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ABSTRACT 

This research describes an approach for path generation using an observability 

metric for delay test. K Longest Path Per Gate (KLPG) tests are generated for sequential 

circuits. A transition launched from a scan flip-flop (SFF) is captured into another SFF 

during at-speed clock cycles, that is, clock cycles at the rated design speed. The 

generated path is a ‘longest path’ suitable for delay test. The path generation algorithm 

then utilizes observability of the fan-out gates in the consecutive, lower-speed clock 

cycles, known as coda cycles, to generate paths ending at a SFF, to capture the transition 

from the at-speed cycles. For a given clocking scheme defined by the number of coda 

cycles, if the final flip-flop is not scan-enabled, the path generation algorithm attempts to 

generate a different path that ends at a SFF, located in a different branch of the circuit 

fan-out, indicated by lower observability. The paths generated over multiple cycles are 

sequentially justified using Boolean satisfiability. The observability metric optimizes the 

path generation in the coda cycles by always attempting to grow the path through the 

branch with the best observability and never generating a path that ends at a non-scan 

flip-flop.  

The algorithm has been developed in C++. The experiments have been 

performed on an Intel Core i7 machine with 64GB RAM. Various ISCAS benchmark 

circuits have been used with various KLPG configurations for code evaluation. Multiple 

configurations have been used for the experiments. The combinations of the values of K 

[1, 2, 3, 4, 5] and number of coda cycles [1, 2, 3] have been used to characterize the 
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implementation. A sublinear rise is run time has been observed with increasing K values. 

The total number of tested paths rise with K and falls with number of coda cycles, due to 

the increasing number of constraints on the path, particularly due to the fixed inputs. 
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1. INTRODUCTION  

 

1.1 Path Delay Test 

Delay test is used to verify the performance of a circuit against its timing 

specification. The test is designed to test the delay faults which impact the performance 

of the circuit. This delay can be modeled in various ways. One of the ways is to use a 

path delay fault model [1] [2] [3]. This model detects both local and distributed faults. A 

path is generated starting from a Primary Input (PI) or a Pseudo Primary Input (PPI) by 

traversing through the fan-out cone of a gate and ending at a Primary output (PO) or a 

Pseudo Primary Output (PPO). The delay test is a scan-based test [4]. The sequential 

elements in a circuit are connected serially to form a scan chain. These sequential 

elements provide direct access to the PPI (the output node of a SFF) and PPO (the input 

node of a SFF). Delay test requires a transition to be launched from a PPI and captured 

at a PPO. The input of a gate on which such transition is appears is called the on-path 

input and the remainder of the inputs are called side inputs [5]. In the path delay fault 

model, the path is said to have a delay fault if the delay of the arrival time of the 

transition at the capture point exceeds the specified time. The delay of the path is the 

propagation delay over all the gates on the path. A variety of studies have been done to 

test delay faults in the circuit [6] [7] [8] [9] [10]. It is intuitive that the path with 

maximum delay would be the longest path. Hence, to test a delay fault in a circuit, a 

longest path is generated for the test. 
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The total number of paths in a circuit has exponential dependency on circuit size. 

Identification of longest sensitizable paths through each gate or line is extremely 

difficult. To maintain tractability of a test, K Longest Paths Per Gate (KLPG) are 

generated in [11]. Tests generated on these paths cover both local delay defects [11] 

caused by a slow gate and global process variation [12] where more than one path 

through a gate can be slower than nominal performance. 

 

1.1.1 Delay Test Problem 

Figure 1 below illustrates the basic concept of the delay fault. A pair of signal 

vectors (v1, v2) are applied to the inputs of the circuit (x1, x2, and x3). These vector 

pairs launch the transition onto the gates. The first vector is called the initialization 

vector and the second vector is called the test vector. The delay through the individual 

gates are marked in time units on each gate. The output of the circuit (y) is expected to 

see a rising transition after seven time units according to the specified propagation 

delays from individual gates.  

 

 

Figure 1. Delay Fault in Combinational Circuit [4] 
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An additional delay on the path leading to y would delay the rising transition 

beyond seven time units. Figure 2 illustrates the transitions on input and output of a 

circuit with specified propagation delay. The shaded region in the figure is called the 

transition region. The input and output signals are allowed to change states within this 

region to meet the timing specification of the circuit. 

 

Figure 2. Delay Specification of a Circuit 
 

Any additional delay on the path leading to the output can move the signal 

outside of the transition region. In case of the circuit in Figure 1, if the timing 

specification is eight time units and the inverter delay becomes four time units, then the 

rising transition at the output will occur after nine time units. In such a scenario, the path 

would experience a delay fault. 

A circuit has various paths. The delay of a path depends on the number of gates 

and the fan-out of such gates. The path with the largest delay is called the critical path. 

The critical path determines the maximum attainable speed of operation. A delay fault is 
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registered in the circuit when one or more paths experience a delay which is more than 

one clock cycle. 

 

1.1.2 Path Sensitization 

“A path is said to be testable if a rising/falling transition can propagate from the 

primary input to the primary output associated with the path, under certain sensitization 

criteria” [13][14][15][16][17][18]. If such sensitization cannot be achieved, the path is 

said to be untestable or a false path. In order to propagate a transition from one of the 

inputs of a gate to its output, all other inputs must have non-controlling values [4]. 

Figure 3 illustrates the concept of path sensitization for the path a-c-d.  

 

Figure 3. Untestable Path 
 

To propagate a transition launched at node a, the side-input b of the OR gate 

needs to be at logic state 0. However, in order to advance the propagation from the 

output of the OR gate (node c), the AND gate side-input (which is also node b of the OR 

gate) needs to be at logic state 1. Clearly, both the gates cannot be sensitized 

simultaneously. Hence the path a-c-d cannot be tested for a delay fault. 
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 1.1.3 Robust and Non-Robust Path Delay Test 

A path can be classified as ‘robustly testable’ or ‘non-robustly testable’ based on 

the sensitization criterion. A robust path delay fault test is one in which the delay fault is 

detected irrespective of any other delay faults that may exist in the circuit. However, a 

non-robust path delay fault test would detect a fault on a path only in absence of any 

other delay faults in the circuit. 

 

Figure 4. Propagation of transition with path sensitization [5]  
 

Figure 4 illustrates how the presence of faults on a different path in the circuit 

can mask the fault on the targeted path. All inputs and outputs of the circuit are 

considered to be synchronized with respect to a clock signal and the clock period T =7 

time units. Any path having more than seven time units ofdelay will register a delay 

fault.  The propagation delay values of the individual gates are shown within their 

individual structures. It can be seen that the path P3 is the critical path. If all three paths 

in the circuit (p1, p2, p3) experience time delay of more than seven time units, then the 
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entire waveform will be shifted to the right side and upon observing the output at T=7, a 

fault will be detected. Now, if P1 is not faulty and P2, P3 are faulty, no fault will be 

observed at T=7 at the output. Hence, the presence of fault P2 invalidates the fault on the 

critical path P3. Clearly, the fault on P3 cannot be tested in the presence of other faults 

in the circuit (a fault on P2 in this case). For the non-robust test, conditions of static 

sensitization should be satisfied along with the condition that the test vector pair will 

produce the required transition at the start of the path under test [4]. 

