
 

 

 

 

HARDWARE ACCELERATOR FOR HMM BASED SPEECH RECOGNITION 

USING APPROXIMATE COMPUTING TECHNIQUES 

 

 

A Thesis 

by 

HARIHARAN BHAGAVATHEESWARAN  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,  Peng Li 

Committee Members, Jiang Hu 

 Duncan M. Walker 

Head of Department, Miroslav M. Begovic 

 

December 2015 

 

Major Subject: Computer Engineering  

 

 

Copyright 2015 Hariharan Bhagavatheeswaran



 

ii 

 

ABSTRACT 

 This thesis presents a hardware design for recognizing speech using phoneme-level 

Hidden Markov Models (HMMs) and proposes two alternative designs using approximate 

computing techniques for area and energy optimizations. 

An initial hardware design is proposed to model a speech recognition system using 

the log-Viterbi algorithm approach. Two more hardware designs using various 

approximate computing techniques and modifications to the log-Viterbi algorithm are also 

proposed, that are shown to consume lesser area and power. 

The work also presents the performance analysis in terms of recognition accuracy 

and hardware evaluations in terms of area, switching and leakage power and energy 

dissipation of all three designs. The results prove that the usage of approximate computing 

helps reduce area and power, with a minor compromise on accuracy. The design using 

approximate computing is also capable of running at a higher frequency with quicker 

execution time and lesser energy consumption.  

For applications where accuracy is vital, the thesis also proposes an adaptive 

system which can operate in two modes – one at a higher frequency, with slightly lesser 

accuracy and another at a lower frequency, with better accuracy and capable of 

dynamically switching from one mode to another. 



 

iii 

 

ACKNOWLEDGEMENTS 

I would like to acknowledge the support of my advisor and committee chair, Dr. 

Peng Li. He has been extremely patient and helpful through the entire process of this work. 

Right from the day of meeting him to discuss the prospects of the work to final stages of 

its completion (and I am sure beyond that as well), he has always been encouraging me. 

He motivates me to push further and strive for further improvement at every stage of the 

research. This work was possible largely due to his expert guidance and I feel proud and 

privileged to have worked with him. 

Dr. Li’s influence spreads to his research group as well, especially to fellow 

graduate student, Qian Wang. He has been my go-to man for various tips, advice and 

inspiration. Without his help, I would have faced a lot more difficulties during the course 

of my research. I thank him for all the support and guidance as well. 

I would also like to thank my committee members Dr. Jiang Hu and Dr. Duncan 

M. Walker, for their patience and support through the process. Their inputs also helped 

fine-tune my work and the results. 

My expertise on speech processing and recognition (which is an important subject 

of this thesis) was limited at the start of this work. Hence, the experience gained through 

a course on Speech Processing by Dr. Ricardo Gutierrez-Osuna was immensely useful in 

helping me throughout this process and I express my gratitude to him. The course clarified 



 

iv 

 

a lot of concepts which till then had appeared blurred and vague. It also gave hands-on 

experience on common tools and benchmarks used in the field. 

I also acknowledge the support of the staff in the Department of Electrical and 

Computer Engineering at Texas A&M University for providing several resources and 

helping at various stages of this research work. 

My sincere thanks to my friends and all others who have had a role to play in this 

work and for motivating me. 

Last but as always not the least, I would like to thank my parents Mr. 

Bhagavatheeswaran H and Mrs. Latha V for all the support they showed in me for 

completing this work. Their belief and encouragement went a long way in helping me 

complete my research successfully. 



 

v 

 

NOMENCLATURE 

 

CLA Carry Look Ahead 

CMOS Complementary Metal Oxide Semiconductor 

CPU Central Processing Unit 

DC Design Compiler 

DFT Discrete Fourier Transform 

HMM Hidden Markov Model 

HTK Hidden Markov Model Toolkit 

MFCC Mel-frequency Cepstral Coefficients 

S-o-C System on Chip 

STFT Short Time Fourier Transform 



 

vi 

 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGEMENTS ............................................................................................. iii 

NOMENCLATURE ........................................................................................................... v 

TABLE OF CONTENTS .................................................................................................. vi 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES ............................................................................................................ ix 

1. INTRODUCTION ...................................................................................................... 1 

2. SPEECH RECOGNITION ......................................................................................... 4 

2.1. Speech Analysis ................................................................................................. 4 

2.2. Basic Principle of Recognizing Speech ............................................................. 4 
2.3. Feature Vectors .................................................................................................. 5 

2.4. Speech Recognition System ............................................................................... 8 

3. HIDDEN MARKOV MODELS ............................................................................... 10 

3.1. Theory of Hidden Markov Models................................................................... 10 
3.2. HMMs as Acoustic Models .............................................................................. 11 

3.3. Viterbi Algorithm ............................................................................................. 12 
3.4. HMMs in Speech Recognition ......................................................................... 14 

4. HARDWARE IMPLEMENTATION OF SPEECH RECOGNITION SYSTEM ... 16 

4.1. Log-Viterbi Algorithm ..................................................................................... 16 
4.2. HMM Parameters for Hardware Implementation ............................................ 17 

4.2.1. Sparse Transition Matrix ............................................................................ 17 
4.2.2. Output Probability Distribution .................................................................. 18 

4.3. Prior Work ........................................................................................................ 20 



 

vii 

 

5. PROPOSED IMPLEMENTATION ......................................................................... 23 

5.1. Output Probability Computation ...................................................................... 26 
5.2. Log-Viterbi Algorithm Implementation ........................................................... 28 
5.3. Output Probability Comparison ....................................................................... 30 

5.4. Modifications to the log-Viterbi Algorithm for Implementation ..................... 32 

6. CUSTOM OPTIMIZATION OF THE PROPOSED HARDWARE DESIGN ........ 33 

6.1. Optimizing the log-Viterbi Initialization Step ................................................. 33 
6.2. Optimizing the Output Probability Computation ............................................. 35 
6.3. Optimizing the log-Viterbi Recursion Step ...................................................... 36 

6.4. Optimizing Final Comparator Logic ................................................................ 37 

7. APPROXIMATE COMPUTING ............................................................................. 38 

8. PERFORMANCE ANALYSIS AND RESULTS .................................................... 42 

8.1. Performance Evaluation ................................................................................... 43 
8.2. Hardware Evaluation ........................................................................................ 44 
8.3. Frequency Scaling ............................................................................................ 47 

8.4. An Adaptive System......................................................................................... 51 

9. FUTURE WORK ...................................................................................................... 54 

10. CONCLUSIONS ...................................................................................................... 55 

REFERENCES ................................................................................................................. 56 

 



 

viii 

 

LIST OF FIGURES 

 Page 

Figure 1: Mel filter-bank .................................................................................................... 7 

Figure 2: Basic speech recognition system ........................................................................ 9 

Figure 3: A basic HMM ................................................................................................... 11 

Figure 4: A monophone-HMM based recognition system ............................................... 15 

Figure 5: A left-to-right HMM ......................................................................................... 17 

Figure 6: Flowchart for computing 𝑃(𝑂|𝜆) within a single HMM (© 2006 IEEE 

(Yoshizawa et al., 2006) – adapted with permission from the IEEE) .............. 22 

Figure 7: Basic structure of the proposed system ............................................................ 25 

Figure 8: Output probability computation ........................................................................ 27 

Figure 9: Implementation of log-Viterbi initialization & recursion ................................. 29 

Figure 10: Termination of Viterbi algorithm ................................................................... 29 

Figure 11: Final probability comparison .......................................................................... 31 

Figure 12: Optimized log-Viterbi algorithm .................................................................... 35 

Figure 13: 16-bit approximate adder design .................................................................... 40 

Figure 14: 24-bit approximate adder design .................................................................... 41 

Figure 15: Hardware evaluation of the full system at 95 MHz ........................................ 45 

Figure 16: Hardware evaluation of a single HMM system at 95 MHz ............................ 47 

Figure 17: Hardware evaluation of the full system after frequency scaling .................... 49 

Figure 18: Hardware evaluation of a single HMM system after frequency scaling......... 50 

 



 

ix 

 

LIST OF TABLES 

 Page 

 

Table 1: Hardware evaluation of the entire system at 95 MHz ........................................ 44 

Table 2: Hardware evaluation of a single HMM at 95 MHz ........................................... 46 

Table 3: Full systems, each at their respective maximum frequencies ............................ 48 

Table 4: Single HMMs, each at their respective maximum frequencies.......................... 50 

Table 5: Performance of the adaptive system .................................................................. 53 

 

 

 

 



  

1 

 

1. INTRODUCTION  

Speech recognition is a popular application in today’s world. Speech forms an 

integral part of the space occupied by gesture and finger touch, as means of interaction 

with electronic gadgets, be it mobile phones or cars. It is used as means of searching the 

web, texting or emailing friends and colleagues, to control the multimedia or for 

navigation in a car. Speech recognition also finds a place in the treatment of speech 

impairment, especially in children suffering from dysarthria (Rosen & Yampolsky, 2000).  

