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ABSTRACT

Peripheral devices are hardware components that are connected to a computer

and they supplement the functionality of a computer. Over the years, a huge im-

provement has been observed both in variety and capabilities of peripheral devices.

Starting from the input/output and storage devices of early days, today’s peripheral

devices support all aspects of a computer, with peripherals like Graphical Processing

Units (GPUs) even supplementing the computational capabilities of a processor. At

the same time, the support for peripheral devices in computers has vastly improved.

While the earlier computers only supported static configuration of devices, the plug-

and-play capabilities in present day computers allow devices to be added or removed

at run time, thus reducing the complexity of managing peripheral devices. Today,

it is not an exaggeration to state that, beyond the computational capability of a

computer, it is the peripheral devices that define the user experience.

With the advancements in networking and distributed computing, the definition

of what constitutes a computer has been blurred: Mainframes and Supercomputing

clusters support batch processing, where processors/cores are treated as resources,

and number of processors/cores available for a specific computation can be requested

on demand. With cloud computing, users access services hosted across the Internet.

However, usage models for peripheral devices have not caught up accordingly. For

the most part, Peripheral devices are still limited to the computers they are physical

attached to. Device virtualization solutions exist that can extend the device protocols

over the network, enabling users to access devices connected to a different computer.

However, these device virtualization solutions still need direct access to both the

computer that has the device plugged in (Device Server) and to the computer that
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intends to use the device (Device Client) and they do not support remote plug-and-

play. So, there is a need for a device consolidation framework that supports new

device usage models that are in line with the evolving models of computation.

In this thesis, we propose a framework called ”Distributed Device Bus”, which

extends the concept of a conventional peripheral bus to include in its scope, the

ports of all the computers that are connected over a network. Like a peripheral bus,

a Distributed Device Bus is also associated with a computer called Master node.

A Distributed Device Bus supports dynamic addition/deletion of ports and each of

these ports can physically belong to any computer in the network. Computers that

contribute ports to a Distributed Device Bus are called Provider nodes. A device

plugged into any port that is assigned to a Distributed Device Bus is immediately

made accessible to applications on master node. This device consolidation framework

treats devices as a resource and access to a device is configurable rather than being

limited to the computer the device is physically attached to.
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1. INTRODUCTION

With the advent of distributed systems, the concept of computation is being pro-

gressively decoupled from being associated with a single computer and is increasingly

associated with a system of interconnected nodes that communicate and coordinate.

This paradigm shift created a framework that handles computational power as a

resource that is configurable, rather than being limited by hardware capabilities of

a single independent computer. For example, in today’s supercomputers and main-

frames, it is not uncommon for a job to request hardware resources that are beyond

the capabilities of a single computer. The requested resources are then assimilated

by combining resources from a connected network of computers. For the duration

of the job, these resources coordinate to fulfill the requirements of the job. At the

end of the job, the resources are released and made available for rest of the system.

Effectively, this paradigm supports the creation of an overlay of computational re-

sources that are dynamically configurable, resulting in efficient usage of resources.

This in turn gives rise to a scalable paradigm for computation.

Peripheral devices continue to be associated with a single computer. Conventional

Peripheral Buses [1] limit the availability of a peripheral device to the single computer

that happens to have the device physically plugged in. This static association of a

peripheral device to a single computer is a limitation of conventional peripheral buses

that prevents the possibility of treating a peripheral device as a resource that can

configured to be accessed from any node in a distributed system. Even in today’s

supercomputers and mainframes, a computation that relies on a peripheral device is

limited to the computer that has the device plugged in. No system is available to

support the assimilation of devices attached to different computers in a network and

1



still provide a transparent device access to operating system services and user level

applications. If an application relies on devices that are unavailable on the computing

node hosting the application, there is no effective way to leverage available devices

across the network.

Challenges posed by such a limitation on device access are four fold:

• Maintenance overhead: Each computer with that device attached has to be

individually serviced whenever a particular device requires maintenance (such

as update of device driver or reconfiguration of device parameters). Increasingly

large number of sensor devices are deployed, typically attached to peripheral

buses of host computers. For example, some sensor networks [2] consist of

several computers and each computer is connected to one or more of sensor

devices, each designed as a peripheral device. Computers in such networks can

be distributed across wide areas. Maintaining such a network of devices by

individually servicing each computer requires significant manpower and time.

• Security: Any system that accesses devices spread across wide areas exposes

a sizable attack surface. A vulnerability related to a device can make any

computer in the network a potential target. Compromising one such computer

can put the entire network at risk. Consequently, each and every computer

in the network should be constantly updated with security updates related to

devices. Physical co-location of the host with the device causes various physical

security vulnerabilities, which are particularly severe if the networked system

is spread across wide areas.

• Inefficient usage of resources: Dependence of a computation on a device limits

it to the computer with the attached device. This device dependent workload

may prevent other workload from accessing the processor on the node that
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has access to the device. This results in inefficient usage of computational

resources, undue fragmentation of processor allocation and thus device depen-

dent computations may have to wait, even if the present computation on the

computer does not utilize the device. It is this coupling of resources (i.e., CPU

and devices on the peripheral bus) that may unduly reduce utilization of the

overall system.

• Scalability: Limitations on transparent device access limits the scalability of

an application beyond the number of devices attached to the computer. In

addition, this limitation restricts the usefulness of a device to the node in its

physical location.

In order to overcome these limitations, a framework that supports consolidation

of devices connected to different computers in a network is needed. This framework

should not be limited to providing transparent device access but rather support a

reconfigurable Device Overlay, a network of devices constructed on top of existing

network of computers. Applications and operating system services can transparently

leverage such a framework to scale out in terms of number of devices.

