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ABSTRACT

In this thesis we address challenging issues that are faced in the operation of im-

portant cyber-physical systems of great current interest. The two particular systems

that we address are communication networks and the smart grid. Both systems fea-

ture distributed agents making decisions in dynamic uncertain environments. In

communication networks, nodes need to decide which packets to transmit, while

in the power grid individual generators and loads need to decide how much to pro-

duce or consume in a dynamic uncertain environment. The goal in both systems,

which also holds for other cyber-physical systems, is to develop distributed poli-

cies that perform efficiently in uncertain dynamically changing environments. This

thesis proposes an approach of employing duality theory on dynamic stochastic

systems in such a way as to develop such distributed operating policies for cyber-

physical systems.

In the first half of the thesis we examine communication networks. Many cyber-

physical systems, e.g., sensor networks, mobile ad-hoc networks, or networked

control systems, involve transmitting data over multiple-hops of a communication

network. These networks can be unreliable, for example due to the unreliability

of the wireless medium. However, real-time applications in cyber-physical systems

often require that requisite amounts of data be delivered in a timely manner so that

it can be utilized for safely controlling physical processes. Data packets may need

to be delivered within their deadlines or at regular intervals without large gaps in

packet deliveries when carrying sensor readings. How such packets with deadlines

can be scheduled over networks is a major challenge for cyber-physical systems.

We develop a framework for routing and scheduling such data packets in a
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multi-hop network. This framework employs duality theory in such a way that

actions of nodes get decoupled, and results in efficient decentralized policies for

routing and scheduling such multi-hop communication networks. A key feature

of the scheduling policy derived in this work is that the scheduling decisions re-

garding packets can be made in a fully distributed fashion. A decision regarding

the scheduling of an individual packet depend only on the age and location of the

packet, and does not require sharing of the queue lengths at various nodes.

We examine in more detail a network in which multiple clients stream video

packets over shared wireless networks. We are able to derive simple policies of

threshold type which maximize the combined QoE of the users.

We turn to another important cyber-physical system of great current interest

– the emerging smarter grid for electrical power. We address some fundamental

problems that arise when attempting to increase the utilization of renewable en-

ergy sources. A major challenge is that renewable energy sources are unpredictable

in their availability. Utilizing them requires adaptation of demand to their uncer-

tain availability. We address the problem faced by the system operator of coordinat-

ing sources of power and loads to balance stochastically time varying supply and

demand while maximizing the total utilities of all agents in the system. We develop

policies for the system operator that is charged with coordinating such distributed

entities through a notion of price. We analyze some models for such systems and

employ a combination of duality theory and analysis of stochastic dynamic systems

to develop policies that maximize the total utility function of all the agents.

We also address the issue of how the size of energy storage facilities should

scale with respect to the stochastic behavior of renewables in order to mitigate the

unreliability of renewable energy sources.
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1. INTRODUCTION

We address important problems in cyberphysical systems in two areas, the op-

eration of communication networks and the operation of the smart electricity grid.

Both systems are examples of cyberphysical systems that are often large and dis-

tributed, and important to operate efficiently. A major theme of this thesis is the

development of operating policies that perform efficiently, and that can be imple-

mented in a decentralized manner with tractable computation.

The first half of the thesis addresses communication networks. Real-time ap-

plications utilizing multi-hop networks, e.g., networked control systems, vehicu-

lar networks, video streaming applications, sensor networks etc., require the data

packets to be delivered to the application in a timely manner. In many applica-

tions the information carried by packets is time-critical and the end-to-end delay

constraints need to be respected. In sensor-actuator networks, a regular stream of

packets carrying sensory information needs to be delivered to their destinations.

However, transmitting data packets over multi-hop networks poses several chal-

lenges. Any policy has to address several important issues while making scheduling

decisions.

First, for wireless networks, a policy necessarily has to take into account the

unreliable nature of the radio medium. It may make multiple transmission at-

tempts before a packet gets delivered across a link. Since the data transmission

rates depend upon transmission power levels, and the network suffers from wire-

less interference, the choice of transmission power level for a single flow or user

affects the data transmission rates of the other users. This introduces dependencies

amongst the scheduling choices for different packets, and so nodes in the network
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need to coordinate in order to decide the transmit power levels. This requires,

generally, a central coordinator which has access to the complete system state in-

cluding the states of all nodes across the entire network and the states of all the

packets at them, and that utilizes them in order to make scheduling decisions.

Furthermore, the wireless nodes have to respect power constraints, which means

that the usage of the energy resource should be carefully optimized. One specific

consequence is that power allotment across various flows or packets needs to be

done on the basis of a packet’s age. This key aspect is missing in the multi-hop

scheduling policies which make choices based only on queue lengths, and not a

packet’s age.

Additionally, in the presence of wireless channel fading the knowledge of the

prevailing channel conditions can be exploited to schedule data packets oppor-

tunistically, and thereby operating the network in an energy efficient manner.

The present state-of-the art multi-hop scheduling policies, e.g., the backpres-

sure policy, require a centralized controller to schedule packet transmissions, which

is a major limitation. Additionally, since they are designed to maximize throughput,

they may perform poorly with regard to end-to-end delay. Also, they do not con-

sider a packet’s age in the system, though some modifications consider a packet’s

age at a node [55].

In Section 1, we address the above mentioned issues by constructing a multi-

hop scheduling policy that is completely decentralized. This eliminates the require-

ment of a central coordinator in order to make scheduling choices. The policy also

supports delay guarantees with respect to delivered packets.

Our key observation is to pose the problem of designing an efficient policy as

a constrained Markov decision process (CMDP) that involves finding the optimal

decision variables to be applied to an individual packet, and not a flow. Thus, the
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state of the system is taken to be the age of each packet present at each node. This

is in contrast to the technique of letting the system state be described by the vector

comprising queue lengths of different flows at various nodes.

Thereafter, we look at the Lagrangian corresponding to the CMDP. The La-

grange multipliers associated with the nodal power constraints have the effect of

decoupling the decision variables across different packets. These multipliers can be

interpreted as the prices charged by wireless nodes for utilizing their transmission

power.

This decoupling allows the computation of the Lagrangian to be carried out in

a decentralized fashion. The resulting optimal policy has the form that each node

schedules packets transmissions based on the knowledge of their age. An online

learning technique can be utilized to learn the unknown network parameters. The

policy thus derived ensures that the network transports the maximum number of

packets per unit time subject to the constraint that the delivered packets have a

delay that is bounded by a threshold which is tunable by the users.

In Sections 2-5, we turn our attention to sensor networks. In Section 2 we con-

sider the problem of delivering a steady stream of sensory measurements, which is

important for applications such as networked control or sensor-actuator networks

where control loops are closed around sensor measurements. We define a notion

of service smoothness for a scheduling policy. The service process associated with a

policy is smooth if each flow in the network receives data packets in a non-bursty

manner, or equivalently, there are no large time gaps in between two consecutive

packet deliveries. The property of service smoothness is crucial for safety critical

cyberphysical systems, since packet starvation would mean that the physical pro-

cess evolves open loop, possibly making it unstable. We analyze the MaxWeight or

Backpressure policy in Section 2, and show that the service process associated with
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it is asymptotically smooth in the limit when the network load is close to 1.

Section 3 studies an important specific application - video streaming networks.

The goal in such systems is to schedule video packets over a possibly unreliable

wireless network so as to maximize the Quality of Experience (QoE) of the end-

users. Each user maintains a buffer that contains video packets of different quali-

ties. Video packets are fetched from this buffer, and played for a fixed time dura-

tion. An outage is said to occur if the user finds that its buffer is empty, since the

video stream is then interrupted. We judge the performance of a policy by several

criteria a) the average number of outages, b) how often a new outage occurs, c)

average numbers of packets of different quality that are received. We construct de-

centralized scheduling policies that have an easily implementable threshold struc-

ture.

In Section 4 we treat the special case of a single-hop wireless network shared

by multiple flows, and examine the optimal trade-off between the two conflicting

objectives of maximizing packet throughput and service smoothness. We derive the

optimal policy in a closed form expression by solving the dynamic programming

optimality equation.

In the second half of the thesis beginning with Section 5, we turn our attention

to problems in the emerging smart grid. We address issues that are at the core of

efficient operation as we seek to enhance the usage of renewable energy sources

such as photovoltaics or wind in place of fossil fuels. The fundamental challenge

is that such renewable sources are unreliable, so demand must adapt to supply,

called “demand response,” rather than the other way around.

The first issue we address is : how can a system operator ensure efficient co-

ordination of multiple generators and loads when both have their own dynamics

and possible unreliabilities. Efficient operation of the smart grid entails always
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balancing uncertain demand against supply of uncertain power. On the generator

side, electric power generation needs to be carried out at the minimum possible

cost. On the demand side, consumer needs can be modeled by utility functions

of power consumption, and the system operator must maximize the overall util-

ity of all agents in the system. A significant constraint is that the states, models

and utilities of the agents cannot be assumed to be known to the system operator.

We analyze the problem of coordination through the announcement of dynamic

prices for energy. We examine how the system operator can determine clearing

prices, and under what conditions optimal coordination is possible through their

announcement. An important role is played by the structure of uncertainty. In

some cases, there may be no uncertainty at all affecting any of the agents, in oth-

ers there may be common uncertainty affecting all agents, and in yet others each

agent may have private uncertainty. We examine under what conditions the system

operator can attain optimality through price-based coordination in each case. We

have shown that multiple linear quadratic Gaussian systems can be very efficiently

coordinated even when the agents have private uncertainties. It is noteworthy that

for this special case of systems of much interest in control systems, there is no need

to share the uncertainty “tree”, unlike in the general case of privately observed

information.
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2. DEADLINE CONSTRAINED MULTI-HOP NETWORKS

2.1 Introduction

We consider multi-hop networks serving multiple flows in which packets have

to meet hard end-to-end deadline constraints, i.e., if a packet is not delivered to its

destination node by its deadline, it is dropped from the network. We address the

design of policies for routing and scheduling data packets in the network so as to

optimize the network throughput and delay in an energy-efficient manner. The de-

rived policies are highly decentralized in that the decisions regarding a data packet

can be based solely on the knowledge of the age of the packet, thus eliminating the

need to share the knowledge of the network topology, or queue lengths amongst

the nodes. Global coordination is achieved through a notion of “price” for resource

usage.

Applications include, but are not limited to, sensor networks, mobile ad-hoc

networks [5], video-streaming, and other real-time applications. In sensor-actuator

networks or cyber-physical systems, for example, sensors are deployed to sense

time-critical processes at the source and send the measurements to a controller at

the destination.

2.2 Motivation

Applications such as cyber-physical systems where control-loops are closed over

networks and system stability are sensitive to delays. Similarly, the Quality of Ser-

vice (QoS) requirements for real-time applications such as video streaming, VoIP,

real-time surveillance, sensor networks, mobile ad-hoc networks (MANETS), in-

vehicular networks etc., entail that the utility of a data packet delivered to its

destination depends critically on its age [5]. Traditional information theory how-
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ever does not consider the age of data [38]. The above objective may also have

to be achieved in an energy efficient manner, possibly utilizing rate-adaptation

schemes [95]. An important design requirement in multi-hop networks is that

data packets need to be scheduled in a decentralized manner due to the absence

of a centralized scheduler. Our main contribution is the design of routing and

scheduling policies which provide hard-deadline guarantees on packet deliveries at

minimum energy expenditure, maximize the network throughput, and additionally

are also highly decentralized. In the designed policies, a node can take decisions

only on the basis of the age of the packets present with it. This vastly simplifies

the network operation when compared to policies in which a node requires the

knowledge of queue lengths at its neighboring nodes.

2.3 Summary

We consider multi-hop, multi-flow networks in which a packet is discarded if

its age exceeds a certain threshold τ ; the results also extend to situations where

the specification of the threshold is allowed to vary from packet to packet. Since

the wireless channel is unreliable, the outcome of packet transmissions is modeled

as a random process. Each node can transmit multiple packets on its out-links

and can also transmit and receive packets simultaneously. Nodes can carry out

packet transmissions at varying power levels, enabling rate-adaptation techniques.

Each node has an average power constraint. The throughput of a flow is defined

as the average number of packets meeting the deadline constraint delivered to its

destination node per unit time. Our goal is to design decentralized scheduling

policies that maximize the total throughput of the network.

Our approach is as follows. We invoke the scalarization principle [49] and

pose the problem of maximizing the network throughput subject to nodal power
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constraints as a constrained Markov Decision Process (MDP) [4]. We then solve the

problem via considering the Lagrangian dual of this MDP. The Lagrange multipliers

associated with the power constraints are interpreted as prices for transmitting

packets, and the resulting MDP decomposes conveniently into a “unit-packet unit

flow” MDP (Section 2.8). It is easily solved, and, importantly, presents a completely

decentralized solution, where a node only needs to know the remaining lifetime

till deadline, or equivalently the age, of each packet that is present at the node.

The introduction of Lagrange multipliers, specifically prices for utilizing power for

packet transmissions, gives rise to a tractable and easy to implement policy. These

Lagrange multipliers are shown to be computable in a decentralized online fashion.

One can interpret this approach as asymptotically optimal in the same sense as

Whittle’s indexability [111] approach is asymptotically optimal as the population

of bandits increases in proportion [109]. Finally, we also show how our policy is

closely connected to the technique of reinforcement learning that is used in Online

Machine Learning.

2.4 System Model

We consider networks in which the data-packets have a hard deadline constraint

on the time by which they should be delivered to their destination nodes. The

communication network of interest is described by a directed graph G = (V, E)

as shown in Figure 2.1, where V = {1, 2, . . . , |V |} is the set of nodes that are

connected via communication links. A directed edge i → j ∈ E signifies that node

i can transmit data packets to node j. For simplicity of exposition, we will neglect

contention for the transmission medium, though the results can be extended in

appropriate ways as described below. We assume that time is discrete, and evolves

over slots numbered 1, 2, . . .. One time-slot is the time taken to attempt a packet
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Figure 2.1: Multi-hop sensor network serving a single flow with source node s, and
destination node d. Each directed edge corresponds to a link.

transmission over any link in the network. The network is shared by F flows

f1, f2, . . . , fF .

The link between any two network nodes is allowed to be random, which en-

ables us to model unreliable wireless channels. If a packet transmission occurs on

the link l, then the transmission is successful with probability pl. We can model

the phenomena of wireless fading by allowing the success probability to be a func-

tion of time, i.e., probability is = pl(t). The probability pl(t) can be assumed to be

governed by a finite-state Markov process, whose state is known at the transmit-

ting node. We can also incorporate transmit power control by allowing the success

probability pl(t, E), to depend on the transmission power E.

Each communication node i has an average power constraint Pi. If packet

transmissions on link l at time t use El(t) units of power, then the nodal power

constraints are given by,

lim sup
T→∞

1

T
E

(
T∑
t=1

{ ∑
l:l=i→j

El(t)

})
≤ Pi,∀i ∈ {1, 2, . . . , V }. (2.1)

(2.2)
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We allow a node to transmit and receive packets simultaneously over several out-

going links, employing various techniques such as TDMA, OFDMA, CDMA etc.

[53, 70, 93]. The power constraints on the wireless nodes induce constraints on

communication rates [38].

Each packet that is generated by the network has a “relative-deadline”, or “al-

lowable delay threshold”. If the packet is not delivered to its destination within

this deadline, it is dropped from the network and will never again be transmitted

in any future time-slot. More precisely, if a packet has a relative-deadline of d time-

slots, and is generated at the beginning of time-slot τ , then either it is delivered to

its destination node by time-slot τ + d, or it is discarded from the network.

We enforce an assumption that, with probability 1, the relative deadline of any

packet is bounded by a quantity ∆. Packet arrivals, and their relative deadlines

(allowable delay) are governed by a finite-state Markov process. It turns out that

the policy does not need to observe this process, or know its statistics. We will

make the following assumption: for each packet that is present in the network at

any given time t, the time-till-deadline of the packet is known to the node at which

it is present.

Our analysis can be extended in a straightforward manner to consider the case

when the relative-deadline of a packet is an arbitrary (adapted) stochastic process,

and becomes known to the network as soon as the packet is generated. If the

relative-deadline can be chosen to be an adapted stochastic process, then some in-

teresting models are possible. For example, suppose the context is video-streaming

where there is a frame buffer at the receiver. Then the relative deadline can be

taken to equal to the “remaining play time” left in the frame buffer, since we don’t

want the buffer emptied. In that case Relative Deadline = − (Elapsed time since

the last time that Destination Buffer was empty, i.e., the current age of the “busy

10



epoch”) + (Number of packets that arrived at the Destination since then )× (Time

to play one packet). Note that in this case the deadline process depends on the

policy being used.

The throughput attained by a flow f under a policy is the average number of

packets received per unit time, i.e.,

lim inf
T→∞

E

(∑T
t=1 df (t)

T

)
, (2.3)

where the random variable df (t) is equal to 1 if a packet of flow f is delivered to its

destination at time t, and 0 otherwise, with the expectation taken under the policy

being applied.

A throughput vector α that can be achieved via some scheduling policy will

be called an “achievable throughput vector”. The set of all achievable throughput

vectors constitutes the rate-region, and a scheduling policy that achieves the com-

plete rate-region is said to be throughput-optimal. Thus, under the application of a

throughput-optimal policy π, the network can achieve any throughput vector that

can be attained by some other scheduling policy.

Note that all the above definitions depend on the manner in which the relative-

deadlines of the packets are decided. The rate-region thus depends on the pro-

cess that decides the relative-deadlines, and thus we might call such networks

“deadline-constrained networks”.

Vectors will be in bold font, and by RN
+ we refer to N dimensional vectors which

are non-negative component wise.
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2.5 Previous Works

Hou et. al [50] have proposed a network model in which multiple flows share

a single-hop network, and all the packets across every flow have the same relative

deadline. There have been many extensions of this line of work. References [43,

59] consider a similar one-hop network model and characterize the throughput

maximizing policy.

Reference [62] considers the challenging problem of scheduling deadline-constrained

packets over a multi-hop network, but the proposed policies are not shown to have

any provable guarantees on the resulting throughput. To the best of the author’s

knowledge, [71] is the only work which provides a provable sub-optimal policy

for deadline-constrained networks, though it only concerns wired networks. The

policies proposed in [71] guarantee only a fraction

1

length of the longest route in network

of the maximum possible throughput, i.e., only a small fraction of the capacity

region.

Scheduling policies designed for multi-hop networks, e.g., the back-pressure

policy [102], are guaranteed to be throughput optimal, i.e., they can stabilize the

data queues in the network under any arrival rate vector for which there exists

some network policy that can stabilize the network. However they can perform

poorly with regard to delay performance [25,42,64,121]. Any optimal scheduling

policy needs to take into account how much time each packet has spent in the

network, and the channel reliabilities of the links that the packets have to traverse

in order to reach the destination node. The backpressure policy schedules packets

only on the basis of queue-lengths of nodes. This is one key reason why it can
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result in a high end-to-end delay.

2.6 Characterizing the Rate Region

The rate-region of the network (defined in Section 2.4) will be denoted by Λ .

We note that in order to characterize the set Λ, it is sufficient to characterize the

set of Pareto-optimal vectors α ∈ Λ, defined as

{
α : αis a throughput vector and ∃β ∈ RN

+ such that α ∈ arg max
y∈Λ

∑
f

αfβf

}
,

since Λ is simply its closed convex hull. The problem of obtaining the set Λ is

equivalent to that of finding scheduling policies which maximize a non-negatively

weighted sum of throughputs.

2.6.1 Constrained MDP Formulation

The problem of maximizing a non-negatively weighted sum of throughputs sub-

ject to rate-constraints can be posed as a Constrained Markov Decision Process

(CMDP) [3]. The state of an individual packet present in the network at time t is

described by the flow f to which it belongs, and the two tuple (i, s), where i is the

node at which it is present, and s is the time-to-go till its deadline. The state of the

network at time t is then described by specifying the state of each packet present

in the network at time t.

Since the number of packets in the network at any time is bounded, assuming a

bounded number of arrivals in any time slot, the system state X(t) takes on finitely

many values. A scheduling policy π has to choose, for each time t, at each node,

which packets to transmit, from the set of packets available to it. Moreover, it has

to choose which link and at what power these packets should be transmitted. The

choice made at time t will be denoted U(t).
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Since the probability distribution of the system state X(t + 1) at time t + 1

depends only on the system state X(t) at time t and the action U(t) chosen at

time t, the problem of maximizing the throughput subject to node-capacity con-

straints (2.1) is a Constrained Markov Decision Process, where a reward of βf is

received when a packet of flow f is delivered to its destination. Thus a policy

maximizing the network throughput solves the following optimization problem:

max
π

lim inf
T→∞

1

T
E

(∑
f

T∑
t=1

βfdf (t)

)
, such that

lim sup
T→∞

1

T
E

(
T∑
t=1

{ ∑
l:l=i→j

El(t)

})
≤ Pi,∀i ∈ {1, 2, . . . , V }, (2.4)

where df (t) is the number of packets of flow f delivered to their destination node at

time t. We note that the above CMDP parameterized by the vector β := (β1, . . . , βF )

is solved by a Stationary Randomized Policy [3]. Since the state-space of the

network, and the number of link-capacity constraints (2.1) is finite, it follows

that there is a finite set {π1, π2, . . . , πM} of Stationary Randomized Policies such

that for each value of β, there is a policy that belongs to this set and solves the

CMDP (2.6) [3]. Let γ1, γ2, . . . , γM be the vectors of throughputs associated with

the policies π1, π2, . . . , πM . We then have the following characterization of Λ.

Lemma 1.

Λ =

{
α : α =

M∑
i=1

γici, ci ≥ 0,
∑
i

ci ≤ 1

}
,

where the ci, s are scalars.

Note that the number of stationary Markov policies is exponentially large in the

following parameter:
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Maximum possible number of packets in the network × Maximum path length of

the flows × Maximum possible relative deadline.

Hence using Lemma 1 to compute Λ is out of the question. Thus we seek to

design low complexity decentralized scheduling policies that achieve the region Λ.

Since we can restrict ourselves to stationary randomized policies, we can re-

place the lim sup and lim inf in the definition of CMDP to pose the problem as,

max
π

lim
T→∞

1

T
E

(∑
f

T∑
t=1

βfdf (t)

)
, such that

lim
T→∞

1

T
E

(
T∑
t=1

{ ∑
l:l=i→j

El(t)

})
≤ Pi,∀i ∈ {1, 2, . . . , V }. (2.5)

(2.6)

2.7 The Dual MDP

Letting λi be the Lagrange multiplier associated with the power constraint on

node i, and denoting λ =
(
λ1, λ2, . . . , λ|V |

)
, we can write the Lagrangian for the

Primal MDP (2.6) as,

L(π, λ) = lim
T→∞

1

T
E

(∑
f

∑
t

βfdf (t)

)
−
∑
i

λi

(
E

(
T∑
t=1

{ ∑
l:l=i→j

El(t)

}))

+
∑
i

λiPi, (2.7)

where the expectation is w.r.t. the policy π that is being used, the random packet

transmission outcomes, and the randomness of the process deciding packet arrivals

and relative deadlines. Next we note that El(t), the total power consumed on link

l at time t, is the sum of power spent on transmitting individual packets. Thus if

El,f,n(t) is the amount of power spent on transmitting n-th packet of flow f at time
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t on link l, we have,

El(t) =
∑
f,n

El,f,n(t).

After some algebraic manipulation, the Lagrangian reduces to,

L(π, λ) = lim
T→∞

1

T

∑
f,n

E

(∑
t

βfdf (t)−
∑
i

λi

{ ∑
l:l=i→j

El,f,n(t)

})

+
∑
i

λiPi. (2.8)

We note that for any fixed value of the vector λ, the Lagrangian is a sum of trans-

portation cost terms,

E

(∑
t

βfdf (t)−
∑
i

λi

{ ∑
l:l=i→j

El,f,n(t)

})
.

(Single Packet Transportation Cost)

This cost involves transporting a single packet from its source node to its destina-

tion, and is independent of the actions chosen for other packets in the network. It

can be interpreted as incurring a payment of λi for using unit power at node i, and

accruing a reward of βf upon delivery of the packet to its destination. Thus, for de-

signing the policy π for maximizing the Lagrangian, we can solve an unconstrained

problem of minimizing the Single Packet Transportation Cost.

This yields us the dual function, defined as

D(λ) = max
π
L(π, λ). (2.9)

The Dual function can be obtained in a decentralized fashion, since the introduc-
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tion of Lagrange multipliers has decomposed the primal problem into a collection

of Single Packet Transportation problems, which are coupled through the node

prices λi.

The next section analyzes this Single Packet Transportation Cost problem.

2.8 Single Packet Transportation Problem

Consider the single packet transmission cost expression. To make the discussion

simple, let us consider the case when wireless fading is absent, i.e., the channel

conditions are static. The probability that a packet transmission over link l at time

t is successful is given by pl(E). Below, we omit the subscript f , and relabel the

nodes so that the source and destination nodes are labeled as 1 and V respectively.

Moreover the time at which the packet is generated is taken to be the time at which

network operation begins.

The Single Packet Transportation Problem is described as follows: A single

packet is generated at time t = 0 at source node i = 1, and, if it is not delivered to

the destination node V by time t = d, then it is discarded from the network. The

age of the packet, X(t), evolves as,

X(t+ 1) = X(t) + 1, if X(t) < d,

with the packet discarded if its age reaches d units. A price of λi per unit amount

of power has to be paid for transmission over an outgoing link at node i. A reward

of β units is paid once the packet gets delivered to the destination node V . Thus,

cost =


λi if attempted at link l = (i, j)

0 otherwise,
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while,

reward =


β if delivered at destination node V

0 otherwise.

The single packet transportation problem is to choose the control U(t) so as to

minimize the Single Packet Transportation Cost

minE

(∑
t

βd(t)−
∑
i

λi

{ ∑
l:l=i→j

El(t)

})
,

(Single Packet Transportation Problem)

where d(t) assumes the value 1 if the packet is delivered to node V at time t, and

is 0 otherwise.

It is clear that the state of the packet is described by the two tuple (i, s), where

i is the node at which it is present, and s is the time till deadline. Thus we can use

Dynamic Programming to solve the problem. Let V (·) denote the value function

for the above problem. Then the corresponding Bellman recursion is given by,

V (i, s) = max{V (i, (s− 1)+), X}, where

X = max{λi + pi→j(E)V (j, (s− 1)+) + (1− pi→j(E))V (i, (s− 1)+)}. (2.10)

Solving for the maximizer on the r.h.s. yields the optimal action in the correspond-

ing state.

2.9 A Decomposition Result

We note that the Single Packet Transportation Cost Problem was parametrized

by the vector of node prices λ. Let us denote by πf (λ) the policy which solves
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the Single Packet Transportation Cost Problem corresponding to the case when

the packet belongs to flow f , and node prices are set at λ. Also let π(λ) be the

policy that implements the policy πf (λ) for each packet belonging to flow f . That

is,

L(π(λ), λ) = D(λ). (2.11)

The constrained optimization problem (2.6) can equivalently be posed as a

linear program, in which the variables to be optimized are the occupation measures

induced by a policy π on the joint state-action space [2–4,20].

Being a linear program, the duality gap corresponding to (2.6), and its dual

problem, defined as,

max
λ

D(λ). (2.12)

is zero. Let λ? be the price vector that solves the Dual Problem (2.12). It then

follows from (2.11), that the policy π(λ?) solves (2.6) that was posed in its primal

form. We thus obtain:

Theorem 1 (Decomposition Result). The optimal policy for (2.6) is fully decentral-

ized: In order for each node i to make a decision regarding a packet present with it at

any time t, the node needs to know the flow f that the packet belongs to, and the age

of the packet. Once this is known, the node v implements the policy πf (λ?).

We may observe the following key features of the analysis that was carried

out. In order to solve the Primal Problem (2.6), the network is required to make

decisions U(t) based on the knowledge of the network state X(t). The size of the

state-space in which the network state X(t) resides is exponential in the quantity:

19



Number of packets (≤ M) × Deadline threshold bound (∆) × Distance between

nodes, (≤ |V |). Thus an approach based on directly solving the Primal version

of (2.6) would have been computationally futile. Moreover, a central coordinator is

needed in order to implement the optimal action U(t) as a function of the network

state X(t).

