encompass the region surrounding the center

point including both nearby triangles falling under the brush in screen space and hid-

den triangles that nevertheless need to be painted on by the stroke. We unwrap the

surface starting from the picked center, until we reach all boundary triangles. The

full set of triangles reached forms the local chart. Starting from the center triangle,

a breadth-first traversal of faces is conducted, adding triangles encountered to the

local chart. This continues until either all the boundary triangles are found, or some

maximum number of visited triangles is reached. The maximum number prevents

the excessive growth of the local chart when the brush is too large (e.g. covering

components on distant portions of the mesh that are close in screen space). The

local chart, which is a continuous triangular 3D surface, is homeomorphic to a disc.

We can apply our parameterization on it directly.

With the given center and the local chart we are able to apply our parameter-

ization method. Figure 3.12 gives two parameterization examples from our system

that highlight the benefits of our local parameterization. Figure 3.12a is a genus one

cat model. In Figure 3.12b, we place the mouse such that the brush area overlaps

both the tail and back, which are widely separated on the surface. Our system can

identify the portion to be parameterized and painted correctly, based on the focus

(center of the brush); the figures show focus on both the tail and the back. The

important effect is seen in the results of the star shape painted on both the tail and

the back. For the tail, even though the brush overlaps the silhouette of the model,

the brush stroke is painted correctly on the model itself, wrapping around the model

locally. For the back, the star brush stroke is painted onto the model, even in the
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(a) Model (b) Parameterization Views

Figure 3.12: View-dependent local parameterization. The white circle indicates the
brush. Though the two places are very near each other, our system distinguishes the
cat back and the cat tail so that correct local charts are unwrapped.

area obscured by the tail. It is worth noting that both stars have no obvious dis-

tortion. Compared to [28] these results justify that our parameterization method is

not sensitive to the local geometry, and compared to pure projection methods this

demonstrates that we can have true 2D operations over the surface.

3.3.2 View-Dependent Oriented Painting

Artists can zoom in or out, translate or rotate the model. These operations

change the perspective view of the model surfaces, i.e. the canvas. Many current

painting systems require the user to adjust the orientation or the scaling size of

textures (strokes). In our system, they are decided by the current view perspective

of the model. Our painting implementation adapts to those changes of views and

paints the model in a correct way.
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Figure 3.13: Principal direction fields on models are references for stroke orientations.

Orientation. While some strokes are radially symmetric (e.g. solid, Gaussian blur),

others have orientation (e.g. stamp). We thus want our local parameterization to

have a “good” orientation. We compute the directions of principal curvatures at each

vertex, as shown in Figure 3.13. Principal directions form the local frames at each

vertex. The texture orientation is decided by the vertex frame nearest to the texture

center. There is an angle difference between the local frame and the vertical direction

of the perspective. The texture is rotated by the difference angle in the texture field

so that it is always aligned with the user view. We also allow the artist to rotate the

mapping view manually so that the stroke can be mapped in an arbitrary angle if

desired.

Brush Strokes Construction. To illustrate painting operations, we implemented
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a few different brush operations modeled on typical 2D brushes available in systems

such as GIMP and Photoshop. The properties we observed in typical brush strokes

include size and pattern, and we implemented several examples of each in different

brushes and stamps. Since we do not have a 2D raster canvas, and parameterizations

change rapidly, we do not have the notion of a pixel size for determining scaling, as is

typical in 2D paint systems. We can define the size in terms of the 3D view (typical),

or the 2D parametric space based on geodesic distance.

Coloring Samples. With the local chart parameterized and oriented, we can map

the texture to the surface by projecting the region of strokes onto the (u, v) domain,

where the local chart is unfolded. The mesh color sample points of the triangles

within the local chart are also mapped into the (u, v) domain, and are assigned the

appropriate color based on the stroke and brush parameters.

(a) Editing view (b) Editing view (c) Result

Figure 3.14: Painting a genus 2 model. At left are views of two stamping operations,
at right is the result. Note that the local parameterization is always homeomorphic
to a disc.

38



3.3.3 Painting Results

Our painting system is implemented on a PC with an Intel Core(TM) i7 3.4GHz

processor and 16GB RAM. We show some examples here.

We first test our system on different geometric shapes. Figure 3.14 shows our

painting results on a high genus model. We draw strokes on convex, concave and

saddle parts of the model. Our system behaves stably. The texture size is also kept

the same since the parameterization is sensitive to the geodesic metric. We invited

art students to try our paint system. They produced the complete painting results

in Figure 3.15.

Figure 3.15: Examples of objects painted with our system.

3.4 Discussion on Field-Aware Parameterization

Our two-phase local parameterization is an efficient method for mapping texture

on the local surface. The incremental unwrapping flattens the surface by approximat-

ing the exponential map, which has a comparable performance to the fast marching

method. The optimization obtains texture coordinates with a few iterations. All this

makes our method very efficient for constructing the real time parameterizations in
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3D painting systems. When constructing the optimization, we provide a novel way

to make the gradient in the texture field align with any given field. We use this to

make our parameterization result aware of the geodesic metric so that the distortion

is redistributed considering the center information. The geodesic field is reflected by

blending affine transformations into the isometric setting. Those affine transforma-

tions can also be replaced by the intrinsic gradient field over the geodesic distance.

Two methods with different gradient alignments are proposed, which allow corre-

sponding numeric systems to have a linear form so that the computing complexity

is reduced.

Our method has two limitations that would be avenues for future work. First,

the method does not handle holes in a surface ideally, since the geodesic path cannot

go over holes using current solvers. While there are methods for filling holes, it is

not clear whether these computations could be implemented into a real-time system

as our method has been. Note however, that holes are only an issue when painting

around the hole border; because our parameterization is local, holes farther away do

not matter. Second but related, our method assumes the region being mapped is

relatively local, such that it is reasonable for the triangles within to be homeomorphic

to a disc. Though we provided painting examples over high genus models, it is likely

that this assumption would break down, and the parameterization would fail, if a

brush covered a large enough region of a model with high genus. Again, this is only

an issue if pushing the painting process to an unlikely extreme.
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4. MIXED-INTEGER OPTIMIZATION FOR GLOBAL PARAMETERIZATION

Global parameterization usually requires to solve a mixed-integer optimization

problem. We focus on parametric coordinate computation and quad mesh extraction.

Unlike previous methods, we plan to avoid segmenting the model, so the distortion

can be distributed more evenly over the model. Meanwhile, we will propose a solution

for extracting a quad mesh after parameterization rather than simply drawing isolines

of integer grids on models, which is more appropriate for further model processing.

4.1 Surface Parameterization

Before presenting techniques on surface parameterization, we first list symbols

that are used throughout this work.

• S is the surface from which we extract the quad mesh. We assume S is a

2-dimensional manifold of triangles.

• U is the local chart on manifold S. ψ is the map that maps U to a 2-dimensional

domain Ω. We build the local chart for each vertex, which allows us to use

indices of vertices to index charts.

• V is the set of vertices on S in the discrete setting. We use m, 1 ≤ m ≤ |V |, to

denote the index of one vertex and use pm to denote its geometric coordinates.

• E is the set of edges on S. We use (m,n) ∈ E, 1 ≤ m,n ≤ |V | to denote each

edge.

• ∇t is the gradient over texture coordinate t.

• Πm,n is the matching matrix of the transformation from chart m to chart n.
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• gm,n is the translation vector of the transformation from the chart m to chart n.

For seamless parameterization, we require all components of g to be integers.

• Nm is the vertex index set of neighbors of vertex m.

• Cm,n is the set of common neighbors of vertex m and vertex n, i.e. Cm,n =

Nm ∩Nn.

• tm,n are parametric coordinates for vertex n within the local chart of vertex m.

For a given cross field, f , obtaining the field aligned parameterization means

finding the best parametric coordinates, t, that minimize the energy

∫
S

‖h · f −∇t‖ds, (4.1)

where h controls the size of grids and ds is an element of surface S.
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(b) Discrete setting

Figure 4.1: Chart matching.
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4.1.1 Parameterization Setting

In this section, we first describe the continuous setting of the parameterization 

model. We borrow the concept of local charts on a manifold to reveal the essential 

idea of the field aligned parameterization. Then we move our discussion to the 

discrete setting so that concepts and operations on the continuous setting can be 

formulated on the discrete form of the manifold, the triangular mesh.

Chart matching.  In the continuous setting, we assume we have a 2-manifold S with 

local mapsψ : U ⊂ S → Ωm ∈ R2. The local parameterization can be designed 

within each chart Um. Within a chart, integer grids are formed by intersections of 

isolines lu ∈ Z×R and lv ∈ R×Z. Figure 4.1 shows the basic idea of chart matching. 

