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ABSTRACT

The fly visual system, although tiny when compared to the mammalian visual

system, can still perform highly sophisticated functions to help the animal navigate

through the environment. An example of such a function is the detection of optical

flow. Perceiving and responding to the optical flow is critical to the animal’s sur-

vival and success. Higher level neurons in the fly’s visual system, the Lobula Plate

Tangential Cells (LPTCs), respond to different types of optical flow due to rotation

and translation, by pooling information from elementary motion detectors (EMDs)

in the lower level. In this sense, neuronal responses (spikes) from these optical flow

detectors in the fly carry highly encoded signals.

In this thesis, I investigate how such highly encoded signals can be interpreted

and utilized in the fly’s brain, while solely operating on the internal spike patterns

in its own brain. This is also called the grounding problem. With a computational

model of the optical flow detectors in the fly, I show that action (or coordinated

motor output) is the only way that the fly can learn the meaning of its internal

spikes and generate meaningful, relevant behavior. I show this with two methods

of integrating local optical flow information based on physiological and functional

model of fly’s LPTCs.

The results show that the proposed agent model based on fly’s visuomotor system

is able to learn a good sensory state to action mapping. This indicates that the agent

model and the learning algorithm are able to give promising results for the motion

grounding problem in synthetic and natural scenarios.
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NOMENCLATURE

EMD Elementary Motion Detector

LPTC Lobula Plate Tangential Cell

HS Horizontal System

VS Vertical System

mHS Modeled Horizontal System

mVS Modeled Vertical System

RYRL Rotation Yaw Right to Left

RYLR Rotation Yaw Left to Right

RPUD Rotation Pitch Up to Down

RPDU Rotation Pitch Down to Up

RRCL Rotation Roll Clockwise

RRAC Rotation Roll Anti-Clockwise

TLRI Translation Radiate In

TLRO Translation Radiate Out
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1. INTRODUCTION

1.1 Overview

The fly visual system, although tiny when compared to the mammalian visual

system, can still perform highly sophisticated functions to help the animal navigate

through the environment (see [9] for a general review of insects’ spatial understand-

ing). An example of such a function is the detection of optical flow. The behavior

and anatomy of the optical flow system in the fly have been extensively studied [10]

[11] [4] [12] and modeled computationally [12] [13] [14]. Perceiving and responding to

the optical flow is critical to the animal’s survival and success in life, since based on

this they perform rapid and complex maneuvers such as stabilization and pursuit.

Higher level neurons in the fly’s visual system, the Lobula Plate Tangential Cells

(LPTCs), respond to different types of optical flow due to rotation and translation

of the animal, by pooling information from elementary motion detectors (EMDs) in

the lower level [15] [16] [17]. In this sense, neuronal responses (spikes) from these

optical flow detectors in the fly carry highly encoded signals.

In this thesis, I investigate how such highly encoded optical flow signals can be

interpreted and utilized within the fly’s brain, while solely operating on the internal

spike patterns in its own brain (Fig. 1.1). In some sense, the question is like the

cartoon shown in Fig. 1.2: how can the fly, sitting inside its brain, figure out how to

interpret the spikes and generate relevant action (the “Flynculus”, a fly version of the

homunculus). This is basically a problem of “grounding” [18], i.e., trying to figure

out the meaning of internal representations in the brain. Strangely, the grounding

problem seems trivial from an external observer’s point of view, with complete access

to the stimulus and the internal spikes (Fig. 1.1a), while it seems intractable from

1
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(a) External Observer (b) Internal Observer

Figure 1.1: Decoding neural spikes. Decoding the meaning of neural spikes from (a)
an external observer’s perspective where both the spikes S and the environmental
stimulus I are available to the observer, compared to (b) an internal observer’s
perspective (the brain itself) where only the spikes S are available. Adapted from
[1].

an internal observer’s view (the brain’s native view; Fig. 1.1b).

In previous work on grounding visual cortical orientation detector responses, it

has been shown that action is critical in making the internal observer (Fig. 1.1b) case

feasible [1][19]. With a computational model of the optical flow detectors in the fly,

I show that action (or coordinated motor output) is the only way that the fly can

learn the meaning of its internal spikes and generate meaningful, relevant behavior,

all just based on internal spike patterns.

1.2 Background

Optical flow is the change in structured light in an image due to relative motion

between the scene and the observer. Optical flow is very important in understanding

motion in various animals. It has been shown that optical flow has a significant

role in perception of motion, distinguishing objects, depth perception and control

of locomotion. Optical flow has also been used extensively by robotics researchers

in object detection, navigation, depth perception, etc. Optical flow is discussed in

2



Figure 1.2: The flynculus. The same problem of decoding neural spikes shown
in the context of the fly (cartoon by M. F. Land, text by S. B. Laughlin [“The
Flynculus: The little fly sitting in the fly’s brain, trying to fly the fly”]; as cited in
[2], p14).
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detail in Section 2.

Flying insects have been studied extensively in the past decades. The structure of

their brain; structural and functional models of neurons involved in sensing; process-

ing; and giving motor response in different modalities have been studied extensively.

There are now mathematical, structural, and functional models available for many

neurons involved in important functions of the fly. It is easier to do this analysis for

the fly brain because of its small and relatively simple structure. Each functionality

only uses a limited number of neurons so it becomes easier to study their function-

ality. The fly visual system is also of significant interest as far as this research is

concerned as flies are involved in rapid motion activities like pursuit of prey, gaze

stabilization, etc. These activities require a robust mechanism that can deal with

different kinds of optical flows.

The fly visual system consists of three visual neuropiles and the retina, which is

connected to a hexagonal eye lattice of the compound eye. The retina has local mo-

tion detectors called Elementary Motion Detectors (EMDs). These EMDs respond

to motion in local regions of the field of view and are directionally selective. Sig-

nals generated by EMDs are then integrated by the Lobula Plate Tangential Cells

(LPTCs). These are integrator neurons that selectively integrate input from EMDs

to generate a response that is commensurate to the global motion as perceived across

the field of view. There are about 60 different LPTCs, responding to different aspect

of motion. However, Horizontal System (HS) and Vertical System (VS) neurons are

the most significant ones. HS cells respond to horizontal motion while VS cells re-

spond to vertical motion. The response of these cells depends on velocity of motion

and contrast of the scene. These neurons connect to output neuropiles that con-

trol motion. Thus, study and modelling of these neurons is directly relevant to this

research. The fly’s visual system is described in detail in Section 3.

4



1.3 Approach

The approach that I have followed is to study the literature for models of these

neurons in the fly’s visual system and perform experiments by implementing these

models with a learning algorithm on top of it to derive a sensorimotor mapping.

The existence of such a mapping justifies the hypothesis that agents can learn the

meaning of sensory input in terms of its actions, which is the grounding of the optical

flow. The objective is to show these results for both artificial scenarios and natural

scenarios.

I used images with different types of background ranging from indoor scene to

outdoor natural scene. These images were used to simulate a scene that a fly-

like robotic agent observes during the training phase. These images were moved

to generate relative motion between the agent and the scene, causing the agent to

observe different types of optical flows like roll, pitch, yaw, and zoom. These formed

the optical flows to model those generated by self-motion of a fly-like agent. I used

standard optical flow generation methods such as Lucas-Kanade method and Horn-

Schunck. The next step is to build a model of visual processing system inspired by

the fly’s visual system, which generates different firing outputs for different types of

optical flows. These sensory states are generated by models of HS and VS neurons.