These serious limitations have led us to instead consider the Dual Problem (2.12).

The introduction of the nodal prices λi has the effect of reducing the computational

complexity from exponential to linear in the quantity M ×∆ × |V |. Moreover the

obtained solution is highly decentralized.

2.10 Obtaining the Optimal Policy π(λ)

The Bellman recursions (2.10) require the nodes to know the network param-

eters, i.e., the vector λ, and link reliability functions pl(·). Let us fix the nodal

power prices to be λ for the time being, and try to solve for the policy π(λ) in a

decentralized fashion. If we assume that network parameters are not known by

the nodes, then we can use techniques from the field of Online Learning in order

to simultaneously learn the network parameters, and adaptively control the net-

work performance via an explore-exploit strategy such as reinforcement learning,

or learning through delayed rewards [108]. Let an be a positive sequence that sat-

isfies
∑

n an = ∞,
∑

n a
2
n < ∞. The iterations, indexed by parameter n, are then

given by,

Vn+1(i, s) = 1n(i, s)
{
Vn+1(i, s) (1− an) + an max{Vn(i, (s− 1)+), X}

}
+ (1− 1n(i, s))Vn+1(i, s), where

X = max{λi + pi→j(E)Vn(j, (s− 1)+) + (1− pi→j(E))Vn(i, (s− 1)+)},

(2.13)
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which can be viewed as a noisy version of the corresponding Value Iteration al-

gorithm [84], and is thus a stochastic approximation-based scheme [90]. In the

above, 1n(i, s) assumes the value 1 if the packet-state at iteration n is (i, s). The

iterations converge to the true value function V (·), and thus yield the optimal pol-

icy. Note that in performing the above iterations, at iteration step n, a node needs

to know the value function Vn(·) of its neighboring nodes. This is not a restriction

since the iterations will be performed only at the commencement of network oper-

ation. Once the iterations converge, and the optimal policy is obtained, the policy

can be implemented in a local fashion.

2.11 Convergence to the Optimal Prices λ?

If we assume that each node i in the network has knowledge of the network

parameters, then, it can obtain the optimal policy π(λ) as a function of the node

prices λ. Since the Dual Problem is convex, each node i ∈ V can use the gradient-

descent method in order to solve for the optimal price vector λ?, and implement

the optimal policy π(λ?).

Let us now assume that the nodes do not know the network parameters. In

the previous section we could use learning-based techniques in order to solve for

the optimal policy π(λ) in a decentralized fashion. Now, in addition to learning

optimal policy, we will also “learn” the optimal nodal prices λ? in a decentralized

manner.

One way to achieve this task would be to perform the Value Iterations using

reinforcement learning for each price vector λ until convergence, and then update

the price λ using gradient descent method. Since the gradient ∂L
∂λi

evaluated at the
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policy π(λ) is = Pi − P̄i(π(λ)), we have,

λn+1 = λn(1− bn) + bn(P − P̄ (π(λ))), (2.14)

(2.15)

where P = (P1, P2, . . . , P|V |) is the vector consisting of nodal power bounds Pi, and

P̄i(π(λ)) is the average power utilization at node i under the application of policy

π(λ). The iterations converge to the optimal prices λ?.

However this operation is highly inefficient since a lot of time is spent in eval-

uating the optimal policy π(λ) for values of prices λ that are “far away” from the

optimal prices. An alternative method to achieve the above is via a two time-

scale stochastic approximation scheme, which involves Reinforcement Learning

and Price Update (2.14) iterations simultaneously by coupling the two. However

these two updates occur at two different time-scales, signified by adaptation gains

an and bn. The Price Update iterations are to be performed at a much slower time-

scale since for a fixed value of λ; the Reinforcement Learning iterations should

have nearly converged to yield the optimal π(λ).

2.12 Wireless Fading

Our model allows us to incorporate wireless fading by letting the link transmis-

sion probabilities be a function of time t, as is the energy E, i.e., pl(t, E). We model

the channel conditions as a finite-state Markov process Y (t), with the probabilities

pl(t, ·) a function of the channel condition Y (t).

The network state is then described by a) the state of each packet, and b)

the channel condition Y (t). The derivation of the optimal policy is carried out

along similar lines as before, after having augmented the system state by having
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appended the channel state Y (t). We note that now the optimal policy would be of

the following form: the decision to be taken by a node i at time t will depend on

the state of each packet present in the network, and the channel state Y (t). Thus a

central coordinator needs to communicate the prevailing channel conditions to all

the nodes.

A simplification is possible if we assume that the process Y (t) is i.i.d., which

would eliminate the need for communicating Y (t). Under assumption of block

fading [89, 105], the channel state would only need to be communicated periodi-

cally.

2.13 Jointly Serving Real-Time and Non-Real-Time Data

In the previous sections we assumed that the utility of a packet that had ex-

ceeded its deadline was zero. Instead, we could have allowed its utility to be

described by a function f(t, d), where d is the age of the packet when it was deliv-

ered to the destination. As an example, if τ is the delay threshold, a soft penalty

of (((d− τ)+)
2
, exp(d−τ)+) can be imposed. Such a consideration will enable us to

support differential Quality of Experience (QoE) to flows based on whether they

serve real-time or non real-time data [96].

2.14 Constraints on Number of Links and Wireless Interference

We have assumed in the preceding sections that the nodes can transmit/receive

packets simultaneously on multiple channels. This assumption has the following

positive aspects: a) it enables the network to fully exploit the resource sharing

techniques available to it, e.g., CDMA, OFDM, TDMA etc. b) it also allows the

network to utilize the battery power available to it in a time-slot when it requires

it the most, for example when a node has an excess of packets in a state in which

it is desirable for them to be transmitted, c) this assumption vastly simplifies the
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construction of the optimal policy, which also turns out to be highly decentralized.

It should however be noted that this may not be a realistic assumption, so

that we may need to impose constraints of the following form: a) link usage con-

straint, i.e., a limit on the total number of links that can be used by a node si-

multaneously at any given time t, or, b) power interference constraint : one might

allow for a more general model in which the amount of wireless link interfer-

ence depends upon the transmit power level used at the set of links, so that

~R(t) := (R1(t), R2(t), . . . , R|E|(t)), the vector of instantaneous data-rate at time t

of the combined set of links, is a function of the instantaneous power transmission

level ~P (t) := (P1(t), P2(t), . . . , P|E|(t)), i.e.,

~R(t) = f(~P (t)).

Furthermore, in order to accommodate channel fading into the above model, we

can let the function f(·) be determined by the prevailing channel conditions. They

could, for example, be assumed to be governed by a Markov process evolving on a

finite set of states. This model would allow us to treat the wireless SINR model [6]

that is employed widely while analyzing multi hop wireless networks.

In summary, the average power constraint considered in this section gives rise

to a very simple model in which the constraints on number of links at the individ-

ual nodes’ disposal, and/or wireless power interference are “smoothened/relaxed”.

This smoothening has allowed us to treat the core issue of allocating the resources

amongst the data packets in an optimal fashion. The model of average power

constraints was amenable to a treatment that showed us how a very simple decen-

tralized policy could transfer data optimally if the network were willing to invest

in resource sharing techniques mentioned above (e.g., TDMA, CDMA, OFDM etc.).
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Next, we shred some light on treating the link-usage and power interference con-

straints.

We would like to mention that the analysis performed in this section can be ex-

tended in order to derive policies under the link-usage and interference constraints.

However, the resulting policy will not be decentralized, but rather requires the

nodes to coordinate and agree on a) which packet to be transmitted at each link

(link-usage constraint), or b) the values of the transmission power levels to be used

at each link (power interference constraint). The approach to be utilized is based

on the recurring theme of handling a constrained stochastic control problem via

introducing additional auxiliary variables. Thereafter one could utilize a multiple

time-scale learning approach [21,58] in order to learn the “optimal variables”.

Also worth mentioning is the fact that we can recover the optimal policy un-

der link-usage constraints from the policy that was derived in this section under

the average power constraints. This approach can be viewed as analogous to the

treatment employed for the Multi-Armed Bandit Problem [40, 111], in which one

relaxes the hard-constraint (on the total number of arms that can be pulled at

any given time) by a corresponding soft-constraint (which removes the hard con-

straint, but instead constrains the average number of arms that can be pulled per

unit time, i.e., a bound on
∑T
t=1N(t)

T
, where N(t) is the number of arms pulled at

time t), and recovers an optimal policy for the problem under a hard constraint in

the limit as the total number of bandits becomes large, while the fraction of arms

that can be pulled is kept constant. The reader can find a detailed discussion of

MABP in [40, 111], while [109] shows that the policy recovered for the hard con-

strained problem, from the solution of the soft constrained problem, is optimal in

the limit as the number of bandits becomes large while respecting the proportions

of the various types of arms.
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Now we show that we can treat the problem of designing an optimal scheduling

policy as an MABP. First we identify an individual bandit in the MABP with a data-

packet in our network. The decision regarding the choice of the bandit to be pulled

at each time is analogous to the problem of choosing which data-packet to be

scheduled for transmission. The hard constraint imposed on the number of links

that can be used in each time-slot is identified with the hard-constraint on the

number of arms that can be pulled in the MABP.
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3. MAXWEIGHT SCHEDULING: ASYMPTOTIC BEHAVIOR OF UNSCALED

QUEUE-DIFFERENTIALS IN HEAVY TRAFFIC

3.1 Overview

In this section we consider the problem of smoothness of packets delivered in

a timely manner over a shared wireless medium to destination nodes. We con-

sider the model of a “generalized switch” serving multiple traffic flows in discrete

time. Our interest is in the MaxWeight algorithm [99], and so we suppose that the

switch uses that algorithm to make a service decision (scheduling choice) at each

time step, which determines the probability distribution of the amount of service

that will be provided. We are primarily motivated by the following question: in the

heavy traffic regime, when the switch load approaches critical level, will the service

processes provided to each flow remain “smooth”, i.e., without large gaps in ser-

vice? Addressing this question reduces to the analysis of the asymptotic behavior of

the unscaled queue-differential process in heavy traffic. We prove that the station-

ary regime of this process converges to that of a positive recurrent Markov chain,

whose structure we explicitly describe. This in turn implies asymptotic “smooth-

ness” of the service processes.

3.2 Introduction

Suppose we have a system in which several data traffic flows share a common

transmission medium (or channel). Sharing means that in each time slot a sched-

uler chooses a transmission mode – the subset of flows to serve and corresponding

transmission rates; the outcome of each transmission (the number of successfully

delivered packets) is random. The scheduler has two key objectives: (a) the time-

average (successful) transmission rate of each flow i has to be at least some λi > 0;
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(b) the successful transmissions for each flow need to be spread out ”smoothly”

in time – without large time-gaps between successful transmissions. Such models

arise, for example, when the goal is timely delivery of information over a shared

wireless channel [50].

A very natural way to approach this problem is to treat the model as a queu-

ing system, where services (transmissions) are controlled by a so called MaxWeight

scheduler (see [34,99,102]), which serves a set of virtual queues (one for each traf-

fic flow), each receiving new work at the rate λi. (See e.g., [68].) This automati-

cally achieves objective (a), if its feasible at all; MaxWeight is known to be through-

put optimal –it stabilizes the queues if that is feasible at all. The MaxWeight stabil-

ity results, however, do not indicate whether or not the objective (b) is achieved.

Specifically, when the system is heavily loaded, i.e. the vector λ = (λi) is within

the system rate region V , but close to its boundary, the steady-state queue lengths

under MaxWeight are necessarily large, and it is conceivable that this may result

in large time-gaps in service for individual flows. (Note that, if (a) and (b) are the

objectives and the queues are virtual, the large queue lengths in themselves are

not an issue. As long as (a) and (b) are achieved, minimizing the queue lengths

is not important.) Our main results show that this is not the case. Namely, in the

heavy traffic regime, when λ → λ?, where λ? is a point on the outer boundary of

rate region V , the service process remains ”smooth”, in the sense that its stationary

regime converges to that of a positive recurrent Markov chain, whose structure is

given explicitly.

To obtain “clean” convergence results, we assume that the amount of new work

arriving in the queues in each time slot is random and has a continuous distribu-

tion. (The amounts of service are random, but discrete.) Under this assumption,

the state spaces of the processes that we consider are continuous. On one hand,
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this makes the analysis more involved because the notion of positive recurrence is

more involved for a continuous state space, as opposed to a countable one. But on

the other hand, this makes all stationary distributions absolutely continuous w.r.t.

the corresponding Lebesgue measure, making it easier to prove convergence. We

emphasize that the assumption of continuous distribution of the arriving work is

non-restrictive; if we create virtual queues, artificially, for the purpose of apply-

ing MaxWeight algorithm, the structure of the virtual arrival process is within our

control.

This problem essentially reduces to analysis of stationary versions of the queue-

differential process Y , which is the projection of the (weighted) queue length pro-

cess on the subspace ν⊥, orthogonal to the outer normal cone ν to the rate region

V at the point λ?. As we show, in the heavy-traffic limit, in steady-state, the val-

ues of the queue-differential process Y uniquely determine the decisions chosen

by MaxWeight scheduler. Note that the process Y is obtained by projection only,

without any scaling depending on the system load.

The model that we consider is essentially a “generalized switch” [99]. Some

features of our model, namely random service outcome and continuous amounts

of arriving work, as well as the objective (b), are motivated by applications such

as timely delivery of packets of multiple flows over a shared wireless channel [50].

The model of [50] is a special case of ours; paper [50] introduces a debt scheme

and proves that it achieves the throughput objective (a); the objective (b) is not

considered in [50].

The analysis of MaxWeight stability has a long history, starting from the seminal

paper [102], which introduced MaxWeight; heavy traffic analysis of the algorithm

originated in [99]. (See, e.g., [34] for an extensive recent review of MaxWeight

literature.)
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The line of work most closely related to this section, is that in [34, 61, 62].

Paper [34] studies MaxWeight under a heavy traffic regime and under the addi-

tional assumption that the normal cone ν is one-dimensional, i.e., it is a ray. (The

latter assumption is usually referred to in the literature as complete resource pool-

ing (CRP).) Paper [34] shows, in particular, the stationary distribution tightness of

what we call the queue-differential process Y in heavy traffic. Part of our analysis

shows the stationary distribution tightness of Y – it is analogous to that in [34]

(and we also borrow a lot of notation from [34]). Besides the difference in models,

our proof of tightness is more general in that it applies to the non-CRP case – this

more general argument is close to that used in [67]. From the tightness of station-

ary distributions, using the structure of the corresponding continuous state space,

we obtain the convergence of the stationary version of (non-Markov) process Y to

that of a positive recurrent Markov chain, whose structure we explicitly describe.

Papers [61, 62] consider objective (b) in the heavy traffic regime. They intro-

duce a modification of MaxWeight, called regular service guarantee (RSG) scheme,

which explicitly tracks the service time-gaps for each flow to dynamically increase

the scheduling priority of flows with large current time-gaps. The papers prove that

RSG, under certain parameter settings, preserves heavy-traffic queue-length mini-

mization properties of MaxWeight under the CRP condition; at the same time, the

papers demonstrate via simulations that RSG improves smoothness (regularity) of

the service process. Recall that in this section we focus on the “pure” MaxWeight,

without CRP, and formally show the service process smoothness in the heavy traffic

limit.

The rest of the section is organized as follows. The formal model is presented in

Section 3.3. Section 3.4 describes the MaxWeight algorithm and the heavy traffic

asymptotic regime. Our main results, Theorems 2 and 4, are described in Sec-
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tion 3.5. (The formal statement of Theorem 4 is in Section 3.10.) The CRP con-

dition is defined in Section 3.6. In Section 3.7 we provide some necessary back-

ground and results for general state-space Markov chains. In sections 3.8 – 3.10 we

prove our results for the special case when CRP holds. Finally, in Section 3.11 we

show how the proofs generalize to the case when CRP does not necessarily hold.

3.2.1 Basic Notation

Elements of a Euclidean space RN will be viewed as row-vectors, and writ-

ten in bold font; ‖a‖ is the usual Euclidean norm of vector a. For two vectors a

and b, a · b denotes their scalar (dot) product; vector inequalities are understood

componentwise; zero vector and the vector of all ones are denoted 0 and 1, re-

spectively; ab will denote the vector obtained by componentwise multiplication;

if all components of b are non-zero, a
b

will denote the vector obtained by com-

ponentwise division; statement “a is a positive vector” means a > 0. The closed

ball of radius r centered at x is Br(x). The positive orthant of RN is denoted

RN
+ = {x ∈ RN : x ≥ 0}.

For numbers a and b, we denote a∨ b = max(a, b), a∧ b = min(a, b), a+ = a∨ 0.

For vectors a ≤ b, we denote by [a, b] the rectangle ×Ni=1[ai, bi] in RN .

We always consider Borel σ-algebra B(RN) (resp. B(RN
+ ) ) on RN (resp. B(RN

+ )),

when the latter is viewed as measurable space. Lebesgue measure on RN is denoted

by L. When we consider a linear subspace of RN , we endow it with the Euclidean

metric and the corresponding Borel σ-algebra and Lebesgue measure.

For a random process W (t), t = 0, 1, 2, . . ., we often use notation W (·) or

simply W .
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3.3 System Model

We consider a system of N flows served by a “switch”, which evolves in discrete

time t = 0, 1, . . .. At the beginning of each time-slot, the scheduler has to choose

from a finite numberK of “service-decisions”. If the service decision k ∈ {1, . . . , K}

is chosen, then independently of the past history the flows get an amount of ser-

vice, given by a random non-negative vector. Furthermore, we assume that (if

decision k is chosen), there is a finite number Ok of possible service-vector out-

comes, i.e. with probability pk,j, j = 1, . . . ,Ok, it is given by a non-negative vec-

tor vk,j = (vk,j1 , . . . , vk,jN ). The expected service vector for decision k is denoted

µk = (µk1, . . . , µ
k
N) =

∑Ok
j=1 v

k,jpk,j. We assume that vectors µk are non-zero and

different from each other; and that for each i there exists k such that µki > 0. We

will use notations

Smaxi = max vk,ji over all k and j; Smax = (Smax1 , . . . , SmaxN ).

We denote by S(t) = (S1(t), . . . , SN(t)) the (random) realization of the service

vector at time t, and call S(·) the service process.

After the service at time t is completed, a random amount of work arrives into

the queues, and it is given by a non-negative vector A(t) = (A1(t), . . . , AN(t)). The

values of A(t) are i.i.d. across times t, and A(·) is called the arrival process. The

mean arrival rates of this process are given by vector

λ = (λ1, . . . , λN) = EA(t).

We will now make assumptions on the distribution of A(t). The distribution is

absolutely continuous w.r.t. Lebesgue measure, it is concentrated on the rectangle
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[0,Amax] for some constant vector Amax > Smax; moreover, on this rectangle the

distribution density f(x) is both upper and lower bounded by positive constants,

i.e. 0 < δ∗ ≤ f(x) ≤ δ∗.

If Q(t) , (Q1(t), . . . , QN(t)) is the vector of queue lengths at time t, then for

each i = 1, . . . , N

Qi(t+ 1) = (Qi(t)− Si(t))+ + Ai(t),

= Qi(t) + Ai(t)− Si(t) + Ui(t), (3.1)

where Ui(t) = (Si(t)−Qi(t))
+ is the amount of service “wasted” by flow i at time t.

3.4 MaxWeight Scheduling Scheme. Heavy Traffic Regime

3.4.1 MaxWeight Definition

Let a vector γ = (γ1, . . . , γN) > 0 be fixed. MaxWeight scheduling algorithm

chooses, at each time t, a service decision

k ∈ arg max
l

(
(γQ(t)) · µl

)
; (3.2)

with ties broken according to any well defined rule.

Under MaxWeight, the queue length process Q(·) is a discrete time Markov

chain with (continuous) state space RN
+ . System stability is understood as positive

Harris recurrence of this Markov chain.

Denote the system rate region by

V ,

{
x ∈ RN

+ : x ≤
∑
k

ψkµ
k for some ψk ≥ 0,

∑
k

ψk = 1

}
(3.3)

It is well known (see [34,99,102]) that, in general, under
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MaxWeight the system is stable as long as the vector of mean arrival rates λ is

such that λ < x ∈ V . (Scheduling rules having this property are sometimes called

“throughput-optimal”.) This is true for our model as well as will be shown in

Section 3.8. (Establishing this fact is not difficult, but it does not directly follow

from previous work, because we have continuous state space.)

3.4.2 Heavy Traffic Regime

We will consider a sequence of systems, indexed by n → ∞, operating under

MaxWeight scheduling. (Variables pertaining to n-th system will be supplied su-

perscript (n).) The switch parameters will remain unchanged, but the distribution

of A(n)(t) changes with n: namely, for each n it has density f (n) which satisfies all

conditions specified in Section 3.3, and f (n) uniformly converges to some density

f ∗. Note that, automatically, the limiting density f ? (as well as each f (n)) satisfies

bounds 0 < δ∗ ≤ f ?(x) ≤ δ∗ in the rectangle [0,Amax], and is zero elsewhere. The

arrival process A?(·), such that the distribution of A?(t) has density f ?, has the

arrival rate vector λ?. Correspondingly, λ(n) → λ?.

We assume that λ? > 0 is a maximal element of rate region V , i.e. x ≥ λ? and

x ∈ V only when x = λ?. Thus, λ? lies on the outer boundary of V . We further

assume that for each n, λ(n) lies in the interior of V ; therefore, the system is stable

for each n (under the MaxWeight algorithm).

The (limiting) system, with arrival process A?(·) is called critically loaded.

3.5 Main Results

Consider the sequence of systems described in Section 3.4, in the heavy traf-

fic regime. Under any throughput-optimal scheduling algorithm, for each n, the

steady-state average amount of service provided to each flow i is greater or equal

to its arrival rate λi. (It may, and typically will, be greater if the wasted service is
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taken into account.)

We now define the notion of asymptotic smoothness of the steady-state service

process. Informally, it means the property that as the system load approaches

critical, the steady state service processes are such that for each flow the probability

of a T -long gap (without any service at all) uniformly vanishes, as T →∞.

For each n, consider the cumulative service process G(n)(·) in steady state.

Namely,

G(n)(t) ,
t∑

τ=1

S(n)(τ), t = 1, 2, . . .

Definition. We call the service process asymptotically

smooth, if

max
i

lim
T→∞

(
lim sup
n→∞

P
(
G

(n)
i (T ) = 0

))
= 0. (3.4)

Our key result (Theorem 4 in Section 3.10) shows that a ”queue-differential”

process, which determines scheduling decisions in the system under MaxWeight

in heavy traffic, is such that its stationary version converges to that of stationary

positive Harris recurrent Markov chain, whose structure we describe explicitly. This

result, in particular, will imply the following

Theorem 2. Consider the sequence of systems described in Section 3.4, in the heavy

traffic regime. Under MaxWeight scheduling, the service process is asymptotically

smooth.

The proof is given in Section 3.10.

3.6 Complete Resource Pooling Condition

To improve exposition, we first give detailed proofs of our main results for the

special case, when the following complete resource pooling (CRP) condition holds.
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(In Section 3.11 we will show how the proof generalizes to the case without the

CRP condition.) Assume that vector λ? is such that there is a unique (up to scaling)

outer normal vector ν > 0 to V at point λ?; we choose ν so that ‖ν‖ = 1. Denote

by

V ? , arg max
x∈V

ν · x (3.5)

the outer face of V where λ? lies. Given our assumptions on λ?, it lies in the

relative interior of V ?.

By ν⊥ we denote the subspace of RN orthogonal to ν. For any vector a, we de-

note by a? , (a · ν)ν its orthogonal projection on the (one-dimensional) subspace

spanned by ν, and by a⊥ , a − a? its orthogonal projection on the (N − 1)-

dimensional subspace ν⊥.

The following observations and notations will be useful. There is a δ > 0 such

that the entire set

Bδ
λ? , {y ∈ V ? : ‖y − λ?‖ ≤ δ}, (3.6)

also lies in the relative interior of V ?.

3.7 Background on General-State-Space Discrete-Time Markov Chains

We will briefly discuss some notions and results from [75] and [44] on the sta-

bility of discrete time Markov Chains (MC), which will be used in later sections.

Throughout this section we will assume that the Markov Chain Φ = {Φ(0),Φ(1), . . .}

is evolving on a locally compact separable metric space X whose Borel σ-algebra

will be denoted by B. Pη and Eη are used to denote the probabilities and expecta-

tions conditional on Φ0 having distribution η, while Px and Ex are used when η is
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concentrated at x. The transition function of Φ is denoted by P (x, A),x ∈X, A ∈

B. The iterates P t, t = 0, 1, 2, . . ., are defined inductively by

P 0 , I, P t , PP t−1, t ≥ 1,

where I is the identity transition function.

Definition. (i) φ-irreducibility: A Markov Chain Φ = {Φ(0),Φ(1), . . .} is called φ

irreducible if there exists a finite measure φ such that
∞∑
k=1

P k(x, A) > 0 for all x ∈ X

whenever φ(A) > 0. Measure φ is called an irreducibility measure.

(ii) Harris Recurrence: If Φ is φ-irreducible and Px(Φ(t) ∈ A i.o.) ≡ 1 whenever

φ(A) > 0, then Φ is called Harris recurrent. [Abbreviation ’i.o.’ means ’infinitely

often’.]

(iii) Invariant Measure: A σ-finite measure π on B with the property

π {A} = πP {A} ,
∫
π(dx)P (x, A), ∀A ∈ B,

is called an invariant measure.

(iv) Positive Harris Recurrence: If Φ is Harris Recurrent with a finite invariant

measure π, then it is called positive Harris Recurrent.

(v) Boundedness in Probability: If for any ε > 0 and any x ∈ X, there exists a

compact set D such that

lim inf
t→∞

Px(Φ(t) ∈ D) ≥ 1− ε, (3.7)

then the Markov process Φ is called bounded in probability.

(vi) Small Sets: A set C is called small if for all x ∈ C and some integer l ≥ 1, we
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have

P l(x, ·) ≥ ν(·), (3.8)

where ν(·) is a sub-probability measure, i.e. ν(X) ≤ 1.

(vii) For a probability distribution a = (a1, a2 . . .) on {1, 2, . . .}, the Markov tran-

sition function Ka is defined as

Ka ,
∞∑
i=1

aiP
i.

(viii) Petite Sets: A set A ∈ B and a sub-probability measure ψ on B(X) are called

petite if for some probability distribution a on {1, 2, . . .} we have

Ka(x, ·) ≥ ψ(·),∀x ∈ A.

(ix) Non-evanescence: A Markov chain Φ is called non-evanescent if Px{Φ →

∞} = 0 for each x ∈ X. [Event {Φ → ∞} consists of the outcomes such that the

sequence Φ(t) visits any compact set at most a finite number of times.]

The following proposition states some results from [75].

Proposition 1. (i) If a set A is small and for some probability distribution a on

{1, 2, . . .} and a set B ∈ B, we have

inf
x∈B

Ka(x, A) > 0, (3.9)

then B is petite.

(ii) Suppose that every compact subset of X is petite. Then Φ is positive Harris

recurrent if and only if it is bounded in probability.
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(iii) Suppose that every compact subset of X is petite. Then Φ is Harris recurrent

if and only if it is non-evanescent.

The following result is form from [44]. It is stated in a form convenient for its

application in this section.

Proposition 2. Let L(x) be a non-negative (Lyapunov) function such that the Markov

process Φ satisfies the following two conditions, for some positive constants κ, δ,D:

(a) E [L(Φ(t+ 1))− L(Φ(t))|Φ(t) = x] < −δ, for any state x such that L(x) ≥ κ >

0.

(b) |L(Φ(t+ 1))− L(Φ(t))| < D.

Then there exist constants η > 0 and 0 < ρ < 1 such that

P (L(Φ(t)) ≥ u | L(Φ(0)) = b) ≤

ρt exp(η(b− u)) +
1− ρt

1− ρ
D exp(η(κ− u)), u ≥ 0. (3.10)

3.8 Queue Length Process

Recall thatQ(n)(·) is the queue length process for the n-th system under MaxWeight.

