

OBSERVABILITY DRIVEN PATH GENERATION FOR DELAY TEST

A Thesis

by

AVIJIT CHAKRABORTY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Duncan M. H. Walker
Co-Chair of Committee, Weiping Shi
Committee Members, Jiang Hu

Head of Department, Miroslav Begovic

December 2015

Major Subject: Computer Engineering

Copyright 2015 Avijit Chakraborty

ii

ABSTRACT

This research describes an approach for path generation using an observability

metric for delay test. K Longest Path Per Gate (KLPG) tests are generated for sequential

circuits. A transition launched from a scan flip-flop (SFF) is captured into another SFF

during at-speed clock cycles, that is, clock cycles at the rated design speed. The

generated path is a ‘longest path’ suitable for delay test. The path generation algorithm

then utilizes observability of the fan-out gates in the consecutive, lower-speed clock

cycles, known as coda cycles, to generate paths ending at a SFF, to capture the transition

from the at-speed cycles. For a given clocking scheme defined by the number of coda

cycles, if the final flip-flop is not scan-enabled, the path generation algorithm attempts to

generate a different path that ends at a SFF, located in a different branch of the circuit

fan-out, indicated by lower observability. The paths generated over multiple cycles are

sequentially justified using Boolean satisfiability. The observability metric optimizes the

path generation in the coda cycles by always attempting to grow the path through the

branch with the best observability and never generating a path that ends at a non-scan

flip-flop.

The algorithm has been developed in C++. The experiments have been

performed on an Intel Core i7 machine with 64GB RAM. Various ISCAS benchmark

circuits have been used with various KLPG configurations for code evaluation. Multiple

configurations have been used for the experiments. The combinations of the values of K

[1, 2, 3, 4, 5] and number of coda cycles [1, 2, 3] have been used to characterize the

iii

implementation. A sublinear rise is run time has been observed with increasing K values.

The total number of tested paths rise with K and falls with number of coda cycles, due to

the increasing number of constraints on the path, particularly due to the fixed inputs.

iv

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude and respect for my M.S. committee

chair Dr. Duncan M. (Hank) Walker. I would like to thank him for his guidance,

encouragement, support and patience throughout the course of the work. I want to thank

him for having the faith in me and providing me with all the support and suggestion for

all my work.

I am grateful to my M.S. committee Co-Chair Dr. Weiping Shi and committee

member Dr. Jiang Hu. I would like to extend my gratefulness for their encouragement

and support.

I would also like to thank all the faculty and staff members in both the

departments of Electrical and Computer Engineering, and, Computer Science and

Engineering for making my experience with Texas A&M University so special.

I want to thank all my friends and colleagues for making this journey so

wonderful and enjoyable.

Finally, I would like to thank my parents for their love and support. And a special

thanks for my wife for all the support and constant encouragement throughput the whole

journey.

v

TABLE OF CONTENTS

Page

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. . v

LIST OF FIGURESvii

LIST OF TABLES .. .x

1. INTRODUCTION .. 1

1.1 Path Delay Test .. 1
1.1.1 Delay Test Problem .. 2
1.1.2 Path Sensitization ... 4
1.1.3 Robust and Non-Robust Path Delay Test ... 5

1.2 Scan Based Delay Test ... 6
1.2.1 Muxed-D Scan Approach ... 8
1.2.2 Enhanced-Scan Design ... 9

1.3 At-Speed Scan Test Clocking Schemes ... 11
1.3.1 Launch on Shift .. 11
1.3.2 Launch On Capture .. 12

1.4 KLPG Algorithm .. 13
1.4.1 Pseudo Functional KLPG ... 16

1.5 Boolean Satisfiability ... 18
1.5.1 Use of SAT in CodGen .. 19

1.6 Structure of the Thesis.. 20

2. MOTIVATION .. 21

2.1 Scan Architecture for SOC ... 21
2.2 Path Generation in CodGen ... 22

2.2.1 Clocking Scheme ... 22
2.2.2 Observability Driven Path Generation in Coda Cycles 23

2.3 Related Prior Work... 24

3. IMPLEMENTATION .. 25

3.1 Path Generation Strategy in KLPG Algorithm .. 25
3.2 CodGen Functions for Gate Processing ... 27

vi

3.2.1 Circuit Verilog Parsing .. 27
3.2.2 Gate Delay Assignment ... 28
3.2.3 Fan-In/Fan-Out Cone .. 28
3.2.4 Circuit Initialization .. 29

3.3 Path Generation Aiming the Scan Sequential Element .. 30
3.4 Time-frame Expansion ... 31
3.5 Final Justification ... 33

4. CODA CYCLE PATH GROWTH .. 35

5. RESULTS ... 39

5.1 CodGen Run Time and Path Generation Results ... 39
5.2 Path Pool Reordering in Coda Cycle ... 46
5.3 CodGen Run Time Profile ... 49

6. CONCLUSIONS AND FUTURE WORK .. 51

REFERENCES ... 53

APPENDIX – I ... 58

vii

LIST OF FIGURES

Page

Figure 1. Delay Fault in Combinational Circuit [4] ... 2

Figure 2. Delay Specification of a Circuit .. 3

Figure 3. Untestable Path ... 4

Figure 4. Propagation of Transition with Path Sensitization [5] .. 5

Figure 5. Muxed-D Scan Cell [4] ... 7

Figure 6. Scan Design Architecture ... 8

Figure 7. Muxed-D Scan Design [4] .. 9

Figure 8. Enhanced-Scan Design [4] .. 10

Figure 9. Launch on Shift Clocking Scheme [4] .. 12

Figure 10. Launch on Capture Clocking Scheme [4] ... 13

Figure 11. Flow-Chart of KLPG Algorithm [4] ... 14

Figure 12. Delay Test Induced DC Droop in Power Supply [22] 17

Figure 13. Clock Diagram of Pseudo Functional KLPG test [23] 17

Figure 14. Inclusion of Coda Cycles for At-Speed Delay Test .. 23

Figure 15. Path Generation using Esperance and Observability Metric in Sequential
Circuit ... 26

Figure 16. KLPG Search Space [4][23] .. 28

Figure 17. SCOAP Metric Calculation [5] ... 30

Figure 18. Time-frame Expansion for Delay Test [4] .. 32

Figure 19. Conflict in Logic State Assignment [4] .. 33

Figure 20. Path Generation Algorithm for Multiple At-Speed Cycles............................. 35

Figure 21. Modified ISCAS89 S27 Benchmark Circuit .. 36

viii

Figure 22. Run Time for s1488 .. 40

Figure 23. Generated Paths for s1488 .. 40

Figure 24. Relative Increase in Number of Paths with Increasing K Value 41

Figure 25. Run Time for CodGen on ISCAS89 Benchmark Circuits 43

Figure 26. Run Time of CodGen on ISCAS89 Benchmark Circuits 45

Figure 27. Longest Testable Path Length over Multiple Coda Cycles 46

Figure 28. Path Pool Reordering in Coda Cycle .. 47

Figure 29. Partial Path Pool Expansion in CodGen ... 48

Figure 30. CodGen Run Time Profiling for s38584 ... 49

Figure 31. CodGen Run Time Profiling across Multiple Run Configurations 50

Figure 32. # Paths generated for s1494 .. 58

Figure 33. Run Time for s1494 .. 58

Figure 34. # Paths for s1423 ... 59

Figure 35. Run Time for s1423 .. 59

Figure 36. # Paths for s5378 ... 60

Figure 37. Run Time for s5378 .. 60

Figure 38. # Paths for s9234 ... 61

Figure 39. Run Time for s9234 .. 61

Figure 40. # Paths for s13207 ... 62

Figure 41. Run Time for s13207 .. 62

Figure 42. # Paths for s15850 ... 63

Figure 43. Run Time for s15850 .. 63

Figure 44. # Paths for s38584 ... 64

Figure 45. Run Time for s38584 .. 64

ix

Figure 46. # Paths for s38417 ... 65

Figure 47. Run Time for s38417 .. 65

x

LIST OF TABLES

Page

Table 1. Relative Increase in Number of Paths with Increasing K Value 41

Table 2. CodGen Run for Configuration: K=1, CYC=1 .. 42

Table 3. CodGen Run for Configuration: K=1, CYC=2 .. 44

Table 4. CodGen Run for Configuration: K=1, CYC=3 .. 45

Table 5 Run Time and Generated Paths for s1494 ... 58

Table 6 Run Time and Generated Paths for s1423 ... 59

Table 7 Run Time and Generated Paths for s5378 ... 60

Table 8 Run Time and Generated Paths for s9234 ... 61

Table 9 Run Time and Generated Paths for s13207 ... 62

Table 10 Run Time and Generated Paths for s15850 ... 63

Table 11 Run Time and Generated Paths for s38584 ... 64

Table 12 Run Time and Generated Paths for s38417 ... 65

1

1. INTRODUCTION

1.1 Path Delay Test

Delay test is used to verify the performance of a circuit against its timing

specification. The test is designed to test the delay faults which impact the performance

of the circuit. This delay can be modeled in various ways. One of the ways is to use a

path delay fault model [1] [2] [3]. This model detects both local and distributed faults. A

path is generated starting from a Primary Input (PI) or a Pseudo Primary Input (PPI) by

traversing through the fan-out cone of a gate and ending at a Primary output (PO) or a

Pseudo Primary Output (PPO). The delay test is a scan-based test [4]. The sequential

elements in a circuit are connected serially to form a scan chain. These sequential

elements provide direct access to the PPI (the output node of a SFF) and PPO (the input

node of a SFF). Delay test requires a transition to be launched from a PPI and captured

at a PPO. The input of a gate on which such transition is appears is called the on-path

input and the remainder of the inputs are called side inputs [5]. In the path delay fault

model, the path is said to have a delay fault if the delay of the arrival time of the

transition at the capture point exceeds the specified time. The delay of the path is the

propagation delay over all the gates on the path. A variety of studies have been done to

test delay faults in the circuit [6] [7] [8] [9] [10]. It is intuitive that the path with

maximum delay would be the longest path. Hence, to test a delay fault in a circuit, a

longest path is generated for the test.