Current smartphones and other gadgets have speech recognition applications built 

into them, which are software-based (Schuster, 2010). Apart from these, there are various 

systems built entirely on software, which do speech recognition or provide a toolkit to 

develop software that can recognize speech. HTK (Hidden Markov Model Toolkit) 

(Young et al., 1997) and Sphinx-4 (Walker et al., 2004) are two such software currently 

in use. 

To make the speech recognition accurate and speaker independent, recognition 

models require sufficient training and use various algorithms for recognition, both of 

which are computationally intensive (Lee, 1988). With speech recognition being widely 

implemented in many devices currently, the processor is under heavy utilization 

performing the recognition apart from its own other tasks. On its own, the processor is 

undergoing various enhancements with respect to performance, resulting in multi-core and 

multi-threaded systems being prominent. A corollary of the results of (Esmaeilzadeh, 



  

2 

 

Blem, St Amant, Sankaralingam, & Burger, 2011) shows that having dedicated processors 

or hardware accelerators for computationally intensive tasks are better ways to enhance 

performance and offload the main CPU. 

In a way similar to having dedicated hardware for signal processing, this thesis 

proposes a hardware design for implementing the speech recognition task. This allows the 

main CPU in a System-On-Chip to be responsible only for invoking the hardware for the 

recognition and can be offloaded from the actual recognition process. The motivation for 

such a design arose from the fact that hardware implementations can be faster than 

software.  

While implementing a new hardware design, area and power are of utmost 

concern. The implementation of a complex software task on the hardware is expected to 

consume a large area. A computationally intensive algorithm translates to large power 

dissipation. Hence the challenge is to find an optimal balance between the area and power 

consumption of the hardware and the speed and accuracy of the implementation. 

This work discusses an implementation of the hardware design and looks at a 

couple of optimization techniques for reduction in area and power. The techniques used 

for optimization revolve around the concept of approximate computing. Approximate 

computing involves techniques by which deliberate errors are introduced in the 

computation task to reduce energy consumption and enhance speed, without affecting the 

accuracy of the final output significantly. This is a popular design paradigm being used 



  

3 

 

for various applications (Hegde & Shanbhag, 2001), (Kim, Zhang, & Li, 2013), (Shao & 

Li, 2014), (Kim, Zhang, & Li, 2014) & (Shao & Li, 2015). 

This thesis is organized in the following way; details of speech recognition are 

explained in Section-2, covering aspects of speech recognition, feature extraction and 

basic structure of a typical speech recognition unit. Section-3 discusses Hidden Markov 

Models, their usage in the speech recognition process and the Viterbi algorithm for 

obtaining the optimal state transition sequence. Section-4 describes necessary 

modifications to the standard Viterbi algorithm to facilitate easier implementation on 

hardware and discusses previous work that has been done related to hardware 

implementation of speech recognition. Section-5 details the proposed design with 

schematic level details of each arithmetic or logical unit used in the process. Section-6 

covers customized optimization techniques for improving area and power dissipation of 

the proposed design. The optimization techniques are along the lines of basic approximate 

computing. Section-7 implements approximate computing techniques to various elements 

within the proposed design. Performance analysis and hardware evaluation results are 

presented in Section-8, with a description of an adaptive model which is capable of 

supporting both the approximate computation techniques. Section-9 discusses possible 

enhancements to this work in the future and Section-10 provides a summarized conclusion 

to the thesis.  



  

4 

 

2. SPEECH RECOGNITION 

The goal of speech recognition is to convert the spoken speech into text. A speech 

recognition system is a special case of a pattern recognition task, with speech being the 

pattern and the recognition task being the task of identifying the text that represents the 

speech, with the maximum probability out of a possible number of texts. A detailed speech 

recognition process is described in (Lawrence R. Rabiner & Juang, 1993). 

2.1. Speech Analysis 

Speech recognition is a form of speech analysis wherein the recognition of speech 

essentially translates into recognition of words or phonemes. Phonemes are the smallest 

meaningful unit of speech in a language (İnce, 1992) and the physical sound produced 

during the articulation of a phoneme is called a phone. A phoneme can correspond to 

multiple phones due to the variations that can occur during utterance. 

During a speech utterance, the articulation of a phoneme is affected by its 

neighboring phonemes – the ones preceding and succeeding it. This phenomenon is called 

co-articulation (Ohala, 1993). 

2.2. Basic Principle of Recognizing Speech 

Given an observation speech sequence 𝑂, and a possible word sequence 𝑊, the 

recognition task is to maximize 𝑃(𝑊|𝑂) or the recognized word/text (𝑊̂) is the word with 

the maximum posterior probability. 



  

5 

 

 𝑊̂ = arg max
𝑊

𝑃(𝑊|𝑂) (2.1) 

Applying Bayes’ theorem, 

 𝑃(𝑊|𝑂) =
𝑃(𝑂|𝑊) ∗ 𝑃(𝑊)

𝑃(𝑂)
 (2.2) 

As 𝑃(𝑂) is not dependent on 𝑊, eqn. (2.2) can be incorporated in (2.1) as shown 

in eqn.(2.3), so that the recognition essentially involves computing 𝑃(𝑂|𝑊) and 𝑃(𝑊). 

 𝑊̂ = arg max
𝑊

𝑃(𝑂|𝑊) ∗ 𝑃(𝑊) (2.3) 

The first term in eqn. (2.3) 𝑃(𝑂|𝑊), is generally obtained using statistical models, 

termed as acoustic models and denotes the probability of observing the sequence O for the 

specific word model W. Models are built for various sub-word or word units and 𝑃(𝑂|𝑊) 

is computed for all such units. 

The second term in eqn. (2.3) 𝑃(𝑊), is computed from language models and 

denotes the probability of the occurrence of the current word/sub-word unit, constrained 

to the syntax of the language/application in use. 

In this thesis, the sub-word units used are phones. Phones are the basic units of 

speech analysis.  

2.3. Feature Vectors 

The observation sequence used in eqn. (2.3) is the input speech to the recognition 

system. This input speech is converted to feature vectors before they can be processed by 



  

6 

 

the system. Mel-frequency Cepstral Coefficients (MFCCs) have been proven to best 

represent speech in terms of its features (Davis & Mermelstein, 1980) and hence are one 

of the most popular features used in speech recognition. 

The human auditory system contains the Basilar Membrane which is responsible 

for analyzing the frequencies of sounds. The basilar membrane is a coiled structure within 

the cochlea of the ear and has different properties at different points across its length, 

which affect the frequency to which that point is sensitive to (Bacon, Fay, & Popper, 

2004). The membrane is sensitive to frequency in a non-linear fashion, with the scale being 

linear till 1000 Hz and logarithmic beyond. The Mel scale is an approximate equivalent of 

the human auditory system and hence is used as a standard scale from which MFCCs are 

derived. 

To map a speech sample to its corresponding Mel scale, the speech signal in its 

frequency domain is multiplied by a triangular weighing function (Xu et al., 2005). A 

sample triangular weighing function is shown in Figure 1. The triangular weighing 

function is linear till 1000 Hz but exponential beyond. As the speech is a signal that 

changes continuously with time, a discrete short-time Fourier transform (DFT) of the input 

speech is used to convert it to its frequency domain and further map on to the Mel scale 

(Sahidullah & Saha, 2012).  



  

7 

 

 

Figure 1: Mel filter-bank 

The mel-frequency spectrum is obtained by summing the energies in each filter 

(Lawrence R.  Rabiner & Schafer, 2007), as shown in eqn. (2.4) 

 𝑀𝐹[𝑟] =  
1

𝐴𝑟
∑ |𝑉𝑟[𝑘]𝑋(𝑛, 𝑘)|

𝑈𝑟

𝑘=𝐿𝑟

 (2.4) 

Here 𝑉𝑟[𝑘] is the triangular weighing function for the 𝑟𝑡ℎ filter, ranging from DFT 

index 𝐿𝑟 𝑡𝑜 𝑈𝑟, 𝐴𝑟 = ∑ |𝑉𝑟[𝑘]|2𝑈𝑟
𝑘=𝐿𝑟

 is a normalization factor and 𝑋(𝑛, 𝑘) is the DFT of 

the signal at analysis time 𝑛. 

Cepstral analysis involves converting the transformed signal into its logarithmic 

domain before it is processed. A similar approach is used during the computation of 

MFCCs, by converting the spectrum output 𝑀𝐹[𝑟] to its logarithmic value and applying a 

discrete cosine-transformation (DCT) as shown in eqn. (2.5).  



  

8 

 

 𝑀𝐹𝐶𝐶[𝑚] =  
1

𝑅
∑ log(𝑀𝐹[𝑟]) cos [

2𝜋

𝑅
(𝑟 +

1

2
) 𝑚]

𝑅

𝑟=1
 (2.5) 

In eqn. (2.5), 𝑅 is the number of filters used, 𝑚 is the coefficient of MFCC and 

 𝑀𝐹𝐶𝐶[𝑚] is typically evaluated for 13 coefficients using 𝑅 = 22 mel-bank filters.  

