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ABSTRACT

Hydraulic stimulation of low permeability rocks in unconventional reservoirs has

been observed to trigger microearthquakes (MEQs). Triggering of the MEQ events

has been linked to the pore pressure, temperature, and in-situ stress variations which

result in crack initiation. The resulting clouds of micro-seismic events are believed

to carry information about the underlying coupled flow, geomechanics, and thermal

processes and hence rock hydraulic and geomechanical property distributions.

We develop a probabilistic framework called stochastic seismicity-based reservoir

characterization (SSBRC) to integrate microseismic events to infer reservoir property

distributions. To model the geothermal reservoir stimulation, a fully coupled

thermo-poroelastic finite element method (FEM) model has been developed to handle

the coupled process of heat transport, fluid flow, and rock deformation. To simulate

the stimulation process, an alternate simplistic approach is also acquired based on

a major hypothesis that MEQ events are triggered by an increase in pore pressure.

Based on this hypothesis, the distribution of the resulting microseismicity clouds can

be viewed as monitoring data that carry important information about the spatial

distribution of rock permeability. We apply the ensemble Kalman filter (EnKF)

to integrate the resulting continuous seismicity map to estimate hydraulic and

geomechanical property distributions. We demonstrate that the standard application

of the EnKF with such large correlated datasets can result in substantial loss

of ensemble spread. We investigate three alternative implementation methods to

mitigate this issue.

We first present the methodology proposed for MEQ data integration with the

EnKF, followed by a number of examples of applying SSBRC to both forward
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modeling methods to illustrate the uncertainty underestimation effect when the

standard EnKF is applied to large-scale seismicity density map data. We then

discuss the proposed methods for improving the uncertainty quantification results

and illustrate the effectiveness of these methods by applying them to a number of

numerical examples. We also apply and extend the proposed microseismic data

integration method to unconventional reservoir with horizontal well and multistage

hydraulic fractures to characterize the reservoir and induced fractures.

We also investigate the effect of variogram model uncertainty in the EnKF

performance and propose a modified EnKF algorithm to handle the uncertainty in

variogram parameters. We also develop a computationally efficient data assimilation

procedure by employing a pseudo forecast method and geological model clustering

method along with EnKF. By a set of numerical experiments, we show how the

proposed fast history matching method is successful in preserving the ensemble

spread and expediting the integration procedure.
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1. INTRODUCTION

The production of geothermal energy from tight and low-permeability reservoirs

is achieved by hydraulic stimulation of the rock through borehole injection in natural

and/or man-made fractures, and is referred to as enhanced geothermal systems

(EGS). Stimulation of a rock mass to create permeable zones is a process that

involves fracture initiation and/or activation of discontinuities such as faults and

joints due to pore pressure and in-situ stress perturbations. Hydraulic stimulation

of rock is typically accompanied by multiple microseismic events [1, 2, 3, 4, 5, 6],

which are believed to be associated with rock failure in shear, and shear slip on

new or pre-existing fracture planes [7, 8]. While the true nature and source of such

events remains to be fully understood [9, 10], shear and tensile failures in the rocks

are considered as the primary mechanisms for triggering microearthquake (MEQ)

events [11, 12, 13]. Even though the source of MEQ events is mostly concluded to

be shear failure, non-shearing or tensile failures are also reported as the triggering

factors [10, 11, 12, 14, 15]. The rock may experience failure through shear and tensile

fracture in intact rock material or bedding planes and remobilisation of pre-existing

fractures and consequently the strain energy, released due to stress drop associated

with failure, generates the P- and S-waves which will be detected to place failure

locations as MEQ events [11, 16, 17].

The characteristics of microseismic events such as their locations, spatial patterns

of distribution, and temporal relations between the occurrence of seismicity and

reservoir activities are often studied for enhanced geothermal systems (EGS).

The microseismic signals contain information about the triggering source locations

and have been used to understand the hydraulic fracturing process [18, 19, 20].
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Detection and interpretation of microseismic events is useful for estimating the

reservoir permeability, the stimulated volume and fracture growth, as well as the

geometry of the geological structures and the in situ stress state [21, 22, 23]. In

geothermal and unconventional resources, the coupled process of fluid flow, rock

deformation, heat transfer and chemical interactions along with rock damage models

and failure criteria explain cloud of microseismicity events while hydraulic and

geomechanical reservoir properties are physical parameters in governing equations

therefore the spatio-temporal distribution of MEQ events are expected to reveal

important information about reservoir parameter distributions [24, 25, 26].

In this work to simulate reservoir stimulation by hydraulic fracturing and

to model induced microseismicity, a fully-coupled thermo-poro-mechanical finite

element model with damage mechanics is utilized [27, 28, 29, 30]. The model

considers stress-dependent permeability, and convective heat transport in the

thermo-poroelastic formulation. Rock damage is reflected in the alteration of elastic

modulus and permeability. Coupled rock deformation and fluid flow as in geothermal

reservoir stimulation is described in Biot’s poroelastic theory [31] while thermal

and chemical effects can also be significant in this context [32]. The influence of

fluid flow and temperature change around the wellbore on the stress variations in

the reservoir can be described using thermo-poroelasticity which in this model is

computed based on non-linear rock behavior with rock failure consideration. Since

damage evolution causes significant permeability alteration [33], some damage and

permeability models are also proposed to relate permeability change, micro-crack

and void evolution [34, 35, 36, 37] that Tang et al. rock damage model is used in

this model [38, 39]. To trace rock failure and the progress of damage in geothermal

and petroleum reservoir operation different failure criteria are proposed [40]. In this

model to simulate induced microseismicity events, Mohr-Coulomb failure criterion
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with tension cut-off is used to model shear and tensile failures in the reservoir.

Some alternative mechanisms for triggering microearthquake (MEQ) events have

been proposed in the literature. Among the existing hypotheses, pore pressure

relaxation is widely studied in the literature [2, 7, 41, 26, 42, 43, 44]. In this

work to model the reservoir stimulation process and MEQ activities, a simplistic

forward model only based on pore pressure diffusion is also used. The pore pressure

hypothesis postulates that a rise in fluid pressure in a reservoir increases the pressure

in the connected pore space of the rock, thereby increasing the pore pressure

and decreasing the effective normal compressional stress on the rock surfaces. In

critical locations of the rock the fall in the compressional stress can result in sliding

along some of the preexisting cracks. The pore pressure relaxation hypothesis

is supported by several observations [45, 46]. The spatiotemporal distribution

of MEQ events has been observed to have signatures of a diffusion-like process

(including a forward triggering front and back front of seismicity waves [4, 47, 48])

consistent with the diffusive nature of pore pressure distribution. Other observations

supporting the above hypothesis are related to the ellipsoid-shaped seismicity clouds

after normalization of the event coordinates by their occurrence time [47] and

the spatial density of MEQ events [46]. If pore pressure diffusion can be used

to explain the spatiotemporal signatures of microseismic event clouds, the MEQ

events are expected to reveal important information about the distribution of

hydraulic diffusivity or permeability in reservoirs. This concept has been exploited

in the development of seismicity-based reservoir characterization (SBRC) methods of

Shapiro et al. [49, 50, 45, 46] and Rothert and Shapiro [51] where hydraulic diffusivity

or permeability is estimated from analysis and integration of injection-induced MEQ

monitoring measurements (passive seismic monitoring). The SBRC analysis involves

solving the parabolic equation of pore pressure diffusion in the rock mass and
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comparing the distribution of pore pressure with the rock criticality distribution

to identify locations that undergo failure. In this context, rock criticality at a given

location refers to the minimum pore pressure required to trigger a seismic event.

Adopting the pore pressure relaxation hypothesis in this study as an alternate

simplistic approach, the initiation of MEQ events can be associated with pore

pressure and stress values that exceed the rock criticality. Hence, the distribution of

MEQ observations in the reservoir can be correlated with pore pressure distribution,

which is in turn related to hydraulic properties of the reservoir rock. Therefore,

the MEQ events are viewed as a new source of monitoring measurements that,

after interpretation into prior descriptive models, are expected to reveal important

information about the distribution of rock flow properties.

Reservoir characterization by MEQ data can be substantially improved by

developing more sophisticated forward geomechanics-based reservoir models with

damage mechanics and inversion algorithms that offer important estimation

properties (features). Having pore pressure relaxation assumption, using criticality as

failure criterion and only estimating permeability without uncertainty quantification

are the limitations of the SBRC approach which we resolve by proposing stochastic

seismicity-based reservoir characterization (SSBRC). Additionally the estimation

process can be automated in an iterative or sequential manner and can be

implemented to account for the uncertainties in the prior models or the observed

microseismic events. Also more importantly, through a stochastic inversion approach,

a mechanism can be included for quantitative assessment of the quality of the solution

obtained and for rigorous characterization of solution uncertainty. The need for such

a stochastic inversion approach is imperative in light of the significant uncertainties

that exist in describing the spatial distribution of rock physical properties. As we will

discuss soon, an outstanding challenge in applying state-of-the-art inversion method
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for MEQ data integration is the discrete nature of these events, which does not fit

into most of the conventional estimation methods that are designed for assimilating

continuous data.

Since most established model calibration algorithms are designed to integrate

continuous measurements, inverting the discrete microseismic events calls for

development of inversion methods to handle discrete data types. In some cases,

however, it may be possible to equivalently interpret discrete data sets as continuous

measurements (through a simple conversion) that can be readily processed using

well established inversion techniques. One way to model the MEQ data is to

consider the density of these discrete events. This interpretation leads to combining

(counting) the discrete microseismic events at each location in the reservoir and

interpreting the results as the distribution of “seismicity density”. This conceptual

framework is followed in this work by taking advantage of kernel density estimation

(KDE) methods [52, 53]. The KDE methods are common for smoothing data and

estimating nonparametric probability density functions [52, 53]. We will use this

approach to convert discrete MEQ events into a map of seismicity density as a

continuous representation of the data. The continuous representation of MEQ data

can then be used with a data integration technique to estimate the relevant reservoir

properties. The data integration of our choice in this work is the ensemble Kalman

filter (EnKF) [54, 55]. We evaluate the feasibility of using the EnKF for estimating

reservoir hydraulic and geomechanical property distributions such as permeability,

Young’s modulus, tensile strength and Cohesion from the KDE-based continuous

representation of microseismic measurements. The stochastic inversion framework of

SSBRC is shown in Figure 1.1.
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Figure 1.1: Proposed framework of SSBRC for EGS (Ghassemi and Jafarpour).

The EnKF has been widely established as a practical data integration method

for large-scale nonlinear dynamical systems and has been received favorably by the

scientific and research community in a range of applications including hydrology

[56], meteorology and oceanography [57, 58, 59], groundwater model calibration

[60, 61, 62, 63], and oil reservoir characterization [64, 65, 66, 67, 68]. Evensen

[69] reviews the EnKF formulation and its wide range of applications. Ehrendorfer

[70] presents a review of important issues that are encountered in implementing

the EnKF. Despite the existing limitations in operational implementation of the

EnKF for more complex (non-Gaussian) and challenging large-scale problems, this

approach has become popular as a promising approximate nonlinear estimation

method in several applications. In this work, we propose SSBRC by applying the
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EnKF for MEQ data integration and evaluate its performance using several numerical

experiments. A parallel EnKF algorithm will also be implemented to speed up the

computations.

Generating seismicity density maps on the same grid system or mesh structure

that is used for describing the geomechanical property distributions artificially

increases the data resolution and, hence, the number of data that will be assimilated

during the EnKF update step. Large scale datasets, such as 4D seismic data [71, 72],

and particularly in this study, high resolution seismicity density maps, can exhibit

spurious spatial correlations in the observed data and create unrealistic correlations

between rock properties and microseismic data, thereby can degrade the performance

of the EnKF update and lead to underestimated solution uncertainty or ensemble

collapse [56, 73, 74]. We will first show the estimation results for the SSBRC approach

using the standard EnKF algorithm to illustrate the underestimation of ensemble

spread, and then will propose alternative implementation methods to resolve this

issue and improve SSBRC uncertainty quantification. A straightforward approach

to overcome ensemble spread underestimation is to increase the observation error

artificially by using a large variance for the observation noise. We can also reduce

the number of observations either by using a spectral projection (spectral dimension

reduction) approach or by coarsening the seismicity density map (spatial dimension

reduction). In projection approach, the ensemble of perturbed observations are

projected to a reduced subspace that is defined by the leading left singular vectors of

the observation matrix. This step is aimed at de-correlating the original observations

of the seismicity map. The EnKF update is then used to assimilate the resulting

low-dimensional description of the data. In the second approach, we use a coarse

grid system for interpretation of the seismic events. This approach is very similar

to the original SSBRC implementation except that it uses a coarse grid system in
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KDE-based continuous seismicity interpretation to make lower resolution density

maps. Then the reduced dimension or coarse seismicity density maps are used

in the EnKF update equation. In this work, we will develop the practice of

permeability inference from discrete MEQ data with EnKF [24, 25] and then extend

it to geomechanical parameters by using a coupled geomechanical forward model and

subsequently we will improve the uncertainty quantification.

We also verify and extend the applicability of SSBRC to hydraulically fractured

reservoirs. SSBRC method also will be utilized to infer the reservoir properties and

hydraulic fractures characteristics by integrating the MEQ data. In unconventional

and tight formations where the hydraulic fracturing is the prominent method of

production enhancement, microseismic observations can be used to characterize

both reservoir and induced fractures. We will present several numerical examples

of unconventional reservoir with horizontal well and multiple transverse hydraulic

fractures to verify the promising estimation performance of SSBRC for reservoir

characterization and microseismic fracture mapping. Some improvements and

modifications are also recommended along with SSBRC method to improve its

computational efficiency and make it a real-time procedure.

The EnKF initial ensemble is commonly constructed by assuming a known

geological continuity model such as a variogram. However, geologic continuity models

are derived from incomplete information and imperfect modeling assumptions, which

can introduce a significant level of uncertainty into the produced models. Neglecting

this important source of uncertainty can lead to systematic errors and questionable

estimation results. We investigate the performance of the EnKF under varying levels

of uncertainty in the variogram model parameters. We first attempt to directly

estimate variogram model parameters from flow data and show that the complex

and nonunique relation they have with the flow data provides little sensitivity for
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an effective inversion with the EnKF. We then assess the performance of the EnKF

for estimation of permeability values under uncertain and incorrect initial variogram

parameters and show that any bias in specifying variogram parameters tends to

persist throughout the EnKF analysis even though locally reasonable permeability

updates may be obtained near observation points. More importantly, we show that

when variogram parameters are specified probabilistically to account for the full

range of structural variability in the initial permeability ensemble, the EnKF update

results are quite promising. The practical implications of the results are significant

for designing the EnKF for realistic ensemble model calibration problems where the

level of uncertainty in the initial ensemble is usually not known a priori.

The EnKF implementation relies on flow predictions with a relatively large

number of model realizations, which in the case of realistic reservoir models can

be computationally prohibitive. When a small number of model realizations are

used the statistics computed for the EnKF model updating step become inaccurate

and can lead to inaccurate results. Therefore, several localization methods have

been introduced to account for statistical errors due to limited ensemble sizes.

While these practical considerations have been useful, they do not address the

core issue that a larger ensemble size is needed to accurately compute the required

update statistics. We propose to use a large ensemble of models to improve the

calculation of ensemble statistics while using a fast approximate forecast method

to reduce the computational cost of the EnKF. The forecast for each realization in

this case is derived from linearization around a representative or similar realization

for which full simulation is performed. We use adjoint model generated gradient

or an ensemble-calculated gradient approximation as tangent linear model for the

linearization purpose. In the forecast step of our implementation we perform full

forecasts for very few realizations to compute ensemble-based gradients. We then
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perform approximate (pseudo) forecasts for the remaining models in the ensemble

by linearizing about representative models for which full forecasts are computed.

The representative realizations for full forecast in each step are selected through a

well-established clustering procedure.

The remainder of this dissertation is outlined as follows. We begin with Section

2, which covers an overview of both forward modeling methodologies; first, the

pore-pressure diffusion reservoir model and second, the geomechanical reservoir

model, and then induced seismicity modeling followed by continuous seismicity

interpretation method. Then the SSBRC inverse modeling approach based on EnKF

is explained and the proposed methods for improving uncertainty quantification are

presented in Section 3. Next in Section 4, we present and discuss the results of

applying the proposed approach to a series of geomechanical reservoir examples. In

Section 5, application of SSBRC to hydraulically fractured reservoirs is presented.