2

The total number of paths in a circuit has exponential dependency on circuit size.

Identification of longest sensitizable paths through each gate or line is extremely

difficult. To maintain tractability of a test, K Longest Paths Per Gate (KLPG) are

generated in [11]. Tests generated on these paths cover both local delay defects [11]

caused by a slow gate and global process variation [12] where more than one path

through a gate can be slower than nominal performance.

1.1.1 Delay Test Problem

Figure 1 below illustrates the basic concept of the delay fault. A pair of signal

vectors (v1, v2) are applied to the inputs of the circuit (x1, x2, and x3). These vector

pairs launch the transition onto the gates. The first vector is called the initialization

vector and the second vector is called the test vector. The delay through the individual

gates are marked in time units on each gate. The output of the circuit (y) is expected to

see a rising transition after seven time units according to the specified propagation

delays from individual gates.

Figure 1. Delay Fault in Combinational Circuit [4]

3

An additional delay on the path leading to y would delay the rising transition

beyond seven time units. Figure 2 illustrates the transitions on input and output of a

circuit with specified propagation delay. The shaded region in the figure is called the

transition region. The input and output signals are allowed to change states within this

region to meet the timing specification of the circuit.

Figure 2. Delay Specification of a Circuit

Any additional delay on the path leading to the output can move the signal

outside of the transition region. In case of the circuit in Figure 1, if the timing

specification is eight time units and the inverter delay becomes four time units, then the

rising transition at the output will occur after nine time units. In such a scenario, the path

would experience a delay fault.

A circuit has various paths. The delay of a path depends on the number of gates

and the fan-out of such gates. The path with the largest delay is called the critical path.

The critical path determines the maximum attainable speed of operation. A delay fault is

4

registered in the circuit when one or more paths experience a delay which is more than

one clock cycle.

1.1.2 Path Sensitization

“A path is said to be testable if a rising/falling transition can propagate from the

primary input to the primary output associated with the path, under certain sensitization

criteria” [13][14][15][16][17][18]. If such sensitization cannot be achieved, the path is

said to be untestable or a false path. In order to propagate a transition from one of the

inputs of a gate to its output, all other inputs must have non-controlling values [4].

Figure 3 illustrates the concept of path sensitization for the path a-c-d.

Figure 3. Untestable Path

To propagate a transition launched at node a, the side-input b of the OR gate

needs to be at logic state 0. However, in order to advance the propagation from the

output of the OR gate (node c), the AND gate side-input (which is also node b of the OR

gate) needs to be at logic state 1. Clearly, both the gates cannot be sensitized

simultaneously. Hence the path a-c-d cannot be tested for a delay fault.

5

 1.1.3 Robust and Non-Robust Path Delay Test

A path can be classified as ‘robustly testable’ or ‘non-robustly testable’ based on

the sensitization criterion. A robust path delay fault test is one in which the delay fault is

detected irrespective of any other delay faults that may exist in the circuit. However, a

non-robust path delay fault test would detect a fault on a path only in absence of any

other delay faults in the circuit.

Figure 4. Propagation of transition with path sensitization [5]

Figure 4 illustrates how the presence of faults on a different path in the circuit

can mask the fault on the targeted path. All inputs and outputs of the circuit are

considered to be synchronized with respect to a clock signal and the clock period T =7

time units. Any path having more than seven time units ofdelay will register a delay

fault. The propagation delay values of the individual gates are shown within their

individual structures. It can be seen that the path P3 is the critical path. If all three paths

in the circuit (p1, p2, p3) experience time delay of more than seven time units, then the

6

entire waveform will be shifted to the right side and upon observing the output at T=7, a

fault will be detected. Now, if P1 is not faulty and P2, P3 are faulty, no fault will be

observed at T=7 at the output. Hence, the presence of fault P2 invalidates the fault on the

critical path P3. Clearly, the fault on P3 cannot be tested in the presence of other faults

in the circuit (a fault on P2 in this case). For the non-robust test, conditions of static

sensitization should be satisfied along with the condition that the test vector pair will

produce the required transition at the start of the path under test [4].

1.2 Scan Based Delay Test

Scan design is one of the most widely used approaches in design-for-test. The

key feature of scan-based design is the formation of a scan chain. A selected set of the

sequential elements in a circuit are connected serially to form this scan chain. Each such

element is called a Scan Flip-Flop (SFF). These SFF elements provide direct access to

the Pseudo Primary Inputs (PPI: the output node of a SFF) and Pseudo Primary Outputs

(PPO: the input node of a SFF). A regular sequential element is converted into a SFF by

adding a multiplexer (MUX) at the data input. Figure 5 illustrates the structure of a SFF.

It includes a D-type Flip-flop (FF) and a 2:1 MUX.

7

Figure 5. Muxed-D Scan Cell [4]

The scan design utilizes three main signals related to scan operation. The scan

input (SI), the scan output (SO) and the scan enable (SE). The SO port of a scan cell is

connected to the SI port of the next scan-cell to form the scan chain.

The scan design operates in three modes: normal mode, shift mode and capture

mode. First, the scan enable (SE) signal is asserted and the test vector is shifted into the

SFFs. This is done at a slow scan clock frequency, typically ten times slower than

functional speed. Then the SE is de-asserted and the circuit is put into functional

(normal) mode to launch the test vector. One or more at-speed capture cycles (in normal

mode) are used to capture the response of the circuit into a SFF. After the at-speed

cycles, SE is again asserted to shift the captured response out through the scan chain.

Figure 6 illustrates the scan chain architecture. The SE signal and the MUX

structures are not shown explicitly. All the SFFs are clocked with a scan clock (SCLK).

The SO port in the figure connects to next set of SI ports.

8

Figure 6. Scan Design Architecture

In a chip, multiple scan chains are formed to maintain the overall time required to

load and shift the scan patterns. The following illustrates two different forms of scan

design: Muxed-D Scan Approach and Enhanced Scan Approach.

1.2.1 Muxed-D Scan Approach

Figure 7 shows the example of a Muxed-D Full Scan Design. The DI (data

input) port of each of the SFFs is connected to the PPOs of the combinational logic (also

known as DUT: Design Under Test). The scan chain is formed according to the

description in the previous section. The Q (output) port of each of the SFFs is connected

to the DUT as a PPI. The PI (X1, X2, and X3) and PO (Y1, Y2) of the DUT act as the

functional signals.

9

Figure 7. Muxed-D Scan Design [4]

The PI signals are driven by functional upstream logic. The functional output

signals (PO) are directly observed as a set of parallel signals while the set of PPO signals

are observed through the scan chain. SE is asserted to put the design in scan mode. The

SI is shifted into the SFF. After shift is complete, SE is de-asserted and the DUT is put

into functional mode. SE is asserted again to capture the response of the DUT.

1.2.2 Enhanced-Scan Design

Delay test utilizes a pair of vectors to launch a transition that is captured at a SFF

at functional speed (At-Speed). The nature of the vector pair is kept arbitrary to

maximize delay fault detection capability. This is achieved with the help of Enhanced-

Scan Design as shown in Figure 8.

10

Figure 8. Enhanced-Scan Design [4]

Unlike Muxed-D scan design, two bits of data can be simultaneously applied to

the DUT from a SFF. An additional D-Latch is added in order to achieve this feature in

the Muxed-D scan design. In order to apply a vector pair (v1, v2) to the DUT, v1 vector

is first shifted into the SFFs and then stored into the D-Latches. The UPDATE signal

controls this additional set of latches to store the vector. The second vector v2 is then

shifted into the SFF, keeping UPDATE low. After the v2 vector has been shifted in,

UPDATE is asserted to change the latch contents from v1 to v2, launching the transition

into the DUT. The DUT response is captured in the SFFs.

The main advantage of this architecture is better delay fault coverage by

application of arbitrary vector pairs. However, this implementation results in area and

delay overhead due to the addition of one extra latch per SFF. The timing between the

UPDATE and clock signal may also lead to complexities. Another disadvantage is

11

activation of false paths [4] instead of functional data paths, which can cause overtesting

[4]. Several clocking schemes [4] [19] [20] can be employed to address this

disadvantage.

1.3 At-Speed Scan Test Clocking Schemes

At-speed scan architecture enables testing a DUT for it function timing

specification. A DUT can consist of multiple clock domains. The clock domains can

either be synchronous or asynchronous with respect to each other. Two clock domains

are classified as synchronous if the triggering edges of the clocks from these domains

can be precisely aligned. In case this alignment is not possible, the clock domains are

said to be asynchronous.

There are primarily two clocking schemes for testing inter- and intra-clock

domain at-speed faults: (1) Launch-On-Shift (LOS) and (2) Launch-On-Capture (LOC).

The following explains the working principle of these two clocking schemes.

1.3.1 Launch on Shift

In this clocking scheme [4], also known as skewed load, the last shift clock pulse

is followed immediately by a capture clock pulse to launch the transition and capture the

output test response, respectively. The second capture clock pulse is run at the functional

targeted frequency, that is, the at-speed frequency. This scheme requires the SE signal to

switch very fast, between the launch and the capture clock pulse. This requires the SE

signal to be timed at the functional frequency, e.g. a second clock network.