 

1.2 Scan Based Delay Test 

Scan design is one of the most widely used approaches in design-for-test. The 

key feature of scan-based design is the formation of a scan chain. A selected set of the 

sequential elements in a circuit are connected serially to form this scan chain. Each such 

element is called a Scan Flip-Flop (SFF). These SFF elements provide direct access to 

the Pseudo Primary Inputs (PPI: the output node of a SFF) and Pseudo Primary Outputs 

(PPO: the input node of a SFF). A regular sequential element is converted into a SFF by 

adding a multiplexer (MUX) at the data input. Figure 5 illustrates the structure of a SFF. 

It includes a D-type Flip-flop (FF) and a 2:1 MUX. 
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Figure 5. Muxed-D Scan Cell [4] 
 

The scan design utilizes three main signals related to scan operation. The scan 

input (SI), the scan output (SO) and the scan enable (SE).  The SO port of a scan cell is 

connected to the SI port of the next scan-cell to form the scan chain. 

The scan design operates in three modes: normal mode, shift mode and capture 

mode. First, the scan enable (SE) signal is asserted and the test vector is shifted into the 

SFFs. This is done at a slow scan clock frequency, typically ten times slower than 

functional speed. Then the SE is de-asserted and the circuit is put into functional 

(normal) mode to launch the test vector. One or more at-speed capture cycles (in normal 

mode) are used to capture the response of the circuit into a SFF. After the at-speed 

cycles, SE is again asserted to shift the captured response out through the scan chain.   

Figure 6 illustrates the scan chain architecture. The SE signal and the MUX 

structures are not shown explicitly. All the SFFs are clocked with a scan clock (SCLK). 

The SO port in the figure connects to next set of SI ports.  
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Figure 6. Scan Design Architecture 
 

In a chip, multiple scan chains are formed to maintain the overall time required to 

load and shift the scan patterns. The following illustrates two different forms of scan 

design: Muxed-D Scan Approach and Enhanced Scan Approach. 

 

1.2.1 Muxed-D Scan Approach 

Figure 7 shows the example of a Muxed-D Full Scan Design.  The DI (data 

input) port of each of the SFFs is connected to the PPOs of the combinational logic (also 

known as DUT: Design Under Test). The scan chain is formed according to the 

description in the previous section. The Q (output) port of each of the SFFs is connected 

to the DUT as a PPI. The PI (X1, X2, and X3) and PO (Y1, Y2) of the DUT act as the 

functional signals. 
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Figure 7. Muxed-D Scan Design [4] 
 

The PI signals are driven by functional upstream logic. The functional output 

signals (PO) are directly observed as a set of parallel signals while the set of PPO signals 

are observed through the scan chain. SE is asserted to put the design in scan mode. The 

SI is shifted into the SFF. After shift is complete, SE is de-asserted and the DUT is put 

into functional mode. SE is asserted again to capture the response of the DUT. 

 

1.2.2 Enhanced-Scan Design 

Delay test utilizes a pair of vectors to launch a transition that is captured at a SFF 

at functional speed (At-Speed). The nature of the vector pair is kept arbitrary to 

maximize delay fault detection capability. This is achieved with the help of Enhanced-

Scan Design as shown in Figure 8. 
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Figure 8. Enhanced-Scan Design [4] 
 

Unlike Muxed-D scan design, two bits of data can be simultaneously applied to 

the DUT from a SFF. An additional D-Latch is added in order to achieve this feature in 

the Muxed-D scan design. In order to apply a vector pair (v1, v2) to the DUT, v1 vector 

is first shifted into the SFFs and then stored into the D-Latches. The UPDATE signal 

controls this additional set of latches to store the vector. The second vector v2 is then 

shifted into the SFF, keeping UPDATE low. After the v2 vector has been shifted in, 

UPDATE is asserted to change the latch contents from v1 to v2, launching the transition 

into the DUT. The DUT response is captured in the SFFs. 

The main advantage of this architecture is better delay fault coverage by 

application of arbitrary vector pairs. However, this implementation results in area and 

delay overhead due to the addition of one extra latch per SFF. The timing between the 

UPDATE and clock signal may also lead to complexities. Another disadvantage is 
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activation of false paths [4] instead of functional data paths, which can cause overtesting 

[4]. Several clocking schemes [4] [19] [20] can be employed to address this 

disadvantage. 

 

1.3 At-Speed Scan Test Clocking Schemes 

At-speed scan architecture enables testing a DUT for it function timing 

specification. A DUT can consist of multiple clock domains. The clock domains can 

either be synchronous or asynchronous with respect to each other. Two clock domains 

are classified as synchronous if the triggering edges of the clocks from these domains 

can be precisely aligned. In case this alignment is not possible, the clock domains are 

said to be asynchronous. 

There are primarily two clocking schemes for testing inter- and intra-clock 

domain at-speed faults: (1) Launch-On-Shift (LOS) and (2) Launch-On-Capture (LOC). 

The following explains the working principle of these two clocking schemes. 

 

1.3.1 Launch on Shift 

In this clocking scheme [4], also known as skewed load, the last shift clock pulse 

is followed immediately by a capture clock pulse to launch the transition and capture the 

output test response, respectively. The second capture clock pulse is run at the functional 

targeted frequency, that is, the at-speed frequency. This scheme requires the SE signal to 

switch very fast, between the launch and the capture clock pulse. This requires the SE 

signal to be timed at the functional frequency, e.g. a second clock network. 
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Figure 9. Launch on Shift Clocking Scheme [4] 
 

1.3.2 Launch On Capture 

The launch on capture clocking scheme is also known as broadside or double 

capture mode. It uses two consecutive capture cycles to launch the transition and capture 

the output response respectively. This scheme does not impose any speed requirement on 

the SE signal, unlike the LOS scheme. Once the test vector is loaded, SE is de-asserted. 

Subsequently, the launch and the capture cycles are applied. The LOC scheme typically 

requires more test vectors and has lower fault coverage compared to the LOS scheme. 

However, LOC is used more than LOS in high-speed circuits because of relaxed timing 

on the SE signal.  
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Figure 10. Launch on Capture Clocking Scheme [4] 
 

Several other clocking schemes are available to aid scan designs. Clock domain 

grouping is utilized to reduce test time and power in scan mode. One-hot clocking and 

staggered clocking are two such clocking schemes. 

 

1.4 KLPG Algorithm 

The KLPG algorithm [21] aims at generating K longest paths through each 

gate/line in a combinational circuit. A complete path starts at a launch point and ends at 

a capture point. A launch point is a PI or a PPI and the capture point is a PO or a PPO. 

The algorithm generates a path by adding one gate at a time, starting at a PI or a PPI. A 

partial path is a path which has originated at the launch point but has not reached the 

capture point. In the path generation phase of the algorithm, the partial paths are 

initialized from the launch point. Both rising and falling transition faults are tested 

through a gate or line. A delay metric called Esperance is used to calculate the upper 

bound of the delay of a partial path. Esperance is calculated as the sum of the delay of 
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the partial path and the PERT delay from its last node to a capture point. “In other 

words, the Esperance of a partial path is the upper bound of its delay when it becomes a 

complete path that reaches a capture point. [4]” a flow chart of the algorithm is shown in 

Figure 11. 