In order to include dynamic information within speech, delta and double-delta-

MFCC features are used along with standard MFCCs. Delta-MFCCs are calculated based 

on the difference between successive MFCC frames and double-delta coefficients are 

obtained by a similar procedure on delta-coefficients. In total, this generates 13 MFCCs, 

13 delta and 13 double-delta coefficients, resulting in a 39-dimensional feature vector for 

each speech sample. 

2.4. Speech Recognition System 

Figure 2 displays a basic speech recognition unit. The first step in the process to 

extract feature vectors from the input speech. The next step is to compare these feature 

vectors to acoustic models to find the best “match”, which results in the recognized speech 

output.  

 



  

9 

 

 

Figure 2: Basic speech recognition system 

Acoustic models are statistical models to represent feature vector sequences and 

are trained using known speech samples. Repeated training results in pruning their 

parameters and these can be used for the recognition purpose. Language models are 

defined syntactically based on the constraints provided in the language and the grammar 

for recognition. 

Typically, speech is recognized by recognizing smaller units that make up the 

speech. Words and phonemes are commonly used units while recognizing speech 

(Watada, 2009).  



  

10 

 

3. HIDDEN MARKOV MODELS 

Markov models are stochastic models used to represent systems where the future 

states depends only on the present state and not on the sequence of events that preceded 

it. Hidden Markov Models (HMMs) are statistical Markov models with unobservable 

(hidden) states (Lawrence R. Rabiner & Juang, 1986). 

3.1. Theory of Hidden Markov Models 

HMMs are a combination of two stochastic models with one embedded in the 

other. The first stochastic model involves a Markov process with “hidden” states, where 

transitions can be made from one state to another. The states are considered hidden as they 

are not visible and can only be estimated based on observations made. The second model 

involves observations made in each state according to some probabilistic distribution that 

are state independent (Dymarski, 2011).  

Figure 3 depicts a very basic HMM with three hidden states- 𝑧1, 𝑧2 and 𝑧3 and four 

observations - 𝑥1, 𝑥2, 𝑥3 and 𝑥4. The solid lines represent transitions, which are either to 

the immediate next state or to itself. The dotted lines represent the observations made at 

each state. 



  

11 

 

 

Figure 3: A basic HMM 

A HMM is defined by the set of parameters 𝜆 = (𝐴, 𝐵, 𝜋). The state transition 

probability distribution 𝐴 = {𝑎𝑖𝑗}, consists of the probability of transitioning from state 𝑖 

to state 𝑗 out of a possible 𝑁 states. A transition can occur from one state to a different 

state or to itself. The observation probability distribution 𝐵 = {𝑏𝑗(𝑘)}, consists of the 

probability of observing an event 𝑣𝑘 out of 𝑀 possible events, while being in any state 𝑗. 

The initial probability distribution 𝜋 = {𝜋𝑖}, corresponds to the probability of being in the 

state 𝑖 at time 𝑡 = 0  (Lawrence R. Rabiner, 1989). 

3.2. HMMs as Acoustic Models 

HMMs are used in speech recognition as acoustic models from which 𝑃(𝑂|𝑊) for 

eqn. (2.3) can be computed. For speech recognition, the state transitions correspond to the 

transitions occurring in speech during the utterance of a phoneme and the recognition task 

is to find the most probable state sequence given the observation. As the states are hidden, 

the sequence of observations are used to estimate the “most-likely” state sequence.  

 



  

12 

 

Acoustic models are developed for each phoneme in the language. Hence the task 

of maximizing 𝑃(𝑂|𝑊) from eqn. (2.3) becomes analogous to maximizing 𝑃(𝑂|𝜆), where 

λ includes the set of all HMMs representing phonemes in the language.  

The acoustic models are trained using known speech samples in order to compute 

the values for the transition probabilities and output probabilities. 

3.3. Viterbi Algorithm 

A common optimality condition to estimate the state sequence is to obtain the 

single best state sequence path. Mathematically, this translates to maximizing 𝑃(𝑄|𝑂, 𝜆), 

where 𝑄 = {𝑞1𝑞2𝑞3 … 𝑞𝑇}, is the state sequence, 𝑂 = {𝑜1𝑜2𝑜3 … 𝑜𝑇} is the observation 

sequence and λ is the HMM model. But maximizing 𝑃(𝑄|𝑂, 𝜆) is equivalent to 

maximizing 𝑃(𝑂|𝜆), which is the probability that the observation sequence can be 

produced by HMM λ (Lawrence R. Rabiner, 1989). 

To find the best state sequence over the entire time period, we need to track the 

best path at each time instant 𝑡. Let 𝛿𝑡(𝑖) stand for the highest probability for a single path, 

at time 𝑡, ending in state 𝑖. Then, 

 𝛿𝑡(𝑖) =  max
𝑞1𝑞2𝑞3…𝑞𝑡−1

𝑃[𝑞1𝑞2𝑞3 … 𝑞𝑡 = 𝑖, 𝑜1𝑜2𝑜3 … 𝑜𝑡|𝜆] (3.1) 

Mathematically, it can be re-written as,  

 𝛿𝑡(𝑖) =  𝜋𝑞1
𝑏𝑞1

(𝑜1). 𝑎𝑞1𝑞2
𝑏𝑞2

(𝑜2). 𝑎𝑞2𝑞3
𝑏𝑞3

(𝑜3) … 𝑎𝑞(𝑡−1)𝑖𝑏𝑖(𝑜𝑡)  (3.2) 



  

13 

 

In eqn. (3.2),  𝜋𝑗 is the probability of being in an initial state 𝑗,  𝑎𝑖𝑗 is the transition 

probability from state 𝑖 to 𝑗 and 𝑏𝑗(𝑜𝑡+1) is the probability making an observation while 

being in state 𝑗 at time (𝑡 + 1).  

In eqn. (3.2), the most-likely state sequence is assumed to be 𝑞1𝑞2𝑞3 … 𝑞𝑇. In 

practice, this is obtained by considering all possible state transitions from one state in a 

time frame to the next time frame, generating the corresponding observation and picking 

out the one with the maximum probability. Hence the current value of  𝛿𝑡(𝑗) is dependent 

on its previous value 𝛿𝑡−1(𝑗). Dynamic programming using mathematical induction can 

be used for the computation of the optimal state sequence and 𝛿𝑡+1(𝑗) can be expressed as 

given in eqn. (3.3), where 𝛿𝑡(𝑖) is the most probable path till time 𝑡 ending in state 𝑖. 

 𝛿𝑡+1(𝑗) =  [max
𝑖

𝛿𝑡(𝑖)𝑎𝑖𝑗] . 𝑏𝑗(𝑜𝑡+1) (3.3) 

Eqn. (3.3) can be solved using the Viterbi algorithm (Forney, 1973), which is a 

dynamic programming technique, as follows: 

1. Initialization 

 𝛿1(𝑖) =  𝜋𝑖. 𝑏𝑖(𝑜1) , 𝑡 = 1, 1 ≤ 𝑖 ≤ 𝑁 (3.4) 

2. Recursion 

 
𝛿𝑡(𝑗) =  [ max

1≤𝑖≤𝑁
𝛿𝑡−1(𝑖)𝑎𝑖𝑗] . 𝑏𝑗(𝑜𝑡) , 2 ≤ 𝑡 ≤ 𝑇, 

1 ≤ 𝑗 ≤ 𝑁 

(3.5) 



  

14 

 

3. Termination 

 𝑃(𝑂|𝜆) = max
1≤𝑖≤𝑁

[𝛿𝑇(𝑖)]  (3.6) 

In eqns. (3.4) - (3.6), 𝑁 stands for the number of states in the HMM model and 𝑇 

is the number of time frames of the observation sequence. 

3.4. HMMs in Speech Recognition 

HMMs are used for modeling each basic recognition unit. In this proposal, HMMs 

are used for each monophones. Monophones are synonymous to isolated individual 

phonemes. For each HMM, 𝑃(𝑂|𝜆) is computed using eqns. (3.4)-(3.6). To recognize the 

input phoneme, all the likelihood probability values, 𝑃(𝑂|𝜆) are compared and the HMM 

which yields the maximum value of the probability signifies the recognized phoneme. 

Such a monophone-HMM based recognition system is represented pictorially in 

Figure 4 below. 



  

15 

 

 

Figure 4: A monophone-HMM based recognition system 



  

16 

 

4. HARDWARE IMPLEMENTATION OF SPEECH RECOGNITION 

SYSTEM 

A hardware design for a speech recognition system must be capable of processing 

the input speech, extract the probability of observing the state sequence for the input across 

all the trained HMM models and identify the best match to recognize the input speech. 

Assuming that the input speech is processed and features are extracted and available, the 

design must implement the Viterbi algorithm to extract the best possible states sequence 

and compare the likelihood probabilities generated by all the HMMs. 