The performance of EnKF under variogram uncertainty is presented in Section 6

and the improved EnKF with pseudo forecast and clustering is reported in Section

7. We close the work with Section 8, which includes general remarks about the

presented formulations and procedures, their advantages, limitations and possible

future extensions.
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2. GEOMECHANICAL FORWARD MODELING METHODOLOGY∗

The proposed SSBRC method aims at inferring spatially distributed reservoir

properties by integrating MEQ monitoring data with EnKF. As mentioned earlier,

we integrate microseismicity density maps as observed data. We use two forward

modeling approaches for simulating the reservoir stimulation process. A complete

forward model is required to relate the permeability distribution of the reservoir

to seismicity density maps which includes pore-pressure diffusion reservoir model,

criticality as failure criterion and KDE-based continuous seismicity interpretation.

The main steps involved in the implementation of the pore-pressure diffusion overall

forward model are schematically shown in Figure 2.1.

Similarly in the case of geomechanical reservoir model, a comprehensive

forward model is needed to relate the reservoir hydraulic and geomechanical

property distributions to seismicity density maps which includes FEM-based coupled

geomechanical simulator, failure criteria, damage and permeability model and finally

KDE-based continuous seismicity interpretation. The main steps involved in the

implementation of the geomechanical overall forward model are schematically shown

in Figure 2.2. The reservoir property distributions such as permeability, Youngs

modulus, tensile strength and cohesion are used as input parameters to the coupled

FEM simulator which involves the coupled process of rock deformation, fluid flow and

heat transfer. The FEM simulator predicts the stress distributions in the reservoir

and where the rocks effective stress exceeds its strength (prescribed by failure criteria)

is used to establish the triggering mechanism and to predict microseismic events

∗Part of this chapter is reprinted with permission from “Inference of permeability distribution
from injection-induced discrete microseismic events with kernel density estimation and ensemble
Kalman filter” by Mohammadali Tarrahi and Behnam Jafarpour, 2012. Water Resources Research,
48, Copyright 2012 by John Wiley and Sons.
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Figure 2.1: Overall workflow of the pore-pressure diffusion forward model that relates
permeability distribution to microseismicity density observations.

[75, 30]. These predictions are then converted into continuous seismicity densities,

using the KDE method. Rock damage and permeability models are also used to

update the elastic modulus and permeability values to model the rock degradation

during hydraulic stimulation.

The details of each of the steps involved in forward model are discussed next.

2.1 Pore Pressure Diffusion Forward Model

The Frenkel-Biot equations [76] in a homogeneous isotropic saturated poroelastic

medium, identifies three waves (P, S and a dissipative slow wave named Frankel-Biot)

propagating from a source to an observation point. Field evidence suggests that

evolution of MEQ events is a relatively slow process that is likely to be associated,
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Figure 2.2: Overall workflow of the geomechanical forward model that relates
hydraulic and geomechanical reservoir property distributions to microseismicity
density observations.

at least in part, with the Frankel-Biot wave. The pore pressure variation in the slow

wave can be described by a simple diffusion equation for a homogeneous isotropic

porous medium. Recent studies (see [26] and references therein) have proposed a

similar diffusion equation for describing the spatiotemporal evolution of pore pressure

relaxation in heterogeneous anisotropic porous media.

We follow the same approach in this work. We also assume the rock failure

occurs at locations in the reservoir where the pore pressure exceeds rock criticality.

To implement this failure criterion with the pore pressure relaxation assumption,

we numerically solve the diffusive pore pressure equation for a heterogeneous

reservoir. This forward model relates rock hydraulic conductivity distribution to

pore pressure distribution, which is directly related to the rock failure mechanism
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and the distribution of microseismic events (data). For single phase flow with slightly

compressible fluid, the pore pressure equation is expressed as

∇ ·
(
m (u)∇p (u, t)

)
= φµc

∂p (u, t)

∂t
(2.1)

where u denotes the location in space, t is time, φ is porosity, c is total compressibility,

and µ represents viscosity. In Equation (2.1), the spatial distribution of permeability

in space is denoted by m(u) while the spatiotemporal distribution of pore pressure is

represented with p(u, t). We solve the diffusion equation in (2.1) for each permeability

realization m(u) using a finite difference-based commercial fluid flow simulator

[77]. Under the assumptions described above and heterogeneity and anisotropy

of hydraulic permeability, Equation (2.1) can be derived from the Frenkel-Biot

equations in the low-frequency range [78, 79].

To generate the corresponding microseismicity clouds for each permeability model

realization, we apply the failure criterion used by Shapiro et al. [45] using the

predicted pore pressure distributions to generate the spatiotemporal distribution

of seismicity events. An important property of the EnKF inversion is that the

forward and observation models can be quite general with varying level of complexity

such as the fully coupled geomechanical simulators and damage models that will be

introduced next. However, the update equation is designed for continuous random

variables (parameters and observations). As a result, the updates can be applied

under various forms of event triggering mechanisms and failure criteria as long

as the random variables representing the states, parameters and measurements

are continuous. With this forward model we consider the pore pressure as the

MEQ triggering mechanism and investigate the feasibility of estimating permeability

distribution from microseismic observations using the EnKF.
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In the pore pressure diffusion method the failure criterion simply is comparing

the pore pressure and criticality. This failure criterion is used to generate the MEQ

cloud. Denoting rock critical stress as C(u) and the pore pressure distribution at

location ui and time tj as p(ui, tj), we assume that a microseismic event (failure) is

triggered at location ue and time te if

p(ui, tj) > C(ui)⇒ (ue, te) = (ui, tj) (2.2)

From Equation (2.2), at each time step t the comparison between predicted pore

pressure and criticality at different locations in the reservoir identifies the distribution

of seismicity clouds. Figure 2.1 illustrates this procedure schematically for a

two-dimensional heterogeneous permeability model and a given random criticality

distribution. Note that following [26], we have represented the rock criticality at

each grid block as an uncorrelated random variable. This assumption can be easily

relaxed and a spatially correlated random field (possibly correlated with other rock

physical properties) can be considered as a criticality distribution.

2.2 Geomechanical Forward Model

The geomechanics-based reservoir modeling is constructed by combining

governing equations of thermo-poroelasticity and rock damage model, and

then numerical implementation as a finite element program. The theory of

thermo-poroelasticity (or porothermoelasticity) is developed by combining the

influence of thermal stress and differential solid/fluid expansion to rock stresses and

fluid diffusion. Whereas the coupled pressure and stress problems in the porous

media (coupled process of rock deformation and fluid flow) is described with Biots

consolidation theory [31, 80], a poro-thermoelastic approach combines the theory of

heat conduction with poroelastic constitutive equations.
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Thermo-poroelasticity can be used to assess the influence of fluid flow and

temperature change on the stress variations in the reservoir. This influence is often

computed assuming a linear elasticity with constant mechanical and transport rock

properties which has limitations in predicting the real behavior of the reservoir

rock. Generally, the strain-stress behavior of rocks in triaxial tests shows hardening

and post-peak softening that depends on the rock type, pore pressure, stress

conditions, and temperature [40]. The continuum damage mechanics approach

can capture the hardening and softening behavior of the rock [81] which was

first introduced by Kachanov and since has been developed and applied by many

researchers [82, 83, 84, 38, 85, 33] who have investigated inelastic behavior caused

by crack initiation, microvoid growth, and fracture propagation. Also, the evolution

of rock damage in the presence of poroelastic and thermo-poroelastic effects has

been considered. Selvadurai studied damage in poroelastic brittle rock [33]. His

results showed a significant permeability alteration caused by damage evolution in

consolidation problems. Hamiel et al. developed a model with a time dependent

damage variable, porosity, and material properties [86]. They proposed different

rock behavior with degradation and healing within the framework of the poroelastic

theory. Tang et al. proposed a damage and permeability model based on

experimental strain-stress observations and permeability measurements [38, 85]. This

model which corresponds to the brittle rock failure behavior is implemented in a finite

element model and is used to alter elastic modulus and permeability in the elastic and

damage phase to simulate rock degradation and also hydraulic fracture propagation.

Injection induced microseismic events are also simulated by shear and tensile failures

made by Mohr-Coulomb criterion with tension cut-off.

Both two and three dimensional coupled finite element models are implemented

and verified by different numerical simulations.
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2.2.1 Governing Equations

The governing equations include the constitutive and transport laws. The

constitutive equations of thermo-poroelasticity have been developed by McTigue

[87] and Palciauskas and Domenico [88]. Using the geomechanics sign convention of

compression positive, the constitutive equations for total stress, pore pressure, and

temperature are:

σ̇ij = 2Gε̇ij +

(
K − 2G

3

)
ε̇kkδij + αṗδij + γ1Ṫ δij (2.3)

ζ̇ = αε̇ii + βṗ− γ2Ṫ (2.4)

where σij and εij are the total stress and strain tensors, p and T are the pore

pressure and temperature respectively. α is the Biot coefficient, ζ is the variation of

fluid contents (pore volume), δij is the Kronecker delta, K is bulk modulus, and G

is the shear modulus; γ1, γ2 and β are given by:

β =
α− φ
Ks

+
φ

Kf

(2.5)

γ1 = Kαm (2.6)

γ2 = ααm + (αf − αm)φ (2.7)

where φ is the porosity, αm and αf are the thermal expansion coefficients of solid and

fluid, respectively. The bulk moduli of the solid material and the fluid are indicated

by Ks and Kf respectively.

Fluid flow in porous rock is governed by Darcys law, and heat conduction obeys
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Fouriers law, so that:

Jf = −ρf
k

η
∇p (2.8)

JT = −kT∇T (2.9)

where ρf is fluid mass density, k and η are the permeability and viscosity, respectively,

and kT is the thermal conductivity. Jf and JT represent fluid and heat flux

respectively.

The balance of force and continuity for the fluid mass are given by:

σij,j = 0 (2.10)

∂ζ

∂t
= − 1

ρf
∇Jf (2.11)

By substituting the constitutive equations into the balance equations given by

Equations (2.10),(2.11), we obtain the field equations for the rock deformation and

fluid flow, namely Equations (2.12),(2.13). The conservation of energy with Fouriers

law yields the field equation for the temperature distribution:

(
K +

G

3

)
∇ (∇ · u) +G∇2u+m (α∇p+ γ1∇T ) = 0 (2.12)

α (∇ · u̇) + βṗ− k

η
∇2p− γ2Ṫ = 0 (2.13)

Ṫ + ν (∇T )− cT∇2T = 0 (2.14)

where u is the displacement, m = [1, 1, 0]T for two dimensional problems and m =

[1, 1, 1, 0, 0, 0]T for three dimensional cases. In Equation (2.14), cT represents the

thermal diffusivity and we consider convective heat transfer because of cooling effects

that are from increased flow velocity in damage phase. This fluid velocity is coupled
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with pore pressure variations in Darcys law:

ν = −k
η
∇p (2.15)

2.2.2 Rock Damage Model and Microseismic Events

We use a model of rock damage and permeability as proposed by Tang et al. based

on experiments [38, 85]. The model is modified herein to consider continuous stress

relaxation from the peak stress to the residual strength (softening regime). According

to this model, the strain-stress behavior of rock can be divided into an elastic phase

and a damage phase. In the elastic phase there is no damage in the rock, whereas the

rock begins to fail by crack initiation, crack-growth and void-growth when the stress

conditions reach the failure level i.e., they satisfy the failure criterion. To account

for the rock failure due to the change of the stress conditions in the rock, we adopt a

robust elastic damage constitutive model. According to the stress level, the damage

model could be classified into four phases: (1) elastic phase; (2) damage phase due

to compress shear or tensile; (3) cracked phase; and (4) crack close phase. An

elastic-damage mechanics represents the rock degradation by expressing the damage

in terms of a reduction on the elastic modulus as the damage proceeds:

E = (1− d)E0 (2.16)

where d represents the internal damage variable describing the amount of degradation

(crack initiation, micro-void growth and crack propagation) and E0 is the initial rock

modulus. If damage occurs by compressive stress, the damage variable is defined in
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terms of strain, peak stress, and residual compressive strength of the rock as:

d = 1−

[(
fcr−fc
εcr−εc

)
(ε− εc) + fc

]
E0ε

(εc < ε < εcr) (2.17)

d = 1− fcr
E0ε̄

(ε > εcr) (2.18)

where fcr and εcr are the residual compressive strength and strain, and fc and εc are

the peak stress and strain in compressive field. ε̄ is the equivalent strain.

If damage evolves in a tensile stress field, the damage variable is defined using

the residual tensile strength of the rock as:

d = 1− ftr
E0ε̄

(ε > εtr) (2.19)

where ftr and εtr are the residual tensile strength and strain, respectively.

To trace the progress of damage under tensile stress, we introduced a tension

cut-off, T0, for tensile failure because the Mohr-Coulomb failure criterion was

developed based on shear failure and it often overestimates the stress state for rock

failure. The Mohr-Coulomb failure criterion for shear failure can be described as,

F =
σ1 + σ3

2
sinφf −

σ1 − σ3
2

− cf cosφf (2.20)

where σ1 and σ3 are the maximum and minimum principal stresses, respectively;

φf and cf represent the friction angle and cohesion, respectively. The rock failure

criteria are expressed as F < 0 in Equation (2.20) for shear failure and σ3 > −ft for

tensile failure (ft or T0 represents rock tensile strength).

The rock permeability model used also considers altered permeability in the
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elastic and damage phase [38, 85]:

k = k0e
−βd(σii3 −αp) (d = 0) (2.21)

k = ζdk0e
−βd(σii3 −αp) (0 < d ≤ 1) (2.22)

where k0 is the initial permeability, ζd and βd are material constants determined

empirically. Here ζd (ζd > 1) indicates permeability increase by damage. The

parameter βd [Pa−1] in the exponent term is the control parameter for stress

sensitivity of permeability in porous rock.

In the implementation of damage model in finite element method, as the elements

may change from one phase to another, an iterative method is used to update the

elastic modulus and permeability by taking into account such phase changes until

no change occurs at each time step. Therefore, to find the permeability at each

Gaussian point (nodes in the finite element configuration), iterative method is used

to update the permeability in which the new permeability values on each element

are compared with the previous step until a convergence criterion is satisfied. Then,

we update the permeability and march to the next times step.

In this study we skip the process of modeling of MEQ data acquisition and MEQ

event locating (analyzing the P and S waves received by geophones to determine the

MEQ location) [17, 89], and we assume that the final discrete MEQ data cloud is

created already and we use directly the spatio-temporal MEQ cloud (location and

occurrence time of events) in SSBRC method to estimate reservoir hydraulic and

geomechanical parameters. As the monitoring data in SSBRC method, we recognize

both shear and tensile failures as microseismicity events [11, 12, 13], however it is

reported that tensile failures are not easily recorded and MEQ events are mostly

shear failures [10, 11, 12, 14, 15].
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2.2.3 Finite Element Method for Thermo-Poroelasticity

We develop both 2D and 3D finite element program with full poro-thermoelasticity

capability [90]. The 2D (3D) model uses eight-node quadrilateral (hexahedron)

elements for the displacements u, and four-node (eight-node) elements for the pore

pressure p, and temperature T to improve numerical resolution of displacements.

The following variables are approximated using Galerkins method for u, p, and T :

u = Nuũ (2.23)

p = Npp̃ (2.24)

T = NT T̃ (2.25)

where the shape functions for the displacement, pore pressure and temperature are

Nu, Np, and NT , respectively, and nodal variables for displacements, pore pressure

and temperature are ũ, p̃ and T̃ , respectively. Weak formulations are obtained by

substituting Equations (2.23), (2.24), (2.25) to the field Equations (2.12), (2.13),

(2.14). For discretizing the time domain, the Crank-Nicolson type approximation

is applied. The model has been verified using analytical solutions for stress, pore

pressure, temperature, and concentration of solute distributions around a wellbore

[27]. In this work, we consider injection rate boundary condition. This boundary

condition has a type of pressure gradient (Neumann boundary condition) so that

tractions and fluid flux do not have unique solution. Therefore, we use an iterative

method for the traction at the boundary until its value converges. Specifically, we first

obtain the pore pressure value at the wellbore under the assumption of no traction

for the first iteration, and iteratively computed the tractions using obtained pore

pressure values until it satisfies the convergence limit. Full description of coupled
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chemo-thermo-poroelastic finite element formulation and verifications are published

by Zhou and Ghassemi (2009) for the 2D case [90]. In convective heat transfer

computation, we applied Streamline-Upwind/Petrov-Galerkin (SUPG) method to

avoid numerical oscillation [91].