In this section we prove that for all n, the process Q(n)(·) is positive Harris recur-

rent. The proof uses a Lyapunov drift argument which is fairly standard (in fact,

there is more than one way to prove stability of Q(n)(·)), except, since our state

space is continuous, as a first step we will show that all compact sets are petite.

Some simple preliminary observations are given in the following lemma.

Lemma 2. (i) The points x ∈ RN
+ , such that

k ∈ arg max`(γx) · µl is non-unique, form a set of zero Lebesgue measure. Moreover,

if x > 0 is such that k ∈ arg max`(γx) · µl is unique, then for a sufficiently small
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ε > 0 the decision k is also the unique element of arg max`(γy) · µl for all y ∈ Bε(x).

(ii) The one-step transition function P (n)(x, ·) of the process Q(n)(·) is such that,

uniformly in n and x ∈ RN
+ , the distribution P (n)(x, ·) is absolutely continuous with

the density upper bounded by δ∗ and, in the rectangle [0,Amax−Smax], lower bounded

by δ∗.

Proof. Statement (i) easily follows from the finiteness of the set of decisions k.

Statement (ii) easily follows from the assumptions on the arrival process distribu-

tion and the fact that Smax < Amax.

Lemma 3. For any x > 0, there exists ε > 0 such that the set Bε(x) is small for the

process Q(n)(·).

Proof. Consider rectangle

H = [x + (1/3)(Amax − Smax),x + (2/3)(Amax − Smax)]. Choose ε > 0 small

enough, so that ε < (1/3) mini(A
max
i − Smaxi ) and ε < mini xi. Then, Bε(x) lies in

the interior of RN
+ and every point in Bε(x) is strictly smaller than any point in H.

Lemma 2(ii) implies that for any y ∈ Bε(x), the distribution P (n)(y, ·) has a density

lower bounded by δ∗ in H.

Lemma 4. For the Markov process Q(n)(·), any compact set is petite.

Proof. Consider a compact set G ⊂ RN
+ ; of course, G is bounded. Fix arbitrary

x > 0 and pick ε > 0 small enough, so that Bε(x) is small and lies in the interior of

RN
+ . Pick small δ > 0 such that any point in {‖y‖ ≤ δ} is strictly less than any point

in Bε(x).

It is easy to verify that there exists an integer τ > 0 such that the following

holds uniformly in Q(n)(0) ∈ G:

P{‖Q(n)(τ)‖ ≤ δ} ≥ α for some α > 0. (3.11)
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Indeed, suppose first that for all t = 0, 1, . . ., A(n)(t) = 0. (This is a probability

zero event, of course, but let’s consider it anyway.) Then, for any δ3 > 0 there

exist δ1, δ2 > 0, such that the following holds: with probability at least some δ1 >

0, the norm ‖Q(n)(t)‖ decreases at least by some δ2 > 0, at each time t when

‖Q(n)(t)‖ ≥ δ3 > 0. This implies that for some τ > 0 and δ4 > 0, Q(n)(0) ∈ G

implies P{‖Q(n)(τ)‖ ≤ δ3} ≥ δ4. Now, using this and the fact that with a positive

probabilityA(n)(t) can be “very close to 0,” we can easily establish property (3.11).

(We omit rather trivial details.)

Next, it is easy to show that there exists an integer τ1 > 0 such that the following

holds uniformly in ‖Q(n)(0)‖ ≤ δ:

P{‖Q(n)(τ1)‖ ∈ Bε(x)} ≥ α1 for some α1 > 0. (3.12)

Here we use Lemma 2(ii), which shows that at each time step the distribution of

the increments of Q(n)(·) has a density lower bounded by δ∗ in [0,Amax − Smax].

From (3.11) and (3.12) we see that uniformly in Q(n)(0) ∈ G, P{‖Q(n)(τ +

τ1)‖ ∈ Bε(x)} ≥ αα1. Application of Theorem 1(i) shows that G is petite (and,

moreover, that it is small).

To prove stability, we will apply Proposition 1 which requires the following

Lemma 5. Consider the scalar projection ‖√γQ(n)(·)‖, t = 0, 1, . . . of the the Markov

process Q(n) starting with a fixed initial state Q(n)(0), such that ‖√γQ(n)(0)‖ = b.

Then, uniformly on all large n we have,

P (‖√γQ(n)(t)‖ ≥ u) ≤ ρt exp(η(b− u))

+
1− ρt

1− ρ
D exp(η(κ− u)), u ≥ 0, (3.13)
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for some constants η, κ,D > 0 and 1 > ρ > 0 which depend on n. Consequently, the

process Q(n)(·) is bounded in probability.

Proof. We will use notation L(x) = ‖√γx‖. Then

L(Q(n)(0)) = b. Clearly, |L(Q(n)(t + 1)) − L(Q(n)(t))| is uniformly bounded by a

constant, given our assumptions on the arrival and service processes. We will show

that the drift (average increment) of L(Q(n)(t+1)))−L(Q(n)(t))) is upper bounded

by some −δ̃ < 0 when ‖L(Q(n)(t))‖ ≥ κ for some κ > 0.

Consider a fixedQ(n)(t) and denote ∆L = E[L(Q(n)(t+1))−L(Q(n)(t))]. Clearly,

∆L = E‖√γQ(n)(t+ 1)‖ − ‖√γQ(n)(t)‖

≤ 1

2‖√γQ(n)(t)‖
(
E‖√γQ(n)(t+ 1)‖2 − ‖√γQ(n)(t)‖2

)
, (3.14)

where the inequality follows from the concavity of the function
√
x. Substitute the

value ofQ(n)(t+1) from equation (3.1), concentrate on the numerator of the above

expression to obtain,

E‖√γQ(n)(t+ 1)‖2 − ‖√γQ(n)(t)‖2

= E‖√γQ(n)(t) +
√
γ
(
A(n)(t)− S(n)(t) +U (n)(t)

)
‖2

− ‖√γQ(n)(t)‖2

= E
[
‖√γ(A(n)(t)− S(n)(t) +U (n)(t))‖2

+2
(√
γQ(n)(t)

)
·
(√
γ
(
A(n)(t)− S(n)(t) +U (n)(t)

))]
= E

[
‖√γ(A(n)(t)− S(n)(t) +U (n)(t))‖2

+2
(
γQ(n)(t)

)
· (A(n)(t)− S(n)(t) +U (n)(t))

]
= E

[
‖√γ(A(n)(t)− S(n)(t) +U (n)(t))‖2

+2
(
γQ(n)(t)

)
·U (n)(t)

42



+2
(
γQ(n)(t)

)
·
(
A(n)(t)− S(n)(t)

)]
≤ b1 + b2 + 2E

[(
γQ(n)(t)

)
·
(
A(n)(t)− S(n)(t)

)
|Q(n)(t)

]
, (3.15)

where b1 is a uniform bound on ‖√γ(A(n)(t) − S(n)(t) + U (n)(t))‖2, and b2 is a

uniform bound on ‖2
(
γQ(n)(t)

)
· U (n)(t)‖ which follows from the property that

Ui(t) > 0 only when Qi(t) is sufficiently small.

To simplify exposition and avoid introducing additional notation, let us assume

that λ(n)−λ? = −εν for some ε > 0. (If not, then instead of λ? in this proof we can

use λ??, which the orthogonal projection of λ(n) on V ?.) Combining (3.14) and

(3.15), we obtain

2‖√γQ(n)(t)‖∆L ≤ b1 + b2 + 2E
[(
γQ(n)(t)

)
·
(
A(n)(t)− S(n)(t)

)]
= b1 + b2 + 2E

[(
γQ(n)(t)

)
·
(
A(n)(t)− λ? + λ? − S(n)(t)

)]
= b1 + b2 − 2ε‖

(
γQ(n)(t)

)
?
‖+ 2E

[(
γQ(n)(t)

)
·
(
λ? − S(n)(t)

)]
≤ b1 + b2 − 2ε‖

(
γQ(n)(t)

)
?
‖ − δ‖

(
γQ(n)(t)

)
⊥ ‖, (3.16)

where the last inequality follows from the definition of Max Weight (see (3.2))

and the set Bδ
λ? (see (3.6)). If ‖γQ(n)(t)‖ ≥ x, then at least one of ‖

(
γQ(n)(t)

)
?
‖

or ‖
(
γQ(n)(t)

)
⊥ ‖ is greater than or equal to x/

√
2. After some algebraic manipu-

lations we obtain (γmin = mini γi),

‖√γQ(n)(t)‖ > x =⇒ ‖γQ(n)(t)‖ > √γminx

=⇒ ‖
(
γQ(n)(t)

)
?
‖ ∨ ‖

(
γQ(n)(t)

)
⊥ ‖ ≥

√
γminx√

2

=⇒ δ‖
(
γQ(n)(t)

)
?
‖+ ε‖

(
γQ(n)(t)

)
⊥ ‖ ≥ (ε ∧ δ)

√
γminx√

2
.
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Substituting the above in inequality (3.16) we see that the drift is upper bounded

by

− (ε ∧ δ)
√
γminx

2
√

2
+

b1 + b2

‖√γQ(n)(t)‖
.

This quantity is uniformly bounded by a negative constant for sufficiently large x.

Application of Proposition 2 completes the proof.

Now the positive recurrence of Q(n)(·) follows from Proposition 1. In fact, we

will prove the following stronger statement.

Theorem 3. For each n = 1, 2, . . ., the Markov process Q(n)(·) is positive Harris

recurrent and hence has a unique invariant probability distribution, which will be

denoted χ(n). Moreover, if Q(n)(∞) is the (random) process state in stationary regime

(i.e. it has distribution χ(n)),

E[‖Q(n)(∞)‖r] <∞, ∀r > 0.

Proof. By Lemma 4 any compact set is petite. Since Q(n)(·) is also bounded in

probability (Lemma 5), by Proposition 1 Q(n)(·) is positive Harris recurrent.

For a function f(·) and fixed b > 0, denote Tbf(·) = f(·) ∧ b. Consider the

process starting from an arbitrary fixed initial state Q(n)(0). Since the process is

positive Harris recurrent, we can apply the ergodic theorem to obtain (note that

Tb‖ · ‖ is a bounded continuous function):

E
(
Tb‖Q(n)(∞)‖r

)
= lim

m→∞

1

m

m∑
t=0

E
[
Tb‖Q(n)(t)‖r

]
. (3.17)
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On the other hand,

lim
m→∞

1

m

m∑
t=0

E
[
Tb‖Q(n)(t)‖r

]
≤ lim

m→∞

1

m

m∑
t=0

E
[
‖Q(n)(t)‖r

]
< C, (3.18)

for some constant C > 0, where the second inequality follows from (3.13). Com-

bining (3.17) and (3.18), we have

E
(
Tb‖Q(n)(∞)‖r

)
≤ C, ∀b > 0, (3.19)

and therefore, by monotone convergence theorem,

E
(
‖Q(n)(∞)‖r

)
= lim

b→∞
E
(
Tb‖Q(n)(∞)‖r

)
≤ C.

Lemma 6. Uniformly on all (large) n and the distributions ofQ(n)(0), the distribution

of Q(n)(1) is absolutely continuous w.r.t. Lebesgue measure, with the density upper

bounded by δ∗.

We omit the proof, which is straightforward, given our assumptions on the

distribution of A(n)(t).

Lemma 7. As n→∞, ‖Q(n)(∞)‖ → ∞ in probability.

Proof. The proof is by contradiction. Suppose, for some fixed C > 0 the compact

set D = {x ∈ RN : ‖x‖ ≤ C} is such that

lim sup
n→∞

χ(n)(D) = β > 0. (3.20)
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Suppose Q(n)(t) ∈ D. Then, using the same argument as in the proof of

Lemma 4, it is easy to see that for any ε > 0 there exists time τ ≥ 1, such

that P{‖Q(n)(t + τ)‖ ≤ ε} ≥ β1 > 0. This in turn implies that, with probabil-

ity at least some β2 > 0, for at least one flow i the amount of wasted service

U
(n)
i (t+ τ) ≥ ε2 > 0. This implies that, for at least one i,

lim sup
n→∞

E[U
(n)
i (∞)] ≥ β1β2ε2 > 0.

This, however, contradicts the fact that the process is stable for all large n.

3.9 Steady-State Queue Lengths Deviations from ν

Let us consider the process Y (n)(·), defined as

Y (n)(t) := (γQ(n)(t))⊥.

Lemma 8. The steady-state expected norm E‖Y (n)(∞)‖ is uniformly bounded in n.

Proof. As we did in the proof of Lemma 5, to simplify exposition, assume that

λ(n) − λ? = −εν. (If not, in this proof we would consider the projection λ?? of

λ(n) on V ?, instead of λ?. Consider Lyapunov function L(Q) =
∑N

i=1 γiQ
2
i . By

Theorem 3, EL(Q(n)(∞)) < ∞. The conditional drift of L(Q) in one time step is

given by (let Q(n)(t) = Q(n), A(n)(t) = A(n), and so on, to simplify notation)

E
[
L(Q(n)(t+ 1))− L(Q(n)(t))|Q(n)

]
= E

[
N∑
i=1

γi

(
Q

(n)
i + A

(n)
i − S

(n)
i + U

(n)
i

)2

|Q(n)

]
−

N∑
i=1

γi

(
Q

(n)
i

)2

= E

[
N∑
i=1

γi

(
A

(n)
i − S

(n)
i + U

(n)
i

)(
2Q

(n)
i + A

(n)
i − S

(n)
i + U

(n)
i

)
|Q(n)

]
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= E

[
N∑
i=1

γi

(
A

(n)
i − S

(n)
i + U

(n)
i

)2

+ 2γiQ
(n)
i

(
A

(n)
i − S

(n)
i + U

(n)
i

)
|Q(n)

]

≤ b1 + 2
(
γQ(n)

)
·
(
λ(n) − E

(
S(n)|Q(n)

))
= b1 + 2

(
γQ(n)

)
·
(
λ(n) − λ? + λ? − E

(
S(n)|Q(n)

))
= b1 − 2ε‖

(
γQ(n)

)
?
‖+ 2

(
γQ(n)

)
·
(
λ? − E

(
S(n)|Q(n)

))
≤ b1 − 2ε‖

(
γQ(n)

)
?
‖+ 2 min

y∈Bδν

(
γQ(n)

)
· (λ? − y)

≤ b1 − 2ε‖
(
γQ(n)

)
?
‖ − 2δ‖ (γQ)⊥ ‖, (3.21)

where b1 depends only on γ,Amax,Smax, and the last inequality follows from the

definition of MaxWeight and Bδ
λ?. Now consider the process Q(n)(·) in stationary

regime, and take the expectation of both parts of (3.21). We obtain,

2δE
[
‖
(
γQ(n)(∞)

)
⊥ ‖
]

+ 2εE
[
‖
(
γQ(n)(∞)

)
?
‖
]
≤ b1. (3.22)

Recalling that
(
γQ(n)(∞)

)
⊥ = Y (n)(∞), we see that

E‖Y (n)(∞)‖ is uniformly bounded.

3.10 Limit of the Queue-Differential Process

We now define a Markov chain Y ?(·), which, in the sense that will be made

precise later, is a limit of the (non-Markov) process Y (n)(·) as n→∞.

Define Y (n)(t) as the orthogonal projection of γQ(n)(t) on the subspace ν⊥.

We call Y (n)(·) a queue-differential process. (Obviously, under the CRP condition,

the queue-differential process is equal to the “queue deviation” process Y (n)(·) =

(γQ(n)(t))⊥ in Section 3.9. When CRP does not hold, the “deviation” and “differ-

ential” processes are defined differently. This will be discussed in Section 3.11.)

Denote by Y (n)(∞) the corresponding projection of the steady-state Q(n)(∞), and
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by Γ(n) its distribution.

Markov chain Y ?(·) is defined formally as follows. (We will show below that, in

fact, the distribution Γ(n) converges to the stationary distribution Γ? of Y ?(·).) The

state space of Y ?(·) is ν⊥. Assume that at time t the ”scheduler” chooses decision

k ∈ arg max
l:µl∈V ?

(Y ?(t)) · µl, (3.23)

which determines the corresponding random amount of service S(t), provided to

the ”queues” given by vector Q?(t) = Y ?(t)/γ. After that the (random) amount

A?(t) of new ”work” arrives and is added to the ”queues.” Finally, the new queue

lengths vectorQ?(t)−S(t)+A?(t) is transformed into Y ?(t+1) via componentwise

multiplication by γ and orthogonal projection on ν⊥. (Note that both Q?(t) and

Y ?(t) may have components of any sign. Also, there is no ”wasted service” here.)

In summary, the one step evolution is described by

Y ?(t+ 1) = Y ?(t) + (γA?(t)− γS(t))⊥ . (3.24)

Informally, one can interpret the process Y ?(·) as the queue-differential process

Y (n)(·), when n is very large and the queue length vector Q(n) is both large and

has a small angle with ν. Under these conditions, the only service decisions k that

can be chosen are such that µk ∈ V ?, and the choice is uniquely determined by

Y (n)(·).

Let P̃ (x, ·) denote the one-step transition function for the Markov process Y ?(·).

If x ∈ ν⊥, then let B̃ε(x) := {y ∈ ν⊥ : ||y−x|| ≤ ε}. The following fact is analogous

to Lemma 2.
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Lemma 9. (i) The points y ∈ ν⊥, such that

k ∈ arg max
l:µl∈V ?

y · µl (3.25)

is non-unique, form a set of zero Lebesgue measure. Moreover, if y is such that the

corresponding decision k is unique, then for a sufficiently small ε > 0 the decision k is

also the unique element of

arg max
l:µl∈V ?

z · µl

for all z ∈ B̃ε(y).

(ii) There exist small ε > 0 and constant c∗ > 0, c∗ > 0 such that P̃ (x, ·) is abso-

lutely continuous and, moreover, uniformly in x ∈ ν⊥, the density of P̃ (x, ·) is lower

bounded by c∗ on set B̃ε(x) and is upper bounded by c∗ everywhere.

Proof. Statement (i) is obvious. Statement (ii) follows from our assumptions on

the distribution of A?(t), the fact that Amax > Smax, and the one-step evolution

rule (3.24). We omit details.

Lemma 10. For the Markov chain Y ?(·), every compact set is petite.

The proof easily follows from Lemma 9, by using the argument analogous to

that in the proof of Lemma 4. We omit details.

Next, we establish some properties of a stationary distribution Γ? of the Markov

process Y ?(·), assuming a stationary distribution exists. This will help us later prove

that the stationary distribution in fact exists and is unique.

Lemma 11. If Γ? is a stationary distribution of Y ?(·), then Γ? is equivalent to the

Lebesgue measure L̃, i.e. Γ? � L̃ and L̃ � Γ?.

Proof. Γ? � L̃: This follows from Lemma 9.

L̃ � Γ?: It suffices to show that Γ?(B̃r(z)) > 0 for any z ∈ ν⊥ and r > 0. Consider
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the process Y ?(·) with the distribution of Y ?(0) equal to Γ?. (Then the process is

of course stationary.) Fix any 0 < β < 1 and choose a compact set D ⊂ ν⊥ such

that Γ? (D) ≥ β. Using Lemma 9 we can easily show that there exists time τ > 0

and a constant ∆ > 0, such that, uniformly in Y ?(0) = x ∈ D,

P{Y ?(τ) ∈ B̃r(z) | Y ?(0) = x} ≥ ∆,

and therefore

Γ?(B̃r(z)) ≥ β∆ > 0.

Lemma 12. Suppose Γ? is a stationary distribution of Y ?(·). Then P̃x(Y ? → ∞) =

0, Γ? − a.s., and hence P̃x(Y ?(t)→∞) = 0, L̃ − a.s..

Proof. The proof is by contradiction. Let Y ?(0) have the stationary distribution Γ?,

and assume that ∃ ε > 0, ε1 > 0 such that

Γ?({x : P̃x(Y ? →∞) ≥ ε1}) ≥ ε.

This would imply that lim sup
t→∞

P (Y ?(t) ∈ D) ≤ 1−εε1 for every compact setD ⊂ ν⊥.

This is impossible, because the distribution of Y ?(t) is equal to Γ? for all t.

Lemma 13. If process Y ?(·) has a stationary distribution, it is non-evanescent.

Proof. Consider process Y ?(·) with fixed initial state

Y ?(0) = x. Consider one-step transition. The distribution of Y ?(1) is absolutely

continuous with respect to L̃. Thus, by Lemma 12, with probability 1, z = Y ?(1) is

such that P̃z(Y ? →∞) = 0. Then, P̃x(Y ? →∞) = 0.
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Lemma 14. Suppose Γ? is a stationary distribution of Y ?(·). Then, the Markov chain

is positive Harris recurrent, and therefore Γ? is its unique stationary distribution.

Proof. Since every compact set is petite (Lemma 10) and the process is non-evanescent

(Lemma 13), it is Harris recurrent by Proposition 1. But since it has a finite invari-

ant measure Γ?, Y ?(·) is positive Harris recurrent.

We now show the existence of a stationary distribution of Y (?)(·).

Lemma 15. Every weak limit point Γ(?) of the sequence of distributions Γ(n) is a

stationary distribution of the process

Y (?)(·).

Proof. Let Γ? be a weak limit of Γ(n) along a subsequence on n. We can make the

following observations.

(a) Observe that uniformly on all (large) n and the distributions ofQ(n)(0), the dis-

tribution of Y (n)(1) is absolutely continuous w.r.t. Lebesgue measure, with the

upper bounded density. (This easily follows from Lemma 6 and the fact that

‖Q(n)(1) − Q(n)(0)‖ is uniformly bounded.) Then, we see that Γ? is absolutely

continuous with bounded density.

(b) Consider any point y ∈ ν⊥ such that the decision k in (3.25) is unique and

a small ε > 0 such that this decision k is also unique for all z ∈ B̃ε(y). (See

Lemma 9(i).) Then, there exists a sufficiently large C > 0 such that, uniformly in

n, conditions ‖Q(n)(t)‖ ≥ C and Y (n)(t) ∈ B̃ε(y) imply that the same decision k

will be unique at time t for the process Q(n)(·).

Using these two observations, Lemma 7, and the fact that the distribution of

A(n)(t) converges to that of A?(t), we can choose a further subsequence of n along

which the following property holds. The stationary versions of processes Q(n)(·)
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and the process Y ?(·) with distribution of Y ?(0) equal to Γ?, can be constructed on

one common probability space, so that with probability 1:

(c) for all large n, the same decision k is chosen at time 0 in the processes Q(n)(·)

and Y ?(·);

(d) Y (n)(0)→ Y ?(0) and Y (n)(1)→ Y ?(1).

This, in turn, implies that for any bounded continuous function g we have,

E [g(Y ?(0))] = lim
n→∞

E
[
g(Y (n)(0))

]
,

E [g(Y ?(1))] = lim
n→∞

E
[
g(Y (n)(1))

]
.

But, E
[
g(Y (n)(0))

]
= E

[
g(Y (n)(1))

]
for all n. Therefore, E [g(Y ?(0))] = E [g(Y ?(1))].

This proves stationarity of Γ?.

Theorem 4. The Markov process Y ?(·) is positive Harris recurrent. The sequence

Γ(n) [i.e., the distributions of Y (n)(∞)] weakly converges to the unique stationary

distribution Γ? of Y ?(·).

Proof. This follows from Lemma 15 and Lemma 14.

We are finally in position to give a

of Theorem 2. By Theorem 4, the process Y ?(·) is positive Harris recurrent. More-

over, we know that it is such that every compact set is petite. We can pick any

compact set D such that Γ?(D) > 0, and using Nummelin splitting view the process

Y ?(·) as having an atom state, with finite average return time to this atom. We see

that the cumulative “service process” G?(·) corresponding to Y ?(·) in steady-state

is such that

max
i

lim
T→∞

P (G?
i (T ) = 0) = 0.
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Finally, the argument used in the proof of Lemma 15 shows that the stationary

versions of processes Y ?(·) and Q(n)(·) for all (large) n can be constructed on a

common probability space in a way such that, w.p.1, for any T > 0

G(n)(T )→ G?(T ).

This implies (3.4).

3.11 Generalization to the Case When CRP Condition Does Not Necessarily Hold

If CRP condition does not necessarily hold, let ν denote the normal cone to V

at point λ?; it has dimension d ≥ 1. (In the CRP case, d = 1 and ν is a ray.) Fix any

positive vector ν ′ which lies in the relative interior of ν. Then, V ? is defined more

generally as

V ? = arg max
x∈V

ν ′ · x;

it is a (N − d)-dimensional face of V . By ν⊥ we denote the (N − d)-dimensional

subspace orthogonal to ν.

We will denote by x? the projection of a vector x on the normal cone ν; that

is, x? is the closest to x point of ν. Then let x⊥ = x − x?, and let x⊥,sp be the

orthogonal projection of x on the subspace ν⊥. Note the difference between the

definitions of x⊥ and x⊥,sp. (In the CRP case, x⊥ ≡ x⊥,sp. In the non-CRP case

they are in general different.) We always have ‖x⊥,sp‖ ≤ ‖x⊥‖. Note that, if x? lies

in the relative interior of ν, then x? = x⊥,sp.

In this notation, the entire development in Sections 3.8 and 3.9 is carried out

essentially as is, with very minor adjustments.

The development in Section 3.10 is carried out with small adjustments, which

are as follows. The queue differential process is defined as Y (n)(t) = (γQ(n)(t))⊥,sp.
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Correspondingly, the one step evolution of Y ?(·) is defined by (3.23) and

Y ?(t+ 1) = Y ?(t) + (γA?(t)− γS(t))⊥,sp .

Therefore, the state space for both Y (n)(·) and Y ?(·) is ν⊥.

The proof of the key Lemma 15 requires, in addition to Lemma 7, the following

Lemma 16. Let h(x) denote the distance from x? to the relative boundary of the

cone ν. (To be precise, h(x) is defined as the distance from x? to the set {relative

boundary on the cone ν} \ {boundary of the positive orthant RN
+}.)

Lemma 16. As n→∞, h(Q(n)(∞)→∞ in probability.

This lemma is easily proved, because the contrary, along with Lemmas 15 and

Lemma 8, would imply that the frequency of choosing scheduling decisions outside

V ? would not vanish, as n→∞; that would contradict stability when n is large.

Then, in the proof of Lemma 15, in the statement (b), the condition ‖Q(n)(t)‖ ≥

C is replaced by h(Q(n)(t)) ≥ C; also, Lemma 16 is used along with Lemma 7.

The statement of Theorem 4 and the proof of Theorem 2 remain unchanged.
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4. OPTIMIZING QUALITY OF EXPERIENCE OF DYNAMIC VIDEO STREAMING

OVER FADING WIRELESS NETWORKS

4.1 Overview

We address the problem of video streaming packets from an Access Point (AP) to

multiple clients over a shared wireless channel with fading. In such systems, each

client maintains a buffer of packets from which to play the video, and an outage

occurs in the streaming whenever the buffer is empty. Clients can switch to a lower-

quality of video packet, or request packet transmission at a higher energy level,

in order to minimize the number of outages plus the number of outage periods

and the number of low-quality video packets streamed, while there is an average

power constraint on the AP. We pose the problem of choosing the video quality and

transmission power as a Constrained Markov Decision Process (CMDP). We show

that the problem involving N clients decomposes into N MDPs, each involving only

a single client, and furthermore that the optimal policy has a threshold structure,

in which the decision to choose the video-quality and power-level of transmission

depends solely on the buffer-level.

4.2 Introduction

Scheduling packets for video streaming over a shared wireless downlink is of

increasing attention [1]. Predominantly, this problem has been addressed with the

goal of minimizing the average number of outages, i.e., time-slots during which a

client has no packet to play [63,83], [118], [28,29,48,104,119]. The primary ob-

jective in these works is to minimize the average number of outages suffered during

the streaming, i.e., time-slots during which a client has no packet to play. However

the models considered in these works do not incorporate the communication con-
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straints imposed by the network over which the streaming occurs. Typically clients

streaming video files will share a common wireless channel, which again typically

has a constraint on the average power. The access point (AP) has to choose the

power level at which to transmit individual packets to each client so as to maxi-

mize the total Quality of Experience (QoE) experienced by the clients. The system

also has an additional degree of freedom in that the AP can transmit lower quality

packets on occasion, leading to a softer loss of video quality than an abrupt out-

age. Another important aspect is that the quality of video streaming experienced

by a client depends not only on the number of outages, but also on the number

of “outage-periods”, i.e., number of interruption periods as well. Thus an outage

lasting 10 time-slots is not the same as 10 outages each lasting 1 time-slot. The

QoE experienced by a client thus has to take into account several metrics: the av-

erage number of outages, the average number of outage-periods, and the quality

of video-packets streamed. In this paper we address this overall problem. While

we focus here on the single “last-hop” case for ease of exposition and brevity, our

results can be generalized to multi-hop networks as well.