 

Figure 11. Flow-Chart of KLPG Algorithm [4] 
 

The KLPG algorithm has three main segments. The path initialization, path 

growth and path justification. Before a path can be generated, the SCOAP measures [5] 

of all the gates in the circuit are calculated. The gate connectivity in the circuit is 

processed and the gates are levelized [5] according to the distance from the PI. The 

distance of a gate from a PI node is calculated from the maximum of the distance of the 

gate through its all the input pins. The levelization ensures proper calculation of PERT 
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delay [5], Controllability and Observability measures. The fan-in and fan-out-cones of 

individual gates are also calculated in order to derive the SCOAP measures. The 

controllability is a measure of how easy it is to set the logic level of a node in a circuit to 

a known state ‘0’ or ‘1’. The observability is a measure of how easy it is to observe the 

state of a node in the circuit. It is intuitive that the controllability for a node is smaller if 

it is nearer to a PI or a PPI. Similarly, the observability of a node is smaller if it is nearer 

to a PO or a PPO. The algorithm calculates the controllability of a gate according to its 

level in the circuit. The PI and PPI nodes are given a controllability of ‘1’. 

Controllability of all lower level gates are calculated first before moving to the next level 

of gates in the circuit. Similarly, the observability is calculated in the opposite order of 

the level of gates. The PO and PPO nodes are given an observability of ‘0’ and the 

observability of lower level gates are calculated accordingly. 

The next main step is the path generation. One gate is added to the growing path 

that started at a PI or a PPI, in each iteration. If a gate has multiple fan-outs, the partial 

path splits at that point to different branches. A pool is maintained to store these partial 

paths. In each iteration of path growth, the path with maximum Esperance value is 

extended by adding one more gate to it. This new partial path gets stored again into the 

path pool and checked for Esperance value before growing it, in the next iteration. Every 

time a gate is added to the partial path, constraints are added to the inputs of that gate. 

To ensure propagation of launched transition through the gate, non-controlling values [5] 

on the side inputs are checked. Direct implication is run to propagate such sensitization 

constraints throughout the circuit. In case direct implication fails, the partial path is 
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removed from the partial path pool. If the partial path becomes a complete path, Final 

Justification is run on the path to define the transition vector.  This procedure is repeated 

until sufficient paths are generated through the gate or the line as defined by the K value. 

Compaction of the test vectors is carried out to reduce the number of test 

patterns. The compaction can either be static or dynamic. All independent test vectors 

are generated before the compaction is carried out in static compaction. The compaction 

process does not require any circuit analysis, so is fast. In dynamic compaction, 

compaction is performed as paths are generated. This approach produces fewer test 

patterns, but at the cost of more memory to store a pattern pool, and justification to 

check if paths can be compacted into the same pattern. The KLPG algorithm has been 

implemented in CodGen for this work. 

 

1.4.1 Pseudo Functional KLPG 

During the time between switching from scan mode to functional mode, when the 

SE signal is switching, the off-chip currents in the power grid attain a quiescent state. 

When the at-speed launch and capture cycles are applied, the current demand drastically 

increases. The off-chip inductance prevents a sudden current increase on the pins, so the 

current must be supplied by on-chip power grid capacitance. The dI/dt phenomenon 

causes the power grid to experience voltage droop. This causes the chip to perform at a 

speed lower than the functional specification. This situation can lead to false test 

failures. Delay test induced droop on the power grid is illustrated in Figure 12. 
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Figure 12. Delay Test Induced DC Droop in Power Supply [22] 
 

The solution to this problem is to apply a number of medium speed preamble 

cycles to ramp the off-chip currents up to functional levels. These preamble cycles filter 

out most non-functional states, so a test using them is termed a pseudo functional KLPG 

test (PKLPG) [21].  Figure 13 depicts the generic PKLPG scan clocking scheme. 

 

 

Figure 13. Clock Diagram of Pseudo Functional KLPG test [23] 
 

The SE signal is asserted during scan-in and scan-out operation to shift-in the test pattern 

and shift-out the test response respectively.  
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1.5 Boolean Satisfiability 

Boolean satisfiability (SAT) has extensive use in the field of Electrical Design 

Automation (EDA) for circuit verification and testing. SAT solvers typically represent 

the circuit in Conjunctive Normal Form (CNF) [24]. Techniques such as Boolean 

Constraint Propagation (BCP) [25] and backtracking with conflict analysis learning have 

helped developing highly efficient CNF-based SAT solvers. 

Boolean or propositional-logic expressions are built using variables, constants 

and operations such as AND, OR and NOT. The constants are represented in the 

Boolean form as either true or false. The satisfiability problem is constructed by setting 

truth assignment (assignment of ‘0’ or ‘1’ value to each of the variables) to the variables 

that make the value of the function ‘1’. Hence the main goal is to derive the assignment 

of variables that makes the functional value a true (‘1’). The problem of satisfying a 

CNF formula using SAT is NP-complete, so heuristics are used to speed up the solver. 

The CNF for a function is expressed in terms of individual clauses which are 

combined with an AND operation. Each clause is represented as an OR of literals. A 

literal can either be a variable or the negation of that variable. For example, the operation 

AND can be expressed as Z = X·Y. The CNF representation for Z will be 

(~Z+X)(~Z+Y)(~X+~Y+Z). The solution space will be the values of X, Y and Z such that 

the formulated equation has a value of ‘1’. The clause with 2 variables is called 2CNF 

and can be solved in polynomial time. The clause with 3 variables is called 3CNF and it 

is a NP-complete problem. An XOR relationship between variables in a clause is 

handled as a system of linear equations and solved in cubic time. 
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Application of SAT for test vector generation in ATPG experiences the difficulty 

of incorporating real delay values. A mix of structural and functional test approach has 

been implemented in [26] to alleviate this problem. In this implementation, the paths are 

generated with a structural approach and SAT is used for the path justification. A variety 

of approaches have been discussed in the literature to speed up the SAT solver. Dynamic 

SAT Solving (DSS) structural information of a circuit is used by the SAT engine to 

improve solution time [26]. CNF based SAT solver has an inherent issue of loss of 

circuit structural information during the CNF formation. Structural information like 

direction of gates and Circuit Observability Don’t Cares (Cir-ODC) are potentially 

useful in the solution process. The approach of utilizing the Cir-ODCs is explained in 

[26]. In this approach, the Cir-ODCs are identified prior to the SAT solving step. The 

decision heuristics, BCP and the conflict driven procedures are adjusted according to this 

information.  

 

1.5.1 Use of SAT in CodGen 

MiniSAT [27] is an open source SAT solver used in CodGen. SAT is used in the 

final justification and dynamic compaction stages of the KLPG algorithm. Final 

justification is run on a complete path for all the values assigned to the gates (necessary 

assignments). Since the LOC clocking scheme utilizes a vector pair for launching the 

transition, two variables are used for SAT solving in two time frames. For pseudo 

functional KLPG, more than two variables are required for the solution, due to the 
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separate input values on each clock cycle. In the case of fixed PIs, as is typical in low-

cost testers, only one Boolean variable is required across all the time frames. 