This document is organized as follows. In Section 2, we describe the criteria that

guided the architecture of Distributed Device Bus. In Section 3, we describe the

existing work in relevant area. In Section 4, we provide a brief model of Distributed

Device Bus. Section 5 introduces a generic architecture of peripheral devices in oper-

ating systems, while Section 6 introduces a generic device virtualization architecture.

Sections 7 and 8 describe architecture and design of our solution respectively. Section

9 provides implementation details. In section 10 we evaluate the system.
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2. CRITERIA OF SOLUTION

Present day computers support a wide variety of device types, and each device

type can have different protocols with varying capabilities. Peripheral devices differ

in various aspects, including, but not limited to, transfer speed, bandwidth require-

ments, synchronous vs asynchronous operations, polled vs interrupt driven control,

quality of service guarantees, error semantics. A framework that supports the consol-

idation of devices distributed across a network should not pose restrictions in terms

of device access. Also, plug-and-play is one of the most important features of pe-

ripheral devices, and a device consolidation framework should extend plug-and-play

functionality over the network. A good design for a device consolidation framework

supports the following criteria:

2.1 Device Agnostic Service

Today’s computers support a wide variety of devices. There are multiple stan-

dards that define the details of hardware cables, interfaces and protocols for data

communications. For example, USB [3] is a standard developed for cables, connec-

tors and communication protocols for data transfer between computers and devices.

USB supports a wide variety of devices ranging from input/output devices, storage

devices, cameras, speakers, microphones to game controllers. Similarly PCI [4], SCSI

[5] are other bus standards that support a variety of devices. A device consolidation

framework should support devices independent of the particular type of device or

the type of peripheral bus.
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2.2 Operating System Agnostic Service

A majority of the operating systems provide inherent support for all the popular

bus specifications like USB, PCI and SCSI. The architecture of device consolidation

framework should not impose any restrictions on Operating systems that the nodes

in the connected network operate on.

2.3 Transparent and Complete Functionality

The proposed framework should support full functionality of the devices. Ex-

tending the device architecture over network should provide full functionality of the

device, without necessitating any modifications to device drivers.

2.4 Plug-and-Play

One of the major features of current device architectures is plug-and-play. Plug-

and-play enables computers to dynamically identify and support new devices without

having to depend on a static device configuration. A proposed framework should

extend the plug-and-play functionality across the device overlay.

2.5 Dynamic Reconfiguration

A framework to consolidate devices distributed across a network should not be

limited by a static configuration. Each device in the network should be accessible

to every other computer in the network and different computers access the device at

different points of time. So, the association of a device to a computer in the network

should be configurable, without affecting the state of other computers and devices

in the network. Hence, the device overlay constructed on top of existing computer

network should be reconfigurable.

In the following sections we describe a device consolidation framework that uses

the device overlay paradigm to support transparent access of devices distributed
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across the network. This framework extends plug-and-play over the network and is

independent of device type and operating system. Access to devices in this framework

is configurable on demand.
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3. CURRENT WORK

A variety of device virtualization solutions have been developed over the years

that extend the device protocols over networks, and that enable transparent access of

remote devices. We observe, however, that such virtualization solutions are specific

to either the type of device or to operating system, often to both. Also, purely device-

virtualization based solutions do not support plug-and-play and reconfigurable device

overlays.

3.1 iPCI

Peripheral Component Interconnect (PCI) [4] is a local bus standard that sup-

ports hardware devices to be plugged into the computer. iPCI [6] is a protocol ex-

tension of PCI over networks. iPCI proposes to encapsulate PCI transport packets

into network packets, thus enabling the communication between the bus and device

over a network. This makes iPCI to support any kind of PCI device. However, this

protocol has been described in the literature only, and we are not aware of a working

implementation.

3.2 Modbus TCP/IP

The Modbus protocol [7] proposes a master/slave architecture among the devices

connected to a serial bus. Requests are always initiated by the master, and slaves

accept requests and process them. Modbus TCP/IP [8] is an extension of Modbus

over TCP/IP. The protocol is independent of the particular device, the application

or the operating system. Because it is using a master/slave architecture, the protocol

does not allow for reconfiguration or device discovery.
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3.3 USBIP

USBIP [9] is an extension of USB [3] over network. USB Request Blocks (URBs)

[10] are USB protocol units that carry the device driver’s request for the device. In

USBIP, URBs are transported over the network, enabling communication of device

driver on one machine (Device Client) with the device on another machine (Device

Server). Since URB is a generic structure that is independent of the type of USB

device and operating system, USBIP is independent of the type of USB device. It

therefore supports full functionality of the remote USB device without requiring any

changes to device drivers. Since applications use the same device driver for accessing

both a local and remote USB device, applications are unaware if they are accessing

local or remote device. Hence, USBIP provides support for transparent access of

remote USB device.

3.4 Remote USB Ports

Protocol remoting solutions like USBIP deal with devices, necessitating the phys-

ical presence of device for the solution to work. Such solutions do not support plug-

and-play for remote devices. Remote USB Ports [11] provide an abstraction of USB

ports and support plug-and-play for remote devices. In addition, this architecture

supports user authentication and secure transfer of URBs over the network. How-

ever, each remote port has to be maintained manually, and assimilation of devices

connected to different nodes in a network becomes cumbersome.