4.3 System Description

Consider a system where a wireless channel is shared by N clients for the pur-

pose of streaming video packets. It is assumed that the system evolves over discrete

time-slots, and one time-slot is taken by the access point (AP) for attempting one

packet transmission.

Client n maintains a buffer of size Bn packets and plays a packet for a duration

of Tn time-slots. Once it has finished playing a video-packet, it looks for the next

packet in the buffer. In case the buffer is empty, there is an “outage”, meaning that

the video streaming is interrupted, and the client has to wait for a packet to be
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delivered to its buffer before it can resume the video streaming.

The wireless channels connecting the clients to the AP are assumed to be ran-

dom. For ease of exposition, we will derive the results for the case when the chan-

nel conditions are fixed. These results carry over to the case of fading channels in

a straight-forward manner. Later, in Section 4.9, we will outline the results for the

case of fading channels.

There areQn different video-qualities {1, 2, . . . , Qn} of packets that can be trans-

mitted for client n, with class 1 video quality providing the best viewing experience.

Similarly there are {Ê1, Ê2, . . . , Ên} different power levels at which the packets for

client n can be transmitted. We let Ê1 = 0, i.e. a user may choose to not request

packet in a time-slot. The probability that the packet for client n is successfully

delivered upon a transmission attempt, Pn(q, E), depends on the amount of power

E used in the packet transmission and the quality of video packet q that was at-

tempted. We also incorporate an average power constraint on the AP.

The basic problem considered is that of scheduling the AP’s packet transmis-

sions to clients so as to maximize the combined Quality of Experience (QoE) of the

clients. The QoE of a single client depends on multiple factors

1. The average number of outages.

2. How “often” the video gets interrupted, i.e., the number of outage-periods, or

the number of time-slots in which the transition from “non-outage” to outage

occurs.

3. The number of packets of different quality types that are streamed.
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4.4 Problem Formulation

We denote by On(s) the random variable that assumes the value 1 if the n-th

client faces an outage at time s, and 0 otherwise, and by En(s) the transmission

power utilized by the n-th client at time-slot s. Also, let In(q, s) be the random

variable that takes the value 1 if a packet of quality q is delivered to client n in

time-slot s.

The Constrained Markov Decision Process (CMDP) of interest is then to choose

the quality of video packets and transmission power for each client, in order to

Minimize lim sup
t→∞

1

t
E
∑
n

∑
s

(
On(s) +

Qn∑
q=1

λq,nIn(q, s)

+ λO,n|On(s) (On(s− 1)− 1)|

)

subject to , (4.1)

lim sup
t→∞

1

t
E
∑
n

∑
s

En(s) ≤ Ē. (Primal MDP)

Note that the term |On(s) (On(s− 1)− 1) | assumes the value 1 if time-slot s is

the beginning of an outage-period for client n, and is 0 otherwise. It thereby mea-

sures the number of outage periods incurred. The parameters {λq,n}Qnq=1 , λO,n n =

1, 2, . . . , N are employed for tuning the QoS to account for the relative importance

placed on each of the objectives. We note that for i > j, λi,n > λj,n for all n, since

we assumed that the video quality of a packet is less if the packet belongs to a

higher valued class.

Thus the above problem is a CMDP in which the system state at time t is de-

scribed by the N dimensional vector L(t) := (l1(t), l2(t), . . . , lN(t)), where ln(t) is

the amount of play time remaining in the buffer of client n at time t.
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The central difficulty which arises is that the cardinality of the state-space of the

system increases exponentially with the number of clients N , and thus the problem

is computationally infeasible as formulated above.

We show in this paper that the problem of serving N clients can be decomposed

into N separate problems each involving only a single client. Thus the computa-

tional complexity of the problem grows linearly in the number of clients. More-

over, we show that the optimal policy is easily implementable since it has a simple

threshold structure.

4.5 The Dual MDP

The Lagrangian associated with a policy π for the system (4.1) is given by,

L(π, λE) = lim sup
t→∞

1

t
E
∑
n

∑
s

(
On(s) +

Qn∑
q=1

λq,nIn(q, s)

+ λO,n|On(s) (On(s− 1)− 1) |

)

+ λE

(
lim sup
t→∞

1

t
E
∑
n

∑
s

En(s)− Ē

)
, (4.2)

where λE is the Lagrangian multiplier associated with the average power con-

straint. The associated Lagrange dual is,

D(λE) = min
π
L(π, λE). (4.3)

Next we present a useful bound on the dual, the proof of which follows from the

super-additivity of lim sup and sub-additivity of lim inf operations.
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Lemma 17.

D(λE) ≥ min
π

∑
n

lim inf
t→∞

1

t
E

t∑
s=1

(
On(s) + λEEn(s)

+λO,n|On(s) (On(s− 1)− 1) |+
Qn∑
q=1

λq,nIn(q, s)

)

− λEĒ. (4.4)

4.6 Single Client Problem

We consider minimizing the bound obtained in Lemma 17. Observing the

bound, we find that we have decomposed the original problem (4.1) into N single-

client problems, i.e., the expression in the r.h.s. of (4.4) is the sum of the costs of

N clients, in which the cost of a single client depends only on the action chosen for

it in each time-slot.

The problem for the single client is described as follows. We omit the sub-

script n in the following discussion. The channel connecting the client to the AP

is random. The client maintains a buffer of capacity B time-slots of play-time

video (this assumption is equivalent to the assumption of maintaining a buffer of

B packets since a packet is played for T time-slots), and in each time-slot, the AP

has to choose two quantities, which together comprise the control action chosen

for the client:

• The video quality q ∈ {1, 2, . . . , Q}.

• The power E ∈ {Ê1, Ê2, . . . , Ên} at which to carry out packet transmission.

The state of the client is thus described by l(t), the play-time duration of the

packets present in the buffer at time t.
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If the client is scheduled a packet transmission of quality q at an power E at

time t, and the remaining playtime at time t, l(t), is less than or equal to B−T + 1,

then the system state at time t + 1 is (l(t) − 1)+ + T with a probability P (q, E),

while it is (l(t)− 1)+ with a probability P (q, E). However if the value of remaining

playtime l(t) is strictly greater than B − T + 1, then the system state at time t + 1

is l(t)− 1 with a probability 1.

We let

S(x) :=


(x− 1)+ + T, if x ≤ B − T + 1,

x− 1, if B − T + 1 < x ≤ B,

(4.5)

F(x) := (x− 1)+, (4.6)

be the transitions associated with the remaining play-times associated for a suc-

cessful and failed packet transmission respectively. The control action at time t will

be denoted u(t) := (q(t), E(t)), where q(t), E(t) are the video quality and transmis-

sion power level chosen at time t.

The transmissions at power level E incur a cost of λE × E. There is a penalty

of 1 units upon an outage at time t. A penalty of amount λq units is imposed if a

packet of quality q is delivered to it, while a penalty of λO units is imposed at time

t in case there was no outage at time-slot t − 1, and an outage occurs in time-slot

t, i.e. if a new outage-period begins at time t.

Since the probability distribution of the system state at time t+ 1 is completely

determined by the system state at time t, and the action (q, E) chosen at time t, i.e.,

requested video quality and power level at which transmission occurs, the single

client problem is a Markov Decision Process (MDP) involving only a finite number

of actions and states, and thus is solved by a stationary Markov policy [85].
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Denote by πn a policy for the client n. The single client problem is to solve,

min
π

lim inf
t→∞

1

t
E

t∑
s=1

(
O(s) + λEE(s)

+λO|O(s) (O(s− 1)− 1) |+
Q∑
q=1

λqI(q, s)

)
. (4.7)

Denote by π?n(λE), the optimal policy which solves the single client problem. We

also let

Vn(λE) = min
π

lim inf
t→∞

1

t
E

t∑
s=1

(
O(s) + λEE(s)

+λO|O(s) (O(s− 1)− 1) |+
Q∑
q=1

λqI(q, s)

)
, (4.8)

be the optimal cost, and Vn(λE, π) be the cost associated with a policy π.

4.7 Threshold Structure of the Optimal Policy for the Single Client Problem

We will suppress the subscript n in the following discussion, and begin with a

discussion of the β ∈ (0, 1) discounted infinite horizon cost problem for the single

client. Let

Vβ(x) = min
π

lim inf
t→∞

E

[
∞∑
t=0

βt (O(t) + λEE(t)

+λO|O(t) (O(t− 1)− 1) |+
Q∑
q=1

λqI(q, s)

)]
(4.9)

be the minimum β-discounted infinite horizon cost for the system starting in state

x at time 0, where x can assume values in the set {0, 1, . . . , B}. The function V s
β (x)

is similarly defined to be the minimum β-discounted cost incurred in s time-slots
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for the system starting in state x, i.e.,

V s
β (x) = min

πs
Ex

[
s∑
t=0

βt

(
O(t) + λEE(t) + λO|O(t) (O(t− 1)− 1) |+

Q∑
q=1

λqI(q, s)

)]
,

where πs is a policy for the s horizon β-discounted problem. The quantities Vβ(x), V s
β (x)

should not be confused with the quantities Vn(λE) defined in the previous section.

We have,

V s
β (x) = min

(q,E)
1(x = 0) + λEE + P (q, E)

[
λq + βV s−1

β (S(x))
]

+ (1− P (q, E))
[
1(x = 1)λO + βV s−1

β (F(x))
]

= 1(x = 0) + 1(x = 1)λO +
[
βV s−1

β (F(x))
]

+ min
u
{C(u)− P (u)Dβ

s (x)}, (4.10)

where

C(u) := λEE + P (q, E)λq, (4.11)

is the one-step cost associated with the action u = (q, E), and for s = 1, 2, . . .,

Dβ
s (x) := 1(x = 1)λO + β

{
V s−1
β (F(x))− V s−1

β (S(x))
}
. (4.12)

We assume that a lower video quality packet, or a higher power packet transmission

leads to an increase in the success of packet transmission P (q, E), i.e., an increase

in cost is associated with a higher transmission success probability.

Definition. Threshold policy: We say a policy is of threshold-type if it satisfies the

following for each stage s:
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• Fix any E ∈ {Ê1, Ê2, . . . , Ên}. If the policy chooses the action (q, E) in state x,

then it does not choose the actions {(q̂, E) : q̂ < q} for any state. 1 ≤ y ≤ x

• Fix any q ∈ {Q1, Q2, . . . , Qn}. If the policy chooses the action (q, E) in state x,

then it does not choose the actions {(q, Ẽ) : Ẽ < E} for any state 1 ≤ y ≤ x.

If x, y ∈ {1, 2, . . . , B} are such that x > y, and let ux,uy be the actions chosen

by a threshold policy π in states x and y. Then it is also easily verified that P (ux) <

P (uy).

Next we present a useful lemma that is easily proved. In the following, (u, π)

is the policy that follows the action u in the first slot, and then follows policy π,

while V s,π
β (x) is the cost achieved under the policy π in s time-slots for the system

starting in state x.

Lemma 18. Let u1,u2 be two actions where P (u2) > P (u1), or equivalently, P (u2) >

P (u1). Then,

V
s,(u2,π?)
β (F(x))− V s,(u1,π?)

β (S(x)) = P (u1)
{
βV s−1

β (S(F(x)))− V s−1
β (S(S(x)))

}
+ (1− P (u2))

{
1(F(x) = 1)λO + βV s−1

β (F(F(x)))− V s−1
β (F(S(x)))

}
+ C(u2)− C(u1)

= P (u1)
{
βV s−1

β (F(S(x)))− V s−1
β (S(S(x)))

}
+ (1− P (u2))

{
1(F(x) = 1)λO + βV s−1

β (F(F(x)))

−V s−1
β (S(F(x)))

}
+ C(u2)− C(u1).

Lemma 19. For s = 1, 2, . . ., the functions Dβ
s (x) are decreasing in x for x ∈

{1, 2, . . . , B − T + 1}.

Proof. Within this proof, let π?s be the optimal policy for the β-discounted s time-
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slots problem, and let (u, π?s−1) be the policy for s time-slots which takes the action

u at the first time-slot, and then follows the policy π?s−1. In order to prove the

claim, we will use induction on s, the number of time-slots.

Let us assume that the statement is true for the functions Dβ
z (x), for all z ≤ s.

In particular the function,

1(x = 1)λO + β
{
V s−1
β (F(x))− V s−1

β (S(x))
}
, (4.13)

is decreasing for x ∈ {1, 2, . . . , B − T + 1}.

First we will prove the decreasing property for x ∈ {2, 3, . . . , B−T+1}. Now the

assumption (4.13) made above, and (4.10), together imply that π?s is of threshold-

type.

Fix an x ∈ {1, 2, . . . , B − T} and denote by u1,u2,u3,u4, the optimal actions

at stage s for the states S(x),F(x),S(x + 1),F(x + 1) respectively. Note that the

threshold nature of π?s implies that,

P (u1) < P (u2), P (u3) < P (u4) and ,

P (u3) < P (u1), P (u4) < P (u2).

This is true because as the value of state decreases in the interval {1, 2, . . . , B},

a threshold policy switches to an action that has a higher transmission success

probability. So it follows from Lemma 18 that

V s
β (F(x+ 1))− V s

β (S(x+ 1))

≤ V
s,(u2,π?s−1)

β (F(x+ 1))− V s
β (S(x+ 1))

= C(u2)− C(u3)
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+ Pc(u3)× β
[
V s−1
β (F(S(x+ 1)))− V s−1

β (S(S(x+ 1)))
]

+ (1− Pc(u2))×{
1(F(x+ 1) = 1) + βV s−1

β (F(F(x+ 1)))

−V s−1
β (S(F(x+ 1)))

}
≤ C(u2)− C(u3)

+ Pc(u3)× β
[
V s−1
β (S(F(x)))− V s−1

β (S(S(x)))
]

+ (1− Pc(u2))×[
1(F(x) = 1) + βV s−1

β (F(F(x)))− V s−1
β (S(F(x)))

]
≤ V s

β (F(x))− V s
β (S(x)),

where the first inequality follows since a sub-optimal action in the state F(x + 1)

increases the cost-to-go for s time-slots, the second inequality is a consequence

of the assumption that the functions V s−1
β (F(x)) − V s−1

β (S(x)) are decreasing in

x, while the last inequality follows from the fact that a sub-optimal action in the

state S(x) will increase the cost-to-go for s time-slots. Thus we have proved the

decreasing property of Dβ
s+1(·) for x ∈ {2, 3, . . . , B−T + 1}, and it remains to show

that Dβ
s+1(1) > Dβ

s+1(2).

Once again let u1,u2,u3,u4 be the optimal actions at stage s for the states

T, 0, T + 1, 1 respectively. Using the same argument as above (i.e., assuming that

the actions taken in stage s at states T, T + 1 are the same, and the actions taken

in the states 0, 1 are the same), it follows that

Ds+1(1)−Ds+1(2) ≥

(1 + λO − βλO)−
(
V s
β (T )− V s

β (T + 1)
)
.
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However then V s
β (T ) − V s

β (T + 1) ≤ 1 + λO − βλO (for s stages, apply the same

actions for the system starting in state T , as that for a system starting in state T +1,

and note that the two systems couple at a stage t − 1, when the latter system hits

the state 1 at any stage t. The hitting stage is of course random). This gives us,

Ds+1(1)−Ds+1(2) ≥ 0,

and thus we conclude that the function Ds+1(x) is decreasing for x ∈ {1, 2, . . . , B}.

In order to complete the proof, we notice that for s = 1, we have,

Dβ
1 (x) = 1(x = 1)λO,

and thus the assertion of Lemma is true for s = 1. This completes the proof.

Theorem 5. Consider the single client problem discussed in Section 4.6. There is

a threshold policy that is Blackwell optimal [18], i.e., it is optimal for all values of

β ∈ (β̂, 1) for some β̂ ∈ (0, 1), and is also optimal for the Average cost problem. Thus

π?n(λE) is of threshold-type and can be obtained in time O(BE×Q) via comparing the

costs of all threshold-type policies.

Proof. Fix a q and let Ei, Ej, i > j be two power levels. Without loss of generality,

let u1 = (q, Ei),u2 = (q, Ej). Clearly C(u1) > C(u2) (4.11). In the Bellman equa-

tion (4.10), consider the term depending on u, i.e. the term C(u) − P (u)Dβ
s (x).

For x, y ∈ {1, 2, . . . , B − T + 1}, x > y, we have,

C(u1)− P (u1)Dβ
s (x)−

(
C(u2)− P (u2)Dβ

s (x)
)

− {C(u1)− P (u1)Dβ
s (y)−

(
C(u2)− P (u2)Dβ

s (y)
)
}

= (P (u1)− P (u2))
(
Dβ
s (y)−Dβ

s (x)
)
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≥ 0,

where the last inequality follows from Lemma 19. Thus it follows that if action u1

is preferred over action u2 for any state x, then u1 will also be preferred over action

u2 for any state y < x, y ∈ {1, 2, . . . , B−T+1}. Finally note that it follows from the

Bellman equation (4.10) and (4.5), that the optimal action for states x > B−T +1

is to let E = 0 (since any packet that is received will be lost due to buffer over-

flow). The proof for variations in power levels is similar. Thus it follows from the

definition of a threshold policy, that the optimal policy is of threshold type.

Finally note that the statement regarding Blackwell optimality follows from the

result in the above paragraph, and because the state-space is finite.

We note that the computational complexity of obtaining the optimal threshold

policy, O(BE×Q), is polynomial in B, the buffer size. However the computational

complexity of policy iteration is O(2B), and thus using policy iteration is infeasi-

ble for large buffer sizes, while the search for the optimal threshold policy is still

feasible. Thus Theorem 5 offers computational advantages also.

4.8 Solution of Primal MDP

We now present the solution of the Primal Problem.

Lemma 20. D(λE) =
∑

n Vn(λE)− λEĒ.

Proof. Let π?(λE) := ⊗π?n(λE) be the policy obtained by following the policy π?n(λE)

for each client n. Then from the definition of dual function, Lagrangian (4.2), cost

associated with a policy π (4.8) and Lemma 17, we have

L(π, λE) ≥ D(λE) ≥
∑
n

Vn(λE, π)− λE × Ē. (4.14)
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However since the policy π?(λE) is stationary, (all the lim inf and lim sup become

lim in the definition of its Lagrangian, and associated rewards in the single-client

problem change to lim), we have that

L(π?(λE), λE) =
∑
n

Vn(λE)− λE × Ē,

which, along with (4.14) gives us D(λE) =
∑

n Vn(λE)− λEĒ.

Theorem 6. Consider the Primal MDP (4.1) and its associated dual problem defined

in (4.3). There exists a price λ?E such that (π?(λ?E), λ?E) is an optimal primal-dual pair

and thus the policy π?(λ?E) solves the Primal MDP.

Proof. We observe that there is a one-to-one correspondence between any station-

ary randomized policy, and the measure it induces on the state-action space, and

thus the Primal MDP can be posed as a linear program [2,20]. Thus it follow from

Slater’s condition [15], that for the Primal MDP, strong duality holds if there exists

a policy π that satisfies the constraints lim supt→∞
1
t
E
∑

n

∑
sEn(s) < Ē. However

the policy which never schedules any packets incurs a net power expenditure of 0,

and thus the Slater’s condition is true for the Primal MDP if Ē > 0. The claim of

the Theorem then follows from Lemma 19.

We note that the policy π?(λ?E) is a decentralized policy. That is, the deci-

sion to choose the video-quality and power-level at each time t for client n, i.e.,

(qn(t), En(t)) can be taken by client n itself, and doesn’t require the AP to co-

ordinate the clients. Thus a client n need not know the state values of other clients,

lm(t) for m 6= n, nor does the AP need to know the values of ln(t). Thus the policy

is easy to implement.
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4.8.1 Obtaining λ?E Iteratively in a Decentralized Fashion

We note that in order to implement the optimal policy π?(λ?E) as in Theorem 8,

we need to find the optimal value of the price λ?E. We will iterate on the price λE

using the sub-gradient method [80], and since the problem is concave, the price

will converge to the optimal value λ?E. Moreover the iterations involving price-

updates are decentralized, i.e., the clients need only the knowledge of the current

price λE for the iteration.

Now since D(λE) = L(π?(λE), λE), we have,

∂D

∂λ̂v
= Ē − Eπ?(λE)

∑
n

τ(n, π?(λE)), (4.15)

where Eπ?(λE)

∑
n τ(n, π?(λE)) is the expected cost incurred on the power over all

the users. This is the total “congestion” at the AP. The iteration for λE is,

λk+1
E = λkE − αkgk,

where dk is the sub-gradient evaluated in (4.15).

4.9 Fading Channels

The results in the previous sections can be extended in a straight forward

manner to the case of fading channels. Let the channel conditions for client n

be described by a Markov process evolving on finitely many states {1, 2, . . . , Cn}

having a transition matrix Πn. The state of client n is described by the vector

xn(t) := (ln(t), cn(t)), where ln(t) is the play-time duration of the packets present

in the buffer at time t, and cn(t) is the channel condition at time t. If the client n

is scheduled a packet transmission of quality q at an power E at time t, then the
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system state at time t + 1 is (S(l(t)), c̃) with a probability Pn,cn(t)(q, E)Π(cn(t), c̃),

while it is (F(l(t)), c̃) with a probability Pn,cn(t)(q, E)Π(cn(t), c̃).

However now the cost associated to an action uwill also depend on the channel

condition, i.e.,

Cc(u) := λEE + Pc(l, E)λq, (4.16)

and a threshold policy will have a threshold structure for each value of channel

condition (as defined in Section 4.6).
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5. INDEX POLICIES FOR OPTIMAL MEAN-VARIANCE TRADE-OFF OF

INTER-DELIVERY TIMES IN SINGLE-HOP NETWORKS*

*Reprinted with permission from “Index policies for optimal mean-variance

trade-off of inter-delivery times in real-time sensor networks” by Rahul Singh,

Xueying Guo and P.R. Kumar, INFOCOM 2015, Copyright 2015, IEEE.

5.1 Overview

A problem of much current practical interest is the replacement of the wiring

infrastructure connecting approximately 200 sensor and actuator nodes in automo-

biles by an access point. This is motivated by the considerable savings in automo-

bile weight, simplification of manufacturability, and future upgradability.

A key issue is how to schedule the nodes on the shared access point so as to

provide regular packet delivery. In this and other similar applications, the mean of

the inter-delivery times of packets, i.e., throughput, is not sufficient to guarantee

service-regularity. The time-averaged variance of the inter-delivery times of packets

is also an important metric.

So motivated, we consider a wireless network where an Access Point schedules

real-time generated packets to nodes over a fading wireless channel. We are inter-

ested in designing simple policies which achieve optimal mean-variance tradeoff

in interdelivery times of packets by minimizing the sum of time-averaged means

and variances over all clients. Our goal is to explore the full range of the Pareto

frontier of all weighted linear combinations of mean and variance so that one can

fully exploit the design possibilities.

We transform this problem into a Markov decision process and show that the

problem of choosing which node’s packet to transmit in each slot can be formulated
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as a bandit problem. We establish that this problem is indexable and explicitly de-

rive the Whittle indices. The resulting Index policy is optimal in certain cases. We

also provide upper and lower bounds on the cost for any policy. Extensive simula-

tions show that Index policies perform better than previously proposed policies.

5.2 Introduction

Traditionally, throughput and delay have been used as performance metrics

to judge quality of service (QoS) [24, 35, 46, 77, 100, 117, 120]. The steady-state

variance of inter-delivery times of packets is considered as a measure of service

regularity in [62]. Motivated by cyber-physical systems applications serving sen-

sors, we address the problem of achieving an optimal “mean-variance trade-off” in

the inter-delivery times of packets of N clients sharing K channels.

We consider an access point with K channels shared by N clients. The clients

desire a high throughput with high service regularity. We can associate a reward

function θi
D̄i
− var(Di) with client i, where θi is the parameter that client i uses to

tune its trade-off between its throughput 1
D̄i

(where D̄i is the mean inter-delivery

time between packets of client i) and the service regularity var(Di), the variance

of the inter-delivery times for client i. By varying θi one can explore the full range

of design freedom along the Pareto frontier of all mean-variance tradeoffs. In

summary, the net function which captures the trade-off is,

N∑
i=1

Ri

(
θi
D̄i

− var(Di)

)
,

where Ri > 0 is the weight attached to client i, and θi is a tunable parameter

permitting full exploration of the Pareto frontier.

Our contributions can be summarized as follows. We show how one may obtain
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tractable decoupled solutions for the problem of scheduling the clients by address-

ing it as a Restless Multi-Armed Bandit Problem [111]. In particular we obtain the

Whittle indices in a closed form, which yields a very elegant solution based merely

on comparing the indices of the clients. We also derive upper bounds on the achiev-

able performance of any policy. Simulation results show that the performance of

the obtained Index policy is very close to optimal.

5.3 Related Works

The steady-state variance of the inter-delivery times of packets of clients as a

measure of service regularity has been considered in [62]. References [62] and

[61] consider the scenario where multiple queues are sharing a server and deal

with the problem of stabilizing the queues while ensuring an optimal delay and

service regularity. [88,97] perform an analysis of the pathwise starvations in service

for the case of a single-hop multi-user wireless network.

A detailed introduction to Restless Multi-Armed Bandit Problems (RMBP) can

be found in [40]. RMBP and its relaxation were first introduced in [111]. The

RMBP model has been used earlier in works such as [66], which considered the

problem of choosing an appropriate channel for up and downlink transmissions in

multichannel access. Reference [8] is another notable work which uses the RMBP

model and derives index policies for optimizing convex holding costs in a multiclass

queue.

We also note that optimality of Index policies has been established in certain

cases as the population of arms goes to infinity [109] and extensive simulations

have shown that Index policies have “good” performance even in the finite popula-

tion regime [8], [57]. References [32,45,54,74] consider minimization of variance

as an objective in Markov Decision Process.
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5.4 System Model

We consider the situation where time has been discretized into slots, and the

duration of a slot corresponds to the time taken to attempt a packet transmission.

Each client is assumed to have one packet at the beginning of each slot. In each

slot, a scheduler chooses K out of the N clients, and attempts to deliver their

packets. Channel unreliability is modeled by supposing that if client i is served

in slot t, then the packet is delivered with probability pi, independent of the past

attempts. Moreover the service times are independent across clients. The scheduler

has to choose the K clients transmitted in each slot so as to maximize the reward

function,

N∑
i=1

Ri

(
θi
D̄i

− var(Di)

)
, (5.1)

where D̄i and var(Di) are the mean and variance of the inter-delivery times of

packets for client i in the steady state distribution.

5.5 Markov Decision Process Formulation

The system state at time t is given by the vector s(t) := (s1(t), . . . , sN(t)), with

si(t) denoting the time slots elapsed between the latest delivery of a packet of

client i, and t. Because time is discretized, the state vector s(t) is updated only

at the beginning of slot t, and remains unchanged within the slot. The state thus
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evolves as,

si(t+ 1) =



si(t) + 1 if no packet of client i is

delivered in slot t,

0 if a packet of client i is delivered in

slot t.

The Access Point (AP) takes a decision at the beginning of the slot t to grant channel

access to K clients by choosing a control u(t) ∈ {0, 1}K ,
∑N

i ui(t) = K, where

ui(t) = 1 implies that client i will be granted channel access in slot t. The decision

can be based on the entire past history of the system up to time t.

The “reward earned” at time t when the system is in state s is given by

N∑
i=1

Ri (θi1 (si = 0)− si) ,

and thus is solely a function of the system state s. With this set-up, the process s(t)

becomes a controlled Markov process.