12

Figure 9. Launch on Shift Clocking Scheme [4]

1.3.2 Launch On Capture

The launch on capture clocking scheme is also known as broadside or double

capture mode. It uses two consecutive capture cycles to launch the transition and capture

the output response respectively. This scheme does not impose any speed requirement on

the SE signal, unlike the LOS scheme. Once the test vector is loaded, SE is de-asserted.

Subsequently, the launch and the capture cycles are applied. The LOC scheme typically

requires more test vectors and has lower fault coverage compared to the LOS scheme.

However, LOC is used more than LOS in high-speed circuits because of relaxed timing

on the SE signal.

13

Figure 10. Launch on Capture Clocking Scheme [4]

Several other clocking schemes are available to aid scan designs. Clock domain

grouping is utilized to reduce test time and power in scan mode. One-hot clocking and

staggered clocking are two such clocking schemes.

1.4 KLPG Algorithm

The KLPG algorithm [21] aims at generating K longest paths through each

gate/line in a combinational circuit. A complete path starts at a launch point and ends at

a capture point. A launch point is a PI or a PPI and the capture point is a PO or a PPO.

The algorithm generates a path by adding one gate at a time, starting at a PI or a PPI. A

partial path is a path which has originated at the launch point but has not reached the

capture point. In the path generation phase of the algorithm, the partial paths are

initialized from the launch point. Both rising and falling transition faults are tested

through a gate or line. A delay metric called Esperance is used to calculate the upper

bound of the delay of a partial path. Esperance is calculated as the sum of the delay of

14

the partial path and the PERT delay from its last node to a capture point. “In other

words, the Esperance of a partial path is the upper bound of its delay when it becomes a

complete path that reaches a capture point. [4]” a flow chart of the algorithm is shown in

Figure 11.

Figure 11. Flow-Chart of KLPG Algorithm [4]

The KLPG algorithm has three main segments. The path initialization, path

growth and path justification. Before a path can be generated, the SCOAP measures [5]

of all the gates in the circuit are calculated. The gate connectivity in the circuit is

processed and the gates are levelized [5] according to the distance from the PI. The

distance of a gate from a PI node is calculated from the maximum of the distance of the

gate through its all the input pins. The levelization ensures proper calculation of PERT

15

delay [5], Controllability and Observability measures. The fan-in and fan-out-cones of

individual gates are also calculated in order to derive the SCOAP measures. The

controllability is a measure of how easy it is to set the logic level of a node in a circuit to

a known state ‘0’ or ‘1’. The observability is a measure of how easy it is to observe the

state of a node in the circuit. It is intuitive that the controllability for a node is smaller if

it is nearer to a PI or a PPI. Similarly, the observability of a node is smaller if it is nearer

to a PO or a PPO. The algorithm calculates the controllability of a gate according to its

level in the circuit. The PI and PPI nodes are given a controllability of ‘1’.

Controllability of all lower level gates are calculated first before moving to the next level

of gates in the circuit. Similarly, the observability is calculated in the opposite order of

the level of gates. The PO and PPO nodes are given an observability of ‘0’ and the

observability of lower level gates are calculated accordingly.

The next main step is the path generation. One gate is added to the growing path

that started at a PI or a PPI, in each iteration. If a gate has multiple fan-outs, the partial

path splits at that point to different branches. A pool is maintained to store these partial

paths. In each iteration of path growth, the path with maximum Esperance value is

extended by adding one more gate to it. This new partial path gets stored again into the

path pool and checked for Esperance value before growing it, in the next iteration. Every

time a gate is added to the partial path, constraints are added to the inputs of that gate.

To ensure propagation of launched transition through the gate, non-controlling values [5]

on the side inputs are checked. Direct implication is run to propagate such sensitization

constraints throughout the circuit. In case direct implication fails, the partial path is

16

removed from the partial path pool. If the partial path becomes a complete path, Final

Justification is run on the path to define the transition vector. This procedure is repeated

until sufficient paths are generated through the gate or the line as defined by the K value.

Compaction of the test vectors is carried out to reduce the number of test

patterns. The compaction can either be static or dynamic. All independent test vectors

are generated before the compaction is carried out in static compaction. The compaction

process does not require any circuit analysis, so is fast. In dynamic compaction,

compaction is performed as paths are generated. This approach produces fewer test

patterns, but at the cost of more memory to store a pattern pool, and justification to

check if paths can be compacted into the same pattern. The KLPG algorithm has been

implemented in CodGen for this work.

1.4.1 Pseudo Functional KLPG

During the time between switching from scan mode to functional mode, when the

SE signal is switching, the off-chip currents in the power grid attain a quiescent state.

When the at-speed launch and capture cycles are applied, the current demand drastically

increases. The off-chip inductance prevents a sudden current increase on the pins, so the

current must be supplied by on-chip power grid capacitance. The dI/dt phenomenon

causes the power grid to experience voltage droop. This causes the chip to perform at a

speed lower than the functional specification. This situation can lead to false test

failures. Delay test induced droop on the power grid is illustrated in Figure 12.

17

Figure 12. Delay Test Induced DC Droop in Power Supply [22]

The solution to this problem is to apply a number of medium speed preamble

cycles to ramp the off-chip currents up to functional levels. These preamble cycles filter

out most non-functional states, so a test using them is termed a pseudo functional KLPG

test (PKLPG) [21]. Figure 13 depicts the generic PKLPG scan clocking scheme.

Figure 13. Clock Diagram of Pseudo Functional KLPG test [23]

The SE signal is asserted during scan-in and scan-out operation to shift-in the test pattern

and shift-out the test response respectively.

18

1.5 Boolean Satisfiability

Boolean satisfiability (SAT) has extensive use in the field of Electrical Design

Automation (EDA) for circuit verification and testing. SAT solvers typically represent

the circuit in Conjunctive Normal Form (CNF) [24]. Techniques such as Boolean

Constraint Propagation (BCP) [25] and backtracking with conflict analysis learning have

helped developing highly efficient CNF-based SAT solvers.

Boolean or propositional-logic expressions are built using variables, constants

and operations such as AND, OR and NOT. The constants are represented in the

Boolean form as either true or false. The satisfiability problem is constructed by setting

truth assignment (assignment of ‘0’ or ‘1’ value to each of the variables) to the variables

that make the value of the function ‘1’. Hence the main goal is to derive the assignment

of variables that makes the functional value a true (‘1’). The problem of satisfying a

CNF formula using SAT is NP-complete, so heuristics are used to speed up the solver.

The CNF for a function is expressed in terms of individual clauses which are

combined with an AND operation. Each clause is represented as an OR of literals. A

literal can either be a variable or the negation of that variable. For example, the operation

AND can be expressed as Z = X·Y. The CNF representation for Z will be

(~Z+X)(~Z+Y)(~X+~Y+Z). The solution space will be the values of X, Y and Z such that

the formulated equation has a value of ‘1’. The clause with 2 variables is called 2CNF

and can be solved in polynomial time. The clause with 3 variables is called 3CNF and it

is a NP-complete problem. An XOR relationship between variables in a clause is

handled as a system of linear equations and solved in cubic time.

19

Application of SAT for test vector generation in ATPG experiences the difficulty

of incorporating real delay values. A mix of structural and functional test approach has

been implemented in [26] to alleviate this problem. In this implementation, the paths are

generated with a structural approach and SAT is used for the path justification. A variety

of approaches have been discussed in the literature to speed up the SAT solver. Dynamic

SAT Solving (DSS) structural information of a circuit is used by the SAT engine to

improve solution time [26]. CNF based SAT solver has an inherent issue of loss of

circuit structural information during the CNF formation. Structural information like

direction of gates and Circuit Observability Don’t Cares (Cir-ODC) are potentially

useful in the solution process. The approach of utilizing the Cir-ODCs is explained in

[26]. In this approach, the Cir-ODCs are identified prior to the SAT solving step. The

decision heuristics, BCP and the conflict driven procedures are adjusted according to this

information.

1.5.1 Use of SAT in CodGen

MiniSAT [27] is an open source SAT solver used in CodGen. SAT is used in the

final justification and dynamic compaction stages of the KLPG algorithm. Final

justification is run on a complete path for all the values assigned to the gates (necessary

assignments). Since the LOC clocking scheme utilizes a vector pair for launching the

transition, two variables are used for SAT solving in two time frames. For pseudo

functional KLPG, more than two variables are required for the solution, due to the

20

separate input values on each clock cycle. In the case of fixed PIs, as is typical in low-

cost testers, only one Boolean variable is required across all the time frames.

1.6 Structure of the Thesis

In this thesis we propose an Observability driven path generation methodology

for at-speed delay test. The proposed approach is useful in path growth beyond the at-

speed cycles for a design in which not all flip-flops are part of the scan chain. The

observability metric driven path growth ensures the generation of a complete path

ending at a SFF.

The thesis is organized as following. In section 2, we present the motivation

behind the work. Section 3 describes the implementation of the observability based path

generation strategy in a modified KLPG algorithm. Section 4 discusses the results of the

experiments on various ISCAS89 benchmark circuits. Section 5 concludes the research.

21

2. MOTIVATION

2.1 Scan Architecture for SOC

Modern microprocessors embed billions of transistors on a single die. The

methodology and complexity of testing a design of such scale is mindboggling. Silicon

real estate required to carry out such complex test of circuits can be a sizable percentage

of the die area [28]. Scan design is one of the most preferred techniques for on-chip

testing. The sequential elements are converted into SFF. The SFF cells are connected

serially to form scan chains. Several scan chains can be formed on a chip to limit the

total number of SFF on a single chain. The amount of time required to load the chain

with the test vector and shifting the response through the entire length of the chain can

take up to thousands of functional clock cycles. Clearly, shorter and fewer scan chains

on a chip is desirable. It saves area and test time which directly impacts the bottom line

for a product.

