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ABSTRACT

Biology has brought much enlightenment to the development of human technol-

ogy, for example, the collective behaviors inspired engineering applications (such as,

the unmanned vehicle formation, the satellite alignment etc.), and even the study

of network theory. This discipline has made a significant contribution to technology

development. As a prospective solution to the current issues, multi-agent control

has become a popular research topic in recent decades. The traditional control

methods based on the classical models are suffering from high sensitivity to model

accuracy, computational complexity, low fault tolerance, and weakness in real-time

performance. Therefore, the advantages of multi-agent control are obvious: 1) easy

maintenance and expansion of the system by repairing, replacing or adding agents;

2) high fault tolerance and robustness, ability to function properly even when some

agents fail; 3) low requirement of distributed controllers, which brings low cost and

large flexibility.

In this thesis, I investigate problems on modeling and control of multi-agent

systems. In particular, I propose a three-dimensional model to simulate collective

behavior under high-speed conditions. I design an improved adaptive-velocity strat-

egy and weighted strategy to enhance the performance of the multi-agent system.

Moreover, I analyze the performance from the aspects of energy and parameter space.

I show how the model works and its advantages compared to existing models.

Then, I study the design of distributed controllers for multi-agent systems. Out-

put regulation with input saturation and nonlinear flocking problems are studied

with the assumption of a heterogeneous switching topology. The output regulation

problem is solved via low gain state feedback and its validity verified by theoretical
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study. Then, the flocking problem with heterogeneous nonlinear dynamics is solved.

A connectivity-preserving algorithm and potential function are designed to ensure

the controllability of the multi-agent system through the dynamic process.

Overall, this thesis provides examples of how to analyze and manipulate multi-

agent systems. It offers promising solutions to solve physical multi-agent modeling

and control problems and provides ideas for bio-inspired engineering and artificial

intelligent control for multi-agent systems.
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1. INTRODUCTION

In nature, biological systems display diverse group behaviors via simple rules and

interactions between the individuals in the group such as bird flocking, fish school-

ing, bacterial colony formation, insect swarming, etc as shown in Figure 1.1 [1–4].

Research on multi-agent systems can be roughly divided into three categories [5]:

behavioral patterns summarized from observations of biological phenomena; mathe-

matical modeling and simulation; control methods to manipulate artificial (or man-

made) multi-agent systems.

Figure 1.1: Examples of multi-agent systems: fish schooling and bird flocking.

1.1 Thesis Objectives

In this thesis, problems in mathematical modeling and control of multi-agent

systems are considered as shown in Figure 1.2. Specifically, the problems in this

thesis can be divided into four main parts.
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Figure 1.2: Summary of the research topics in this thesis.

1.1.1 Modeling of Three-Dimensional Collective Behavior

There are many papers devoted to building collective behavioral models with

simple decision-making rules [6–9]. Reynolds developed a fundamental model named

Boid in 1987 with three simple rules as shown in Figure 1.3 [7]: collision avoidance,

velocity matching, flock centering. In 1995, Vicsek et al. simplified the Boid mod-

el [8], and established that the randomly initialized system achieves velocity synchro-

nization and position stabilization when the group density is high and measurement

noise is small. In 2002, Couzin et al. extended the Vicsek model to three-dimensional

space with more biological features such as three sensing zones and so on, named the

Couzin model [9] shown in Figure 1.4. The Couzin model exhibits unusual behaviors

such as torus and highly parallel as shown in Figure 1.5.

The Boid, Vicsek, and Couzin models can emerge collective behaviors through

simple interacting rules. Since then, many studies have been conducted on the Vic-

sek model and the Couzin model in the literature. Most models assume that flocking

agents keep a uniform and invariable speed for simplification. However, considering

that agents speeds are more likely to be varying with the environment, adaptive

strategies were investigated in some works [10, 11]. The idea of the adapting of the

velocity leads to high efficiency and to improve high-speed performance. However,

2



Figure 1.3: Boid model: a) collision avoidance: turn to avoid collision with neigh-
bors; b) velocity matching: turn to the average direction of neighbors; c) position
aggregation: turn to the average position of neighbors.

zor

zoo

zoa

blind volume

x

y

Figure 1.4: Three-dimensional collective behavior model, with considerations of blind
volume and three sensing zones: zone of repulsion, zone of orientation, and zone of
attraction. Details are included in Section 3.1.2.

in current research, the degree of adaptation is preset and invariable throughout the

dynamic process. Moreover, due to the neglect of information from agents them-

selves, the adaption fails under some certain circumstances. Furthermore, numerical

experiments have revealed a trade-off between the improvement of high-speed per-

formance and fast convergence with a preset adaptive degree. In view of the above,

it is necessary to design a new interacting rule to increase the running speed, and at
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Figure 1.5: Types of behaviors in the Couzin model: (A) initial random state; (B)
torus; (C) dynamically parallel; (D) highly parallel.

the same time, maintain good convergence, as well as avoid the failure of adaptation

and to improve the trade-off. Moreover, small revisions of the adaptive strategy are

preferred to preserve the simplicity of the model.

In addition, research on complex networks [12, 13] demonstrates that in most

communication networks, nodes have different degrees of connectivity with their

neighbors. A node with a larger degree have greater influence on the structure and

dynamics of the network. Existing research on the Vicsek model [12] has revealed

that the weighted strategy can enhance convergence efficiency. Instead of one sensing

zone in the Vicsek model, the Couzin model has three sensing zones: the zone of
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repulsion (zor), the zone of orientation (zoo), and the zone of attraction (zoa). To

ensure quick convergence, the orientational effect should be amplified, it is reasonable

to design a new strategy to assign weights.

In summary, the adaptive-velocity and the weighted strategies not only enhance

the system performance in high-speed conditions and allow more realistic consider-

ations, but also maintain the simplicity of the collective model. In this thesis, new

strategies are designed based on these principles. They inherit the advantages of

the existing ones and avoid their invalid conditions. A new model with the new

strategies is carried out and analyzed with regard to both high-speed performance

and convergent speed.

1.1.2 Nonlinear Flocking Problem

Boid is a classical flocking model as shown in Figure 1.3. Most previous works

on flocking control focus on linear systems especially systems with double-integrator

dynamics [27,28]. However, in reality, autonomous agents might be governed by more

complicated nonlinear dynamics. In fact, in synchronization of complex dynamical

networks [13], nonlinear dynamics is commonly used. Consensus and flocking of

multi-agent systems with some uniform nonlinear dynamics were investigated in [29].

Many theoretical studies on flocking of multi-agent systems tracking a (virtual) leader

focus on linear systems and/or networks with a fixed-coupling topology and uniform

intrinsic agent dynamics. Then, design of a feasible control method for a multi-

agent flocking system with heterogeneous nonlinear intrinsic dynamics can relax the

constraints of this problem.

1.2 Specific Contributions

In this thesis, I make original contributions in the areas of algorithms and theories

of multi-agent systems. More specifically, the contributions of this thesis are as

5



follows:

1) In the first part, I propose an improved adaptive-velocity self-organizing model

as a prospective candidate in order to enhance high-speed convergence and acceler-

ate convergence. Moreover, a new way to assign weights is proposed to reinforce

convergence under super high-speed circumstances.

2) To the best of my knowledge, input saturation has not been taken into account

in the output regulation problem of general dynamic agents. I solve this problem

via low gain feedback such that the tracking error can be eliminated with bounded

control inputs.

3) I investigate the multi-agent flocking problem with heterogeneous nonlinear

dynamics. I construct a potential function and a connectivity-preserving flocking

algorithm to ensure the agents stay connected. The assumption is mild that the

initial network is connected, and the coupling strength of the initial network of the

nonlinear velocity consensus term is greater than a certain threshold.

1.3 Thesis Organization

At the beginning of this thesis, the background of current research on multi-

agent systems and the importance of this topic will be presented. Then, we will

discuss two subtopics in multi-agent systems: modeling via behavioral rules and

distributed control law design as shown in Figure 1.2. A new model is built in

the first part to mimic collective behavior in nature. In the second part, control

approaches are proposed to solve weakly nonlinear, and general nonlinear multi-

agent control problems. Summary and future research will be presented in the last

chapter.
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2. LITERATURE RESEARCH ON MODELING AND CONTROL OF

MULTI-AGENT SYSTEMS

Recent years have witnessed an increasing research interest in the coordination

of multi-agent systems because of its extensive applications to biological, social and

engineering systems, such as animal groups, economic behaviors, sensor networks,

space crafts, unmanned aerial vehicles (UAVs), mobile robots, formation and attitude

control, among others [6, 21,30].

This chapter presents an overview of the background research on multi-agent

systems, about how the idea of multi-agent system developed, how the behavioral

and mathematical models of multi-agent systems were built. Specifically, research

on multi-agent systems started from the observation of collective behaviors in na-

ture. In this behavior, local sensing and reaction of each individual result in complex

nonlinear phenomena. That is why sometimes we call this behavior ’collective in-

telligence’. Mammal herds, bird flocks, and fish schools are examples of collective

intelligence. Even simple organisms such as bacteria can form a precisely symmet-

rical colony. This emergence also enlightens human beings. On one hand, people

are working on the improvement of a single device to be more precise, efficient, and

intelligent. On the other hand, collective intelligence leads to a larger probability to

have a ’leap’ based on the current technology. As a branch of multi-agent research,

study on complex networks reveal the exponential amplification of tiny changes at

the individual level, but sometimes they are able to maintain robustness [13]. In

other words, if the mechanism in collective intelligence are fully studied, we can ma-

nipulate the system at very little cost and high efficiency. The relationship between

these research branches is shown as Figure 2.1.
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Figure 2.1: The relationship between different branches of multi-agent research

The organization of this chapter is as follows. Firstly, modeling of multi-agent

systems based on behavioral rules will be introduced to simulate collective behavior in

nature. Then, mathematical models based on differential equations will be presented.

Networks of information flow are described in the last part of this chapter.