For a positive discount factor β < 1, the β-discounted optimization problem

is to design control policy u(t) so as to maximize the expected infinite horizon

discounted reward,

lim inf
T→∞

E
T∑
t=0

βt

(
N∑
i=1

Ri (θi1 (si = 0)− si)

)
. (5.2)

Similarly the average reward problem is to maximize the expected infinite horizon
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time-average reward,

lim inf
T→∞

E
1

T

T∑
t=0

(
N∑
i=1

Ri (θi1 (si = 0)− si)

)
. (5.3)

It is easily verified that the above reward function reduces to,

N∑
i=1

Ri

(
θi

E (Di)
− E

(
Di (Di + 1)

2

))
, (5.4)

and thus differs slightly from the original reward function (5.1).

5.6 Whittle Index

We will pose the MDP of the previous section as a Restless Multiarmed Bandit

Problem (RMBP). First we briefly describe the RMBP. A detailed discussion can be

found in [40,111].

Consider a bandit which has N arms modeled as Markov processes. At each

time a player can choose to play any K < N arms and collect a reward from

each arm, where the reward is a function of the current state of the arm that is

played. The time evolution of each arm depends on whether it was chosen to play

or not; thus the bandits (arms) are “restless” and evolve even if they are not played.

The player has to choose the K arms to play at each time, so as to maximize the

expected reward.

A “Whittle” policy, or “Index-based” policy, for the RMBP, calibrates each of

the N arms by deriving N positive functions (called “index functions”) Wi(·), i =

1, . . . , N , which are defined for each possible value that the state of arm i can

assume. At time t the policy simply chooses to play theK arms having theK largest

values of Wi(si(t)). After a re-labeling so that W1(s1(t)) ≥ W2(s2(t)) ≥ WN(sN(t)),
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the choices at time t are

ui(t) =


1 for i = 1, 2, . . . , K,

0 otherwise.

The derivation of the functions Wi(·) follows the following procedure. Each

arm is considered in isolation from the rest of the arms, and the reward function is

now modified so that the player receives, in addition to the original reward of the

arm, a “subsidy” each time that he chooses not to play the arm (chooses “passive

action”), and the goal once again is to maximize the average reward. After having

solved this problem, let us denote by Π(w) the set of states that an optimal policy

chooses to not play arm (stay passive). Then the arm is said to be indexable if for

any two values of subsidies w1, w2, we have w1 > w2 =⇒ Π(w2) ⊆ Π(w1), and

the original MDP is said to be indexable if all the N arms are indexable. In case

the MDP is indexable, the Whittle Index as a function of the state value s is defined

as the smallest value of subsidy that makes an optimal policy choose the passive

action when the client is in state n, i.e.,

W (n) = inf{w : n ∈ Π(w)}. (5.5)

Thus, the Whittle index measures, in a sense, the “value” of an arm as a function

of the present state, and the Whittle or Index policy chooses those K arms which

have the highest value amongst the N arms.

5.7 The Client Scheduling Problem is Indexable

We will consider the β-discounted MDP, show that it is indexable and derive

the corresponding Whittle index. The results for the average reward MDP will be
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obtained by letting β → 1. We begin with a brief description of the single-arm β

discounted reward problem.

Consider the following single client β discounted bandit problem parametrized

by w and β. The subscripts are suppressed for convenience since the discussion

below applies to each of the N clients. Thus s(t), p are used in place of si(t), pi.

There is a single client, whose state at time t, s(t), is the time-elapsed-since-last-

packet-delivery. At each time-slot, we can choose from the following two control

actions: either attempt the transmission of a packet for it (active), or stay idle

(passive). The reward earned at time t is = −Rs(t) + w + Rθ1{s(t) = 0} if the

client chooses the passive action of not transmitting, while a reward of −Rs(t) +

Rθ1{s(t) = 0} is earned if client chooses the active action of transmitting. If the

action at time t is active, then s(t + 1), the state at time t + 1, becomes 0 with

probability p, and s(t) + 1 with probability 1 − p. If the action at time t is passive,

then s(t + 1) = s(t) + 1. The costs are additive over time after discounting by a

factor βt. A policy whether to be active or remain passive at time t when the system

state at time t is s(t) = s.

We will prove that there is an optimal policy which is of threshold type, i.e.

there is a threshold “elapsed time since last delivery” T (which depends on β, w, p),

such that the policy which keeps the client passive in slot t if s(t) < T , and active

if s(t) ≥ T , is optimal.

By ci(T ) we will denote the β-discounted reward earned by a policy when the

system starts with an initial state value of i at time 0, and the policy with threshold

at T is used. Let τi be the first time that state i is hit, i.e. τi = min{t ≥ 1 : s(t) = i}.

By “reward earned in the cycle i→ j → 0→ i” we will mean the reward earned by

the system starting in state i in the time slots 0, . . . , τi−1, while operating under the

policy with threshold at j. Expressions involving reward-functions belonging to a
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single value of threshold are at times not mentioned as a function of threshold. Xp

is a random variable that is geometrically distributed with parameter p. Also, we

define X := EβXp and Y := EXpβ
Xp.

Lemma 21. Consider the single client β discounted MDP.

1. ci(i+ 1)− ci(i) is a linear increasing function of the subsidy w for all i ≥ 0 It is

strictly negative when w = 0.

2. For each n ≥ 0, there exists a unique value of the subsidy, denoted W (n), such

that cn(n+ 1) = cn(n).

3. W (n) ≥ W (n− 1); thus W (n) form an increasing sequence.

4. For all values of thresholds T , if j > i ≥ T , then ci(T ) > cj(T ).

Proof. For T ≥ 0, the infinite horizon discounted reward earned starting in state i

and following a policy with threshold T + i is,

ci(i+ T ) = w
T−1∑
j=0

βj −
T−1∑
j=0

R (i+ j) βj +RβT

[
E

[
−

Xp−1∑
j=0

(i+ T + j) βj

]]

+ βT
(
EβXp

) [
Rθ +

i∑
j=0

(w −Rj) βj
]

+ βT+i
(
EβXp

)
ci(i+ T ).

Thus ci(i+ T ) depends on w as,

w T−1∑
j=0

βj + wβT
(
EβXp

) i−1∑
j=0

βj

/ [1− βT+i
(
EβXp

)]
=w

[
1− βT

1− β
+ βT

pβ

pβ + 1− β
· 1− βi

1− β

] /(
1− βT+i pβ

pβ + 1− β

)
=
w
[
1− β + pβ − βT (1− β + pβi+1)

]
(1− β) (1− β + pβ − βT+i+1p)

. (5.6)
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Thus ci(i + 1) − ci(i) depends on w as, w(1−β)(1−β+pβ)
(1−β+pβ−pβi+1)(1−β+pβ−pβi+2)

, which is linear

and increasing in w.

Now we consider the case when w = 0. If C1 is the cost of cycle i→ i→ 0→ i,

then it follows via a simple coupling argument that the cost of cycle i → i + 1 →

0→ i+ 1, denoted C2, is given by,

C2 = −Ri+ βC1 −RβE
Xp−1∑
j=0

βj,

and thus to prove the second result of the first statement, we only have to show

that

C1

1− βiX
−
−Ri+ βC1 −RβE

∑Xp−1
j=0 βj

1− βiβX
> 0.

This is equivalent to showing that,

C1 > −Ri ·
1− βiX

1− β
−Rβ

(
E
Xp−1∑
j=0

βj

)
· 1− βiX

1− β

We observe that −Ri · 1−βiX
1−β − Rβ

(
E
∑Xp−1

j=0 βj
)
· 1−βiX

1−β is the reward earned over

the cycle i → i → 0 → i if one were to modify the original cost function and

instead charge a penalty of −Ri for value of states s(t) ≤ i and a penalty of −Rs(t)

if s(t) > i. However since the original reward function is = −Rs(t)+Rθ1{s(t) = 0}

(note that w = 0), a simple coupling argument shows that the reward earned is

lower with the modified function. This completes the proof of first statement.

Note that from the first statement it follows that cn(n + 1) − cn(n) is a linear

increasing function of w which is less than 0 at w = 0. Hence there exists a value

of w such that the function cn(n + 1) − cn(n) vanishes, and moreover vanishes at
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a unique point since the slope of this function is strictly positive. This value of w,

where the function cn(n+ 1)− cn(n) vanishes, is W (n).

Let C1, C2 be the costs of cycles n → n → 0 → n and n → n + 1 → 0 → n. It is

seen that,

cn(n) =
C1

1− βnX
, cn(n+ 1) =

C2

1− βnβX
. (5.7)

Using a coupling argument we obtain,

C2 = (W (n)−Rn) + βC1 −RβE
Xp−1∑
j=0

βj. (5.8)

Combining (5.7),(5.8) and the fact that for w = W (n) we have cn(n) = cn(n+ 1),

C1

1− βnX
=

(W (n)−Rn) + βC1 −RβE
∑Xp−1

j=0 βj

1− βn+1X
, or ,

C1 (1− β) =

(
W (n)−Rn−RβE

Xp−1∑
j=0

βj

)
(1− βnX) . (5.9)

Now let us check if under the value of subsidy set to W (n), we have cn−1(n) >

cn−1(n− 1). If this is the case, then from the first statement of this lemma, we will

deduce that W (n− 1) < W (n). Now, cn−1(n) > cn−1(n− 1) is equivalent to showing

W (n)−R(n− 1) + βC1 − βnX (W (n)−R(n− 1))

1− βnX
>

C1 +RE
∑Xp−1

j=0 βj − βn−1X (W (n)−R(n− 1))

1− βn−1X
.

After some algebraic manipulations and using (5.9) it can be shown that proving

the above inequality is equivalent to proving X > 0, which indeed is true. This

completes the proof of third statement.
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For the fourth statement, using a coupling argument, we obtain, cj(T ) = ci(T )−

R(j − i)
∑Xp−1

j=0 βj, and hence cj(T ) < ci(T ).

Lemma 22. Let the subsidy be w = W (n). Then for the single client β discounted

MDP,

1. ci(n) = ci(n+ 1),∀i ≥ 0.

2. ci−1(n) ≥ ci(n), ∀i ≥ 1.

Proof. Firstly recall that for subsidy = W (n), cn(n) − cn(n + 1) = 0. Thus for

i = 0, 1, . . . , n− 1,

ci(n)− ci(n+ 1) = βn−i (cn(n)− cn(n+ 1)) = 0. (5.10)

For i ≥ n+ 1,

ci(n+ 1)− ci(n) = βX (c0(n+ 1)− c0(n)) = 0,

where the last equality follows from (5.10). This proves the first statement.

To prove the second result, consider the following cases:

• For i > n, Lemma 21 implies that the inequality is true.

• For 2 ≤ i ≤ n, denote di as the cost incurred in the cycle n→ 0→ i− 1. Then

both ci(n), and ci(n+ 1) can be derived in terms of di. When subsidy is equal

to W (n), we have ci(n) = ci(n+ 1), i.e.,

−βn−i(1− β)di = W (n)
(
βnX − βn−i

)
+Rβn−in− βnXi (5.11)
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+R
βn−i

1− β
(
β(1−X)− βi+1X + βn+1X2

)
, (5.12)

where the first equality follows from statement 1. Similarly, ci−1(n)−ci(n) ≥ 0

is equivalent to

n−i−1∑
j=0

(W (n)−Ri−Rj) βj + βn−idi ≥
n−i∑
j=0

(W (n)−Ri+R−Rj) βj + βn−i+1di

− βnX (W (n)−Ri+R) ,

i.e.,

−βn−i(1− β)di +R
1− βn−i

1− β
+ (W (n)− nR +R) βn−i − βnX (W (n)−Ri+R) ≥ 0,

or,

(1− βnX) (βi − βn+1X)

βi (1− β)
≥ 0,

where the second-last equivalence follows from (5.11). We note that the last

inequality holds trivially for all β ∈ (0, 1) and hence the statement 2 holds for

i = 2, . . . , n.

• i = 1. We compare the cost incurred by the system starting in state 0 over the

cycle 0→ n→ 0 (say C0) with the cost incurred over the cycle j → n→ 0→ j

when starting in state j ( denoted Cj) via coupling the processes associated

with the two systems constructed on the same probability space. Clearly

C0 > Cj. Thus c0(T ) > cj(T ) for any value of threshold T .
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Lemma 23. The function w+pβ (ci(T )− c0(T )) ( which depends on w, i, T ) is linear,

increasing in w. Also,

W (n) + pβ (cn+1(n)− c0(n)) = 0 for n = 0, 1, . . . . (5.13)

Proof. We consider the following cases:

i) For i ≤ T , it follows from (5.6) that the function w+pβ (ci(T )− c0(T )) depends

on w as

1− β − pβ + pβT−i+1

1− β + pβ − pβT+1
w. (5.14)

We have 1 − β + pβ − pβT+1 > 0,∀β < 1. Also, 1 − β − pβ + pβT−i+1 ≥

1− 2β + βT−i+1 > 0 since the function

1− 2β + βk ≥ 0,∀k > 1, β ∈ (0, 1).

Thus, in the expression (5.14) the coefficient of w is positive.

ii) For i ≥ T + 1, we have,

ci(T ) = E
Xp−1∑
j=0

βj (−i− j) +Xc0(T ).

The dependence of c0(T ) on w can be obtained from (5.6). Combining, w +

pβ (ci(T )− c0(T )) depends on w as,

1− β
1− β + pβ − pβT+1

w,

which has a positive slope with respect to w.
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This completes the proof of first statement. Note that for w = W (n), we have

cn(n+ 1) = cn(n).

This implies

−Rn+W (n) + βcn+1(n+ 1) = −Rn

+ β (pc0(n) + (1− p)cn+1(n)) i.e.

W (n) + βcn+1 = β (p(c0 + (1− p)cn+1) and so

W (n) + pβ (cn+1 − c0) = 0.

Above, in the second implication, we have used the first statement of Lemma 22 to

remove the dependence of ci(·) on the threshold values.

Theorem 7. For the β-discounted MDP with subsidy w ∈ [W (n),W (n+ 1)), the

policy with threshold at n is optimal. Thus the MDP is indexable and W (n) is the

Whittle index when the state is n.

Proof. Fix a w ∈ [W (n),W (n+ 1)). If the policy is indeed optimal, then the Dy-

namic Programming optimality equation would be satisfied. Hence we only need

to verify the inequality

−Ri+ w + βci+1 ≥ −Ri+ β [(1− p) ci+1 + pc0] ,

for i = 0, 1, . . . , n,

or, equivalently, w + βp (ci+1 − c0) ≥ 0, (5.15)

with strict inequality holding if w ∈ (W (n),W (n+ 1)), and equality holding for
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i = n,w = W (n). Similarly for i = n+ 1, n+ 2, . . . we have to verify the inequality

w + βp (ci+1 − c0) ≤ 0. (5.16)

We will first prove (5.15). We use superscripts to distinguish between costs ci

calculated under different values of subsidy. We have,

w + βp
(
cwi+1 − cw0

)
≥ W (n) + βp

(
c
W (n)
i+1 − c

W (n)
0

)
= pβ

(
c
W (n)
0 − cW (n)

n+1

)
+ pβ

(
c
W (n)
i+1 − c

W (n)
0

)
= pβ

(
c
W (n)
i+1 − c

W (n)
n+1

)
≥ 0,

where the first inequality and equality follow from Lemma 23, and the last inequal-

ity follows from Lemma 22.

To prove (5.16) we have,

w + βp
(
cwi+1 − cw0

)
≤ W (n+ 1) + βp

(
c
W (n+1)
i+1 − cW (n+1)

0

)
= pβ

(
c
W (n+1)
0 − cW (n+1)

n+2

)
+ pβ

(
c
W (n+1)
i+1 − cW (n+1)

0

)
= pβ

(
c
W (n+1)
i+1 − cW (n+1)

n+2

)
≤ 0,

where first two steps follow from Lemma 23, and the last inequality follows from

Lemma 22. This completes the optimality of the policy with threshold at W (n).
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Following 5.5, the Whittle index for the state n is thus given by

inf{w : n ∈ Π(w)} = inf{w : w ≥ W (n)} = W (n),

where the first equality follows from the first statement of Theorem.

We now proceed to explicitly derive the values of the indices W (n).

Theorem 8.

W (n) =
pβ(f1 − f2 − f3 + f4)

f5

, where ,

f1 =
1− βn

(1− β)2
· ((1−X) [n(1− β) + β]− Y (1− β)) ,

f2 =
β(1− βn)− βnn(1− β)

(1− β)2
· (1−X),

f3 =
1−X
1− β

(1− βnX),

f4 = θ (1−X) ,

f5 = 1− βnX − pβ
(

1− βn

1− β

)
(1−X)

=
1− β

1− β + pβ
.

Proof. From (5.13) we have,

W (n) = pβ(c0 − cn+1)

= pβ(c0 − cn − E
Xp∑
j=0

βj). (5.17)

Now,

c0 − cn =
C0 − Cn

1− βnEβXp
, (5.18)
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where C0, Cn are the costs over the cycles 0→ n→ 0 and n→ n→ 0→ n. We can

compute C0 − Cn as,

C0 − Cn =

(
E
Xp−1∑
j=0

(n+ j)βj

)
(1− βn) (5.19)

+

(
n−1∑
j=0

(W (n)− j)βj
)

(1− EβXp) + θ
(
1− βXp

)
. (5.20)

Combining (5.17,5.18,5.19) and setting ∆ = E
∑Xp−1

j=0 (n+ j)βj, we have,

W (n) = pβ

∆(1− βn) +
(∑n−1

j=0 (W (n)− j)βj
) (

1− EβXp
)

1− βnEβXp

−E
Xp−1∑
j=0

βj +
θ
(
1− EβXp

)
1− βnEβXp

 ,

or,

W (n)

1− pβ ·

(∑n−1
j=0 β

j
) (

1− EβXp
)

1− βnEβXp

 =

pβ

∆(1− βn) +
(∑n−1

j=0 −jβj
) (

1− EβXp
)

1− βnEβXp

−E
Xp−1∑
j=0

βj +
θ
(
1− EβXp

)
1− βnEβXp

 ,

which simplifies to,

W (n) · f5 = pβ(f1 − f2 − f3 + f4). (5.21)
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Theorem 9. The Whittle indices for the average cost MDP are given by,

WAvg(n) = lim
β→1

W β(n) = nRp ·
(
n

2
+

1− p
1 + p

+
1

2

)
+Rpθ. (5.22)

Proof. The expression (5.22) is easily derived from (5.21). It remains to show that

the quantities WAvg(n) are indeed Whittle indices for the average-cost problem.

Fix the subsidy to be w, and without loss of generality let w ∈
(
WAvg(n),WAvg(n+ 1)

)
.

Below we use superscripts to exhibit the dependence of the cost on β. Now,

cβ0 (n) =

1

1− βnX
·
(
w

1− βn

1− β
+
β(1− βn)− nβn+1(1− β)

(1− β)2
−

βn
Xp−1∑
j=1

(n+ j)βj +
Rθ

1− βnX

 , and so

lim
β↑1

(1− β)cβ0 (n) =

lim
β↑1

(
w

1− βn

1− βnX
+
β(1− βn)− nβn+1(1− β)

(1− β)(1− βnX)

−(1− β)βn
Xp−1∑
j=1

(n+ j)βj +
Rθ (1− β)

1− βnX


= w

np

np+ 1
+
Rp(n2 + n)

2(np+ 1)
+

Rpθ

np+ 1
(5.23)

<∞.

Since for each m, W β(m) → WAvg(m), it follows from Theorem 8 that there

exists a β?(w) such that the policy with the threshold at n is optimal for the single

client β-discounted MDP for all β ∈ (β?(w), 1). However since limβ↑1(1 − β)cβ0 (n)

exists, the policy with threshold at n is also optimal for the average cost problem.

However since w can assume any value in the interval
(
WAvg(n),WAvg(n+ 1)

)
,

the policy with threshold at n is optimal for the average cost MDP for each value
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of subsidy w ∈
(
WAvg(n),WAvg(n+ 1)

)
. Thus,

inf{w : optimal policy chooses active at n} ≤ WAvg(n). (5.24)

Similarly, picking subsidy w < WAvg(n) shows that the active action is not optimal

for any value of subsidy w < WAvg(n). Hence,

inf{w : optimal policy chooses active at n} = WAvg(n), (5.25)

and we obtain that WAvg(n) are indeed the Whittle indices for the average cost

problem.

We note that the expression (5.23) is the average reward earned under the

subsidy w and threshold at n. We will denote this quantity as CAvg(W,n).

5.8 Bounds on Optimal Reward

Lemma 24. For the average cost MDP, the reward obtained under any policy is upper-

bounded by the value of the following optimization problem:

max
N∑
i=1

Ri

[
D̄2
i + θi

1

D̄i

]

such that
N∑
i=1

1

D̄ipi
≤ 1, D̄i ≥ 0, i = 1, . . . , N. (5.26)

Proof. The random reward earned in time steps 1, 2, . . . , t is given by,

C(t) :=
N∑
i=1

Ri

t

−Ni(t)∑
l=1

Di(l)
2 + θiNi(t)

 ,
where Ni(t) is the number of packets of client i delivered by time t and Di(l) is
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the interdelivery time of l-th packet of client i. Let us assume that the average

interdelivery-time for client i under a policy is equal to D̄i. Thus,

lim inf
t→∞

EC(t) ≤ lim sup
t→∞

EC(t)

≤ E lim sup
t→∞

C(t)

= E lim sup
t→∞

N∑
i=1

Ri

[∑Ni(t)
l=1 Di(l)

2

t
+
θiNi(t)

t

]

≤
N∑
i=1

Ri

[
D̄2
i + θi

1

D̄i

]
,

where the second inequality follows from Fatou’s lemma and the last is Jensen’s

inequality. Thus solving the optimization problem (5.26) gives a lower bound on

the performance of any policy. We note that the constraint
N∑
i=1

1
D̄ipi
≤ 1, D̄i ≥ 0 is

simply the capacity of the wireless channel.

Next we consider the Lagrangian relaxation of the RMBP [110]. For this, we

relax the constraint of choosing K arms at each time, to the constraint that one

plays K arms on average, i.e., lim
t→∞

Total numbers of arms played by time t

t
= K.

Clearly the maximum possible reward in the relaxed problem is greater than or

equal to the reward earned by any policy for the original RMBP. Also since the

Index policy is the optimal solution to this relaxed problem ( [111]), its value

function serves as an upper-bound for the value function of the RMBP.

Lemma 25. Let CAvg,i be the average reward earned by the policy maximizing the

single-client average reward under the subsidy W (5.23). Then the reward for the
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average cost MDP obtained by any policy is less than or equal to,

inf
W>0

N∑
i=1

CAvg,i(W )−W (N −K)

= inf
W>0

(
N∑
i=1

W
nipi

nipi + 1
+
Ripi(n

2
i + ni)

2(nipi + 1)

+
Ripiθi
nipi + 1

−W (N −K)

)
,

= inf
W>0

[
W

(
N∑
i=1

nipi
nipi + 1

+K −N

)
+
Ripi(n

2
i + ni)

2(nipi + 1)

+
Ripiθi
nipi + 1

]
,

where ni is such that W ∈ (W (ni),W (ni + 1)).

5.9 Optimality of Index Policy

Now we consider several special cases of interest.

Theorem 10. Consider the average cost problem for the case where all the clients are

identical, i.e., Ri ≡ 1 and pi ≡ p for all the clients. The index policy is optimal in this

case.

Proof. Firstly we note that in this symmetric case, the Index policy serves the client

with the largest value of the state, i.e. the policy is, “largest time-since-last-service-

first”. We will prove the result only for the case of two clients, each having channel

reliability p. The case where there are multiple such clients follows in a straight-

forward manner.

Consider the time-horizon at t. If (s1, s2) is the initial value of the state vector,

and Rt(s) is the maximum reward that can be earned when there are t time-slots

93



to go, then the Dynamic Programming optimality equation becomes,

Rt [(s1, s2)] = − (s1 + s2) + (1− p)Rt−1 [(s1 + 1, s2 + 1)]

+ pmax{Rt−1 [(0, s2 + 1)] , Rt−1 [(s1 + 1, 0)]},

where the optimal action corresponds to the one maximizing the expression on

the right hand side. Let us assume without loss of generality that s1 < s2. Then

Rt−1 [(0, s2 + 1)] ≤ Rt−1 [(s1 + 1, 0)], which implies that the optimal action is to

serve client 2.

5.10 Simulations

We have carried out simulations to compare the performance of the optimal

policy which was obtained via the Policy Iteration tool-box in Matlab vs. the Index

policy which was obtained in Theorem 9. We present three plots in Figures 5.1-5.3.

In all the cases considered 2 clients share a single channel. To obtain Figure 5.1,

we fix client 1’s parameter as p1 = .8, θ1 = 3, R1 = 1, while for client 2 we fix

θ2 = 3, R2 = 1 and vary p2 from 0 to 1. For Figure 5.2, we fix Client 1 parameters

to be p1 = .8, θ1 = 3, R1 = 1 while for Client 2 we fix p2 = .6, R2 = 1 and vary

the value of θ2 from 1 to 10. To obtain Figure 5.3, we fix Client 1’s parameters as

p1 = .8, θ1 = 5, R1 = 5, and for Client 2 we fix the parameters p2 = .6, θ2 = 5 while

varying the value of R2.

We observe that Index policy gives near-optimal performance in all the cases.

5.11 Concluding Remarks

We have proposed an analytical framework for exploring the full range of mean

vs. variance tradeoffs in inter-delivery times in wireless sensor networks, i.e.

Throughput vs. Service Regularity trade-off. The problem can be formulated as
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Figure 5.1: Reward Optimal Policy vs. Index Policy for p1 = .8, θ1 = 3, R1 = 1, θ2 =
3, R2 = 1, p2 varying from .1 to 1.
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Figure 5.2: Reward Optimal Policy vs.Index Policy for p1 = .8, θ1 = 3, R1 = 1, p2 =
.6, R2 = 1 while θ2 varies from 1 to 10.

Restless Multiarmed Bandit Problem and indices can be obtained in closed form.

Simulations indicate near-optimal performance of the resulting Index policy.
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Figure 5.3: Reward Optimal Policy vs. Index Policy for p1 = .8, θ1 = 5, R1 = 5, p2 =
.6, θ2 = 5 while R2 is varied.
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6. THE ISO PROBLEM: DECENTRALIZED STOCHASTIC CONTROL VIA

BIDDING SCHEMES

6.1 Overview

We will consider a smart-grid connecting various agents, modeled as stochastic

dynamical systems, who may be electricity consumers/producers. At each dis-

crete time instant, which may represent a 15 minute interval, they will be draw-

ing/supplying some quantity of electrical energy into the grid. We are given the

task of maximizing the total utility of this system subject to the constraint that en-

ergy generated at each time equals the energy consumed. On the demand side,

the optimal solution specifies an optimal demand response, with, say, consumers

shifting their demand to the “energy-rich” time of the day, while maintaining some

desirable level of overall service. On the generation side, there may be a mix of

power from renewable energy sources as well as fossil fuels. The former, such as

solar or wind power, may themselves be stochastic, and only amenable to curtail-

ment but not enhancement, while the latter are more controllable sources though

with restrictions on ramping rates and the like. This model also allows modeling of

energy storage services who may wish to store energy when it is cheap and supply

it when it is expensive. The model can also incorporate “prosumers” who may pro-

duce or consume energy depending on environmental conditions and load states.

Given the stochastic behavior of the loads, the optimal solution specifies how the

power is to be generated in the most efficient manner to balance demand.

This task of mediating between generation and demand has to be accomplished

without the need for the agents to communicate amongst themselves about their

system states; in fact they should not even need to reveal their individual sys-
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tem’s dynamics or model or utility or cost functions This mediation task is to be

accomplished by an agency called a system operator, which basically obtains the

electricity bids by the agents, and eventually declares the market clearing price.

In response to this price, the agents submit new bids (see Figure 6.1). We show

that a simple iterative procedure yields the optimal solution to the above Indepen-

dent System Operator (ISO) problem. Thereby we solve a decentralized stochastic

control problem with price mediation, but without agents sharing any information

even about their individual system models, states or utilities.

6.2 Notation

Throughout, random variables will be denoted by capitals and their realizations

in small. Equalities between random variables are to be understood in an almost

sure sense.