4.1. Log-Viterbi Algorithm 

The Viterbi algorithm described in Section-3.3 is a standard way of computing the 

most-likely state sequence for an input speech. However, for implementing the same on 

hardware, the equations can be simplified by taking logarithms (Bok-Gue, Koon-Shik, & 

Jun-dong, 2002). This yields the log-Viterbi algorithm as follows: 

1. Initialization 

 𝛿1(𝑖) = log 𝜋𝑖 + log 𝑏𝑖(𝑜1) 𝑡 = 1, 1 ≤ 𝑖 ≤ 𝑁 (4.1) 

2. Recursion 

 

𝛿𝑡(𝑗) =  max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖) + 𝑎𝑖𝑗] + log 𝑏𝑗(𝑜𝑡) 2 ≤ 𝑡 ≤ 𝑇,

1 ≤ 𝑗 ≤ 𝑁 

(4.2) 



  

17 

 

3. Termination 

 𝑃(𝑂|𝜆) = max
1≤𝑖≤𝑁

[𝛿𝑇(𝑖)]  (4.3) 

The symbols used in the equations denote the same as meant in Section-3.3. By 

converting the Viterbi algorithm to the logarithmic form, multiplications become 

additions, which are easier to implement in hardware. 

4.2. HMM Parameters for Hardware Implementation 

4.2.1. Sparse Transition Matrix 

Speech is a signal that varies with time and as it does not go back in time, a left-

right HMM can be used to model speech. Every utterance is preceded by the previous one 

and hence the transitions are either to the existing state or the immediate successor. Such 

a left-to-right HMM is shown in Figure 5. The HMM in the figure has 3 states and each 

state either transitions onto itself or to its successor. 

 

Figure 5: A left-to-right HMM 



  

18 

 

With such a HMM, the transition probability matrix becomes a sparse matrix of 

the form, 

 𝐴 = {
𝑎𝑖𝑗, 𝑓𝑜𝑟 𝑗 = 𝑖 𝑜𝑟 𝑖 − 1

0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟  𝑗       
 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (4.4) 

Using the sparse transition probability matrix from eqn. (4.4), eqn. (4.2) can be 

modified as 

 𝛿𝑡(𝑗) =  max
𝑖=𝑗−1,𝑗

[𝛿𝑡−1(𝑖) + 𝑎𝑖𝑗] + log 𝑏𝑗(𝑜𝑡) (4.5) 

4.2.2. Output Probability Distribution 

The HMMs are called a continuous-HMM if the output probability distribution is 

continuous in nature. As speech is continuous, it is typical to assume a Gaussian 

distribution for the output probability and the output probability can be written as  

 𝑏𝑗(𝑜𝑡) = 𝒩(𝑜𝑡, 𝜇𝑗 , Σ𝑗) (4.6) 

  
𝑏𝑗(𝑜𝑡) =

1

√(2𝜋)𝐷|Σ𝑗|

exp (−
1

2
(𝑜𝑡 − 𝜇𝑗)

′
Σ𝑗

−1(𝑜𝑡 − 𝜇𝑗)) 
(4.7) 

Here 𝑜𝑡 is the D-dimensional feature vector extracted from the input speech and 𝜇𝑗 

and Σ𝑗 are D-dimensional vectors of mean and co-variance of the output probabilities for 

state 𝑗. For eqn. (4.1) and (4.5), we deal with log output probabilities. Hence, by taking 

logarithm of eqn. (4.7), we have 



  

19 

 

 
log 𝑏𝑗(𝑜𝑡) = log

1

√(2𝜋)𝐷|Σ𝑗|

−
1

2
(𝑜𝑡 − 𝜇𝑗)

′
Σ𝑗

−1(𝑜𝑡 − 𝜇𝑗) 
(4.8) 

Additionally, the output probabilities are typically modelled using Gaussians with 

diagonal covariance matrix (Gales, 2000). Hence eqn. (4.8) is simplified as, 

 log 𝑏𝑗(𝑜𝑡) = log
1

√(2𝜋)𝐷 ∏ Σ𝑗𝑑
𝐷
𝑑=1

+ ∑ −
1

2Σ𝑗𝑑
(𝑜𝑡𝑑 − 𝜇𝑗𝑑)

2
𝐷

𝑑=1

 (4.9) 

In eqn. (4.9), Σ𝑗𝑑 and 𝜇𝑗𝑑 denote the covariance and mean for state 𝑗 and dimension 

index 𝑑 and 𝑜𝑡𝑑 is the observation at time 𝑡 for dimension index 𝑑. 

 log 𝑏𝑗(𝑜𝑡) = 𝜔𝑗 + ∑ 𝜎𝑗𝑑(𝑜𝑡𝑑 − 𝜇𝑗𝑑)
2

𝐷

𝑑=1

 (4.10) 

In eqn. (4.10),  

 
𝜔𝑗 = log

1

√(2𝜋)𝐷 ∏ Σ𝑗𝑑
𝐷
𝑑=1

 
(4.11) 

and variance, 

 𝜎𝑗𝑑 = −
1

2Σ𝑗𝑑
 (4.12) 

The values of 𝜔𝑗, 𝜎𝑗𝑑 and 𝜇𝑗𝑑 in eqn. (4.10) can be computed during the training 

phase and made available for use during the recognition phase. Hence for the hardware 



  

20 

 

implementation, the trained models can be stored in memory and accessed during 

recognition. Using eqns. (4.1), (4.3), (4.5) and (4.9), the computation of 𝑃(𝑂|𝜆) has been 

broken down into simpler mathematical steps, which can be implemented in hardware 

with much ease than could have been the case with the standard Viterbi algorithm. 

4.3. Prior Work 

In 2001, a speech recognition system was implemented on an FPGA by 

(Rodriguez-Andina, Fagundes, & Junior, 2001). The work was based on a hardware-

software co-design approach. It briefly touches upon a different way of scoring the most-

likely state sequence in a way which is slightly different from the standard Viterbi 

algorithm, using dedicated logic blocks. The performance of their design is based on a 

comparison of the time taken by their FPGA-based design to one that implements a classic 

Viterbi algorithm. The system used word-level HMMs and performance was reported for 

applications with 2, 3 & 4 words separately. 

(Melnikoff, Quigley, & Russell, 2002) implemented a simple continuous speech 

recognition system in 2002 on a Xilinx Virtex FPGA, using monophone HMM models, 

with 3 states each. They demonstrated the superiority in speed for the hardware design 

over a software model, while maintaining similar accuracy results. Their implementation 

uses the standard Viterbi algorithm. 

A scalable word-HMM based complete speech recognition system was designed 

in 2006 by (Yoshizawa, Wada, Hayasaka, & Miyanaga, 2006). Their implementation is 

based on the log-Viterbi algorithm and a continuous HMM implementation. Their system 



  

21 

 

does speech processing, robust noise reduction, speech recognition and controls data-

transfer resulting in a master-slave-like model. The hardware design was done using 

CMOS 0.18µm technology and performance was measured by comparing the 

power/energy dissipation with that of the corresponding software implementation. The 

results were favorable for the hardware implementation.  

A flowchart based on their implementation is shown in Figure 6. A similar 

structure is used in this thesis proposal as well. The flowchart depicts the process flow in 

computing the likelihood of the current input sequence for a HMM model λ, in terms 

of 𝑃(𝑂|𝜆). 



  

22 

 

 

Figure 6: Flowchart for computing 𝑃(𝑂|𝜆) within a single HMM (© 2006 IEEE (Yoshizawa et 

al., 2006) – adapted with permission from the IEEE) 



  

23 

 

5. PROPOSED IMPLEMENTATION 

The hardware was designed using Verilog and compiled using a commercial 90nm 

CMOS standard cell library. The proposed hardware design implements the logic for the 

computation of log-output probability, the log-Viterbi algorithm and the likelihood 

probability comparison. This implementation was for an application that used 28 

monophones from the English language – aa, ae, ah, ao, ay, d, eh, ey, f, ih, iy, jh, k, l, n, 

ng, ow, p, r, s, t, th, uh, uw, v, w, y and z and hence consisted of 28 HMMs, with each 

HMM having 3 states. Feature vectors used are of 39 dimensions, using 13 MFCC vectors 

and their delta and double-delta coefficients. 

A basic structure of the overall circuit, similar to the block diagram in Figure 4, is 

shown in Figure 7. Each of the 28 HMM modules are similar in design, but trained for the 

particular monophone that they represent.  

Training was done using the HTK software (Young, 1993) using a recipe similar 

to the one detailed in the HTK Book (Young et al., 1997). The trained model parameters 

were used in the design. Hence the mean and the variance of the output probabilities, the 

transition probabilities and the initial state probabilities are all available and stored in 

memory (not shown in the figure) for each monophone. With 3 states for each HMM, the 

memory requirement is minimal. 



  

24 

 

There are 3 major logical components in the design: 

1. Computation of  log 𝑏𝑗(𝑜𝑡) for each state and time frame, within each HMM. 

2. Computation of 𝛿𝑡(𝑗) for each state and time frame and obtaining 𝑃(𝑂|𝜆), the 

maximum value across the 3 states at time 𝑡 = 𝑇, for each HMM. 

3. Computation of the maximum 𝑃(𝑂|𝜆) obtained from all 28 HMMs, with the HMM 

yielding the maximum value corresponding to the recognized phoneme.  