2.1 Behavioral Models of Collective Behavior

The collective behavior of creatures are among the most beautiful sights. The

collective behaviors allow the group to achieve the objectives such as defense against

predators, foraging for food which the individual can hardly achieve. In migrating

bird flocks, the formation reduces the energy of individuals in flying. Mammals

usually aggregate to defend predators or pursue preys. Such behavior has also been

observed in human crowd panic and mob situations.

To produce collective behaviors in computer animation, a multi-agent system

should be modeled. In the current literature, the most popular methods to build mod-

els of multi-agent systems are the Lagrange method [31–33], the Euler method [34,35],

8



and a method based on discrete behavioral rules [7–12]. The idea of Lagrange method

describes the continuous motion of agents by ordinary differential equations. But by

the Euler method, the multi-agent system is built as a density field described by par-

tial differential equations. Modeling by discrete behavioral rules is computationally

efficient, and easy to implement on a computer and avoid the complexity to translate

linguistic rules to mathematical equations. A most important feature of multi-agent

systems is that complex nonlinear behaviors can emerge from simple local interacting

rules. In this section, the most basic and universal model in collective behaviors is

introduced by presenting the local interacting rules [7].

2.1.1 Reynolds’ Rules

Individuals in large groups are always aware of the motions of their neighbors

instead of that of the whole group. Individual motion in a group is the balance of two

opposite behaviors: one is a desire to stay close to the neighbors to keep aggregation;

another is to a desire to avoid collisions with neighbors. Reyolds summarized the

tendencies by three rules shown in Figure. 2.2.

Reynolds’ Rules [7]:

1. Collision Avoidance: turn to avoid collision with neighbors;

2. Velocity Matching: turn to the average direction of neighbors;

3. Position Aggregation: turn to the average position of neighbors.

Figure 2.2: a) Collision avoidance; b) Velocity matching; c) Flocking centering.
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2.1.2 Types of Communication Graphs

The communication graphs concerned in multi-agent research can be divided by

three perspectives: Is the information flow symmetric at the two ends of an edge?

Do the edges have weights or only take 0-1 values? Is the topology varying with

time? The branches are shown in Figure. 2.3.

Figure 2.3: The types of communication graphs

2.2 Multi-Agent System Dynamics

Reynolds’ rules summarize collective behavior very well. It can be used to design

or control man-made systems. These rules rely on the information of neighbors

for each individual. Thus, information flow in the communication network between

agents in a group is one of the essential factors for the collective behavior. The

communication network is modeled as a graph. As introduced in 2.1.2, there are

different types of graphs. Here in this thesis, undirected switching topology is widely

assumed. Therefore, the mathematical description of undirected switching topology
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will be presented in the following as an example.

2.2.1 Mathematical Description of Communication Network

Basic concepts and results on graph theory, which are commonly used in the

analysis and control of multi-agent systems, will be recalled in this section. More

details could be found in [36].

G = {V,E,A} is an undirected graph, where V = {v1, v2, ..., vn} is the vertex

set and E = {eij} = {(vi, vj), i, j ∈ V } ⊂ V × V is the edge set. A = {aij} is a

weighted adjacency matrix defined by aii = 0, aij = aji > 0 when {i 6= j}&{eij ∈ E},

otherwise aij = 0. If aij > 0, agent i and agent j are mutual neighbors. Therefore,

the set of neighbors of agent i correspond to Γi = {j ∈ V : aij > 0}. D =

diag(deg(1), deg(2), . . . , deg(n)) is the diagonal degree matrix where deg(i) =
n∑
j=1

aij.

Define the Laplacian matrix L = {lij} as L = D − A.

lij =


−aij, j ∈ Γi

|deg(i)|, j = i

0, otherwise

(2.1)

An undirected graph G is said to be connected if and only if rank(L) = n− 1.

Lemma 1 [14]: For an undirected graph G with L being its Laplacian matrix:

1. L is symmetric and positive semidefinite with every row sum always being 0;

2. If G is connected, λ1 = 0 is the only zero eigenvalue of L and Null(L) =

span[1, 1, · · · , 1]T .

For a directed graph, the properties of the Laplacian matrix in Lemma 1 still

hold except symmetry.
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2.2.2 Dynamical Systems with Reynolds’ Rules

To implement Reynolds’ rules in dynamical systems control [37], define a circle

with radius ρc which is the avoidance area of each agent. Define a collision neigh-

borhood for agent i as N c
i = {j : rij ≤ ρc} where the distance between nodes i and

j is

rij = ‖xj − xi‖2 (2.2)

Define a matching radius ρ > ρc and the matching neighborhood by Ni = {j : rij ≤

ρ}.

Then, the dynamics in two-dimensional space is:

ẋi = ui (2.3)

where xi = [pi, qi]
T ∈ R2, ui = [upi, uqi]

T ∈ R2.

1. Collision avoidance:

ui = −
∑
j∈Nc

i

cij(xj − xi) (2.4)

This control input forces agent i to turn away from neighbors within its collision

radius ρc. cij is called the collision-avoidance gain.

2. Flock centering:

ui =
∑

j∈Ni∩j /∈Nc
i

aij(xj − xi) (2.5)

This control input pushes agent i to turn toward neighbors inside the circle with

radius ρ but outside of the circle with ρc. aij is the flock-centering gain.

By adjusting the gains cij and aij, the influence (or preference) of collision avoid-

ance and flock centering could be adjusted accordingly.
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Alternatively, the dynamical system can be constructed as a second-order system

by using the Newton’s law:

ẋi = vi

v̇i = ui (2.6)

where xi ∈ Rn is the vector position, vi ∈ Rn is the velocity, and ui ∈ Rn is

the acceleration input. This model is more realistic than Eq.2.3 physically. The

distributed feedback law for this second-order system is as follows.

ui =
∑
j∈Ni

caij[(xj − xi) + γ(vj − vi)] (2.7)

where c > 0 is a stiffness gain, and cγ > 0 is a damping gain. Implementing the

law in Eq. 2.7 can achieve both position and velocity matching. It realizes flock

centering and velocity matching in Reynolds’ rules. To avoid collision, the law in

Eq.2.8 is introduced.

ui =
∑
j∈Ni

caij[(xj − xi −∆ji) + γ(vj − vi)] (2.8)

where ∆ji ∈ Rn denotes the desired distance between agents i and j.

2.3 Multi-Agent Control Problems

From the perspective of systems control, multi-agent systems have properties such

as self-adaptation, robustness and self-organization [16,19,27,38]. Roughly speaking,

the control problems can be divided into several categories.
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2.3.1 Consensus

The dynamic system in the consensus problem could be first-order, second-order,

or higher-order. As shown in Figure 2.4, the states in the dynamic systems could be

the positions, velocities, or temperatures of the agents. The objective is to drive the

system states to converge to a common value which may or may not be prescribed

in advance.

Figure 2.4: Consensus in communication networks. In this case, the information state
in the consensus problem is the gestures of the robots. Information flows through
wireless network.

2.3.2 Flocking

The flocking problem mainly deals with second-order systems. The states in the

system are the positions and velocities of the agents. The control input has physical

meaning and is the acceleration of the agents. The objective is to achieve velocity

consensus, and in the meantime, the distances between agents are to be kept within

desired values. The Boid model proposed by Raynold [7] is a classical example of
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flocking rules as shown in Figure 2.2.

2.3.3 Swarm

The swarm problem is usually applied to first-order systems. As shown in Figure

2.5, the swarm phenomenon is the most common in nature. The objective is to

maintain the positions of agents in the system in a bounded region centered at the

weighted position sum.

Figure 2.5: Output regulation

2.3.4 Formation

The formation problem usually deals with second-order systems. The objective

is to achieve velocity consensus, and at the same time, to keep the distance between

agents within desired values so that the group forms a specific shape. This prob-

lem has attracted a lot of attention because of its potential application to robots,

unmanned vehicles, and computer animation [21] as shown in Figure 2.6.
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Figure 2.6: Output regulation

2.3.5 Others

Other problems such as mobile sensor networks, coupled oscillators, UAV surveil-

lance [28,38] are also popular research topics.

2.4 Conclusion

In this chapter, the background of multi-agent system research has been pre-

sented. As a common phenomenon existing in nature, collective behavior attracts

much attention. Researchers study the mechanisms from observations and construct

man-made multi-agent systems to achieve desired collective behaviors. As a typical

example, Reynolds’ rules have been discussed from the linguistic rules to mathemati-
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cal description and control design. In the end, some classical problems on multi-agent

systems were introduced.

With this background, I will introduce more behavioral models in the next chapter

with more realistic consideration of reality in the next chapter and propose a novel

model to improve high-speed performance. The control problems will be identified

and solved in the following chapters.
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3. A WEIGHTED ADAPTIVE-VELOCITY COLLECTIVE BEHAVIOR

MODEL AND ITS HIGH-SPEED PERFORMANCE

This chapter proposes an improved adaptive-velocity collective behavior model as

a prospective candidate in order to enhance high-speed convergence and accelerate

convergence. Moreover, a way to assign weights are introduced in order to amplify

orientational effect and reinforce convergence under super high-speed requirements.

System performance is assessed via group polarization, convergence ratio and con-

vergent time. By numerical experiments, super high-speed performance, convergent

time, and kinetic energy will be examined in the improved adaptive-velocity model.

Then, the parameter space of the weighted adaptive flocking model is investigated.

The chapter is organized as follows. Section 3.1 will present the description of two

classical collective models, the Vicsek model and the Couzin model, with introduction

of their properties and behaviors, respectively. With the problems raised in Section

3.1, the improved adaptive-velocity and the weighted strategies will be introduced

in the next two sections. Simulation results and analysis are given in Section 3.4.

Section 3.5 is the conclusion, and presents remaining issues and future work.

3.1 Two Classical Collective Behavior Models

In this section, two classical collective behavior models will be presented. The

analysis of their properties reveal their advantages to simulate collective behavior.

However, they also exhibit a sharp decrease with the increase of individual’s speed.