Theory of damage mechanics has been implemented in the finite element code

described above. According to the experimental results [38, 86, 92], stresses show

a rapid decrease which is related to the softening regime after rock failure. We

first performed a number of simulations (of triaxial compression tests) to find the

material parameters for the residual strength which determines the level of softening

in the damage phase. By comparing the strain-stress behavior and permeability

change with experimental data in [38, 86, 92], we selected the optimum parameters

for permeability ζd, βd, and the cohesive strength in Mohr-Coulomb failure criterion.

The overall workflow of the fully coupled geomechanical forward reservoir

simulator is shown in Figure 2.3. This diagram illustrates the procedure of simulating

the coupled process of rock deformation, fluid flow and heat transfer and combining

the governing equations of thermo-poroelasticity and rock damage model (failure

criteria and, damage and permeability model) and then numerical implementation

as a finite element program.
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Figure 2.3: Overall workflow diagram of the fully coupled geomechanical forward
model.

In this work, we use a 2D FEM model with point source injection by quadrilateral

regular mesh with 50 × 50 = 2500 elements (10000 nodes) and the reservoir size of

500m×500m. The developed 2D and 3D coupled FEM model is capable of handling

spatially distributed parameters (heterogeneous distributions) such as permeability,

Youngs modulus, tensile strength, cohesion and friction angle. We assign the spatially

distributed parameters to the nodes therefore 2D model parameter dimension is

10000. We also use a 3D fully coupled FEM model with point source injection by

hexahedron regular mesh with 30×30×15 = 13500 elements (108000 nodes) and the

reservoir size of 750m×750m×370m. So for the 3D model the parameter dimension

is 108000.

The verification and illustration of the developed geomechanical forward model
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under different conditions (e.g. different far-field stress regimes) and investigating

the role of various mechanisms in rock fracture and distributed damage evolution

during stimulation are presented with numerical examples by Lee and Ghassemi

[27, 28, 29, 30].

2.3 Continuous Microseismicity Interpretation with Kernel Density

Estimation

An important property of the EnKF inversion is that the forward and observation

models can be quite general with varying level of complexity. However, the update

equation is designed for continuous random variables (parameters and observations).

As a result, the updates can be applied under various forms of event triggering

mechanisms and failure criteria as long as the random variables representing the

states, parameters and measurements are continuous.

As described before, for geomechanical forward model the MEQ events are

determined by shear or tensile failures generated using the specified failure criterion

(Mohr-Coulomb model with tension cut-off) at the nodes of the FEM mesh,

consequently each MEQ event has its associated location ue and occurrence time

te (u and t denote general location and time respectively). Therefore at each time

step t evaluating the failure criterion at different locations (nodes of the FEM mesh)

in the reservoir identifies the distribution of seismicity clouds. Similarly for the pore

pressure diffusion forward model, the location and occurrence time of the events are

identified by comparing the pore pressure and criticality at each grid block of the

reservoir model.

In practice, the discrete microseismic events identify the location of the passive

seismic sources and are often generated through seismic source inversion methods.

The raw seismic data (collected either from surface or borehole geophones) are

25



inverted to map the location of seismic sources and characterize the associated

uncertainty. In this work, however, we skip the seismic source inversion part and

assume that, after seismic data analysis, the map of observed source (event) locations

is available.

The available seismic observations, however, are of discrete nature since they only

identify the seismic status (active or inactive) of a node in the FEM reservoir model.

The discrete nature of MEQ events introduces a difficulty in implementing inversion

methods that are designed for continuous problems. For gradient-based methods,

the discrete form of MEQ observations complicates the calculation of their gradients

with respect to unknown parameters. On the other hand, while the EnKF does not

require gradient information explicitly, by construction it is formulated for estimation

of continuous variables and observations. To address this issue, we interpret the

MEQ events as continuous measurements using the kernel density estimation method.

KDE is often used for nonparametric approximation of continuous probability density

functions (PDFs). The general idea is to convert the discrete MEQ data (and their

predictions) into a smooth and continuous seismicity density map. For this purpose,

at each time step, we replace each MEQ event/source with a Gaussian kernel function

centered at the event location. By adding up the kernels, we construct a continuous

function over the model mesh that represents the spatial density of the MEQ events.

The procedure for implementing the KDE method is illustrated in Figure 2.4 for a

one-dimensional example. We note that the procedure in Figure 2.4 can be easily

applied to two and three dimensional problems. Mathematically, the continuous

seismicity density map can be written as

s (u) =
1

nMEQ

nMEQ∑
i=1

KMEQ
i (u) (2.26)
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where KMEQ
i (u) = N(uMEQ,Σ) is a Gaussian kernel, nMEQ is the number of MEQ

events at each time step, uMEQ denotes the location coordinate of the MEQ events

(center of the individual Gaussian kernels) and Σ is the covariance matrix of the

Gaussian kernel. The continuous map s(u) represents the seismicity density at

all locations (all nodes of the FEM mesh) in the reservoir and constitutes the

observations for the EnKF update.
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Figure 2.4: Schematic illustration of converting discrete microseismic event
measurements to continuous seismicity density observations in one dimension using
kernel density estimation method. The crosses on the x axis show the reconstruction
of the discrete microseismic events, while the short symmetric curves display the
corresponding Gaussian kernels used to represent each event as a density function
with maximum value at the location of the discrete events. The red line shows the
density of the microseismic events in space as a continuous observation to be used in
the EnKF.
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The Gaussian kernel has the form

KMEQ (u) = N (uMEQ,Σ) =
1

2π|Σ| 12

(
−1

2
(u− uMEQ)T Σ−1 (u− uMEQ)

)
(2.27)

in which the covariance matrix can be specified either globally for all events or locally

(or separately) for individual events. The covariance matrix for the kernel determines

the shape, size and orientation of the Gaussian ellipsoid centered at the microseismic

event location. In this work, we select an isotropic Gaussian kernel for quantification

of the microseismic events and the uncertainty in the MEQ locations. Additionally

the assigned kernels of all events are assumed exactly the same. Therefore the

covariance matrix Σ, is diagonal and all diagonal members (two members for 2D

and three members for 3D) are equal. Therefore, to specify the Gaussian kernel

or the quantification specifications we only need to determine one single parameter

which is the (isotropic) bandwidth h, of the smoothing kernel. The kernel covariance

matrix is as follows,

In 2D case: Σ =

h2 0

0 h2

 = h2I2×2

In 3D case: Σ =


h2 0 0

0 h2 0

0 0 h2

 = h2I3×3

(2.28)

where I2×2 and I3×3 are the identity matrices of the specified dimensions.

We note that, in practice, the values of the bandwidth used for the kernel

functions are identified from the uncertainty in locating the seismic sources from

the raw surface or borehole seismic data. In this work, a simple sensitivity analysis
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revealed that selecting a bandwidth parameter as large as twice the dimension of each

element in the FEM mesh leads to reasonable results. One advantage of the KDE is

that it also provides a convenient procedure to account for the spatial uncertainty in

the location of the events.

For better illustration, the procedure for implementing the KDE method for a

two-dimensional example is shown in Figure 2.5.
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Figure 2.5: Illustrating the continuous seismicity interpretation in 2D. (a) the
individual events in separate plots that make the seismicity cloud of (c). (b)
corresponding density maps of single events of (a) that are made by putting 2D
Gaussian kernel at the location of each events. (d) the seismicity density map
corresponds to the cloud in (c) which is obtained by adding (averaging) all individual
densities of (b).

Taken from a 2D geomechanical example (experiment 2 in Section 4.4.2), Figure
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2.6 shows the evolution of the MEQ cloud at 6 different time steps (called integration

time steps) and Figure 2.7 illustrates the corresponding seismicity density maps

created by KDE-based continuous interpretation through these time steps.
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Figure 2.6: Seismicity cloud evolution in 6 different time steps.

Quantification of microseismicity cloud on the original FEM mesh (or the

original grid block configuration for pore pressure diffusion model) that the

reservoir parameters are assigned to, results in a high resolution seismicity

density and redundancy in observations. As we discuss in Section 3.2, high

dimensional observation or measurement in the EnKF update leads to uncertainty

underestimation and bias in the estimation results. Therefore in Section 3.2.3, we

propose to quantify microseismicity on a coarse mesh (with larger elements or grid
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Figure 2.7: Seismicity density maps created by KDE method corresponding to
seismicity clouds of Figure 2.6.

blocks) which results in a coarse-scale seismicity density map that reduces the number

of measurements.

2.3.1 Consideration of Uncertainty in Event Occurrence Time

As resulted from seismic source location process both event location and

occurrence time are uncertain. In general the MEQ event attributes are location in

space and its associated uncertainty, occurrence time and its associated uncertainty,

magnitude and confidence. We also include the effect of uncertainty in occurrence

time of events, as we already consider the location uncertainty by KDE method

we can also extend KDE to consider occurrence time uncertainty. Therefore we

generalize the idea of MEQ density map both in space and time which represents the

density (probability of occurrence) of each event in space and time, i.e. at the center
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of each Gaussian kernel probability of happening of an event is maximum and the

occurrence probability reduces as we become farther from the center of the kernel.

To incorporate occurrence time uncertainty along with location uncertainty, we

propose firstly to place a 1D Gaussian kernel with the bandwidth of ht on each event

with occurrence time of tMEQ so the time density (partial occurrence) of each event

in each time is determined then we use these newly created MEQ clouds to make

the MEQ density maps by considering the location uncertainty data which discussed

previously. The schematic of this procedure is shown in Figure 2.8.

Since we consider the event occurrence time uncertainty, the associated Gaussian

kernel to make the event density in time is a one dimensional function of time.

Microseismicity density of each individual event in time is defined as

st(t) = N(tMEQ, ht)

N(tMEQ, ht) =
1

ht
√

2π
e
− 1

2

(
t−tMEQ

ht

)2 (2.29)

where the Gaussian kernel bandwidth ht, represents the event occurrence time

uncertainty bound and the event occurrence time is indicated by tMEQ.
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Figure 2.8: The schematic of consideration of event occurrence time in 2D model
using KDE method. The well location is indicated by x mark in the middle of the
field. The MEQ clouds are incremental clouds. Blue dots illustrate the events that
happen in each time step. Red Gaussian curves (st(t) in Equation (2.29)) show the
density of each event in time. For simplified and clear illustration the Gaussian kernel
is placed only for first two time steps.

Since we accumulate the events at each integration step the occurrence time

uncertainty of event should not have significant effect and this approach of data

integration is not very sensitive to occurrence time uncertainty. If we follow the

approach of integrating incremental MEQ events (events that happened between

two integration steps) or we determine more integration times then the effect of

occurrence time uncertainty is considerable in the estimation procedure.

The implemented approach (as the standard event time uncertainty consideration

approach) works for relatively large time uncertainty intervals while the actual event

occurrence time uncertainty interval seems to be significantly lower. Therefore we

also present a slightly modified approach to handle smaller time uncertainties through

refining the time steps in the simulation process.

The event occurrence time uncertainty interval is much less than the interval

considered in the standard approach therefore we need to modify the current
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approach to be able to handle small time uncertainty intervals. For the 1D Gaussian

time Kernels with small bandwidth (time uncertainty) to have effect on the previous

and next time steps the time steps should be refined. So we propose to refine the

time steps in the simulation procedure. We can both do time step refinement at all

time steps (that makes the simulation time really lengthy by increasing the simulation

time by many folds because of so many new refined time steps) or only at integration

steps which we call adaptive time step approach. To implement a more time efficient

approach we propose to apply the time step refinement only at integration steps

(adaptive time step refinement) which still increases the simulation time by a few

folds but it is still more computationally efficient than the full time step refinement.

Generally the proposed (adaptive) time step refinement approach is able to handle

any small time uncertainty interval. Here in this study we implement time step

refinement approach to handle the event time uncertainties (1D time Gaussian kernel

bandwidth) in the order of seconds and milliseconds [93, 94, 95, 96].
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Figure 2.9: The schematic of consideration of event occurrence time in 2D model
using KDE method along with time step refinement. The well location is indicated
by x mark in the middle of the field. The MEQ clouds are incremental clouds. Blue
dots illustrate the events that happen in each time step. Red Gaussian curves st(t),
show the density of each event in time. For simplified and clear illustration the
Gaussian kernel is placed only for one of the time steps as well as the time step
refinement.

In Figure 2.9 the schematic of adaptive time step refinement approach is

presented. The refinement of original simulation time step to refined time steps

are performed only at integration time steps. With this approach we are able to

handle very small time uncertainties in the SSBRC method.

In the process of microseismic source inversion to detect the location and

occurrence time of MEQ events, a main ingredient is earth velocity model which

can be considered as the major source of uncertainty. Since the location and time of

MEQ events are related through velocity model, the uncertainty can be addressed via

either location or time uncertainty. Thus the incorporating of uncertainty (mainly

the uncertainty in velocity model) in SSBRC procedure can be performed through

either event location uncertainty consideration or event occurrence time uncertainty
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[93, 97, 98].

The numerical example will be presented with consideration of event occurrence

time uncertainty in Section 4.4.4.2 and as we expected by adding more uncertainty

to the inversion procedure, the estimated property distribution loses a bit of its

similarity to true property distribution comparing to the case with only event location

uncertainty and also estimation RMSE will increase slightly.

2.4 Discussion of Physical Relationship of Induced Microseismic Events

and Rock Properties

Fracture reactivation or rock failure occurs when the change in pressure and/or

temperature moves the stress state closer to the failure threshold or criteria. The

microseismic event can be the result of intact rock failure (crack or fracture initiation)

or the reactivation of any kind of naturally-occurring or preexisting discontinuity or

weakness such as a natural fracture, fault, joint, or weak bedding plane [99]. This

also should be noted that in fact there is no strictly intact rock and all rocks have

in some way natural weaknesses. In this section we discuss the physical relationship

of the MEQ observations and rock properties and the basis for the SSBRC method

capability to infer rock properties from MEQ data.

In general, change in stress state can be the results of pore pressure change

(injection/production) and/or temperature change (rock expansion/contraction).

For instance cold injection causes condensing in the rock (produces tensile stresses)

which consequently shifts stress state (Figure 2.10) to tensile threshold and leads

to tensile failures. On the contrary hot water injection or warming the reservoir

produces compressive stress and as long as the Mohr circle size is constant there

will not be any failure and it will stabilize the reservoir. However the Mohr circle

will become larger eventually and leads to shear failure. In general compressive
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stress stabilizes the reservoir. Generally thermal effects are very slow and have less

geomechanical effects and for instance in the case of thermal EOR cases failure might

happen after months or years.
 

 

 

 

 

 

 

 

  

  

Cold water injection 

Figure 2.10: Effect of cold water injection in stress state change and rock failure.

Young’s modulus (elastic modulus) is one of the important playing rock properties

in rock failure and MEQ observations. A rock with high Young’s modulus is a

competent rock (e.g. granite) which needs much more stress change for making

the same displacement comparing to a low Young’s modulus rock (e.g. sandstone).

Hence for injecting the same amount of water (same pore pressure change) to the

reservoirs with the same porosity there will be much more MEQ events (because

of more stress) in granite rock comparing to sandstone. High Young’s modulus

rock resists against pore pressure change and produces higher stress which leads

to more MEQ events. Higher (lower) Young’s modulus results in larger (smaller)

Mohr circle and this increases (decreases) the probability of touching the failure

criterion. Change in pore pressure has a significant effect on MEQ generation so the

injection rate affects the rock failure considerably. Permeability has indirect effect

on stress change (through pore pessure change) so MEQ sensitivity with respect to

permeability is not significant. Pore pressure change both causes shift of Mohr circle

and change of its size (comes from coupling of pore pressure and stress).
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Pore pressure increase shifts the Mohr circle to the left and because of the

interchangeable effect of pore pressure and stress (through Navier–Stokes equations),

the principal stresses also change and leads to the change of Mohr circle size. This

fully coupled effects of pore pressure and stress leads to stress state change and

probably rock failure if Mohr circle is close enough to the failure thresholds.