  

25 

 

 

Figure 7: Basic structure of the proposed system 



  

26 

 

5.1. Output Probability Computation 

As seen in eqn. (4.10), the computation of log 𝑏𝑗(𝑜𝑡) involves one subtraction and 

two multiplications iterated 39 times. The accumulated sum undergoes another addition 

before log 𝑏𝑗(𝑜𝑡) is generated for each state in a time period. As the subtraction can be 

implemented using an adder with the second operand reversed in sign, the output 

probability computation unit is implemented using 2 adders and 2 multipliers and a 

register for accumulating the sum.  

A parallel implementation of the same can be designed, but this would require 39 

instances of the adder and the 2 multiplier units and a 39-operand adder for their 

cumulative sum. As the computation of log 𝑏𝑗(𝑜𝑡) is a critical step and is used for each 

state and time frame, the sequential method of implementation is preferred over the 

parallel, to conserve area. 

The input to this unit are the feature vectors. The feature vectors’ mean and 

variance are a combination of signed and unsigned floating point numbers covering a wide 

range. Hence, for a uniform implementation and to prevent loss of precision, they are 

scaled to a 16-bit integer value. The scaling is done by multiplying all three parameters by 

a fixed constant 𝐾. Hence, eqn. (4.10) is modified as  

 log 𝑏𝑗(𝑜𝑡) = 𝜔𝑗 +
1

𝐾3
∑ 𝜎𝑗𝑑

′ (𝑜𝑡𝑑
′ − 𝜇𝑗𝑑

′ )
2

𝐷

𝑑=1

 (5.1) 



  

27 

 

In eqn. (5.1), 𝜎𝑗𝑑
′ = 𝐾. 𝜎𝑗𝑑, 𝑜𝑡𝑑

′ = 𝐾. 𝑜𝑡𝑑 and 𝜇𝑗𝑑
′ = 𝐾. 𝜇𝑗𝑑. For this 

implementation, the value of 𝐾 is chosen as 100. A consequence of scaling these 

parameters is that to maintain equality, all other terms need to be scaled accordingly. 

Hence, the remaining terms in the computation of log 𝑏𝑗(𝑜𝑡) and in the log-Viterbi 

algorithm are all scaled by 𝐾3. 

Figure 8 provides a schematic description of the circuit used for 

computing log 𝑏𝑗(𝑜𝑡). The bit-width of operands for each operation is also shown. 

 

Figure 8: Output probability computation 

The above design is instantiated thrice within each HMM to compute log 𝑏𝑗(𝑜𝑡) 

for each state. The log 𝑏𝑗(𝑜𝑡) computed is used for the calculation of 𝛿𝑡(𝑗).  



  

28 

 

5.2. Log-Viterbi Algorithm Implementation 

The implementation of the log-Viterbi algorithm is split into two parts – firstly the 

computation of 𝛿𝑡(𝑗) and secondly, using that to evaluate 𝑃(𝑂|𝜆). The computation 

of 𝛿𝑡(𝑗) is done differently based on the time-frame. For 𝑡 = 0, it is a direct addition 

of log 𝜋𝑖, which is stored in the memory, with the value of log  𝑏𝑗(𝑜𝑡), which was 

computed previously. For all other values of 𝑡,  𝛿𝑡(𝑗) depends on 𝛿𝑡−1(𝑗), transition 

probability  𝑎𝑖𝑗 and log  𝑏𝑗(𝑜𝑡). 

Figure 9 displays a schematic representation of the  𝛿𝑡(𝑗) computation. Since the 

generation of log  𝑏𝑗(𝑜𝑡), all computations are on operands which are 48-bit wide. As 

mentioned, each  𝛿𝑡(𝑗) utilizes the  𝛿𝑡−1(𝑗) computed in the previous time-frame (shown 

as dotted lines in the figure). It is implemented by delaying the current  𝛿𝑡(𝑗) through a D-

Flip-Flop. The design generates  𝛿𝑡(𝑗) for the initialization and the recursion steps of log-

Viterbi algorithm and the final value is multiplexed based on the time-frame.  



  

29 

 

 

Figure 9: Implementation of log-Viterbi initialization & recursion 

This design is also instantiated 3 times, one for each state within a HMM. The 

output of the 3 units are passed onto to a cascaded comparator design to obtain 𝑃(𝑂|𝜆) at 

time 𝑡 = 𝑇, as shown in Figure 10. 

 

Figure 10: Termination of Viterbi algorithm 



  

30 

 

The schematics given in Figure 8, Figure 9 and Figure 10 are connected together 

to implement a single HMM on hardware.  

5.3. Output Probability Comparison 

This is the final step in the recognition of a phoneme. Each HMM is constructed 

as mentioned above, and 28 such modules are instantiated, one for each phoneme. Each 

HMM yields a likelihood probability, 𝑃(𝑂|𝜆𝑣), where 𝜆𝑣 corresponds to the 𝑣𝑡ℎ HMM 

and 1 ≤ 𝑣 ≤ 28. The recognized phoneme is the one with maximum 𝑃(𝑂|𝜆𝑣). 

Hence the final step in the implementation consists of a cascaded comparator 

structure as shown in Figure 11. 



  

31 

 

 

Figure 11: Final probability comparison 

Each comparator has two 48-bit wide inputs and outputs the greater of the two 

inputs. There are 28 comparators at the first level and are cascaded down each level till 

the final comparison is made. The index of the final output corresponds to the index of the 

recognized phoneme. 



  

32 

 

5.4. Modifications to the log-Viterbi Algorithm for Implementation 

Implementing logarithmic computations on hardware require the additional 

overhead of validating the input to the logarithmic function to be non-zero as log 0 = ∞. 

To prevent this scenario from occurring, only absolute values of log 𝑏𝑗(𝑜𝑡) were used. Any 

occurrence of log 0 was assigned the highest possible value in the fixed point 

implementation. 

By using absolute values in the implementation, the log-Viterbi algorithm has to 

be modified by changing all 𝑚𝑎𝑥 functions in the actual algorithm to 𝑚𝑖𝑛 functions.  



  

33 

 

6. CUSTOM OPTIMIZATION OF THE PROPOSED HARDWARE DESIGN 

The design described in Section-5 is a direct translation of the log-Viterbi 

algorithm into hardware. A closer examination reveals that the system can be optimized 

further with respect to area and power. 

6.1. Optimizing the log-Viterbi Initialization Step 

As seen in Section-5.2, the computation of 𝛿𝑡(𝑗) is done twice – one for the 

initialization step and for the recursion step. The value of log 𝑏𝑗(𝑜𝑡) is required for both 

the steps. But the initialization step consists of only the addition of the 

computed log 𝑏𝑗(𝑜𝑡) value with the stored log 𝜋𝑗  values. Hence by merging this addition 

in the computation of log 𝑏𝑗(𝑜𝑡), three 48-bit additions can be avoided (one for each state 

in the initialization step). 

Furthermore, since we are considering a left-to-right HMM, all computations start 

with the first state. Hence the probability of the HMM being in state-1 at time 𝑡 = 0, is 1 

and that of being in any of the other states is 0. 

Eqn. (4.1) can be expanded using eqn. (4.10) as  

 𝛿1(𝑗) = log 𝜋𝑗 + 𝜔𝑗 + ∑ 𝜎𝑗𝑑(𝑜𝑡𝑑 − 𝜇𝑗𝑑)
2

𝐷

𝑑=1

 (6.1) 

 log 𝜋𝑗 = {
0,   𝑓𝑜𝑟 𝑗 = 1              
0𝑥7𝐹𝐹𝐹,   𝑓𝑜𝑟 𝑗 ≠ 1

 (6.2) 



  

34 

 

Hence combining (6.1) and (6.2), 

 𝛿1(𝑗) = 𝜔𝑗
′ + ∑ 𝜎𝑗𝑑(𝑜𝑡𝑑 − 𝜇𝑗𝑑)

2
𝐷

𝑑=1

 (6.3) 

, where  

 𝜔𝑗
′ = {

𝜔𝑗 ,   𝑓𝑜𝑟 𝑗 = 1                     

𝜔𝑗 + 0𝑥7𝐹𝐹𝐹,   𝑓𝑜𝑟 𝑗 ≠ 1
 (6.4) 

So for 𝑡 = 0, the value of 𝜔𝑗 changes to 𝜔𝑗
′ and these can be stored in the memory 

as well and used for computation. 

With this modification, the initialization step can be overlapped with the 

computation of output probabilities. 

 𝛿𝑡(𝑗) =  {
log 𝑏𝑗(𝑜𝑡) ,   𝑓𝑜𝑟 𝑡 = 0                                          

max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖) + 𝑎𝑖𝑗] + log 𝑏𝑗(𝑜𝑡) ,   𝑓𝑜𝑟 𝑡 ≠ 0
 (6.5) 

The schematic in Figure 9 is modified as per eqn. (6.5) and shown in Figure 12. 



  

35 

 

 

Figure 12: Optimized log-Viterbi algorithm 

6.2. Optimizing the Output Probability Computation 

As seen in Section-5.1, the computation of log 𝑏𝑗(𝑜𝑡) involves 39 computations 

sequentially and then the accumulated sum is added on to 𝜔𝑗. At this instant, the addition 

is between two 48-bit values. A closer observation of the data reveals that the value of the 

accumulated sum is much greater than the value 𝜔𝑗. The scaling discussed in Section – 

5.1 further magnifies this difference to the extent that the higher-order bits of 𝜔𝑗 do not 

carry much information at all. 