3.5 iSCSI

Small Computer System Interface (SCSI) [5] is a peripheral device interface stan-

dard that defines physical interface, commands and protocols. SCSI can support a

wide variety of devices. However, the device types that most commonly use SCSI
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are hard disks, CD drives and scanners. Internet Small Computer System Interface

(iSCSI) [12] is a Storage Area Network protocol that extends SCSI over IP networks.

3.6 Software Buses

The Software Bus [13] paradigm is widely used in software architecture to develop

a platform that connects software modules, components or objects over a shared

communication channel. Examples of software buses range from middle ware systems

such as CORBA [14] to bus implementations such as Ivy [15], SWBus [16], iBus [17],

Toolbus [18] and Microsoft’s Enterprise Service Bus (ESB) [19].

While Software Bus architectures support the design and implementation of

loosely coupled components that are distributed across a network and coordinate

by communicating via messages, there is no direct equivalent in literature for a de-

vice consolidation framework described above. However, such a device consolidation

framework borrows many of the design principles proposed in various bus architec-

tures.
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4. DISTRIBUTED DEVICE BUS - A USECASE

We propose an architecture for a device consolidation framework called Dis-

tributed Device Bus (DDB). Like a peripheral bus, a DDB belongs to a single com-

puter, which we call Master node. What distinguishes a DDB from a traditional

peripheral bus, however, is the ability to have ports that can physically belong to

any participating computer (called Provider node ) in the network. A device plugged

into any of the assigned ports of a DDB becomes accessible to Master node. Ports

can be dynamically assigned to/removed from a DDB. Many such DDBs can be de-

fined over the network. A conceptual illustration of a DDB is presented in Figure

4.1.

In Figure 4.1, Node 0 is the master node for DDB DBUS1 and Port 1 on Node 1

and Port 3 on Node 2 are assigned to DBUS1. Node 2 is the master node for DDB

DBUS2 and Port 3 on Node 1 is assigned to DBUS2.

'

&

$

%

'

&

$

%

'

&

$

%
NODE 0 NODE 1 NODE 2

'

&

$

%

'

&

$

%PERIPHERAL BUS PERIPHERAL BUS

DBUS1

DBUS 2

port 1 port 2 port 3 port 1 port 2 port 3

? ?

66 6

Figure 4.1: An Illustration of Distributed Device Bus
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Figure 4.2: Creation of a Distributed Device Bus

For the sake of simplicity, pictures in Section 4 depict Node 0 with out its own

peripheral bus. In reality, every participating node in the Distributed Device Bus

infrastructure can have its own peripheral buses. The solid lines connecting different

nodes in the figures represent the network.

In the following sections, we take an operational approach to define the DDB concept,

and we describe the operations supported by the DDB:

1. Create a Distributed Device Bus

Figure 4.2 illustrates a DDB after creation. Node 0 is the master node for DDB

DBUS1. With no ports assigned to it, the scope of DBUS1 is limited to Node

0. A DDB with no ports assigned to it provides no functionality other than

book keeping.

2. Add a Port to Distributed Device Bus

Hardware ports belonging to any participating computer in the network can

be assigned to a DDB. When a port is assigned to a DDB, the DDB is said

to have been extended over network. The computer that provides the port to
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Figure 4.3: Adding a Port to Distributed Device Bus

a DDB is called Provider node and the scope of DDB now includes the new

provider node.

Figure 4.3 illustrates adding a port to a DDB. Here, Port 1 on Node 1 is added

to DDB DBUS1. Hence Node 1 acts as Provider node for DBUS1. As illus-

trated in the figure, this results in extension of DBUS1 across the underlying

network to Node 1.

Figure 4.4 illustrates adding Port 1 on Node 2 to DBUS1. In this figure, DBUS1

expands further over the network, and Node 1 and Node 2 act as provider nodes

and Node 0 remains the Master Node.
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Figure 4.4: A Distributed Device Bus

3. Delete a Port from a Distributed Device Bus

Ports assigned to a DDB can be dynamically deleted, resulting in reduction

of scope for the DDB. A device attached to deleted port will no longer be

accessible from the Master node.

Figure 4.5 illustrates the deletion of Port 1 on Node 2 from DBUS1. This results

in reduction of scope for DBUS1 and Port 1 on Node 2 becomes accessible to

Node 2.

4. Delete a Distributed Device Bus

Deleting a DDB results in deletion of all port assignments of the DDB. Ports on

provider nodes that are previously assigned to DDB become locally accessible.

Figure 4.6 illustrates deletion of DBUS1. Consequently, Port 1 on Node 1

becomes accessible to Node 1.

In summary, we observe that DDB’s support the same operational semantics

of a traditional peripheral buses, including their plug-and-play capabilities. DDB’s
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Figure 4.5: Deletion of Port from Distributed Device Bus

support a variable number of ports however, and each port can belong to differ-

ent computers in the connected network. In addition, ports can be dynamically

added/removed from the distributed device bus. The DDB’s naturally extend plug-

and-play capabilities to across the network.
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5. TRADITIONAL PERIPHERAL DEVICE ARCHITECTURE

The Distributed Device Bus architecture is a natural extension of the traditional

peripheral device bus architecture. We will therefore use the peripheral device archi-

tecture as a starting point. Although specific details may vary across device types,

the device architecture is essentially defined by the specific peripheral bus and is

therefore largely similar across the devices. The idea of Distribute Device Bus lever-

ages these similarities to build a device agnostic bus architecture.