3.1.1 The Vicsek Model in Two-Dimensional Space

Vicsek etc. [8] used the interaction radius r as the unit to measure distances

(r = 1), while the time unit ∆t = 1 was the time interval between two updates of

18



the directions and positions. In most of our simulations we used the simplest initial

conditions: (i) at time t = 0, N particles were randomly distributed in the cell and

(ii) had the same absolute velocity v and (iii) randomly distributed directions {θi}.

the velocities {vi} of the particles were determined simultaneously at each time step,

and the position of the ith particle updated according to:

xi(t+ 1) = xi(t) + vi(t)∆t (3.1)

Here the velocity of a particle vi(t + 1) was constructed to have an absolute value

v and a direction given by the angle θ(t + 1). This angle was obtained from the

expression:

θ(t+ 1) =< θ(t) >r +∆θ (3.2)

where < θ(t) >r denotes the average direction of the velocities of particles (including

particle i) being within a circle of radius r surrounding the given particle. ∆θ is a

random noise chosen with a uniform probability from the interval [η/2, η/2].

The actual simulations were carried out in a square shaped cell of linear size L

with periodic boundary conditions. Namely, when an agent flees away from Figure

3.1 shows the convergent process of the Vicsek model. In this figure, the velocities

of the particles are displayed for varying values of the density and the noise. The

actual velocity of a particle is indicated by a small arrow, while their trajectory for

the last 20 time steps is shown by a short continuous curve. The number of particles

is N = 300 in each case. (a) t = 0, L = 7, η = 2.0. (b) For small densities and

noise the particles tend to form groups moving coherently in random directions, here

L = 25, η = 0.1. (c) After some time at higher densities and noise (L = 7, η = 2.0)

the particles move randomly with some correlation. (d) For higher density and small
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Figure 3.1: The convergent process of the Vicsek model.

noise (L = 5, η = 0.1) the motion becomes ordered. All of the results shown in

Figure 3.1, Figure 3.2 were obtained from simulations in which v was set to be equal

to 0.03.

The contribution of their work is that they concluded that the convergence is

enhanced when the agent’s speeds are small and the noise is small as shown in

Figure 3.2. Namely, any increase of agent’s speeds or noise results in divergence.

From Figure 3.2, agents’ speed was set to be (0, 1] which is very small.

3.1.2 The Couzin Model in Three-Dimensional Space

Couzin etc. [9] use a more biologically realistic (yet still simple) model of collec-

tive behavior that is based upon an abstraction of aggregation tendencies evident

in biological systems. Following the approach of Reynolds [7], he simulated the

behavior of individuals as resulting from local repulsion, alignment and attractive
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Figure 3.2: Maximum agents’ speed va v.s. noise η in the Vicsek model

tendencies based upon the position and orientation of individuals relative to one an-

other. In the Couzin model, the individual behavior results in group formation and

cohesion, rather than fixing individual density within a periodic domain (as in the

Vicsek model, agents will reenter the square space after they leave it from the other

side). Their simulation exhibits characteristic collective behaviors, similar to those

of natural groups, when certain parameters are changed.

Consider N agents, labeled from 1 through N , all moving in a continuous 3-D

Euclidean space. In the Couzin model, the agents are moving at a uniform constant

speed but in various directions, with initial positions and directions randomly dis-

tributed within a sphere. Shown as Figure 3.3, for each agent, the zone centered at

itself can be divided into three parts, namely zor, zoo, zoa, respectively. The radius

is divided into ∆rr, ∆ro, ∆ra, accordingly. The blind volumes and maximum turning

rate are considered for every agent.
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zor

zoo

zoa

blind volume

x

y

Figure 3.3: Representation of an individual in the model centered at the origin. zor :
zone of repulsion, zoo: zone of orientation, zoa: zone of attraction. The possible
blind volume behind an individual is also shown.

The Couzin model is described as follows:

~ci(t+ τ) = ~ci(t) + τ · v0 · ~di(t) (3.3)

where ~ci(t) denotes the position vector, v0 is the value of the speed, τ denotes the

time step increment, ~di(t) is the unit direction vector at step t and updates according

to real-time neighborhood information, ~ci(t+τ) denotes the position in the next time

step.

If there exist neighbors in zor of agent i,

~di(t+ τ) = −
nri∑

j=1,j 6=i

~rij(t)

|~rij(t)|
(3.4)

If there’s no neighbor in zor and only exist neighbors in zoo of agent i,

~di(t+ τ) = ~do(t+ τ) =

noi∑
j=1,j 6=i

~vj(t)

|~vj(t)|
(3.5)
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If there’s no neighbor in zor and only exist neighbors in zoa of agent i,

~di(t+ τ) = ~da(t+ τ) =

nai∑
j=1,j 6=i

~rij(t)

|~rij(t)|
(3.6)

If there’s no neighbor in zor and exist neighbors in both zoo and zoa of agent i,

~di(t+ τ) =
1

2
· (~do(t+ τ) + ~da(t+ τ)) (3.7)

If there’s no neighbor in zor, zoo and zoa,

~di(t+ τ) = ~vi(t) (3.8)

where ~rij = (~cj − ~ci)/|(~cj − ~cj)| is the unit vector in the direction of neighbor j,

nri, noi and nai denote the number of neighbors in zor, zoo and zoa of agent i,

respectively.

The Couzin model has good convergence performance when each individual has

a speed of [1, 3] units. Some special behaviors such as torus emerges in this model

as shown in Figure 3.4.

The Couzin model can exhibit different collective behaviors. Small changes on

the individual level result in great changes on the group level. The model predicts

that animal groups can change rapidly between these states. For instance, a group

changes between the torus and dynamic parallel. Biologically, the transitions allow

animal groups to vary from one type of group structure to another due to internal

(e.g. hunger) or external (e.g. detection of a predator) stimuli. The tendency

of individuals to align with others in the parallel group types is important not only

because it minimizes distances between individuals and facilitating group movement,

but also because it allows the information transportation in the group.
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Figure 3.4: Types of behaviors in the Couzin model: (A) initial random state; (B)
torus; (C) dynamically parallel; (D) highly parallel.

With the properties stated above, the Couzin model behaves satisfactorily when

agents’ speeds take values from [1, 5]. Dong etc. [11] analyzed the high-speed con-

vergence performance and revealed that the Couzin model has the same trend as

the Vicsek model: a sharp decrease of convergence performance will happen with

increase of agents’ speeds. The details of Dong’s results will be presented in the

following section.

3.2 The Improved Adaptive-Velocity Strategy

The adaptive-velocity strategy is described as follows. Agents will move at high

speeds (the maximum is v0) when their neighbors within zoo and themselves are
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highly aligned. The improved adaptive-velocity model is given by:

~ci(t+ τ) = ~ci(t)+τ · vi(t) · ~di(t)

vi(t) = v0 · [ui(t)]φ

ui(t) =
1

noi

∣∣∣∣∣
noi∑

j=1,j 6=i

~dj(t)

∣∣∣∣∣ (3.9)

where φ denotes the adaptive degree, noi denotes the number of neighbors in the zoo

of agent i, | · | denotes the norm of a vector. vi(t) denotes the speed of agent i at

time t, 0 ≤ |vi(t)| ≤ v0 since 0 ≤ ui(t) ≤ 1.

To enhance the high-speed system performance, the speed adaption is designed

to be influenced by both the neighborhood information and agents own directions.

An adaptive φ is defined as follows:

φi(t) = tan
δi(t)

2

δi(t) =< ~di(t),

noi∑
j=1,j 6=i

~dj(t) > (3.10)

where < · > is the angle between two vectors, δi(t) ∈ [0, π] denotes the angle between

the direction of agent i and the average direction of its neighbors in zoo. Thus, for

any agent i, φi(t) decreases with δi(t), namely φi(t) → 0 (φi(t) → ∞) as δi(t) → 0

(δi(t)→ π).

In the constant-φ model [11], the agents’ speeds are adaptive with ui(t), while the

adaptive degree φ is a preset constant in Eq.(3.9). However, on one hand, due to the

neglect of the information from the agent itself, the speed adaption will fail under

some circumstances. For instance, if an agent’s neighbors are highly aligned but the

agent itself is moving in a direction opposite to that of its neighbors, ui(t) is large
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Figure 3.5: Convergent process with the improved adaptive-velocity strategy. Note
that highly parallel state is deemed as convergence.

and the speed vi(t) is large. In this condition, this agent will flee away due to the

lack of adaptive mechanism in this condition. Especially in high-speed conditions,

a quick divergence will happen. On the other hand, when the system has achieved

convergence, ui(t) is approximately equal to 1, φ has little influence on the value of

vi(t). Therefore, a large value of φ is not necessary to force convergence.

Figure 3.5 shows the convergent process of the improved adaptive-velocity model

in Eq.(3.10). In the initial random state, the speed of agent i significantly decreased

with the adaptive parameters ui(t) and φi(t) and then gradually increased with

alignment. This mechanism prevents quick divergence at initial random state. When

the system achieves convergence, δi ≈ 0, φi ≈ 0, |~vi| ≈ v0, all the agents move in

the maximal speed v0 and in a uniform direction, degenerates to the Couzin model.

When the speed adaption fails in the constant-φ model [11], namely, when all the

neighbors of an agent are highly aligned but the agent is moving in the opposite

direction of its neighbors, φi(t) in the new adaptive model is large with δi(t) ≈ π,

the corresponding speed vi(t) = v0 · [ui(t)]φi(t) is very small which means the speed

adaption is effective in this case.
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3.3 The Weighted Strategy

Agents with more neighbors have greater influence on the structure and dynamic

process of the system. In complex networks, the number of neighbors are defined as

‘degree’ [12,13,36]. To amplify the orientational effect which would speed up velocity

alignment and enhance convergence performance, we propose a new way to assign

weights by using the number of neighbors in zoo. The weighted direction iterative

function is designed:

~di(t) =

noi(t)∑
j 6=i

γ
(λ)
j (t)~dj(t)∥∥∥∥∥noi(t)∑

j 6=i
γ

(λ)
j (t)~dj(t)

∥∥∥∥∥
2

γ
(λ)
j (t) =

[noj(t)]
λ

noj∑
k 6=j

[nok(t)]λ
(3.11)

where agent j and k are the neighbors in the zoo of agent i and j respectively, γ
(λ)
j (t)

denotes the weight of agent j at time step t, λ denotes the weight-influence degree,

λ = 0 means the network is homogeneous, λ = 1 means the weighted strategy has

been applied to the model.