These firing states act as an input for the learning algorithm. The learning algorithm

is based on reinforcement learning and performs different actions to optimize the

reward. The reward is generated based on the invariance criterion, meaning that the

actions that do not change the sensory state generate high reward. This technique

creates a sensory-motor mapping from a particular optical flow state to a particular

action. This mapping serves as the basis of grounding. The more accurate the

mapping, the better the grounding can be. The approach and a model of a robotic

5



fly-like agent, capable of autonomously grounding optical flow, is presented in detail

in Section 4.

In Section 5, I describe various experiments conducted with different images, both

natural and synthetic. I also conducted various experiments by varying parameters of

the agent model and learning algorithm. Results with varying conditions are shown

giving good sensory-motor mapping in some cases while worse in others. Generally,

good results were obtained for images simulating natural scenarios that exhibit high

contrast scenes with dense texture.
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2. OPTICAL FLOW

2.1 Overview

Optical flow is the change in structured light in an image due to relative motion

between the scene and the observer. Optical flow is very important in understanding

motion in various animals. It has a significant role in estimation of the self-motion,

distinguishing objects, depth perception and control of the locomotion. The study of

optical flow has placed great emphasis on estimating the 3-D nature and structure of

scenes and analyzing motion between objects and observers. Optical flow has many

applications in the field of biology, computer vision, robotics, and image compression.

In the biological contexts, optical flow is a change in light patterns that gives the

impression of movement of visual imagery that is projected onto the retina. This is

illustrated in the Fig. 2.1 in detail. Directional motion is processed in all visually

oriented animals including human beings (see [20] [21]). Information gained from

visually processed directional motion gives a good understanding of environment

and self-orientation to the animal. For example, a human being with only one eye

can still manage to identify objects by distinguishing background from foreground.

This is achieved by moving the head from side to side to generate an optical flow

that is then used to understand these features of the environment. Optical flow is

also useful for extracting depth information.

Gibson [22] first introduced the notion that optical flow is a rich source of in-

formation related to self motion and distance. He showed that optical flow plays

an important role in affordance perception which is the ability of animals to discern

the possibilities for actions within the environment. Later, the formal method of

describing optical flow in vector notation format was proposed (see [23] [24]). This
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Figure 2.1: Optical flow detection. a) Image of visual features formed by projection of light from
these features on the retina. When there is relative motion between the visual feature and the eye,
a change in projected image on the retina is observed. This changing pattern of light on the retina
due to relative motion between the observer and the visual scene is called optical flow. b) Shows
the effect of change in light patterns at the pixel level. It also shows that by tracing the movement
of a given pixel across different frames, the optical flow direction and velocity can be plotted as
vectors. Adapted from [3]

format of representing optical flow as shown in Fig. 2.2 gives a good idea of direction

and velocity of moving pixels. It is very useful for analyzing optical flow at local

levels as well as inferring global flow patterns.
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Rotation: Yaw Right to Left (RYRL) Rotation: Yaw Left to Right (RYLR)

Rotation: Pitch Up to Down (RYUD) Rotation: Pitch Down to Up (RYDU)

Rotation: Roll Clockwise (RRCL) Rotation: Roll X-clockwise (RRAC)

Translation: Radiate in (TLRI) Translation: Radiate out (TLRO)

Figure 2.2: Observed optical flows (Ideal). Ideal Optical flow fields generated by rotational and
translational self motion are represented in vector notation. Observed optical flows induced by
rotation (yaw, pitch, roll) and translation (forward and backward only) are shown.
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2.2 Optical Flow in Fly

The fly has a robust visual system that senses and processes visual motion infor-

mation. Understanding directional motion information such as optical flow is very

important for performing actions like gaze stabilization, pursuing prey, etc. The fly

performs these behaviorally meaningful actions in an exceedingly efficient manner.

Therefore, the fly is a good example to study characteristics of optical flow and its

processing mechanism as discussed in greater detail in Section 3.

Consider that a fly as shown in Fig. 2.3 is a rigid object that is capable of

translating in 3-D space and rotating along 3 axes leading to yaw, pitch, or roll

motion. When the fly performs these actions, it senses optical flow through its visual

system (described in detail in Section 3) and generates a global map of flow fields.

These flow fields can be represented using vector notation as shown in Fig. 2.3. In

this representation, two angles become very important for representing any point in

the field: the azimuth and elevation angles, respectively. An azimuth and elevation

of 0 represents the point is right in front of the fly. Azimuth of >0 and <0 represent

position of a point in right and left visual hemispheres, respectively. Elevation of >0

and <0 represent position above and below the horizon, respectively.
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Figure 2.3: Self motion generated optical flow. (A) Self-motion can be represented as components
of translation and rotation along cardinal body axes, respectively. (B) Shows a small region in
the compound eye of the fly. (f=frontal, c=caudal, d=dorsal, v=ventral). (C) Optical flow fields
generated by upward translation motion as represented on the cylindrical projection (right) and
surface of a unit sphere (left). (D) Shows clockwise roll rotation. Adapted from [4]
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2.3 Classification of Optical Flow

The orientation and length of the arrows in the optical flow plots indicate the

direction and magnitude of optical flow velocity at a given point. Looking at this

optical flow field pattern, it is possible to identify the type of relative motion that

generated it. For example, the optical flow patterns where an entire flow field follows

the same pattern is called global optical flow pattern. Such a pattern is generated

by the fly’s self motion. Another type of optical flow is called local optical flow

pattern which is generated by external object’s motion such as a moving prey in the

environment.

Global optical flow patterns can be classified as translational, rotational, or mixed

optical flows. These are generated by translational motion, rotational motion, or

some combination of both between the scene and the observer. Pure rotational

and translational optical flows have a common feature that the axis of rotation and

direction of translation are defined by points in the visual field where no relative

motion takes place. These are called flow field singularities. Starting from these

points, relative motion gradually increases to be maximum at the equator. However,

real life maneuvers are a combination of rotational and translational optical flows,

i.e. mixed optical flows, and do not have singularities coinciding with either direction

of translation or axis of rotation.

Apart from these differences, two key structural difference separate translational

and rotational optical flow fields (see [4]):

1. Rotational fields have local velocity vectors aligned along parallel circles that

are centered on the axis of rotation, while translational fields have velocity

vectors aligned along circles connecting two flow field singularities.

2. The magnitude of local vectors depends on the distance to the objects in the
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environment in translational optical flow fields. The magnitude of local vectors

is independent of distance for rotational optical flow fields. This means that

translational optical flow provides relative distance information which the ro-

tational optical flow doesn’t. This information is important for behaviors like

obstacle avoidance.

2.4 Optical Flow in Robotics and Computer Vision

Optical flow has also been used extensively by robotics researchers in object de-

tection and tracking, image dominant plane extraction, robot navigation, movement

detection, and visual odometry. It is also very useful in video compression and mo-

tion estimation research. It is used in applications such as inferring the motion of

the observer and objects in the scene, determining the structure of objects, etc.

In computer vision, many methods have been proposed to determine optical flow

from a sequence of images or video. Representative methods are listed below:

1. Differential Methods like Lucas-Kanade Method [25] and Horn-Schunck

Method [26]. These methods use partial derivatives of the image signal and

additional conditions like brightness constancy constraint to generate optical

flow.