5.1 Peripheral Bus

A peripheral bus is a standard that describes the details of hardware (wires, opti-

cal cables and other electric components), software components, and communication

protocols followed for exchange of data between computer and devices. Even though

a peripheral bus is a single logical abstract entity in itself, the actual functionality as

specified by the standard is manifested in operating systems by communication and

cooperation between multiple hardware and software entities. Again, differences may

exist between the complexities and functionalities of these components that realize

the specifications of different standards. Sometimes differences exist even between

different versions of the same standard. A typical peripheral bus consists of the

following components:

1. Host Controller

A host controller is a hardware component that provides the connection be-

tween the computer and peripheral devices. Peripheral devices are plugged into

the hardware ports provided by the host controller. Essentially, data commu-

nication between a computer and the peripheral device happens via the host

controller.
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2. Host Controller Driver

A host controller driver is the operating system driver that manages the host

controller. Besides managing the interactions at the hardware level, the pri-

mary responsibility of the host controller driver includes the implementation

of communication protocols as specified in the bus standard. However, the

entire data communication protocol is not necessarily implemented in the host

controller driver. Different host controller drivers provide different levels of

functionality to support the data communication protocols between the com-

puter and peripheral devices. The host controller driver provides the standard

interface for device drivers to communicate with the device.

3. Host Controller Interface

A Host Controller Interface specifies the register-level interface that facilitates

the communication between host controller driver and host controller. The

host controller interface determines the complexity of the host controller driver

to realize the specification of the bus.

The generic idea of a peripheral bus includes all of the above three components.

The Figure 5.1 illustrates the generic concept of a peripheral bus. Subsequent us-

age of the term ”peripheral bus” refers to the combination of the above mentioned

components.
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5.2 Peripheral Device Architecture

A peripheral device is plugged into the hardware port provided by the peripheral

bus. The peripheral bus, through the functionality provided the coordination of

host controller, host controller interface and host controller driver, loads a device

driver matching the requirements of the peripheral device plugged into the hardware

port. A device driver provides the standard interface for applications running on a

computer to access the device.

Figure 5.2 illustrates the generic architecture for peripheral device in a computer.

Even though differences may exist between the device driver architectures of different

operating systems, Figure 5.2 still captures the essence.
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6. GENERIC DEVICE VIRTUALIZATION ARCHITECTURE

Our implementation of DDB leverages existing device virtualization solutions.

Hence this section is dedicated for describing a generic device virtualization archi-

tecture. A device virtualization solution enables a computer to access a remote device

(a device connected to a different computer in the network). The computer that has

the device physically plugged in is called the Device Server and the computer that

accesses the device is called Device Client.

As explained in Section 5.2, a Peripheral Bus captures the device driver’s request

for the device and provides the functionality to communicate with the device and get

the device driver’s request serviced. A device virtualization solution that supports

transparent access of a remote device does not necessitate any changes in device

driver. Such a device virtualization solution should distribute the responsibility of

a peripheral bus as explained in Section 5.1 between the device client and device

server, which is achieved by the communication and coordination of the following

components

6.1 Device Server Proxy Module (DSPM)

A DSPM is responsible for hiding the device from applications on device server

and setting up an infrastructure that enables it to receive device driver’s request

for the device from device client, service these requests by accessing the device and

communicating the response back to the device client. Once a device to virtualize

is identified, a DSPM hides the device from applications on the device server by

preventing the operating system mechanism that sets up infrastructure as explained

in Section 5.1. Instead, DSPM sets up the infrastructure that receives device requests

from device client, services those requests using the device and reports the results to
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device client. Once this infrastructure is setup, the device is said to be EXPORTED.

6.2 Device Client Proxy Module (DCPM)

A DCPM is responsible for loading a device driver suitable for the remote device,

capture this device driver’s request for the device and delegate the processing of these

requests to device server. Once a device is exported as explained in the Section 6.1,

DCPM communicates with the DSPM to get the details of the device and leverages

the operating system functionality to load the appropriate device driver for the device

and setups the infrastructure responsible for delegating the device request processing

to device server. Once this infrastructure is setup, applications on device client will be

capable of accessing the remote device using the standard operating system interface

and the device is said to be IMPORTED

The Figure 6.1 illustrates the generic device virtualization architecture.
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7. DISTRIBUTED DEVICE BUS ARCHITECTURE

The architecture of the Distributed Device Bus follows a layered model, where

lower layers provide communication and virtualization services to higher layers.

Specifically we identify four layers, which we call Device Virtualization Layer, Event

Management Layer, Service Matching Layer and DDB Management Layer. In the

following sections we describe the rationale for and the services provided by each

layer.

7.1 Device Virtualization Layer

The Device Virtualization Layer provides the communication services needed for

the master node on the DDB to remotely access and control devices across the

network. Typical services provided at this level are tunneling of the communication

protocol across the network and device proxy services to enable transparent access of

the remote device from device drivers on the master node. This enables applications

on master node to transparently access device on the provider node.

As we described in Section 3, a number of approaches for device virtualization

exist. We described in Section 6, how many of these systems follow a generic ar-

chitecture, which in turn can be easily leveraged as device virtualization layer for

DDB.

Our implementation of DDB can therefore make use of existing device virtualiza-

tion systems such as USBIP [9] and Remote USB Ports [11] in Device Virtualization

Layer, and we describe in the Section 8 and Section 9, how we use USBIP in the

Device Virtualization Layer.
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7.2 Event Management Layer

Hardware events related to devices define the operational semantics of devices

on a computer. The event of a device being plugged in, for example, triggers spe-

cific operating system mechanism that loads the device driver for the device, thus

enabling application access to the device. Similarly, whenever a device is removed,

this triggers operating system mechanism to unload the device driver for the device,

thus terminating the device access for applications. In a DDB, where applications on

the master node access both local and remote devices, the hardware events related

to a device must be transported over the network. The Event Management Layer

provides the required functionality.