Hence during the computation of log 𝑏𝑗(𝑜𝑡), only the 24 lower order bits are added 

to the accumulated sum. The 24 more significant bits of log 𝑏𝑗(𝑜𝑡) are connected directly 

to those of the accumulated sum. 



  

36 

 

In terms of eqn. (4.10), it becomes, 

 log 𝑏𝑗(𝑜𝑡) [47: 24] = {∑ 𝜎𝑗𝑑(𝑜𝑡𝑑 − 𝜇𝑗𝑑)
2

𝐷

𝑑=1

} [47: 24] (6.6) 

 log 𝑏𝑗(𝑜𝑡) [23: 0] =  𝜔𝑗[23: 0] + {∑ 𝜎𝑗𝑑(𝑜𝑡𝑑 − 𝜇𝑗𝑑)
2

𝐷

𝑑=1

} [23: 0] (6.7) 

where the numbers within square brackets signify the bits. 

With this modification in the computation of output probability, three 48-bit 

additions are converted to 24-bit additions. This is significant considering that the output 

probability computation is the primary and critical step in the entire process. 

6.3. Optimizing the log-Viterbi Recursion Step 

The recursion step in the log-Viterbi algorithm involves two 48-bit additions 

between previous 𝛿𝑡(𝑗) values and transition probabilities, for each state. In a manner 

similar to the one discussed in Section-6.2, the operands in these additions vary extremely 

in magnitude.  

The transition probability value 𝑎𝑖𝑗 does not carry much information in its higher 

order bits. Hence during the addition of 𝛿𝑡−1(𝑗) and 𝑎𝑖𝑗, the more significant 24 bits of the 

sum are connected directly to those of 𝛿𝑡−1(𝑗) and actual addition is carried out between 

the lower 24 bits of 𝛿𝑡−1(𝑗) and 𝑎𝑖𝑗 to obtain the corresponding bits of the sum. 



  

37 

 

The summation within the 𝑚𝑎𝑥 function in eqn. (4.2) can be re-written to include 

this modification as 

 𝑡𝑒𝑚𝑝_𝑠𝑢𝑚[47: 24] = 𝛿𝑡−1(𝑖)[47: 24] (6.8) 

 𝑡𝑒𝑚𝑝_𝑠𝑢𝑚[23: 0] = 𝛿𝑡−1(𝑖)[23: 0] + 𝑎𝑖𝑗[23: 0] (6.9) 

where 𝑡𝑒𝑚𝑝_𝑠𝑢𝑚 holds the temporary sum of both the operands and the numbers 

within the square brackets indicate bit positions. 

6.4. Optimizing Final Comparator Logic 

Section-5.3 described the cascaded comparator logic for obtaining the most-likely 

phoneme from all the probability values computed. Each HMM outputs a 48-bit value, 

which is fed into the comparator. It has been observed that the data being compared is not 

too relatively close and that the comparisons can be made just by observing the more-

significant bits. 

Hence the comparator logic has been designed for 24-bit inputs. Only the higher 

order 24-bits from each of the HMMs are used for the comparison. This reduces the 

complexity of the required comparisons significantly. 



  

38 

 

7. APPROXIMATE COMPUTING 

The optimization techniques discussed in Section-6 involve modifying actual 

computations in order to save computational area and time. Such techniques tend to 

“approximate” actual computation but not affect the final output significantly. Though the 

methods discussed so far are simple in terms of complexity and implementation, it is in 

line with a contemporary design methodology to face the challenge in managing chip 

power consumption. This methodology is categorized as approximate/soft computing and 

is targeted at tackling energy efficiency challenges (Chippa, Mohapatra, Raghunathan, 

Roy, & Chakradhar, 2010). 

Such techniques are especially useful for systems were the inherent algorithms are 

error-resilient. In the proposed design, the recognition is based on comparisons on 

likelihood probabilities generated by all the HMMs. In other words, the relative 

probability values are more important than the absolute value of each. This property 

generates a scope for the use of approximate computing techniques.  

The usage approximate computing with respect to the proposed design refers to 

introducing deliberate errors in computation to enhance the speed without significantly 

affecting accuracy. 

(Kim et al., 2013) discusses an error-resilient adder design applied for 

neuromorphic VLSI systems. The speed determining step in an adder is the carry 

propagation from LSB to MSB. But the work proposes a carry-prediction design wherein 



  

39 

 

the carry is predicted for sub-blocks of the operands in a parallel fashion. This results in a 

significantly improved hardware performance albeit with a slight compromise on 

accuracy. 

In this thesis too, a similar approach is undertaken. As stressed previously, the 

computation of log 𝑏𝑗(𝑜𝑡) is critical for the entire algorithm. The steps involved in this 

computation are repeated 39 times for each of the 3 states during all the time frames. The 

first step in computation of log 𝑏𝑗(𝑜𝑡) is the summation of 𝑜𝑡𝑑 and −𝜇𝑗𝑑. This is a 16-bit 

addition, normally implemented using a Carry-Look-Ahead adder.  

The implementation is shown in Figure 13. The 16-bit addition is divided into sub-

blocks of 4 and 2-bits. The 8 most significant bits are divided into two blocks of 4-bits 

each and the lower 8-bits are divided into four 2-bit blocks, resulting in six blocks totally. 

Each block of input from both operands is connected to a Carry-Generator and an adder. 

‘Generate’, ‘propagate’ (both not shown in figure) and carry-out signals are 

generated from each of the six Carry-Generator blocks as follows, 

 𝑔𝑖 = 𝑎𝑖 ∘ 𝑏𝑖 (7.1) 

 𝑝𝑖 = 𝑎𝑖⨁𝑏𝑖 (7.2) 

 𝐶𝑜𝑢𝑡 = 𝑔𝑖−1 + 𝑔𝑖−2𝑝𝑖−1 + ⋯ + 𝑔0 ∏ 𝑝𝑗

𝑖−1

𝑗=1

 (7.3) 



  

40 

 

where 𝑔𝑖 and 𝑝𝑖 are the ‘generate’ and ‘propagate’ signals for the 𝑖𝑡ℎ bit in a block, 

and 𝐶𝑜𝑢𝑡 is the carry-out signal for that block. 

 

Figure 13: 16-bit approximate adder design 

Instead of each Adder unit depending on carry to be propagated from all its 

preceding units, a carry-in is predicted for each Adder unit using the carry-out signal 

generated by the previous two Carry-Generator units. A carry-out signal from (𝑘 − 1)𝑡ℎ 

block is propagated to (𝑘 + 1)𝑡ℎ block if all the propagate signals in the 𝑘𝑡ℎ block are 1. 

Hence the carry-out signals from block 𝑘 and (𝑘 − 1) are multiplexed using the propagate 

signal from the 𝑘𝑡ℎ block. 

 𝐶𝑖𝑛
𝑘+1 = 𝑃𝑘𝐶𝑜𝑢𝑡

𝑘 + 𝑃𝑘𝐶𝑜𝑢𝑡
𝑘−1 (7.4) 

, where 𝑃𝑘 = ∏ 𝑝𝑗
𝑖−1
𝑗=0  for a block of 𝑖 bits. 



  

41 

 

The Adder unit operates on the inputs and the carry-in and produces the sum. For 

the 4-bits adders, a Carry-Look-Ahead adder is used. For 2-bit, a full adder is used. The 

carry-in for the first 2 adders are set to 0. 

After the output probability is computed, it is used in the computation of 𝛿𝑡(𝑗). As 

discussed in Section-6.3, this step also involves a 24-bit addition of previous 𝛿𝑡(𝑗) value 

and the transition probability. A similar approximate adder is used for this addition as 

well. In place of a 16-bit adder, now a 24-bit adder is used with six blocks, each with 4-

bit operands. The full adders get replaced with 4-bit Carry-Look-Ahead adders. The 

implementation is shown in Figure 14. 

 

Figure 14: 24-bit approximate adder design 



  

42 

 

8. PERFORMANCE ANALYSIS AND RESULTS 

A basic model of a recognizer was built and its performance analyzed. The results 

were analyzed separately for the actual full-precision design, with the custom 

optimizations suggested and incorporating approximate computing techniques and are 

presented below.  

The entire hardware design was coded in Verilog. It was compiled in Synopsys 

Design Compiler (DC) (Bacon et al., 2004) using a commercial 90nm CMOS standard 

cell library designed for a typical part at 25C operating temperature and a voltage level of 

1.2V. 

The Design Compiler takes in the Verilog hardware description and produces a 

netlist and estimates for area, timing and power consumption for the clock frequency 

input. The area report presents the total area of the design which is directly related to the 

total area of all the cells in the design. The timing report contains the slack for the input 

clock frequency. Based on the slack, the frequency can be adjusted and the maximum 

frequency of operation is the frequency that produces zero slack. The power reports 

provide estimates on dynamic power and leakage power. 