The grid lines from two charts should be matched if they share a common region, as 

shown in Figure 4.1a. To ensure the global continuity of isolines on the surface, the 

local mapsψ m andψ n should be selected to make sure that the grid isolines from two 

overlapped charts match in the common region Um ∩ Un. In addition, each isoline 

follows the direction of the gradient of the parameterization functionψ . We use the 

matching concept from [30] to define the transformation between overlapped local 

charts, which is formulated as

∇ψn(p) = Πm,n∇ψm(p) + gm,n, p ∈ Um ∩ Un. (4.2)

Π is the Jacobian connecting Um and Un. Since we are matching isolines on integer

grids, the Π’s are required to be matrices that match coordinates from axis to axis.

Therefore, Π can have four different forms that each describe a valid orientation (each

being a 90 degree rotation). gm,n is an integer vector that allows the chart to translate

an integer amount. We translate this continuous setting into the triangulated discrete

setting to build our parameterization model.
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Discrete chart. In the discrete setting, surface S is a triangulated 2-manifold. We 

define the local chart of one vertex to be its one-ring region. The local frame for each

vertex is built on the given field, which is designed by the method in [34]. Each vertex

m is associated with a pair of orthogonal vectors that are viewed as two axes of the

frame. In this frame, we have coordinates tm,m for vertex m itself, and coordinates

tm,ni for neighbors of m, i.e., ni ∈ Nm. Thus the chart transformation from m to n in 

the discrete setting, as shown in Figure 4.1b, can be built on the common neighbors

of m and n using local coordinates, which is formulated as below.

tn,c = Πm,ntm,c + gm,n, (4.3)

where c ∈ Cm,n. The transformation is invalid if c ∈/ Cm,n ∪{m, n} because c is not in 

the common region of neighborhoods of m and n. We associate this transformation 

to edge (m, n) since m and n are adjacent. In addition, note that for edge (m, n), 

tm,n and tn,m, defined in different local charts, have different meanings.

Global parameterization. Current field-guided methods usually require segmenting 

the model so that singularities can be placed on boundaries. Those seams are usually 

placed along model edges. Parts on two sides of edges only share seam edges. In 

other words, seam edges have two copies in the texture space. In our discrete setting, 

two adjacent charts share a common region formed by their common neighbors. Note 

that our method does not require us to segment the model before parameterization. 

The only implicit segmentation implied by the chart matching associated with each 

edge, shown as the red dashed line in Figure 4.1b, is orthogonal to the corresponding 

edge.

Since the surface is a 2-dimensional triangular manifold, we have |Cm,n| = 2 for

all edges except those on boundaries. We can enforce the property |Cm,n| ≥ 2 to
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Figure 4.2: Extra edge (dashed lines) for boundaries (solid red lines).

all edges by adding extra edges to boundary vertices. Figure 4.2 shows method for

boundary edges. As shown in Figure 4.2a, in detail, if |Cm,n| = 1, we pick vertex

k ∈ Nn and k /∈ Nm, and add one new edge (k,m). For the special case shown in

Figure 4.2b, we find k ∈ Nm and k /∈ Nn, and add the new edge (k, n). If the mesh

model is not a single triangle, we can always find the vertex k for building the extra

edge. This operation enforces the property that |Cm,n| ≥ 2 on all edges, including

newly added edges.

4.1.2 Parameterization Model

In this part, we build the optimization function and related constraints for com-

puting parametric coordinates.

Optimization Objective Function. The energy function in Equation 4.1 can 

be discretized as in [38] as below.

∑
m∈V

∑
n∈Nm

||t̃m,n − t̃m,m − h · fm(pn − pm)||2, (4.4)
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where t̃ = (t, 0)T is a three dimensional vector. fm is a 3×3 matrix augmented from

∇ψm = [vm1 , vm2 ] by fm = [vm1 , vm2 , vm1 × vm2 ], where vm1 and vm2 are two local

frames associated with vertex m. We use the product of this field tensor and the

difference of coordinates between m and its neighbors to approximate the gradient.

The optimization term implies that the local parametric coordinates of all neighbors

of vertex m align with the gradient field over the vertex m. Since the chart trans-

formation in Equation 4.3 is bound to each edge, we transform the energy function

above equivalently to the representation on edges as below.

∑
∀(m,n)∈E

∑
∀c∈Cm,n

(||t̃m,c − t̃m,m − h · fm(pc − pm)||2

+||t̃n,c − t̃n,n − h · fn(pc − pn)||2). (4.5)

For each edge (m,n), the first term implies local parametric coordinates of common

neighbors of vertex m and n align with the gradient field over the vertex m. Similarly,

the second term implies the local parametric coordinates of common neighbors align

with the gradient field over the vertex n. Next we define constraints that enforce the

chart matching or other properties on edges and vertices.

C1. Chart Matching Constraint

Πm,ntm,c + gm,n = tn,c, (4.6)

∀c ∈ Cm,n and ∀(m,n) ∈ Ẽ, where gm,n is an integer vector and where Ẽ ⊂ E. Πm,n

is the Jacobian for the transformation from chart m to n. Note that, though it has

a similar form as in [30], C1 is enforced on our new discrete setting, which connects

local charts using common neighbors. C1 can be reduced to C2 which eliminates the

integer vector gm,n.
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C2. Reduced Chart Matching Constraint

Πm,n(tm,c1 − tm,ci) = tn,c1 − tn,ci , (4.7)

∀c ∈ Cm,n and ∀(m,n) ∈ Ẽ, where i 6= 1 and where Ẽ ⊂ E. This constraint is

obtained by plugging c1 and ci into Equation 4.6 respectively and subtracting two

equations. This reducing technique was first proposed by Nieser et al. [48] to reduce

the size of the linear system. We use the same idea to eliminate integer variables

so that the linear system can be simplified. Since we have |Cm,n| ≥ 2 for all edges,

we can always reduce C1 to C2 so that the translation vector gm,n is eliminated if

necessary.

C3. Continuity Constraint

Πm,ntm,n + gm,n = tn,n, (4.8)

Πm,ntm,m + gm,n = tn,m, (4.9)

∀(m,n) ∈ Ẽ, where gm,n is an integer vector and where Ẽ ⊂ E. C3 ensures the

continuity of the parametric coordinates under the transformation operation. We

will prove those properties when discussing the quad mesh extraction.

C4. Interpolation Constraint

∑
c∈Nm

(t̃m,c − t̃m,m − h · fm(pc − pm)) = 0, (4.10)

∀m ∈ Ṽ , where Ṽ ⊂ V . This constraint ensures that the mesh edges will go through

point m if it has an integer parametric coordinate component. This constraint is

enforced to ensure that the vertex m will be evaluated (in mesh extraction) to point
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pm. This property also relates to the mesh extraction which will be discussed in

detail later.

Each translation g is an integer vector. In addition, the parametric coordinates

of singularities are integers, and one component of the local frame, orthogonal to the

boundary, of each boundary vertex is also integer.

4.1.3 Parameterization Methods

The energy function and four constraints indicates that this optimization requires 

solving a mixed-integer quadrangulation system. Since it is an NP-hard problem, 

different researchers have used different methods for approximating the optimal so-

lution. We adapt two popular methods to our parameterization model using the 

objective function in Equation 4.5 and proper combinations of constraints listed 

previously.

Direct Rounding Method. (DRM) is addressed in [48] to obtain the global pa-

rameterization for tetrahedral models. This method divides the parameterization 

process into two phases. In phase one, it solves a linear system without enforcing 

any integer constraints so that it obtains the continuous solution for all variables,

i.e., translation vectors and coordinates of all vertices, with singularities and bound-

ary points identified. In phase two, variables are rounded to their nearest integers

and are fixed during the optimization. By solving the system again, this method

generates all the parametric coordinates for the remaining points.

Using our parameterization model, we build our direct rounding method for the

MIQ problem as follows:

1) Use the objective function in Equation 4.5 for both phases. For preprocessing,

partition E into two disjoint subset ET and EN so that ET contains edges of a

certain traversing tree on the triangular mesh and EN contains the remaining
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edges.

2) In phase one, solve Equation 4.5, that satisfies C1, where Ẽ = ET and ∀g = 0,

and C2 where Ẽ = EN . gm,n, (m,n) ∈ EN can be obtained using Equation

4.3 after obtaining the solution of phase one. Round them and other integer

variables.

3) In phase two, fix all integer variables and solve Equation 4.5 that satisfies C1

where Ẽ = E to obtain the local parametric coordinates for all vertices.

In this method, the linear system is reduced by eliminating integer variables using 

C2, which improves the system performance. However, since it rounds and fixes 

all integer variables together, this method has a larger numerical error which might 

affect the final quad mesh quality.

Adaptive Rounding Method.   (ARM) was first proposed by Bommes et al. [6] for 

quadrangulation. It is used again by Li et al. [40] to obtain hexahedral meshes from 

tetrahedral models. The major difference between this method and the previous 

method is that it rounds and fixes one integer variable during each solving itera-

tion, which is called adaptive rounding. Therefore, integer variables are rounded in 

sequence during the solving process. Though there is no formal proof, this greedy 

strategy usually leads to better optimization results.