3.4 Simulation Results

In numerical experiments, agents are initialized in a continuous three-dimensional

Euclidean space: positions are initially random within a sphere with radius 40 units;

speeds are randomly generated in the range of [0, v0]; directions are also randomly

initialized. The consequences of varying values of parameters (TABLE. 3.1) have

been explored.
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Table 3.1: Summary of model parameters. The ‘units’ depends on the scale of
particular agents, for instance, rr may be small for an insect but much larger for a
wild goose.
Parameter Unit Symbol Value
Number of individuals None N 100
Repulsion Radius Units rr 1
Orientation Radius Units δro 0-15
Attraction Radius Units δra 0-15
Blind volume Degrees β 90
Maximum turning rate Degrees/second θ 40
Time step increment Seconds τ 0.1-0.5
Maximum speed Units/second v0 8-50

Table 3.2: Illustration of important performance indices. M denotes the number of
experiments, M ′ denotes the number of convergent experiments, N is the number of
agents.
Parameter Symbol Expression Definition

Group polar-
ization

p(t) p(t) = 1
N

∣∣∣∣ N∑
i=1

~di(t)

∣∣∣∣;
0 ≤ p(t) ≤ 1

Average direction of all the agents
at time t, approaches 1 as con-
verging; on the contrary, p(t) ap-
proaches 0. p measures the con-
vergence the group has achieved.

Convergence
ratio

CR CR = M ′

M
The ratio that a group of ran-
domly initialized agents will final-
ly reach global convergence;

3.4.1 Performance Indices

Convergence ratio (CR) and group polarization (p), are extensively investigated

throughout the paper to evaluate convergence performance. As shown in Table. II,

the larger value of CR or p represents the better convergence performance.
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3.4.2 Performance Analysis

Figure 3.6 demonstrates how adaptive degree φ evolves with time t in the im-

proved adaptive-velocity model in Eq.(3.10). φ decreases when the system undergoes

from random to alignment corresponding to the convergent process shown in Figure.

3.5. Figure. 3.7 demonstrates that the system with adaptive and weighted strategies

converges faster when applied to the Couzin model. In the constant-φ model [11],

as shown in Figure. 3.7, 3.8, when φ is chosen small, the high-speed performance

is not improved observably; while when φ increases, the convergence is prominently

decelerated. However, the curve corresponding to the improved adaptive-velocity

model (φ = tan(δ/2)) is above the curves of constant-φ models in Figure. 4. Fur-

thermore, as shown in Figure. 5(b), at high speeds, for example, at v0 = 18, although

the Couzin model (φ = 0) can hardly achieve global convergence as CR ≈ 0, the

convergence ratio CR is still at a large value for the improved adaptive-velocity

model (φ = tan(δ/2)), even without any leader or other global information. These

results reveal the ability of the improved adaptive-velocity model to maintain fast

convergence and improve the high-speed performance simultaneously.

As shown in Figure 3.9, when the weighted strategy is applied (the model is called

the weighted adaptive model), the system which has not achieved convergence is in

a relatively small region with strong connectivity of the communication network. As

shown in Figure. 3.10, p and CR of the weighted adaptive model remain large at

v0 = 22, where p and CR in other models are very small. To investigate the system

performance in super high-speed conditions (‘super high speed’ is defined as v ≥ 22),

the upper bound of v0 is extended to 1500. As shown in Figure 3.11, the weighted

adaptive model keeps p ≥ 0.8 even at v0 ≈ 200. Furthermore, the improvement

of the high-speed performance is not at the cost of convergent time. The curve
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Figure 3.6: The process that the adaptive
degree φ(t) evolves with t in one experi-
ment, v0 = 20.

Figure 3.7: The evolving process of the
group polarization p from initial random
state to convergence in different models,
v0 = 20. the system state is said conver-
gence when p ≥ 0.9.

(a) Group polarization p versus the set speed (b) Convergence ratio CR versus the set speed

Figure 3.8: Group polarization p and convergence ratio CR in the Couzin model
(φ = 0). the constant-φ model when φ is assigned 0.5, 1, 2, 4 and the improved
adaptive-velocity Couzin model φ = tan(δ/2). ∆ro = 14, ∆ra = 14. Experiments
are averaged over 50 trials.
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(a) The Couzin model (b) With the improved adaptive-velocity and the
weighted strategies

Figure 3.9: Divergent behaviors at the 10th step, v0 = 160.

(φ = tan(δ/2) with weight) in Figure. 4 demonstrates that the weighted adaptive

model also has fast convergence.

3.4.3 Further Exploration of the Weighted Adaptive Model

As a function of agents’ speeds, define Ek as the system kinetic energy in flocking

systems:

Ek(t) =
N∑
i=1

1

2
mvi(t)

2 (3.12)

Assuming the mass of agents is uniform, m = 1, Ek(t) of the original Couzin model

remains a constant because the agents’ speed is a constant number as in Figure

3.12. With a larger adaptive degree φ, Ek is smaller in initial random state. The

weighted adaptive model exhibits a very low energy cost at the initial state. During

the converging process, the kinetic energy/speed increases gradually compared to the

steep rise in the constant-φ model [11] when φ = 4. The gradual increase is friendly

to devices in artificial flocking systems.

System convergence performance varies with ∆ro and ∆ra in the Couzin model [9].
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(a) Group polarization p versus the set speed (b) Convergence ratio CR versus the set speed

Figure 3.10: p and CR in the Couzin model, the improved adaptive-velocity mod-
el, the weighted model and the combination model (the weighted adaptive Couzin
model). Experiments are averaged over 50 trails.

(a) Group polarization p versus the set speed (b) Convergence ratio CR versus the set speed

Figure 3.11: Further exploration of p and CR in very high speed conditions in the
weighted adaptive Couzin model, v0 ranges from 0 to 1500. Experiments are averaged
over 50 trials.
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Figure 3.12: The kinetic energy Ek as a function
of time t for different adaptive degrees φ, v0 = 10,
for every agent, m = 1. Experiments are averaged
over 50 trails.

p as a crucial performance index increases when both ∆ro and ∆ra increase shown

in Figure 3.13. In the weighted adaptive model, the tendency is similar but more

gradual than in the original Couzin model.

The system performance is also influenced by the time step increment τ in the

simulation. Figure 3.14 shows that the convergence performance gets worse (p and

CR decrease) as τ increases, i.e., the system will hardly converge when the value of

τ is large.

3.5 Conclusion

This chapter presents some classical collective behavior models and their prop-

erties. To avoid their defects, and in the meantime, inherit their advantages, we

proposed an improved adaptive-velocity strategy and applied it to the Couzin model.

Then, we investigated its high-speed system performance. In addition, the commu-

nication network is rendered heterogeneous by assigning weights to further improve
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Figure 3.13: Group polarization p changes with
∆ro and ∆ra, other parameters are the same as
Figure. 3(E) in [9]. Experiments are averaged over
50 trials.

(a) Group polarization p versus the set speed (b) Convergence ratio CR versus the set speed

Figure 3.14: p and CR correspond to different iteration time interval τ . Experiments
are averaged over 50 trials.
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its performance. Simulation results illustrate that the improved adaptive-velocity

model has enhanced high-speed system performance and achieved quick convergence

simultaneously. After adopting the weighted strategy, the weighted adaptive model

exhibits the ability to quickly converge at super-high speeds with low energy con-

sumption. Further exploration has been made to investigate the parameter space

of the weighted adaptive model. The weighted adaptive model has jitters after the

system has converged as shown in Figure 3.7 and Figure 3.10. Some important issues

about the models in this paper remain to be considered. For example, the influence

of the improved adaptive-velocity strategy and the weighted strategy to the torus

convergence [9].

The improved adaptive-velocity and the weighted strategies reflect animal intel-

ligence, which is deemed ultimately important in modeling flocking behaviors. This

chapter proposes two promising strategies for flocking models with simple distributed

decision-making rules and provides ideas for bio-inspired engineering and artificial

intelligent control for multi-agent systems.
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4. SEMI-GLOBAL OUTPUT REGULATION FOR HETEROGENEOUS

NETWORKS WITH INPUT SATURATION VIA LOW GAIN FEEDBACK

In this section, we discuss the output regulation of linear multi-agent systems with

consideration of input saturation. The overall system consists of multiple agents.

The virtual leader is the exosystem, while the others are from the multi-agent plant.

The agents communicate with each other following the topology of the network. By

devising a distributed observer, we can solve the problem with state feedback. This

problem can also be viewed as a generalization of some results of the leader-following

consensus problem of multi-agent systems.

4.1 Problem Statement

4.1.1 Model

Figure 4.1: Output regulation problem flow chart

Consider a group of N agents with general linear dynamics with input saturation,

labeled as 1, 2, . . . , N . As shown in Figure 4.1, an external system which is called
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the exosystem is connected to this multi-agent plant. The motion of each agent is

described in the following:

ẋi = Aixi +Biσ(ui) +Diw,

ẇ = sw,

ei = Cixi +Miσ(ui) +Qiw
i = 1, 2, . . . , N,

(4.1)

where xi ∈ Rn is the state of agent i, w ∈ Rq is the state of the exosystem, ei ∈ Rp is

the tracking error between the output (Cixi +Miui) and the reference signal −Qiw,

ui ∈ Rm is the control input acting on agent i. Ai ∈ Rn×n, Bi ∈ Rn×m, Di ∈ Rn×q,

Ci ∈ Rp×n, Mi ∈ Rp×m, Qi ∈ Rp×q. Diw denote the disturbance of the ith subsystem

from the exosystem, and δ : Rm → Rm is a saturation function [26] defined as

δ(ui) = [sat(ui1) sat(ui2) . . . sat(uim)]T,

sat(uij) = sgn(uij) min{|uij|,∆}
(4.2)

for some constant ∆ > 0.