At-speed delay test utilizes a pair of SFF. A transition is launched from one and

the response of the DUT is captured in the other. The number of at-speed cycles and

timing relation of SE signal with respect to test mode enable signal of the chip is defined

by the test architecture. To ensure a proper capture of the test response from the DUT

into a SFF, all the SFF should be part of the scan chain and should accommodate the

total number of at-speed cycles before SE is asserted to shift out the test response. If

some of the sequential elements in the design are not part of the scan chain, the test

22

response may not get captured to be shifted out on the SO signal. This results in fault

coverage loss.

2.2 Path Generation in CodGen

The current CodGen pseudo functional KLPG system generates longest paths

over multiple at-speed cycles. Esperance of the partial path determines the branch of the

fan-out cone through which the path grows. This metric is applicable for the at-speed

cycle to ensure that the path is longest. The designation of a path as complete is

determined by the termination point of the path at the input port of a SFF. (Low cost

testers do not capture PO outputs). The current implementation assumes that all

sequential elements (FF) in the design are SFFs. Hence, a path is designated as

complete, even if the sequential element at the end of the path is not a SFF. In reality,

this generated path would be a false path, since the test response captured in this FF

would not get shifted out through the scan chain.

2.2.1 Clocking Scheme

In order to move the response captured in a FF to a SFF, a number of lower than

at-speed cycles are added after the capture cycles before asserting the SE signal. These

cycles are known as the coda cycles. The timing of these cycles is such that circuit delay

does not need to be considered in these cycles. Figure 14 illustrates the clocking scheme

for such implementation.

23

Figure 14. Inclusion of Coda Cycles for At-Speed Delay Test

The coda cycles ensure that the transition from the at-speed cycle can still be

captured into a SFF in the event that the FF capturing the transition in the last at-speed

cycle is not part of the scan chain. A minimum amount of scan infrastructure needs to be

in place to ensure the coverage goal. For a given clocking scheme in terms of number of

coda cycles, if the design incorporates less than the critical level of scan elements, the at-

speed transition cannot be captured with the help of a designated number of coda cycles.

2.2.2 Observability Driven Path Generation in Coda Cycles

The path generated in the at-speed cycle needs to be longest for delay test.

However, in the case of a coda cycle, the path starting at the first capture flip-flop, need

not be a longest one. The main objective of this path is to transfer the captured value to a

SFF. This is implemented using observability of a gate as a metric in growing the path in

the coda cycle. Observability based path generation ensures that the most observable

path is generated first in the coda cycle. This path will be the most compatible with the

necessary assignments of the tested path. Esperance based path growth does not

differentiate between a scan and a non-scan flip-flop. Hence, it can report a path in a

24

coda cycle that ends at a non-scan element, which will essentially be a false path. In the

same scenario, the observability metric determines the path to be un-observable by

assigning infinite observability (a lower observability value means the line is more

observable) for a non-scan flip-flop, forcing the search process to consider an alternate

path.

2.3 Related Prior Work

The KLPG algorithm is described in detail in [11]. The algorithm generates K

Longest Paths per Gate for both combinational and sequential circuits. The extension of

the KLPG algorithm over multiple cycles is described in [23]. The process of longest

path generation is replicated across all the clock cycles. Esperance is used to determine

the longest path in all of these cycles. Test pattern generation using a SAT engine for

justification is described in [29]. The work described here builds on top of these prior

ATPG tools. The overall name given to these tools is CodGen, since it targets combined

local/global delay defects.

Critical path tracing methodology is discussed in [30]. A hybrid scan-based

technique has been proposed in [31]. It uses controllability measure to control a subset of

the scan cells using either LOS or LOC clocking scheme. The paper enumerates the

saving in scan enable design effort. However, it does not evaluate the path generation

using the proposed scheme.

25

3. IMPLEMENTATION

3.1 Path Generation Strategy in KLPG Algorithm

The KLPG algorithm implemented in CodGen is capable of generating longest

paths over multiple at-speed cycles [23]. It utilizes an Esperance metric to ensure that

the generated path is longest for delay test. The current implementation incorporates

preamble cycles followed by multiple at-speed cycles. All the sequential elements in the

circuit are assumed to be SFF. Hence it does not distinguish between a SFF and a regular

FF. We have extended the clocking scheme to incorporate the coda cycles. The

enhancement also incorporates the observability metric for path generation in the coda

cycles. Hence, the different clock modes are distinguished with respect to the path

generation metric. The clocking modes implemented in CodGen are illustrated in Figure

14.

The sequential elements have been extended with a field to differentiate the cell

to be a SFF or a regular FF. The implementation ensures that the path generated in the

at-speed cycle remains the longest but the path growth in consecutive coda cycles is

driven by the observability metric rather than the Esperance value. The code also

ensures that no path is generated if the last capture flop on the path is a non-scan flip-

flop. Any intermediate non-scan flip-flop is considered as a regular flip-flop with infinite

observability but does not result in dropping of the path from the partial path pool. The

algorithm works for as many coda cycles as specified. A search tree for the path is

shown in Figure 15.

26

Figure 15. Path Generation using Esperance and Observability Metric in
Sequential Circuit

One of sequential elements is marked as a non-scan regular FF. All the gates in

the fan-in cone of this FF see infinite observability coming from the PPO. In case of a

generated path for a given number of coda cycles, if this FF acts as the terminating PPO,

the path is discarded instead of being reported as a complete path. If this FF is one of the

intermediate sequential elements on the path, the corresponding branch is considered at

the last decision point for partial path growth, only after all other branches from its fan-

in gate has already been tried for path growth.

The enhanced implementation works with as many coda cycles as specified in

the clocking method. The path generation step is followed by justification in the same

manner it is carried out for the at-speed cycles.

The following section elaborates on the steps involved in the path generation

using the KLPG algorithm.

27

3.2 CodGen Functions for Gate Processing

3.2.1 Circuit Verilog Parsing

CodGen uses a Verilog netlist of the circuit to create an in-code circuit

representation in the form of the connections between the gates. The logical gates (AND,

OR, NAND, NOR, XOR, XNOR, NOT, BUFF, MUX, etc.) are defined in the Gate

class. The TruthTable of each of these gates describes the logic operation for each of

these gates. The sequential elements are described in a separate Verilog file which

groups the FFs in terms of the scan chain. An additional file containing scan cell

attributes has been implemented in this work to designate the FF cell as a SFF. This

scan-cell-attribute file is parsed along with the Verilog files and the corresponding field

in the gate object in the code is updated accordingly. This field (SC) is utilized by the

observability calculation program to propagate the observability in the fan-in cone of

any object of the Gate class.

Each of the gates in the circuit is given a GateID. The PI, PPI, PO and the PPO

nodes are also treated as gates in the Gate class to streamline the path generation. The

net connected to the output of the gate acts as the NETID. This NETID, in turn, gets

stored as input net of one or more gates in the fan-out cone of this gate. The gates are

levelized [5] according to the distance of the gate from the input and output nodes (both

primary and pseudo primary type) of the circuit. The levelization ensures correct SCOAP

measure [5] calculation in the following stages.

28

 3.2.2 Gate Delay Assignment

CodGen can assign realistic delay for a given gate in the circuit for both rise and

fall transition at the output node if a SDF delay file is provided as a part of the input files

to the code. In absence of such delay file, a unit-delay-model is utilized to assign gate

delays.

3.2.3 Fan-In/Fan-Out Cone

Fan-in and fan-out cones of each gate are calculated in order to create the in-code

circuit structure. The search space in the KLPG algorithm in the form of the fan-in and

fan-out cones is shown in Figure 17.

Figure 16. KLPG search space [4][23]

The fan-in and fan-out paths are the search space of the gate g in the figure. The

line through the cones are designated as on path [5]. The paths outside this search space

provide side input [5] values.

29

The fan-in and fan-out cone of gates are calculated in the same manner in case of

multiple at-speed and coda cycles. This is illustrated in Figure 17(b). Proper side input

assignments are necessary over multiple time-frames [4] for correct propagation of the

transition launched at the PPI.

3.2.4 Circuit Initialization

Controllability and Observability of the gates are calculated in this step.

Controllability is defined as ease of controlling a node in a circuit to a logic level of ‘0’

and ‘1’. The combinational controllability metrics are denoted as CC0 and CC1

accordingly. The PI and the PPI nodes are assigned CC0 and CC1 values of ‘1’ since

these nodes can be directly controlled. The CC0 and CC1 metrics of all subsequent

gates, in the level order, in the circuit are then defined according to the logic of the gate.

It should be noted that the controllability measures of the input of a gate at a given level

is measured only when all the lower level gates have already been assigned with the

controllability values for all of their input nodes. This ensures a correct calculation of

such metric. In case of observability metric, the calculation starts at a PO or a PPO.

Observability of ‘0’ is assigned to these nodes. The observability function implemented

as an enhancement in this work stores the combinational observability (CO) of both

input and output nodes of a gate. The output CO is used for the gate observability while

the input node CO values are used to define the same for a gate in the fan-in cone which

has more than one fan-out. The CO of a gate with more than one fan-out is defined as the

minimum of the CO values from all of its fan-out cone gate inputs. The observability

30

function assigns infinite observability for a PPO of a non-scan FF. The infinite value is

accordingly propagated to all the fan-in cone gates of the non-scan FF. Figure 16

illustrates the SCOAP measures of a representative circuit.