Since the initial motivation of this method is driven by quadrangulation, we can

easily build our method incorporating the idea of ARM as follows.

1) The pre-processing step where E is divided into ET and EN is similar to DRM.

Though it is not necessary, this division reduces the number of variables in the

system so that performance is improved.

2) Solve Equation 4.5 that satisfies C1 where Ẽ = ET and ∀g = 0, and C2 where
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Ẽ = EN . Just round the integer variables associated with boundaries and

singularities using ARM while leaving translation vectors to the next step.

3) Fix all rounded variables in the previous step. Again use ARM to solve Equa-

tion 4.5 that satisfies C1 where Ẽ = E to obtain the parametric coordinates

and translation vectors.

It is easy to see that DRM has better performance than ARM. However, for ar-

bitrary 2-dimensional manifolds, ARM has lower numerical error than DRM. Since

we introduced local coordinates within charts, each vertex has several copies in the

parametric space. This increases the number of variables in the system, which might

make ARM quite slow for optimization. In our implementation, we use an improved

rounding technique that overcomes the performance disadvantages while still main-

taining a good optimization for most test cases.

We use the technique in [34] to generate the guiding field. Since each vertex is

associated with a local frame on the field, each singularity in the field should result

in a triangular face (a result of the discrete Poincaré-Hopf theorem such that the

field circulates around its three vertices). For each singularity (a triangle), we use

constraint C4 to control the geometric coordinates of its vertices. The constraint

makes all three vertices converge to a single position decided by the optimization.

The singularity thus converges to a single point in the quad mesh. Note that the

parametric coordinates of singularities are integers.

Next, we show how to improve the performance of ARM.

4.1.4 Numerical Solvers

Since the original problem is an MIQ optimization, we need numerical solvers to

approximate the optimal solution. To date, ARM has been widely used in graphics

and modeling. The merit is that it generates better results than other methods by
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rounding one variable each time. However, we have a large number of integer vari-

ables in optimization so that we need to improve the performance further rather than

simply adopt this adaptive rounding paradigm. Meanwhile, to our knowledge, there

is no theoretical proof given in [6] or that can be found in other literature to guarantee

the convergence of Gauss-Seidel iterations given these rounding perturbations.

Algorithm 1: Progressive Rounding Solver.

Give a linear system Ax = b, where A is a sparse matrix, x = (x1, x2, ..., xm) is
the vector of variables and b is a vector. We assume xi, i = 1..k are integer
variables.
Set a threshold ε, an incremental factor β, and a minimum number of rounded
variables t.
while System still has free integer variables do

Solve the system with a direct solver.
Fix all integer variables of which rounding errors are less than ε.
if The number of fixed variables is less than t then

Increment ε to ε(1 + β).

To overcome concerns of convergence and performance, we propose an improved

MIQ solver. We first replace the iterative solver in ARM with a direct solver, such

as superlu [39] or suitesparse [16] etc. For each iteration, we solve the system using

the direct solver, and then fix one integer variable that has the least rounding error.

We repeat this iteration until all integer variables are fixed. The convergence is

ensured obviously. However, this naive new solver has even lower performance than

ARM, since it solves the whole linear system for each iteration. The improvement on

performance is the key part for this new solver. Instead of fixing one variable, we fix

variables for which the rounding error is less than a given threshold. After deploying

this improvement, we noticed that in the first several iterations of the optimization,
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a large number of variables were fixed. In later iterations, fewer variables were fixed.

We also observed that the minimum rounding error during each iteration increases

with the growing number of fixed variables. Therefore, we increase the threshold if

it fails to fix a certain number of variables in one iteration. We call our numerical

solver progressive rounding solver (PRS), with which the large linear system is solved

very efficiently. We give out the pseudo-code for PRS in Algorithm 1.

4.2 Quad Mesh Extraction

Given a parameterized surface, the quad mesh is extracted by identifying integer

grids formed by intersections of isolines. As we know, isolines that form integer

grids within a local chart have the form lu ∈ Z × R and lv ∈ R × Z. This idea

led to the following design of an isoline tracing paradigm, where we fix one integer

component of the parametric coordinates and trace the other component in the

continuous domain. During the tracing process, once we meet an integer coordinate

in the tracing direction, we generate an integer node using the evaluation of geometric

coordinates within a local chart, as described below.

We assume we have coordinates t in chart m. To be consistent with the pa-

rameterization model, we use a local quadratic optimization to obtain geometric

coordinates p for t as follows.

min
∑
c∈Nm

(t̃m,c − t̃− h · fm(pc − p))2 = 0, (4.11)

where pc’s are coordinates of neighbors in chart m. Since all variables except p in

Equation 4.11 have been finalized, the optimal value can be reached when p is

p =
f−1m

∑
c∈Nm

(t̃m,c − t̃− h · fmpc)

h · |Nm|
. (4.12)
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Equation 4.12 means, given parametric coordinates t within the local chart m, we

use the coordinates (both parametric and geometric) of m’s neighbors, to evaluate

geometric coordinates induced by t. Since fm is a rotational matrix that is invertible,

we know p has a unique solution. Note that Equation 4.11 has the same form as

constraint C4 if we replace t with tm,m and fix p to pm, which means we can fix the

geometric coordinates of vertex m to pm if C4 is enforced at vertex m. In addition,

if tm,m has one or more integer components, then an isoline will go through pm, the

geometric coordinates of m, thus making vertex m be interpolated by one of the

traced lines. For this reason, we call C4 the interpolation constraint. This local

evaluation is the basic operation for constructing the isoline tracing paradigm and

the quad mesh extraction.

Since we compute geometric coordinates within local frames, we also build the

paradigm for isoline tracing within local charts. When the tracing process leaves one

chart and enters an adjacent chart, we use the frame transformation in Equation 4.3

between two charts to transform current local coordinates to new local coordinates.

In detail, starting from one point m and parametric coordinates t (which have integer

component(s) for convenience) within the chart m, we add a small offset d onto t to

form new coordinates t′. We measure the distance from t′ to tm,m and m’s neighbors

tm,ni
, ni ∈ Nm. If m is the nearest point, we continue to add the small offset d.

Otherwise, we pick the nearest neighbor n as the new center and use the frame

transformation to transform coordinates and the offset in chart m to those in chart

n. In this way, the tracing is continued from point n. The form of the offset d, which

can be either (0,±δ) or (±δ, 0), decides the tracing direction. Note that 1/δ should

be an integer, which allows us to generate integer nodes, as we will see shortly.

During the tracing process, the transformation from m to neighbor n must be

reliable, i.e., it won’t return to m right after the transformation. Mathematically,
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the condition in Equation 4.13 advances the isoline tracing from m to n,

‖t− tm,m‖ > ‖t− tm,n‖. (4.13)

After transforming into local chart n, we want the distance from t to tn,m to still be

larger than that from t to tn,n, i.e., we have

‖Πm,nt + gm,n − tn,m‖ > ‖Πm,nt + gm,n − tn,n‖. (4.14)

Since the parameterization satisfies constraint C3, we obtain Equation 4.15 by plug-

ging tn,n and tn,m from Equation 4.8 and Equation 4.9 into Equation 4.14.

‖Πm,n(t− tm,m)‖ > ‖Πm,n(t− tm,n)‖. (4.15)

Matrix Πm,n, which belongs to SO(2), does not change the magnitude of a vector.

Thus, Equation 4.13 and Equation 4.15 are equivalent. C3 is named the continuity

constraint because it ensures the continuity of the distance measurement under the

transformation operation.

In addition, we want n to be the best candidate among all neighbors of m if it is

nearest to current coordinates t. We assume n is the only neighbor whose distance

from t is less than that of m, i.e.,

‖t− tm,l‖ > ‖t− tm,m‖ > ‖t− tm,n‖, (4.16)
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where l 6= n. We want to have

‖Πm,lt + gm,l − tl,l‖ > ‖Πm,nt + gm,n − tn,m‖ >

‖Πm,nt + gm,n − tn,n‖. (4.17)

Similarly, we can obtain Equation 4.16 by plugging in the terms from C3 into Equa-

tion 4.17 and removing Π’s, which concludes Equation 4.16 and Equation 4.17 are

equivalent.