In the presented numerical experiments with the proposed SSBRC method, we

aim to represent the random preexisting distribution of natural weaknesses, fractures

and cracks in the rock by a rock property distribution so we followed the approach in

[26] where the criticality distribution (critical pore pressure) is considered a spatially

random distribution. Therefore in our application we considered the rock strength

properties (tensile strength and cohesion) to be spatially random to represent the

random distribution of preexisting natural weaknesses. Consequently the resulted

MEQ cloud which is generated by the direct effect of rock strength property through

failure criteria will show somehow a random spatial behavior and may not directly

follow the shape of the elastic modulus however it certainly carries the physical effect

of elastic modulus or other rock properties values. The random representation of rock

strength properties leads to spatially random propagation or widely scattered MEQ

events. The randomness of MEQ cloud comes from the randomness of the considered

rock strength distribution (e.g. Tensile strength map).

Rock strength properties like tensile strength T0, cohesion C, and friction angle

φ (or friction factor) which are directly present in the failure criteria can be easily

related to the MEQ distribution. For instance wherever T0 (absolute) value is low

(with the convention of compression being positive, T0 is always negative so low T0

value means T0 close to zero), with a very small pore pressure increase (Mohr circle

shifted to left) or stress increase (Mohr circle becomes larger) Mohr circle will touch

Tensile failure criterion line and failure will happen, while wherever T0 has higher
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(absolute) value the tensile criterion line is far from Mohr circle and change in position

or size of Mohr circle will not cause crossing the tensile failure line. Therefore MEQ

distribution clearly and directly guides us in inferring T0 in the reservoir (Figure

2.11).

In the case of cohesion, lower cohesion takes down the shear failure line so change

in Mohr circle easily makes it touch the shear failure line and produce MEQ event

while higher cohesion bring the shear failure line up and makes it difficult for Mohr

circle to touch it so higher cohesion will result in less shear damage or failure. (Figure

2.11)

In the case of friction angle, by reducing the friction angle (or friction factor) the

shear failure line will become more flat and makes it easier for Mohr circle to touch it

so lower friction angle will result in more MEQ events, on the contrary higher friction

angle will results in less MEQ event, therefore MEQ event distribution (its density

and location of events) will help us identify the friction angle or factor values.

Figure 2.11: A schematic illustration to show the coupled effect of pore pressure
change and stress state change on how the failure can happen (showing two different
initial stress states).
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In the case of Young’s modulus E, Higher E means more competent rock, with

same injection rate or pore pressure increase or injected fluid volume more stress

will build up in higher E (hard) rock comparing to low E (soft) rock so higher E

rock will probably touch failure criteria faster and produce more failures or MEQ

events, therefore the location, time and density of MEQ can be informative about the

elastic modulus of the rock. Based on constitutive equations of thermo-poroelasticity

presented in Equations (2.3),(2.4), change in pore pressure (resulting from fluid

injection) results in stress change in the reservoir.

In the case of permeability, high permeability makes the pore pressure front travel

faster in the reservoir and consequently become higher so high permeability will result

in earlier events away from injection point (not very dense) and low permeability does

not let pore pressure go much farther and results in pore pressure build up leading

to late events (more dense), therefore this MEQ characteristics help us in inferring

permeability distribution in the reservoir.

The conventional model (versus the coupled model) for brittle failure caused by

pore pressure change assumes that total stresses are independent of pore pressure.

Therefore failure type (shear or tensile) in a conventional (uncoupled) model of brittle

failure is determined fully by the initial maximum differential stress magnitude, with

high initial differential stresses inducing shear failure and low differential stresses

leading to tensile failure [100].

The rock strength properties like Tensile strength and Cohesion have much more

noticeable effect on MEQ cloud than Young’s modulus and permeability because

they have very straightforward and direct relation with happening a failure in a

point (through failure criteria which involve Tensile strength and Cohesion). To best

show the effect of each parameter in MEQ cloud we performed an extensive sensitivity

analysis that the final results are shown in Figure 2.12 as a Tornado diagram. As
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shown the parameters are ordered in the diagram based on their effect on the number

of generated MEQ events. For sure the most effective parameter is injection rate

which controls the amount of pore pressure disturbance in the field. The least

effective parameter as expected is permeability. The second most effective parameter

as anticipated in Tensile strength which through failure criterion has direct effect on

happening a failure. The third most effective parameter is Youngs modulus which

its increase leads to more failures and vice versa. To generate the Tornado diagram,

first the model is run for a set of reference parameters then for each parameter the

rest of playing parameters are kept fixed and we change the target parameter by

±10, ±25, and ±50.

Figure 2.12: Tornado diagram of sensitivity analysis of MEQ events with respect to
playing parameters.
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2.5 Motivating Real Field Microseismic Data and Event Triggering

Mechanism

Firstly the developed geomechanical reservoir simulator (by Lee et al) as well

as the developed data inversion or parameter estimation method (SSBRC method)

are intended for enhanced geothermal systems (EGS). The enhanced geothermal

systems and geothermal water circulation systems (utilizing one or two wells for

injecting cold water and producing hot water or steam) are not hydraulically

fractured or stimulated in multiple stages (multiple stage completion) as in wells

in unconventional oil and gas reservoirs or plays hence the usual multiple stage

separation of induced MEQ events in hydraulically fractured oil or gas wells is not

typical in geothermal systems. Examples of real field propagated and scattered

microseismic cloud in EGS as well as oil and gas reservoirs are presented next.

The induced seismicity cloud in the Geysers geothermal field [1] (the world’s

largest geothermal field, located in the Mayacamas Mountains north of San Francisco,

California) is shown in Figure 2.13 where the MEQ events are very diffused and also

covered the domain.
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Figure 2.13: A plan view of Geysers geothermal field. The triangles are the locations
of the seismic monitoring stations and the blue boxes are the locations of some of
the injection wells [1]

In the performed experiments the MEQ clouds more look like (and are intended

to model) the observed MEQ cloud in geothermal systems where the resulted MEQ

cloud is very diffused and scattered unlike the multi-stage hydraulically fractured

unconventional oil and gas reservoirs. Also because of existing highly interconnected

natural fractures in the geothermal reservoirs we usually see a very scattered

MEQ cloud which is the result of a very complex and interconnected fracture

network. In the geomechanical coupled reservoir model the resulting damaged elastic

modulus and permeability basically represent the newly created (induced) fractures,

activated fractures and the fracture propagation, therefore the updated (enhanced)

permeability or damage factor (D) actually reveals the fracture propagation structure

in the reservoir.
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Also it should be noted when the boundary stress anisotropy is low (very close

SH,max and Sh,min), the resulted MEQ will not elongate in any specific direction

and MEQ will be very diffused which is mostly the case in the performed numerical

experiments.

In the performed numerical experiments the purpose is to show the capability

of SSBRC method to infer rock properties from the observed MEQ cloud so the

presented examples are essentially focused on (and modeled as) the areas around the

well and where the MEQ data is available because where MEQ is not observable

estimation performance of the distributed and heterogeneous rock properties by

SSBRC method would not be very promising.

Causes of diffused or scattered MEQ cloud:

• Highly stressed initially, critically stressed reservoir: reservoir initially is in the

critical condition very close to failure and a very slight disturbance will cause

in extensive MEQ cloud

• Extensive natural fractures and preexisting weaknesses in the reservoir

• In geothermal context there is only one well or at most two wells. There

is no staging and the fracture initiation point is only one section. There

are not stages along the well and it does not look like the typical hydraulic

fracturing MEQ data. In geothermal application stimulation is like a single

stage hydraulic fracturing and where in multi-stage hydraulic fracturing each

stage is assigned a single color (as time parameter) while the resolution of MEQ

time is much higher while in the geothermal application there is one stage so

the time color coding has more resolution

• Boundary stresses are very close (small stress anisotropy): this also leads to
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very scattered MEQ data and not elongated in a specific direction

• By the way the presented hydraulic fracturing example is the procedure of

hydraulic injection to all stages in the same time (can be done stage by stage;

to make it more realistic)

The monitored microseismic cloud in the German Continental Deep Drilling site

(KTB) in two fluid injection experiments in 1994 and 2000 are shown in Figure 2.14

and Figure 2.15 which demonstrate very scattered and diffused MEQ events [49, 2].

It should be noted that in 2000 there was a second injection point - due to leakage

(well damage) - that fluid entered the reservoir at 5.3/5.4 km and triggered most of

the events (Figure 2.15).
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Figure 2.14: Induced microseismic events in 1994 experiment (pink section of the
well is the open hole section)
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Figure 2.15: Induced microseismic events in 2000 experiment (pink sections of the
well are the open hole sections)
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3. INVERSE MODELING APPROACH IN GEOMECHANICAL

RESERVOIR MODELS∗

We develop an inverse modeling approach called SSBRC method by adopting

EnKF to integrate seismicity density observation for inference of hydraulic and

geomechanical parameters. By applying SSBRC to the pore pressure diffusion

forward model we infer permeability distribution and by employing SSBRC for the

geomechanical forward model we are able to estimate permeability, Youngs modulus,

tensile strength and cohesion distribution. We also propose some methods to improve

the uncertainty quantification and estimation performance of the SSBRC method.

The proposed EnKF-based inversion framework begins by generating an ensemble of

Ne prior realizations of the reservoir parameter model (e.g. permeability or Youngs

modulus) based on prior information (e.g., using geostatistical simulation methods).

These realizations are used in the pore pressure diffusion forward model or the

coupled FEM forward model to perform a Monte Carlo simulation to predict the

pore pressure or stress distributions in the reservoir and then failure criterion is used

to predict microseismic events. These MEQ cloud predictions are then converted

into continuous seismicity densities, using the KDE method, and used in the EnKF

update equation. The major computational cost of the method is related to the

forecast or prediction step; however, EnKF can be conveniently parallelized to speed

up the computations. The computations are implemented using the pore pressure

diffusion forward model or the FEM geomechanical forward model and a parallel

EnKF algorithm with MATLABs Parallel Computing Toolbox [101]. In addition,

∗Part of this chapter is reprinted with permission from “Inference of permeability distribution
from injection-induced discrete microseismic events with kernel density estimation and ensemble
Kalman filter” by Mohammadali Tarrahi and Behnam Jafarpour, 2012. Water Resources Research,
48, Copyright 2012 by John Wiley and Sons.
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an ensemble of perturbed observations is generated using a zero-mean Gaussian

error distribution with a variance value that is obtained through sensitivity study.

The main steps involved in the implementation of the proposed SSBRC method are

summarized as follows. (The details of SSBRC algorithm is also depicted in Table

3.1)

1. Convert discrete microseismic data (measurements) into quantified continuous

seismicity density maps using KDE method (Section 2.3).

2. Generate an ensemble of rock property models from available prior information

(e.g., using geostatistical simulation techniques). Repeat steps 3 – 5 until all

measurements are processed.

3. For the prediction step, using the developed FEM geomechanical numerical

simulator (the pore pressure diffusion forward model), forecast the stress

distribution (pore pressure distribution) for each member of the most recently

updated ensemble realizations (Section 2.1 or 2.2). This step is implemented

in parallel.

4. Predict the microseismic events for each realization by the failure criterion

(Section 2.2.2) and convert the results into seismicity density maps using the

KDE approach (Section 2.3).

5. Use the EnKF analysis equation with the seismicity density observations from

(1) to update the ensemble of reservoir property models (Section 3.1).

The details of each of these steps are discussed next.
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3.1 Estimation with Ensemble Kalman Filter

The classical Kalman filter [102] is a sequential state estimation method for

characterization of the first and second statistical moments of the states posterior

distribution. Hence, the filter fully characterizes the posterior distribution of

linear state-space systems that are characterized with jointly Gaussian distributions

[102, 103]. The implementation of the filter involves two steps: (1) a forecast step, in

which a linear state propagation model is used to predict the mean and covariance of

the states at the next time step; and, (2) an analysis step that updates the mean and

covariance of the states using the dynamic observations and the forecast states mean

and covariance. These two steps are repeated sequentially until all observations are

assimilated.

For nonlinear dynamical systems, the EnKF provides a practical approximation

of the Kalman filter that has been successfully applied to many applications

ranging from hydrology, meteorology and oceanography to groundwater and oil

reservoir model calibration (see, [55, 64, 69] and references therein). The sequential

formulation of the EnKF distinguishes a forecast (or prior) PDF for the states

(augmented vector of geomechanical reservoir parameter and continuous seismicity

response xt) p [xt|y0:t−1] , conditioned on all measurements y0:t−1 taken through time

t−1, and an updated (or posterior) density p [xt|y0:t] conditioned on all measurements

y0:t (continuous seismicity response maps) taken through time t. To compute

the cross covariance between predicted observations and parameters, the original

state vector is augmented with uncertain model parameters (e.g. permeability,

Youngs modulus and tensile strength distribution) and predicted measurements [55].

This state augmentation approach can be used to update states and parameters

simultaneously. Alternatively, one can only update the uncertain parameters and
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derive the updated states by solving the flow equations (or coupled flow, heat and

geomechanics equations) with the updated parameters. This is the approach taken

in this work. The measurements yt consist of seismicity density map st (u), defined

in Equation (2.26) that represent microseismic measurements in space at time t.

Since the general multivariate PDFs and their statistical moments are difficult

to characterize, the EnKF uses a Monte Carlo approximation approach by sampling

an initial set of realizations from the high-dimensional prior PDF of the uncertain

properties to form an ensemble of reservoir states (and/or parameters). These

property maps are then used to generate an ensemble of state and measurement

predictions that can be used to compute a sample (prior) covariance matrix for the

EnKF update step as described below.

The forecast step in the EnKF can be written as

xjt|t−1 = ft

(
xjt−1|t−1, zt−1,w

j
t−1

)
j = 1, ..., Ne (3.1)

where ·|t represents conditioning on observations up to time t; zt−1 is a vector

of known (nonrandom) time-dependent boundary conditions and controls (such as

injection rate); and wj
t−1 is a vector of random variables that accounts for modeling

errors. The function ft (·, ·, ·) represents the state propagation equation from time

t − 1 to time t. The notations j and Ne are used to indicate the realization

index and total number of realizations, respectively. In our application, Equation

(3.1) represents the solution of the coupled thermo-poroelastic equations (or pore

pressure diffusion equation) that describes the time evolution of pore pressure,

stress and temperature distributions for each individual realization j of the ensemble

reservoir parameter. At time steps when MEQ data are available, the EnKF analysis

equation is used to update the reservoir property realizations using the gain matrix
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and the misfit between predicted and observed seismicity density maps for each

realization. At the update step we use an augmented state vector consisting of

spatially distributed reservoir property (parameters to estimate) and realizations

of the predicted continuous seismicity density map. After each update we apply a

confirmation step [65] by forecasting the future states and predictions from the initial

time step with the updated parameters. We repeat the sequence of prediction and

update steps until all measurements are integrated.

For a model with Nb nodes (or grid blocks), each reservoir parameter realization

mj and its corresponding microseismicity density response sj are vectors of size

Nb × 1. In this work, the reservoir property models are jointly Gaussian random

fields that are generated using the sgsim [104] geostatistical simulation technique.