Figure 17. SCOAP Metric Calculation [5]

The level of the gates from PPOs is represented as numbers inside a square. Each

gate has an identifying number in it. The notation (CC0,CC1)CO is used to list CC and

CO values for each line in the circuit.

3.3 Path Generation Aiming the Scan Sequential Element

Previous versions [11] [23] of the KLPG algorithm attempted to generate paths

through all the gates. We consider paths starting at a SFF for at-speed scan test. Hence

the path generation aims at generating a path starting from a SFF. The function

31

AimingPathGen generates a partial path pool which keeps the record of the path which

gets expanded in an iterative manner by adding one gate each time to the partial path,

from the fan-out cone of the last gate of the partial path. Both the rising and falling

transitions through a gate are used to grow a path. The total number of iterations for each

transition from a SFF is given by K·j wherein K is the number of paths per gate targeted

for path generation and j is the total number of fan-out stems of the SFF.

The partial path pool is always sorted according to the Esperance value of the

partial paths. It ensures that each iteration always uses the partial path that is most

eligible to become a longest complete path. When a PPO gate is added to one of such

partial paths, it becomes a complete path and it is removed from the partial path pool.

The path is reported after successful final justification.

3.4 Time-frame Expansion

The test pattern generation is implemented in CodGen uses a time-frame

expansion methodology. A Boolean gate-level model [4] of the circuit is generated in

this method to generate the tests using a combinational ATPG method. The

combinational part of the circuit is expanded in time by using the logic twice for a pair

of time frames. The vector pair of the delay test, is applied to the expanded circuit. The

two time frames are denoted as frame -1 and frame 0. The circuit block corresponding

to frame 0 receives its input from the response of frame -1. Figure 18 illustrates the

concept of using time frame expansion used for LOC scheme.

32

Figure 18. Time-frame Expansion for Delay Test [4]

The objective of this step of the path generation is to ensure that an intended

transition can be propagated through a gate, i.e. required logic values can be assigned for

path sensitization. For a rising transition, the vector in frame -1 will be ‘0’ and it will be

‘1’ for frame 0. It will be opposite in case of a falling transition.

If the last gate on the partial path has more than one fan-out, the path splits into

branches. Constraints are applied on the last added gates to ensure the propagation of the

transition obtained from the previous step described above. Direct implication [4] is then

performed in a recursive manner on each of the gates in the fan-in and fan-out cone.

Whenever, the logic state of the output node of a gate changes due to the application of

the input transition, it needs to be propagated to the downstream logic. The side inputs of

the gate need to be at non-controlling state as well.

The direct implication can fail whenever the required logic values cannot be

assigned to a gate. Conflict can arise in a circuit where the assignment of a non-

controlling value on one gate may disable a different gate sharing one of the same

inputs. For non-robust sensitization, the side inputs need to have non-controlling values.

In case of robust sensitization criterion, the side inputs need to remain at the non-

33

controlling value if the on-path signal makes a transition to a controlling value. Figure

19 illustrates a scenario of conflict during path sensitization.

Figure 19. Conflict in Logic State Assignment [4]

The gate gi in the figure represents the last gate on the partial path. The gate gj is

in the fan-out cone of gi. In order to propagate the transition through the gate gi, the side

input needs to be at logic ‘1’. However, assigning this logic value to gi will block

propagation of transition through the gate gj. In the event of a failed direct implication,

the path growth is inhibited through the gate. A variety of heuristics [4] can be applied to

trim the search space for any other path generation through the same line.

3.5 Final Justification

Final justification is performed before a path can be reported. In case of multiple

at-speed and coda cycles, the justification step is carried out on each cycle before the

path is extended in the consecutive cycles. If the justification is run only at the end, and

justification fails for a gate which is part of the first capture cycle, then the path

34

generation has to be rerun for all the subsequent cycles. This would lead to unnecessary

and additional iterations for the same lines with clean justification in the later cycles.

35

4. CODA CYCLE PATH GROWTH

The path growth in coda cycles is based on the observability metric. If the last

gate in the partial path has more than one fan-out, the gate with minimum observability

at the input node gets added to the partial path pool. The partial path pool is ordered

according to the observability overhead. This reordering of the partial path pool ensures

that the path generated in the coda cycles is most observable. The flowchart in Figure 20

depicts the path generation algorithm for multi-cycle path generation.

Figure 20. Path Generation Algorithm for Multiple At-Speed Cycles

The coda cycle path generation utilizes the same approach for the path growth as

shown in Figure 20. It involves an additional step of reordering the partial path pool

according to the observability metric prior to extending the path in each iteration. The

total number of at-speed and coda cycles can be specified in CodGen along with the K

36

value and sensitization criterion to generate paths for delay test for such a clock

configuration.

Figure 21 shows a modified version of the ISCAS89 S27 circuit. The S27 circuit

has been modified to incorporate multiple at-speed and coda cycle paths for code

debugging and algorithm illustration. The SFF elements are denoted with ‘SC’ and the

regular FF is denoted with ‘NS’.

Figure 21. Modified ISCAS89 S27 Benchmark Circuit

Considering one at-speed cycle and one coda cycle, the paths starting at U50001

SFF are:

Path 1: U50001—U15—U50002—U10—U901—U50004

Path 2: U50001—U15—U50002—U10—U50006

37

The single at-speed cycle path starts at U50001 and ends at U50002. The fan-out

of the SFF U50002 consists of two gates: U10 and U101. The Esperance of Path 1 is

greater than that of the Path 2. However, the observability overhead through gate U101

is lower. Hence, in the coda cycle, Path 2 is generated ahead of Path 1.

For one at-speed cycle and two coda cycles, the paths starting at U50001 SFF are

following:

Path 1: U50001—U15—U50002—U10—U901—U50004—U902—U50005

Path 2: U50001—U15—U50002—U10—U901—U50004—U903—U50006

Path 3: U50001—U15—U50002—U10—U50006—U103—U50007

This configuration models the presence of non-scan elements during the path

growth. The SFF U50004 has a fan-out of 2. The coda cycle path originating from this

SFF follows the same observability driven ordering as described in the previous

configuration with one coda cycle. As a result, Path 1 is generated before Path 2 is

considered. However, the FF U50006 has the ‘NS’ attribute, making it a regular non-

scan FF. Since, this is the only terminating FF in the current branch of the circuit, Path 2

is not grown to this FF. Since U50007 is also a non-scan FF, Path 3 is not generated

either.

For the same clock configuration as above, if gate U50004 is made ‘NS’ and both

U50005 and U50006 are made ‘SC’ , then both of the paths (Path 1 and Path 2) would be

reported. Having a non-scan element as an intermediate FF does not impact capturing

the transition at the terminating SFF. If U50007 is kept as a non-scan cell, only two

paths are generated. If U50007 is made SFF, then Path 3 gets generated first due to

38

lower observability (since there are no non-scan cells on this path, the observability

metric of the corresponding branch is reported to be lower than the branch through the

gate U901 which sees infinite observability propagated from the non-scan FF U50004.

39

5. RESULTS

The modified KLPG algorithm is implemented in C++ on an Intel Core i7

machine with 64GB memory. Experiments are carried out on ISCAS89 benchmarks and

industrial circuits. The code has been run with different K values and coda cycles. The

sequential cells has been configured as scan and non-scan cells to ensure the validity of

the code in terms of handling different observability overhead. Circuit inputs (PIs) are

fixed during each test pattern (resembling a low cost tester). The code has been validated

to ensure distinction between the Esperance and Observability driven path expansion in

at-speed and coda cycles respectively. The partial path pool has been thoroughly

validated to ensure correct ordering based on Esperance and observability measures.

Different sequential elements have been configured as scan or non-scan elements to

ensure correct behavior of discarding or growing a partial path in a given clock scheme.

5.1 CodGen Run Time and Path Generation Results

Figure 22 shows the trend for run time with increasing numbers of paths per gate

K and number of coda cycles (CYC) for the benchmark circuit s1488. As expected, run

time rises sublinearly with K. Run time does not necessarily rise with CYC due to the

changing number of tested paths. Figure 23 shows that the number of tested paths rises

with K, as expected, and falls with CYC, due to the increasing number of constraints on

the path, particularly due to the fixed primary inputs.

40

Figure 22. Run Time for s1488

Figure 23. Generated Paths for s1488

A similar trend is observed for the other benchmark circuits as well (see

Appendix I). It should be noted that the increase in the number of paths generated with

increasing value of K gradually decreases for all the cycles. This observation is captured

in Table 1.

29

45 5054

64

83

67 73

86

67

87

10
8

77

91

11
5

C Y C = 1 C Y C = 2 C Y C = 3

TOTAL RUN TIME (SEC)

K=1 K=2 K=3 K=4 K=5

67 52 36

12
8

77

57

17
5

91

65

19
5

10
7

75

20
8

13
1

80

C Y C = 1 C Y C = 2 C Y C = 3

TOTAL GENERATED PATHS
K=1 K=2 K=3 K=4 K=5

41

Table 1. Relative Increase in Number of Paths with Increasing K Value

K Relative Increase in No. of Paths (Kn/Kn-1)
CYC=1 CYC=2 CYC=3

2 1.9 1.5 1.6
3 1.4 1.2 1.2
4 1.1 1.2 1.1
5 1.1 1.1 1.1

Figure 24 illustrates the trend captured in Table 1. Although the variation in the

increase in the number of paths as a function of increase in the value of K depends on the

structure of the circuit, the trend observed over various circuits and number of cycles is

the same (see Appendix I).