With the technique that allows the tracing between adjacent charts, we can build

an isoline tracing paradigm, called one step tracing, that traces from one integer

node to one of its neighbor integer nodes : starting from an initial point m with

parametric coordinates tm,m, we add an offset d onto tm,m for 1/||d|| times. During

this process, if we need to switch to a new chart we transform the current parametric

coordinates and the offset using Equation 4.3 to those in the new chart. Note that

the offset doesn’t need the translation vector for transformation. After advancing

1/||d|| times, we evaluate the geometric coordinates of a new node in the current local

frame using Equation 4.12. This one step tracing allows us to build a general isoline

tracing paradigm easily: we repeat this step until we reach the surface boundary or

the initial point. Since one axis of the texture coordinates of each boundary vertex,

which is orthogonal to the boundary, is an integer coordinate, we generate integer

nodes right at the boundary during the isoline tracing. Next, we build the quad

mesh extraction with the help of one step tracing paradigm.

Since the form of d decides the tracing direction, for a given node i and its

geometric coordinates pi, we can trace in four directions using offsets (±δ, 0) and

(0,±δ) for one step. Once we obtain a new node j and its geometric coordinates

pj, we connect i and j to form an edge in the quad mesh. Then we make j the
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(a) Original triangular model (b) Intermediate state of the mesh extraction

Figure 4.3: Quad generation on manifolds.

new center and continue to trace in four directions. We maintain new nodes with a

queue data structure, which allows us to build the quad extracting paradigm using

a breadth-first traversal. Note that after advancing one step, we may encounter an

existing (“old”) node. We also connect that old node and current node since this

forms an edge in the quad mesh. The output of this traversal is a general graph

structure G = (V ′, E ′), where V ′ is the set of integer nodes and E ′ is the set of edges

connecting nodes in V ′. This graph structure can be easily converted to a vertex-face

representation by figuring out all cycles of size four in G. We show this traversal

technique in pseudo-code in Algorithm 2. Figure 4.3 shows the mesh extraction on

the cat model. Our method works well on this model having many sliver triangles.

56



Algorithm 2: Mesh extraction.

Given a point m and its geometric coordinates pm.
Create a general graph G and create the node for m in G. Store point m in
queue Q.
while Q is not empty do

Extract the head of Q and call it n.
Using point n as the center, advance in four directions (using one step
tracing).
For each of the four positions, check whether any node exists there and if
not, create a new node in G for the new positions.
Build edges connecting n to four nodes (including new and old) in G.

Traverse G to obtain all cycles of size four.

Note that Algorithm 2 requires us to decide whether a node is old or new. We

achieve this by using a spatial searching structure. Once we reach a node j, we first

evaluate its geometric coordinates. Then we do spatial searching to see if there is an

existing node i that is in a given neighborhood of node j. If so, this is an old node

and pi = pj. Otherwise, we create a new node for j in the graph. The threshold of

this neighborhood is set to be much smaller than the length of quad mesh edges. The

algorithm terminates because it only generates nodes of integer coordinates, which

is a finite set, and because it stops propagating when meeting existing nodes.

As we know, the cross field at singularities is not well defined. Therefore, when

we traverse to a singularity, we don’t want it to become a center for new tracing.

Note that, the neighbor nodes of a singularity will all advance to it when they are

taken as centers for tracing, which forms edges connecting neighbor nodes and the

singularity. This allows us to generate the correct topology at singularities.

Our method is also adaptive to the feature-aligned field. Those fields can be ob-

tained by smoothing the principal curvature field [48] or by constraining the model

features during the field design [34]. We provide result comparisons in the experi-
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mental part.

4.3 Experimental Results

We show the quad mesh result using our parameterization model and the per-

formance comparison on the MIQ solvers. The hardware configuration is a desktop

computer with one Core i7 3.4G CPU and 16GB RAM. We implemented our work

using g++ 4.8 on a 64bit Linux system.

Model Sys. size #Int. ARM PRM Extraction
Sphere 30k × 13k 5.7k 2.43s 2.31s 1.02s
Torus 70k × 28k 12k 22.94s 7.57s 1.57s
Cube 73k × 30k 13k 30.17s 8.14s 1.55s
Cat 96k × 40k 19k 52.77s 23.93s 1.74s

Bunny 169k × 706k 31k 2m03s 52.27s 2.32s
Hand 365k × 152k 68k 5m57s 2m20s 2.17s

Rockerarm 480k × 200k 90k 9m52s 3m58s 2.08s

Table 4.1: Performance comparison.

For constructing our MIQ solver, we wrap the Eigen library for linear algebra

computations. The internal linear system solver is superlu. We show the comparison

of performance between PRM and ARM in Table 4.1. The second column shows

the size of the sparse linear system. The third column shows the number of integer

variables in the system. Column ARM shows the time for parameterization using

ARM. Column PRM shows the time using PRM. Column extraction shows the time

for generating quad meshes. According to our experiments, PRM has consistently

better performance than ARM by a factor of around 2.2 to 2.9. The extraction

time doesn’t change too much for different models, because it is mainly related to

the number of integer nodes in meshes. Since we introduced many more integer
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variables than the method in [6] in our optimization, our method needs more time

for the whole quadrangulation.

(a) Ring field (b) Pentagon field (c) Disc field

(d) Ring quad (e) Pentagon quad (f) Disc quad

Figure 4.4: Quad meshes on 2D models.

Next we show results on some simple 2D geometric shapes in Figure 4.4. The

guide field in these instances is designed manually to reflect a user’s intention. For

those models, the quad meshes follow the guiding field very well. For the pentagon

model, there is a singularity at the model center. Our method identifies it correctly.

The generated mesh has the correct valence for this singularity. The disc model has

four singularities located where the inside square field meets with the outside round
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field. Our method identifies those singularities and generates correct topological

structures as well.

(a) Cube field (b) Sphere field (c) Sparse grid

(d) Sphere quad (e) Cube quad (f) Dense grid

Figure 4.5: Quad meshes on manifolds.

For 2-dimensional manifolds in Figure 4.5, we train the cross field on models using

the technique in [34]. The cube and sphere models both have 8 singular points, which

are successfully identified by our method. The topological structures generated are

also correct. There are no singular points on the torus model. We generated two

quad meshes with different edge sizes, which show that our method can control the

size of quads.
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(a) MIQuad (b) Ours

(c) MIQuad (d) Ours

Figure 4.6: Quadrangulation on bunny.

Figure 4.6 shows results from two methods. Though the mesh quality is largely

decided by the guiding field, our method, which generates the quad mesh over the

vertex field, produces comparable results to those of existing methods built on face

fields. We compare the mesh quality between our method and that generated from

[6] in terms of the distribution of areas and the distribution of angles. We show one

example, but the results were consistent across other examples, and the distributions
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are very similar for a wide range of quad sizes. For clarity, we call the method of [6]

MIQuad.

0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

(a) MIQuad area distribution
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(b) Our area distribution
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(d) Our angle distribution

Figure 4.7: Distributions on areas and angles of quads.

Figure 4.7 shows comparisons of distributions on areas and angles of quads gen-

erated from the bunny model. Figure 4.7a and 4.7b shows the comparison on the

distribution of areas. Figure 4.7c and 4.7d shows the comparison on the distribution

of angles within the quads. Our result is comparable to that of MIQuad, which

can also be easily noted by comparing the two meshes visually in Figure 4.6. This

indicates that our method generates quad meshes with in good quality over vertex
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fields. In the next part, we discuss contributions of our method. Since our method

works on vertex fields, we also discuss the limitations implied by field settings.

4.4 Discussion on Global Parameterization

We present a novel method for quadrangulation that utilizes local charts defined

on triangular mesh models. With a given cross field, our method formulates the

computation of parametric coordinates as a mixed-integer optimization problem.

Our method also adds flexibility to the system by redundant integer variables. The

quality of the generated quadrangular mesh depends only on the optimization in the

numeric solver. Meanwhile, we improve the performance of the adaptive rounding

solver, which is a widely used numerical method for solving MIQ, so that our method

generates parametric coordinates more efficiently. To generate the quadrangular

meshes, we propose an isoline traversal method and a breadth-first traversal node

generating method so that the quadrangulation result is extracted efficiently. To

summarize the characteristics of our work, we note the following:

• We build the quadrangulation method over smoothed vertex fields. So far,

field based quadrangulation methods are all built over face fields. We solve

difficulties in generating quads over vertex fields. One is that singularities are

triangle faces rather than points. We design constraints to allow consistent

convergence of isolines around each singularity. The other is local frames of

vertices are usually undetermined rather than those of faces that are deter-

mined. We define a local frame for each vertex and generate parameterization

coordinates with respect to the local frame, which reduces effects from other

neighbor vertices as much as possible.

• Since our parametric coordinates are defined within local charts, we avoid iden-

tifying consistent global base vectors for vertices. The redundant integer vari-
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ables increase the flexibility of the optimization system. Therefore, we need no

post processing on the cross field before computing parameterization coordi-

nates.

• Since each vertex has more than one copy of parametric coordinates, the num-

ber of variables in the optimization system is relatively large. We improve the

numerical solver for optimizing the MIQ problem so that the system can be

solved efficiently.