 

1.6 Structure of the Thesis  

In this thesis we propose an Observability driven path generation methodology 

for at-speed delay test. The proposed approach is useful in path growth beyond the at-

speed cycles for a design in which not all flip-flops are part of the scan chain. The 

observability metric driven path growth ensures the generation of a complete path 

ending at a SFF. 

The thesis is organized as following. In section 2, we present the motivation 

behind the work. Section 3 describes the implementation of the observability based path 

generation strategy in a modified KLPG algorithm. Section 4 discusses the results of the 

experiments on various ISCAS89 benchmark circuits. Section 5 concludes the research. 
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2. MOTIVATION 

 

2.1 Scan Architecture for SOC 

Modern microprocessors embed billions of transistors on a single die. The 

methodology and complexity of testing a design of such scale is mindboggling. Silicon 

real estate required to carry out such complex test of circuits can be a sizable percentage 

of the die area [28]. Scan design is one of the most preferred techniques for on-chip 

testing. The sequential elements are converted into SFF. The SFF cells are connected 

serially to form scan chains. Several scan chains can be formed on a chip to limit the 

total number of SFF on a single chain. The amount of time required to load the chain 

with the test vector and shifting the response through the entire length of the chain can 

take up to thousands of functional clock cycles. Clearly, shorter and fewer scan chains 

on a chip is desirable. It saves area and test time which directly impacts the bottom line 

for a product. 

At-speed delay test utilizes a pair of SFF. A transition is launched from one and 

the response of the DUT is captured in the other. The number of at-speed cycles and 

timing relation of SE signal with respect to test mode enable signal of the chip is defined 

by the test architecture. To ensure a proper capture of the test response from the DUT 

into a SFF, all the SFF should be part of the scan chain and should accommodate the 

total number of at-speed cycles before SE is asserted to shift out the test response. If 

some of the sequential elements in the design are not part of the scan chain, the test 
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response may not get captured to be shifted out on the SO signal. This results in fault 

coverage loss. 

 

2.2 Path Generation in CodGen 

The current CodGen pseudo functional KLPG system generates longest paths 

over multiple at-speed cycles. Esperance of the partial path determines the branch of the 

fan-out cone through which the path grows. This metric is applicable for the at-speed 

cycle to ensure that the path is longest. The designation of a path as complete is 

determined by the termination point of the path at the input port of a SFF. (Low cost 

testers do not capture PO outputs). The current implementation assumes that all 

sequential elements (FF) in the design are SFFs.  Hence, a path is designated as 

complete, even if the sequential element at the end of the path is not a SFF. In reality, 

this generated path would be a false path, since the test response captured in this FF 

would not get shifted out through the scan chain.  

 

2.2.1 Clocking Scheme  

In order to move the response captured in a FF to a SFF, a number of lower than 

at-speed cycles are added after the capture cycles before asserting the SE signal. These 

cycles are known as the coda cycles. The timing of these cycles is such that circuit delay 

does not need to be considered in these cycles. Figure 14 illustrates the clocking scheme 

for such implementation. 
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Figure 14. Inclusion of Coda Cycles for At-Speed Delay Test 
 

The coda cycles ensure that the transition from the at-speed cycle can still be 

captured into a SFF in the event that the FF capturing the transition in the last at-speed 

cycle is not part of the scan chain. A minimum amount of scan infrastructure needs to be 

in place to ensure the coverage goal. For a given clocking scheme in terms of number of 

coda cycles, if the design incorporates less than the critical level of scan elements, the at-

speed transition cannot be captured with the help of a designated number of coda cycles. 

 

2.2.2 Observability Driven Path Generation in Coda Cycles 

The path generated in the at-speed cycle needs to be longest for delay test. 

However, in the case of a coda cycle, the path starting at the first capture flip-flop, need 

not be a longest one. The main objective of this path is to transfer the captured value to a 

SFF. This is implemented using observability of a gate as a metric in growing the path in 

the coda cycle. Observability based path generation ensures that the most observable 

path is generated first in the coda cycle. This path will be the most compatible with the 

necessary assignments of the tested path. Esperance based path growth does not 

differentiate between a scan and a non-scan flip-flop. Hence, it can report a path in a 
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coda cycle that ends at a non-scan element, which will essentially be a false path. In the 

same scenario, the observability metric determines the path to be un-observable by 

assigning infinite observability (a lower observability value means the line is more 

observable) for a non-scan flip-flop, forcing the search process to consider an alternate 

path. 

 

2.3 Related Prior Work 

The KLPG algorithm is described in detail in [11]. The algorithm generates K 

Longest Paths per Gate for both combinational and sequential circuits. The extension of 

the KLPG algorithm over multiple cycles is described in [23]. The process of longest 

path generation is replicated across all the clock cycles. Esperance is used to determine 

the longest path in all of these cycles. Test pattern generation using a SAT engine for 

justification is described in [29]. The work described here builds on top of these prior 

ATPG tools. The overall name given to these tools is CodGen, since it targets combined 

local/global delay defects. 

Critical path tracing methodology is discussed in [30]. A hybrid scan-based 

technique has been proposed in [31]. It uses controllability measure to control a subset of 

the scan cells using either LOS or LOC clocking scheme. The paper enumerates the 

saving in scan enable design effort. However, it does not evaluate the path generation 

using the proposed scheme. 
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3. IMPLEMENTATION 

 

3.1 Path Generation Strategy in KLPG Algorithm 

The KLPG algorithm implemented in CodGen is capable of generating longest 

paths over multiple at-speed cycles [23]. It utilizes an Esperance metric to ensure that 

the generated path is longest for delay test. The current implementation incorporates 

preamble cycles followed by multiple at-speed cycles. All the sequential elements in the 

circuit are assumed to be SFF. Hence it does not distinguish between a SFF and a regular 

FF. We have extended the clocking scheme to incorporate the coda cycles. The 

enhancement also incorporates the observability metric for path generation in the coda 

cycles. Hence, the different clock modes are distinguished with respect to the path 

generation metric. The clocking modes implemented in CodGen are illustrated in Figure 

14. 

The sequential elements have been extended with a field to differentiate the cell 

to be a SFF or a regular FF. The implementation ensures that the path generated in the 

at-speed cycle remains the longest but the path growth in consecutive coda cycles is 

driven by the observability metric rather than the Esperance value. The code also 

ensures that no path is generated if the last capture flop on the path is a non-scan flip-

flop. Any intermediate non-scan flip-flop is considered as a regular flip-flop with infinite 

observability but does not result in dropping of the path from the partial path pool. The 

algorithm works for as many coda cycles as specified. A search tree for the path is 

shown in Figure 15.  
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Figure 15. Path Generation using Esperance and Observability Metric in 
Sequential Circuit  

 

One of sequential elements is marked as a non-scan regular FF. All the gates in 

the fan-in cone of this FF see infinite observability coming from the PPO. In case of a 

generated path for a given number of coda cycles, if this FF acts as the terminating PPO, 

the path is discarded instead of being reported as a complete path. If this FF is one of the 

intermediate sequential elements on the path, the corresponding branch is considered at 

the last decision point for partial path growth, only after all other branches from its fan-

in gate has already been tried for path growth. 