The augmented state vector for this case is of the form

xj =

mj

sj

 j = 1, ..., Ne ⇒ X =
[
x1 x2 · · · xNe

]
(3.2)

The EnKF analysis equation that is used to update each reservoir property realization

can be expressed as

xju = xjf + K
(
yj −Hxjf

)
K = Ce

xH
T
(
HCe

xH
T + Cd

)−1 (3.3)

where K is the Kalman gain matrix and the subscripts u and f denote updated

and forecast quantities while the superscript e indicates ensemble calculated

statistics. The notations Ce
x and Cd represent the states sample covariance and

observation covariance matrices, respectively. The measurement matrix HNb×2Nb =

[0Nb×Nb|INb×Nb ], where 0Nb×Nb and INb×Nb are zero and identity matrices of the

specified dimensions, respectively, acts as a selection operator that extracts the
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predicted measurement components from the augmented state vector. The notation

yj is used to represent the jth realization of the perturbed observations. The states

sample covariance Ce
x can be computed from the ensemble of state vectors

Ce
x =

1

Ne − 1

Ne∑
j=1

(
xjf − x̄jf

) (
xjf − x̄jf

)T
x̄jf =

1

Ne

Ne∑
j=1

xjf

(3.4)

where x̄jf is used to denote the ensemble mean of the forecast states (that is,

the reservoir property distribution from the previous step and the corresponding

microseismic response forecasts). In the EnKF implementations, the covariance

matrix in Equation (3.4) need not be constructed explicitly and the update can be

applied using its low-rank representation though a compact SVD implementation.

The covariance matrix in Equation (3.4) contains the covariance information about

the reservoir parameter field as well as the cross covariance information between

the reservoir parameter and (microseismic) measurements. It is the latter cross

covariance that allows the estimation of uncertain geomechanical reservoir parameter

distributions from microseismic observations. This relation bears similarity with

the use of covariance and cross covariance in the kriging/simulation [104, 105]

and cokriging/cosimulation [106, 107, 108, 104] methods, respectively. Note that

in Equation (3.3), the term
(
yj −Hxjf

)
is the misfit between the jth perturbed

observation and prediction, which in this case represents the observed and predicted

continuous map of seismicity density. Several remarks regarding the update equation

for our problem will follow.

In addition to nonlinearity in the forward coupled geomechanics and flow model,

a complexity of the measurement model in our application is the nonlinear failure
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criterion (i.e., hard truncation) that is used to convert the continuous stress

distributions to discrete microseismic events. The Gaussian kernel that we apply to

convert the MEQ predictions to continuous maps of seismic density makes the data

more amenable to processing with the EnKF. However, the relationship between the

magnitude of stress and the resulting seismicity map remains complex.

Considering the dynamic alteration of reservoir geomechanical parameters

(Young’s modulus and permeability) in our developed coupled FEM simulator based

on the damage and permeability model (in Section 2.2.2), in the SSBRC inverse

modeling approach we estimate geomechanical properties of the intact (initial or

undamaged) rock. It is also consistent with our EnKF data integration approach with

confirmation step [65] that for each EnKF analysis step we run the forward model

from the beginning (initial state) by updated or estimated intact rock properties.

Therefore to obtain the properties of the final stimulated or damaged reservoir rock

we just need to run the geomechanical simulator with the estimated intact rock

properties.

In our EnKF implementation, to perturb the observations, we add an uncorrelated

realization from a Gaussian random noise, with a specified observation covariance

matrix Cd, to the value of the observed quantities. We assume that the observation

error standard deviation (Std) is proportional to the value of the observed quantity

and compute the diagonal elements of the observation error matrix as

σ2
k =

(
σmin +

(σmax − σmin) (yk − ymin)

(ymax − ymin)

)2

, k = 1, 2, ..., Nb (3.5)

where σ2
k is the observation variance at the kth node or grid block (the kth diagonal

entry for the observation covariance matrix), σmax and σmin are the minimum and

maximum standard deviations specified for the observations, respectively. The
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notation yk represents the observed seismicity density at location k while ymin, ymax

represent the minimum and maximum observed values of the seismicity density,

respectively. The realization j of the perturbed observation at location k, can then

be written as

yjk = yk + εjk, j = 1, 2, ..., Ne

εjk ∼ N
(
0, σ2

k

) (3.6)

In this work, we assume an uncorrelated Gaussian observation error with zero mean

and standard deviation obtained from Equation (3.5). We note that other methods

for generating the perturbed observations may also be considered. In particular in

Section 3.2.2 as one of the methods to improve uncertainty quantification of SSBRC,

we first generate perturbed observations by perturbing the kernel bandwidth and

given the large dimension and the spatial correlation that may exist between the

observation errors, we then propose to assimilate the resulting observations in a

low-rank subspace defined by the left singular vectors of the ensemble observations

perturbations matrix in a similar way to Kepert [109].

The given SSBRC formulations here are based on the assumption of estimating

one of the reservoir properties distribution (assuming one property unknown and the

rest known) which can be simply extended to simultaneously estimating more than

one reservoir property distribution by only augmenting reservoir parameter vectors

in the EnKF state vector.

To generate the ensemble of reservoir parameter realizations, we used

a variogram-based geostatistical simulation method with specified variogram

parameters. The sgsim algorithm [104] was used to implement the geostatistical

simulations. In real applications, the number of realizations is typically determined

through a trade-off between available computational resources and the desired

statistical accuracy in computing the required sample statistics. For large-scale
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problems where the number of realizations is limited, practical considerations such

as localization or local analysis [110] have been proposed to avoid inaccurate updates

due to spurious (nonphysical) correlations and to reduce the possibility of an

ensemble collapse. As the results of the numerical experiment in Section 4.2 and 4.4

show, the proposed SSBRC method with standard EnKF results in severe ensemble

spread underestimation which will be resolved by proposed methods in section 3.2.

In the examples that follow, we implement the EnKF algorithm with Ne = 100 and

do not apply any localizations.

The detailed steps of SSBRC method with parallel EnKF algorithm is shown in

Table 3.1.

Parallel EnKF Pseudo Code

1: Generate Ne initial parameter (mj) realizations

2: Generate perturbed observations (yj) from true observation (based on Cd)

3: For ti = 1 to tN do (integration time steps)

4: Par-For j = 1 to Ne do (run in parallel on different available cores)

5: Initialize the geomechanical simulator

6: Write the jth realization (mj) as the reservoir parameter

7: Run simulator from beginning until current integration time (corresponds to ti)

8: Generate the corresponding seismicity cloud (Sj)
9: Use KDE to convert seismicity cloud (Sj) to seismicity density (sj)

10: End Par-For

11: Calculate x̄j
f , Ce

x , K

12: Update realizations by EnKF analysis equation

13: End For

ti = integration time step index which corresponds to integration time

tN = the total number of integration time steps (in this study = 6)

Par-For = parallel For loop which executes its underlying commands in parallel

Sj= the simulated seismicity cloud corresponding to each mj

Table 3.1: Parallel EnKF algorithm for SSBRC.
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The full forward model simulator that relates the hydraulic or geomechanical

parameter distribution to the microseismicity density map consists of geomechanical

simulator (relating geomechanical parameter distribution to microseismicity cloud)

and microseismicity continuous interpretation (relating microseismicity discrete

cloud to microseismicity continuous density map). Figure 3.1 shows the schematic

of the full forward model. In the propagation (Monte Carlo simulation) step of

the EnKF procedure we run the full forward model for all ensemble members

(geomechanical parameter samples). For the pore pressure diffusion forward model

that relates permeability distribution to MEQ cloud the same full forward model

including MEQ continuous interpretation is constructed.

Microseismicity density map 
Geomechanical parameter 

distribution 

Microseismicity cloud 

Geomechanical 

simulator 

Microseismicity 

continuous 

interpretation 

Full Forward Model 

Figure 3.1: Full forward model relating geomechanical parameter distribution to
microseismicity density map.

Figure 3.2 shows the schematic of the parallel EnKF pseudo code. We perform

full forward model of the parameter ensemble (propagation step) in parallel.

Since running the forward model is completely independent for different parameter

samples, we are able to run some samples simultaneously on the available cores of

the machine. It should be noted that Figure 3.2 represents the estimation procedure

in each integration step. For instance in the first integration step, the first column of
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Figure 3.2 is the initial ensemble of parameters and after integration of the first true

seismicity density map, we will obtain the first updated ensemble (the last column

of Figure 3.2) which will be the input ensemble (the first column of Figure 3.2) for

the second (next) integration step.

True seismicity density 

(observation to be integrated) 

𝑑𝑜𝑏𝑠 = 𝐲 

True parameter distribution 

(parameter to be estimated) 

𝑚𝑡𝑟𝑢𝑒 

Misfit with 

perturbed true 

density 

⋮ ⋮ ⋮ 

(𝐲𝑗 − 𝐬𝑗) 

Updated ensemble 

⋮ 

Analysis step 

(using EnKF 

Analysis 

equation) 

Mismatch of seismicity density 

Simulated Seismicity density 

responses 

⋮ ⋮ 

Full Forward 

Model 
𝐦𝑗 

𝑗 = 𝑁𝑒 

⋮ 

𝑗 = 1 

𝑗 = 2 

Ensemble of parameter 

distributions 

𝐬𝑗 

Calculating state covariance (𝐂𝐱) 

and Kalman Gain (𝐊) 

Propagation step 

(Monte Carlo Simulation) 

Analysis step 

Figure 3.2: EnKF procedure (in each integration time step).
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3.2 Improved Uncertainty Quantification

In this section we focus on quantification of uncertainty that is a key concept

of application of the EnKF data assimilation approach. It is well known that for

large scale datasets, such as seismic data [72] and high resolution spatial map of

seismicity density, application of the standard EnKF without taking into account

the spatial correlation in the observations can lead to underestimated solution

uncertainty or ensemble spread. Underestimation of ensemble spread is not favorable

as it can introduce unrealistic confidence in potentially inaccurate future predictions

and decreases the likelihood of capturing the true behavior of the reservoir. High

dimensional observation also leads to expensive computational load in updating

scheme of EnKF [55]. In this situation, severe underestimation of the prediction

uncertainty can results in biased forecasts and an ensemble collapsing into a single

realization.

The standard SSBRC implementation was based on generating seismicity density

maps on the same grid system or mesh structure that was used for describing the

hydraulic or geomechanical property distributions (Section 2.3). A byproduct of this

implementation is that it artificially increases the data resolution and, hence, the

number of data that will be assimilated during the EnKF update step. As another

significant byproduct of this preprocessing step, the resulting maps can exhibit

spurious spatial correlations in the observed data and create unrealistic correlations

between rock properties and microseismic data, thereby degrading the performance

of the EnKF update.

We first show the estimation results for the SSBRC approach using the standard

EnKF algorithm to illustrate the underestimation of ensemble spread (several

numerical examples which are reported in Section 4.2 and 4.4 confirm it), and
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then propose three methods to resolve this issue. The first and simplest approach

to overcome ensemble spread underestimation is to increase the observation error

artificially by using a large variance for the observation noise. In the other two

methods, we reduce the number of observations first by using a spectral projection

(spectral dimension reduction) approach and second by coarsening the seismicity

density map (spatial dimension reduction). In projection approach, the ensemble

of perturbed observations are projected to a reduced subspace that is defined by

the leading left singular vectors of the observation matrix. This step is aimed at

decorrelating the original observations of the seismicity map. The EnKF update is

then used to assimilate the resulting low-dimensional description of the data. In

the second approach, we use a coarse grid system for interpretation of the seismic

events. This approach is very similar to the original SSBRC implementation except

that it uses a coarse-scale grid system or mesh structure in KDE-based continuous

seismicity interpretation in Equations (2.26),(2.27) to make lower resolution density

maps. Then the reduced dimension or coarse seismicity density maps are used in

the EnKF update equation. Additionally in general, observation space dimension

reduction (either spectral or spatial) improves the computational efficiency of the

analysis step of the EnKF.

We present the estimation results for these three methods following an

introductory example to illustrate underestimation of uncertainty when the standard

EnKF is used with large-scale seismicity density maps as observed data (in Section

4.2 and 4.4).

3.2.1 Inflated Observation Error Variance

The simple way to reduce the underestimation of ensemble variance is to increase

observation error variance. The effect of this remedy is equivalent to damping the
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EnKF updates, the term K
(
yj −Hxjf

)
in Equation (3.3) or reducing the weight

of observations (or Kalman gain, K). To do so, we increase σmin and σmax in

Equation (3.5) which leads to diminishing the effect of seismicity density observation

in the EnKF update and finally results in preserving the ensemble spread during

data assimilation. While the level of noise considered goes beyond most practical

situations, this provides a simple way to improve the underestimation effect as shown

in Section 4.2 and 4.4. We also summarize the results from several experiments with

increasing level of observation error variance. From the performed experiment results

it is clear increasing the observation error variance can improve the underestimation

effect observed in the standard EnKF. However, a main drawback of this approach

is that it is not clear how the introduction of significant noise to the observed

quantities will generally impact the quality of the EnKF update beside the damping

effect. Hence, we consider two other alternative methods that do not corrupt the

observations.

3.2.2 Reduced-Order Projection

The EnKF updating scheme particularly with high-dimensional observation can

suffer from the problem known as filter divergence [111], resulting from rank issues

[112] and estimation uncertainty [58]. To reduce these problems, Evensen [55, 112]

introduced dimension reduction techniques in an EnKF setting. Skjervheim et al. [72]

also suggested an alternative EnKF updating using well-known dimension reduction

techniques.

In this section we first propose a new method for generating an ensemble of

perturbed observations then we use a dimension reduction method to reduce the

number of observations integrated in EnKF update equation. The proposed method

of perturbing seismicity observation is completely different than the typical procedure
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of adding Gaussian random noise to the observation (in Section 3.1). To exhibit and

finally capture the spatial correlation or redundancy of observation in more efficient

fashion, we propose to generate each perturbed observation realization by perturbing

the bandwidth of Gaussian kernel. In the standard observation perturbation method

explained in Section 3.1, we perturb the observed seismicity density map however

here we use the observed seismicity cloud and generate perturbed observations by

perturbing the kernel bandwidth in KDE based quantification.

After converting the discrete microseismic measurements to continuous seismicity

density maps using Gaussian kernels, the resulting observations exhibit strong spatial

correlations. Hence, this correlation (or redundancy) should either be taken into

account during the update or should be removed from the data. To remove the

correlations in the observations, we project the ensemble of perturbed observations

onto a low-dimensional subspace defined by the leading left singular vectors of

the observation matrix [109]. During the EnKF update, we use the transformed

observations (after projection to the mentioned subspace) for data assimilation. To

implement the update, the predicted observations must also be projected onto the

same subspace. The procedure is described below.

In the projection approach, at each integration step we first choose a kernel

bandwidth h, and its standard deviation σh, and then to make each perturbed

observation realization, we individually perturb kernel bandwidth h, for each MEQ

event of the true observation using a Gaussian distribution as below:

hji ∼ N
(
h, σ2

h

)
; j = 1, 2, ..., Ne; i = 1, 2, ..., nMEQ (3.7)

where Ne and nMEQ are the number of realizations and the number of MEQ

events at the specified integration step, respectively. Superscript j, and subscript
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i, indicate realization index and MEQ event index, respectively. Therefore, the jth

perturbed observation realization yj is made of a set of perturbed bandwidths hji

(i = 1, 2, , nMEQ) as follows:

yj =
1

nMEQ

nMEQ∑
i=1

KMEQ
i

(
u;hji

)
(3.8)

Equation (3.8) is the same as Equation (2.26) but for the Gaussian kernels

KMEQ
i

(
u;hji

)
, which have different bandwidths. Afterwards we make the perturbed

observation ensemble as:

Y =
[
y1 y2 · · · yNe

]
(3.9)

To project the observation to a lower dimension space we take the SVD of Y to

obtain the matrix of eigenvectors which is the projection matrix U. Columns of U

are eigenvectors spanning the space made by Y. A finite number of the leading left

singular vectors of Y form a low-dimensional subspace defined by columns of the

matrix U that accurately approximate each observation realization. Since Y has a

maximum rank of Ne, the maximum dimension of the transformed observations is

Ne. To reduce the dimension of the observation space, non-leading columns of U

can be truncated. The truncation number ntrunc varies in the range 1 to Ne. The

projected perturbed observation ensemble Yp is calculated as

Yp = UT
truncY

Utrunc =
[
u1 u2 · · · untrunc

]
U =

[
u1 u2 · · · uNe

] (3.10)

where uj is the jth eigenvector. We also apply the same projection to the predicted

seismicity density maps. The ensemble of predicted seismicity density is made by
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the same kernel band h.