• A method for generating quad meshes is also proposed so that our mesh results

have the face information rather than simple isolines. This output can be used

directly for further processing such as texture mapping or finite element analysis

on surfaces.

There are some limitations of our method which provide potential for future

research. First, the quad mesh quality is largely decided by the guiding field. Though

we proposed the method over vertex fields, it’s not easy to compare the mesh quality

generated by our method with that generated by existing methods built on face

fields. The conversion from the vertex field to the face field or vise versa requires the

field smoothing operation, which is likely to change characteristics of the source field,

including number of singularities, positions of singularities and feature alignments,

etc. In our future work, we aim to find more applications that can show advantages

of our vertex field method. Second, we introduce multiple copies of each vertex

for parameterization, which increases the number of variables in optimization. We

could possibly find a method that would require fewer variables while still recording

all parametric information. Overcoming this problem can be a direct extension of our

work in the future. Last, we also assume surfaces are smooth everywhere except at

boundaries, which allows us to associate each vertex with one local chart. However,
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vertices on sharp features may require multiple local charts, which will be a focus of

attention in our future work.

Figure 4.8: Quad meshes on arbitrary manifolds guided by global optimal fields.

At the end of this work, we present quad results obtained by our method on

arbitrary manifolds. Results guided by global optimal fields are shown in Figure 4.8.

Results guided by feature-aligned fields are shown in Figure 4.9.
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Figure 4.9: Quad meshes on arbitrary manifolds guided by feature-aligned fields.
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5. GEOMETRIC OPTIMIZATION FOR PROCESS PLANNING*

Geometric optimization deals with problems of computing geometric objects that

are optimal subject to certain criteria and constraints. Different from numeric opti-

mization, geometric optimization models the optimization problem using geometric

properties and solves the problem by exploiting topological properties of geometric

elements such that the original problem can be decomposed into numerical problems.

In this work, we present a new geometric model for tolerance modeling and prop-

agation, geared toward tolerance analysis in process planning. Our aim is to decom-

pose a big chunk of analytic computations of conventional tolerance analysis into a

series of geometry computations. Our method has three steps. We first decompose

the part into basic geometric primitives, or features. Because those primitives are

to be manufactured in a common part, we know they are related and that there are

dependencies between them, which could be represented by a graph structure. We

first decouple the primitives into several co-related primitive groups. In each group,

the geometric position of a certain primitive (target primitive) is decided by the re-

maining primitives (reference primitives). This allows us to use the LPGUM model

[29] to model the tolerance zone for the target primitive, because all its variations

have been obtained. Second, we formulate a method for cascading the decoupled

primitive groups, so that the tolerances can be transferred between groups. Using

those cascading techniques, we could obtain the tolerance zones for all primitives by

traversing the embedded graph structure representing the dependencies. The toler-

ance zones thus obtained provide a worst case estimation on dimensions, represented

∗Part of this section is reprinted with permission from Geometric computation and optimization 
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as a geometric polytope. Last, we provide a computational optimization method

which can improve the quality of the existing process plan so that the tolerance of

the parts could be minimized as much as possible. The optimization problem itself is

an NP hard problem. We propose an efficient approximated dynamic programming

solver which utilizes the optimal substructure.

5.1 Relative Tolerance

When computing relative tolerances, we assume the references {mi} have an

exact position. Thus, the tolerance zone of the target t is only caused by variations of

dimensions connecting t and {mi}. When i = 1, we name the dependency {m1} → t

single dependency, which indicates that the target t is only affected by one primitive.

If i > 1, we name the dependency {mi} → t multiple dependency, which implies that

the target t is affected by two or more primitives. We present tolerance evaluation

techniques for both cases.

5.1.1 Single Dependency

We assume a point and line segment are sufficient for representing all features.

This is always true within some tolerance (which we in fact have), and given that

we linearize our nonlinear constraints, this is even more appropriate. The relative

tolerance zoneR(t, {mi}) could be computed analytically via an explicit formulation

on a certain parameterization or approximated by the linearization of variances [29].

We adopt the second approach since it allows us to convert the analytical compu-

tation to the corresponding geometric computation. Though the linearization is a

first-order approximation of the exact tolerance zone, this minor accuracy trade-off

can be neglected because of the tiny values of tolerances. We compute tolerance

zones for combinations of the point, denoted by p, and the segment, denoted by its

two ends ab. We use p′ to denote another point and use a′b′ to denote another
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segment.

p′

p

(a) p′ → p

p

a

b

(b) p→ ab

p

a

b

(c) ab→ p

a

b

a′

b′

(d) a′b′ → ab

Figure 5.1: Single dependency tolerance zones.

The linearization model in [29] is built on the variational zone of a point. For

one fixed point p, the tolerance zone is approximated by

Z(p) ≈ Z(p̄) + Jδi, (5.1)

where J is the (Jacobian) sensitivity matrix of uncertainties and where δi, 1 ≤ i ≤ n

define variations of n tolerances. When considering R(p, {p′}), p′ tries to lock all

degrees of freedom (DOF) of p. Figure 5.1 shows single dependency tolerance zones.

We have n = 2 for 2D and the zone is a quadrangle as shown in Figure 5.1a. Similarly,

we can obtain tolerance zones for the remaining combinations. For R(p, {ab}), the

tolerance zone would be a band along the segment as shown in Figure 5.1b. For

R(ab, {p}), the local tolerance frame still has two DOFs, so the tolerance zone, in

Figure 5.1c, is similar to that of R(p, {p′}). For R(ab, {a′b′}), we can apply several

kinds of geometric constraints, such as parallelism or perpendicularity. Figure 5.1d

shows the tolerance zone for parallelism.
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5.1.2 Multiple Dependency

When the references set {mi} has more than one primitive, we have a multiple

dependency. We examine three cases where the target is a point or a segment as

shown in Figure 5.2.

a
b

c

(a) Pt. target

a
b

c d

(b) Seg. independent

a
b

c d

(c) Seg. interleaved

Figure 5.2: Multiple dependencies tolerance zones.

Figure 5.2 shows multiple dependencies tolerance zones. Figure 5.2a shows the

point target case. Points a and b could be two point primitives or points on other

primitives. DOFs of c are locked by both a and b. We can obtain R(c) by applying

the linearization in (5.1) using the variations of dimensions between a, c and b, c.

The number of vertices of R(c) is decided by the corresponding sensitivity matrix.

In Figure 5.2b, points a and b are also two point primitives or points on other

primitives. DOFs of c are locked by a and DOFs of d are locked by b. We can

decompose this case into two independent groups of point dependencies: {a} → c

and {b} → d. The tolerance zone for segment cd is the convex hull of R(c) and

R(d). In Figure 5.2c, points c and d are both decided by a and b together. We
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decompose this relation into two interleaved dependencies {ab} → c and {ab} → d

and treat c and d as point targets.

5.1.3 Dependency Inverse

For single dependency, the relative tolerance operation is not commutative, i.e.,

R(t, {m}) 6= R(m, {t}). Therefore, we define the inverse operation R−1(t, {m}) =

R(m, {t}). The computation rule is that we view t as the reference and build

the tolerance zone around m. We could easily use the models in Figure 5.1 to

obtain the inverse dependency for each case of the single dependency. For example,

R−1(p, {ab}) = R(ab, {p}), which indicates that operations in Figure 5.1b and

Figure 5.1c are inverses of each other. Figure 5.3 shows dependency inversions. The

inverse for Figure 5.1a is in Figure 5.3a. We can obtain the inverse operation for the

two-segment case similarly.

p′

p

(a) Single dependency inverse

a
b

c d

(b) Multi. dependency inverse

Figure 5.3: Dependency inversions.

If a multiple dependency can be decomposed into a set of independent single

dependencies, we define the inverse R−1(t, {mi}) = ∪iR(mi, {t}). The case in

Figure 5.2b can be inverted by inverting R(a, {c}) and R(d, {b}) respectively and
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computing their union as in Figure 5.3b. The case in Figure 5.2a usually cannot be

inverted: because c’s DOFs are locked by two different objects, we cannot invert the

dependency, just as we cannot invert a multivariate function. The same applies to

the case of Figure 5.2c.

Notice that inverting dependencies changes the tolerance zones even though the

dimensioning scheme itself is unchanged. This noncommutative nature of depen-

dencies and tolerances provides the potential that we could improve an existing

dimensioning scheme to a more optimal one by selectively inverting dependencies.

Related techniques will be presented in section 5.3 in detail.

5.2 Tolerance Cascading

While relative dependencies assumed that references had exact positions, in real-

ity the references themselves may have their own tolerance zones. These variations

in the references might need to transfer to any target they lock. Given an existing

dimensioning scheme, we can define a directed acyclic graph (DAG) of dimension

dependencies based on the single and multiple dependencies on the individual prim-

itives. The graph nodes are primitives. Each edge of the graph starts from the

references and points to the target. Note that there might be many possible depen-

dency graphs for the same physical part.