The enhanced implementation works with as many coda cycles as specified in 

the clocking method. The path generation step is followed by justification in the same 

manner it is carried out for the at-speed cycles. 

The following section elaborates on the steps involved in the path generation 

using the KLPG algorithm. 
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3.2 CodGen Functions for Gate Processing 

 

3.2.1 Circuit Verilog Parsing 

CodGen uses a Verilog netlist of the circuit to create an in-code circuit 

representation in the form of the connections between the gates. The logical gates (AND, 

OR, NAND, NOR, XOR, XNOR, NOT, BUFF, MUX, etc.) are defined in the Gate 

class. The TruthTable of each of these gates describes the logic operation for each of 

these gates. The sequential elements are described in a separate Verilog file which 

groups the FFs in terms of the scan chain. An additional file containing scan cell 

attributes has been implemented in this work to designate the FF cell as a SFF. This 

scan-cell-attribute file is parsed along with the Verilog files and the corresponding field 

in the gate object in the code is updated accordingly. This field (SC) is utilized by the 

observability calculation program to propagate the observability in the fan-in cone of 

any object of the Gate class. 

Each of the gates in the circuit is given a GateID. The PI, PPI, PO and the PPO 

nodes are also treated as gates in the Gate class to streamline the path generation. The 

net connected to the output of the gate acts as the NETID. This NETID, in turn, gets 

stored as input net of one or more gates in the fan-out cone of this gate. The gates are 

levelized [5] according to the distance of the gate from the input and output nodes (both 

primary and pseudo primary type) of the circuit. The levelization ensures correct SCOAP 

measure [5] calculation in the following stages. 
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 3.2.2 Gate Delay Assignment 

CodGen can assign realistic delay for a given gate in the circuit for both rise and 

fall transition at the output node if a SDF delay file is provided as a part of the input files 

to the code. In absence of such delay file, a unit-delay-model is utilized to assign gate 

delays. 

 

3.2.3 Fan-In/Fan-Out Cone  

Fan-in and fan-out cones of each gate are calculated in order to create the in-code 

circuit structure. The search space in the KLPG algorithm in the form of the fan-in and 

fan-out cones is shown in Figure 17. 

 

Figure 16. KLPG search space [4][23] 
 

The fan-in and fan-out paths are the search space of the gate g in the figure. The 

line through the cones are designated as on path [5]. The paths outside this search space 

provide side input [5] values. 
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The fan-in and fan-out cone of gates are calculated in the same manner in case of 

multiple at-speed and coda cycles. This is illustrated in Figure 17(b). Proper side input 

assignments are necessary over multiple time-frames [4] for correct propagation of the 

transition launched at the PPI. 

 

3.2.4 Circuit Initialization 

Controllability and Observability of the gates are calculated in this step. 

Controllability is defined as ease of controlling a node in a circuit to a logic level of ‘0’ 

and ‘1’. The combinational controllability metrics are denoted as CC0 and CC1 

accordingly. The PI and the PPI nodes are assigned CC0 and CC1 values of ‘1’ since 

these nodes can be directly controlled. The CC0 and CC1 metrics of all subsequent 

gates, in the level order, in the circuit are then defined according to the logic of the gate. 

It should be noted that the controllability measures of the input of a gate at a given level 

is measured only when all the lower level gates have already been assigned with the 

controllability values for all of their input nodes. This ensures a correct calculation of 

such metric. In case of observability metric, the calculation starts at a PO or a PPO. 

Observability of ‘0’ is assigned to these nodes. The observability function implemented 

as an enhancement in this work stores the combinational observability (CO) of both 

input and output nodes of a gate. The output CO is used for the gate observability while 

the input node CO values are used to define the same for a gate in the fan-in cone which 

has more than one fan-out. The CO of a gate with more than one fan-out is defined as the 

minimum of the CO values from all of its fan-out cone gate inputs. The observability 
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function assigns infinite observability for a PPO of a non-scan FF. The infinite value is 

accordingly propagated to all the fan-in cone gates of the non-scan FF. Figure 16 

illustrates the SCOAP measures of a representative circuit. 

 

  

Figure 17. SCOAP Metric Calculation [5]  
 

The level of the gates from PPOs is represented as numbers inside a square. Each 

gate has an identifying number in it. The notation (CC0,CC1)CO is used to list CC and 

CO values for each line in the circuit. 

 

3.3 Path Generation Aiming the Scan Sequential Element 

Previous versions [11] [23] of the KLPG algorithm attempted to generate paths 

through all the gates. We consider paths starting at a SFF for at-speed scan test. Hence 

the path generation aims at generating a path starting from a SFF. The function 
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AimingPathGen generates a partial path pool which keeps the record of the path which 

gets expanded in an iterative manner by adding one gate each time to the partial path, 

from the fan-out cone of the last gate of the partial path. Both the rising and falling 

transitions through a gate are used to grow a path. The total number of iterations for each 

transition from a SFF is given by K·j wherein K is the number of paths per gate targeted 

for path generation and j is the total number of fan-out stems of the SFF. 

The partial path pool is always sorted according to the Esperance value of the 

partial paths. It ensures that each iteration always uses the partial path that is most 

eligible to become a longest complete path. When a PPO gate is added to one of such 

partial paths, it becomes a complete path and it is removed from the partial path pool. 

The path is reported after successful final justification. 

 

3.4 Time-frame Expansion 

The test pattern generation is implemented in CodGen uses a time-frame 

expansion methodology. A Boolean gate-level model [4] of the circuit is generated in 

this method to generate the tests using a combinational ATPG method. The 

combinational part of the circuit is expanded in time by using the logic twice for a pair 

of time frames. The vector pair of the delay test, is applied to the expanded circuit. The 

two time frames are denoted as frame  -1 and frame 0. The circuit block corresponding 

to frame 0 receives its input from the response of frame -1. Figure 18 illustrates the 

concept of using time frame expansion used for LOC scheme.  
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Figure 18. Time-frame Expansion for Delay Test [4] 
 

The objective of this step of the path generation is to ensure that an intended 

transition can be propagated through a gate, i.e. required logic values can be assigned for 

path sensitization. For a rising transition, the vector in frame -1 will be ‘0’ and it will be 

‘1’ for frame 0. It will be opposite in case of a falling transition.   

If the last gate on the partial path has more than one fan-out, the path splits into 

branches. Constraints are applied on the last added gates to ensure the propagation of the 

transition obtained from the previous step described above. Direct implication [4] is then 

performed in a recursive manner on each of the gates in the fan-in and fan-out cone. 

Whenever, the logic state of the output node of a gate changes due to the application of 

the input transition, it needs to be propagated to the downstream logic. The side inputs of 

the gate need to be at non-controlling state as well.  