Not all the agents in the multi-agent network have access to the information of the

exosystem directly. The exosystem can be treated as a virtual leader. We construct

a distributed observer to estimate the exosystem state w

˙̂wi = sŵi + µ[
∑
j∈Ni

aij(ŵj − ŵi) + hi(w − ŵi)],

ẋi = Aixi +Biδ(ui) +Diŵi,

(4.3)

where ŵi ∈ Rq is the state of the observer of agent i and µ is some positive number.

Define the adjacency matrix Λθ(t) = {aijθ(t)} of graph G as aijθ(t) = 1 if (j, i) ∈ Eθ(t),

and aijθ(t) = 0 otherwise. The connectivity between the virtual leader and agents are

represented by a matrix Hθ(t) = diag{h1(t), h2(t), . . . , hN(t)}, where θ : [0, inf)→ Θ
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is a switching signal whose value at time t is the index of the graph at time t and

Θ is finite. If agent i can receive the information of the exosystem, it is treated as a

neighbor of the virtual leader and hi(t) = 1; otherwise, hi(t) = 0.

The following notation is used throughout this paper. In is the identity matrix of

order n and ⊗ stands for the Kronecker product. The superscript T means transpose

for real matrices. The notation Q > 0 denotes a positive definite matrix Q, and the

notation Q ≥ 0 denotes a nonnegative definite matrix Q.

4.1.2 Related Graph Theories in Switching Network

The switching network consisting of N agents is described by an undirected graph

G = {V,Eθ(t)} [41]. In this graph, the set of vertices V = {1, 2, . . . , N} represents

the agents in the group and the edge denoted by the pair (i, j) represents a dynamic

communication link between i and j. A graph is said to contain a spanning tree with

a root if every vertex of the graph can be reached from the root vertex. The Laplacian

matrix of graph G with adjacency matrix Λθ(t) is given by Lθ(t) = Φ(Λθ(t)) − Λθ(t),

where the degree matrix Φ(Λθ(t)) is a diagonal matrix with ith diagonal elements∑N
j=1,j 6=i aijθ(t).

Lemma 1 [20] Let L be the symmetric Laplacian of an undirected graph G consist-

ing of N agents. Let Ḡ be the graph consisting of the N agents and the virtual leader

and containing a spanning tree with the leader as the root vertex. Then L + H > 0,

where H = diag{h1, h2, . . . , hN}.

Lemma 2 [41] Let L1 and L2 be the symmetric Laplacians of graph G1 and G2

consisting of N agents, respectively. Let Ḡ1 be a graph consisting of the N agents

and a leader and containing a spanning tree. Let Ḡ2 be a graph generated by adding

some edge(s) among the N agents into Ḡ1. Then, λ1(L2 +H) ≥ λ1(L1 +H) > 0, λ1

denotes the minimal eigenvalue.
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Remark 1 Let Ḡs be the spanning tree consisting of N agents and a leader, Ls the

Laplacian of the communication graph consisting of the N agents. {Ḡi} denotes a

set of graphs generated by adding some edge(s) among the N agents to Ḡs. Then

λ1(Ls +H) ≤ λ1(Li +H) > 0

Lemma 3 Let Ḡ be a spanning tree consisting of N agents and a leader and Ls

is the Laplacian of the communication graph consisting of the N agents, Ḡm be the

minimal spanning tree with leader being its root and Lm is its Laplacian. Suppose

S is a given matrix. There exists a µ∗ > 0, such that µ∗λi(Lm + Hm) > λj(S), for

all i, j = 1, 2, . . . , N , Lm and Hm are the corresponding matrices for the minimal

spanning tree. Then, for all µ ≥ µ∗, λi(S)− µλj(L+H) < 0.

proof. By Lemma 2, 0 < λ1(Lm + Hm) ≤ λ1(L + H), where λ1 represents

the minimal eigenvalue. If µ∗λ1(Lm + Hm) > λj(S), then µ∗λ1(L + H) > λj(S).

Furthermore, for all µ ≥ µ∗, µλi(L+H) > λj(S) for all i = 1, 2, . . . , N . �

Lemma 4 Let L be the symmetric Laplacian of an undirected graph G consisting of

N agents. Let Ḡ be the graph consisting of the N agents and the virtual leader and

containing a spanning tree with the leader as the root vertex. Then (L+H)⊗ 1N =

H ⊗ 1N , where H = diag{h1, h2, . . . , hN} and 1N is an N × 1 column vector whose

elements are all 1.

proof. For any L as the Laplacian matrix of an undirected graph, the ith element

in L⊗ 1N is
∑N

j=1 aij = 0. �

4.1.3 Objective

The problem of output regulation with input saturation for the multi-agent sys-

tem described above is given in Definition 1.

Definition 1 (Semi-global Linear Cooperative Output Regulation Problem): For any

a priori given bounded set X ⊂ Rn and W ⊂ Rq, find a control law ui for each agent
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i in system Eq. (4.1), which uses only local information from neighbor agents, such

that

(1)the overall closed-loop system is exponentially stable;

(2)For any initial condition xi(0) ∈ X for all i = 1, 2, . . . , N and w ∈ W , the

tracking error lim
t→∞

ei(t) = 0, i = 1, 2, . . . , N .

4.2 Solvability Assumptions

Assumption 1 (ANCBC) The pair (Ai, Bi) are stabilizable, and all the eigenvalues

of Ai are in the closed left half s-plane, i = 1, 2, . . . , N .

Assumption 2 There exist matrices Πi and Γi, such that

 Πis = AiΠi +BiΓi +Di

CiΠi +MiΓi +Qi = 0
, i = 1, 2, . . . , N. (4.4)

Assumption 3 There exists a σ > 0 and T ≥ 0, such that ‖Γŵi‖∞,T ≤ ∆− σ, for

all i = 1, 2, . . . , N .

Lemma 5 [26] Let Assumption 1 hold, then there exists unique Pi(ε) > 0, which

are the solutions to the algebraic Riccati equation (ARE)

ATi Pi(ε) + Pi(ε)Ai − Pi(ε)BiB
T
i Pi(ε) + εI = 0,

i = 1, 2, . . . , N
(4.5)

with lim
ε→0

Pi(ε) = 0.

Assumption 4 There exists a spanning tree in the graph Ḡ consisting of N agents

and a leader with the leader being the root.

Assumption 5 s has no eigenvalues with negative real parts.
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4.3 Control Law Designed via Low Gain State Feedback

4.3.1 Low Gain Feedback Technique

Low gain feedback was introduced by Lin etc. [26]. In the classical control the-

ory of single input single output systems, it is known that well-designed high gain

feedback systems have the advantages of high steady-state accuracy consistent with

stability, fast response, disturbance rejection, and insensitivity to parameter un-

certainties and distortions. The concept underlying high gain feedback is that of

asymptotics and, hence, by high gain feedback we mean a family of feedback laws in

which a parameterized gain matrix, say F (e), approaches infinity as the parameter

approaches its extreme value (typically zero or infinity). Consequently, the imple-

mentation of high gain feedback laws entails large control inputs (either in magnitude

or in energy) and hence large actuation capacities.

Low gain feedback has been conceived to either avoid or to complement high

gain feedback whenever such ”unpleasant” features of high gain feedback prevent

certain control objectives from being achieved. In the past few years, several low

gain design methods have been developed by Lin etc. [26] to achieve various control

objectives that high gain feedback (or high gain feedback alone) could not achieve.

These objectives include control of linear systems subject to actuator magnitude

and/or rate saturation and semi-global stabilization of minimum phase input-output

linearizable nonlinear systems.

Similar to that of high gain feedback, the concept underlying low gain feedback

is also that of asymptotics and, roughly speaking, by low gain feedback we mean a

family of feedback laws in which a parameterized gain matrix, say F (ε), approaches

zero as the parameter ε approaches zero. In the development of low gain feedback

design techniques, one observes that the closed-loop system properties induced by the
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low gain feedback are often mirror images of those induced by the high gain feedback,

and are beautifully symmetric to each other. For example, high gain feedback induces

fast time scales while low gain feedback induces slow ones.

It is known that a linear time-invariant system subject to actuator saturation can

be globally asymptotically stabilized if and only if it is asymptotically null control-

lable with bounded controls (ANCBC).

Consider a linear system subject to actuator magnitude saturation described by:

 ẋ = Ax+Bδ(u)

y = Cx
(4.6)

where x ∈ Rn is the state, u ∈ Rm is the control input to the actuators, y ∈ Rp is

the measurement output, and δ : Rm → Rm is a saturation function, as defined in

the 4.2. 1 holds.

Assumption 6 : The pair (A,C) is detectable.

The problems that we are to solve using low gain feedback are the following:

Consider system in Eq. (4.6) with δ is a saturation function. For any a priori given

bounded set of initial conditions X ⊂ Rn, find a state feedback law u = FXx such

that, for any δ within the saturation bound, the equilibrium x = 0 of the closed-loop

system is locally exponentially stable with X contained in its basin of attraction.

Algebraic Racatti Equation (ARE) Based Design:

Step 1 - State Feedback Design For the matrix pair (A,B), construct a family of

low gain state feedback laws as,

u = −B′P (ε)x (4.7)
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where P (ε) > 0 is the solution to the H2-ARE

A′P + PA− PBB′P + εI = 0, ε ∈ (0, 1] (4.8)

The existence of such a P (ε) is guaranteed by Assumption 3.3.1.

Theorem 2. Consider system in Eq. (4.6) with δ a saturation function. If

Assumption 3.3.1 is satisfied, then the family of state feedback laws in Eq. (4.7)

solves Problem 3.3.1.