To begin, we use a dependency graph that captures the intention of tolerance

design and that can be easily interpreted during manufacturing. Usually this will

have been provided by the designer. But if no design is provided, we can use some

simple heuristics to order the dependencies into a graph. In section 5.3, the de-

pendency graph will be augmented so that it covers a larger portion of the space

of dependency graphs and an optimal dependency graph will be chosen from that

subspace. We show an example for building a dependency graph in Figure 5.4. Fig-
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a b

cd

p1

p2

p3

s1

s2 s3

s4

(a) A simple part

s1

s2

s3

s4p1

p2

p3

(b) Dependency graph

Figure 5.4: Dependency graph for a part. Notice that p1, p2, and p3 are all defined
relative to s1 and s2, that s2 and s3 are defined as being perpendicular to s1, and
that s4 is defined relative to both s2 and s3.

ure 5.4a is a simple rectangular part with three position constraints. One possible

dependency graph is that in Figure 5.4b. The graph includes single dependency, such

as {s1} → s2 and {s1} → s3, and multiple dependencies such as {s1, s2} → p1 and

{s2, s3} → s4. This graph is acyclic since it has no back edge. There are tolerance

chains such as s1 → s3 → s4, which means the tolerance zone of s4 also partially

depends on s1 through s3. We classify dependency chains into one of two types as

shown in Figure 5.5. If the entire chain consists of single dependencies (e.g. the chain

a→ b→ c in Figure 5.5a), we call it single dependency cascading, while if there are

multiple dependencies in the chain (e.g. the chain in d → b → c Figure 5.5b) we

call it hybrid dependency cascading.

5.2.1 Single Dependency Cascading

In single dependency cascading, each primitive is only decided by only one refer-

ence along the dimension chain. The basic chain pattern is m1 →m2 →m3, where

mi are primitives. The key problem is how to transfer the tolerance of m1 to m3
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a

b

c

(a) Single dependency cascading

a

b

c

d

e

(b) Hybrid dependency cascading

Figure 5.5: Two types of tolerance zone cascading.

through m2.

Transferring tolerances through a point, as in Figure 5.6, is straightforward. For

each level, R(b) and R(c) can be evaluated. Assume the chain root a is exact (i.e.

Z(a) = a and Z(b) = R(b)). Since the variations of dependencies {a} → b and

{b} → c are independent, Z(c) is the cascading of {a} → b and {b} → c, which is

equal to the Minkowski sum of R(b) and R(c).

Cascading through a segment is based on cascading through points:

Definition 1. The tolerance zone of the segment is the convex hull of the tolerance

zones of its two endpoints.

Assume we have a point c and segment ab. We map c to ab to get a new point

d on the segment. We compute Z(d). Then Z(c) is obtained by the Minkowski sum

of Z(d) and R(c, {d}).
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a

b

c

(a) Point cascading (b) Minkowski sum

Figure 5.6: Point-point cascading.

Following this idea, as shown in Figure 5.7, we can describe perpendicularity or

angularity constraints, as shown in Figure 5.7a and Figure 5.7b. Note that Z(d) can

be obtained by interpolating Z(a) and Z(b). We use a linear interpolation:

Z(d) = Minkowski sum

(
Z(a)

|bd|
|ab|

,Z(b)
|ad|
|ab|

)
, (5.2)

where | · | indicates the segment length, and the scalar multiplication means scaling

one tolerance zone along directions starting from the origin and pointing to their

vertices.

We want to comment on the definition of the segment and related computations

on tolerance zones. Notice that if we use two ends of the segment to define a line [29],

then the tolerance zone of the line will fully cover the tolerance zone the segment.

This means that our definition of the segment tolerance is compatible with that of

the line it embeds. Furthermore, since tolerance zones of the two ends are both

convex, it is not hard to deduce that the tolerance zone for any segment point is
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Figure 5.7: Tolerance zones for perpendicularity and angularity.

also convex and would also be covered by the zone of the segment if using linear

interpolation. Therefore, the tolerance zones of the segment point and the segment

are compatible, which provides the theoretical support for our cascading techniques.

We can thus cascade the geometric primitives along a dimension chain having single

dependencies.

5.2.2 Hybrid Dependency Cascading

Multiple dependencies are an important part of the dependency DAG. If a mul-

tiple dependency can be decoupled into several single dependences, such as in Fig-

ure 5.2b, we can apply single dependency cascading on each so that the tolerance can

be transferred through those primitives. Otherwise, multiple dependency cascading

has to be applied. We examine the case in Figure 5.2a since it is the basic building

block for this problem. We need some theoretical preparations for deriving this type

of cascading.

As we know, for an equation f(x1, . . . , xn) = 0 and one of its solutions p̄, the
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sensitivity matrix associated with p̄ is the Jacobian of f at p̄. The bases of the

tolerance zone of p̄ are the column vectors of the sensitivity matrix. We have the

following conclusion about the variations of the tolerances: The variations of toler-

ances could be an explicit scale range or an implicit range decided by some functions.

Regardless, the shape, defined by angles of adjacent edges of the tolerance zone, as

well as the convexity, is kept. Below is the formal proof.

Theorem 1. The variations of tolerances could be an explicit scale range or an

implicit range decided by some functions. Under both situations, the shape of the tol-

erance zone, decided by the angle of adjacent edges, and the convexity of the tolerance

zone are the same.

Without loss of generality, we prove that for function (f(x, y), g(x, y)) and

f(x(u, v), y), g(x(u, v), y), if x0 = x0(u0, v0), then the bases of two tolerance zones

have the same directions.

Proof. Follow the linearization model. The tolerance zone for the first function are

represented by

 f

g

 =

 f0

g0

+

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


∣∣∣∣∣∣∣x=x0
y=y0

 dx

dy

 (5.3)

The two columns in the variational matrix show the directions of the two bases for

expanding the tolerance zone. The tolerance zone for the second function is

 f

g

 =

 f0

g0

+

 ∂f
∂u

∂f
∂v

∂f
∂y

∂g
∂u

∂g
∂v

∂f
∂y


∣∣∣∣∣∣∣u=u0
v=v0
y=y0


du

dv

dy

 (5.4)
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The variation for f in (5.3) is ∂f
∂x
dx+ ∂f

∂y
dy
∣∣∣x=x0
y=y0

.

The variation for f in (5.4) is

∂f

∂u
du+

∂f

∂v
dv +

∂f

∂y
dy

∣∣∣∣u=u0
v=v0
y=y0

=
∂f

∂x

(
∂dx

∂du
du+

∂dx

∂dv
dv.

)
+
∂f

∂y
dy

∣∣∣∣u=u0
v=v0
y=y0

.

Since x0 = x(u0, v0), we can view ∂dx
∂du

du+ ∂dx
∂dv
dv as dx. This means that the magnitude

of the bases can be changed by the composition, but not the direction, and thus the

angle of adjacent edges and the convexity of the tolerance zone are the same.
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Figure 5.8: Tolerance zones for composite functions.
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For completeness, we provide an example to illustrate this proof. Let (f, g) =

(r cos(θ), r sin(θ)). In Figure 5.8, the pink region in the top shows the tolerance

zone for (f, g). Let r = r(cos(u + v) + sin(v)), θ = ez + sin(w), which are both

nonlinear functions. The pink region in the bottom shows the tolerance zone for the

composite function. The black dots show the function values trying all combinations

of {±du,±dv,±dz,±dw}. Note that black arrows are parallel in the two figures,

which supports the theorem.

This conclusion indicates that the tolerance zone of the point p in (5.1) is centered

at p̄ and is spanned by the column vectors of the sensitivity matrix. The variations

of δi only affect the magnitude of the span along the bases. Having this shape

consistency allows us to decompose the computation of the tolerance zone of the

target in the multiple dependency into a few steps:

• Compute the target shape, i.e. compute the sensitivity matrix at point p̄.

• Compute the transferred tolerance zone in the target by finding the min/max

ranges of the reference variations along the bases of the target shape determined

earlier.

• Compute the zone formed by independent variations of the individual refer-

ences.

• Zone Z(p) is the Minkowski sum between the transferred tolerance zone and

the zone spanned by independent variations.

We show an example in Figure 5.9. Point c is decided by both a and b with

the angular dimension constraints θ1 and θ2 as in Figure 5.9a. The column vectors

of the sensitivity matrix indicate the bases are along the directions θ1 and θ2. In

Figure 5.9b, by estimating the ranges of variations, we know the transferred tolerance
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Figure 5.9: Hybrid cascading.

zone is the pink parallelogram spanned by two bases. Angles θ1 and θ2 also have

variations, which spans another (small) parallelogram. We know Z(c) is the octagon

formed from the Minkowski sum of two parallelograms.