6.3 Introduction

We consider the problem faced by the electricity grid operator, called the Inde-

pendent System Operator (ISO). In the context where the ISO knows or estimates

the net demand of the loads, it is faced with the task of allocating the required

power among different generators so that the total cost of production is minimized,

and the power flow can be delivered over the network [26, 37, 115]1. The former

problem can be solved via the generators bidding their marginal cost curves, as in

a Walrasian auction, and the ISO performing the optimization to obtain and de-

clare the market clearing price. The optimization simply amounts to minimizing

a cost function over a simplex [16], and in the convex case the local minimum is

indeed the global minimum. This is an exemplary model in which the ISO is able

to determine the optimal solutions without the generators revealing their systems.

1There are additional aspects such as security against contingencies, etc., that we neglect here.
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However the above deterministic static model with a fixed demand is insuffi-

cient for the oncoming era when we want to maximize the integration of renew-

able energy sources into the energy system. Renewable energy sources such as

wind and photo voltaic are dynamic and vary unpredictably with time. Thus, mod-

eling generation of renewable power requires a dynamic stochastic system, not a

deterministic static system.

Dynamic models can also be used to model features such as ramping constraints

that are important for modeling fossil fuel generators that may also supply a por-

tion of the power mix. On the load side, demand response is a strategy of im-

portance in integrating renewables. When trying to employ renewable energy we

need to make the level of demand compatible with the availability of renewable

energy, in contrast to the traditional scenario where demand is inflexible and sup-

ply needs to match whatever demand is. Thus loads are controllable and also need

to be modeled. Loads generally have dynamic constraints since some loads such

as air conditioners can be deferred for a while but not indefinitely. So they also

need to be modeled as dynamic systems. Further, since environmental variables

such as temperature are involved, future loads may be uncertain. Also, since eco-

nomic incentives may be used to shape demand, and human beings may be in the

loop, their response may also be uncertain. Hence loads generally also will need

to modeled as stochastic dynamic systems.

Such dynamic models can also model storage devices where the state is the

amount of energy stored. They can also be used to model prosumers, such as

homes with solar panels, which may switch at uncertain times from being con-

sumers to generators. Therefore we model all the agents involved, whether gener-

ators or loads or storage devices, as stochastic dynamical systems.

Our goal in operating this system is to maximize total utility, or equivalently
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minimize total systemwide cost. There are however several constraints on infor-

mation sharing that need to be respected in arriving at a solution. An important

constraint is that the individual agents, whether loads or generators, may be averse

to sharing system states with each other. More fundamentally, they may not even

be willing to share their individual system models with each other. Similarly for

their individual utility functions. There are several reasons for this, ranging from

the competitive nature of commercial enterprises, to protecting privacy of states in

the case of consumers.

The overall systemwide optimality of such a system is sought to be achieved

by an Independent System Operator (ISO), which plays the role of the mediator.

This mediator needs to both determine the optimal demand response over time

as well as allocate it over time among the lowest cost generators, all in the face

of stochastic uncertainty, and to do so at minimum systemwide cost to all agents.

The ISO would like to achieve this through economic mechanisms that do not entail

revealing system models or states. In particular the ISO would ideally like to simply

determine prices and leave each agent to its own selfish utility maximization as in

general equilibrium theory [10].

The fundamental question examined in this section is whether and how this

optimality can be attained given stochastic dynamical system models for the agents,

and what form the mediation process or tatonnement [79]. Our contribution is to

show that there are iterative interaction processes under which the ISO can indeed

perform this task. We address the complexity of this task under several scenarios.

The complexity is very high in the general case. However, in the case where the

agents can be modeled as linear Gaussian stochastic systems and the cost functions

are quadratic, we show that a much simpler scheme yields the systemwide global

optimum.
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6.4 System Model

Consider a smart-grid consisting of M agents, each of which may act as a pro-

ducer, consumer or even as both, e.g., a “prosumer” such as a home with a solar

panel, or a storage device that can absorb power when in charging mode or supply

it when discharging. Each such agent is modeled as a stochastic dynamical system.

The following are the key ingredients of our system:

1. Randomness is modeled through a probability space (Ω,F ,P). The “state of

the world” ω lies in the set Ω, and captures “random” phenomena such as un-

predicted weather (example the wind-speed), or unexpected events that oc-

cur while producing power in power-plants (example coal shortage, or a dam-

aged wind-turbine) etc. The state of the world ω affects the agent i through

the random processes Ni(t) and Nc(t), t = 0, 1, 2, . . . , T − 1. (Throughout, all

functions are assumed to be measurable with respect to F). In the sequel

we will regard Nc(t) as a “common” uncertainty that affects all agents, while

Ni(t) is a “private” uncertainty specific to agent i. The precise probabilistic

assumptions are described in detail in the sequel.

2. Agents are modeled as stochastic dynamical systems. As mentioned earlier,

each agent may correspond to a producer, consumer, prosumer, or storage.

Associated with each agent i is its state at time t, denoted Xi(t), that takes

values in some set, and evolves as,

Xi(t+ 1) = f ti (Xi(t), Ui(t), Ni(t), Nc(t)), (6.1)

where Ui(t) is the amount of electricity supplied (negative if consumed) to

the grid by agent i at time t. Note that Ui(t) ∈ R, and the evolution of the
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smart-grid occurs over discrete time-slots. Each such time-slot may represent

the 15-minute bidding times of the real-time market implemented by the ISO.

The function f ti captures the system dynamics corresponding to agent i.

3. Observations are available to an agent i at time t. They are modeled as ran-

dom variables whose realizations are available to the agent i at time t. As

will be discussed later, we will partition the observations into a set of com-

mon observations, that are observed by all the agents, and a set of private

observations that are available exclusively to agent i. A detailed discussion

of observation structures is provided in Section 6.8.

4. One-step Cost function of an agent i, denoted ci(·) (or its negative, a one-step

utility function −ci(·)), which is a function of the state of agent i, and denotes

the cost incurred by the agent i as a function of its state and possibly action

in a period. As an example, for the producers, this cost could be composed

of several factors such as labor, coal, etc.. For the consumers, this could

represent the cost incurred due to the high temperature of house/business

facility, or the cost incurred due to a delay in performing a task resulting

from non-purchase of electricity.

5. System Operating Cost is the expected value of the sum of the finite horizon

total costs incurred over the time duration {1, 2, . . . , T} by all the agents, i.e.,

the quantity,

E

(
T∑
t=1

N∑
i=1

ci (Xi(t), Ui(t))

)
. (6.2)

The time horizon T can, for example, be chosen to be 96 which corresponds

to one day, with the time slots t corresponding to be the “bidding times”
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which have a separation of 15 minutes. Since the grid consists of consumers

and producers, the cost (6.2) is the total electricity generation cost minus the

utility provided to the consumers.

6. Power Flow Equations are a set of algebraic equations that have to be satisfied

by the electrical variables, voltage and current magnitudes and phase angles,

over the grid at each time t, imposing, for example, some constraints on the

quantities Ui(t), t = 1, 2, . . . , T − 1. Such equations are derived from the

underlying physical phenomena, specifically Kirchoff’s laws, together with

some constraints on the power transmission lines (such as line capacity) etc.

A basic constraint, and one that we will centrally focus on, is that the total

generation must equal to total consumption at each time t, leading to the

constraint
∑N

i=1 Ui(t) = 0 at each time t.

7. Independent System Operator (ISO) is an agency that accepts electricity pur-

chase/sale bids that are submitted by the agents for each time slot t =

1, 2, . . . , T − 1. In our model of the ISO, we allow for the agents to iterate

on the bids before the market clearing price is declared. Once the iterations

have converged, the ISO declares the market clearing prices, and the agents

purchase/sell the agreed electrical energies at the prices declared by the ISO.

8. Bidding Schemes A typical bidding scheme discussed in the section will involve

agents submitting their bids to the ISO, and the ISO declaring market clearing

prices. The bid function of agent i corresponding to time t will declare, as a

function of its past information, the amount of electricity that agent i will be

willing to purchase/generate.

Depending on the assumptions made upon the system model, we will pro-
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pose multiple types of bidding schemes. Below we describe one such bidding

scheme, with details of other specific schemes provided in the sequel.

After collecting the bids, the ISO updates the market prices based on the bids

it receives. An iteration of price updates followed by bid updates, continues till

the market prices and the bids converge. This entire process can be repeated

at each discrete time instant (which could be every 15 mins) in real-time.

6.5 The ISO Problem

With the above set-up in place, the ISO problem is to ensure a systemwide op-

timization, i.e., minimize the total cost (6.2). The physical laws governing the

individual power-plants, wind-farms, and loads, etc., have to be respected as well.

Another important constraint is maintaining energy balance in each period. These

aspects give rise to constraints, and we arrive at the following constrained stochas-

tic dynamic control problem, which we call the ISO Problem,

minE

{
T∑
t=1

M∑
i=1

ci (Xi(t), Ui(t))

}

such that
∑
i

Ui(t) = 0, t = 1, 2, . . . , T − 1,

and Xi(t+ 1) = f ti (Xi(t), Ui(t), Ni(t), Nc(t)), for

i = 1, 2, . . . , N, and t = 1, 2, . . . , T − 1. (ISO Problem)

The expectation above is taken with respect to the combined uncertainty or “noise”

process N(t) := (N1(t), N2(t), . . . , NM(t), Nc(t)).

6.6 Common and Private Observations

The randomness ω manifests itself in the collection of primitive random vari-

ables {Ni(t)}Mi=1, Nc(t) t = 0, 1, . . . , T −1. The process Nc(t) will be assumed to be
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observed by all agents, and is thus a common observation, while the process Ni(t)

is observed only by agent i. The ISO Problem has to be solved under these obser-

vation constraints. As we will see, the decomposition of the observations clarifies

the task of constructing the mediation schemes to be followed by the agents and

the ISO.

6.7 Illustrative Examples

In this section we provide examples to illustrate how the set up of Sections 6.4

and 6.5 can be utilized to model some of the problems faced by the ISO.

Consider a smart-grid comprised of three agents:

1. Agent A1 is a coal-plant electricity producer, whose state is described by the

speed of the turbine X1(t). The costs that it incurs at time t can be classified

into three types:

• Ramping cost, which is equal to the square of its ramp-rate at time t, i.e.

(X1(t)−X1(t− 1))2.

• Coal cost, which is given by the market price of coal N1(t) times the

amount of coal used, i.e. X1(t).

The total cost incurred by the producer at time t is simply X1(t)N1(t) +

(X1(t)−X1(t− 1))2.

2. The second agent A2 is a consumer, who wants to maintain the temperature

of his house/facility X2(t) close to some prescribed temperature, say 0 units.

Denoting his temperature by X2(t), it evolves as,

X2(t+ 1) = X2(t) +N2(t) + U2(t),
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where N2(t) is the heat supplied to the facility from sources other than elec-

tricity. Suppose that the “discomfort” cost at time t due to a too high/too low

temperature is given by X2(t)2.

3. The third agent A3 is a wind-farm operator, who owns a wind-farm and a

storage facility in which it stores the excess wind energy to be sold at a later

time. Thus if X3(t) is the amount of energy in storage at time t,

X3(t+ 1) = X3(t) + α(N3(t)− U3(t)),

where N3(t) is the amount of wind-energy that it receives at time t, U3(t)

is the amount of electricity, and 0 < α < 1 is the efficiency of the storage

facility. The cost incurred by it is some function of the state of the turbine. For

example if the state of turbine is “broken”, then he incurs some maintenance

cost, etc. We will denote this cost function by c(·).

Combining, we see that the ISO is given the task of optimizing the cost2,

E

{∑
t

X1(t)N1(t) + (X1(t)−X1(t− 1))2 +X2(t)2 + c(X3(t))

}
.

6.8 Fundamental Issues

The ISO Problem poses challenges with regard to multiple issues. It is a multi-

agent problem subject to constraints. Examples of constraints are power flow equa-

tions or privacy constraints. The objectives of the agents are not all aligned and

may have conflicts amongst themselves.

2From a technical point of view, one can condition this on the past observations, as is standard
in stochastic control, to eliminate the dependence on N1(t).
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6.8.1 Interdependence/ Interconnection of Agents

First and foremost, the ISO Problem cannot be solved by considering each of the

agents separately in isolation from the other agents. This is because the operating

cost and the power-flow constraint are a function of the combined actions chosen

by the agents. For example power balance requires
∑

i Ui(t) = 0 for each t. 3

6.8.2 Privacy

The agents may not want to disclose their state values Xi(t). In fact, they may

not even want to disclose their system dynamics, i.e., the functions f ti or the laws

of the noise processes Ni(t). In the example presented in Section 6.7, the system

dynamics of agent A1 may depend upon trade secrets of the power-plant, and it

may want to keep it secret in order to maintain a competitive edge over other

firms. Similarly agent A2 risks losing its privacy if it reveals the value of its room-

temperature X2(t); for example if the temperature is high, then it may reveal that

the occupant may not be in the house. Even if privacy were not an issue, sharing

the complete system observation amongst the agents requires huge overhead in

terms of communication costs, processing times and constant updates, etc, and

may be impossible in practice.

In summary, the agents would like the common observations and knowledge of

each others’ systems to be as little as possible. Nevertheless the ISO is required in

our formulation to minimize the expected value of the sum over all agents of their

total cost over a time horizon.
3This condition applies even if there are storage units, by taking their power input/output into

account in the balance.
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6.8.3 Decentralized Control with Non-Classical

Information Structure

Consider a stochastic dynamical system in which multiple agents (controllers)

have access to different sets of observations, and act at multiple times so as to

minimize a cost that depends on the system state at each time t. This problem is the

core of decentralized stochastic control [113, 114] with non-classical information

structures, and is in general a difficult problem. Based on its observations, each

agent has an aposteriori belief about the system state X(t), and its control action

U(t) may depend on this belief. The key difficulty stems from the fact that since

the observation sets are different, the agents have differing beliefs about the state

of the system X(t).

In the ISO Problem, clearly, if at time t, each agent i communicates the value

of its state Xi(t) to the aggregator, and the aggregator has complete knowledge of

each agents’ system dynamics (functions f ti and laws of processes Ni(t)), then the

problem reduces to a case of centralized control. However this will generally not

be the case because of the privacy constraints imposed in Section 6.8.2.

Thus the ISO Problem lies in the domain of decentralized control [12, 30, 81,

106,113,122].

6.8.4 Information Sharing/ Signaling

One approach in decentralized stochastic control takes the following two steps [12,

94,106]. First, the information available to different controllers is structured/classified

as common and private information [12]. After this, the controllers try to commu-

nicate some of their private observations to other agents via some “channel”. This

channel can be a physical channel, for example a noisy communication channel.

Or, in case a communication channel is not present, then, since the evolution of
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the dynamical system is affected by the control that is applied by each of the con-

trollers (agents), agent i can use its dynamical system itself as a channel to signal

its private observation to other agent(s). The agents would then have to design

appropriate encoding-decoding schemes for signaling in order to ensure the design

of optimal control.

The bidding schemes proposed by us in this section signal the private observa-

tion of agents using “market prices” as signals.

6.8.5 Dynamic Market

The nature of the electricity grid is inherently dynamic. Thus the states of

agents are continually changing (for example, due to the state of the power gen-

eration plant, wind speed, failure of a unit, or temperature of a consumer’s build-

ing, etc.). Any solution to the ISO Problem necessarily has to accommodate these

variations. The operating schemes proposed in this section are adaptive to such

dynamics in the system. In fact, in our solution, the agents do not even need to

know how many or what other agents are present in the network.

6.8.6 Online Optimization

Any solution to the ISO Problem Problem has to be in real-time, keeping in

mind the dynamic nature of the grid (Section 6.8.5) and the fact that the real-

time markets operate in time-slots having gaps of 15 min duration. This imposes

a constraint due to the computational resources available, and it is important to

obtain a solution which is computationally feasible.

6.8.7 Curse of Dimensionality

While the ISO Problem can be viewed as a constrained Markov Decision Process

(MDP) [4], the current state of our knowledge does not allow us to handle general
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MDPs with different observation patterns and different cost functions. Thus the

results encountered in the field of MDP, such as dynamic programming, are not

applicable.

Even if we assume that there is a centralized controller (the ISO) that observes

the states of agents, the complexity of solving the MDP using Dynamic Program-

ming is proportional to the cardinality of the associated state-space. It suffers from

the curse of dimensionality [13]. In our case, the size of the state-space increases

exponentially with the number of agents M . Thus a blind application of the results

from MDP theory would not lead us too far since the ISO Problem would quickly

become intractable as the number of agents is increased. This calls for developing

new techniques for solving the stochastic optimization problem.

6.8.8 Big Data: Sufficient Statistics

The complexity of ISO Problem Problem scales with the time horizon T , and

the number of agents. Beginning from the time that the grid operation begins, i.e.

t = 0, each agent continually collects observations over time. If we denote by Ii(t)

the observations collected by the agent i until time t, then the set Ii(t) increases

as time passes. Since the optimal action of agent i at time t is a function of the

observations Ii(t), it has to keep a record of entire past observations that it has

received.

However, we would want to know whether it is possible that agents can dis-

card some of these observations, or lossily compress them, while still retaining

the ability to make optimal decisions? In other words, is there a function which

maps/compresses the observation Ii(t), such that an optimal control law is a func-

tion of the compressed observation? If the answer to the above question is “yes”,

then we have essentially constructed a sufficient statistic for the ISO Problem [19,
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101].

It is a well known fact that for the case of centralized control, the knowledge

of the present state of the system suffices as a sufficient statistic, and thus the

centralized controller need not remember the values of past system states, or the

inputs it applied to the system in the past [101]. However this is not true for

the case of decentralized control [12, 114]. In fact, in decentralized control, the

structural results imply that the sufficient statistics reside in infinite-dimensional

spaces, namely the beliefs of agents about the system states of other agent [12,

116], and also depend upon the policy being implemented by all the agents.

Is it possible to obtain data-reduction of the same scale as in the case of cen-

tralized controller? That is, is it possible to construct a policy where it suffices for

the agents to only keep track of the values of their own system state, and yet take

optimal decisions? We will show that the answer is in the affirmative, and that it

is indeed possible to do so under a variety of observation structures. This enables

the agents to discard a huge amount of data that is not required for the purpose of

control.

6.9 Problem Statements, Key Questions and Goals

Having laid out the key issues in the previous section, we now proceed to for-

mulate the problems that will be solved in the next few sections.

As has been pointed out earlier in Section 6.8.2, if each agent reveals its private

observations to other agents or to the ISO, then the problem can be reduced to

classical “centralized stochastic control”, the solution to which can be obtained in

principle via Dynamic Programming. However as discussed earlier, in the power

system context, sharing all information involves too much communication and rev-

elation, and thus infeasible, and even if that is somehow accomplished, computing
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the optimal centralized solution is computationally infeasible. Nevertheless the

goal is to drive the system to such an optimal operation.

Our approach is to optimally coordinate the M dynamic systems through an-

nounced “prices”. In the power system context, the Independent System Operator

(ISO) is indeed the agent specifically assigned to do this. The question therefore

is: Can M independent systems be driven to an overall optimal operation through

an intermediary such as the ISO making price announcements? As we will show

later, the ISO can achieve this solution amongst the agents under appropriate as-

sumptions, by declaring market-prices of the electricity.

The key questions of interest are the following:

1. Is it possible to achieve the exact optimal performance as attained by central-

ized control despite the fact that the agents do not share their observations,

i.e., the system is decentralized, and moreover do not even share the dynam-

ics of their systems or their utility/cost functions?

2. If the answer to the above is “yes”, then what kind of schemes achieve optimal

centralized performance while still allowing each agent complete confiden-

tiality about its dynamic system model and state?

3. What are the “sufficient statistics”? Is there a scheme where each agent sim-

ply keeps track of the value of its present state?

4. How computationally expensive is it?

5. Is the scheme real-time implementable?

We will analyze all these questions, and obtain positive results under various mod-

els. We will show that there exist simple “iterative bidding schemes” (IBS) which
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yield the same performance as that of the optimal centralized controller under

some models to the above formulated ISO Problem.

6.10 Related Works

We note that no similar results appear to be known to the authors for the gen-

eral decentralized stochastic control problem. Team problems have been exten-

sively studied, for example in [73, 106, 122], but the formulations are very re-

strictive in the sense that each agent needs to know the system dynamics of the

other agents. Even when the models are known, there are still considerable dif-

ficulties in decentralized stochastic control. When agents do not share observa-

tions, severe complexity can set in, even in an otherwise linear quadratic Gaus-

sian problem, as pointed out by Witsenhausen in his counterexample of a two

stage problem [113]. The role of observation, signaling [122], and the trade-off

between communication and control are evident from Witsenhausen’s counterex-

ample [113]. Reference [30] considers decentralized stochastic control under the

restrictive assumption that the interaction between agents is “weak”. There are

some recent structural results [12] and results regarding sufficient statistics [116]

under these restrictive assumptions, moreover the proposed solutions suffer from

the curse of dimensionality. Reference [69,81] contains some heuristic approaches.

Reference [91] applies progressive hedging to deal with the uncertainties on the

production side, though the solution is centralized, and doesn’t provide any theo-

retical guarantees.

As we will show below, the ISO Problem formulated here provides an excellent

example of decentralized control systems with non-classical observation patterns

in which signaling can successfully result in globally optimum performance. The

agents need not signal not only their observations or state values, but in fact even
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their individual system dynamics and their individual cost-functions. Each of the

algorithms constructs concrete signaling schemes which encode-decode the infor-

mation required in order to recover the same performance as that of centralized

control. From the economics side, this work is an extension of general equilibrium

theory [11]. To the author’s knowledge there does not appear to be any similar

result for coordinating multiple LQG systems or the efficiency of the simplified

signaling.

Looked at from the power system end, there have been many efforts since the

deregulation of the electricity sector on a market-based framework to clear the

system. Ilic et al. [51] proposed a two-layered approach that internalizes individual

constraints of market participants while allowing the ISO to manage the spatial

complexity. The approximated MPC algorithm is shown to perform well in many

realistic applications.

In order to analyze the strategic interactions between the ISO and market par-

ticipants, game theoretical approaches have been proposed. Zhu et al. [123] use

a Stackelberg game framework for economic dispatch with demand response. The

approach uses a two person game with the ISO as leader and agents aggregated

into second player. The agents change their demand based on price signal so as

to maximize their payoff function. The Economic Dispatch (ED) problem con-

sidered is a single time interval conventional dispatch without transmission line

constraints. Bu and Yu [23] models the interactions between electricity retail-

ers and customers as a Stackelberg game. This work considers the case of a

monopoly retailer where observations about customers’ utility and consumption

pattern are available. Jia and Tong [56] uses a Stackelberg formulation to study

the energy consumption scheduling problem for customers who are subjected to

a time-varying price which is determined one day ahead of time. The trade-off
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between consumer surplus and retailer profit under different pricing schemes is

investigated.

Song et al. [98] applies a Markov decision process (MDP) model to the bid-

ding problem for generators participating in electricity market. Gajjar et al. [36]

extends this approach and uses actor-critic learning. Gao et al. [39] present a

method for obtaining the bidding strategy of market participants using parametric

linear programming. However, it assumes that market participants have complete

observations of system conditions and competitor strategies.

Wang et al. [107] formulates the trading of energy by storage units as a non-

cooperative game. Under certain assumptions on the strategy space and utility

functions, a Nash equilibrium is shown to exist. An iterative algorithm is used to

reach equilibrium, following which a double auction is conducted. Mohsenian-

Rad et al. [78] proposes a distributed algorithm to obtain the optimal energy con-

sumption schedule for each agent. The problem of determining the agent energy

consumption schedule for the whole day is formulated as a deterministic linear pro-

gram. Two problems are considered with two different objectives of: minimizing

the energy cost, and minimizing the peak to average ratio of demand.

One of the major challenges in the above approaches is how to elicit optimal

demand response without revealing the inherent dynamic nature of the loads to

the ISO. In this thesis, we model the agents as stochastic dynamical systems and

generate the optimal demand response in a decentralized and adaptive manner,

thus maximizing the sum total of the utilities of the agents, which in turn facilitates

maximum renewable penetration.
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6.11 Dynamic Programming Approach

In this section we suppose that the ISO has access to the private observations

of the agents, and describe a simple algorithm to solve the resulting ISO Problem.

This assumption is impractical, but is intended to serve as a prelude to later sec-

tions. It helps in illustrating the key challenges discussed in earlier sections.

Let us assume that the evolution of each agent is described by a Controlled

Markov Decision Process (MDP). Specifically in the problem formulation ISO Problem,

we let the noise processes Ni(t) be i.i.d. across times and agents. We assume that

the functions f ti (·) and the laws of the noise processes Ni(t) are known to the ISO.

Moreover the ISO has knowledge of the state of each agent i, i.e. Xi(t). Under the

above assumptions, the ISO can solve the Bellman recursions to obtain the optimal

control policy through value iteration of the following form,

Vt(x) = min
u:
∑
i ui=0

(∑
i

ci(xi) + EVt−1(f(x, u,N(t)))

)

ut(x) = arg min
u:
∑
i ui=0

(∑
i

ci(xi) + EVt−1(f(x, u,N(t)))

)
, (6.3)

where x represents the combined system state. Since at each time t, the ISO has ac-

cess to the realization of the system state at time t, i.e. X(t) := (X1(t), X2(t), . . . , XM(t))

it can implement the optimal inputs Ui which have been obtained by solving the

recursions (6.3).

We note that a similar algorithm can be implemented if we instead assume that

each agent knows the functions f ti (·) laws of the noise processes Ni(t) for all i, and

the combined system state at each time t, i.e. X(t).

Remark. The proposed Algorithm is such that the agents agree on the choice of the

optimal control policy before the system starts at t = 0. It achieves co-ordination
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amongst the agents by carefully designing the system so as to mimic a centralized

controller. Note that under a centralized implementation where the ISO has complete

knowledge of the system, the proposed solution clearly does not solve the issues of

privacy. Another major concern is that the algorithm obviously suffers from the curse

of dimensionality, and hence may be impractical to implement in real-time markets.

6.12 A Tree Visualization of System Randomness

A tree visualization of the system randomness will be insightful in the discus-

sions to follow. Recall (6.1), the combined system comprising of the M agents

evolves according to,

X(t+ 1) = f t(X(t), U(t), N(t)). (6.4)

Let us assume for the time being that the noise process N(t) is allowed to assume

finitely many values at each time. We then construct an uncertainty tree of depth

T , in which the root node corresponds to initial system state, and a path from

the root to a leaf node corresponds to a unique realization of the noise sequence

(N(0), N(1), . . . , N(T − 1)), Figure 6.2.

6.13 Iterative Bidding Schemes

The key contribution of this work is to propose solutions to the ISO Problem

in the form of Iterative Bidding Schemes (IBS), as in Walrasian tatonnement [10].

Here we explain what is meant by such an IBS. Such schemes intertwine two simple

processes, which we call Bid Update and Price Update. We begin by defining the

key elements of the IBS, the bid function and the price function. These will be

combined to form the Bid Update and Price Update processes, which will then

combine to yield the IBS in a bottom-up manner.
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Bid Function: A bid sequence by agent i specifies to the ISO how much electricity

that agent will purchase (negative if supplying) in every time period from that time

till the final time. At time t it is a sequence of the form (ui(t), ui(t + 1), . . . , ui(T )).

Let us, for the time being, assume that the noise process N(t) is observed by all the

agents. Then, a bid function (in short just “bid”) of an agent i is a function which

specifies to the ISO, at any time t, as a function of the past history of observed noise

N(s), s < t, how much electricity it will purchase at each instant in the future. In

order to conceptualize a bid function, let us look at the uncertainty tree shown in

the Figure 6.2. The bid function of each agent then, simply specifies, for each node

in the tree, the amount of electricity that agent i is willing to purchase when the

system passes through that node if it ever does so. We also note that the function

Ui(t) is adapted to the filtration Ft, and hence is non-anticipative w.r.t. the noise

process. The bid function of agent i will be denoted Ui in short.

A price function is a function announced by the ISO, which specifies for each

time t, as a function of the past history of observed noise N(s), s < t, the price λ(t)

at which electricity will be sold in the market. In the tree example of Figure 6.2,

this corresponds to the market clearing price corresponding to each node of the

tree. The price function {λ(ω, t)} is also an Ft-adapted stochastic process, which

will be denoted by λ.