The Event Management Layer manages and responds to device configuration

events, such as when a new device is plugged-in or removed from a port. Essentially,

the Event Management Layer sets up the Device Virtualization layer so that device

proxy and tunneling functionality in Device Virtualization Layer can be initiated or

terminated accordingly.

7.3 Service Matching Layer

The DDB model is expected to reflect the operation of a local peripheral bus.

Once the device virtualization layer has set up the connection between master node

and the remote device, and the appropriate device drivers are loaded, the functioning

of the device is identical to that of a device on a local peripheral bus. Some of

the device virtualization mechanisms may not be able to transparently enable plug-

and-play. However, in some cases, for example Modbus [8] the remote device must

be manually configured to act as a remote device. In others, for example USBIP

[9], the device virtualization system makes available remote device, and not remote

ports. Plug-and-play, therefore, is not directly supported. The Service Matching
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Layer compensates for the inconsistencies between the device model supported by

the Device Virtualization Layer and the device model required by the Distributed

Device Bus. If the functionality supported by Device Virtualization Layer cannot

support remote ports as required by Distributed Device Bus, for example, the Service

Matching Layer provides appropriate functionality to compensate for the difference

in requirements.

7.4 Distributed Device Bus Management Layer

The Distributed Device Bus Management Layer provides the functionality to

store and manipulate the state of Distributed Device Buses defined in the system.

This information includes the Distributed Device Buses defined over the network

along with the information of ports assigned to the Distributed Device Buses. This

layer also provides necessary tools that enable users to interact with Distributed

Device Buses in a network. Finally it implements the interface required for creating,

manipulating and deleting Distributed Device Buses in the network.
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Device Virtualization layer

Event Management Layer
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DDB Management Layer

Figure 7.1: Distributed Device Bus Architecture
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8. DESIGN

Besides fulfilling the criteria explained in Section 4, the design of distributed

device bus infrastructure is influenced by the following requirements:

1. Lightweight

A distributed device bus provides an infrastructure for assimilating devices

present in all nodes in a connected network. Hence the overhead of participation

on each node should be minimal. Each node in the network might have other

responsibilities besides its participation in distributed device bus infrastructure.

Hence the software modules running on each node should be lightweight.

2. Minimal Network Traffic

As explained above, participation in the distributed device bus infrastructure

may not be the only responsibility of the node and hence, even the intercon-

nection medium for the nodes might as well be used for other communication

purposes besides the communication required for device assimilation frame-

work. As a result, it is important to reduce the amount of traffic through the

interconnection medium.

3. Compatibility with existing Device Virtualization Mechanisms

Our DDB design must be able to leverage existing device virtualization systems,

which as described in Section 6 typically rely on proxying and tunneling of

device protocols. In some cases, there is a mismatch between the services of

the DDB and those provided by a particular device virtualization system.

For example, as described in Section 3.3, USBIP virtualizes USB devices, thus

necessitating the presence of the device for the proxy mechanism to work.
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However, our DDB model extends the USB bus across the network providing

the support for remote ports. Appropriate mechanisms must be put in place

to resolve such mismatches.

'
&
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%Device Virtualization Layer

'
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$

%Event Management Layer

Service Matching Layer

DDB Management Layer

DDB Manager

State Manager

Agent

Figure 8.1: Distributed Device Bus Design

As a proof of concept for the Distributed Device Bus, we implemented a Dis-

tributed Device Bus for USB devices that assimilates USB devices distributed over

the network. The following sections describe how the functionality of different layers

of Distributed Device Bus as explained in Section 7 are realized in our implementa-

tion.

8.1 Device Virtualization Layer

Our implementation of Device Virtualization Layer utilizes USBIP [9], a USB

device virtualization solution, that supports remote USB device access. Figure 8.2
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describes the design of USBIP.
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Figure 8.2: USBIP Design

Virtual Host Controller Interface Driver (VHCI Driver) and Stub driver are the

kernel modules introduced by USBIP.

8.1.1 Stub Driver

Stub Driver, in coordination with the USB core driver and USB Host Controller

Driver (USB HCD) on the device server, implement the functionality of the Device

Server Proxy Module as explained in Section 6.1. The stub driver on device server
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hides the device from applications on device server and is responsible for receiving

device driver requests for the usb device, servicing the requests by accessing the usb

device and reporting the results to Device Client.

8.1.2 Virtual Host Controller Interface Driver

The Virtual Host Controller Interface Driver, in coordination with the USB core

driver is responsible for implementing the functionality of the Device Client Proxy

Module as explained in Section 6.2. VHCI Driver communicates with Stub driver on

device server to gather the USB device information required to load the corresponding

USB device driver on device client. Also, the VHCI driver is responsible for capturing

the device driver’s requests for USB device and delegate the processing of device

requests to stub driver.

8.2 Distributed Device Bus Manager

The Distributed Device Bus Manager realizes the combined functionality of Event

Management Layer, Service Matching Layer and Distributed Device Bus Manage-

ment Layer as explained in Sections 7.2, 7.3 and 7.4 respectively. Distributed Device

Bus Manager is composed of the following components.

8.2.1 State Manager

For a conventional peripheral bus, information about the devices available in

the system are stored with in a single computer, which is responsible for managing

device related hardware events like device plug-in and plug-out events, defining the

operational semantics for devices in a single system. However, the potential scope

of a DDB includes the whole of the connected network. Hence, information of the

DDB should be accessible to every participating node in the network. To avoid

replicating the data on each participating node, a State Manager, which is accessible
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from every participating node in the network is used to store the information about

DDBs defined over the network.