5.3 Tolerance Optimization

The dependency graph described earlier connects all primitives and represents

dependencies of dimensions. For each primitive, its global tolerance zone can be

obtained by applying the techniques for computing the relative tolerance zones and

those for tolerance zone cascading. However, the dependency graph is not unique

with respect to one dimensioning scheme. In this section, we present a technique

for finding the dependency graph having minimum tolerances. In order to define it

formally, we formulate this problem as an optimization problem.
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5.3.1 Optimization Formulation

Given an existing dimensioning diagram, we could decompose it into geometric

primitives. Each primitive m is associated with a global tolerance zone Z(m), which

is yielded by a corresponding dependency graph. We define the cost function E for

optimization in terms of the dependency graph G as

E(G) =
n∑
i=1

wi · ‖Z(mi)‖, (5.5)

where wi is the weight associated with the primitive mi and where ‖ · ‖ means a

scaling function (e.g. the zone area) that maps Z(mi) to a scale value. The wi will

generally be specified by the engineer to indicate (by assigning larger values to the

wi) which primitives are a priority to minimize.

The optimization on tolerancing is usually motivated by cost requirements, func-

tional requirements, assembly requirements, etc. Here we minimize the tolerance

associated with one part. For each primitive on the part, we allow the designer to

adjust its weight in optimization. The objective function in (5.5) has a two-fold

meaning. One is that the tolerance is minimized so that the processing cost could

be reduced without requiring more precision engineering machines or processes. The

other is that designers could reflect the design intentions by adjusting the weights

on primitives, so that the functional or assembly requirements could be met.

5.3.2 Augmented Graph

Though the dependency graph can represent the dependencies between primi-

tives, two factors prevent us from finding an optimal solution on it directly. One is

the tolerancing ambiguity. Take Figure 5.4b as an example. The chain s1 → s2 → s4

could be two levels of single dependency cascading or could be a part of a hybrid
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dependency cascade. The other is reasonableness of the optimized scheme. The so-

lution space of the optimization is the space consisting of all dimensioning schemes.

However, many of them are unreasonable in engineering because they are far from an

acceptable scheme in practice, though they may seem to have lower cost. Our goal is

to find a structure to present schemes that are practical for design and manufactur-

ing without causing any dimensioning ambiguity. Therefore, we build an augmented

graph from a given dependency graph, which represents the set of reasonable schemes

“nearby” the original dependency graph among the whole solution set. We will also

see that any ambiguity is resolved in this new representation. By applying the op-

timization on this subspace, we will have an optimized and reasonable engineering

scheme. The augmentation steps are as follows.

• Create new nodes to represent multiple dependencies. Let’s color the nodes of

the original dependency gray and color the new type of nodes red. For a given

multiple dependency {m1,m2} → t, we first create a red node m12; then we

replace the original edges of the multiple dependency with three directed edges

m1m12, m2m12 and m12t.

• Decompose the multiple dependency, if possible, into several single dependen-

cies. If a given multiple dependency {m1,m2} → t is decomposable we add

two directed edges m1t and m2t into the graph.

• Add additional edges for inverse dependencies. For a single reference {m} → t,

we add the directed edge tm; for a multiple reference {m1,m2} → t, if it is

invertible we add two directed edges tm1 and tm2 into the graph.

• Repeat until we cannot add more node or edge into the graph.
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Figure 5.10: Augmented graph of the part.

Note that we don’t add any duplicated directed edges into the graph. To illustrate

the process, consider the part in Figure 5.4a; we create the augmented graph in

Figure 5.10. First, we create red nodes s23, s121, s122 and s123 representing the

multiple dependencies, remove the original edges for those dependencies, and add

the associated directed edges for the red nodes accordingly. Second, the multiple

dependencies of node s23 can be decomposed. Two edges s2s4 and s3s4 should be

added (note that these edges existed previously but were removed in the prior step).

Third, we invert the dependencies as much as possible. We add edges s2s1, s3s1,

s4s3, and s4s2 into the graph. We repeat all steps. The earlier process caused s1

to have two edges from primitives pointing to it, and we thus create a red node s14

representing a new multiple dependency.

5.3.3 Optimization Solver

The goal of the optimization is to find a dependency graph of which the cost

function in (5.5) could be minimized. The input is the augmented graph and the

output is a dependency graph which can be translated to a new dimensioning scheme
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as well as a processing plan.

Since it is a DAG, the dependency graph must have some nodes as roots (no

in-edges). For example, s1 is the sole root for the DAG in Figure 5.4b. The root(s)

guarantee reachability, meaning that non-root nodes could be reached via the graph

that starts from those roots. Our optimization process aims to (1) identify appro-

priate root nodes, and (2) for those root nodes, determine an order of evaluation of

the dependencies. In this way, a dependency DAG is extracted from the augmented

graph, and our goal is to find the dependency DAG that minimizes (5.5).

Assume that a root node(s) has been determined in the augmented graph. The

root node is assumed to have an exact dimension, and thus the tolerance zone will

only be a point. Given root nodes, a dependency chain can be created and tolerance

zones propagated in the augmented graph: gray nodes will be determined by the

evaluation methods for primitives. Red nodes can be evaluated (i.e. the gray node

the red node points to can be evaluated) only once all gray nodes pointing to it have

been evaluated.

To find the optimal dependency graph, we will do the following:

• Choose a set of root nodes. Note that a user may also specify the root nodes

directly if the situation dictates it (e.g. a fixture point). All other nodes must

be reachable from the root(s). We will typically consider using only one or two

root nodes, since this is all that is typically allowed in practice. It also makes

an exhaustive check feasible. Notice that a trivial “optimal” solution will be

to make every node a root node. Our goal is to find an optimal dependency

graph, and keeping a minimal set of roots is a part of that.

• For the given root node(s), compute the minimized cost for the remaining

nodes. This is the major part of the optimization. We attempt to exploit the
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optimal substructure for this problem. In (5.5), the cost for node p is ‖(Z(p))‖.

Assume the reference nodes that points to p are pi, 1 ≤ i ≤ n. We have

‖(Z(p))‖ = min{‖Cascade(Z(pi),R(p))‖}. (5.6)

If Z(pi) also yields the minimal cost for node pi, then formula (5.6) defines

the optimal substructure of the optimization. This means the subproblems are

overlapping and therefore we can use dynamic programming to solve this prob-

lem efficiently. Whether optimal substructure holds depends on the selection

of the scaling function, which will be discussed later.

• Evaluate the overall cost function; if this is a new minimum, determine the

associated dependency graph and store it as the current best graph.

• Repeat the process by choosing a new root candidate until all candidates have

been determined.

Selecting the scaling function is the key problem for our evaluation method.

Ideally, this function will be compatible with the optimal substructure in formula

(5.6) so that we can overlap subproblems during optimization. In practice, however,

it is usually hard to find such a function which satisfies the requirement strictly. We

therefore propose to use the area of the tolerance zone as the scaling function. This

selection makes the original optimization become an NP hard problem because the

optimal substructure is broken and enumerating the solution set is the only way to

compute the optimal solution. However, we show that for most cases, this selection

adapts well to the optimal substructure criteria.

First note that points form the basis for most of the computations, both as direct

feature positions and as segment endpoints. From experimental observation we found
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that the cascaded tolerance zones of points tend to approach circularities. This is

caused by 1) the convexity of relative tolerance zones and 2) the random distribution

of the directions of bases spanning the tolerance zones. We mostly use Minkowski

sum to cascade tolerance zones and thus the cascaded zones expand in every direction

in a uniform way, and become more circular as the tolerances cascade. We can easily

verify that if the tolerance zones are circular, then the optimal structure is always

satisfied by using the area as our scaling function. We take the perpendicularity in

Figure 5.7a as an example. If Z(a) and Z(b) are both circles, then Z(d) is also a

circle. If we decrease the size of Z(a) or Z(b) then Z(d) will also be decreased (as

well as Z(c)). The inverse of this procedure also holds. As a result, area tends to be

a good scaling function; though not guaranteeing optimality, it is close to doing so,

and thus allows us to apply dynamic programming and achieve good results.

We show that our dynamic programming paradigm has a polynomial complexity

bounded by O(n4), where n is the number of nodes in the augmented graph. The

complexity for choosing root candidates is
(
n
2

)
. For evaluating non-root nodes, we

use the bottom up scheme. If one node can be evaluated, we compute its tolerance

zone and mark it as evaluated. We try to evaluate all non-evaluated nodes. This

could be achieved with complexity O(n2). Therefore, the complexity of the whole

algorithm is bounded by O
((
n
2

)
· n2
)

= O(n4).

5.4 Experiments

We first show the tolerance cascading results which are used for estimating the

tolerance zone. Then we show an integrated experiment for optimizing a discrete 3D

part.
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Figure 5.11: Cascaded tolerance zone for point-point cascading.