The direct implication can fail whenever the required logic values cannot be 

assigned to a gate. Conflict can arise in a circuit where the assignment of a non-

controlling value on one gate may disable a different gate sharing one of the same 

inputs. For non-robust sensitization, the side inputs need to have non-controlling values. 

In case of robust sensitization criterion, the side inputs need to remain at the non-
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controlling value if the on-path signal makes a transition to a controlling value. Figure 

19 illustrates a scenario of conflict during path sensitization. 

 

 

Figure 19. Conflict in Logic State Assignment [4] 
 

The gate gi in the figure represents the last gate on the partial path. The gate gj is 

in the fan-out cone of gi. In order to propagate the transition through the gate gi, the side 

input needs to be at logic ‘1’. However, assigning this logic value to gi will block 

propagation of transition through the gate gj. In the event of a failed direct implication, 

the path growth is inhibited through the gate. A variety of heuristics [4] can be applied to 

trim the search space for any other path generation through the same line. 

 

3.5 Final Justification 

Final justification is performed before a path can be reported. In case of multiple 

at-speed and coda cycles, the justification step is carried out on each cycle before the 

path is extended in the consecutive cycles. If the justification is run only at the end, and 

justification fails for a gate which is part of the first capture cycle, then the path 
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generation has to be rerun for all the subsequent cycles. This would lead to unnecessary 

and additional iterations for the same lines with clean justification in the later cycles. 
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4. CODA CYCLE PATH GROWTH 

The path growth in coda cycles is based on the observability metric. If the last 

gate in the partial path has more than one fan-out, the gate with minimum observability 

at the input node gets added to the partial path pool. The partial path pool is ordered 

according to the observability overhead. This reordering of the partial path pool ensures 

that the path generated in the coda cycles is most observable. The flowchart in Figure 20 

depicts the path generation algorithm for multi-cycle path generation. 

 

 

Figure 20. Path Generation Algorithm for Multiple At-Speed Cycles 
 

The coda cycle path generation utilizes the same approach for the path growth as 

shown in Figure 20. It involves an additional step of reordering the partial path pool 

according to the observability metric prior to extending the path in each iteration. The 

total number of at-speed and coda cycles can be specified in CodGen along with the K 
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value and sensitization criterion to generate paths for delay test for such a clock 

configuration. 

Figure 21 shows a modified version of the ISCAS89 S27 circuit. The S27 circuit 

has been modified to incorporate multiple at-speed and coda cycle paths for code 

debugging and algorithm illustration. The SFF elements are denoted with ‘SC’ and the 

regular FF is denoted with ‘NS’.  

 

Figure 21. Modified ISCAS89 S27 Benchmark Circuit  
 

Considering one at-speed cycle and one coda cycle, the paths starting at U50001 

SFF are: 

Path 1: U50001—U15—U50002—U10—U901—U50004 

Path 2: U50001—U15—U50002—U10—U50006 
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The single at-speed cycle path starts at U50001 and ends at U50002. The fan-out 

of the SFF U50002 consists of two gates: U10 and U101. The Esperance of Path 1 is 

greater than that of the Path 2. However, the observability overhead through gate U101 

is lower. Hence, in the coda cycle, Path 2 is generated ahead of Path 1. 

For one at-speed cycle and two coda cycles, the paths starting at U50001 SFF are 

following: 

Path 1: U50001—U15—U50002—U10—U901—U50004—U902—U50005 

Path 2: U50001—U15—U50002—U10—U901—U50004—U903—U50006 

Path 3: U50001—U15—U50002—U10—U50006—U103—U50007 

This configuration models the presence of non-scan elements during the path 

growth. The SFF U50004 has a fan-out of 2. The coda cycle path originating from this 

SFF follows the same observability driven ordering as described in the previous 

configuration with one coda cycle. As a result, Path 1 is generated before Path 2 is 

considered. However, the FF U50006 has the ‘NS’ attribute, making it a regular non-

scan FF. Since, this is the only terminating FF in the current branch of the circuit, Path 2 

is not grown to this FF. Since U50007 is also a non-scan FF, Path 3 is not generated 

either. 

For the same clock configuration as above, if gate U50004 is made ‘NS’ and both 

U50005 and U50006 are made ‘SC’ , then both of the paths (Path 1 and Path 2) would be 

reported. Having a non-scan element as an intermediate FF does not impact capturing 

the transition at the terminating SFF. If U50007 is kept as a non-scan cell, only two 

paths are generated. If U50007 is made SFF, then Path 3 gets generated first due to 
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lower observability (since there are no non-scan cells on this path, the observability 

metric of the corresponding branch is reported to be lower than the branch through the 

gate U901 which sees infinite observability propagated from the non-scan FF U50004. 
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5. RESULTS 

The modified KLPG algorithm is implemented in C++ on an Intel Core i7 

machine with 64GB memory. Experiments are carried out on ISCAS89 benchmarks and 

industrial circuits. The code has been run with different K values and coda cycles. The 

sequential cells has been configured as scan and non-scan cells to ensure the validity of 

the code in terms of handling different observability overhead. Circuit inputs (PIs) are 

fixed during each test pattern (resembling a low cost tester). The code has been validated 

to ensure distinction between the Esperance and Observability driven path expansion in 

at-speed and coda cycles respectively. The partial path pool has been thoroughly 

validated to ensure correct ordering based on Esperance and observability measures. 

Different sequential elements have been configured as scan or non-scan elements to 

ensure correct behavior of discarding or growing a partial path in a given clock scheme. 

 

5.1 CodGen Run Time and Path Generation Results 

Figure 22 shows the trend for run time with increasing numbers of paths per gate 

K and number of coda cycles (CYC) for the benchmark circuit s1488. As expected, run 

time rises sublinearly with K. Run time does not necessarily rise with CYC due to the 

changing number of tested paths. Figure 23 shows that the number of tested paths rises 

with K, as expected, and falls with CYC, due to the increasing number of constraints on 

the path, particularly due to the fixed primary inputs. 
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Figure 22. Run Time for s1488 
 

 

Figure 23. Generated Paths for s1488 
 

A similar trend is observed for the other benchmark circuits as well (see 

Appendix I). It should be noted that the increase in the number of paths generated with 

increasing value of K gradually decreases for all the cycles. This observation is captured 

in Table 1.  
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Table 1. Relative Increase in Number of Paths with Increasing K Value 
 

K Relative Increase in No. of Paths (Kn/Kn-1) 
CYC=1 CYC=2 CYC=3 

2 1.9 1.5 1.6 
3 1.4 1.2 1.2 
4 1.1 1.2 1.1 
5 1.1 1.1 1.1 

 

Figure 24 illustrates the trend captured in Table 1. Although the variation in the 

increase in the number of paths as a function of increase in the value of K depends on the 

structure of the circuit, the trend observed over various circuits and number of cycles is 

the same (see Appendix I). 