2. Phase Correlation Method. This method uses a fast frequency-domain

approach that estimates the relative translative offset between the two images.

3. Block-based Method. This method minimizes the sum of the squared dif-

ference or maximizes normalized cross-correlation between two images.
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3. THE FLY’S VISUAL SYSTEM

3.1 Overview

The fly has a very tiny brain. Yet it is capable of exhibiting seemingly complex

behaviors such as escape, landing, controlling altitude and thrust, pursuing mates

and prey, flight stabilization, etc. It is almost impossible to exhibit such behavior

without using long range sensor information as is generated by visual sensors. Visual

sensory system, unlike mechanoreceptor-based system which requires the action of

local physical forces, can be used for both long-range identification of targets and

solve short range feature extraction. Another advantage is that information about

different types of visual qualities can be extracted simultaneously using parallel path-

ways that process these qualities separately. For example, one visual pathway would

process the motion information, while simultaneously another pathway color infor-

mation.

The fly has a very simple yet robust mechanism for sensing and processing visual

information. Due to its relatively simple neural mechanism, it is relatively easier to

study and model the fly’s visual system than that of the vertebrate. Thus, it has

been studied extensively in the fields of zoology and bioengineering. One of the most

interesting aspect of the fly’s visual system is its ability to process complex motion

information allowing it to perform rapid rotational and translational actions. The

ability to process directional motion exists in many living organisms including hu-

mans. However, the simplicity of the fly’s visual processing system and its ability to

still exhibit most complex motion responses makes it ideal for study in this research.

The fly’s visual system consists of spatially distributed motion detectors, spanning

the visual field, that sense the motion in the surrounding area. The information col-
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lected by these detectors is integrated by specialized neurons that generate response

commensurate to the global motion information. Finally, the processed visual infor-

mation along with information from other sensory modalities are presented to the

motor neurons that control the muscles that eventually produce the behaviours.

In this Section, I will give an overview of the overall architecture of the fly’s visual

system. Though the study of the fly’s visual system is vast and consists of lot of

literature, I will emphasize only details that are of direct relevance to this research

problem. Some of the background information related to fly’s visual system that has

been used in this section is taken from literature reviews (see [4] [27]).

3.2 Compound Eyes

The fly has 2 compound eyes in the anterior region of its body. Each eye consists of

tens of thousands of sensory units called ommatidia. The exact count of ommatidia in

each compound eyes varies across different species of fly. An ommatidium consists of

a group of photoreceptor cells that are surrounded by pigment cells and other support

cells (see Fig. 3.1). The ommatidium is covered from outside by a transparent cornea.

This allows the light to pass through without distortion while being focused on the

photoreceptors. Pseudocone is present below the cornea that helps to further focus

the light. Ommatidia are hexagonal in shape with diameter largest at the surface

while tapering toward the inner end.

The Compound eye is made up of a lattice of these hexagonal ommatidia (see Fig.

3.2) that are instrumental in providing a wide-angle panoramic view of the surround

to the fly. This wide field of view gives the fly its ability to locate the targets without

necessarily scanning the surrounding by rotating its head. Thus, the compound eye

is the interface between the fly’s neural system and the outside environment and

houses photoreceptors that generate electrochemical signals that are processed by
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Figure 3.1: Cross section of the fly’s ommatidium. Adapted from [5].
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Figure 3.2: Cross section of compound eye of the fly. Adapted from [6]

subsequent neurons.

3.3 Organization of Fly’s Motion Vision Pathways

The ability of the fly’s visual system to efficiently understand motion and its

direct relation to this research thesis is a compelling motivation to look at the visual

pathways responsible for processing motion information in greater detail. The orga-

nization of visual motion pathways as seen most commonly across various fly species

is described below.

The fly visual system consists of three visual neuropiles and the retina (see Fig.

3.3). The retina is connected to the hexagonal lattice of the compound eye and has

photoreceptors that respond to light stimuli. The lamina, the first neuropile, receives

input from the retina’s photoreceptors. This visual information is then passed on to

the medulla, the second neuropile via an external chiasm. From the medulla, the

connections are made to the lobula complex, which consists of the anterior lobula

and the posterior lobula plate. There exists an internal chiasm between the medulla

and the lobula plate. The lobula plate is the major center for integration of visual
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Figure 3.3: Horizontal section of the fly’s visual system. The illustration shows
the retina (R) and the neuropils. The lamina (L) is connected to the medulla (M)
via the external optic chiasm (CHE). Medulla is connected through internal optic
chiasm (CHI) to lobula complex which consists of the anterior lobula (LO) and the
posterior lobula plate (LP).The whole system is retinotopically organized meaning
information from nearby points in the visual field are processed in adjacent columns.
Adapted from [7]

information collected by the retina. The entire system is retinotopically organized

and the processing of visual information takes place in separate columns. This means

that the information derived from adjacent points in the visual field is processed in

adjacent columns throughout the system, right from the retina to the lobula plate.

The two chiasms invert the image twice along the pathway.

3.4 Elementary Motion Detectors (EMDs)

Any system that aspires to exploit global optical flow information must first be

able to collect spatially distributed local directional motion information spanning the

complete field of view. The fly achieves this through an array of motion detectors

called Elementary Motion Detectors (EMDs) spread over the entire field of view.

EMD is the theoretical model of neural mechanism present between lamina and

medulla that process the changes in the light intensity as sensed by photoreceptor

cells to generate local directional motion information. This motion information is
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based on changes taking place in the surroundings.

Many behavioral experiments have been performed to derive a phenomenological

model (see [28]) of the Elementary Motion Detector (EMD). Many attempts have

been made (see [16] [8] [29]) to establish functional and physiological models. Various

motion detector schemas based on experimental evidence obtained in different animal

systems or from computer vision are discussed (see [30]).

Basically every EMD model satisfies the following necessary and sufficient condi-

tion required for the analysis of directional motion:

1. Two signals from spatially adjacent locations, obtained from adjacent omma-

tidia.

2. Processing the two signals in an asymmetric manner: delay one signal while

keeping other unchanged.

3. A non-linear operation on the two signals: multiply delayed and non-delayed

signal.

Consider the model of EMD as shown in Fig. 3.4. Here, the EMD generates a

positive output in response to motion in its preferred direction while no response

in the opposite direction called the null direction. Such a detector is called a half-

detector as it responds to motion in only one direction. A fully directionally selective

EMD is formed by adding output of two mirror symmetric EMDs with opposite

signs. This EMD model is also called the correlation type motion detector, which

gives positive response to motion in the preferred direction while negative response

in the opposite direction.

It is clear that the EMD responds only in direction in which they are arranged.

Typically, EMDs are arranged in various orientations ranging from horizontal or
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Figure 3.4: Elementary motion detectors (EMD). EMDs detect local directional
information by spatio-temporal correlation of light intensity of neighboring location
on the retina. (A) Half-Detector produces output by multiplying delayed input
from point 1 to input from point 2, depending on the direction of point’s alignment
(preferred direction), the output can be positive or (B) negative for null direction.
(C) and (D) are two mirror-symmetric half-detectors, giving positive response to
motion in preferred direction while negative for null direction motion. Adapted from
[8]
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vertical or at an angle to either axes. It is the property of the integration neurons

as to what global orientation of EMDs they take their input from as discussed in

Section 3.7.