S =
[
s1 s2 · · · sNe

]
(3.11)

where sj is the jth simulated seismicity density map which is made of jth simulated

seismicity cloud Sj. The projected ensemble of predicted seismicity density maps is

then calculated as:

Sp = UT
truncS (3.12)

The resulting observed and predicted data for the EnKF update step are Yp and

Sp. It should be noted that projection method has two tuning parameters; kernel

bandwidth standard deviation σh, and truncation number ntrunc, and the observation

error standard deviation parameters σmin and σmax are no longer needed.

Application of this method to improve uncertainty quantification performance

of SSBRC is shown in Section 4.2 and 4.4 by numerical examples. As we will

see, reduced-order projection of seismicity density observation both preserves the

ensemble spread and improves the computational efficiency.

3.2.3 Coarse-Scale Microseismicity Density Map

Another approach to reduce the dimension of the seismicity map is to use a coarse

scale description. This approach uses a coarser scale grid system or mesh structure

to quantify the seismicity observations. The number of observations is equal to the

dimension of seismicity density map. To reduce the dimension of the seismicity

density map (number of observations to integrate) which is the major reason of the

ensemble spread underestimation, we can build the continuous function of seismicity

density on a coarser mesh or grid system ured, instead of the original FEM fine mesh

(or original fine grid block configuration for pore pressure diffusion forward model) u,

in Equations (2.26),(2.27). So we only need to evaluate continuous seismicity density
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map on a new coarser grid system. In this work (in 2D experiments) the original mesh

configuration of model is square with 100 nodes (or grid blocks) at each side NX ,

that results in 10000 nodes (or grid blocks) or seismicity density observation values

at u. The coarse-scale mesh (or grid system) is assumed to have NX,red nodes (or

grid blocks) at each side which leads to N2
X,red total nodes (grid blocks) or seismicity

density observations at ured. In SSBRC with coarse-scale seismicity density, we use

a typical range of 5% to 10% for observation error standard deviation.

The result of sensitivity analysis of SSBRC performance with respect to different

grid sizes (different number of observation) is presented in Section 4.2 and 4.4 The

results demonstrate that while the estimation quality in terms of reservoir parameter

map is not affected, the estimation variance is severely underestimated when a large

number of correlated observations in a high resolution map is used. The results

suggest that the information content of the high resolution map does not provide

significant additional details in estimating the reservoir geomechanical parameter.
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4. NUMERICAL EXPERIMENTS FOR GEOMECHANICAL

RESERVOIR MODELS∗

In this chapter we present several numerical examples to show that the

distribution of the MEQ events (their source locations) can be used to infer the

spatial distribution of the reservoir parameter field. In this work, we have assumed

that an interpretation of the microseismic data (through seismic source inversion)

in some preprocessing step provides a spatial map of the seismic event locations

and then we use the proposed KDE-based continuous interpretation to generate the

seismicity density map. Therefore for a reservoir model with Nb nodes (or grid blocks

or Gaussian points), at each update step, a vector of Nb observations of seismicity

density values is assimilated. The dimension of reservoir parameter vector is also Nb.

In this section we present the results of applying SSBRC to both pore pressure

diffusion forward model and geomechanical forward model. The estimation results of

homogeneous and heterogeneous 2D and 3D reservoir models in different settings are

presented. We first present the application of standard SSBRC and its estimation

performance and how it leads to ensemble spread underestimation and then we apply

the proposed methods of improved uncertainty quantification along with SSBRC to

resolve the issue of spread underestimation.

4.1 Description of Experimental Setup: Pore Pressure Diffusion

In this section we present the results of SSBRC application to single phase

pore-pressure diffusion forward model (finite difference numerical modeling with

∗Part of this chapter is reprinted with permission from “Inference of permeability distribution
from injection-induced discrete microseismic events with kernel density estimation and ensemble
Kalman filter” by Mohammadali Tarrahi and Behnam Jafarpour, 2012. Water Resources Research,
48, Copyright 2012 by John Wiley and Sons.
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Eclipse [77]) and we also demonstrate the results of applying improved uncertainty

quantifications methods for resolving ensemble spread underestimation. We present

three sets of experiments covering a two-dimensional (2D) homogeneous and

heterogeneous reservoir model, and a three-dimensional (3D) heterogeneous reservoir

model. For the 2D example, we consider the estimation of a homogeneous and a

heterogeneous permeability model and show that the distribution of the MEQ events

can be used to infer the uniform permeability value and the spatial distribution of the

permeability field. Our second experiment is based on a 3D reservoir configuration

with a heterogeneous permeability model. In these experiments, one water injection

well is located at the center of the field and the boundaries are closed to flow (noflow

boundary conditions). The injection-induced MEQ events for this injection well

are used to estimate the permeability in the reservoir. The 2D examples consist of

100 × 100 discretized models, leading to Nb = 10000 grid blocks. In this work, we

have assumed that an interpretation of the microseismic data (through seismic source

inversion) in some preprocessing step provides a spatial map of the seismic event

locations. Therefore, at each update step, a vector of 10000 observations of seismicity

density values is assimilated. In homogeneous 2D model we estimate one single

parameter (the value of uniform permeability) from 10000 seismicity observations

and in heterogeneous 2D model we estimate 10000 parameters (spatial permeability

distribution) from 10000 seismicity density observations. In the 3D example, the

reservoir is discretized into a 50 × 50 × 30 (Nb = 75000) grid configuration. Also

in this case, one injection well is located at the center of the domain, which is

perforated throughout the entire thickness of the formation. The source locations of

the MEQ events throughout the 3D domain are used to estimate the heterogeneous

permeability distribution.
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4.2 Results and Discussion

We present and discuss the results of applying our methodology to the

experiments described above. We present the results in terms of the estimated

property maps and the ensemble statistics prior to and after data integration.

As is common in ensemble data assimilation, we use the evolution of reservoir

parameter estimation root-mean-square error (RMSE) and the ensemble spread

(Sp) as performance measures. These measures are computed in each integration

step using the following equations:

RMSE (m) =
1

Nb

Nb∑
i=1

√√√√ 1

Ne

Ne∑
j=1

(mi,j −mi
true)

2
(4.1)

Sp (m) =
1

Nb

Nb∑
i=1

√√√√ 1

Ne

Ne∑
j=1

(mi,j −mi
mean)2

mi
mean =

1

Ne

Ne∑
j=1

mi,j

(4.2)

where Nb is the number of parameters (same as number of nodes or grid blocks here),

Ne is the number of realizations and mi,j is the ith parameter of realization j. We

plot the ensemble spread as a percentage of the initial ensemble spread.

4.2.1 Experiment 1: 2D Heterogeneous

In this section, we apply SSBRC to a 2D pore pressure diffusion reservoir model

with heterogeneous permeability distribution. The 2D model has a 100 × 100 grid

block structure (10000 grid blocks) and the permeability field is a heterogeneous

parameter. There is only on water injection well at the center of the field. The

true log-permeability distribution is shown in Figure 4.1b. In this experiment the

dimension of the parameter to estimate and seismicity density observation are both
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equal to 10000. An uncorrelated Gaussian random distribution is also assumed

for criticality map shown in Figure 4.1c. Other specifications of the true model

are illustrated in Figure 4.1 including the pore pressure distribution in the field

through stimulation period and the MEQ cloud observation which is generated by

comparing pore pressure distributions and the criticality map. Using SSBRC we

assimilate MEQ cloud observation, Figure 4.1d, (after quantifying by KDE method)

by EnKF update equation to infer heterogeneous log-permeability field, Figure 4.1b.

The stimulation period is 216 (min) and we specify 6 integration steps to assimilate

MEQ observations. The MEQ density map is constructed on the original fine grid

system and the observation error Std range is the typical range of 5% to 10%.

In the following figures in this section, the extensive estimation results of SSBRC

are presented. Figure 4.2 shows the result of updating the permeability ensemble

in terms of ensemble mean throughout 6 integration steps. It is seen that the

estimated ensemble mean is becoming more similar to the true permeability map

in Figure 4.2a by assimilating MEQ observations in time. The initial ensemble

(almost uniform initial ensemble mean in Figure 4.2b) is completely uninformative

about true permeability map, Figure 4.2a, however after MEQ data assimilation the

final ensemble mean, Figure 4.2h, is very similar to the true map. Therefore SSBRC

proves its suitability for heterogeneous permeability estimation from MEQ data.

The performance measures of SSBRC estimation procedure are also shown in

Figure 4.3. The continuous reduction of estimation RMSE, Figure 4.3a, shows the

success of SSBRC in estimating permeability distribution. The final RMSE value is

almost half of initial RMSE. The ensemble spread is plotted in Figure 4.3b which

shows that almost 90% of the initial ensemble spread is lost through estimation

procedure. This very low final ensemble spread (10%) shows severe ensemble spread

underestimation. This uncertainty quantification issue will be resolved by applying
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(a) pore-pressure distribution 

   
(b) true log-permeability map (c) criticality map (d) MEQ cloud 

Figure 11: Microseismicity cloud generation in a two-dimensional model with heterogeneous permeability: (a) 

snapshots of diffusive pore pressure distributions at different time steps  (   ), (b) the true log-permeability 

distribution, (c) spatially uncorrelated Gaussian (white noise) rock criticality  ( ), and (d) the cloud of 

microseismic events generated by comparing rock criticality with pore pressure distributions at different time steps. 

 

In the following figures in this section, the extensive estimation results of SSBRC are presented. Figure 

12 shows the result of updating the permeability ensemble in terms of ensemble mean throughout 6 

integration steps. It is seen that the estimated ensemble mean is becoming more similar to the true 

permeability map in Figure 12.a by assimilating MEQ observations in time. The initial ensemble (almost 

uniform initial ensemble mean in Figure 12.b) is completely uninformative about true permeability map, 

Figure 12.a, however after MEQ data assimilation the final ensemble mean, Figure 12.h, is very similar to 

the true map. Therefore SSBRC proves its suitability for heterogeneous permeability estimation from 

MEQ data. 

 

Figure 4.1: Microseismicity cloud generation in a two-dimensional model with
heterogeneous permeability: (a) snapshots of diffusive pore pressure distributions at
different time steps p(u, t), (b) the true log-permeability distribution, (c) spatially
uncorrelated Gaussian (white noise) rock criticality C(u), and (d) the cloud of
microseismic events generated by comparing rock criticality with pore pressure
distributions at different time steps.
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(a) true log-permeability map (b) 

   
(c) (d) (e) 

   
(f) (g) (h) final estimated ensemble mean 

Figure 12: estimating heterogeneous permeability by SSBRC. The evolution of the estimated ensemble mean 

through integration steps.  

 

Figure 13 shows the estimation result in terms of one realization. The evolution of an individual 

permeability realization or sample is shown in this figure. As we can see again, SSBRC is able to update a 

dissimilar initial permeability realization, Figure 13.b, to a final estimated realization, Figure 13.h, which 

is quite comparable to the true permeability map, Figure 13.a. 

 

 

 

 

 

 

Figure 4.2: Estimating heterogeneous permeability by SSBRC. The evolution of the
estimated ensemble mean through integration steps.
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the proposed methods of Section 3.2 and the new estimation results will be presented

in experiment 3, Section 4.2.3.
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(a) estimation RMSE (b) ensemble spread 

Figure 14: SSBRC performance measures in estimating 2D heterogeneous permeability field. 

 

The other representation of ensemble spread is the standard deviation (Std) map of the ensemble which its 

evolution in integration steps is shown in Figure 15. By assimilating the MEQ data, the spread of the 

permeability ensemble decreases that results in lowering the ensemble Std map. Figure 15 shows constant 

reduction of ensemble spread. As Figure 15.g represents the final estimated ensemble Std is very low that 

again demonstrates the ensemble spread underestimation of SSBRC with high dimensional observations 

(MEQ density map on original fine grid system). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: SSBRC performance measures in estimating 2D heterogeneous
permeability field.

The other representation of ensemble spread is the standard deviation (Std) map

of the ensemble which its evolution in integration steps is shown in Figure 4.4. By

assimilating the MEQ data, the spread of the permeability ensemble decreases that

results in lowering the ensemble Std map. Figure 4.4 shows constant reduction of

ensemble spread. As Figure 4.4g represents the final estimated ensemble Std is very

low that again demonstrates the ensemble spread underestimation of SSBRC with

high dimensional observations (MEQ density map on original fine grid system).

We also performed examples of 2D homogeneous case (not presented here) and

SSBRC showed successful performance in estimating homogeneous parameter from

MEQ data as well.

4.2.2 Experiment 2: 3D Heterogeneous

In this section we apply SSBRC to a 3D pore pressure diffusion reservoir model

with heterogeneous permeability distribution. The 3D model has a 50× 50× 30 grid
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(a) initial ensemble Std map 

   
(b) (c) (d) 

   

(e) (f) 
(g) final estimated ensemble Std 

map 

Figure 15: evolution of the standard deviation (Std) map of permeability ensemble through integration staps 

 

4.2.3. Experiment 3: 3D Heterogeneous 

In this section we apply SSBRC to a 3D pore pressure diffusion reservoir model with heterogeneous 

permeability distribution. The 3D model has a 50x50x30 grid block structure (75000 grid blocks) and the 

permeability field is a heterogeneous parameter. There is only on water injection well at the center of the 

field which is perforated throughout the entire thickness of the formation. The true log-permeability 

distribution is shown in Figure 16.b. In this experiment the dimension of the parameter to estimate and 

seismicity density observation are both equal to 75000. An uncorrelated Gaussian random distribution is 

also assumed for criticality map shown in Figure 16.c. Other specifications of the true model are 

illustrated in Figure 16 including the pore pressure distribution in the field throughout stimulation period, 

Figure 16.a, and the MEQ cloud observation, Figure 16.d, which is generated by comparing pore pressure 

distributions and the criticality map. Using SSBRC we assimilate MEQ cloud observation, Figure 16.d, 

(after quantifying by KDE method) by EnKF update equation to infer 3D heterogeneous log-permeability 

field, Figure 16.b. The stimulation period is 65 (min) and we specify 6 integration steps to assimilate 

Figure 4.4: Evolution of the standard deviation (Std) map of permeability ensemble
through integration steps.
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block structure (75000 grid blocks) and the permeability field is a heterogeneous

parameter. There is only on water injection well at the center of the field

which is perforated throughout the entire thickness of the formation. The true

log-permeability distribution is shown in Figure 4.5b. In this experiment the

dimension of the parameter to estimate and seismicity density observation are both

equal to 75000. An uncorrelated Gaussian random distribution is also assumed

for criticality map shown in Figure 4.5c. Other specifications of the true model

are illustrated in Figure 4.5 including the pore pressure distribution in the field

throughout stimulation period, Figure 4.5a, and the MEQ cloud observation, Figure

4.5d, which is generated by comparing pore pressure distributions and the criticality

map. Using SSBRC we assimilate MEQ cloud observation, Figure 4.5d, (after

quantifying by KDE method) by EnKF update equation to infer 3D heterogeneous

log-permeability field, Figure 4.5b. The stimulation period is 65 (min) and we specify

6 integration steps to assimilate MEQ observations. The MEQ density map is

constructed on the original fine grid system and the observation error Std range

is the typical range of 5% to 10%.

In the following figures in this section the extensive estimation results of SSBRC

are presented. Figure 4.6 shows the result of updating the permeability ensemble in

terms of ensemble mean through 6 integration steps. It is seen that the estimated

ensemble mean is becoming more similar to the true permeability map in Figure

4.6a by assimilating MEQ observations in time. The initial ensemble (almost

uniform initial ensemble mean in Figure 4.6b) is completely uninformative about

true permeability map, Figure 4.6a, however after MEQ data assimilation the final

ensemble mean, Figure 4.6h, is very similar to the true map. Therefore SSBRC

proves its suitability for 3D heterogeneous permeability estimation from MEQ data.

The performance measures of SSBRC estimation procedure are also shown in
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MEQ observations. The MEQ density map is constructed on the original fine grid system and the 

observation error Std range is the typical range of 5 % to 10 %. 

 

   

   
(a) pore-pressure distribution 

   

(b) true log-permeability map (c) criticality map (d) MEQ cloud 

Figure 16: Microseismicity cloud generation in a three-dimensional model with heterogeneous permeability: (a) 

snapshots of diffusive pore pressure distributions at different time steps, (b) the true log-permeability distribution, 

(c) spatially uncorrelated Gaussian (white noise) rock criticality, and (d) the cloud of microseismic events generated 

by comparing rock criticality with pore pressure distributions at different time steps. 