 

Figure 24. Relative Increase in Number of Paths with Increasing K Value 
 

The total number of paths that can be generated through a gate primarily depends 

on its fan-outs (apart from the fact that the direct implication has to pass). For a low 

value of K, not all such paths get generated in the KLPG algorithm. The path limit 



 

42 

 

defined by the K value gets exceeded before all the paths can be explored. Clearly, 

increasing the value of K helps generating more paths in such a scenario. However, it is 

intuitive to realize that the total number of generated paths would not increase beyond a 

certain number even with a high value of K if all possible fan-out cones have already 

been explored. In presence of side input constraints, the increase in the number of 

generated paths can be lower than expected. The experiments run with CodGen show 

that not enough benefit is achieved in order to generate more paths per gate for values of 

K greater than 5. 

Table 2 shows the total run time and total paths generated for a configuration of 

K=1 and CYC=1 for various ISCAS89 benchmark circuits. The longest path length is 

also captured in the table.  

Table 2. CodGen Run for Configuration: K=1, CYC=1 
CodGen Run Configuration: K=1 CYC=1 

Benchmark 
Circuit # Gates # FF # Paths Longest 

Path Length Run Time (s) 

s1494 661 6 55 24 29 
s1488 667 6 67 26 29 
s1423 748 74 74 39 185 
s5378 2993 179 235 25 97 
s9234 5844 211 143 52 652 
s13207 8651 639 224 62 458 
s15850 10833 534 443 65 1206 
s38584 22142 2426 1294 71 3678 
s38417 23843 2636 957 51 10896 

 

Figure 25 shows the trend in the run time as a function of total number of gates in 

the design. It can be seen that the run time increases at a linear rate until s38584. The run 

time for s38417 is almost 3X that of s38584. This abrupt change in the run time can be 
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understood from the number of Aiming trials for each of these runs. For s38584, the 

CodGen run tries to extend a partial path a total of 863,897 times. In case of s38417, this 

number is 4,014,779. A large percentage of the total run time is spent in the path 

generation step of CodGen. Hence, a larger number of path extension trials directly 

impacts the total run time. The structure of the circuit has a key role to play in defining 

the partial path growth and can lead to non-linear dependency for run time and total 

number of testable paths generated. 

 

 

Figure 25. Run Time for CodGen on ISCAS89 Benchmark Circuits 
 

CodGen has been run on the ISCAS89 benchmark circuits with K values from 1 

to 5 and CYC values of 1, 2 and 3. A total of 15 CodGen runs with these combinations 

of K and CYC values have been run on each of the benchmark circuits (see Appendix I). 

The trend of the total run time and the number of paths is similar across circuits. 
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The total number of generated paths increases with the total number of gates in 

the circuit. But it should be noted that structure of the circuit can influence the path 

generation and may lead of lower number of paths for a circuit with relatively higher 

number of gates in the design. Logical connection in a relatively bigger circuit can lead 

to higher number of direct implication failures that may eventually lower the total 

number of generated paths. All the data points in Table 2 were generated assuming all 

sequential elements in the design to be SFF type. Codgen has been validated by 

modifying a selected group of sequential elements to non-scan cells, and the reduction in 

the number of paths verified. 

Table 3 and Table 4 capture the data for configurations of K=1 and CYC=2 and 3 

respectively. 

Table 3. CodGen Run for Configuration: K=1, CYC=2 
CodGen Run Configuration: K=1 CYC=2 

Benchmark 
Circuit # Gates # FF # Paths Longest 

Path Length Run Time (s) 

s1494 661 6 44 34 41 
s1488 667 6 52 33 45 
s1423 748 74 26 42 217 
s5378 2993 179 225 30 138 
s9234 5844 211 123 64 653 
s13207 8651 639 67 66 731 
s15850 10833 534 139 75 1764 
s38584 22142 2426 544 84 4270 
s38417 23843 2636 603 68 11812 
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Table 4. CodGen Run for Configuration: K=1, CYC=3 
CodGen Run Configuration: K=1 CYC=3 

Benchmark 
Circuit # Gates # FF # Paths Longest 

Path Length Run Time (s) 

s1494 661 6 36 38 47 
s1488 667 6 36 39 50 
s1423 748 74 21 44 293 
s5378 2993 179 201 35 146 
s9234 5844 211 34 68 1088 
s13207 8651 639 26 75 763 
s15850 10833 534 61 100 1923 
s38584 22142 2426 346 107 4382 
s38417 23843 2636 186 91 13788 

 

The graph of run time vs. total number of gates is drawn in the Figure 26. As can 

be seen, there is little difference in the run time for CYC=2 vs. CYC=3. 

 

 

Figure 26. Run Time of CodGen on ISCAS89 Benchmark Circuits 
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Figure 27 captures the longest testable path length generated with different CYC 

values.  

 

Figure 27. Longest Testable Path Length over Multiple Coda Cycles 
 

The longest testable path length increases over multiple code cycles for all the 

benchmark circuits. Circuit structure determines how long a path would be. Hence there 

is no direct relation between the longest paths across different circuits. The same 

behavior has been observed with higher K values as well.  

 

5.2 Path Pool Reordering in Coda Cycle 

Figure 28 captures the partial path pool ordering for one of the iterations during 

path generation.  
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Figure 28. Path Pool Reordering in Coda Cycle 
 

Each line in these tables represent a partial path. Figure 29 illustrates the path 

structure in the partial path pool. Only one gate is shown in Figure 28 due to space 

restriction.  
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Figure 29. Partial Path Pool Expansion in CodGen 
 

It can be seen that the length of the partial path increases upon successful 

addition of a new gate (success in direct implication). When a path cannot be grown any 

further through a branch, path growth algorithm returns to the last successful node from 

which the path split due to more than one fan-out. The left table in Figure 28 shows the 

path pool in one of the at-speed cycles. It be seen that for iteration 17 of path growth 

from the SFF U50001, the path pool is sorted according to the Esperance values. The 

right side table shows the same iteration with observability driven ordering of the path 

pool.  
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5.3 CodGen Run Time Profile 

The run time code profiling data is illustrated in Figure 30 for s38584 benchmark 

with a run time configuration of K=1 and CYC=1 and robust sensitization. Two major 

components of the total run time are the Aiming Path Generation and the Path 

Expansion subroutine.  

 

Figure 30. CodGen Run Time Profiling for s38584 
 

The third most time consuming function is the SAT based justification and 

compaction of a complete path. For a benchmark circuit such as s38584, a considerable 

amount of time goes behind reporting the generated path as well. For a relatively smaller 

circuit with many fewer generated paths, the reporting function takes a much lower share 

of the total run time. 
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The distribution of individual functions on the total run time plot is uniform 

across K and CYC values. Figure 31 captures the run time distribution for s1494 and 

s38584 for two different configurations of K and CYC values.  

 

Figure 31. CodGen Run Time Profiling across Multiple Run Configurations 
 

The circuit size and run configuration used to plot the graph in Figure 31 

encompass the total experimental setup in terms of total run time and total number of 

generated paths. Hence, this plot gives a good idea about the CodGen profiling based on 

its run time configuration across all feasible possibilities. 