Bid Update: Let us suppose, for the time being, that the ISO has declared a price

function λ via some mechanism. In the Bid Update, each agent i changes its bid

in response to the price function λ. In order to derive its new bid, it solves the

following problem, dubbed Agent i’s Problem,

minE

{∑
t

ci(Xi(t), Ui(t)) + λ(t)Ui(t)

}
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Agent i’s Problem.

We notice that the bid function Ui(t) obtained after solving the above problem

would minimize the agent i’s total net utility , defined as the utility −ci(Xi(t))

it derives from its state being Xi(t), minus the amount λ(t)Ui(t) it pays for the

electricity at the price λ(t).

Price Update is the mechanism via which the ISO updates the price function

in response to the agents having submitted their updated bids via the Bid Update

mechanism. Since in our context here the sole purpose of the ISO is to make sure

that the net demand equals net supply, we will consider a simple rule by which

it raises prices if demand exceeds supply and reduces otherwise. Suppose the

previous price was λk and the bid was Uk. Then, for each possible sample path ω,

the Price Update is,

λk+1(t) = λk(t) (1− αk) + αk

(∑
i

Uk
i (t)

)

Price Update.

where αk > 0 is an “adaptation gain”. (One choice is αk = 1/k, which satisfies the

twin conditions
∑∞

k=0 αk = ∞, and
∑∞

k=0 α
2
k < +∞, which is a common conver-

gence condition in stochastic approximation [21]). Figure 6.1 summarizes the IBS

technique.

It will be the object of the following section, to show that an iteration of Bid

Update-Price Update can solve the ISO Problem under some observation structures.

We begin with the simplest of all cases, the deterministic case.
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Agent 1

Agent 2 ISO

Agent M

...

Figure 6.1: Agents submit bids via Agent→ ISO, while the ISO sends price-signals
for the remaining time horizon through ISO→ Agent

6.14 The Deterministic Case

The simple example considered in Section 6.11 illustrates the key difficulty in-

volved in a decentralized stochastic control, namely that of achieving co ordination

amongst the agents. The centralized algorithm above circumvents this difficulty by

having the agents explicitly communicate their system states Xi(t) to the ISO, or,

equivalently, to every other agent. This however does not meet our constraints on

what can be communicated or revealed by agents.

In this section we show that it is possible under certain convexity assumptions,

for the agents to not communicate their state values, but still attain the same per-

formance as centralized control. We establish this result here for the case of deter-

ministic systems. Sections 6.15 and 6.16 show that the same idea carries over to

the stochastic setting; however the procedure requires additional operations asso-

ciated with encoding the randomness N(t).
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The deterministic version of ISO Problem can be stated as follows:

min
T∑
t=1

N∑
i=1

ci (xi(t), ui(t))

such that
∑
i

ui(t) = 0, for t = 1, 2, . . . , T − 1,

and xi(t+ 1) = f ti (xi(t), ui(t)), for

i = 1, 2, . . . , N, and t = 1, 2, . . . , T − 1. Deterministic ISO Problem

The intermediate variables xi(t) can be expressed in terms of the inputs ui :=

(ui(1), ui(2), . . . , ui(T − 1)) and thus the cost term
∑T

t=1

∑N
i=1 ci (xi(t), ui(t)) can

also be expressed solely as a function of the inputs ui, i = 1, 2 . . . ,M . Convex-

ity plays a major role, as first identified by Arrow [10].

Assumption 1 (Convexity Assumption). For i = 1, 2, . . . ,M , the function
∑T

t=1 ci (xi(t), ui(t))

is convex in the input vector (ui(1), ui(2), . . . , ui(T − 1)).

We will now derive a decentralized solution to the ISO Problem under Assump-

tion 1, and show that under the resulting solution, the system achieves the same

performance as that of optimal centralized control.

Employing the definition of each xi(t) as f ti (xi(t− 1), ui(t− 1)), each xi(t) can

be written as a function of (ui(0), ui(1), . . . , ui(t − 1)), since xi(0) is regarded as

fixed. The associated Lagrangian and dual function are given by,

L (u, λ) : =
M∑
i=1

{∑
t

ci(xi(t), ui(t)) + λ(t)ui(t)

}
,

D(λ) : = min
u
L (u, λ) ,

where u := (u1, u2, . . . , uM), and λ := (λ(1), λ(2), . . . , λ(T − 1)). Note that the
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Lagrangian is the sum of the costs
∑

t {ci(xi(t), ui(t)) + λ(t)ui(t)} incurred by each

individual agent. Hence, given the Lagrange multipliers λ, the inputs ui minimizing

the Lagrangian can be calculated in a decentralized fashion, with each agent i

solving its own problem,

min
∑
t

ci(xi(t), ui(t)) + λ(t)ui(t), (6.5)

subject to xi(t+ 1) = f ti (xi(t), ui(t)). (6.6)

Agent i’s Problem

Each agent i then communicates this optimal ui(t) to the ISO by submitting its bid.

This would enable the computation of the dual function at each value of λ(t).

Note that the sub-gradient with respect to λ of the Dual functionD(λ) is
∑

i u
k
i (t).

Since the dual problem of finding the optimizing prices λ(t) in order to maximize

D(λ(t)) is convex, it can be solved via the sub-gradient method [?, 16,22,86].

λk+1(t) = λk(t)
(
1− αk

)
+ αk

(∑
i

uki (t)

)
, t ≥ 0, (6.7)

where k is the index which keeps track of the iteration number. The iterations

end when the price vector λ(t) converges to the optimal value λ?(t). The resulting

solution is optimal for the ISO Problem due to the convexity assumptions.

6.15 Commonly Observed Noise

We now turn attention to the stochastic case. In this section we will consider

the case where the noise affecting all agents is the same, i.e., Ni ≡ Nc, and is

observed by all agents. The agents also know the laws L(Nc(·)).

The solution (6.3) proposed in Section 6.11 using the Dynamic Programming

122



approach suffers from severe drawback that the value of the state and the system

dynamics of each agent are assumed to be known to the ISO.

However under the convexity assumption, the ISO Problem has a low complex-

ity decentralized solution. As in Section 6.11, it is assumed that the agents evolve

as controlled MDPs,

Xi(t+ 1) = f ti (Xi(t), Ui(t), Nc(t)),

where the noise process Nc(t) is observed by all the agents.

The knowledge of the system dynamics f ti (·) and the processes Xi(t) is kept

private, and is known only to the agent i. We make the following assumption on

the cost function, which is the stochastic counterpart of Assumption 1.

Assumption 2. The function

∑
t

ci(Xi(t), Ui(t)), i = 1, 2, . . . ,M, (6.8)

is convex in the vector {Ui(t)}T−1
t=0 for fixed {Nc(t)}T−1

t=0 .

We next present an iterative algorithm composed of Bid and Price updates.

The bid submitted by each agent i is a random process that maps the space Ω ×

{1, 2, . . . , T − 1} to R. This is akin to Arrow’s [10] approach of treating each prod-

uct available at a certain time and place as a separate product. Furthermore, the

bid process is adapted to the filtration Ft. In words, at each time t, it specifies to

the ISO, as a function of the past noise N(s), s < t, the amount of electricity that

the agent is willing to purchase at time t.

Theorem 11. Algorithm 1 solves the ISO Problem when the cost functions ci(·), i =

1, 2, . . . ,M satisfy the Assumption 2.
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Algorithm 1

Assumption: The law of the combined noise process L(N(t)) is common knowl-
edge of all agents. The noise process Nc(t) affecting the agents is observed by
all.
k = 0

repeat
Each agent i solves the problem

minE

{∑
t

ci(Xi(t), Ui(t)) + λk(t)Ui(t)

}
, (Agent i’s Problem)

for the optimal {Uk
i (t), 0 ≤ t ≤ T − 1}, and submits to ISO, i.e. Bid Update.

ISO declares new prices via the 2.14, i.e.

λk+1(t) = λk(t)
(
1− αk

)
+ αk

(∑
i

Ui(t)

)
. (Price Update)

k → k + 1
until Uk

i (t) converge to U?
i (t)

Each agent implements U?
i (t) =0
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Figure 6.3 lays out the decision flow involved while implementing the algo-

rithm.

Remark. Comparing the algorithm proposed above with that proposed in the Sec-

tion 6.11, we note that the present algorithm mitigates the curse of dimensionality

since the dual function at each value of price process λ(t) can be computed by agents

individually. Thus the computational complexity of the proposed scheme is linear in

the number of agents (M). Of course, for each agent, the complexity does grow with

the number of its own states.

Privately Observed Noise Communicated to ISO A subtle point to note is that

solving the Agent i’s Problem does not require the agents to know the noise process

Nc(t). It suffices for them to know the law L(Nc(·)).

Hence, instead of assuming that the noise sequenceNc(t) is commonly observed, we

could have equivalently assumed that each agent i was affected by private noise Ni(t),

that was observed only by it. The private observations could then have been commu-

nicated to the ISO. The noises N1(t), N2(t), . . . , NM(t) need not be independent. The

ISO would then know the combined noise process N(t) := (N1(t), N2(t), . . . , NM(t)),

and can implement the optimal U(t).

This result can be further extended as follows. The ISO does not really need to

know the true value of the combined noise process N(t). It only needs to know the

“label” or “index” of the noise values for the purpose of communicating to the agents

the prices for each such label.

The agents can hide the actual value of the noise by mapping their noise process

Ni(t) to some other process N̂(t). For example, in the uncertainty tree discussed in

Section 6.12, the agents could re label the noise values 0 to 1, and value 1 to 2. This

technique thus enables the agents to maintain privacy to some extent.
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6.16 Privately Observed Noise

Algorithm 2

Assumption: The law of the combined noise process L(N(t)) is common knowl-
edge of all agents and ISO.
for bidding times s = 0 to T − 1 do
k = 0

repeat
Each agent i solves the problem

minE

{∑
t≥s

ci(Xi(t), Ui(t)) + λk(t)Ui(t)

}
, (Agent i’s Problem)

for the optimal {Uk
i (t), 0 ≤ t ≤ T − 1}, and submits it to ISO.

ISO declares new prices via the 2.14, i.e.

λk+1(t) = λk(t)
(
1− αk

)
+ αk

(∑
i

Uk
i (t)

)
, t ≥ s.

k → k + 1
until Uk

i (t) converge to U?
i (t), t ≥ s

ISO implements U?
i (s)

end for=0

Next, we investigate the problem when we remove the assumption that the

system noise is commonly observed by all.

Assumption: Suppose that the agents are affected only by privately observed

noises, i.e., they evolve as,

Xi(t+ 1) = f ti (Xi(t), Ui(t), Ni(t)), where (6.9)

i = 1, 2, . . . ,M, and t = 0, 1, . . . , T − 1,
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and the noiseNi(t) is observed only by the agent i. The noises {N1(t), N2(t), . . . , NM(t)}

may be dependent random variables. There can also be dependence across time.

Even though the agents do not observe the private noise of other agents, they

are assumed to know the laws of the combined noise process, L(N(·)). In the

context of the uncertainty tree of Section 6.12, the agents know the topology of

the tree, and the transition probabilities along the edges.

In order to construct an algorithmic solution for the private noise case, we

revisit Algorithm 1 where it makes use of the assumption that the process Nc(t) is

commonly observed. We will construct algorithm for the present case from 1. Each

agent i could perform its Bid Updates (by solving Agent i’s Problem) based only on

a) the prices λ that had been declared by the ISO, and b) the L(N(t)). Similarly

the operations that went in performing the Price Updates involved the bids that

had been submitted by agents. Thus the optimal actions could be calculated in

a decentralized fashion without the agents knowing the noise sequences. In the

context of the tree, the agents need to know the labels of the nodes of the tree and

the transition probabilities. If a transition from one node to another is caused by

many different random events transpiring at different agents’ system, they do not

need to know what transpired at each agent’s system. The ISO needs to know even

less. It only needs to know the labels of the nodes, but does not need to know

the probabilities of the transitions from node to node. However after the Price

and Bid Update iterations in Algorithm 1 converge they yield the optimal action

U?(t) at each time t as a function of the past values of the combined noise process

N(s), s < t or in the tree context, the optimal action U? at each node in the tree.

Once calculated, we assumed that the process N(t) (Nc(t)) was observed by all the

agents only to ensure that all the agents agreed on the choice of the action at time

t, i.e., U?(t). In summary, Algorithm 1 required the agents to observe the combined

127



noise sequence N(t) only in order to implement the optimal action, not in order to

calculate it.

Upon closer inspection of Algorithm 1, we find that even though the optimal

actions U?(t) for bid-times t ≥ 1 are expressed as functions of N(s), s = 1, 2, . . . , t−

1, the action to be taken at time t = 0, i.e., U?(0) is not a function of the noise

process. Or, stated differently, the Ui(0) s are measurable w.r.t. the sigma-algebra

F0 = {Ω, ∅}. Hence, in order to implement the converged quantities U?
i (0) for the

first time-slot, the agents do not need to know the private observations such as

noise or system states of other agents.

A similar process can therefore be used at every time t. The agents need only to

share the topology of the remaining uncertainty tree from the current node, i.e., the

laws L(N(t)) for the remaining times t = 1, 2, . . . , T − 1. Then the bid-price update

iteration can take place just as though that were the initial time. Thus we see that

a repeated application of the Algorithm 1 at each time t, followed by sharing the

laws of the noise process for the remaining bid-times would enable the agents to

implement the optimal actions at each time t. This yields us Algorithm 2 detailed

below.

Theorem 12. Algorithm 2 solves the ISO Problem when the cost functions satisfy

Assumption 1, with each agent i having access only to its private noise Ni(t), while

the law of the combined noise process, i.e. L(N(t)) is known publicly.

Proof. Let us first consider a version of the Commonly Observed Noise Problem in

which the noise process N(t) assumes only finitely many values.

Let us suppose that x(0) is fixed, without loss of generality. Let pv denote the

probability of node v in the uncertainty tree. The depth of the node in the tree

indicates time, as can be seen from Fig 6.2. Every Markov policy specifies an action

128



U(v) := (U0(v), U1(v), . . . , UM(v)) satisfying
∑

i Ui(v) = 0 for every node v in the

tree. This is easily seen by recursion starting at the root which corresponds to the

initial time and state of the system, and noting that each node then also indicates

the state of the system at that time. On the other hand, a “tree policy” that specifies

a U(v) := (U0(v), U1(v), . . . , UM(v)) satisfying
∑

i Ui(v) = 0 for every node v in the

tree may be slightly more general than a Markov policy since two nodes in the tree

at the same depth may correspond to the same state X(t) but a tree policy may

prescribe different actions for them. We will consider this slightly more general

class of tree policies, which also contains an optimal policy since we know that

the smaller class of Markov policies contains an optimal policy for a finite horizon

MDP.

For every such policy, for every node v, there is a unique sequence of actions

U v := {U(0), U(1), . . . , U(t)} that was taken in the preceding t steps, where t de-

notes the depth of the node v. Note that the state X(t) at time t corresponding to

the node v is determined by (v, uv). The centralized optimization problem can then

be written as the following optimization problem,

min
M∑
i=1

∑
v

pvci (v, U
v)

such that
∑
i

Ui(v) = 0,∀v.

Note that ci(v, u) is convex in u. Hence this is a convex programming problem with

no duality gap. Associating Lagrange multiplier λ(v) with the constraint
∑

i Ui(v) =

0, and letting λ := {λ(v)}, we obtain,

L (U, λ) : =
M∑
i=1

∑
v

pv

{∑
v

ci(v, u
v) + λ(v)Ui(v)

}
.
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We will call the process λ(v) as the “price process”.

Each agent submits a bid for each possible partial realization v of the noise

process, while the ISO specifies a price at each v. Now the proof parallels the proof

in the deterministic case.

6.17 Using Learning Techniques to Eliminate Complexity of L(N(t))

The approaches discussed in the previous sections relied on the assumption that

the knowledge of L(N(·)) was global. However this is not a practical assumption

because of privacy concerns of agents. Even if privacy were not an issue, the set of

possible noise sequences grows exponentially with the number of agents and the

length of time horizon T , which makes the sharing of huge amounts of information

impractical. However, as seen in Sections 6.15 and 6.16, the knowledge of L(N(t))

was required by the Agents in order to solve Agent i’s Problem, which formed a

crucial component of the Bid Update step.

It is of interest to determine whether it is indeed possible to solve the ISO

Problem without assumption of the knowledge of L(N(t))? For the general case

in which the agents are modeled by an MDP, we can “learn” what we need as we

go along, rather than needing to know a-priori the exponentially large uncertainty

tree. That is, we can simply learn the cumulative impact of what we need to

know. This is similar to the assumption of “rational expectations” in Arrows model

of uncertainty [10], whereby agents can make inferences about the system from

private observations as well as by observing prices. This can be achieved via the

technique of Stochastic Approximation or other learning techniques [21,58,90].

The key idea involved in eliminating the need for knowledge of N (t) is similar

to the Q-learning technique employed in machine learning. The previous sections

used Iterative Bidding Techniques in order to converge to the optimal prices λ?.
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The agents knew how to respond to price changes because they could calculate

the optimal bids and update them. Since now the bid update is not possible on

account of insufficient knowledge of N (t), the agents can try to learn the optimal

bids as a function of the price λ. The combined system comprised of M agents

and the ISO would have to “learn” the optimal price function, and the optimal

bid as a function of prices. This can be achieved via the two time-scale learning

algorithms proposed in [21]. More specifically, the Bid Updates would now involve

reinforcement learning [21,108]. Price Updates

6.18 The Case of Linear Systems

This section treats the special case of the ISO Problem when the M agents of

interest have linear Gaussian dynamics. The noises of all agents are independent.

Each agent i has a quadratic cost criterion, i.e., the functions ci(·) are quadratic in

xi, ui, with weighting matrices Qi ≥ 0 and Ri > 0 . Let us call this the Distributed

Constrained LQG (DCLQG) Problem.

minE

(
T∑
t=1

N∑
i=1

Xᵀ
i (t)QiXi(t) + Uᵀ

i (t)RiUi(t)

)

subject to Xi(t+ 1) = AiXi(t) +BiUi(t) +BiNi(t),

t = 0, . . . , T − 1,

and
∑
i

Ui(t) = 0, t = 0, . . . , T − 1. DCLQG

(The case of time-varying systems is analogous to time-invariant systems, and omit-

ted for brevity). We will assume that the system dynamics given by (Ai, Bi), the

cost functions given by (Qi, Ri), and the observation structure are all private. None

of the agents have knowledge of each others’ system parameters, and the state

process Xi is observed only by the agent i.
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We will derive an Iterative Bidding Scheme which is much simpler than the al-

gorithm proposed in Section 6.16 in the following critical aspect. The bid function

submitted at time t specifying the quantity of electricity that agent i is willing to

purchase at times t, t + 1, . . . , T − 1 does not depend on the outcomes of noise se-

quence N(s), s > t. It is simply a vector (ui(t), ui(t+1), . . . , ui(T−1)) comprising of

T −t+1 entries. This is a drastic reduction in complexity of the bidding scheme. At

each time t, the following iteration takes place: Each agent bids a vector of future

purchases in response to prices announced by the ISO for future power, and the

ISO updates the prices in return, until convergence.

The key to showing the optimality of such a simple bidding scheme lies in uti-

lizing the certainty equivalence property of LQG systems [82].

Definition (Certainty Equivalence). A stochastic control problem is said to possess

the property of certainty equivalence if the optimal policy for the stochastic control

problem coincides with the optimal policy for the corresponding deterministic control

problem in which the noise is absent.

Theorem 13. The following bidding scheme achieves optimality for the ISO Prob-

lem with LQG agents. At time t, in response to the k-th iterate of the price se-

quence (λk(t), λk(t+1), . . . , λk(T )), agent i announces the optimal open loop sequence

(uki (t), u
k
i (t+ 1), . . . , uki (T )) for the deterministic LQ problem:

min
∑
s≥t

xᵀi (t)Qixi(t) + (uk)ᵀi (t)Riui(t) + λk(t)ui(t)

s.t. xi(s+ 1) = Aixi(s) +Biu
k
i (s) for s = t, t+ 1, ..., T.

In response, the ISO adjusts the prices according to: λk+1(s) = λk(s)
(
1− αk

)
+

αk
(∑

i u
k
i (s)

)
, s ≥ t. This process is iterated till it converges to (u?i (t), . . . , u

?
i (T − 1))
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Algorithm 3

for bidding times s = 0 to T − 1 do
k = 0
Initialize λk(t), t ≥ s to some arbitrary value.

repeat
Each agent i solves the problem

min
T∑
t≥s

xᵀ(t)Qix(t) + uᵀi (t)Riui(t) + λk(t)ui(t)subject to (6.10)

xi(t+ 1) = Aixi(t) +Biui(t), t = 0, 1, . . . , T − 1. (Agent i’s Problem)

and submits the optimal value, denoted uk(t) to the ISO.
ISO updates the prices via the 2.14,

λk+1(t) = λk(t)
(
1− αk

)
+ αk

(∑
i

uki (t)

)
, t ≥ s.

Increment k by 1
until uki (t) converge to u?i (t)
implement u?(s)

end for=0

133



and (λ?(t), . . . , λ?(T − 1)). At time t, the price is set at λ?(t) and agent i applies the

input u?i (t). This entire procedure is repeated at time t+ 1.

Proof. Let

x := (x1, x2, . . . , xM), u := (u1, u2, . . . , uM),

A := diag(A1, A2, . . . , AM), B := diag(B1, B2, . . . , BM),

Q = diag(Q1, Q2, . . . , QM), R = diag(R1, R2, . . . , RM),

and consider the following deterministic LQR problem with no noise, correspond-

ing to the noisy LQG problem,

min
T∑
t=1

xᵀ(t)Qx(t) + uᵀ(t)Ru(t)

subject to x(t+ 1) = Ax(t) +Bu(t), (6.11)
M∑
i=1

ui(t) = 0 for t = 0, . . . , T − 1.

Since the state is affine in u, the cost is convex in u. Hence this centralized problem

can be solved by the Bid-Price iteration between the agents and the ISO. In partic-

ular, at each time 0, the end result of the scheme is the optimal action u(0). This is

arrived at by the ISO announcing a sequence of prices for all future times and the

agents bidding their consumptions/generation sequences at all future times.

Now note that due to the energy balance at each time, agent M is forced to

choose uM(t) = −
∑M−1

i ui(t) for all t. Hence one can substitute this value for

uM(t) and obtain a standard LQ problem where there is no separate energy balance

constraint. For this reduced but standard deterministic linear quadratic problem,

the optimal solution is given by linear feedback u(0) = Γ(0)x(0), where Γ(·) is the
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optimal feedback gain.

Now consider the corresponding reduced stochastic LQG problem where there

is white Gaussian noise in the state equations (6.11). By Certainty Equivalence [82],

the same feedback law as in the deterministic reduced LQ problem is also optimal.

In particular, in state x(0) at time 0, u(0) = Γ(0)x(0) continues to be optimal. Now,

in our proposed bidding scheme for the LQG problem, each agent bids on the basis

of a private deterministic system for itself. Hence it leads to the same Bid-Price

iteration result at time 0. Hence it arrives at the same u(0), which however is also

optimal for the stochastic LQG problem.

Thus we see that the Bid-Price iteration scheme determines the optimal actions

for the agents at time 0. Now our scheme for the LQG problem repeats such a

Bid-Price scheme iteration at each time t. Each x(t) can be regarded as an initial

state for the system started at time t, and the same argument as above shows that

the actions u(t) that it results in for the agents at time 1 are also optimal.

We note the following important features of the proposed algorithm. The crit-

ical feature that there is an iteration of bids at each time t is important. Also

important is that at each stage it is the future sequence of prices that is iterated.

If the bids are not iterated to convergence the resulting prices and actions will be

sub-optimal.

It is important to note that the alternative of announcing a “bid curve” of price

vs. generation for a single time t, a la a Walrasian auction, does not work in the

dynamic case. The reason is that the current optimal generation depends on future

prices, so iteration of price at only one time is not sufficient to ensure optimal

decision when agents are dynamic systems.
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Initial State (x1, x2)

N2(2) = 0 N2(2) = 1

N1(1) = 0

N2(2) = 0 N2(2) = 1

N1(1) = 1

Figure 6.2: A Tree based visualization of randomness for a 2 agent system evolving
over 2 bid times. The noise values are allowed to be binary and assume the values
0 and 1.

6.19 Concluding Remarks

We have posed the ISO Problem of maximizing the total utility/minimizing the

total operating costs of the electricity grid, while obtaining minimal information

from each agent, as a decentralized stochastic control problem. We have shown

that the Distributed Constrained LQG problem DCLQG admits a simple and de-

centralized solution utilizing iterative bidding schemes, which attains the same

performance as that of an optimal centralized control policy. Under the proposed

policy, the sufficient statistics are vastly simplified, and each agent i needs to keep

track of its present state Xi(t). This is in contrast with the general case of decen-

tralized stochastic control, in which the agents need to keep track of the entire

history in order to implement an optimal policy, which is also generally intractable

to compute. So, not only is our Algorithm decentralized, and easy to implement,

but it also leads to a large reduction in the amount of data to be communicated.

We further note that our Algorithm is privacy preserving.
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Start

ISO declares prices

Agents solve their problem

Agents submit updated bids

Bids converged? Update Prices

Implement the converged bids

Stop

yes

no

Figure 6.3: Flowchart depicting the decision flow in Algorithm 1.
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7. ON STORAGE AND RENEWABLES: A THEORY OF SIZING AND

UNCERTAINTY

In this section we study the fundamental problem of sizing energy storage given

an uncertainty level of variable resources in a microgrid. A queuing-theoretic

model is introduced, which provides unique insights into the coupling between en-

ergy storage size and uncertainty level of the net load. The proposed model lends

itself to three levels of details: a random walk model with single uncertainty from

one net load, a reflected Brownian motion model with more uncertain resources,

and a model with a collection of Markov-type power producers and consumers. It

is shown that the fundamental requirement of energy storage sizing can be approx-

imately derived from the aforementioned three queuing theory models. Numerical

examples suggest that this approach can be applied to microgrid planning and op-

eration in assessing the optimal size of energy storage , as well as the potential

curtailment of renewable energy.

7.1 Introduction

This section is motivated by the increasing penetration of variable resources

around the world. A fundamental question arises with increasing deployment of

variable resources: What is the amount of energy storage needed for high pene-

tration of renewable power? We propose a theoretical framework that provides

rigorous yet simple tools to address this question.

A historical comparison is in order. In the early 1900s, when telephone ex-

changes were being built across the country, there were several questions related

to how large the exchanges had to be in terms of the number of lines, in order

to ensure that the percentage of blocked calls was below a specified value, while
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carrying a specified volume of calls with certain holding times. In response to this

challenge, queuing theory was invented by Erlang [33], [31].

A similar problem arises today in the context of the integration of clean energy

and energy storage resources. We use the word “storage” in a rather broad context.

It includes large batteries, large buildings with controllable thermal energy, as well

as a large number of coordinated electric vehicles [41,65,87,103].

Storage can be used to mitigate the unreliability of such stochastic time vari-

ation of energy sources, but, depending on the demand, there will necessarily be

a need for balancing power, likely from conventional generation (typically fossil

fuel-based). In a future grid whose objective is to lower the carbon emission, it is

important to characterize not only the mean power drawn from the fossil fuel, but

also its variation, e.g., peak-to-mean ratio.

Thus, one would like to determine how the magnitude of the storage interacts

with the stochastic temporal unreliability of renewables and their spectral content,

in terms of determining what nature of demands can be supported, and what the

resulting peak as well as mean need is for augmenting energy sources. This is the

goal of the section.

To elucidate how one may address these interrelated issues, we pose the prob-

lem in a simple yet fundamental mathematical model. The scope of this section is

limited. We attempt to only show what analytical tools and theoretical techniques

can be brought to bear to address the nexus of these issues. Future extensions will,

one hopes, obtain more useful results employing realistic models of the phenomena

involved.