Figure 24. Relative Increase in Number of Paths with Increasing K Value

The total number of paths that can be generated through a gate primarily depends

on its fan-outs (apart from the fact that the direct implication has to pass). For a low

value of K, not all such paths get generated in the KLPG algorithm. The path limit

42

defined by the K value gets exceeded before all the paths can be explored. Clearly,

increasing the value of K helps generating more paths in such a scenario. However, it is

intuitive to realize that the total number of generated paths would not increase beyond a

certain number even with a high value of K if all possible fan-out cones have already

been explored. In presence of side input constraints, the increase in the number of

generated paths can be lower than expected. The experiments run with CodGen show

that not enough benefit is achieved in order to generate more paths per gate for values of

K greater than 5.

Table 2 shows the total run time and total paths generated for a configuration of

K=1 and CYC=1 for various ISCAS89 benchmark circuits. The longest path length is

also captured in the table.

Table 2. CodGen Run for Configuration: K=1, CYC=1
CodGen Run Configuration: K=1 CYC=1

Benchmark
Circuit # Gates # FF # Paths Longest

Path Length Run Time (s)

s1494 661 6 55 24 29
s1488 667 6 67 26 29
s1423 748 74 74 39 185
s5378 2993 179 235 25 97
s9234 5844 211 143 52 652
s13207 8651 639 224 62 458
s15850 10833 534 443 65 1206
s38584 22142 2426 1294 71 3678
s38417 23843 2636 957 51 10896

Figure 25 shows the trend in the run time as a function of total number of gates in

the design. It can be seen that the run time increases at a linear rate until s38584. The run

time for s38417 is almost 3X that of s38584. This abrupt change in the run time can be

43

understood from the number of Aiming trials for each of these runs. For s38584, the

CodGen run tries to extend a partial path a total of 863,897 times. In case of s38417, this

number is 4,014,779. A large percentage of the total run time is spent in the path

generation step of CodGen. Hence, a larger number of path extension trials directly

impacts the total run time. The structure of the circuit has a key role to play in defining

the partial path growth and can lead to non-linear dependency for run time and total

number of testable paths generated.

Figure 25. Run Time for CodGen on ISCAS89 Benchmark Circuits

CodGen has been run on the ISCAS89 benchmark circuits with K values from 1

to 5 and CYC values of 1, 2 and 3. A total of 15 CodGen runs with these combinations

of K and CYC values have been run on each of the benchmark circuits (see Appendix I).

The trend of the total run time and the number of paths is similar across circuits.

0

2000

4000

6000

8000

10000

12000

s1494 s1488 s1423 s5378 s9234 s13207 s15850 s38584 s38417
0

5000

10000

15000

20000

25000

30000

Run Time of CodGen on ISCAS89 Benchmark Circuits

Gates Run Time

44

The total number of generated paths increases with the total number of gates in

the circuit. But it should be noted that structure of the circuit can influence the path

generation and may lead of lower number of paths for a circuit with relatively higher

number of gates in the design. Logical connection in a relatively bigger circuit can lead

to higher number of direct implication failures that may eventually lower the total

number of generated paths. All the data points in Table 2 were generated assuming all

sequential elements in the design to be SFF type. Codgen has been validated by

modifying a selected group of sequential elements to non-scan cells, and the reduction in

the number of paths verified.

Table 3 and Table 4 capture the data for configurations of K=1 and CYC=2 and 3

respectively.

Table 3. CodGen Run for Configuration: K=1, CYC=2
CodGen Run Configuration: K=1 CYC=2

Benchmark
Circuit # Gates # FF # Paths Longest

Path Length Run Time (s)

s1494 661 6 44 34 41
s1488 667 6 52 33 45
s1423 748 74 26 42 217
s5378 2993 179 225 30 138
s9234 5844 211 123 64 653
s13207 8651 639 67 66 731
s15850 10833 534 139 75 1764
s38584 22142 2426 544 84 4270
s38417 23843 2636 603 68 11812

45

Table 4. CodGen Run for Configuration: K=1, CYC=3
CodGen Run Configuration: K=1 CYC=3

Benchmark
Circuit # Gates # FF # Paths Longest

Path Length Run Time (s)

s1494 661 6 36 38 47
s1488 667 6 36 39 50
s1423 748 74 21 44 293
s5378 2993 179 201 35 146
s9234 5844 211 34 68 1088
s13207 8651 639 26 75 763
s15850 10833 534 61 100 1923
s38584 22142 2426 346 107 4382
s38417 23843 2636 186 91 13788

The graph of run time vs. total number of gates is drawn in the Figure 26. As can

be seen, there is little difference in the run time for CYC=2 vs. CYC=3.

Figure 26. Run Time of CodGen on ISCAS89 Benchmark Circuits

0

2000

4000

6000

8000

10000

12000

14000

16000

0

5000

10000

15000

20000

25000

30000

s1494 s1488 s1423 s5378 s9234 s13207 s15850 s38584 s38417

Run Time of CodGen on ISCAS89 Benchmark Circuits

Gates CYC=2 CYC=3

46

Figure 27 captures the longest testable path length generated with different CYC

values.

Figure 27. Longest Testable Path Length over Multiple Coda Cycles

The longest testable path length increases over multiple code cycles for all the

benchmark circuits. Circuit structure determines how long a path would be. Hence there

is no direct relation between the longest paths across different circuits. The same

behavior has been observed with higher K values as well.

5.2 Path Pool Reordering in Coda Cycle

Figure 28 captures the partial path pool ordering for one of the iterations during

path generation.

24 26

39

25

52

62 65 71

51

34 33

42

30

64 66

75

84

68

38 39 44

35

68 75

10
0 10

7

91

S149 4 S1 48 8 S1 42 3 S5378 S9234 S13207 S15850 S38584 S38417

LONGEST TESTABLE PATH LENGTH

K=1 CYC=1 K=1 CYC=2 K=1 CYC=3

47

Figure 28. Path Pool Reordering in Coda Cycle

Each line in these tables represent a partial path. Figure 29 illustrates the path

structure in the partial path pool. Only one gate is shown in Figure 28 due to space

restriction.

48

Figure 29. Partial Path Pool Expansion in CodGen

It can be seen that the length of the partial path increases upon successful

addition of a new gate (success in direct implication). When a path cannot be grown any

further through a branch, path growth algorithm returns to the last successful node from

which the path split due to more than one fan-out. The left table in Figure 28 shows the

path pool in one of the at-speed cycles. It be seen that for iteration 17 of path growth

from the SFF U50001, the path pool is sorted according to the Esperance values. The

right side table shows the same iteration with observability driven ordering of the path

pool.

49

5.3 CodGen Run Time Profile

The run time code profiling data is illustrated in Figure 30 for s38584 benchmark

with a run time configuration of K=1 and CYC=1 and robust sensitization. Two major

components of the total run time are the Aiming Path Generation and the Path

Expansion subroutine.

Figure 30. CodGen Run Time Profiling for s38584

The third most time consuming function is the SAT based justification and

compaction of a complete path. For a benchmark circuit such as s38584, a considerable

amount of time goes behind reporting the generated path as well. For a relatively smaller

circuit with many fewer generated paths, the reporting function takes a much lower share

of the total run time.

50

The distribution of individual functions on the total run time plot is uniform

across K and CYC values. Figure 31 captures the run time distribution for s1494 and

s38584 for two different configurations of K and CYC values.

Figure 31. CodGen Run Time Profiling across Multiple Run Configurations

The circuit size and run configuration used to plot the graph in Figure 31

encompass the total experimental setup in terms of total run time and total number of

generated paths. Hence, this plot gives a good idea about the CodGen profiling based on

its run time configuration across all feasible possibilities.

For the same benchmark circuit, the total time spent behind Aiming Path

Generation and Path Expansion is higher for larger K and CYC values. This is an

expected behavior since CodGen deals with a larger search space with bigger K and CYC

values.

51

6. CONCLUSIONS AND FUTURE WORK

The work presented in this thesis enables observability driven path generation for

coda cycles. The CodGen is enhanced with path growth metric driven distinction

between the at-speed and coda cycles. The implementation ensures that no false path is

generated in the presence of non-scan FF at the capture point.

Inclusion of SFF in a circuit incurs area growth. Area critical SOC solutions may

have an upper bound for adding scan chains in the design. Since Esperance based path

growth does not differentiate between a SFF and a regular FF, false paths would be

generated in a scan-limited circuit. As a result, test coverage would be limited. On the

other hand, observability driven path generation in coda cycle can regain the loss in

coverage. The extent of coverage gain by this process can be limited by structure of the

circuit. Low fan-in of FF would limit path growth through other branches which may

terminate at a SFF.

As a part of the future work, the coda cycle path growth can be characterized

with larger circuits. Experiments with higher values of K and CYC can be performed to

confirm the trend in run time and number of paths generated as seen with the current

experimental results.

Test coverage analysis can be carried out to understand the quantitative impact of

moving from Esperance based path growth to the observability driven path growth in the

coda cycles.

52

Transitions launched in the at-speed cycle can be lost at memory boundary. The

memory array can be modeled as a non-scan element. Hence the observability driven

path generation can be applied to memory shadow logic coverage.

Preamble cycles have not been considered in the path generation experiments in

the thesis. It would be a good exercise to include these pseudo functional cycles to cover

the entire clocking scheme in one single CodGen setup. The logic state at the PI nodes

have been considered to be constant. A time varying input vector can be used for further

experiments.

All the experiments assume robust sensitization. The results can be generated for

non-robust and long transition path sensitization as well. The primary objective of the

work was to establish the observability metric for coda cycles. Hence, robust test vector

scenario validates the concept. Non-robust test generation would differ primarily in the

number of paths that can be generated over multiple coda cycles. However, the effect of

using observability over Esperance would be same as in the case of robust test.