We implemented the State Manager as a data store using Redis [20]. Redis

is a open source key-value data store, that is used to store information about all

the DDBs. This Redis data store is accessible from all the participating nodes in

our implementation. Also, Redis supports notifications. Updates to status of ports

assigned to DDBs are notified to relevant nodes in the network. This notification

mechanism is leveraged to contribute to the functionality of Event Management Layer

as explained in Section 7.2, Service Matching Layer as explained in Section 7.3 and

Distributed Device Bus Management Layer as explained in Section 7.4

8.2.2 Agent

A computer in the network can either be a Master node or Provider node or both

with respect to different Distributed Device Buses defined over the network. Agent is

a software module that runs on every participating computer in the network, fulfilling

its responsibilities, either as a Master node, or Provider node or both. As part of

responsibilities of Provider node, Agent monitors activities of its hardware ports that

are assigned to DDBs defined over the network and update the status of the ports

in the State Manager accordingly. As part of responsibilities of the Master node,

the Agent subscribes with State Manager for status changes of ports assigned to its

DDBs and responds to those status changes.

The Agent is a light-weight software module, that uses libudev [21] Linux library

for monitoring hardware events on usb ports and hiredis [22], a Redis client library

implemented in C programming language to subscribe for event notifications from

Redis. By updating State Manager with device related hardware events, subscribing

to status changes events for relevant ports and responding to those status changes,
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an Agent contributes to the functionality of Event Management Layer as explained

in Section 7.2 and Service Matching Layer as explained in Section 7.3.

The following subsections describe how the combination of State Manager and

Agent realize the functionality of Event Management Layer, Service Matching Layer

and Distributed Device Bus Management Layer as explained in sections 7.2, 7.3 and

7.4 respectively.

8.2.3 Event Management Layer

An agent monitors device events on its hardware ports that are assigned to a

Distributed Device Bus. Any device event noticed on the hardware port is updated

in the State Manager. This status update in State Manager triggers notifications

to the Master node. The Agent on the master node responds to this status update.

Thus, a hardware event that originated in provider node is notified to master node via

the state manager. Hence, agents and state manager communicate and coordinate

to provide the functionality of event management layer.

8.2.4 Service Matching Layer

In our implementation, USBIP used at Device Virtualization Layer only supports

remote device access but not remote port. To complement USBIP and support device

plug-and-play on remote devices, service matching layer leverages the functionality

of agent and state manger.

As explained earlier, the agent monitors device events on its hardware ports that

are assigned to a distributed device bus. When a device is plugged in, agent updates

the state manager about the availability of device. This status update on the port

triggers a notification from state manager to master node regarding the availability of

device. Similar communication happens when a device is plugged out. Hence, while

USBIP is leveraged to support remote access for a device, functionality of USBIP is
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complemented by agent and state manager to support remote ports.

8.2.5 Distributed Device Bus Management Layer

State manager contains the information of all the distributed device buses defined

over the network along with ports assigned to each of the distributed device buses.

Also, a tool called dbus is provided that provides a simple interface for users to create

and manipulate distributed device buses in the network. This tool creates appropri-

ate entries in state manager, assigning/deleting hardware ports to distributed device

buses. These entries initiate required actions on agents.

Thus, state manager and the tool dbus provide the functionality of Distributed

Device Bus Management Layer.

This event based notifications and distribution of responsibility to agents based

on the relevant events has a five fold advantage:

1. Reduction in network traffic

Agents update state manager with relevant hardware events on ports and also

subscribe for relevant events from state manager. State manager is accessible

from every node in the network and to dispatch notifications to appropriate

agents. Agent’s reliance on state manager eliminates the need for an agent to

individually communicate with each provider/master node in the network for

relevant updates. Hence, the communication in the network is reduced to bare

minimum.

2. Data Consistency

Since state manager stores all the required information of distributed device

buses in the network and provides convenient interface to manipulate the data,

agents do not locally store this information. Since no data is replicated across

multiple agents, it is simpler to maintain the consistency of data.
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3. Reduction in Overhead

Agents on each node monitors device activity on ports assigned to distributed

device buses and only subscribe for relevant events from state manager. Also,

agents do not have to store any information about distributed device buses and

do not have to individually communicate with each master/provider node in

the network. Hence, the overhead of an agent on a node is directly proportional

to its participation in the device consolidation framework and does not include

any other overhead.

4. Compatibility with Existing Device Virtualization Solutions

As demonstrated, our implementation of Distributed Device Bus infrastructure

for USB devices leverages USBIP, an existing device virtualization solution.

This approach, while providing the benefit of reusing the existing components,

also ensures that any improvements in one layer can be easily incorporated

without affecting the functionality in other layers.

5. Autonomous Agent

Since agents on each node rely on state manager for notifications about relevant

events, the functionality of an agent is independent of other agents in the

network.
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9. IMPLEMENTATION

For demonstrating the concept of Distributed Device Bus, we provided a working

implementation that consolidates usb devices distributed across a network. This

implementation serves as a proof of concept. The following sections describe various

components developed and used as part of the implementation.

9.1 Agent

Agent is the software component that executes on each of the participating nodes.

An agent has two important components:

1. Device Module

Device module is responsible for observing device activity on hardware ports

and notifying the agent accordingly. Our implementation used libudev [21]

Linux library to monitor for usb device related events. Libudev provides simple

interface to subscribe for device specific notifications.