4.3.2 Control Law Design

Construct a state feedback law for agent i, define Fi(ε) = −BT
i Pi(ε)

ui = Fi(ε)xi + (−Fi(ε)Πi + Γi)ŵi,

i = 1, 2, . . . , N
(4.9)

Pi(ε) is the solution to the ARE (4.8) in Lemma 5.

Theorem 1 Consider a multi-agent system with N agents and a leader with dy-

namics givenly (4.1). Then under Assumptions 1, 2, 3, 4 and 5, the semi-global

cooperative output regulation of switching networks can be solved by the distributed

dynamic state feedback control law (4.9) with sufficiently large positive number ε.

Proof. Define ξi = xi − Πiŵi, then rewrite ui as a function of ξi

ui(ξi) = Fi(ε)ξi + Fi(ε)Πiŵi + (−Fi(ε)Πi + Γi)ŵi

= Fi(ε)ξi + Γiŵi (4.10)

From Assumption 3, ‖Γŵi‖∞,T ≥ ∆ − σ, for all i = 1, 2, . . . , N . Moreover,

ξi(0) is bounded by initialization and ξi(T ) is determined by a linear differential
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equation with bounded input δ(ui) and Γiŵi, thus ξi(t) is bounded for t ∈ (0, T ],

ξi(t) ∈ Ξi denotes its bound. Then pick a positive definite Lyapunov function V (ξ) =∑N
i=1 ξ

T
i Pi(ε)ξi where ξ = [ξ1

T , . . . , ξN
T ]T , and let c > 0 be such that

c ≥ sup
ξi∈Ξi,ε∈(0,∆],i=1,··· ,N

V (ξ) (4.11)

Such a c exists since lim
ε→0

P̄i(ε) = 0 and Ξi are bounded and independent of ε, therefore,

there exists an ε∗1 such that ηi ∈ LV (c) implies that for any ε ∈ [0, ε∗1], ‖Fi(ε)ξi‖∞ ≤ σ.

Thus, ‖ui(ξi)‖ = ‖Fi(ε)ξi + Γiŵi‖ < ∆−σ+σ = ∆. Then, δ(ui) = ui when ξi(t) ∈ Ξi.

Hence, for t ≥ T and ξi ∈ LV (c), the dynamics of ξi is given by

ξ̇i = Ai(ξi + Πiŵi) +Biui(ξi) +Diw − Πisŵi

−µΠi[
∑
j∈Ni

aij(ŵj − ŵi) + hi(w − ŵi)]

= Ai(ξi + Πiŵi) +BiFi(ε)ξi +BiΓiŵi +Diŵi −Diŵei

−Πisŵi − µΠi[
∑
j∈Ni

aij(ŵj − ŵi) + hi(w − ŵi)]

= (Ai +BiFi(ε))ξi + (AiΠi +BiΓi +Di − Πis)ŵi

−Diŵei − µΠi[
∑
j∈Ni

aij(ŵj − ŵi) + hi(w − ŵi)]

= (Ai +BiFi(ε))ξi −Diŵi +Diw

−µΠi[
∑
j∈Ni

aij(ŵj − ŵi) + hi(w − ŵi)],

i = 1, 2, . . . , N

(4.12)

LetA = block[diag(A1, . . . , AN)], B = block[diag(B1, . . . , BN)], Π = block[diag(Π1, . . . ,ΠN)],

Pα(ε) = block[diag(P1(ε), . . . , PN(ε))], F (ε) = block[diag(F1(ε), . . . , FN(ε))], S =

s⊗ Ip, η = [η1
T , . . . , ηN

T ]T , w̄ = 1N ⊗w. Because
N∑
i=1

∑
j∈Ni

aij(ŵj − ŵi) = −(L⊗ Iq)ŵ,

H = block diag(h1, . . . , hN). Because H ⊗ 1N = (L+H)⊗ 1N , where 1N is defined

as an N × 1 column vector whose elements are all 1. Rewrite the dynamics of the
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closed-loop system in compact form

ξ̇ = [A+BF (ε)]ξ + [µΠ(L⊗ Iq)−D]ŵ (4.13)

−[µΠ(L⊗ Iq)−D]w̄

˙̂w = (IN ⊗ S)ŵ − µ(L⊗ Iq)ŵ + µ(L⊗ Iq)w̄

 ξ̇

˙̂w

 =

 A+BF (ε) µΠ(L⊗ Iq)−D

0 IN ⊗ S − µ(L⊗ Iq)


︸ ︷︷ ︸

Acl

 ξ

ŵ



+

 D − µΠ(L⊗ Iq)

µ(L⊗ Iq)


︸ ︷︷ ︸

Bcl

w̄

(4.14)

Define a Lyapunov function

Vcl =

[
ξT ŵT

] Pα 0

0 Pβ


 ξ

ŵ

 (4.15)

Where Pα is defined as the collective form of Pi(ε), Pβ is a positive definite matrix.

Then, the derivative of Vcl is as follows:

V̇cl =

 ξT

ŵT


T

(ATcl

 Pα 0

0 Pβ


+

 Pα 0

0 Pβ

Acl)
 ξ

ŵ

 (4.16)
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Q = ATcl

 Pα 0

0 Pβ

+

 Pα 0

0 Pβ

Acl
=

 Q1 Q2

Q3 Q4


(4.17)

Q1 = PαA+ ATPα − 2PαBB
TPα

Q2 = µΠ(L⊗ Iq)−D

Q3 = µ(L⊗ Iq)TΠT −DT

Q4 = Pβ[(IN ⊗ S)− µ(L⊗ Iq)]

+[(IN ⊗ S)T − µ(L⊗ Iq)T ]Pβ

If the closed-loop system is asymptotically stable, Q should be negative definite. By

choosing µ such that the eigenvalues of (IN ⊗ S) − µ(L ⊗ Iq) are all negative, the

following inequalities hold:

Q1 < 0 (4.18)

Q4 < 0

Q2Q3 = |µΠ(L⊗ Iq)−D|2

det(Q1Q4 −Q2Q3) > 0

Therefore, by checking the leading principal minors of Q and lim
ε→0

Pα(ε) = 0, there

exists a ε∗2 > 0, such that Q is negative definite for any ε ∈ (0, ε∗2]. For all ε ∈

(0,min{ε∗1, ε∗2}] and µ > µ∗, when x and w are in priori given bounded sets X ⊂

Rn and W ⊂ Rq respectively, Acl is asymptotically such that ξ and ŵ are both

asymptotically stable. Then, x = ξ+ ŵ is semi-globally asymptotically stable. Thus,
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objective 1 is satisfied.

Assume [xT ŵT ]T = [Πw̄T w̄T ]T is a solution to the closed-loop system. We

have

ẋ = Ax+Bu+ Cw̄

= (A+BF )x+ (−BFΠ +BΓ)ŵ +Dw̄ (4.19)

The closed-loop dynamics is as follows.

 ẋ

˙̂w

 =

 A+BF (ε) −BFΠ +BΓ

0 IN ⊗ S − µ(L⊗ Iq)


 Πw̄

w̄


+

 D

µ(L⊗ Iq)

 w̄
= (IN ⊗ S)

 Πw̄

w̄

 = (IN ⊗ S)

 x

ŵ

 (4.20)

Define Ac ,

 A+BF (ε) −BFΠ +BΓ

0 IN ⊗ S − µ(L⊗ Iq)

. From Assumption 5, the eigen-

values of Ac and IN ⊗s do not coincide, thus [xT ŵT ]T is the unique solution. Thus

the closed-loop system has the same dynamics as the exosystem. From Eq. (4.1)

and Assumption 2, the steady state tracking error

e = Cx+Mu+Qw̄

= Cξ + CΠŵ +MF (ε)ξ +MΓŵ +Qw̄

= (CΠ +MΓ +Q)w̄

= 0 (4.21)
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Figure 4.2: The interaction network.

Therefore, e→ 0 with t→ +∞, and objective 2 is satisfied.

�

4.4 Numerical Examples

The simulation is performed with four agents and one leader that represents the

exosystem. The multi-agent network is shown in Figure 4.2. The Laplacian L and

H are as follows:

L =



2 −1 0 −1

−1 1 0 0

0 0 0 0

−1 0 0 1


, H =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


The exosystem is an unforced harmonic oscillator. The system matrices are
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Figure 4.3: The observer and the exosystem

chosen as

Ai =

 −1 0

0 0

, Bi =

 0

1

, Di =

 0 0

0 5 ∗ i

,
s =

 0 1

−1 0

, Ci = [1 0],Mi = 5, Qi = [−1 0]

(Ai, Bi) is asymptotically null controllable with bounded controls (ANCBC). The

initial states x, w and ŵ of every agent are randomly chosen from the box [−3, 3]×

[−3, 3], ∆ = 3. We use the algorithm in [?] as a comparison, the control input is

given by

ui = K1ixi +K2iŵi, i = 1, · · · , N (4.22)

where K1i is chosen to render let Ai + BiK1i Hurwitz, and K2i = Γi −K1iΠi. The

plant state x, observer state ŵ and the exosystem state w are shown in Figure 4.3.
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Figure 4.4: Error and control input with the compared controller

The error e and control input u for different values of ε are shown in Figure 4.4

and Figure 4.5.

4.5 Conclusion

In this chapter, we have studied the output regulation of linear multi-agent sys-

tems with input saturation. By devising distributed observers of the exosystem, we

have solved the problem via a low gain feedback.
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Figure 4.5: Error output and control input.
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5. FLOCKING OF MULTIPLE-AGENTS WITH PRESERVED NETWORK

CONNECTIVITY AND HETEROGENEOUS NONLINEAR DYNAMICS

Most previous works focus on linear systems especially systems with double-

integrator dynamics [29, 32, 33, 42]. However, in reality, autonomous agents might

be governed by more complicated nonlinear dynamics. In fact, in synchronization

of complex dynamical networks, nonlinear dynamics is commonly used [13]. In [42],

second-order consensus of agents with some homogeneous nonlinear dynamics was

investigated in switching networks. This chapter has appeared as a research paper1.