The EMDs have the property that their response depends directly on the velocity

and direction of visual motion. Its response is also affected by contrast and spatial

frequency content of the visual scene. The biological mechanism of the EMDs in

certain species is hypothesized to be similar to a gradient detector, where output

depends upon velocity and direction. The difference is that the gradient model

gives output linear in the velocity domain whereas the EMD correlation type motion

detector model, which is the accepted model, gives response that vary according to

the spatial frequency properties of the scene. Many complex models of EMDs have

been suggested that take into account gain control mechanism and properties of the

peripheral visual system. I will not discuss these models in detail in this document.

3.5 Ambiguity of Local Motion Information

It is now clear that the fly uses an array of EMDs to detect local motion and

correspondingly generate a graph of optical flow field information spread across the

entire field of view. It however does not give any information about the global optical

flow pattern. For example, consider the two optical flow patterns shown in Fig. 3.5.

In the highlighted region, the local optical flow is aligned in horizontal direction from

left to right in both patterns. However, it is impossible to make the judgment whether

it is left-right yaw or clockwise roll optical flow by just looking at the optical flow in

the highlighted section. In order to distinguish between optical flows, the fly must

selectively pool the spatially distributed local optical flow information to generate

a response that depends on the global optical flow pattern. This is achieved in the

fly by a set of neurons called the Lobula Plate Tangential Cells (LPTC). The cells
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(a) (b)

Figure 3.5: Ambiguity generated by local optical flow fields. Highlighted region in
both images - (a) Left-Right Yaw (RYLR) and (b) Clockwise Roll (RRCL), do not
give any idea of global optical flow pattern.

selectively integrate local motion information to generate a global picture. These

cells are discussed in detail in Section 3.7.

3.6 Directionally Selective Lobula Plate Tangential Cells (LPTCs)

The next step in processing of visual motion information is the integration of

local visual motion information to generate a response commensurate with the global

visual motion pattern across the field of view. This is done by the Lobula plate

tangential cells (LPTCs) in the fly’s visual motion processing system. The lobula

plate, the third neuropile, houses 60 visual interneurons, the lobula plate tangential

cells (see [31]). LPTCs pool information from EMDs spread across the visual field

through their dendrites that arborize in different directions according to the range of

their receptive field and sensitivity distribution over that field. The output of these

neurons is the weighted sum of local visual motion information generated by EMDs.
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There are four functional groups of LPTCs that have been anatomically identified

and electro-physiologically characterized (see [4]):

1. Heterolateral LPTC: These neurons receive input from extended parts of

the visual field and they convey the information in the form of spike rate

modulations to the lobula plate.

2. Output LPTC: They are the main neurons involved in collecting local visual

motion directly from EMDs and respond to common rotational and transla-

tional optical flow patterns.

3. Centrifugal LPTC (CH-cells): They are involved in figure detection and

receive input from various sources.

4. Figure Detection (FD-cells): They receive directionally sensitive informa-

tion from EMDs and inhibitory signals from CH-cells. These cells specialize in

detecting figure over small regions of field of view.

These different types of LPTCs are involved in a variety of tasks but the output

LPTCs are of great importance for processing self-motion generated optical flows. I

will describe output LPTCs in greater detail in the following sections.

3.7 Output LPTCs

Output LPTCs are the most significant form of interneurons responsible for pro-

cessing rotational and translational optical flow information as generated by the fly’s

self motion. This makes the study of these LPTCs very important for this thesis.

Output LPTC are of two distinct types:

1. Horizontal System cells (HS-cells) and

2. Vertical System Cells (VS-cells).
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Figure 3.6: Distribution of dendrites of the fly’s right eye lobula plate tangential
cells (LPTCs). HS dendrites (top row) span across the frontal(f)-caudal(c) direction
responding best to front-back motion. VS dendrites (bottom row) span across the
dorsal(d)-ventral(v) direction responding best to up-down motion.The sensitivity of
the neuron’s response across the field of view depends on the density of the dendrites.
Adapted from [4].

These names are used to categorize these cells based on their predominant directional

preference for either vertical or horizontal motion.

The HS-cells respond to horizontal motion. Each eye has 3 corresponding HS-cells

- north (HSN), equatorial (HSE) and south (HSS), that integrate visual information

from dorsal, equatorial, and ventral parts of the ipsilateral visual field, respectively

(see Fig. 3.6). The horizontal direction from front to side is the preferred direction

of the HS-cells. As shown in Fig. 3.6, HS-cell dendrites arborize in horizontal frontal

to caudal direction in the visual field. The sensitivity of the HS-cells to motion is
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higher in the frontal region and reduces gradually towards the caudal direction. The

sensitivity depends upon the density of dendrites in the given region. This means

that local horizontal motion information received from EMDs in the frontal region is

weighted higher than one in the caudal region. It is important to note that HS-cells

mainly respond to inputs received from predominantly horizontally arranged EMDs

while some weak signals are also received from heterolateral LPTCs.

The VS-cells respond predominantly to vertical motion. Each eye has 10 corre-

sponding VS-cells - VS1 to VS10 that integrate visual information from the frontal

visual field for VS1 to caudal visual field for VS10. Vertical direction from up to

down is the preferred direction of VS-cells. As shown in Fig. 3.6, VS-cells dendrites

are vertically oriented with dendrites arborizing in an up to down direction in the

visual field. The sensitivity of the VS-cells to motion is higher in the dorsal region

and reduces gradually in the ventral direction. This means that local vertical mo-

tion information received from EMDs in the dorsal region is weighted higher than in

the ventral region. Its important to note here that VS-cells do not react to perfect

vertical motion, they rather depend on a predominately vertical motion matched to

a specific combination of pitch, roll, or yaw motion. This is discussed more in detail

in Section 3.8.

Output LPTCs generate signals that are distinctly different from other LPTCs.

These neurons get depolarized in response to motion in their preferred direction while

they get hyper-polarized for motion in the opposite direction. Both HS and VS cells

are equipped with excitatory and inhibitory receptors - ACh and GABA receptors,

respectively. They receive input from two mirror-symmetric units of EMDs. The

neurons depolarize when excitatory input is generated by motion in the preferred

direction. This output is directly proportional to motion velocity. The sensitivity

of these neurons to the EMD’s motion information in their receptive fields vary
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according to the density of dendrites in different regions in their receptive fields.

Finally, the axon terminals of output LPTC cells connect to target neurons, that are

mostly descending neurons that project to various motor neuropiles. Output LPTC

terminals are located in an area where output fibers of neurons involved in other

sensory systems are also present. Therefore, this is the place where information from

various sensory modalities are pooled and presented to the motor neurons.

3.8 Optical Flow Parameters Estimated by HS and VS Cells

Originally output LPTCs have been named based on their predominant direc-

tional preference in their response. For instance, HS and VS cells have been named

so as their response is predominantly to horizontal and vertical motion, respectively.

This seems true when looking at the overall orientation of their dendrite branching.

However, study has shown that none of the output LPTCs show strictly horizontal or

vertical preference (see [32]). Rather, many experimental results support the hypoth-

esis that each LPTC cell responds to a specific component of self-motion generated

optical flow.