Device module enables to encapsulate device specific functionality. Hence,

multiple device modules can be loaded to support different types of devices

without affecting other components.

2. Datastore Module

Data store module is responsible for subscribing to relevant event notifications

from state manager and notify agent accordingly. Our implementation used

Hiredis [22] a Redis client developed in C language. Hiredis provides a simple

interface to subscribe and receive notifications from Redis.

Data store module abstracts away the specific data store related logic from

agent. Hence, any changes/updates to state manager can be managed by cor-
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responding changes/updates to data store module on agents, without affecting

the rest of the functionality of the agent.

9.2 State Manager

Redis version 3.0.1 [20] is used as a state manager. Redis is a open source key-

value store and provides a simple yet powerful infrastructure that fulfills the require-

ments as specified in section 8.2.1. The key-value entries in data store have the

form:

Key: [busname] : [master-node] : [protocol] : [provider-node] : [port-id]

Value: [status]

The meaning of the entries are explained in section 9.2.1. This simple key-value

structure is chosen to leverage the notification mechanism in Redis. Redis provides

primitive notification support. Notifications just identify the key that has been

modified. So the above mentioned key structure is chosen, which makes it easy to

identify the responsible nodes (master node and provider node) that have to act on

the status change.

9.2.1 Information in Data Store

This section specifies the kind of information that should be available in the data

store. Information about a distributed device should contain the following details:

1. Name

Name of the DDB, it could be any identifier with alpha numeric characters.

Name is just to recognize the bus.

2. Master Node

Master node identifies the node that the DDB is assigned to.
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3. Protocol

Protocol specifies the kind of device and device virtualization used. In the

present case, usb devices are used and usbip is used for device virtualization.

4. Provider Node

Address of the provider node that contributes the device port to the DDB.

5. Port id

Port id is the identifier of the port on the provider node.

6. Status

Status represents the status of port with respect to distributed device bus.

Value of status invokes specific actions from either of the master node or

provider node. Status can have the following values:

(a) ADDED

This is the initial state of ports assigned to a distributed device bus. At

the time a port is assigned to a distributed device bus, there may not

be any device attached to port. As long as no device is plugged into

the hardware port on the provider node, the status of the port remains

ADDED.

(b) EXPORTED

When a device is plugged into the hardware port or if the device is already

present, the provider node loads the stub driver for the device (as discussed

in section 8.1) instead of device driver. At this point, device is ready to

be accessed by the master node and agent on the provider node updates

the status to EXPORTED.
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(c) IMPORTED

A status update of EXPORTED triggers a notification to master node.

Master node responds by leveraging the usbip infrastructure to access the

remote device. If it succeeds, the status of port is updated to IMPORTED,

implying that master node is now accessing the device on remote port.

Otherwise, a status is updated to DISCONNECTED.

(d) DISCONNECTED

Any error while the master node accesses the remote device leads to status

of the port being updated to DISCONNECTED. Errors could be problem

with network access or abrupt removal of device or any error with usbip

that unloads usbip drivers from master and provider nodes.

(e) TO DELETE

Distributed Device Bus supports dynamic addition/deletion of hardware

ports. A status of TO DELETE indicates that user intends to delete

the port from the distributed device bus. When the status of the port

is modified to TO DELETE, the master node responds by deleting the

virtual device and notifies the applications that the device is unaccessible.

Similarly, the provider responds by unloading the stub driver for the device

and loads the actual device driver for the device. Once the stub driver for

the device is unloaded, agent on provider node updates the status of the

port to DELETED.

(f) DELETED

A status of DELETED signifies that the port is no longer assigned to

distributed device bus and hence master node can no longer access the

device on remote port and the device is only accessible locally on provider
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node.

Figure 9.1 illustrates the state diagram of status of port in a distributed device

bus as reflected in data store.
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10. EVALUATION

10.1 Results

A number of experiments have been setup to assess the level to which solution

criteria as discussed in section 2 has been satisfied. This implementation of Dis-

tributed Device Bus for usb devices is tested with a USB flash drive and USB web

cam. A description of our evaluation for each of the criteria is provided below.

We faced some problems with usbip while using usb flash drives. Usbip support

for flash drives has been inconsistent and only supported very few kinds of flash

drives. These problems are specific to usbip and existed even outside our implemen-

tation environment. However, we could confirm that our implementation behaved

reliably and updated the status of the port to DISCONNECTED when usbip was

not able to support the usb flash drives.

10.1.1 Device Agnostic Service

Device agnosticism is demonstrated by using different type of USB devices. We

used both a USB web cam and USB flash drive. USB web cam and USB flash drive

attached to different computers are dynamically added to distributed device bus and

applications running on master node successfully accessed these devices. We used

Cheese [23] application for web cam and Ubuntu window manager for flash drive.

Applications were not aware if they are accessing local devices or remote devices.

Also the implementation provides the guide lines to extend the support for other

devices.
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10.1.2 Transparent and Complete Functionality

The applications accessing the remote devices were not aware that they are ac-

cessing remote devices and were able to support all the features of the device. Also,

the device drivers loaded for the remote device on master node is the same as the

device driver loaded for a local device. We used both USB web cam and USB flash

storage device to demonstrate the complete functionality of remote devices.