 

In the following figures in this section the extensive estimation results of SSBRC are presented. Figure 17 

shows the result of updating the permeability ensemble in terms of ensemble mean through 6 integration 

steps. It is seen that the estimated ensemble mean is becoming more similar to the true permeability map 

in Figure 17.a by assimilating MEQ observations in time. The initial ensemble (almost uniform initial 

ensemble mean in Figure 17.b) is completely uninformative about true permeability map, Figure 17.a, 

however after MEQ data assimilation the final ensemble mean, Figure 17.h, is very similar to the true 

Figure 4.5: Microseismicity cloud generation in a three-dimensional model with
heterogeneous permeability: (a) snapshots of diffusive pore pressure distributions
at different time steps, (b) the true log-permeability distribution, (c) spatially
uncorrelated Gaussian (white noise) rock criticality, and (d) the cloud of microseismic
events generated by comparing rock criticality with pore pressure distributions at
different time steps.
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map. Therefore SSBRC proves its suitability for 3D heterogeneous permeability estimation from MEQ 

data. 

 

  
(a) true log-permeability map (b) 

   
(c) (d) (e) 

   
(f) (g) (h) final estimated ensemble mean 

Figure 17: estimating 3D heterogeneous permeability by SSBRC. The evolution of the estimated ensemble mean 

through integration steps. 

 

Figure 18 shows the estimation result in terms of one individual realization. The evolution of an 

individual permeability realization or sample is shown in this figure. As we can see again, SSBRC is able 

to update a dissimilar initial permeability realization, Figure 18.b, to a final estimated realization, Figure 

18.h, which is quite comparable to the true permeability map, Figure 18.a. 

 

 

Figure 4.6: Estimating 3D heterogeneous permeability by SSBRC. The evolution of
the estimated ensemble mean through integration steps.
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Figure 4.7. The continuous reduction of estimation RMSE, Figure 4.7a, shows the

success of SSBRC in estimating 3D permeability distribution. The final RMSE

value is less than half of initial RMSE. The ensemble spread is plotted in Figure

4.7b which shows that 97% of the initial ensemble spread is lost throughout the

estimation procedure. This very low final ensemble spread (3%) shows severe

ensemble spread underestimation and ensemble collapse which is due to erroneous

and spurious correlation of very high resolution seismicity density observation and

permeability distribution. As discussed before, very high dimensional seismicity

density observation (75000 seismicity observations) which is made on the original

fine grid system introduces high amount of redundancy and spurious correlation

to EnKF update and consequently results in ensemble collapse. This uncertainty

quantification issue will be resolved by applying the proposed methods of Section 3.2

and the new estimation results will be presented in experiment 4, Section 4.2.4.
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introduces high amount of redundancy and spurious correlation to EnKF update and consequently results 

in ensemble collapse. This uncertainty quantification issue will be resolved by applying the proposed 

methods of section  3.2 and the new estimation results will be presented in experiment 6, section  4.2.6. 

 

  
(a) estimation RMSE (b) ensemble spread 

Figure 19: SSBRC performance measures in estimating 3D heterogeneous permeability field. 

 

The other representation of ensemble spread is the standard deviation (Std) map of the ensemble which its 

evolution in integration steps is shown in Figure 20. By assimilating the MEQ data, the spread of the 

permeability ensemble decreases that results in lowering the ensemble Std map. Figure 20 shows 

continuous reduction of ensemble spread. As Figure 20.g shows the final estimated ensemble Std is 

extremely low that again demonstrates the ensemble spread underestimation of SSBRC with high 

dimensional observations (MEQ density map on original fine grid system). 

 

 

 

 

 

 

 

 

 

Figure 4.7: SSBRC performance measures in estimating 3D heterogeneous
permeability field.

The other representation of ensemble spread is the standard deviation (Std) map

of the ensemble which its evolution in integration steps is shown in Figure 4.8. By
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assimilating the MEQ data, the spread of the permeability ensemble decreases that

results in lowering the ensemble Std map. Figure 4.8 shows continuous reduction of

ensemble spread. As Figure 4.8g shows the final estimated ensemble Std is extremely

low that again demonstrates the ensemble spread underestimation of SSBRC with

high dimensional observations (MEQ density map on original fine grid system).

53 

 

 
(a) initial ensemble Std map 

   
(b) (c) (d) 

   

(e) (f) 
(g) final estimated ensemble Std 

map 

Figure 20: evolution of the standard deviation (Std) map of permeability ensemble through integration staps 

 

4.2.4. Experiment 4: 2D Homogeneous, Resolving Spread Underestimation 

In this set of experiments, we apply the three methods of improving uncertainty quantification in 

section  3.2 to the experiment 1 in section  4.2.1 (reference experiment) to resolve the issue of ensemble 

spread underestimation. 

 

4.2.4.1. Inflated Observation Error Variance  

The simplest way of avoiding spread underestimation or ensemble collapse is adding large amount of 

noise to observation which can be done by specifying high observation standard deviation (Std) through 

increasing      and      in equation (33). To observe the effect of observation Std range, different Std 

Figure 4.8: Evolution of the standard deviation (Std) map of permeability ensemble
through integration steps.
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4.2.3 Experiment 3: Resolving Spread Underestimation

In this set of experiments, we apply the three methods of improving uncertainty

quantification in Section 3.2 to the experiment 1 in Section 4.2.1 (reference

experiment) to resolve the issue of ensemble spread underestimation.

4.2.3.1 Inflated Observation Error Variance

In this section to resolve the ensemble spread underestimation issue of SSBRC

in experiment 1 Section 4.2.1, we apply inflated observation error variance method.

To investigate the effect of observation Std range, SSBRC results with different Std

intervals are shown in Table 4.1. The first row of Table 4.1, Test # 1, shows the

results of reference model that is experiment 1 in Section 4.2.1. These results show

improvement of final ensemble spread, characterized by Sp(m), (preserving more

ensemble spread) by increasing the observation error Std. It can be seen in Table 4.1

column Sp(m) that with increasing observation Std we can improve final ensemble

spread from 10 % to 50 %. The Test # 4 from Table 4.1 (with 100 to 200 %

observation Std range) is chosen as a representative experiment and its estimation

results are shown in Figure 4.9.
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Test # σmin (%) σmax (%)
Final RMSE

(Lperm)

Final Spread

(%) Sp(m)

1 (Reference) 11 16 0.7576 9.39

2 34 90 0.7067 21.31

3 82 144 0.7078 32.03

4 100 203 0.7339 37.90

5 111 187 0.7394 41.09

6 143 227 0.7305 41.71

7 255 385 0.8075 51.42

Initial RMSE = 1.4478

Table 4.1: Sensitivity of the SSBRC performance to different ranges of observation
Std (standard SSBRC with seismicity density on the original fine grid) in estimating
2D heterogeneous permeability.

In Figure 4.9 for concise illustration, only initial and final (at the sixth integration

step) estimated maps are shown. Figure 4.9b shows initial permeability ensemble

mean, ensemble Std map and an individual permeability sample and Figure 4.9c

represents the final estimated ensemble mean, Std map and an individual sample after

assimilating all MEQ observations. SSBRC is very successful in inferring the true

permeability since the final estimated maps are very similar to the true permeability

distribution. Additionally SSBRC along with inflated observation error Std results

in preserving ensemble spread through estimation procedure which is shown by high

Std map of Figure 4.9c (middle plot). Estimation RMSE, Figure 4.9d, and ensemble

spread, Figure 4.9e, prove successful estimation and ensemble spread improvement,

respectively.
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(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 26: The SSBRC estimation results with inflated observation Std for a 2D heterogeneous permeability model: 

(a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard deviation map 

(middle), and an individual realization (right), (c) final log permeability ensemble mean (left), standard deviation 

(middle), and individual realization (right) after six update steps, and time evolution of (d) the log permeability 

RMSE and (e) normalized ensemble spread. 

 

 

 

Figure 4.9: The SSBRC estimation results with inflated observation Std for a
2D heterogeneous permeability model: (a) the true log permeability model, (b)
initial log-permeability ensemble mean (left), standard deviation map (middle), and
an individual realization (right), (c) final log permeability ensemble mean (left),
standard deviation (middle), and individual realization (right) after six update steps,
and time evolution of (d) the log permeability RMSE and (e) normalized ensemble
spread.
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4.2.3.2 Reduced-Order Projection

The results of applying reduced-order projection along with SSBRC for different

values of kernel bandwidth Std, σh, and truncation number, ntrunc, to experiment

1, Section 4.2.1, are presented in Table 4.2. The reference experiment (experiment

1, Section 4.2.1) suffers from severe ensemble spread underestimation with only 10

% final spread however Table 4.2 shows promising improvement of ensemble spread

towards 40 to 80 %. The estimation RMSE of projection approach as shown in Table

4.2 is not as low as reference experiment. It is clear from Table 4.2 column ntrunc that

reduced-order projection approach lowered the number of observations from 10000,

in the reference experiment, to 25, 50 and 100, by spectral dimension reduction. We

choose Test # 4 from Table 4.2 as the representative experiment and its estimation

results are shown in Figure 4.10. It should be noted that for this experiment five

integration steps are considered. As it is seen in Table 4.2 Test # 4, the truncation

number, ntrunc, is 100 which means by applying reduced-order projection we reduced

the number of observations from 10000, in the reference experiment, to 100 in the

improved experiment.
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Test # σh (%) ntrunc
Final RMSE

(Lperm)

Final Spread

(%) Sp(m)

1 25 100 1.02 50.61

2 25 50 0.9975 68.62

3 25 50 0.9682 64.84

4 25 100 0.9546 41.89

5 10 100 1.1382 28.41

6 25 25 1.1427 76.31

Initial RMSE = 1.4478

Table 4.2: SSBRC with observation projection approach. Sensitivity of the
performance of projection approach with respect to kernel bandwidth Std (σh) and
truncation number (ntrunc).

The final estimated ensemble mean and individual sample (left and right plots

of Figure 4.10c) demonstrate significant similarity with the true permeability map,

Figure 4.10a, and the estimation RMSE curve, Figure 4.10d, is continuously

decreasing. Therefore the estimation performance of SSBRC with projection

approach is promising. As Figure 4.10e shows the final ensemble spread is 40 %.

The final Std map, Figure 4.10c (middle plot), also demonstrates high values which

confirms successful application of reduced-order projection for resolving ensemble

spread underestimation.

4.2.3.3 Coarse-Scale Microseismicity Density Map

In this section preserving ensemble spread and improving uncertainty

quantification is performed through reducing the number of observations by

interpreting the discrete MEQ cloud on a coarse-scale grid system instead of
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(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 27: The SSBRC estimation results with observation projection approach for a 2D heterogeneous permeability 

model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard deviation map 

(middle), and an individual realization (right), (c) final log permeability ensemble mean (left), standard deviation 

(middle), and individual realization (right) after six update steps, and time evolution of (d) the log permeability 

RMSE and (e) normalized ensemble spread. 

 

 

 

Figure 4.10: The SSBRC estimation results with observation projection approach
for a 2D heterogeneous permeability model: (a) the true log permeability model,
(b) initial log-permeability ensemble mean (left), standard deviation map (middle),
and an individual realization (right), (c) final log permeability ensemble mean (left),
standard deviation (middle), and individual realization (right) after six update steps,
and time evolution of (d) the log permeability RMSE and (e) normalized ensemble
spread.
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original fine grid configuration. The reference experiment with ensemble spread

underestimation in the one in section 4.2.1. The dimension of microseismicity

density map is considered in terms of number of grid blocks in x direction (the field

configuration is square). For coarsening of the seismicity density map, we specify

different sizes of NX,red equal to 10, 15, 20, 30, 50, 70 and 90, that decreases the

number of observations to 100, 225, 400, 900, 2500, 4900 and 8100, respectively where

in the reference experiment by NX,red = NX = 100, there are 10000 observations.

In Figure 4.11, coarse-scale microseismicity density maps generated on different

coarse grid configurations are shown. It is clear from Figure 4.11 that by coarsening

the seismicity density map we are able to reduce the redundancy of MEQ density

and consequently reduce the number of observations. In this experiment where

permeability is heterogeneous the parameter dimension is also 10000.

The results of sensitivity analysis of SSBRC performance with respect to coarse

seismicity density size are given in Figure 4.12. All these experiments are performed

with the typical range of observation error Std (5 % to 10 %). As we can see

estimation RMSE is not very sensitive to size of the coarse grid system so the

determining factor in choosing the appropriate size is ensemble spread. Figure

4.12 clearly shows that by increasing the dimension of the coarse grid system

(rising the number of seismicity density observations) the ensemble spread will

decrease. Therefore using coarse-scale grid system for generating seismicity density

map greatly helps in preserving ensemble spread and avoiding ensemble collapse. As

the representative experiment, we choose coarse grid system of 10×10 (NX,red = 10)

from Figure 4.12 and its estimation results are shown in Figure 4.13.

Figure 4.13 presents the SSBRC estimation results with coarse-scale seismicity

density map. The final estimated maps of permeability (Figure 4.13c) are very similar

to the true map (Figure 4.13a) and the estimation RMSE curve is continuously
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 28: continuous interpretation of MEQ cloud on different sizes of coarse-scale grid configuration. (a) discrete 

MEQ cloud, (b)-(i) coarse seismicity density maps on different coarse grid systems. 

 

The results of sensitivity analysis of SSBRC performance with respect to coarse seismicity density size 

are given in Figure 29. All these experiments are performed with the typical range of observation error 

Std (5 % to 10 %). As we can see estimation RMSE is not very sensitive to size of the coarse grid system 

so the determining factor in choosing the appropriate size is ensemble spread. Figure 29 clearly shows 

that by increasing the dimension of the coarse grid system (rising the number of seismicity density 

observations) the ensemble spread will decrease. Therefore using coarse-scale grid system for generating 

seismicity density map greatly helps in preserving ensemble spread and avoiding ensemble collapse. As 

the representative experiment, we choose coarse grid system of 10 10 (      =10) from Figure 29 and its 

estimation results are shown in Figure 30. 

 

Figure 4.11: Continuous interpretation of MEQ cloud on different sizes of coarse-scale
grid configuration. (a) discrete MEQ cloud, (b)-(i) coarse seismicity density maps
on different coarse grid systems.
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Figure 29: effect of coarse microseismicity density dimension on the performance of SSBRC in heterogeneous 

permeability estimation experiment, initial RMSE = 1.4478 

 

Figure 30 presents the SSBRC estimation results with coarse-scale seismicity density map. The final 

estimated maps of permeability (Figure 30.c) are very similar to the true map (Figure 30.a) and the 

estimation RMSE curve is continuously decreasing which confirms promising estimation performance of 

SSBRC. Utilizing coarse-scale seismicity density resolves the ensemble spread underestimation issue and 

increases the final ensemble spread from 10 % in the reference experiment to 40 % in this improved 

experiment (Figure 30.e). Comparing the final ensemble Std map of Figure 30.c (middle) to the same map 

of reference experiment, Figure 15.g, indicates how effective coarse seismicity density approach is in 

improving uncertainty quantification of SSBRC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Effect of coarse microseismicity density dimension on the performance
of SSBRC in heterogeneous permeability estimation experiment (Initial RMSE =
1.4478).

decreasing which confirms promising estimation performance of SSBRC. Utilizing

coarse-scale seismicity density resolves the ensemble spread underestimation issue

and increases the final ensemble spread from 10 % in the reference experiment to 40

% in this improved experiment (Figure 4.13e). Comparing the final ensemble Std

map of Figure 4.13c (middle) to the same map of reference experiment, Figure 4.4g,

indicates how effective coarse seismicity density approach is in improving uncertainty

quantification of SSBRC.

4.2.4 Experiment 4: Resolving Spread Underestimation

In this set of experiments, we apply the three methods of improving uncertainty

quantification in Section 3.2 to the experiment 2 in Section 4.2.2 (reference

experiment) to resolve the issue of ensemble spread underestimation and ensemble

collapse.
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(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 30: The SSBRC estimation results with coarse-scale seismicity density approach for a 2D heterogeneous 

permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard 

deviation map (middle), and an individual realization (right), (c) final log permeability ensemble mean (left), 

standard deviation (middle), and individual realization (right) after six update steps, and time evolution of (d) the log 

permeability RMSE and (e) normalized ensemble spread. 