Studies have shown that the HSE cells react to optical flow generated by a yaw

rotation around the vertical body axis. HSN-cell is tuned to an axis somewhere

between yaw and nose-dive pitch. VS-cells are proposed to be matched to an optical

flow field generated during a particular rotation around an axis roughly aligned with

the horizontal plane. As shown in Fig. 3.7, VS1 is matched to optical flow suited to

nose-up pitch. While VS10 is suited to nose-down pitch, other VS-cells are tuned to

rotation along the intermediate horizontal axes, suited for some combination of roll

and pitch. It is interesting to note the high degree of structure in the arrangement of

axes of rotation with respect to which VS-cells are tuned to respond to. Axes of eight

out of ten VS-cells lie on a line with a slope of 12◦. This means that VS6 responds
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Figure 3.7: Preferred rotational axes of matched filters for VS cells of the right
eye. The upper panel shows the preferred axes and sense of rotation of each VS cell
(VS1-VS10) averaged over several individual flies. The diameter of circular arrows is
directly proportional to standard deviation of axis of rotation across individual flies.
Lower panel shows mean axis of rotation with VS4-VS10 shown to approximately lie
on a line with 12◦ slope. Adapted from [4].
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to pure roll motion while other VS cells on the line respond to some combination of

yaw, pitch, and roll motion. VS1 and VS2 have separate axes locations and respond

mainly to pitch motion with yaw to a lesser extent.

Not only is the direction to which VS-cells respond but the sensitivity to local

motion information across the field is an indication of validity of the matched filter

hypothesis. For instance, the VS-cells are more sensitive to local motion information

in the dorsal region than the ventral region. This is an optimal strategy to produce a

response that is based on pure rotational motion. This supports the argument that

VS-cells mainly respond to rotational components of self-motion.
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4. IMPLEMENTATION: AN AGENT MODEL

4.1 Overview

In this Section, I will give a detailed model and architecture of an agent that

is capable of autonomously grounding the optical flow information by performing

behaviorally meaningful actions. The agent’s model is inspired from the fly’s visuo-

motor system that was discussed in Section 3. The agent is capable of sensing motion

information from the surroundings and process it in a way that makes it useful for it

to understand self-motion and other motions in the environment. It understands the

meaning of motion information by learning a sensory state to motion mapping. With

a computational model of the optical flow detectors in the fly, I will show that action

(or coordinated motor output) is the only way that the fly can learn the meaning of

its internal spikes and generate meaningful, relevant behavior, all just based on its

internal spike patterns.

The next section describes the general model of the agent and the environment. In

the subsequent sections, a detailed description of the agent architecture is provided.

4.2 Model of the Agent and the Environment

Consider a simple sensorimotor agent that is capable of sensing motion infor-

mation in the form of optical flow and can perform a certain set of actions. The

agent receives motion information from a moving scene which its local motion sen-

sors transform into a global optical flow which is then picked up by motion detectors

(modeling the fly’s visual processing neurons) to produce spike pattern in the sen-

sory array. The sensory array indicates the sensory state s which is used by agent to

infer the semantics of the motion information and how it is related to the external

environmental changes. The agent does not have direct access to external input I
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or understands the functional properties of filters f . This situation is similar to Fig.

4.1, where external world properties need to be inferred based on internal spikes only.

This means that the internal observer has to learn the meaning of s that corresponds

to external stimuli I without having access to outside environment.

Observer

fI s fI s
Observer

(a) (b)

Figure 4.1: Model of the agent. The figure shows the problem of decoding internal
sensory state from different point of views. (a) External Observer has access to both
input I and state s, while (b) Internal Observer can only see internal states s. Here
f are sensory filters that generate sensory state commensurate to external input.
Adapted from [1].

Now assume that the agent receives an input in the form of optical flow generated

by relative motion between the agent and the scene. The agent’s sensors (modeled

based on fly’s visual system models) process this information and trigger a specific

sensory state corresponding to the perceived optical flow. Based on this encoded

state, how can the agent understand what the encoding means? A critical insight in

previous work [1] [19] was that a specific pattern of action that maintain the internal

state invariant is bound to have embody the same stimulus property encoded by

the internal state. For example, if the perceived optical flow is rotate clockwise,

rotating counterclockwise will keep the “rotate clockwise” state invariant over time
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(the invariance criterion). This way, the agent can understand what these encoded

internal states mean, in terms of its own actions. Below, I propose a sensorimotor

learning technique based on reinforcement learning to learn this kind of sensor-action

mapping with state invariance as the reward signal.

4.3 Computational Model of the Fly Visual System

In this section, I will describe the computational model of the agent’s optical

flow detection system and the sensor-action mapping algorithm. I start with input

processing, response generation and finally the learning rule that enables agent to

learn the sensory state to motor response mapping.

4.3.1 Input Processing

The agent observes an input image (as seen in the figure on pg. 42) that is

moving at a constant speed in a particular manner. For training, the image is

moved to generate pitch, roll, yaw, and zooming (radiating) optical flows, in different

instances with respect to the agent. These optical flows can be generated by rotating

or translating the image along certain axes and directions with respect to the agent.

The agent’s visual motion detectors based on the same principles as those of the fly’s

EMDs detect this motion and produce a signal corresponding to the direction and

velocity of the local motion. These detectors are spread across the entire visual field.

The following equations govern the optical flow calculation:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (4.1)

where intensity I(x, y, t) at point (x, y, t) is moved by ∆x,∆y over time ∆t. It is

assumed that the intensity does not change over small magnitude of motion. Using
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Taylor series expansion, we get,

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (4.2)

which results in,

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (4.3)

where ∂I
∂x

,∂I
∂y

,∂I
∂t

are derivatives of image at (x, y, t) in corresponding directions. This

equation is the standard equation for optical flow calculation. This equation has

two unknowns, Vx and Vy, velocity of point (x, y). This is the situation where we

have two unknowns but only one equation. This problem can only be solved by

making additional assumptions. Two methods - Lucas-Kanade method [25] and

Horn-Schunck method [26], both employ additional constraints that help solve this

equation.

Outline of both the methods is given below:

1. Lucas-Kanade Method: It is a widely used method of optical flow estimation

proposed by Bruce Lucas and Takeo Kanade in 1981. This method solves

the ambiguity in optical flow equation by combining information from nearby

pixels. This works by assuming that the flow is constant in local neighbourhood

of pixel under consideration. Using this assumption, the method solves the

optical flow equation for a group of adjacent pixels following the least squares

criterion. This method has a low sensitivity to noise.

2. Horn-Schunck Method: This is a commonly used optical flow estimation

method in computer vision. It was proposed by Berthold Horn and Brian

Schunck in the year 1981. It is a global method as it applies global constraint

of optical flow smoothness to solve the optical flow equation ambiguity. It
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minimizes distortion in optical flow field by preferring smoothness over the

entire field. This method is highly sensitive to noise.

These methods have been used in this thesis to generate optical flow fields because

they are based on identical principles as fly’s Elementary Motion Detectors (EMDs)

and are also widely used in field of computer vision. These differential methods give

response that is linearly dependent on velocity and direction of motion. Also, these

methods of calculating optical flow fields from moving images are compliant with

the necessary and sufficient conditions that are required for analysis of directional

motion, as discussed in Section 3.4.