10.1.3 Operating System Agnostic Service

We were unable to demonstrate the Operating System Agnosticism of the present

implementation of distributed device bus for usb devices. However, this is not a

limitation of the architecture of distributed device bus, but a limitation of usbip, the

usb device virtualization solution and Redis, the state manager. Although USBIP

provides limited support for windows, a computer running windows operating system

can only act as device client. Besides, there is no official support for Redis on

windows and even the unofficial version of Redis for windows doesn’t have any client

API required for the development of Agent. Hence a working demonstration of

Operating System agnosticism was not possible.

10.1.4 Plug and Play

Plug and play events for USB devices are communicated across the network.

Device ports dynamically allocated to distributed device bus are able to support plug

and play events of devices on remote computers. The plug and play functionality is

demonstrated with both USB flash and USB web cam devices.

10.1.5 Dynamic Reconfiguration

The implementation of Distributed Device Bus for usb devices supports dynamic

reconfiguration of ports. Device ports can be dynamically added or deleted from a
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distributed device bus without disturbing the other devices on the distributed device

bus. This functionality is demonstrated by both USB web cam devices and USB

flash storage devices.
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11. SUMMARY

We proposed Distributed Device Bus, an architecture for a device consolidation

framework that provides a simple and effective tool for managing devices distributed

across a network. In Distributed Device Bus, access to a device is no longer limited

to a single computer that has the device physically plugged in. Instead, the device

can be configured to be transparently accessible from any computer in the network.

This architecture is independent of device type and operating system, along with

supporting transparent and complete functionality of the device. Distributed Device

Bus naturally extends the plug-and-play functionality of devices over the network.

Our implementation of Distributed Device Bus for USB devices serves as a proof

of concept along with demonstrating how existing device virtualization solutions can

be leveraged to provide the required functionality. Our implementation supports

transparent and complete functionality of all kinds of USB devices and extends the

USB device plug-and-play capabilities over the network, allowing for dynamic recon-

figuration of Distributed Device Buses defined over the network.
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12. FUTURE WORK

Our implementation of Distributed Device Bus can be extended to support other

device types like SCSI, PCI etc. Device virtualization solutions can be extended to

support better communication mediums like Ethernet and Infiniband. This enables

device virtualization solutions to leverage the low latency environments of Ethernet,

Infiniband and provide better user experience while accessing remote devices. In the

present implementation, VHCI driver on a participating computer acts independent

of the Distributed Device Bus. The present implementation can be extended to im-

prove transparency by connecting the VHCI driver to the corresponding Distributed

Device Bus.
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APPENDIX A

APPLICATION PROGRAMMING INTERFACE

The chapter aims to explain the Application Programming Interface available

to users to manipulate DDBs. Section A.1 explains the tool dbus and its options.

Section A.2 demonstrates the tool.

A.1 Manual

Users of the DDB create/delete a Distributed Device Bus and add/delete ports

to Distributed Device Bus. A simple tool called dbus is provided for users. The

options available for users of dbus are

dbus: a simple tool to manipulate Distributed Device Bus.

1. -s –server Specifies the address of the Redis data store. Defaults to 127.0.0.1

2. -p –port Specifies the port of Redis data store. Defaults to 6379.

3. -b –bus Specifies the name of the bus

4. -m –master Specifies the master node

5. -c –command Specifies the command to execute. The options are

(a) add: adds a port to the specified bus on specified master node. Creates a

new bus on adding first port.

(b) delete: deletes a port from the specified bus. Deletes the bus on deletion

of the last port

6. -p –provider Specifies the provider node.

7. -d –devid Specifies the device identifier on the provider node.
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A.2 Usage

This section explains a simple scenario of using the tool. The network is as follows

Node 1 : 128.194.131.66

Node 2 : 128.194.131.52

Redis : 10.201.133.212

1. Create a DDB with master node as 128.194.131.52 and assign port 1-3 on

128.194.131.66 to it.

dbus -s 10.201.133.212 -p 6379 -b dbus1 -c add -m 128.194.131.52 -p 128.194.131.66

-d 1-3

The above command results in creation of the following entry in Redis:

dbus1:128.194.131.52:usbip:128.194.131.66:1-3 ADDED

2. Plug in a usb device (say web cam) into port 1-3 on node 128.194.131.66

This action results in two intermediate steps.

(a) When Agent on node 128.194.131.66 notices device arrival on port 1-3,

stub driver will be loaded for the device and updates the Redis status to

EXPORTED, resulting in the following entry in Redis.

dbus1:128.194.131.52:usbip:128.194.131.66:1-3 EXPORTED

(b) When Agent on node 128.194.131.52 notices the status changed to EX-

PORTED, a virtual device will be loaded and makes the device on port

1-3 on node 128.194.131.66 accessible on node 128.194.131.52 and up-

dates the status on Redis to IMPORTED, resulting in the following entry

in Redis.

dbus1:128.194.131.52:usbip:128.194.131.66:1-3 IMPORTED
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3. At this point the device is accessible to any applications on node 128.194.131.52

4. Delete the port assigned to DDB using the command, dbus -s 10.201.133.212

-p 6379 -b dbus1 -c delete -m 128.194.131.52 -p 128.194.131.66 -d 1-3

This command results in updating the status in Redis to TO DELETE

dbus1:128.194.131.52:usbip:128.194.131.66:1-3 TO DELETE

This action results in two intermediate steps.

(a) When agent on node 128.194.131.52 notices the status change to TO DELETE,

it deletes the virtual device and applications can no longer access the de-

vice.

(b) When agent on node 128.194.131.66 notices the status change to TO DELETE,

it unloads the stub driver for the device and updates the status in Redis

to DELETED resulting in the following entry in Redis.

dbus1:128.194.131.52:usbip:128.194.131.66:1-3 DELETED
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