New path growth heuristics can be explored to improve the run time of CodGen.

Direct implication and partial path expansion are two of the primary functions that

consume most of the run time. A different approach for storing the partial path in a more

efficient data structure can be explored as one of the ways to improve the run time.

53

REFERENCES

[1] Tehranipoor, Mohammad, Peng, Ke, Chakrabarty, Krishnendu, "Test and Diagnosis

for Small-Delay Defects", Springer Science+Business Media, LLC 2011.

[2] Pomeranz, I.; Reddy, S.M., "Transition Path Delay Faults: A New Path Delay Fault

Model for Small and Large Delay Defects," in Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on , vol.16, no.1, pp.98-107, Jan. 2008

[3] G. L. Smith, “Model for Delay Faults Based Upon Paths,” IEEE International Test

Conference, Oct. 1985, pp. 342-349.

[4] Laung-Terng Wang, Charles Stroud, Nur Touba "System-on-Chip Test

Architectures, 1st Edition Nanometer Design for Testability", Morgan Kaufmann 2010.

[5] M. L. Bushnell, V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits,” Springer 2000.

[6] W. N. Li, S. M. Reddy, S. K. Sahni, “On Path Selection in Combinational Logic

Circuits,” IEEE Trans. On Computer-Aided Design, vol. 8, no. 1, Jan. 1989, pp.56-63.

[7] A. K. Majhi, V. D. Agrawal, J. Jacob, L. M. Patnaik, “Line Coverage of Path

Delay Faults,” IEEE Trans. on VLSI Systems, vol. 8, no. 5, Oct. 2000, pp. 610-613.

[8] A. Murakami , S. Kajihara, T. Sasao, I. Pomeranz, S.M. Reddy, "Selection of

Potentially Testable Path Delay Faults for Test Generation," IEEE International Test

Conference, 2000, pp. 376-384.

[9] Y. Shao, S.M. Reddy, I. Pomeranz, S. Kajihara, "On Selecting Testable Paths in

Scan Designs," IEEE European Test Workshop, 2002, pp. 53-58.

54

[9] K. Fuchs, F. Fink, M. H. Schulz, "DYNAMITE: An Efficient Automatic Test

Pattern Generation System for Path Delay Faults," IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 1991, vol.10, no.10, pp.1323-1335.

[10] M. Sharma, J. H. Patel, "Finding a Small Set of Longest Testable Paths that

Cover every Gate," IEEE International Test Conference, 2002, pp. 974-982.

[11] W. Qiu, D. M. H. Walker, “An Efficient Algorithm for Finding the K Longest

Testable Paths Through Each Gate in a Combinational Circuit”, IEEE International Test

Conference, Sept. 2003, pp. 592-601.

[12] Drego, N.; Chandrakasan, A.; Boning, D., "An all-digital, highly scalable

architecture for measurement of spatial variation in digital circuits," in Solid-State

Circuits Conference, 2008. A-SSCC '08. IEEE Asian , vol., no., pp.393-396, 3-5 Nov.

2008

[13] J. Liou, L.-C. Wang, K.-T. Cheng, "On Theoretical and Practical Considerations

of Path Selection for Delay Fault Testing," Proc. IEEE/ACM International Conference

on Computer Aided Design, 2002, pp. 94-100.

[14] C. Lin, S. Reddy, "On Delay Fault Testing in Logic Circuits," IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol.6, no.5, Sept. 1987, pp.

694-703.

[15] P. McGeer, R. Brayton, "Efficient Algorithms for Computing the Longest Viable

Path in a Combinational Network," Proc. ACM/IEEE Design Automation Conference,

June 1989, pp. 561-567.

55

[16] J. Benkoski, E. Meersch, L. Claesen, H. Man, "Timing Verification using

Statically Sensitizable Paths," IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, , vol.9, no.10, Oct. 1990, pp.1073-1084.

[17] H. Chang, J. Abraham, "VIPER: An Efficient Vigorously Sensitizable Path

Extractor," Proc. ACM/IEEE Design Automation Conference, June 1993, pp.112-117.

[18] J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng, "False-path-aware Statistical

Timing Analysis and Efficient Path Selection for Delay Testing and Timing Validation,"

Proc. ACM/IEEE Design Automation Conference, 2002, pp. 566-569.

[19] Furukawa, H.; Wen, X.; Miyase, K.; Yamato, Y.; Kajihara, S.; Girard, P.; Wang,

L.-T.; Tehranipoor, M., "CTX: A Clock-Gating-Based Test Relaxation and X-Filling

Scheme for Reducing Yield Loss Risk in At-Speed Scan Testing," in Asian Test

Symposium, 2008. ATS '08. 17th , vol., no., pp.397-402, 24-27 Nov. 2008

[20] Bonhomme, Y.; Girard, P.; Guiller, L.; Landrault, C.; Pravossoudovitch, S., "A

gated clock scheme for low power scan testing of logic ICs or embedded cores," in Test

Symposium, 2001. Proceedings.10thAsian,vol.,no.,pp.253-258,2001.

[21] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi and H.

Balachandran, “K Longest Paths Per Gate (KLPG) Test Generation for Scan- Based

Sequential Circuits,” IEEE International Test Conference, Oct. 2004, pp. 223-231.

[22] P. Pant, J. Zelman, “Understanding Power Supply Droop During At-Speed Scan

Testing,” IEEE VLSI Test Symposium, May 2009, pp.227-232.

[23] Chakraborty, S.; Walker, D.M.H., "At-Speed Path Delay Test," in Test Workshop

(NATW), 2015 IEEE 24th North Atlantic , vol., no., pp.39-42, 11-13 May 2015.

56

[24] Yung-Chieh Lin; Feng Lu; Kai Yang; Kwang-Ting Cheng, "Constraint extraction

for pseudo-functional scan-based delay testing," in Design Automation Conference,

2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific , vol.1, no., pp.166-

171 Vol. 1, 18-21 Jan. 2005

[25] Zhaohui Fu; Yinlei Yu; Malik, S., "Considering circuit observability don't cares in

CNF satisfiability," in Design, Automation and Test in Europe, 2005. Proceedings , vol.,

no., pp.1108-1113 Vol. 2, 7-11 March 2005

[26] K. Bian, D. M. H. Walker, S. Khatri, S. Lahiri, “Mixed Structural-Functional Path

Delay Test Generation and Compaction,” IEEE International Symposium Defect and

Fault Tolerance in VLSI and Nanotechnology Systems, Oct. 2013, pp. 7-12.

[27] N. Eén, N. Sörensson, “The MiniSat Page, Introduction”. Retrieved from minisat.se

on March 2015.

[28] Gonciari, P.T.; Al-Hashimi, B.M.; Nicolici, N., "Improving compression ratio, area

overhead, and test application time for system-on-a-chip test data

compression/decompression," in Design, Automation and Test in Europe Conference

and Exhibition, 2002. Proceedings, vol., no., pp.604-611, 2002

[29] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability”, IEEE Trans.

Computer-Aided Design, vol. 11, no. 1, pp. 4-15, Jan. 1992.

[30] Menon, P.; Levendel, Y.; Abramovici, M., "SCRIPT: a critical path tracing

algorithm for synchronous sequential circuits," in Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on , vol.10, no.6, pp.738-747, Jun 1991

57

[31] Nisar Ahmed, Mohammad Tehranipoor, "Improving Transition Delay Fault

Coverage Using Hybrid Scan-Based Technique," 2012 IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 187-

198, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT'05), 2005

58

APPENDIX – I

Results with Various K and CYC Values for each Benchmark Circuit

Table 5 Run Time and Generated Paths for s1494

S1494

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:00:29 0:00:41 0:00:47 K=1 55 44 36
K=2 0:00:47 0:01:01 0:01:12 K=2 124 86 49
K=3 0:01:08 0:01:07 0:01:21 K=3 153 108 58
K=4 0:01:14 0:01:16 0:01:32 K=4 180 113 62
K=5 0:01:39 0:01:47 0:01:50 K=5 214 129 68

Figure 32. # Paths generated for s1494

Figure 33. Run Time for s1494

55

12
4 15

3 18
0 21

4

44

86

10
8

11
3 12

9

36 49 58 62 68
K = 1 K = 2 K = 3 K = 4 K = 5

S 1 4 9 4

PAT HSCYC=1
CYC=2
CYC=3

0:
00

:2
9

0:
00

:4
7

0:
01

:0
8

0:
01

:1
4

0:
01

:3
9

0:
00

:4
1

0:
01

:0
1

0:
01

:0
7

0:
01

:1
6 0:
01

:4
7

0:
00

:4
7

0:
01

:1
2

0:
01

:2
1

0:
01

:3
2

0:
01

:5
0

K = 1 K = 2 K = 3 K = 4 K = 5

RUN T I MECYC=1
CYC=2
CYC=3

59

Table 6 Run Time and Generated Paths for s1423

S1423

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:03:05 0:03:37 0:04:53 K=1 73 26 19
K=2 0:03:22 0:03:52 0:05:28 K=2 156 38 21
K=3 0:03:53 0:05:51 0:05:38 K=3 209 43 21
K=4 0:04:51 0:05:42 0:06:33 K=4 228 43 21
K=5 0:05:50 0:05:38 0:05:36 K=5 233 43 21