I used MATLAB’s standard implementation of these methods for generating op-

tical flow from images. The generated optical flow is normalized over the entire field

of view using the l2-norm.

4.3.2 Sensory Primitives

The sensory state is generated by the modeled HS and VS cells using the optical

flow generated by local motion sensors. The agent has two eyes that receive input

from different regions in the visual field. Each eye, left and right, has its own set of

mHS (Modeled HS) and mVS (Modeled VS) neurons. However, the overall sensory

state is the output of all the neurons of both eyes, as they all act as inputs for

the motor system. Consider that the agent has 3 mHS cells and 5 mVS neurons

corresponding to each eye. These cells respond to inputs from their corresponding

regions of the visual field (Tables 4.1 and 4.2). The visual field is 90◦ wide in elevation

and 180◦ wide in azimuth. The sensitivities of HS and VS cells to motion depend

upon the the spanning direction and density of the dendritic ramifications across the

field (Fig. 3.6). The weighted response to optical flow by mHS and mVS neurons is

given as a two dimensional Gaussian function as follows (after [13]). Following [14],
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mHS Elevation Range Azimuth Range (φm, θm) σθ σφ+ σφ−

Right mHSN [9◦, 45◦] [−30◦, 90◦] (11.25◦, 27◦) 15◦ 75◦ 33.75◦

Left mHSN [9◦, 45◦] [−90◦, 30◦] (−11.25◦, 27◦) 15◦ 33.75◦ 75◦

Right mHSE [−18◦, 18◦] [−30◦, 90◦] (11.25◦, 0◦) 15◦ 75◦ 33.75◦

Left mHSE [−18◦, 18◦] [−90◦, 30◦] (−11.25◦, 0◦) 15◦ 33.75◦ 75◦

Right mHSS [−45◦,−9◦] [−30◦, 90◦] (11.25◦,−27◦) 15◦ 75◦ 33.75◦

Left mHSS [−45◦,−9◦] [−90◦, 30◦] (−11.25◦,−27◦) 15◦ 33.75◦ 75◦

Table 4.1: Parameter values of modeled HS cells (mHS).

we can model the mHS neurons as:

w(φ, θ) = exp

(
−
(
θ − θm
σθ

)2

−
(
φ− φm
σφ+

)2
)
, if φ ≥ φm

= exp

(
−
(
θ − θm
σθ

)2

−
(
φ− φm
σφ−

)2
)
, otherwise,

(4.4)

where θ is the elevation angle, φ is the azimuth angle, (φm, θm) is the center of

receptive field for that neuron (Fig. 4.2). The angular width for elevation is σθ while

for azimuth it is σφ+ and σφ− . The parameter values for all 6 mHS neurons are shown

in Table 4.1.

For mVS neurons (Fig. 4.2),

w(φ, θ) = exp

(
−
(
θ − θm
σθ+

)2

−
(
φ− φm
σφ

)2
)
, if θ ≥ θm

= exp

(
−
(
θ − θm
σθ−

)2

−
(
φ− φm
σφ

)2
)
, otherwise,

(4.5)

where θ is the elevation angle, φ is the azimuth angle, (φm, θm) is the center of

receptive field for that neuron. The angular width for azimuth is σφ while for elevation

it is σθ+ and σθ− . The parameter values for all 10 mVS neurons is shown in Table

4.2.
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(a) mHS (Right) (b) mHS (Left) (c) mVS

Figure 4.2: Weight distribution of mVS and mHS neurons. The 2-D Gaussian plots
show weight distribution of mVS and mHS neurons across the field based on dendrite
distribution and density pattern (Fig. 3.6).

Finally, we normalize the weighted response by the sum:

w(φ, θ) =
w(φ, θ)∑

φ,θ

w(φ, θ)
. (4.6)

Each model neuron receives optical flow input from a region that they respond to

as shown in Tables 4.1 and 4.2. The mHS neurons give positive response to horizontal

motion in direction from center to side of the field, which is its preferred direction.

They give negative response for motion in the opposite direction. The mVS neurons’

preferred direction is up to down. Each of these cells integrate the local motion infor-

mation to generate a response commensurate with the global picture. The response

of all neurons form a column vector s′ with each element s′i corresponding to an

individual neuron’s response. s′i is the weighted sum of net motion in the neuron’s

preferred direction as given below:

1. Method I.

s′i = vi+ − vi− (4.7)
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mVS Azimuth Range (φm, θm)
Right mVS1 [−30◦, 0.4◦] (−14.8◦, 15◦)
Left mVS1 [−0.4◦, 30◦] (14.8◦, 15◦)
Right mVS2 [−7.6◦, 22.8◦] (7.6◦, 15◦)
Left mVS2 [−22.8◦, 7.6◦] (−7.6◦, 15◦)
Right mVS3 [14.8◦, 45.2◦] (30◦, 15◦)
Left mVS3 [−45.2◦,−14.8◦] (−30◦, 15◦)
Right mVS4 [37.2◦, 67.6◦] (52.4◦, 15◦)
Left mVS4 [−67.6◦,−37.2◦] (−52.4◦, 15◦)
Right mVS5 [59.6◦, 90◦] (74.8◦, 15◦)
Left mVS5 [−90◦,−59.6◦] (−74.8◦, 15◦)

Table 4.2: Parameter values of modeled VS cells (mVS). Some parameters that are
common among all mVS are: Elevation Range=[−45◦, 45◦], σφ = 24◦, σθ+ = 24◦ and
σθ− = 37.5◦.

where

vix =
∑
φ,θ

wi(φ, θ)mx(φ, θ). (4.8)

Here i = 16 is the total number of neurons, x = (+/−), wi(φ, θ) is the weight

distribution of ith neuron, mx(φ, θ) is the normalized optical flow in neuron’s

preferred direction (x = +) or null direction (x = −).

2. Method II. In this method, the property of VS cells to respond to motion

matched to a particular type of rotational motion is used (see Section 3.8). VS

cells respond to rotation along axes as shown in Fig. 3.7. Using this property,

mVS cells are modeled to respond to motion along axes as shown in Table 4.3.

The response of mVS cells in their repective region of response (Table 4.1 and

4.2) is along rotational fields about these axes with up to down direction as

the preferred direction. The mHS cell model is the same as in Method I.

s′i = vi+ − vi− (4.9)
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mVS Center of Axes (φc, θc)
Right mVS1 (90◦, 15◦)
Left mVS1 (−90◦, 15◦)
Right mVS2 (90◦,−15◦)
Left mVS2 (−90◦,−15◦)
Right mVS3 (0◦, 0◦)
Left mVS3 (0◦, 0◦)
Right mVS4 (22.5◦,−2◦)
Left mVS4 (−22.5◦,−2◦)
Right mVS5 (45◦,−4◦)
Left mVS5 (−45◦,−4◦)

Table 4.3: Matched filter parameters of modeled VS cells (mVS). The table gives
the center of axes of rotation along which mVS cells are matched to respond.

where

vix =
∑
φ,θ

wi(φ, θ)mx(φ, θ), for mHS neurons

=
∑
φ,θ

wi(φ, θ)(op(φ, θ) ·mati,x(φc, θc)), for mVS neurons

(4.10)

Here i = 16 is the total number of neurons, x = (+/−), wi(φ, θ) is the weight

distribution of ith neuron, mx(φ, θ) is the normalized optical flow in neuron’s

preferred direction (x = +) or null direction (x = −). mati(φc, θc) is the

matched filter mask (rotational along center (φc, θc) a shown in Table 4.3) of

ith neuron, mVS neuron, in its preferred direction (x = +) or null direction

(x = −). op(φ, θ) is the global optical flow.