Many theoretical investigations in flocking of multiple agents tracking a (virtual)

leader are formulated as a linear system or network with a fixed-coupling topolo-

gy and uniform intrinsic agent dynamics. However, these conditions are difficult to

satisfy or verify in a realistic flocking scenario. Therefore, a multi-agent system of

flocking with heterogeneous nonlinear intrinsic dynamics is considered in this chapter,

where network connectivity is preserved and the interconnection topology network

based on the distance between agents varies with time. Furthermore, we extend the

result to the multi-agent system with a nonlinear dynamical virtual leader. To keep

all agents moving at the same velocity and guarantee stabilization of the distance

between agents for collision avoidance, a connectivity-preserving algorithm combined

with an artificial potential function for multiple agents are presented under the mild

assumption that the initial network is connected. By using the proposed flocking

algorithm, the multiple agents are made to move with the same velocity while pre-

serving network connectivity, and in addition all agents’ velocities can asymptotically

1Wang, M., Su, H., Zhao, M., Chen, M. Z., & Wang, H. (2013). Flocking of multiple autonomous
agents with preserved network connectivity and heterogeneous nonlinear dynamics. Neurocomput-
ing, 115, 169-177.

52



approach the velocity of the virtual leader effectively in a multi-agent system with a

nonlinear dynamic virtual leader.

The remainder of the chapter is organized as follows. We first describe the model

of the flocking system in Section 6.1. Our new results on the flocking problem are

established in Section 6.2. Then some numerical simulation examples are presented

to validate the effectiveness of the theoretical results in Section 6.3. Conclusions are

drawn in Section 6.4.

5.1 Flocking Problems with Heterogeneous Nonlinear Dynamics

In our formulation, there are N agents, labeled 1, 2, 3, . . . , N . We denote pi ∈ Rn

as the position vector of agent i and vi ∈ Rn as the velocity vector of agent i. These

agents move in n-dimensional Euclidean spaces. The dynamic equations of each

agent can be described as follows

ṗi = vi,

v̇i = fi(vi) + ui, (5.1)

where fi(vi) ∈ Rn is the intrinsic dynamic of agent i, i = 1, 2, . . . , N and ui ∈ Rn is

the control input of agent i. In particular, the intrinsic dynamics of multiple agents

are heterogeneous and nonlinear.

5.2 Connectivity-Preserving Algorithm and Potential Function Design

To avoid fragmentation, we set up a connectivity-preserving flocking algorithm.

Assuming that all agents have the same influencing/sensing radius r > 0, let ε ∈ (0, r]

be an arbitrarily small constant [42]. G(t) = (V , E(t)) is an undirected dynamic

graph composed of a set of vertices V = 1, 2, . . . , N , denoting the set of agents and

a time-varying set of edges E(t) = {(i, j)| i, j ∈ V }.
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Table 5.1: Algorithm 1: description of the indicator function.
Require E(0) = {(i, j)| ‖pi(0)− pj(0)‖ < r, i, j ∈ V} and σ(i, j)[t−] ∈ {0, 1}

1 if σ(i, j)[t−] = 1 and ‖pi(t)− pj(t)‖ ≥ r
2 Then σ(i, j) = 0, i, j ∈ V
3 else if σ(i, j)[t−] = 0 and ‖pi(t)− pj(t)‖ ≥ r − ε
4 Then σ(i, j) = 0, i, j ∈ V
5 else if σ(i, j)[t−] = 1 and ‖pi(t)− pj(t)‖ ≤ r
6 Then σ(i, j) = 1, i, j ∈ V
7 else if σ(i, j)[t−] = 0 and ‖pi(t)− pj(t)‖ ≤ r − ε
8 Then σ(i, j) = 1, i, j ∈ V
9 end if

5.3 Control Law Design

5.3.1 Flocking of Multiple Agents without a Virtual Leader

In this subsection, the flocking problem of multi-agent system without a virtual

leader is investigated. In order to derive the main results, the following assumption

is needed.

Assumption 7 Suppose ` is a positive constant such that

|fi(vi)− fj(vj)| ≤ `, ∀vi, vj ∈ Rni, j = 1, 2, . . . , N. (5.2)

Denote the central position and velocity of all the agents in the system in Eq.

(5.1) by p̄ =
∑N

i=1 pi
N

and v̄ =
∑N

i=1 vi
N

, respectively. Then the difference of position

and velocity between agent i and the central of mass are given as p̂i = pi − p̄ and

v̂i = vi − v̄i, respectively. The control law is described by
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ui = −
∑

j∈Ni(t)

∇piψ (‖pij‖)

−ρ
∑

j∈Ni(t)

aij

sgn

 ∑
k∈Ni(t)

aik(vi − vk)

 −sgn

 ∑
k∈Nj(t)

ajk(vj − vk)

 ,(5.3)

where ‖pij‖ = ‖pi − pj‖, ρ is the a positive constant, and Ni(t) denotes the neigh-

borhood of agent i at time t, with explicit definition is

Ni(t) = {j|σ(i, j)[t] = 1, j 6= i, j = 1, 2, . . . , N} . (5.4)

5.3.2 Potential Function

The nonnegative potential function ψ (‖pij‖) is defined as a function of the dis-

tance ‖pij‖ between agent i and agent j, differentiable with respect to ‖pij‖ ∈ [0, r),

satisfying

(1) ψ (‖pij‖)→∞ as ‖pij‖ → 0 or ‖pij‖ → r;

(2) ψ (‖pij‖) attains its unique minimum when ‖pij‖ takes the value of the desired

distance.

One example of such potential functions is as follows [42]:

ψ (‖pij‖) =


+∞, ‖pij‖ = 0

r
‖pij‖(r−‖pij‖) , ‖pij‖ ∈ (0, r)

+∞, ‖pij‖ = r

(5.5)

The potential function is shown in Figure 5.1.
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Figure 5.1: The potential function ψij(‖pij‖) with r = 4. The function is symmetric
with respect to agents i and j. It preserves the distance ‖pij‖ → r

2
.

5.3.3 Control Design

The adjacency matrix A(t) = (aij(t)) of system in Eq. (5.1) is defined as

aij(t) = 1 if (i, j) ∈ E(t), otherwise, aij(t) = 0. The Laplacian is defined as

L(t) = D(A(t)) − A(t), where the degree matrix D(A(t)) is a diagonal matrix

with the ith diagonal element equal to
∑N

j=1,j 6=i aij(t). Denote λ1(·) as the mini-

mal eigenvalue of a symmetric matrix and the eigenvalues of L(t) can be written as

λ1(L(t)) ≤ . . . ≤ λN(L(t)). Then, λ1(L(t)) = 0 and we can deduce that its corre-

sponding eigenvector is 1 = [1, 1, . . . , 1]T ∈ RN . Furthermore, if G(t) is a connected

graph, then λ2(L(t)) > 0 [36]. For notational convenience, we denote

p =



pi

p2

...

pN


, v =



v1

v2

...

vN


.

Lemma 6 [43] Suppose G is an undirected graph of order N , and let G1 be the
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undirected graph by adding some edge(s) into the graph G. Then λi(L1) ≥ λi(L),

for all i = 1, 2, . . . , N , where L1 and L are the Laplacian matrices of G1 and G,

respectively.

We define the sum of the total artificial potential energy and the total relative

kinetic energy among agents and center of mass as

V̂ (p̂, v, p, v̄) =
1

2

N∑
i=1

(Ui(p, p̄)) +
1

2

N∑
i=1

(vi − v̄)T (vi − v̄), (5.6)

where

Ui(p, p̄) =
∑

j∈Ni(t)

ψ(‖p̂i − p̂j‖). (5.7)

Theorem 2 Consider a system of N autonomous agents with dynamic motion as

in (5.1) driven by the control law in (5.3). Suppose that the initial network G(0)

is connected, the initial energy V̂t0 is finite, and ρ(L(t0)) − `NI > 0. Then, the

following results hold:

(1) G(t) will remain connected all the time t ≥ 0;

(2) all agents asymptotically approach the same velocity and attain a relatively

invariable distance;

(3) each agent’s global potential
∑

j∈Ni(t)
∇piψ(‖pij‖) is locally minimized for al-

most every final configuration;

(4) collisions among agents are avoided.

Proof. We first prove part (1) of Theorem 2. Suppose the difference of position

and velocity between agent i and the center of mass are given as p̂i = pi − p̄ and
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v̂i = vi − v̄i, respectively. Simple calculations given

˙̂pi = v̂i,

˙̂vi = fi(vi)−
1

N

N∑
j=1

fj(vj)−
∑

j∈Ni(t)

∇p̂iψ(‖p̂ij‖)

−ρ
∑

j∈Ni(t)

aij

sgn

 ∑
k∈Ni(t)

aik(v̂i − v̂k)

 −sgn

 ∑
k∈Nj(t)

ajk(v̂j − v̂k)

 .(5.8)

Moreover, the potential energy function in Eq. (5.3) can be rewritten as

V (p̂, v̂) =
1

2

N∑
i=1

(Ui(p̂) + v̂Ti v̂i), (5.9)

where

Ui(p̂) =
∑

j∈Ni(t)

ψ (‖p̂i − p̂j‖) , (5.10)

and

p̂ =



p̂1

p̂2

...

p̂N


, v̂ =



v̂1

v̂2

...

v̂N


,

where,v̂i = vi − v̄, and p̂i = pi − p̄. V (p̂, v̂) is a positive semi-definite function of

(p̂, v̂).