Figure 34. # Paths for s1423

Figure 35. Run Time for s1423

23
5 48

1

84
4 10

40 11
91

22
5 40

3 58
0 70

5 88
6

20
1 38

1 54
2 65

4 80
2

K = 1 K = 2 K = 3 K = 4 K = 5

PAT HS
CYC=1 CYC=2 CYC=3

0:
01

:2
7

0:
02

:0
6

0:
02

:5
5

0:
03

:2
2

0:
03

:4
8

0:
02

:1
8

0:
03

:0
1

0:
03

:3
6

0:
03

:4
6

0:
04

:3
3

0:
02

:2
6

0:
03

:0
2

0:
03

:4
1

0:
04

:2
1

0:
05

:1
1

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME
CYC=1 CYC=2 CYC=3

60

Table 7 Run Time and Generated Paths for s5378

S5378

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:01:27 0:02:18 0:02:26 K=1 235 225 201
K=2 0:02:06 0:03:01 0:03:02 K=2 481 403 381
K=3 0:02:55 0:03:36 0:03:41 K=3 844 580 542
K=4 0:03:22 0:03:46 0:04:21 K=4 1040 705 654
K=5 0:03:48 0:04:33 0:05:11 K=5 1191 886 802

Figure 36. # Paths for s5378

Figure 37. Run Time for s5378

23
5

48
1

84
4 10

40 11
91

22
5 40

3 58
0 70

5 88
6

20
1 38

1 54
2 65

4 80
2

K = 1 K = 2 K = 3 K = 4 K = 5

PAT HS

CYC=1 CYC=2 CYC=3

0:
01

:2
7

0:
02

:0
6

0:
02

:5
5

0:
03

:2
2

0:
03

:4
8

0:
02

:1
8

0:
03

:0
1

0:
03

:3
6

0:
03

:4
6

0:
04

:3
3

0:
02

:2
6

0:
03

:0
2

0:
03

:4
1

0:
04

:2
1

0:
05

:1
1

K = 1 K = 2 K = 3 K = 4 K = 5

RUN T I ME

CYC=1 CYC=2 CYC=3

61

Table 8 Run Time and Generated Paths for s9234

S9234

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:10:52 0:10:53 0:18:08 K=1 143 123 34
K=2 0:12:49 0:13:04 0:18:07 K=2 295 203 58
K=3 0:14:03 0:13:36 0:19:42 K=3 419 299 70
K=4 0:14:37 0:14:44 0:20:04 K=4 513 355 71
K=5 0:15:13 0:14:36 0:20:07 K=5 609 445 71

Figure 38. # Paths for s9234

Figure 39. Run Time for s9234

14
3

29
5

41
9 51

3 60
9

12
3 20

3 29
9 35

5 44
5

34 58 70 71 71

K = 1 K = 2 K = 3 K = 4 K = 5

PATHS

CYC=1 CYC=2 CYC=3

0:
10

:5
2

0:
12

:4
9

0:
14

:0
3

0:
14

:3
7

0:
15

:1
3

0:
10

:5
3

0:
13

:0
4

0:
13

:3
6

0:
14

:4
4

0:
14

:3
6

0:
18

:0
8

0:
18

:0
7

0:
19

:4
2

0:
20

:0
4

0:
20

:0
7

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME

CYC=1 CYC=2 CYC=3

62

Table 9 Run Time and Generated Paths for s13207

S13207

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:07:38 0:12:11 0:12:43 K=1 224 67 26
K=2 0:10:34 0:13:18 0:12:52 K=2 426 85 30
K=3 0:10:29 0:13:15 0:12:53 K=3 520 88 30
K=4 0:11:41 0:13:31 0:13:00 K=4 553 89 30
K=5 0:13:16 0:13:23 0:13:00 K=5 601 89 30

Figure 40. # Paths for s13207

Figure 41. Run Time for s13207

22
4

42
6 52

0 55
3 60

1

67 85 88 89 89

26 30 30 30 30

K = 1 K = 2 K = 3 K = 4 K = 5

PATHS

CYC=1 CYC=2 CYC=3

0:
07

:3
8

0:
10

:3
4

0:
10

:2
9

0:
11

:4
1

0:
13

:1
6

0:
12

:1
1

0:
13

:1
8

0:
13

:1
5

0:
13

:3
1

0:
13

:2
3

0:
12

:4
3

0:
12

:5
2

0:
12

:5
3

0:
13

:0
0

0:
13

:0
0

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME
CYC=1 CYC=2 CYC=3

63

Table 10 Run Time and Generated Paths for s15850

S15850

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 0:20:06 0:29:24 0:32:03 K=1 442 139 61
K=2 0:26:13 0:31:23 0:26:31 K=2 584 160 72
K=3 0:29:00 0:26:06 0:26:28 K=3 617 160 80
K=4 0:26:52 0:28:20 0:27:51 K=4 617 160 80
K=5 0:27:24 0:29:29 0:27:16 K=5 617 160 80

Figure 42. # Paths for s15850

Figure 43. Run Time for s15850

44
2

58
4 61
7

61
7

61
7

13
9

16
0

16
0

16
0

16
0

61 72 80 80 80

K = 1 K = 2 K = 3 K = 4 K = 5

PAT HS

CYC=1 CYC=2 CYC=3

0:
20

:0
6

0:
26

:1
3

0:
29

:0
0

0:
26

:5
2

0:
27

:2
4

0:
29

:2
4

0:
31

:2
3

0:
26

:0
6

0:
28

:2
0

0:
29

:2
9

0:
32

:0
3

0:
26

:3
1

0:
26

:2
8

0:
27

:5
1

0:
27

:1
6

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME
CYC=1 CYC=2 CYC=3

64

Table 11 Run Time and Generated Paths for s38584

S38584

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 1:02:18 1:11:10 1:13:02 K=1 1294 544 346
K=2 1:17:36 1:14:54 1:14:34 K=2 1768 647 368
K=3 1:19:23 1:13:28 1:13:21 K=3 1800 647 389
K=4 1:22:05 1:15:33 1:13:34 K=4 1800 657 393
K=5 1:23:52 1:17:17 1:15:04 K=5 1800 657 393

Figure 44. # Paths for s38584

Figure 45. Run Time for s38584

12
94

17
68

18
00

18
00

18
00

54
4 64

7

64
7

65
7

65
7

34
6

36
8

38
9

39
3

39
3

K = 1 K = 2 K = 3 K = 4 K = 5

PATHS
CYC=1 CYC=2 CYC=3

1:
02

:1
8

1:
17

:3
6

1:
19

:2
3

1:
22

:0
5

1:
23

:5
2

1:
11

:1
0

1:
14

:5
4

1:
13

:2
8

1:
15

:3
3

1:
17

:1
7

1:
13

:0
2

1:
14

:3
4

1:
13

:2
1

1:
13

:3
4

1:
15

:0
4

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME
CYC=1 CYC=2 CYC=3

65

Table 12 Run Time and Generated Paths for s38417

S38417

Run
Time

(h:m:s)
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3

K=1 3:01:36 3:16:52 3:49:48 K=1 957 603 186
K=2 3:40:38 4:04:00 3:20:53 K=2 1964 974 261
K=3 4:00:28 4:03:01 3:57:21 K=3 2367 1209 340
K=4 3:43:50 3:26:58 3:11:21 K=4 2542 1533 331
K=5 4:44:40 4:28:06 3:56:21 K=5 2968 1910 336

Figure 46. # Paths for s38417

Figure 47. Run Time for s38417

95
7

19
64 23

67 25
42 29

68

60
3 97

4 12
09 15

33 19
10

18
6

26
1

34
0

33
1

33
6

K = 1 K = 2 K = 3 K = 4 K = 5

PATHS

CYC=1 CYC=2 CYC=3

3:
01

:3
6

3:
40

:3
8

4:
00

:2
8

3:
43

:5
0

4:
44

:4
0

3:
16

:5
2

4:
04

:0
0

4:
03

:0
1

3:
26

:5
8

4:
28

:0
6

3:
49

:4
8

3:
20

:5
3

3:
57

:2
1

3:
11

:2
1

3:
56

:2
1

K = 1 K = 2 K = 3 K = 4 K = 5

RUN TIME

CYC=1 CYC=2 CYC=3

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Path Delay Test
	1.1.1 Delay Test Problem
	1.1.2 Path Sensitization
	1.1.3 Robust and Non-Robust Path Delay Test

	1.2 Scan Based Delay Test
	1.2.1 Muxed-D Scan Approach
	1.2.2 Enhanced-Scan Design

	1.3 At-Speed Scan Test Clocking Schemes
	1.3.1 Launch on Shift
	1.3.2 Launch On Capture

	1.4 KLPG Algorithm
	1.4.1 Pseudo Functional KLPG

	1.5 Boolean Satisfiability
	1.5.1 Use of SAT in CodGen

	1.6 Structure of the Thesis

	2. MOTIVATION
	2.1 Scan Architecture for SOC
	2.2 Path Generation in CodGen
	2.2.1 Clocking Scheme
	2.2.2 Observability Driven Path Generation in Coda Cycles

	2.3 Related Prior Work

	3. implementation
	3.1 Path Generation Strategy in KLPG Algorithm
	3.2 CodGen Functions for Gate Processing
	3.2.1 Circuit Verilog Parsing
	3.2.2 Gate Delay Assignment
	3.2.3 Fan-In/Fan-Out Cone
	3.2.4 Circuit Initialization

	3.3 Path Generation Aiming the Scan Sequential Element
	3.4 Time-frame Expansion
	3.5 Final Justification

	4. coda cycle path growth
	5. results
	5.1 CodGen Run Time and Path Generation Results
	5.2 Path Pool Reordering in Coda Cycle
	5.3 CodGen Run Time Profile

	6. conclusions and future work
	referenceS
	apPendix – I
	Results with Various K and CYC Values for each Benchmark Circuit