The response vector s′ is normalized using its l2-norm:

s′ =
s′

|s′|
. (4.11)
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The agent then compares this generated response to the reference responses s′ref which

are the ideal standard optical flows (Fig. 2.2)- yaw, pitch, roll, zoom (radiate):

s = arg max
ψi,i=1...n

(s′ · s′ref(i)) (4.12)

where s is the sensory state that corresponds to i = 8 types of optical flows. This

sensory state is what the agent is trying to figure out the meaning of.

4.3.3 Learning Algorithm

The reinforcement learning algorithm to learn the sensory state to action mapping

is based on previous work [19]. Consider the sensory state st at time t. The agent

performs an action at, which leads to a change in the sensory state to st+1 at time

t+1. This transition of state really depends on the net optical flow generated between

agent and scene. As discussed, the agent wants to minimize the variation in state

(invariance criterion) while performing actions. This means that the reward that

the agent gets should be inversely proportional to variation in current state st. The

immediate reward ρt+1 is calculated as,

ρt+1 =
1√∑

i

(rt+1,i − rt,i)2
(4.13)

where rt,i is the ith element of the sensory response vector rt at time t. Here the

reward is calculated as the inverse of the Euclidean distance between the current state

response vector rt and the next state response vector rt+1, as opposed to using simple

binary values of variant or non-variant. Since the denominator in the equation can

approach zero, leading to very high ρt+1, an upper bound of ρmax = 100 is enforced.

Now, the agent has to learn a state-action mapping such that the reward ρt is

maximized at time t. The agent has to learn to take action at such that the variation
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in current state (st) to next state (st+1) is minimized. Since, the state transition is

probabilistic (to avoid greedy exploitation) so the problem is to determine P (at|st),

which is conditional probability of taking action at at state st resulting in st+1 that is

highly likely to be same as st. Let’s call this the reward probability function R(st, at)

(Fig. 4.3). The learning algorithm below is followed by the agent:

1. Initialize the R(s, a) table randomly.

2. Given the current state is st ∈ S, randomly perform action at ∈ A.

3. For initial 200 iterations

(a) Perform action at.

(b) Otherwise, if at is arg max
a∈A

R(st, a)

i. Then perform action at

ii. else perform action at with probability R(st, at).

4. Repeat 2 and 3 until exactly one action is performed.

During the initial 200 iterations the learning algorithm selects the actions uni-

formly in random fashion. This is done to ensure that no action gets preference due

to randomly generated initial values of reward probability function table. The R(s, a)

entries (Fig. 4.3) are updated after performing selected actions every iteration. This

is done as follows:

Rt+1(st, at) = Rt(st, at) + αρt+1 (4.14)

where Rt(., .) is reward probability function at time t, α is the learning rate (α =

0.001). Finally, the reward table is normalized,

Rt+1(st, a) =
Rt+1(st, a)∑

ai∈A
Rt+1(st, ai)

. (4.15)
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)

R(s, a)

Figure 4.3: Reward table R(s, a) with ideal reward values.

This is done for every action (a).
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5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup

In order to test the effectiveness of the learning algorithm as mentioned in Sec-

tion 4, I conducted experiments to study the nature of state-action mapping obtained

using the given models. The experiments were conducted with different sets of pa-

rameter values in the model over various images - synthetic and natural scenes. I

experimented with the Lucas-Kanade method and the Horn-Schunck method for op-

tical flow computation, where both gave similar results with slight variation based on

the input image’s characteristics. Different values for learning rate (α), modeled neu-

ron’s parameters (σθ, σφ) were tested. I also tried various techniques for generating

reward (ρ) such as dot product, as well as the formula in Eq. 4.13.

Here I show results for 4 input images as shown in Fig. 5.1. The first one is a high

contrast-low texture synthetic scene, the second a low contrast-high texture indoor

scene, the third a low contrast-high texture natural scene, and the fourth a high

contrast-high texture natural scene. These training images were coverted to gray

scale and scaled to a resolution of [100,100]. The agents were trained using 8 sensory

primitives and 8 motor primitives (Fig. 4.3). The training was done for 500 iterations

per sensory primitive, where the input image was moved in a particular fashion to

generate that specific sensory primitive. The learning algorithm was executed to

learn a state-action mapping for this state. This procedure was repeated for all

8 sensory primitives. Therefore, overall the training involved a minimum of 4000

iterations to get good results.
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(a) (b)

(c) (d)

Figure 5.1: Input images. (a) Synthetic image with high contrast and low texture.
(b) Indoor image with low contrast and high texture. (c) Natural image with low
contrast and high texture. (d) Natural image with high contrast and high texture.

5.2 Results

To quantitatively measure the performance of the algorithm, I compared the Ideal

R-table (RI(s, a)) and the learned R-table (RL(s, a)) over the training iterations.
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This was done in the following manner:

E =
∑
s,a

|RL(s, a)−RI(s, a)|, (5.1)

where |..| represents absolute value. The error (E) represents the discrepancy be-

tween the ideal R-table and learned R-table. This error is calculated after every

iteration in the learning algorithm and is shown to decrease to near zero over the

iterations, for all four training images (Fig. 5.1). The error at the end of the training

process approaches zero, meaning that the learning algorithm works as expected. The

reward table R(s, a) was initially randomly generated before training (Fig. 5.2(a)).

The expected ideal R-table is a identity matrix of size 8 (Fig. 5.2(b)).

In following subsections, I show the results for different scenarios of inputs and pa-

rameters. They show how the output is affected by change in parameters associated

with the agent model and the learning method.

43



(a) (b)

Figure 5.2: Initial and expected ideal reward table R(s, a). (a) Initial randomly
generated reward table. (b) Expected Ideal final reward table (Identity Matrix).

5.2.1 Scenario 1

Consider the agent model described in Section 4 and the basic experimental

setting as highlighted in Section 5.1. This basic setting is used with Method I

for calculating the sensory state, as presented in Subsection 4.3.2. The learning

algorithm was trained using the reward calculated as the inverse of Euclidean distance

of sensory response over time as shown in Equation 4.13 with a learning rate of

α = 0.001.

Fig. 5.3 shows the final reward tables obtained after training with these parame-

ters. The progression of error over the training iterations is shown in Fig. 5.4. Finally,

Fig. 5.5, 5.6, 5.7, and 5.8 show the choice of actions made by the agent during the

training phase. A total of 4000 iterations were divided into 8 plots showing 500 iter-
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ations each. Actions: 1=Yaw Left to Right, 2=Yaw Right to Left, 3=Pitch Down to

Up, 4=Pitch Up to Down, 5=Roll Anti-Clockwise, 6=Roll Clockwise, 7=Translation

Move Forward (Zoom In), 8=Translation Move Back (Zoom Out).