For all the implementations, an adder which performed actual addition was 

designed as a Carry-Look-Ahead Adder. For the 2 multiplication tasks, DC’s standard 

multiplier was used. All comparisons were made using custom-built CLA adders, whose 

second input is the negative of the second operand and the smaller (or greater) number is 



  

43 

 

selected based on the sign of the sum. These were the three combinational arithmetic and 

logic units used in the design.  

Hidden Markov Toolkit (HTK) (Young, 1993) was used to train the acoustic 

models. HTK is a toolkit for working with HMMs mainly for speech recognition. Model 

parameters obtained after the training process were used in the design. This design does 

not discuss memory storage for these parameters as currently the requirement is not 

significant. 

Testing samples were recorded and its MFCC vectors extracted using MATLAB 

scripts in a way similar to the MFCC extraction done using the HTK tool. These vectors 

act as input to the system.  

The initial raw implementation will henceforth be referred to as the ‘Actual 

Implementation’, the custom-optimized version will be referred to as ‘Approximate 

Technique-1’ and the implementation using approximate adders on top of the custom 

optimization will be referred to as ‘Approximate Technique-2’. 

8.1. Performance Evaluation 

The system shows a recognition accuracy of 46% with both the Actual 

Implementation and the Approximate Technique-1. Hence, the custom optimization does 

not affect the accuracy but while using Approximate Technique-2, the accuracy slightly 

lowers to 43%. The overall low accuracy is attributed to using monophone HMMs and the 

use of single Gaussians for modeling output probability distribution. Commercial speech 



  

44 

 

recognizing software use tri-phone HMM models and Gaussian mixture models to 

incorporate contextual information and can achieve high accuracy. A tri-phone-based 

recognizer built using HTK with similar training showed an accuracy of 80%. Reported 

accuracy using monophones tend to be around 56.8% (Melnikoff et al., 2002).  

8.2. Hardware Evaluation 

Hardware design evaluation for the entire system is given in Table 1. The table 

reports area, dynamic power, leakage power, execution time, energy dissipated (which is 

the product of the total power and the execution time) and an Energy-Area-Product (EAP) 

to portray the combined effect of area, power and execution time.  

The system is clocked at 95 MHz, which is the highest common frequency that all 

the three designs can be run at. As all three designs are running at the same frequency, 

their execution times are the same.  

Table 1: Hardware evaluation of the entire system at 95 MHz 

 

Both the Approximate Techniques show a decrease in the area of the design 

compared to the actual implementation. The reduction is almost 12%. Dynamic power is 



  

45 

 

almost similar across all three designs as they are running at the same frequency and 

operating at the same voltage level. But leakage power shows a reduction of almost 13% 

in both the approximate designs compared to the Actual Implementation. As the execution 

time is same, the energy value is dependent on the total power alone and is similar across 

all the three designs as the total power does not differ much. However, the Energy-Area-

Product (EAP) shows a significant decrease of almost 12% for both the approximate 

designs. Figure 15 displays a comparison of the normalized area, power, energy, and EAP 

numbers across the 3 designs.  

 

Figure 15: Hardware evaluation of the full system at 95 MHz 



  

46 

 

A single HMM can be considered as the basic building block of the entire system. 

As different applications require different number of phonemes, such systems would 

require different number of HMMs. Hence, similar performance numbers are reported for 

a single HMM and tabulated in Table 2. 

Table 2: Hardware evaluation of a single HMM at 95 MHz 

 

The trend is similar for a single HMM as it is for the entire system. The same is 

displayed graphically in Figure 16. 



  

47 

 

 

Figure 16: Hardware evaluation of a single HMM system at 95 MHz 

8.3. Frequency Scaling 

The system clock rate of 95 MHz was the maximum possible with the Actual 

Implementation and the Approximate Technique-1.  But the use of approximate 

computing facilitates a frequency scaling and Approximate Technique-2 can run at a 

slightly higher clock rate.  

Table 3 provides the evaluation of all three designs at their respective maximum 

frequencies. Approximate Technique-2 is capable of running at a frequency of 110 MHz 

whereas the maximum frequency of the other two designs are 95 MHz. The variation in 

area and leakage power is similar as mentioned in Section-8.2. A higher frequency for 

Approximate Technique-2 translates to lesser execution time but more dynamic power 



  

48 

 

dissipation compared to the other two designs, as is shown in the table. But the energy 

dissipation is lower for Approximate Technique-2 by around 5% than the Actual 

Implementation and Approximate Technique-1. The combination of Area and Energy as 

depicted by the Energy-Area Product (EAP), is also lower for Approximate Technique-2 

by around 15% than the Actual Implementation and by around 4% from Approximate 

Technique-1. In short, Approximate Technique-2 can run faster and dissipate less energy 

compared to both the Actual Implementation and the Approximate Technique-1 and 

consume lesser area compared to the Actual Implementation. 

 

Table 3: Full systems, each at their respective maximum frequencies 

 

 Figure 17 graphically depicts the area, power, execution time, energy dissipated 

and the EAP across all three designs running at their respective maximum frequencies. All 

values are normalized over those of Actual Implementation.  



  

49 

 

 

Figure 17: Hardware evaluation of the full system after frequency scaling 

 Similar results are provided for a single-HMM subjected to frequency scaling, in 

Table 4. The trend observed across the three designs is similar to the one for the full 

system, with the Approximate Technique-2 being superior in frequency, execution time, 

energy dissipated and the EAP. 



  

50 

 

Table 4: Single HMMs, each at their respective maximum frequencies 

 

 Figure 18 graphically depicts the area, power, execution time, energy dissipated 

and the EAP for a single HMM running at its maximum frequency across all three designs.  

 

Figure 18: Hardware evaluation of a single HMM system after frequency scaling 



  

51 

 

8.4. An Adaptive System 

Considering the above results, to maintain the benefits of both the Approximate 

Techniques, an adaptive system is proposed which is capable of operating in both the 

modes – one with Technique-1 and the other with Technique-2. 

Approximate Technique-1 does not compromise on the accuracy of the full-

precision implementation while consuming lesser area. Approximate Technique-2, 

although slightly less accurate, consumes similar area and power as that of Technique-1, 

but can be operated at a higher frequency with lesser energy consumption. Hence by 

incorporating the properties of both, an adaptive system can switch between having higher 

accuracy and running at a higher speed. 

Such an adaptive system will operate in Approximate Technique-2 by default at a 

higher frequency. The system will shift to Approximate Technique-1 at a lower frequency, 

when triggered by a signal generated based on accuracy levels. 

This trigger is generated at the cascaded comparator level, while comparing the 

probabilities generated by each HMM. If the probabilities are “too-close” based on a fixed 

threshold value, the system will generate a signal to change the mode of operation and 

shift to Approximate Technique-1. 

For all the experiments, the threshold was set as the minimum difference between 

likelihood probabilities for an Approximate Technique-1 computation with a 10% 

tolerance. If the computation using Approximate Technique-2 resulted in likelihood 



  

52 

 

probabilities closer than that of Approximate Technique-1, then the trigger signal is 

generated and the values are re-computed.   

The system runs at a frequency of 110 MHz by default and if the mode changes, 

the system will re-compute the current operation again at 95 MHz, thus consuming a total 

power equal to the sum of the power dissipated by the two modes respectively. If the mode 

of operation does not change, the system continues to operate at 110 MHz, dissipating 

only the power equivalent to that for Approximate Technique-2.  

Table 5 below reports the performance of the adaptive system. The worst case 

scenario numbers are for a single experiment when the mode changes from Approximate 

Technique-1 to Approximate Technique-2. As mentioned above, in such a scenario the 

system re-computes the current operation, resulting in execution time, power and energy 

being the sum of both the modes individually. But the mode does not change frequently 

as is shown by the average numbers. The average numbers are obtained by conducting 

experiments and averaging out the results based on change of mode. A weighted average 

is computed by attributing the worst-case values only to the scenarios when the trigger 

signal is fired. When the trigger does not get fired, the values correspond to those of 

Approximate Technique-2. 



  

53 

 

Table 5: Performance of the adaptive system 

 

 In comparison with the Approximate Technique-1, the adaptive model can have 

better speed and lesser energy consumption. In comparison with Approximate Technique-

2, the adaptive model can have higher accuracy. Thus, the adaptive model includes the 

advantages of both the Approximate Techniques and can perform better than each 

Approximate Technique individually.  



  

54 

 

9. FUTURE WORK 

The system needs better recognition accuracy to be used commercially. Using tri-

phone models and modelling the output probabilities with tied-state Gaussian mixture 

models are a common practice to increase accuracy (Young, Odell, & Woodland, 1994). 

But considering the complexity of its implementation, the immediate scope of this work 

can be to increase the training samples and also to use word-level HMMs. 

Another way to improve accuracy can be to have hardware and software co-exist. 

The hardware design would be responsible for accelerating the implementation of the 

Viterbi algorithm to obtain likelihood probabilities for each phoneme and the software can 

use grammar models and contextual information to use the phoneme likelihood 

probabilities and complete the recognition process for the entire speech.  