The rest of the section is organized as follows. We provide a description of

the system model in Section 7.2, which is followed by a derivation of the system

performance in Section 7.3 for the simple case when the energy delivery in a micro-
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grid follows a “random-walk” model. Section 7.4 provides an exposition of the

Brownian motion model, a model which is justified when one is dealing with a large

number of power producers and consumers in the electricity market. Section 7.5

considers the case when we are dealing with more complex dynamics occurring at

the level of producers and consumers. Section 7.6 presents concluding remarks.

7.2 System Model

We consider the abstract model, shown in Figure 7.1, of a micro-grid which

supplies its customers from a portfolio of renewable power, fossil fuel generation,

and a storage device. The storage unit has an energy capacity of B. This is similar

to a scenario of a micro-grid operator trying to schedule all the resources to a

community of customers in the isolated operating mode.

Once the storage energy hits the level 0, the conventional generators are uti-

lized to meet any power demand that exceeds renewable power supply since the

operator has no more stored renewable energy to supply. Thus, at all times, the

aggregate excess demand of the consumers is fulfilled either from renewable and

storage, or from the conventional generation.

At the other extreme, whenever the storage reaches its maximum value of

B, the supplier is forced to curtail any excess renewable energy being produced

(“overflow of renewable energy”), thus leading to spill of some renewable energy.

With the above set-up in place, we will be interested in answering the following

questions: What is the average amount of fossil power consumed? How does it

change with the size of the storage? Does the amount of fossil power required

also depend on the statistics of the renewable energy source ( [9, 27]? How does

it depend on the “spectral content” of the time variation of the renewable energy

source (since high frequency variations are better buffered by the source rather
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than low frequency variations)? What parameters of the renewal energy supply

process quantify this dependence? Similar questions are of interest concerning

the quantity of renewable curtailment due to “overflows.” As a finer measure of

performance, one might also be interested in second-order moments of the amount

of fossil energy utilized, since that is related to issues such as peak-to-average

generation ratio, and the amount of renewable energy wasted.

Fundamentally it is the difference between two stochastic processes (renewable

power and load) that is relevant to answer the above questions 1 Our goal in this

section is to show how these two stochastic processes interact with the storage

capacity B to determine the answers to the above questions. To illustrate the

methodology, we carry forward this analysis to obtain somewhat explicit back-of-

the-envelope type answers for certain simple stochastic process models. Doubtless,

it is important in practice to determine answers for models of higher fidelity, and

this can be, and we hope will be, pursued along the lines indicated in this section,

though at the expense of greater mathematical complexity.

In the next three sections, we provide illustratory answers to three models of

stochastic time variation.

7.3 Random Walk Model

We begin with the simplest stochastic process, a random walk, to model the

renewable sources and loads. Let us denote the energy level in the storage at time

t by V (t), where the time parameter t assumes the discrete values 0, 1, . . .. For

simplicity, we suppose that the energy-levels of the storage are discretized, so that

V (t) ∈ {0, 1, 2, . . . , B}. An important quantity, in fact the only relevant quantity,

1In this section we assume there is no line constraint. This is not a very restrictive assumption
since when the total load in the grid is not very high, then the analysis of the system can be reduced
to the case of a single node, which is free of any line constraint.
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Storage Load

Figure 7.1: Renewable and fossil fuel energy consolidated into a microgrid.

is the net-put, which is the difference between the renewable power supply at a

certain time minus the demand at that time. If the “net-put” to the storage at time

t is X(t), then the value of storage at time t+ 1 is given by

V (t+ 1) = (V (t) +X(t))+ ∧B,

where a ∧ b :=Min(a, b), and a+ :=Max(a, 0). (Since we are in discrete time, the

“energy” net-put in one time unit can also be called “power”). We note that the

assumption that the system evolves over discrete times is not restrictive, since we

can always sample a continuous-time system at an arbitrarily high frequency and

perform an analysis of the resulting discretized system.

For simplicity, we begin by supposing that X(0), X(1), . . . are independent and

identically distributed random variables, with a known distribution. Under these

assumptions, V (t) is a Markov process evolving on a finite state space {0, 1, . . . , B},

and, under a mild irreducibility condition that we assume, has a unique stationary

distribution. Let us denote by V (∞) the random variable having the stationary
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distribution of the process V (t).

Next, we define two stochastic processes that are relevant to the system perfor-

mance. Let L(t) be the loss in the renewable energy at time t, i.e.,

L(t) = (V (t− 1) +X(t− 1))+ − V (t).

As its name implies, this is the renewable energy that is indeed curtailed because

the storage is full. Also, denote by F (t) the fossil energy expended to meet the

demands,

F (t) := V (t)− (V (t− 1) +X(t− 1)) ∧B.

Clearly,

V (t) = V (t− 1) +X(t− 1) + F (t)− L(t). (7.1)

The average energy wasted due to overflows is then simply,

L̄ := E (V (∞) +X)+ −
[
(V (∞) +X)+ ∧B

]
where X is a random variable having the same distribution as X(0), X(1), . . .. Us-

ing (7.1), under a mild aperiodicity assumption, in steady state the expected value

of V (t) is the same as that of V (t+ 1), and so L̄ = F̄ + X̄.

Similarly, the second moments of the steady state loss and fossil energy can

be calculated once the stationary distribution of the process V (t) is known. The

following result from [92] is useful:

Theorem 14. Let S(n) :=
∑n

i=0X(i), and τ [u, v) := inf {n ≥ 0 : S(n) /∈ [u, v)}.
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Then P (V (∞) ≥ x) = P (S (τ (x−B, x)) ≥ x).

To illustrate how we can determine the quantities of significant interest, let us

consider a “simple random walk”, where X assumes value 1 with a probability

p < 1
2

and −1 with probability q = 1 − p > 1
2
; a similar analysis can be carried out

for more general models. The steady state distribution is

P (V (∞) = x) =
1− ρ

1− ρB+1
ρx, for x = 0, 1, . . . , B,

where ρ := p
q
. Thus the renewable-energy lost is given by,

L̄ =
1− ρ

1− ρB+1
ρBp (7.2)

and its standard deviation is given by, σL := 1−ρ
1−ρB+1ρ

Bp.

The formulas for loss and variability provide valuable insight. It follows from (7.2)

that for a fixed value of ρ, the wastage suffered by the energy supplier decreases

roughly exponentially as the size of the storage is increased. Since the storage ca-

pacity B comes at a cost, either fixed or operating, such an insight as that provided

by (7.2) might be useful for windfarm operators faced with the issue of choosing

the right location to place windfarms and the right size of storage. The location

of the windfarm fixes the quantity ρ, and the storage-size corresponds to B. The

ability to do such back-of-the-envelope calculations is potentially important for

providing an intuitive but quantitative understanding of sizing for storage.

7.4 Reflected Brownian Motion Model

We next consider an alternative continuous-time model, where the “cumulative

net-put process” (i.e., the net-put process of the previous section integrated over

time) is a Brownian motion. One justification for such a model is as a limit of a
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sequence of markets operating with many renewable power producers, in which

the n-th market has a number n of energy suppliers and consumers such that the

mismatch between the total demand of the consumers and the energy supplied in

a time-epoch is (after an appropriate scaling) of the order
√
n with a high proba-

bility. As the number of individual renewable resources, n increases to∞, it can be

shown that the energy traded in the market converges weakly to Brownian motion

( [17]). The advantage of using such a Brownian approximation is that it allows

us to stochastic calculus to obtain simple and elegant expressions for the relevant

quantities. Such an approach has been successfully used in stochastic flow sys-

tems, and the analysis here follows the approach of modeling queuing systems by

reflected Brownian motion [14,47,112].

As in the previous section, there is a single storage unit, which is “fed” by a

Brownian motion. The system evolves in continuous time, and the cumulative net-

put processX(t), obtained by subtracting the total energy demand of the consumers

till time t from the net renewable energy produced until time t, is a Brownian

motion with a drift µ, and a variance σ.

Due to the storage capacity of B, the process denoting the storage level at time

t, V (t) ∈ [0, B], is a Brownian motion constrained between the barriers at levels 0

and B. We assume that the system starts at time t = 0 with an initial storage level

V (0) = x.

If L(t) and F (t) are the cumulative renewable energy wasted due to overflows,

and the amount of fossil fuel energy used till time t, respectively, then,

1. V (t) = X(t) + F (t)− L(t), V (t) ∈ [0, B] for all t ≥ 0.

2. F can increase only when V is 0, and L can increase only when V = B, i.e.,

the fossil fuel sources are turned on only to meet the excess demand when
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the energy level in the storage hits the level 0. Likewise, excess renewable

energy is wasted only when the energy level in the storage is B.

Thus the average loss and the average fossil energy used are ( [47]),

L̄ = lim
t→∞

L(t)

t
, F̄ = lim

t→∞

F (t)

t
.

The associated variances are given by,

σ2
L = lim

t→∞

V ar(L(t))

t
, σ2

F = lim
t→∞

V ar(F (t))

t
.

To obtain the above quantities of interest, we decompose the paths of the process

V (t) into i.i.d. cycles and use the resulting regenerative structure. Define the

following,

T0 := inf{t ≥ 0 : V (t) = 0}.

V ?
n+1(t) := V (Tn + t), L?n+1(t) := L(Tn + t)− L(Tn),

U?
n+1(t) := U(Tn + t)− U(Tn), where

Tn+1 := smallest t > Tn such that

V (t) = 0 and Z(s) = b for some s ∈ (Tn, t) .

We see that the regeneration times are T1, T2, . . ., and letting τ := T1 − T0, we

have,

L̄ =
E0 [L(τ)]

E0(τ)
, F̄ =

E0 [F (τ)]

E0 (τ)
.
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Let us denote by π(·) the stationary distribution of V (t) (existence of which can be

shown using renewal theory). Also assume that V (0) = 0. Then if f is any real-

valued twice continuously differentiable function, we have, f(V (t)) = f(V (0)) +

σ
t∫

0

f ′(V )dX+
∫ t

0
Γf(V )ds+f ′(0)F (t)−f ′(B)L(t). Let t = τ in the above, and note

that f(V (τ)) = f(V (0)) = f(0). Taking the expectations of both sides, noting that

E
t∫

0

f ′(V )dX = 0, and performing some algebraic manipulations, we have,

∫ B

0

Γf(z)π(dz) + f ′(0)F̄ − f ′(B)L̄ = 0. (7.3)

By proper choice of the functions f in equation (7.3), such as f(v) = v or f(v) = v2,

one can calculate relevant quantities of interest, which leads us to the following

theorem.

Theorem 15. If µ = 0, then L̄ = F̄ = σ2

2B
and π is the uniform distribution on [0, B].

Otherwise, for µ < 0, where the renewable energy is not sufficient to fully meet the

loads, let θ = 2µ
σ2 . Then,

L̄ =
µ

1− exp−θB
, F̄ =

µ

expθB −1
. (7.4)

SCV (L) =


2B
3

if µ = 0,

2(1−exp(2θB))+4θB exp(θB)
−θ(1−exp(θB))2

,

where SCV (L) is the squared coefficient of variation of loss L, i.e., its standard devi-

ation divided by its mean.

The relation (7.4) is the limit of the relation (7.2), justifying the random-walk

model discussed in Section 7.3 as a possibly reasonable assumption for a market
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having a large number of players. Moreover, as earlier, we note that if µ < 0 (i.e.,

on average the renewable supply is lesser than the demand), then the renewable

energy wastage decreases exponentially with the size of the storage B.

7.5 Correlated Uncertainty Between Loads and Renewables

The assumptions in the previous sections assume that the energy source and

consumers behave in independent and identically distributed manner over time.

This is not exactly the practical case. Inspired by stochastic fluid analysis, in this

section we extend the analysis to allow for more detailed models of individual

generators and loads ( [7, 52, 60, 72, 76]). Suppose there are m sources and n

consumers which are “coupled” through the storage. That is, the energy produced

by the sources is used to fill the storage, and the consumers withdraw from it. This

approach is potentially applicable for commercial and industrial loads.

To illustrate the approach, suppose that each source can be in one of two states,

active or passive, and the time taken to transition from one state to the other is ex-

ponentially distributed. When a source is active, it produces energy at a constant

rate c1, while no energy is produced when it is passive. The rates of transition

from active to passive and vice-versa are f1, r1 respectively. Similarly each con-

sumer transitions from active to passive at rate f2, and vice versa at a rate r2, and

consumes energy at a constant rate c2 units while in the active state. Such a sys-

tem can be described by a Markov process with state (V, i, j), where V (t) is the

storage level at time t, and market state (i(t), j(t)) where i and j are the numbers

of active sources and consumers respectively, with 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2; .

The processes describing the number of active sources/consumers are birth-death
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processes. Letting

p1(t; i) := P(i sources are active at time t),

p2(t; j) := P(j consumers are active at time t), and

pi(t) := (p2(t; 0), p2(t; 1), . . . , p2(t;ni)) ,

we have, d
dt

pi(t) = pi(t)Mi, where, Mi is the corresponding transition rate matrix.

Let p(t; i, j) = p1(t; i)p2(t; j),

p(t) := (p(t; 0, 0),p(t; 0, 1), · · · ,p(t;n1, n2)) ,

(under lexicographic ordering),

P (t, x; i, j) :=

P ( storage level ≤ x, market state = (i, j) at time t),

and P(t, x) the lexicographic arrangement of {P (t, x; i, j)}. Then,

d

dt
p(t) = p(t)M, where M := M1 ⊗ I(n) + I(m)⊗M2,

and I(k) is the k + 1 dimensional identity matrix and ⊗ is the Kronecker product,

and

∂

∂t
P +

∂

∂x
PD = PM, t ≥ 0, 0 < x < B, (7.5)

where the “drift matrix”D is given by, D := c1E(n1)⊗I(n2)−c2I(n1)⊗E(n2), with E(n2) =

diag(0, 1, · · · , n2). Letting π be the continuous steady state solution of the equa-
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tion (7.5), we obtain, d
dx
π(x)D = π(x)M, 0 ≤ x ≤ B. That is, for any x ∈ (0, B),

P ( storage content ≤ x and market state is(i, j)) = π(x; i, j). Spectral expansion

yields, π(x) =
∑

l al exp(zlx)φ(l), where {zl,φ(l)} are solutions of the eigenvalue

problem, zφD = φM , with al to be determined by the boundary conditions.

7.5.1 Performance Analysis

Let w1(i), w2(j), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2 be the stationary probabilities that i

sources and j consumers are active, and let wk for k = 1, 2 be the vectors com-

prising these probabilities. The wk(i)’s can be easily solved to obtain the stationary

distribution of the market process: w := w1⊗w2. The total average energy produced

is then simply c1

∑m
i=0 iw1(i), while the average demand is c2

∑n
j=0 jw2(j) = nc2r2

f2+r2
.

Since the storage levels will occasionally hit the boundaries at 0 and B, it is

clear that the energy utilized will be lesser than both of the above quantities. Thus

the renewable energy lost due to the limitation on the size of the storage is simply

the sum
∑
P (storage is full and market state is (i, j)) (c1i− c2j) over all the states

in which the loss-rate (c1i− c2j) is positive.

7.6 Conclusions

This section addresses the problem of energy storage sizing in a microgrid set-

ting with high penetration of intermittent resources such as wind and solar. By

considering the energy storage as a service provider, we propose a queuing theo-

retical approach to study the fundamental coupling between energy storage sizing

and uncertainty levels from the net load. Three models with different levels of

details provide a suite of tools for microgrid operators to determine an optimal

size of energy storage given a level of renewable and load uncertainties. Numer-

ical examples based on realistic wind and load data suggest that the proposed

approach could be a new avenue of research for optimal sizing of energy storage
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in renewable-rich power systems.

This is only a first step toward systematically understanding the fundamental

role of uncertainty on sizing of energy storage. There are many fruitful directions

for future research. One is to analyze the impact of line constraints on the optimal

location of energy storage. Also it would be worthwhile to assess the effectiveness

of this framework in a larger-scale realistic system.
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8. CONCLUSION

We conclude by summarizing our key results, and explaining their significance

in the larger scheme of things. Then, we point out some ready extensions of these

results. This is followed by identifying outstanding challenges which will need

breakthroughs.

We have studied two important classes of cyberphysical systems involving the

operation of distributed uncertain dynamic systems. Within the first class of sys-

tems, communication networks, we have developed a framework for scheduling

data transmissions over multi-hop wireless networks under a hard delay bound.

We have obtained the policies that are highly decentralized, and involve low com-

putational complexity. Our approach enables us to design policies that take “packet

level” decisions, rather than “queue length level” decisions. This has allowed us to

optimize network performance with regards to providing hard delay guarantees,

while operating in a decentralized mode. While in this thesis we have dealt only

with the case of power constraints on individual wireless nodes, it is possible to

extend the results to more general cases in which there is wireless interference be-

tween the multiple channels. However, in that case, the convergence speed of the

algorithms will be slower since the state space is larger.

We have also addressed the problem of smoothness of packet delivery, impor-

tant when they are carrying sensor measurements in sensor-actuator networks or

networked control. We have shown that the MaxWeight scheduler provides asymp-

totically smooth service. However, it is a centralized scheduler and requires the

nodes to share their queue lengths continually. In general it is not known whether

there is a decentralized scheduler that can guarantee asymptotically smooth service
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process for the case of multi-hop networks.

For the problem of video streaming, which is growing at an increasing rate,

it is important to design policies that enhance Quality of Experience. We have

developed ..... Mention your major results ...An open problem is that presently we

do not have a theory to account for specific demands such as the order in which

packets arrive at the destination or creating multiple copies of a video packet of

varying video quality.

In the second application area, smart grid, focused on in this thesis, we have

examined the problem faced by the Independent System Operator (ISO). This is

a problem involving decentralized stochastic control of dynamical system through

price coordination by a system operator. Past works in the decentralized stochastic

control literature have assumed that the system dynamics of the combined system

are known to each agent , which is not a realistic or tenable assumption in large

systems such as the power grid where in addition to the sheer magnitude of in-

formation sharing that would entail, the agents may even be averse to violating

their privacy or competitive advantage by disclosing such information. In con-

trast, in economics, general equilibrium theory has been developed without such

assumptions. We have carefully analyzed the role played by uncertainty whether

it is present, and is it common or private, in allowing optimal coordination. We

have shown that the specific case of multiple linear quadratic Gaussian systems is

very amenable to optimal price-based coordination without enormous complexity

of information sharing to handle the uncertainties involved. It is worthy of noting

that we can still attain optimal centralized performance without the uncertainty

“tree” being known globally, in comparison with the generally privately observed

noise case.

One future problem of interest centers is how to coordinate when the band-
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width for communication is constrained. It is of interest to determine how system

performance is affected by such communication constraints.

In the Privately Observed Noise case, Algorithm 2 required the topology of the

uncertainty tree of the combined system comprising the M agents to be globally

known. This assumption allowed the agents to bid in a non-anticipative manner

on each possible sample path ω, which gave rise to a highly adaptive Iterative

Bidding scheme, which was shown to be optimal. However, knowledge of the

uncertainty tree’s topology might be impractical since its size grows exponentially

in the number of users. It is highly desirable to remove this assumption. It would,

however, then be appropriate to compare the performance of the scheme with the

performance within some restricted class of policies rather than with the optimal

centralized policy.

154



REFERENCES

[1] Cisco visual networking index (vni). http://www.cisco.

com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.pdf.

[2] Alan S. Manne. Linear programming and sequential decisions. Management

Science, 6:259 –267, 1960.

[3] Eitan Altman. Constrained Markov Decision Processes with Total Cost Cri-

teria: Occupation Measures and Primal LP. Mathematical Methods of Opera-

tions Research, 43(1):45–72, 1996.

[4] Eitan Altman. Constrained Markov Decision Processes. Chapman and

Hall/CRC, March 1999.

[5] J. Andrews, S. Shakkottai, R. Heath, N. Jindal, M. Haenggi, R. Berry, Dongn-

ing Guo, M. Neely, S. Weber, S. Jafar, and A. Yener. Rethinking Informa-

tion Theory for Mobile Ad Hoc Networks. Communications Magazine, IEEE,

46(12):94–101, December 2008.

[6] J.G. Andrews, R.K. Ganti, M. Haenggi, N. Jindal, and S. Weber. A primer on

spatial modeling and analysis in wireless networks. IEEE Communications

Magazine, 48(11):156–163, November 2010.

[7] Anick, D. and Mitra, D. and Sondhi, M. M. Stochastic Theory of a Data-

Handling System with Multiple Sources. Bell System Technical Journal,

61(8):1871–1894, 1982.

[8] P. S. Ansell, K. D. Glazebrook, J. Nio-Mora, and M. O’Keeffe. Whittle’s index

policy for a multi-class queueing system with convex holding costs. Mathe-

155



matical Methods of Operations Research, 57(1):21–39, 2003.

[9] Jay Apt. The spectrum of power from wind turbines. Journal of Power

Sources, 169(2):369–374, 2007.

[10] Kenneth J Arrow. An extension of the basic theorems of classical welfare

economics. Proceedings of the Second Berkeley Symposium on mathematical

Statistics and Probability, pages 507–532, 1951.

[11] Kenneth J Arrow. General Economic Equilibrium: Purpose, Analytic Tech-

niques, Collective Choice. American Economic Review, 64(3):253–72, June

1974.

[12] Aditya Mahajan Ashutosh Nayyar and Demosthenis Teneketzis. Chapter 4:

The Common-Information Approach to Decentralized Stochastic Control. In

Information and Control in Networks, pages 123–156. Springer-Verlag, 2014.

[13] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-

ton, NJ, USA, 1 edition, 1957.

[14] Berger, Arthur W. and Whitt, Ward. The Brownian Approximation for Rate-

Control Throttles and the G/G/1/C Queue. Discrete Event Dynamic Systems,

2(1):7–60, 1992.

[15] D. P. Bertsekas. Nonlinear Programming. Athena scientific. Athena Scientific,

1999.

[16] Dimitri P. Bertsekas, Asuman E. Ozdaglar, and Angelia Nedic. Convex analy-

sis and optimization. Athena scientific optimization and computation series.

Athena Scientific, Belmont (Mass.), 2003.

156



[17] Patrick Billingsley. Convergence of Probability Measures. Wiley Series in Prob-

ability and Statistics: Probability and Statistics. John Wiley & Sons Inc.,

1999.

[18] David Blackwell. Discrete Dynamic Programming. Annals of Mathematical

Statistics, 33:719–726, 1962.

[19] David Blackwell and M.A. Girshick. Theory of games and statistical decisions.

John Wiley and Sons, New York, 1954. Republished by Dover in 1979.

MR:0070134. Zbl:0056.36303.

[20] Vivek S. Borkar. Control of Markov Chains with Long-Run Average Cost

Criterion. In W. Fleming and P.L. Lions, editors, The IMA Volumes in Mathe-

matics and Its Applications, pages 57–77. Springer, 1988.

[21] Vivek S. Borkar. Stochastic Approximation : A Dynamical Systems Viewpoint.

Cambridge University Press New Delhi, Cambridge, 2008.

[22] Stephen Boyd. https://web.stanford.edu/class/ee392o/subgrad_

method.pdf.

[23] Shengrong Bu and F. R. Yu. A game-theoretical scheme in the smart grid

with demand-side management: Towards a smart cyber-physical power in-

frastructure. IEEE Transactions on Emerging Topics in Computing, 1(1):22–

32, June 2013.

[24] L. Bui, R. Srikant, and A Stolyar. Novel architectures and algorithms for de-

lay reduction in back-pressure scheduling and routing. In INFOCOM 2009,

IEEE, pages 2936–2940, April 2009.

[25] L.X. Bui, R. Srikant, and A. Stolyar. A novel architecture for reduction of

delay and queueing structure complexity in the back-pressure algorithm.

157



IEEE/ACM Transactions on Networking, 19(6):1597–1609, Dec 2011.

[26] H.-P. Chao, S.S. Oren, A. Papalexopoulos, D.J. Sobajic, and R. Wilson. Inter-

face between engineering and market operations in restructured electricity

systems. Proceedings of the IEEE, 93(11):1984–1997, Nov 2005.

[27] Aimee E. Curtright and Jay Apt. The character of power output from utility-

scale photovoltaic systems. Progress in Photovoltaics: Research and Applica-

tions, 16(3):241–247, 2008.

[28] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Feedback control

for adaptive live video streaming. In Proceedings of the Second Annual ACM

Conference on Multimedia Systems, MMSys ’11, pages 145–156, New York,

NY, USA, 2011. ACM.

[29] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating

qoe of video delivered using http adaptive streaming. In IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM 2013), 2013,

pages 1288–1293, May 2013.

[30] Demosthenis Teneketzis. Perturbation Methods in Decentralized Stochastic

Control. PhD thesis, Massachusetts Institute of Technology, November 1976.

[31] Arne Jensen E. Brockmeyer, HL Halstrm and Agner Krarup Erlang. The life

and works of AK Erlang. 1948.

[32] Eitan Altman and Adam Shwartz. Markov decision problems and state-

action frequencies. SIAM J. CONTROL AND OPTIMIZATION, 29(4):786–809,

1991.

[33] AK Erlang. Probability and Telephone Calls. Nyt Tidsskrift Mat. Ser. B, 20:33–

39, 1909.

158



[34] Atilla Eryilmaz and R. Srikant. Asymptotically tight steady-state queue

length bounds implied by drift conditions. Queueing Syst. Theory Appl.,

72(3-4):311–359, Dec 2012.

[35] Atilla Eryilmaz and R. Srikant. Asymptotically tight steady-state queue

length bounds implied by drift conditions. Queueing Syst. Theory Appl.,

72(3-4):311–359, December 2012.

[36] G. R. Gajjar, S. A. Khaparde, P. Nagaraju, and S. A. Soman. Application of

actor-critic learning algorithm for optimal bidding problem of a genco. IEEE

Transactions on Power Systems, 18(1):11–18, February 2003.

[37] F.D. Galiana, F. Bouffard, J.M. Arroyo, and J.F. Restrepo. Scheduling and

pricing of coupled energy and primary, secondary, and tertiary reserves. Pro-

ceedings of the IEEE, 93(11):1970–1983, Nov 2005.

[38] Robert G. Gallager. Information Theory and Reliable Communication. John

Wiley & Sons, Inc., New York, NY, USA, 1968.

[39] Feng Gao, Gerald B Sheble, Kory W Hedman, and Chien-Ning Yu. Optimal

bidding strategy for gencos based on parametric linear programming con-

sidering incomplete information. International Journal of Electrical Power &

Energy Systems, 66:272–279, mar 2015.

[40] J.C. Gittins K. Glazebrook and R. Weber. Multi-armed Bandit Allocation In-

dices. John Wiley & Sons, 2011.

[41] Christophe Guille and George Gross. A conceptual framework for the

vehicle-to-grid (v2g) implementation. Energy Policy, 37(11):4379 – 4390,

2009.

159



[42] G.R. Gupta and N. Shroff. Delay analysis for multi-hop wireless networks.

In Proc. IEEE INFOCOM 2009, pages 2356–2364, April 2009.

[43] K. Jagannathan H. Ahmed and S. Bhashyam. Fair scheduling with dead-

line guarantees in single-hop networks. In Sixth International Conference on

Communication Systems and Networks (COMSNETS), 2014, pages 1–7, Jan

2014.

[44] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis

with applications. Advances in Applied Probability, 14(3):502–525, June

1982.

[45] Hajime Kawai. A variance minimization problem for a Markov decision

process. European Journal of Operational Research, 31(1):140–145, 1987.

[46] Haozhi Xiong, Ruogu Li, A. Eryilmaz and E. Ekici. Delay-aware cross-layer

design for network utility maximization in multi-hop networks. Selected

Areas in Communications, IEEE Journal on, 29(5):951–959, May 2011.

[47] Harrison, J. Michael. Brownian motion and stochastic flow systems. Wiley

series in probability and mathematical statistics. Wiley, New York, 1985.

[48] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen.

Initial delay vs. interruptions: Between the devil and the deep blue sea. In

Quality of Multimedia Experience (QoMEX), 2012 Fourth International Work-

shop on, pages 1–6, July 2012.

[49] C.L. Hwang and A.S.M. Masud. Multiple Objective Decision Making Methods

and Applications. Springer-Verlag New York, Inc., 1979.

[50] I-Hong Hou and V.S. Borkar and P.R. Kumar. A Theory of QoS for Wireless.

In IEEE INFOCOM 2009, pages 486–494, April 2009.

160
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