(a) (b)

(c) (d)

Figure 5.3: Final reward table R(s, a) in Scenario 1. Final reward table obtained
after training for Scenario 1 on the input images (in the same order as in Fig. 5.1).
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Figure 5.4: Error plot in Scenario 1. Shows progression of error over the training
iterations for Scenario 1. The error is calculated based on Equation 5.1. The error
plots are generated for the four input images (in the same order as in Fig. 5.1).
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Figure 5.5: Progress plot for input image Fig. 5.1(a) in Scenario 1. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(a) for Scenario 1. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.6: Progress plot for input image Fig. 5.1(b) in Scenario 1. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(b) for Scenario 1. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.7: Progress plot for input image Fig. 5.1(c) in Scenario 1. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(c) for Scenario 1. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.8: Progress plot for input image Fig. 5.1(d) in Scenario 1. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(d) for Scenario 1. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.

50



5.2.2 Scenario 2

Consider the agent model described in Section 4 and the basic experimental

setting as highlighted in Section 5.1. This basic setting is used with Method II, using

matched filter model of VS cells for calculating the sensory state, as presented in

Subsection 4.3.2. The learning algorithm was trained using the reward calculated as

the inverse of Euclidean distance of sensory response over time as shown in Equation

4.13 with a learning rate of α = 0.001.

Fig. 5.9 shows the final reward tables obtained after training with these param-

eters. The progression of error over the training iterations is shown in Fig. 5.10.

Finally, Fig. 5.11, 5.12, 5.13, and 5.14 shows the choice of actions made by the

agent during the training phase. A total of 4000 iterations were divided into 8 plots

showing 500 iterations each. Actions: 1=Yaw Left to Right, 2=Yaw Right to Left,

3=Pitch Down to Up, 4=Pitch Up to Down, 5=Roll Anti-Clockwise, 6=Roll Clock-

wise, 7=Translation Move Forward (Zoom In), 8=Translation Move Back (Zoom

Out).
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(a) (b)

(c) (d)

Figure 5.9: Final reward table R(s, a) in Scenario 2. Final reward table obtained
after training for Scenario 2 on the input images (in the same order as in Fig. 5.1).
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Figure 5.10: Error plot in Scenario 2. Shows progression of error over the training
iterations for Scenario 2. The error is calculated based on Equation 5.1. The error
plots are generated for the four input images (in the same order as in Fig. 5.1).
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Figure 5.11: Progress plot for input image Fig. 5.1(a) in Scenario 2. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(a) for Scenario 2. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.12: Progress plot for input image Fig. 5.1(b) in Scenario 2. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(b) for Scenario 2. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.13: Progress plot for input image Fig. 5.1(c) in Scenario 2. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(c) for Scenario 2. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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Figure 5.14: Progress plot for input image Fig. 5.1(d) in Scenario 2. The progress graphs shows
the actions chosen over training iterations, trained for input image Fig. 5.1(d) for Scenario 2. (a)
Training with RYRL initial condition. (b) Training with RYLR initial condition. (c) Training with
RPUD initial condition. (d) Training with RPDU initial condition. (e) Training with RRCL initial
condition. (f) Training with RRAC initial condition. (g) Training with TLRI initial condition. (h)
Training with TLRO initial condition.
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5.3 Analysis

The learned R-table becomes quite similar to the ideal R-table when the learning

algorithm is executed for a large number of iterations. The algorithm performs very

well for images that have high contrast and lots of texture. This is expected as the

local motion detectors give smooth optical flow pattern when the image has lot of

variation in intensity across the scene. This can be seen in Fig. 5.3 and 5.9, which

shows learned R-tables for input images in Fig. 5.1 over Method I and II, respectively.

It is quite clear from this result that the algorithm performs best for the image in

Fig. 5.1d as it has dense texture and high contrast. The synthetic image (Fig. 5.1a)

performs sub-optimally due to sparse texture, while natural images (Fig. 5.1b and

c) give better results but not perfect result due to low contrast.

When comparing results over two methods as shown in Scenarios 1 and 2, it can

be observed that except for some minor differences both methods yield similar results

for all input images. This is expected as the generated states depend more on the

position and general direction in which an LPTC responds than subtle variation of

axes along which these neurons respond. While matched filter model yields more

accurate neural response vis-a-vis natural VS-cells of the fly, it doesn’t have much

effect on the outcomes of the learning algorithm. It is also interesting to see the

behaviour of the agent during the training phase when exposed to different input im-

ages. The choice of actions is observed to be random in the first 200 iterations of the

training phase with respect to every sensory primitive, as is expected. Subsequently,

the learning algorithm converges the choice of action to the desired action for every

sensory primitive (Fig. 4.3).

The results show that the proposed agent model and the learning algorithm are

able to give promising results for the motion grounding problem in synthetic and
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natural scenarios. The agent learns a unique relationship between each of the sensory

states and actions. Fig. 5.3 and 5.9 show that those action that are able to maintain

and reinforce the sensory state are mapped to that state in the learning process. For

example, consider the case where the sensory state is roll optical flow in clockwise

sense (RRCL). Now, the action roll in counter clockwise sense (counter clockwise

arrow) will generate the same optical flow as observed by the agent. Thus, this

action reinforces the current sensory state while other actions would change the

state, making the learning algorithm map roll counter clockwise action to generate

roll clockwise optical flow (RRCL). A similar relationship can be observed for all

other corresponding state-action pairs.
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6. DISCUSSION

An interesting question is whether the framework presented in this thesis can be

used to design experiments for fly electrophysiology and behavior. These results offer

a strong prediction that can be tested in the experimental lab: electrical stimulation

of the optical flow detectors in the fly brain would elicit motor behavior that reinforce

the detected optical flow. This would also be useful in verifying whether flys actually

learn to understand the semantics of their neural spikes generated by optical flow

detectors in this fashion. For example, stimulating the RRCL detector will result in

counter clockwise rotation.

This framework can also be useful for implementation on real robotic agent to

test its workability. This will also present a good understanding of how an agent

behaves when actively interacting with real world. Since this approach is proposed

to be a basis for developing an agent that understands motion, so it can be built up

to add more complex capabilities to the agent.

In future work, I would like to investigate compositional optical flow generated

by a combination of multiple optical flows mentioned in this approach: for example,

optical flow induced by combined roll and thrust (forward movement), etc. Another

aspect related to understanding motion is learning the motion generated by external

agents. This is frequently seen in the fly’s behavior when it performs complex actions

like pursuit of the prey. Processing such motion will give the agent an understanding

of the effect of self-motion vis-a-vis another agent’s motion. Such motions will have

complex optical flow fields.
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7. CONCLUSION

In this thesis, I presented an optical flow processing model for a robotic agent that

is inspired from the fly’s visual system. This sensorimotor model has been shown to

autonomously learn the semantics of internal sensory spikes generated by the motion

detectors modeled after the fly’s compound eyes. The agent is able to achieve this by

mapping the optical flow input to behaviorally meaningful actions: simple motions

like translation, rotation, etc. A good sensorimotor mapping achieved by using the

sensory invariance criterion applied to reinforcement learning shows that the agent

is able to autonomously learn the meaning of internal spikes in terms of actions

without having any direct access to the outside stimuli. I have shown results of this

for various synthetic and natural scenes giving best mapping for scenes with high

contrast and dense texture.

The ability of a robotic agent to autonomously ground optical flow information

can act as a basis for learning complex information using developmental learning.

The approach used in this thesis can be useful for further developing the capability of

such an agent. Moreover, I expect this computational study to help better understand

how the real fly visual system decodes its own spikes.
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