For the same benchmark circuit, the total time spent behind Aiming Path 

Generation and Path Expansion is higher for larger K and CYC values. This is an 

expected behavior since CodGen deals with a larger search space with bigger K and CYC 

values.  
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6. CONCLUSIONS AND FUTURE WORK 

 

The work presented in this thesis enables observability driven path generation for 

coda cycles. The CodGen is enhanced with path growth metric driven distinction 

between the at-speed and coda cycles. The implementation ensures that no false path is 

generated in the presence of non-scan FF at the capture point.  

Inclusion of SFF in a circuit incurs area growth. Area critical SOC solutions may 

have an upper bound for adding scan chains in the design. Since Esperance based path 

growth does not differentiate between a SFF and a regular FF, false paths would be 

generated in a scan-limited circuit. As a result, test coverage would be limited. On the 

other hand, observability driven path generation in coda cycle can regain the loss in 

coverage. The extent of coverage gain by this process can be limited by structure of the 

circuit. Low fan-in of FF would limit path growth through other branches which may 

terminate at a SFF.  

As a part of the future work, the coda cycle path growth can be characterized 

with larger circuits. Experiments with higher values of K and CYC can be performed to 

confirm the trend in run time and number of paths generated as seen with the current 

experimental results. 

Test coverage analysis can be carried out to understand the quantitative impact of 

moving from Esperance based path growth to the observability driven path growth in the 

coda cycles. 
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Transitions launched in the at-speed cycle can be lost at memory boundary. The 

memory array can be modeled as a non-scan element. Hence the observability driven 

path generation can be applied to memory shadow logic coverage. 

Preamble cycles have not been considered in the path generation experiments in 

the thesis. It would be a good exercise to include these pseudo functional cycles to cover 

the entire clocking scheme in one single CodGen setup. The logic state at the PI nodes 

have been considered to be constant. A time varying input vector can be used for further 

experiments.  

All the experiments assume robust sensitization. The results can be generated for 

non-robust and long transition path sensitization as well. The primary objective of the 

work was to establish the observability metric for coda cycles. Hence, robust test vector 

scenario validates the concept. Non-robust test generation would differ primarily in the 

number of paths that can be generated over multiple coda cycles. However, the effect of 

using observability over Esperance would be same as in the case of robust test. 

New path growth heuristics can be explored to improve the run time of CodGen. 

Direct implication and partial path expansion are two of the primary functions that 

consume most of the run time. A different approach for storing the partial path in a more 

efficient data structure can be explored as one of the ways to improve the run time. 
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APPENDIX – I 

Results with Various K and CYC Values for each Benchmark Circuit 

Table 5 Run Time and Generated Paths for s1494 

S1494 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:00:29 0:00:41 0:00:47 K=1 55 44 36 
K=2 0:00:47 0:01:01 0:01:12 K=2 124 86 49 
K=3 0:01:08 0:01:07 0:01:21 K=3 153 108 58 
K=4 0:01:14 0:01:16 0:01:32 K=4 180 113 62 
K=5 0:01:39 0:01:47 0:01:50 K=5 214 129 68 

 

 

Figure 32. # Paths generated for s1494 
 

 

Figure 33. Run Time for s1494 
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Table 6 Run Time and Generated Paths for s1423 

S1423 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:03:05 0:03:37 0:04:53 K=1 73 26 19 
K=2 0:03:22 0:03:52 0:05:28 K=2 156 38 21 
K=3 0:03:53 0:05:51 0:05:38 K=3 209 43 21 
K=4 0:04:51 0:05:42 0:06:33 K=4 228 43 21 
K=5 0:05:50 0:05:38 0:05:36 K=5 233 43 21 

 

 

 

Figure 34. # Paths for s1423 

 

Figure 35. Run Time for s1423 
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Table 7 Run Time and Generated Paths for s5378 

S5378 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:01:27 0:02:18 0:02:26 K=1 235 225 201 
K=2 0:02:06 0:03:01 0:03:02 K=2 481 403 381 
K=3 0:02:55 0:03:36 0:03:41 K=3 844 580 542 
K=4 0:03:22 0:03:46 0:04:21 K=4 1040 705 654 
K=5 0:03:48 0:04:33 0:05:11 K=5 1191 886 802 

 

 

Figure 36. # Paths for s5378 
 

 

Figure 37. Run Time for s5378 
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Table 8 Run Time and Generated Paths for s9234 

S9234 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:10:52 0:10:53 0:18:08 K=1 143 123 34 
K=2 0:12:49 0:13:04 0:18:07 K=2 295 203 58 
K=3 0:14:03 0:13:36 0:19:42 K=3 419 299 70 
K=4 0:14:37 0:14:44 0:20:04 K=4 513 355 71 
K=5 0:15:13 0:14:36 0:20:07 K=5 609 445 71 

 

 

Figure 38. # Paths for s9234 
 

 

Figure 39. Run Time for s9234 
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Table 9 Run Time and Generated Paths for s13207 

S13207 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:07:38 0:12:11 0:12:43 K=1 224 67 26 
K=2 0:10:34 0:13:18 0:12:52 K=2 426 85 30 
K=3 0:10:29 0:13:15 0:12:53 K=3 520 88 30 
K=4 0:11:41 0:13:31 0:13:00 K=4 553 89 30 
K=5 0:13:16 0:13:23 0:13:00 K=5 601 89 30 

 

 

Figure 40. # Paths for s13207 
 

 

Figure 41. Run Time for s13207 
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Table 10 Run Time and Generated Paths for s15850 

S15850 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 0:20:06 0:29:24 0:32:03 K=1 442 139 61 
K=2 0:26:13 0:31:23 0:26:31 K=2 584 160 72 
K=3 0:29:00 0:26:06 0:26:28 K=3 617 160 80 
K=4 0:26:52 0:28:20 0:27:51 K=4 617 160 80 
K=5 0:27:24 0:29:29 0:27:16 K=5 617 160 80 

 

 

Figure 42. # Paths for s15850 
 

 

Figure 43. Run Time for s15850 
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Table 11 Run Time and Generated Paths for s38584 

S38584 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 1:02:18 1:11:10 1:13:02 K=1 1294 544 346 
K=2 1:17:36 1:14:54 1:14:34 K=2 1768 647 368 
K=3 1:19:23 1:13:28 1:13:21 K=3 1800 647 389 
K=4 1:22:05 1:15:33 1:13:34 K=4 1800 657 393 
K=5 1:23:52 1:17:17 1:15:04 K=5 1800 657 393 

 

 

Figure 44. # Paths for s38584 
 

 

Figure 45. Run Time for s38584 
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Table 12 Run Time and Generated Paths for s38417 

S38417 

Run 
Time 

(h:m:s) 
CYC=1 CYC=2 CYC=3 # Paths CYC=1 CYC=2 CYC=3 

K=1 3:01:36 3:16:52 3:49:48 K=1 957 603 186 
K=2 3:40:38 4:04:00 3:20:53 K=2 1964 974 261 
K=3 4:00:28 4:03:01 3:57:21 K=3 2367 1209 340 
K=4 3:43:50 3:26:58 3:11:21 K=4 2542 1533 331 
K=5 4:44:40 4:28:06 3:56:21 K=5 2968 1910 336 

 

 

Figure 46. # Paths for s38417 

 

Figure 47. Run Time for s38417 
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