5.4.1 Cascaded Tolerance Zone

The first experiment demonstrates the result of point cascading as in Figure 5.11.

Points a, b and c are placed at (0, 0), (2, 2) and (3, 2.5) and a is considered to be

fixed. We assume a relative angular tolerance of 0.02 (about one degree) and a

radius tolerance of 0.05. The blue region shows R(b, {a}). The green region shows

R(c, {b}). The pink region shows Z(c) which is the Minkowski sum of the blue and

green regions.

The second experiment shows a result of an angularity formed from two segments

as in Figure 5.12. We have two segments p1p2 and q1q2, with p1 located on q1q2

and an angle specified between the two segments. Their ends are shown with red

dots. If we only consider the relative tolerance for p1p2, then q1q2 is the reference.

The region of R(p1p2) is the convex hull of R(p2) and point R(p1). Now we add

the tolerance zone to segment q1q2. Zone Z(q1) is induced by a reference point at

(0,−1) with the angle tolerance 0.05 and the radius tolerance 0.05. Zone Z(q2) is

induced by a reference chain (1,−1)→ (2,−1)→ q2, with the same angle and radius

tolerances as q1. We can see that Z(q1) is a rectangle while Z(q2) is an octagon;
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Figure 5.12: Cascaded tolerance zone for segment-segment cascading.

both are shown in Green. We use the technique in section 5.2 to obtain Z(p1) from

Z(q1) and Z(q2). Then Z(p2) is the Minkowski sum of R(p2) and Z(p1) and the

tolerance zone for the segment is the convex hull of Z(p1) and Z(p2), shown as the

orange region.

Notice that the tolerance zones for points on a segment, such as p1 and p3, are

fully covered by the tolerance zone of the segment, which indicates that the definition

of the tolerance zone for the segment and that for the point on it are compatible with

each other.

The third experiment shows the cascading result of the hybrid cascading as in

Figure 5.13. Point q1 is at (0, 0) and point q2 is at (1, 0). We use the distance

constraint to decide point p, where the distance to q1 is |pq1| = 0.7 and to q2 is

|pq1| = 0.8. When both q1 and q2 have their own tolerance zones, shown in green,

the zone of p is decided only by |pq1| and |pq2|. The green region around p shows
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Figure 5.13: Multiple dependency cascading and tolerance zone for curved feature.

the linearized Z(p). We also paint the exact tolerance zone for q1 in pink and the

same zone for q2 in blue. We can see that our linearization of Z(p) covers the

intersection of both bands well. In addition, this experiment also shows that the

linearization of the tolerance zone on points and segments can be used to construct

the curved features such as the circle.

5.4.2 Tolerance Optimization

In this part, we show the results of experiments that use our optimization, thereby

improving the tolerance for the part and aiding in process planning.

The first experiment shows two different dimensioning schemes to obtain the

tolerance of a segment as in Figure 5.14. Point p is placed at (1.0, 1.0). Point q1 is

at (3.0, 1.0) and point q2 is at (1.0, 2.0), which are two ends of segment q1q2. We

set an angular tolerance of 0.02 and dimensioning tolerance of 0.05, with only point
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Figure 5.14: Optimized dimensioning scheme.

p being fixed. The blue region shows Z(q1q2) using the conventional tolerancing

scheme that takes the x − y axis as the references. In contrast, we use two angular

references −−→pq1 and −−→pq2 to decide the segment tolerance zone. The two green regions

show the tolerance zones of q1 and q2 while the pink region is the new zone of the

segment, which is smaller than the blue one.

Finally, we show an optimization experiment on a 3D part, a part of a gearbox

frame. The 3D view, top and front views are shown in Figure 5.15. As stated earlier,

we are limiting ourselves to 2D operations, so we will simplify only tolerances on the

side view.

We applied two optimizations. In the first one we set a larger angular tolerance

for features. The optimization result, after translation into dimensioning scheme

is shown in the top of Figure 5.16. Segments s2 and s3 are picked as roots of the

references. Circle features use s1 and s4 as their references. Notice that all dimensions

are specified via dimensioning, which is to be expected since the angular tolerance is
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Figure 5.15: Original part.

so high. In the second optimization, we instead set a smaller angular tolerance and

weights to give preference to the circle features. The optimization results are shown

at the bottom of Figure 5.16. Circle centers c1 and c2 are picked as the reference

roots. The remaining circle features are associated with c1 or c2 via angularity.

Segments s2 and s3 also depend on c1 and c2. For simplicity, we omit some trivial

dimensions in the diagram. Notice that s6 depends on c5 and c6, and s7 depends on

c4 and c5. Both of them are not invertible so that their dependencies are kept the

same during optimization.

The next goal of our work is to extend our method into 3D space. Here we

present an idea on how to achieve this when the real part is represented by three

or more different 2D views, as shown in Figure 5.15. In different views, though

those primitives have different geometric forms, they are not decomposable, i.e.,

we can always find the geometric forms for each primitive in different views. For

example, c3 is a line in the top view and it is a point in the front view. For different
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Figure 5.16: Optimization results.

views, we can build different augmentation graphs. We use the same name to mark

nodes in different views if they are representing the same primitive, which builds

the correlations of features among different views. We associate a weight to the

cost function associated with each view and sum them up to obtain a global cost

function. This will allow us to compute the optimization on those augmented graphs

concurrently so that we will obtain an approximated optimal solution for the 3D

part.
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5.5 Discussion on Tolerance Optimization

We have presented a geometric method for tolerance analysis for which the re-

sults are represented by geometric shapes. Compared with conventional tolerance

analysis, this method provides the geometric approximation of the tolerance zone

as well as numeric boundaries, such as min/max range. Meanwhile, the dimension

dependencies are translated to a general topology graph, which provide the struc-

ture for optimizing the dimensioning scheme. Though this geometric optimization

is an NP hard problem, we propose an approximation method that allows us to

build an efficient dynamic programming solver for the optimization. Our method

also demonstrates that the LPGUM approach can serve as an effective method for

tolerance modeling and analysis. To our knowledge, this is the first more general

application, and first implementation, of the LPGUM model.

Because of its general definition, our method brings several advantages to the

designer

• The user can adjust the tolerance preferences. The user can give some features

high preferences, so that they will be given precedence during the optimization.

The direct result is that the dimensions associated with those features are kept

as accuracy as possible.

• Since the dimension scheme will be optimized, our method will generally al-

low relatively larger individual tolerances while still meeting the same overall

tolerance requirements.

• We can allow automatic tolerance reallocation when the tolerances of the same

features are kept the same. A designer can set a threshold for the tolerances

and check if the target tolerance can be meet for requirements. The opti-
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mization will reallocate the tolerance distributions by adjusting the dimension

dependencies appropriately among primitives.

There are some limitations of our method which provides potential for future

research. First, the tolerance zones are represented by polygons by using the first-

order approximation of LPGUM. While LPGUM has a number of advantages we

exploit, other methods may provide a more accurate representation of the tolerance

zone for nonlinear primitives. Second, along the same lines, a wider range of geomet-

ric primitives (such as parametric curves) could be included. Our current approach

requires most curves to be linearized. Third, simplification of complicated models

might be necessary before optimization. This will shorten the length of the dimen-

sion chains so the computing complexity can be reduced. Finally, our examples are

demonstrated mainly in 2D space, for which the geometric computations and rela-

tions are relatively simple. In the near future, we could attempt to build a direct 3D

optimization on parts by following the approach outlined earlier.
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6. CONCLUSIONS

In this dissertation, we apply new optimizations for several problems in geometric

and solid modeling. In detail, we control the distortion distribution in the local

parameterization; we obtain a global parameterization of good quality by adding

redundant integer variables into the optimization system and solve the system with

an efficient numeric method; we also obtain an optimized plan for parts processing

by applying geometric optimization, which improves the processing precision without

requiring the enhancement of manufacturing cost or techniques.

In general our work includes contributions as below.

We propose new numeric optimization formulations for existing problems. For

local surface parameterization, the control of the distortion provides the possibility

for accommodating applications that benefit from an uneven distortion distribution,

such as 3D surface painting. For global quadrangulation, we provide quadrangulation

methods over optimal and feature-aligned vertex fields. The performance of com-

putation of parameterization coordinates is improved by proposing a new efficient

numerical solver.

We propose a new geometric optimization and solve it by utilizing the topolog-

ical properties between geometric elements. Instead of using the optimization by a

group of analytic functions, we represent the optimization by a group of geometric

elements, such as point, segment and circle, etc. The criterion to be optimized is

represented by polytopes in geometric space. We also present methods that adapt to

our representation and allow us to construct the (approximated) optimal solution.

Finally, our work has very strong application. We can see that our optimiza-

tions play very important roles in geometric modeling. By modeling the problem
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using proper numeric or geometric optimizations, we obtained optimized results that

benefit wide and extensive applications in art, industry, and life.
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