In order to help make the current system standalone, trained model parameters 

need to be stored and fetched from memory. The current memory requirement is small and 

hence this is not considered in this thesis. But for commercial applications, accesses to 

memory would provide additional overhead and would require careful design with 

constraint on area and timing. 



  

55 

 

10. CONCLUSIONS 

This thesis describes the design of hardware for recognizing speech using models 

trained offline. The design has been optimized for area and power using approximation 

computing techniques. Out of two such techniques proposed, both consume similar area 

and power (lesser than the original implementation), while differing in frequency of 

operation and accuracy. 

For scenarios where accuracy cannot be compromised, a combined adaptive 

system design is proposed. Such a design works at a higher frequency with lower accuracy 

by default. But it is capable of operating with standard accuracy at a slower speed, and 

changes modes based on a trigger. The trigger can be controlled by setting the threshold 

limit. 

This implementation can help offload the complex recognition task from the CPU 

when implemented as part of an S-o-C (System-On-Chip).  



  

56 

 

REFERENCES 

Bacon, S. P., Fay, R. R., & Popper, A. N. (2004). Compression: From Cochlea to 

Cochlear Implants: Springer. 

Bok-Gue, P., Koon-Shik, C., & Jun-dong, C. (2002). Low Power VLSI Architecture of 

Viterbi Scorer for HMM-based Isolated Word Recognition. Paper presented at 

the Quality Electronic Design, 2002. Proceedings. International Symposium on, 

San Jose, CA, USA. 

Chippa, V. K., Mohapatra, D., Raghunathan, A., Roy, K., & Chakradhar, S. T. (2010). 

Scalable Effort Hardware Design: Exploiting Algorithmic Resilience for Energy 

Efficiency, 47th Design Automation Conference. Proceedings (pp. 555-560). 

Anaheim, CA, USA: ACM. 

Davis, S., & Mermelstein, P. (1980). Comparison of Parametric Representations for 

Monosyllabic Word Recognition in Continuously Spoken Sentences. Acoustics, 

Speech and Signal Processing, IEEE Transactions on, 28(4), 357-366. 

Dymarski, P. (2011). Hidden Markov Models, Theory and Applications. In: InTech 

Open Access Publishers. 

Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., & Burger, D. (2011). 

Dark Silicon and the End of Multicore Scaling. Paper presented at the Computer 

Architecture (ISCA), 2011. 38th Annual International Symposium on, San Jose, 

CA, USA. 

Forney, G. D., Jr. (1973). The Viterbi Algorithm. Proceedings of the IEEE, 61(3), 268-

278. 

Gales, M. J. (2000). Factored Semi-Tied Covariance Matrices. Paper presented at the 

NIPS, Denver, CO, USA. 

Hegde, R., & Shanbhag, N. R. (2001). Soft Digital Signal Processing. Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on, 9(6), 813-823. 



  

57 

 

İnce, A. N. (1992). Digital Speech Processing: Speech Coding, Synthesis and 

Recognition: Boston, MA : Springer US, 1992. 

Kim, Y., Zhang, Y., & Li, P. (2013). An Energy Efficient Approximate Adder with Carry 

Skip for Error Resilient Neuromorphic VLSI Systems. Paper presented at the 

Computer-Aided Design. Proceedings. International Conference on San Jose, 

CA, USA. 

Kim, Y., Zhang, Y., & Li, P. (2014). Energy Efficient Approximate Arithmetic for Error 

Resilient Neuromorphic Computing. IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, PP(99), 1,1. 

Lee, K.-F. (1988). On Large-Vocabulary Speaker-Independent Continuous Speech 

Recognition. Speech Communication, 7(4), 375--379. 

Melnikoff, S. J., Quigley, S. F., & Russell, M. J. (2002, 2002). Implementing a Simple 

Continuous Speech Recognition System on an FPGA. Paper presented at the 

Field-Programmable Custom Computing Machines, 2002. Proceedings. 10th 

Annual IEEE Symposium on, Napa, CA, USA. 

Ohala, J. J. (1993). Coarticulation and Phonology. Language and Speech, 36(2-3), 155-

170. 

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in 

speech recognition. Proceedings of the IEEE, 77(2), 257-286. 

Rabiner, L. R., & Juang, B.-H. (1986). An Introduction to Hidden Markov Models. 

ASSP Magazine, IEEE, 3(1), 4-16. 

Rabiner, L. R., & Juang, B.-H. (1993). Fundamentals of Speech Recognition: PTR 

Prentice Hall. 

Rabiner, L. R., & Schafer, R. W. (2007). Introduction to Digital Speech Processing. 

Found. Trends Signal Process., 1(1), 1-194. 



  

58 

 

Rodriguez-Andina, J. J., Fagundes, R. D. R., & Junior, D. B. (2001, 2001). A FPGA-

based Viterbi Algorithm Implementation for Speech Recognition Systems. Paper 

presented at the Acoustics, Speech, and Signal Processing, 2001. Proceedings. 

(ICASSP '01). IEEE International Conference on, Salt Lake City, UT, USA. 

Rosen, K., & Yampolsky, S. (2000). Automatic Speech Recognition and a Review of its 

functioning with Dysarthric Speech. Augmentative and Alternative 

Communication, 16(1), 48-60. 

Sahidullah, M., & Saha, G. (2012). Design, Analysis and Experimental Evaluation of 

Block Based Transformation in MFCC Computation for Speaker Recognition. 

Speech Communication, 54, 543-565. 

Schuster, M. (2010). Speech Recognition for Mobile Devices at Google. In B.-T. Zhang 

& M. Orgun (Eds.), PRICAI 2010: Trends in Artificial Intelligence (Vol. 6230, 

pp. 8-10): Springer Berlin Heidelberg. 

Shao, B., & Li, P. (2014). A Model for Array-based Approximate Arithmetic Computing 

with Application to Multiplier and Squarer Design. Paper presented at the Low 

Power Electronics and Design, 2014. Proceedings. International Symposium on, 

La Jolla, CA, USA. 

Shao, B., & Li, P. (2015). Array-Based Approximate Arithmetic Computing: A General 

Model and Applications to Multiplier and Squarer Design. Circuits and Systems 

I: Regular Papers, IEEE Transactions on, 62(4), 1081-1090. 

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., et al. (2004). Sphinx-

4: A Flexible Open Source Framework for Speech Recognition: Sun 

Microsystems, Inc. 

Watada, J. (2009). Intelligent Systems and Technologies: Methods and Applications: 

Springer Berlin Heidelberg. 

Xu, M., Duan, L.-Y., Cai, J., Chia, L.-T., Xu, C., & Tian, Q. (2005). HMM-Based Audio 

Keyword Generation. In K. Aizawa, Y. Nakamura & S. i. Satoh (Eds.), Advances 

in Multimedia Information Processing - PCM 2004 (Vol. 3333, pp. 566-574): 

Springer Berlin Heidelberg. 



  

59 

 

Yoshizawa, S., Wada, N., Hayasaka, N., & Miyanaga, Y. (2006). Scalable Architecture 

for Word HMM-based Speech Recognition and VLSI Implementation in 

Complete System. Circuits and Systems I: Regular Papers, IEEE Transactions 

on, 53(1), 70-77. 

Young, S. J. (1993). The HTK Hidden Markov Model Toolkit: Design and Philosophy: 

Citeseer. 

Young, S. J., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., et al. (1997). The 

HTK Book (Vol. 2): Entropic Cambridge Research Laboratory Cambridge. 

Young, S. J., Odell, J., & Woodland, P. C. (1994). Tree-based State Tying for High 

Accuracy Acoustic Modelling, Human Language Technology. Proceedings. 

Workshop on (pp. 307-312). Plainsboro, NJ, USA: Association for 

Computational Linguistics. 

 


	Abstract
	Acknowledgements
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Speech RecognItion
	2.1. Speech Analysis
	2.2. Basic Principle of Recognizing Speech
	2.3. Feature Vectors
	2.4. Speech Recognition System

	3. Hidden Markov Models
	3.1. Theory of Hidden Markov Models
	3.2. HMMs as Acoustic Models
	3.3. Viterbi Algorithm
	3.4. HMMs in Speech Recognition

	4. Hardware Implementation of Speech Recognition SYSTEM
	4.1. Log-Viterbi Algorithm
	4.2. HMM Parameters for Hardware Implementation
	4.2.1. Sparse Transition Matrix
	4.2.2. Output Probability Distribution

	4.3. Prior Work

	5. Proposed Implementation
	5.1. Output Probability Computation
	5.2. Log-Viterbi Algorithm Implementation
	5.3. Output Probability Comparison
	5.4. Modifications to the log-Viterbi Algorithm for Implementation

	6. Custom Optimization OF the Proposed Hardware Design
	6.1. Optimizing the log-Viterbi Initialization Step
	6.2. Optimizing the Output Probability Computation
	6.3. Optimizing the log-Viterbi Recursion Step
	6.4. Optimizing Final Comparator Logic

	7. Approximate Computing
	8. Performance Analysis and Results
	8.1. Performance Evaluation
	8.2. Hardware Evaluation
	8.3. Frequency Scaling
	8.4. An Adaptive System

	9. Future Work
	10. Conclusions
	References