Suppose that G(t) switches at time tk, k = 1, 2, . . . , and remains fixed over each

time interval [tk−1, tk]. Without loss of generality, we assume that t0 = 0 and the
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initial energy V̂ (t0) is finite. Considering the time derivative of Q(t) on [t0, t1) gives

˙̂
V =

N∑
i=1

v̂Ti

[
fi(vi)−

1

N

N∑
i=1

fj(vj)

]

−
N∑
i=1

v̂Ti ρ
∑

j∈Ni(t)

aij

sgn

 ∑
k∈Ni(t)

aik(v̂i − v̂k)

− sgn

 ∑
k∈Nj(t)

ajk(v̂j − v̂k)


=

N∑
i=1

v̂Ti

[
fi(vi)−

1

N

N∑
i=1

fj(vj)

]
− ρv̂TL(t0)sgn[L(t0)v̂]

≤ ‖`Iv̂‖1 − ρ‖L(t0)v̂‖1

= (‖`I‖1 − ρ‖L(t0)‖)‖v̂‖1

≤ 0, (5.11)

which implies that V̂ (t) < V̂ (t0) <∞,∀t ∈ [t0, t1). By the definition of the potential

function, limpij(t)→r ψ(‖pij(t)‖) =∞. Therefore, there is no distance of existing edges

tend to r for t ∈ [t0, t1), which implies that no edge will be lost before time t1. Thus,

new edges must be added in the interaction network at switching time t1. Note that

the hysteresis ensures that if a finite number of links are added to G(t), then the

associated potentials remain finite. Thus, V̂ (t1) is finite.

From Lemma ?? and ρ(L(t0))− `NI > 0, we have

ρ(L(tk−1))− `NI > 0.

59



Similar to the above analysis, the time derivative of V (t) in every [tk−1, tk) interval

is

˙̂
V =

N∑
i=1

v̂Ti

[
fi(vi)−

1

N

N∑
i=1

fj(vj)

]

−
N∑
i=1

v̂Ti ρ
∑

j∈Ni(t)

aij

sgn

 ∑
k∈Ni(t)

ai,k(v̂i − v̂k)

− sgn

 ∑
k∈Nj(t)

aj,k(v̂j − v̂k)


=

N∑
i=1

v̂Ti

[
fi(vi)−

1

N

N∑
i=1

fi(vj)

]
− ρv̂TL(tk−1)sgn[L(tk−1)v̂]

≤ ‖`Iv̂‖1 − ρ‖L(tk−1)v̂‖1

= (‖`I‖1 − ρ‖L(tk−1)‖)‖v̂‖1

≤ 0, (5.12)

which implies that V̂ (t) < V̂ (tk−1) < ∞, ∀t ∈ [tk−1, tk), k = 1, 2, . . . . Therefore, no

distance of existing edges will tend to r for t ∈ [tk−1, tk), which also implies that no

edges will be lost before time tk and V (tk) is finite. Since G(0) is connected and no

edge in E(0) can be lost, G(t) will remain connected for all t ≥ 0.

We now prove parts (2) and part(3) of Theorem 2. Assume that nk new edges

are added to the evolving network G at time tk. Because 0 < nk ≤ (N−1)(N−2)
2

, N̄

from Eq. (5.6) and Eq. (5.11), we have

V̂ (tk) ≤ V̂0 + (n1 + n2 + . . .+ nk)ψ(‖r − ε‖) = V̂max (5.13)

Due to the fact that there are at most M new edges added to G(t), we know

k ≤ N̄ and Vt ≤ Vmax for all t ≥ 0. Then, the number of switching times k of system

(5.1) is finite, namely, G(t) finally becomes fixed. Thus, we only need to discuss the

behaviors on the time interval (tk,∞). Since that all the lengths of edges are no
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longer than ψ−1(V̂max), then the set

Ω =
{̂̃p ∈ G, ṽ ∈ RNn

∣∣∣ V̂ (̂̃p, v̂) ≤ V̂max

}
(5.14)

is positively invariant, where

G =
{̂̃p ∈ RN2n

∣∣∣ ‖pij‖ ∈ [0, ψ−1(V̂max)],∀(i, j) ∈ E(t)
}

and ̂̃p = [pT11, p
T
12, . . . , p

T
1N , . . . , p

T
N1, p

T
N2, . . . p

T
NN ].

Since G(t) is connected for all t ≥ 0 as mentioned above, for all i and j we have

‖p̂i‖ − ‖p̂j‖ < (N − 1). Due to the fact that V̂ (t) ≤ V̂max, we have v̂Ti v̂i < 2V̂max,

and so ‖v̂i‖ ≤
√

2V̂max. Therefore, the set Ω satisfying V̂t ≤ V̂max is closed, and

furthermore, compact. As we know, system in Eq. (5.1) with control input in Eq.

(5.3) is autonomous on the concerned time interval (tk,∞). Hence, the LaSalle

Invariance Principle can be applied to conclude that if we limit the initial conditions

of the system to be in Ω, then the corresponding trajectories will converge to the

largest invariant set inside the region

Γ =
{̂̃p ∈ G, v̂ ∈ RNn

∣∣∣ ˙̂
V = 0

}
.

From (5.12),
˙̂
V = 0 if and only if v̂1 = . . . = v̂N , namely, the velocities of all agents

converge to the virtual leader’s velocity in an asymptotical way.

Since v̂1 = . . . = v̂N , one has

˙̂vi = −
∑

j∈Ni(t)

∂ψ(‖pij‖)
∂‖pij‖

1

‖pij‖
(pi − pj) = 0 (5.15)

for all i = 1, 2, . . . , N .
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Figure 5.2: Initial and final states of multiple agents (n = 10) with velocity vectors.
(a) the Initial states; and (b) the finial states.

Generally, every final configuration will locally minimize each agent’s global po-

tential, unless the initial configuration of the agents is close enough to the global

minimum.

We now prove part (4) of of Theorem 2. From (5.14), V̂ (̂̃p, v̂) ≤ V̂max for all

t ≥ 0. However, we have lim‖pij(t)‖→r ψ(‖pij(t)‖) =∞ from the definition of potential

functions. Hence, collisions among agents can be avoided.

�

5.4 Simulation Results

Consider a multi-agent system under the control protocol in Eq. (5.3) with 10

agents in a two-dimensional Euclidean space. For simplicity of presentation, the

intrinsic dynamic of each agent is governed by fi(vi) = [3 cos(i · vi1 + vi2), 3 sin(vi1 +

i · vi2)]T , i = 1, 2, . . . , 10. The potential function is designed as in Eq. (5.6) with the

influencing/sensing radius r = 4 and ε = 0.1. Initial positions and initial velocities

of agents are chosen randomly from the plane [0, 8] × [0, 8] and [0, 3] × [0, 3] shown

in Figure 5.2(a), the dotted lines represent the neighboring relations, and the solid

lines with arrows represent the velocity vectors. We choose ρ = 10. Then the
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Figure 5.3: Relative velocity states between agent 1 and agent i, (i = 2, 3, . . . , 10).

multiple autonomous agents move with the same velocity as shown in Figure 5.2(b),

from t = 0s to t = 20s. The relative velocity values between agent 1 and agent

i, (i = 2, 3, . . . , 10) are shown in Figure 5.3.

5.5 Conclusion

In summary, we have investigated a multi-agent flocking problem, where each

agent has heterogeneous nonlinear dynamics. An artificial potential function and

connectivity-preserving algorithm have been proposed to guarantee not to lose the

existing edges, which shows that all agents can move with the same velocity and

preserving the network connectivity without collision. From the numerical examples,

the theoretical results are verified effectively.
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6. SUMMARY AND FUTURE RESEARCH

6.1 Contributions

In this thesis, I have considered four problems on the modeling and control of

multi-agent systems as shown in Figure 1.2. I have designed the modeling rules and

control approaches to these problems. Numerical examples and theoretical proofs

have also been presented. I summarize the contributions of this thesis as follows:

1) I have proposed an improved adaptive-velocity self-organizing model as a

prospective candidate in order to enhance high-speed convergence and accelerate

convergence. Moreover, a new way to assign weights has been proposed to rein-

force convergence under very high-speed conditions. This innovative result has been

organized into a scientific paper and submitted to Physica D.

2) To the best of my knowledge, input saturation has not been taken into ac-

count in the output regulation problem for general dynamic agents. In this thesis, I

have solved this problem via low gain feedback such that the tracking error can be

eliminated with bounded control inputs.

3) I have investigated the multi-agent flocking problem with heterogeneous non-

linear dynamics. I constructed a potential function and a connectivity-preserving

flocking algorithm to ensure the agents stay connected. The mild assumption is

made that the initial network is connected, and the coupling strength of the initial

network of the nonlinear velocity consensus term is greater than a threshold. This

innovative result has been published as a scientific paper in Neurocomputing.

6.2 Future Research

There are many promising directions for future research and applications. Here,

I outline several potential extensions.
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Figure 6.1: Algorithmic overview of the grasping task. [44] Step 1: The first module
starts sensing the presence of the object. It starts sending messages to it neighbors.
Steps 2 and 3: Agents perform iterative sensing and actuation until they converge
to the desired state. Step 4: When the system is perturbed, it goes back to Step 2.

6.2.1 Deconstruction and Distributed Control of Complex Robotic Systems

It is known that in complex-structural and/or multi-task systems, centralized

controllers are difficult to design, despite the delay and asynchronization between

components caused by computational complexity. However, even though they seem

atypical multi-agent systems, it is possible for us to decompose the complex systems

into several functional and/or structural parts. Therefore, decentralized controllers

can be developed independently for these single-functional or simple-structural part-

s and then designed to interact with each other to achieve the overall objective.

Although, in the current stage, decentralized control still has many constraints and

unsolved problems, I believe the idea of decentralized control-design from the bottom

up-will be developed and applied widely in the near future.

As an example, Figure 6.1 shows a robot ’hand’ controlled by distributed con-

trollers [44].
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6.2.2 Control of Multi-Agent Formation and Applications

Based on the linear multi-agent model, we have found that there exists a rela-

tionship between the final stable formation and the eigenvector corresponding to the

’0 eigenvalue of the closed-loop system matrix A. We have proved that the consen-

sus problem can be treated as a special case in which the entries of the eigenvector

corresponding to the ’0 eigenvalue are uniform. But what is the sufficient condition

for a multi-agent system to achieve a specific formation? We could further work on

the problem to generalize a criterion for achieving any desired formation.
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