 

 

 

Figure 4.13: The SSBRC estimation results with coarse-scale seismicity density
approach for a 2D heterogeneous permeability model: (a) the true log permeability
model, (b) initial log-permeability ensemble mean (left), standard deviation map
(middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after
six update steps, and time evolution of (d) the log permeability RMSE and (e)
normalized ensemble spread.
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4.2.4.1 Inflated Observation Error Variance

To resolve ensemble collapse problem with experiment 2 in Section 4.2.2, in

this section, we artificially increase observation error standard deviation range. We

investigated the effect of different observation Std range on SSBRC performance.

These results show improvement of final ensemble spread (preserving more ensemble

spread) by increasing the observation error Std. An experiment with 100 to 200 %

observation Std range is chosen as a representative experiment and its estimation

results are shown in Figure 4.14. We see that final ensemble spread increased from

3 % to almost 20 %.

In Figure 4.14 for concise illustration, only initial and final (at the sixth

integration step) estimated maps are shown. Figure 4.14b shows initial permeability

ensemble mean, ensemble Std map and an individual permeability sample and Figure

4.14c represents the final estimated ensemble mean, Std map and an individual

sample after assimilating all MEQ observations. SSBRC is very successful in inferring

the true permeability since the final estimated maps are very similar to the true

permeability distribution. Additionally SSBRC along with inflated observation error

Std results in preserving ensemble spread and avoiding ensemble collapse through

estimation procedure which is shown by high Std map of Figure 4.14c (middle plot).

4.2.4.2 Reduced-Order Projection

The results of applying reduced-order projection along with SSBRC for kernel

bandwidth Std, σh, of 25% and truncation number, ntrunc, of 100 to experiment 2,

Section 4.2.2, are presented here.Its estimation results are shown in Figure 4.15. The

truncation number, ntrunc, is 100 which means by applying reduced-order projection

we reduced the number of observations from 75000, in the reference experiment, to

100 in the improved experiment.
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avoiding ensemble collapse through estimation procedure which is shown by high Std map of Figure 31.c 

(middle plot). Estimation RMSE, Figure 31.d, and ensemble spread, Figure 31.e, prove successful 

estimation and ensemble spread improvement, respectively. 

 

 
(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 31: The SSBRC estimation results with inflated observation Std for a 3D heterogeneous permeability model: 

(a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard deviation map 

(middle), and an individual realization (right), (c) final log permeability ensemble mean (left), standard deviation 
Figure 4.14: The SSBRC estimation results with inflated observation Std for a
3D heterogeneous permeability model: (a) the true log permeability model, (b)
initial log-permeability ensemble mean (left), standard deviation map (middle), and
an individual realization (right), (c) final log permeability ensemble mean (left),
standard deviation (middle), and individual realization (right) after six update steps,
and time evolution of (d) the log permeability RMSE and (e) normalized ensemble
spread.
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The final estimated ensemble mean and individual sample (left and right plots

of Figure 4.15c) demonstrate significant similarity with the true permeability map,

Figure 4.15a, and the estimation RMSE curve, Figure 4.15d, is continuously

decreasing. Therefore the estimation performance of SSBRC with projection

approach is promising. As Figure 4.15e shows the final ensemble spread is 20 %.

The final Std map, Figure 4.15c (middle plot), also demonstrates high values which

confirms successful application of reduced-order projection.

4.2.4.3 Coarse-Scale Microseismicity Density Map

In this section preserving ensemble spread and improving uncertainty

quantification is performed through reducing the number of observations by

interpreting the discrete MEQ cloud on a coarse-scale grid system instead of

original fine grid configuration. The reference experiment with ensemble spread

underestimation in the one in Section 4.2.2. These SSBRC experiments with coarse

seismicity density are performed with the typical range of observation error Std (5 %

to 10 %). The coarse grid system size (obtained from investigating different coarse

grid sizes) is 10× 10× 5 which results in the coarse seismicity density dimension of

500. In fact we discretize the original 3D field to 10×10×5 configuration to generate

seismicity density instead of using the original fine grid system (50× 50× 30) which

is used for numerical reservoir simulation. Therefore the number of observations is

reduced from 75000 in the reference experiment to 500 in the improved experiment.

Final ensemble spread value clearly shows that by coarsening the grid system the

ensemble spread will increase. Therefore using coarse-scale grid system for generating

seismicity density map greatly helps in preserving ensemble spread and avoiding

ensemble collapse. the coarse grid system experiment results are shown in Figure

4.16.
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(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 32: The SSBRC estimation results with observation projection approach for a 3D heterogeneous permeability 

model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard deviation map 

(middle), and an individual realization (right), (c) final log permeability ensemble mean (left), standard deviation 

(middle), and individual realization (right) after six update steps, and time evolution of (d) the log permeability 

RMSE and (e) normalized ensemble spread. 

 

 

 

 

Figure 4.15: The SSBRC estimation results with observation projection approach
for a 3D heterogeneous permeability model: (a) the true log permeability model,
(b) initial log-permeability ensemble mean (left), standard deviation map (middle),
and an individual realization (right), (c) final log permeability ensemble mean (left),
standard deviation (middle), and individual realization (right) after six update steps,
and time evolution of (d) the log permeability RMSE and (e) normalized ensemble
spread.
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Figure 4.16 presents the SSBRC estimation results with coarse-scale seismicity

density map. The final estimated maps of permeability (Figure 4.16c) are

very similar to the true map (Figure 4.16a) and the estimation RMSE curve is

continuously decreasing which confirms promising estimation performance of SSBRC.

Utilizing coarse-scale seismicity density resolves the ensemble spread underestimation

(ensemble collapse) issue and increases the final spread from 3 % in the reference

experiment to 25 % in this improved experiment (Figure 4.16e). Comparing the final

ensemble Std map of Figure 4.16c (middle) to the same map of reference experiment,

Figure 4.8g (where ensemble collapse happened), indicates how effective coarse

seismicity density approach is in improving uncertainty quantification of SSBRC.

4.2.5 Joint Parameter Estimation in Pore Pressure Diffusion Model

In the previous examples following Shapiro’s work, criticality is assumed known.

This assumption is also relaxed here. We investigated jointly estimating permeability

and criticality in the pore pressure diffusion model to relax the assumption of having

a spatially random criticality distribution. In this experiment, pore pressure diffusion

model is the forward model. Permeability and criticality are assumed to have the

same variogram parameters and are uncorrelated. Both permeability and criticality

distribution are assumed unknown and we infer them both from MEQ observation.

The results of joint estimation are presented in the following Table 4.3 and Figure

4.17. For this example to preserve ensemble spread projection and coarse scale

methods are applied along SSBRC. As reported in Table 4.3 and shown in Figure

4.17, SSBRC is successful in inferring both permeability and criticality distributions.

4.3 Description of Experimental Setup: Geomechanical Model

In this section we apply the SSBRC method to the fully coupled geomechanical

forward reservoir simulator. In these set of experiments we assimilate MEQ cloud
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(a) true log-permeability map 

(b) 

   

(c) 

   

  
(d) estimation RMSE (e) ensemble spread 

Figure 33: The SSBRC estimation results with coarse seismicity density for a 3D heterogeneous permeability model: 

(a) the true log permeability model, (b) initial log-permeability ensemble mean (left), standard deviation map 

(middle), and an individual realization (right), (c) final log permeability ensemble mean (left), standard deviation 

(middle), and individual realization (right) after six update steps, and time evolution of (d) the log permeability 

RMSE and (e) normalized ensemble spread. 

 

 

 

Figure 4.16: The SSBRC estimation results with coarse seismicity density for a
3D heterogeneous permeability model: (a) the true log permeability model, (b)
initial log-permeability ensemble mean (left), standard deviation map (middle), and
an individual realization (right), (c) final log permeability ensemble mean (left),
standard deviation (middle), and individual realization (right) after six update steps,
and time evolution of (d) the log permeability RMSE and (e) normalized ensemble
spread.
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Figure 4.17: The observed MEQ data, true permeability and criticality maps, initial
ensemble means, and final estimated maps (middle row is permeability and last row
is criticality)
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Table 4.3: Results of jointly estimating permeability and criticality from MEQ data.

(after converting it to continuous seismicity density map) in EnKF analysis equation

to infer hydraulic (permeability) and geomechanical (Young’s modulus or elastic

modulus, tensile strength, Cohesion) parameters of the reservoir. The experiments

in this section are performed on both homogeneous and heterogeneous 2D model

and also on heterogeneous 3D model. We use a 2D FEM model with point source

injection by quadrilateral regular mesh with 50×50 = 2500 elements (10000 Gaussian

points) and the reservoir size of 500m× 500m. The developed coupled FEM model

is capable of handling spatially distributed parameters (heterogeneous distributions)

such as permeability, Young’s modulus, tensile strength, cohesion and friction angle.

We assign the spatially distributed parameters to the nodes therefore 2D model

parameter dimension is 10000. There is one water injection well with constant

injection rate at the center of the field. The fluid is assumed single phase and the

boundaries are closed to flow (No flow boundary condition). In 2D model, the stress

boundary condition or far-field stress regime is specified by maximum horizontal

stress SH,max, minimum horizontal stress Sh,min, and the initial field pressure Pini. It

should be noted that our simulations are performed in isothermal reservoir conditions

however the forward model is capable of handling thermal effects. The rock and fluid

properties are reported in Table 4.4. In the 2D forward simulation, time step length

is 720 (s) and there are 100 time steps. We also consider this 2D geomechanical
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model with homogeneous parameter and perform estimation experiment with SSBRC

to infer a single parameter (e.g. the homogeneous Young’s modulus) from MEQ

observations.

Fluid density, ρf 1000 kg
m3

Fluid viscosity, η 10−3 Pa.s

Drained Poisson’s ratio, ν 0.22

Undrained Poisson’s ration, νu 0.46

Porosity, φ 0.30

Material constant, ζd 20

Material constant, βd 10−7

Table 4.4: Rock/fluid properties used in simulations.

In this work, we also use a 3D fully coupled FEM model with point source

injection by hexahedron regular mesh with 30 × 30 × 15 = 13500 elements (108000

Gaussian points) and the reservoir size of 750m× 750m× 370m.

To do EnKF data integration, we consider six integration steps. In each

SSBRC estimation experiment, we assume the spatial distribution of one reservoir

property unknown (the parameter to estimate) and the rest of the properties are

assumed known. We can also estimate more than one reservoir property distribution

simultaneously from MEQ cloud.

4.4 Results and Discussion

In this section we present the SSBRC estimation results with the geomechanical

forward model. For the 2D model we first show the results of standard SSBRC
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that leads to ensemble spread underestimation and then the results of improved

uncertainty quantification with SSBRC are presented. The estimation results of

SSBRC with 3D geomechanical model are presented only by incorporating improved

uncertainty quantification methods.

4.4.1 Experiment 1: 2D Homogeneous

To demonstrate the applicability of the SSBRC method for geomechanical model,

we first apply it to a homogeneous parameter estimation problem. As the simplest

experiment, we consider all parameters to be constant (homogeneous or uniform over

the whole field, i.e., spatially invariable) and then we consider one of the parameters

to be unknown and set out to estimate the unknown parameter (which is a scalar).

To show the ensemble we simply use a histogram. In this set of experiments we use

the standard SSBRC with high resolution seismicity density which is generated on

the original fine FEM mesh. The observation error Std range (σmin, σmax) is also

chosen as 15 % to 50 % which is inflated to some extent comparing to typical range

of observation Std (5 % to 10 %).

We consider integrating tensile microseismicity events to estimate the

homogeneous reservoir parameters. We consider Young’s modulus (E), permeability

(k) and tensile strength (T0) to be homogeneous. A single true geomechanical

model is considered while in different estimation experiments different parameters

are estimated. We consider three different settings for estimating three different

parameters (Young’s modulus, permeability and tensile strength). For instance in

the first setting we assume k and T0 known and E unknown then we integrate

seismicity data to estimate homogeneous Young’s modulus E. By the same procedure

we setup the other two settings to estimate k and T0. Figure 4.18 shows the true

microseismicity cloud for the homogeneous parameter estimation experiment. The
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geomechanical model specifications are also indicated in Figure 4.18. The result

resembles a conventional hydraulic fracture propagation.
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Figure 4.18: True seismicity cloud (tensile failures) of homogeneous parameter
experiment; Pini = 10 (MPa), SH,max = 25 (MPa), Sh,min = 15 (MPa), Inj. Rate =
12.5 (Lit/s), E = 10 (GPa), k = 0.005 (md), T0 = −4 (MPa). The black cross shows
the injection well location.

Damage factor and enhanced permeability distributions of this example are used

to demonstrate the induced fracture and its propagation in Figure 4.19. The

enhanced permeability region can be viewed as a highly interconnected fracture

network region and the stimulated reservoir volume (SRV).

First we consider estimating the homogeneous Young’s modulus (E). To show the

estimation procedure we plot the histogram of the ensemble at each integration step.

Moreover, as a measure of estimation procedure performance we show the evolution

of Root Mean Square Error (RMSE) of estimation through time (integration time

steps). Figure 4.20 shows the estimation results of homogeneous E by integration of

tensile events of Figure 4.18. The red vertical line in the histogram shows the true
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Figure 4.19: Damage factor and enhanced permeability distribution to show the
induced fracture and its propagation.
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value of E (10 GPa) which we are trying to estimate. In all experiments we use 100

realizations or samples of E i.e., the EnKF ensemble size is equal 100. Figure 4.20

shows the evolution of the ensemble histogram from (a) to (g) through integration

time steps. It can be seen that the EnKF process is very effective in estimating the

unknown parameter. The initial histogram (a) is very wide but by integration of

seismicity data the histogram narrows around the true E value and from integration

step 3 to the end all the realizations or samples of E almost coincide with the true

value of E. In plots (d) to (e) only the red vertical line is visible meaning that all the

samples are equal true E value which shows the almost perfect estimation of E. The

estimation error of E (RMSE), Figure 4.20h, goes to almost zero which indicates a

perfect estimation of the unknown parameter.
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and after applying the EnKF and integrating true seismicity observations in time, all 100 samples 

converge to the true   value of 10    . In plots (d) to (e) only the red vertical line is visible meaning that 

all the samples are equal true   value which shows the almost perfect estimation of  . The estimation 

error of   (RMSE), Figure 35.h, goes to almost zero which indicates a perfect estimation of the unknown 

parameter. 

 

    
(a) (b) (c) (d) 

   

 
(e) (f) (g) (h) 

Figure 35: Results of homogeneous elastic modulus  , estimation; plots (a) to (g) show the evolution of ensemble 

histogram at each integration steps. Plot (h) shows the RMSE of estimation. (True   = 10    ) 

 

The uncertainty quantification performance of SSBRC is shown in Figure 36 in terms of ensemble spread 

throughout the integration steps. As we expect in a homogeneous parameter estimation problem the final 

original ensemble spread (Figure 36.a) is very insignificant (close to zero) since all the final estimated 

realizations are almost equal to the true value of Young’s modulus. Figure 36.b still shows acceptable 

final auxiliary ensemble spread of 15 % which yet can be improved by further increasing observation Std. 

 

  
(a) Young’s modulus ensemble spread (b) 

Figure 36: ensemble spreads in estimating homogeneous elastic modulus  , from MEQ events 

 

Figure 4.20: Results of homogeneous elastic modulus E, estimation; plots (a) to (g)
show the evolution of ensemble histogram at each integration steps. Plot (h) shows
the RMSE of estimation (True E = 10 GPa).

Figure 4.21 shows the estimation results of homogeneous permeability k, by

integration of tensile events of Figure 4.18. The red vertical line in the histogram
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shows the true value of k (0.005 md) which we are trying to estimate. Figure 4.21

just represents the histogram of permeability ensemble in some specific integration

steps to make the representation more concise. In this estimation example we again

see at integration step 3 (Figure 4.21d) the histogram fully narrows down to the

true k value which means almost perfect estimation of unknown permeability value.

Figure 4.21a, the permeability RMSE, also shows the estimation error almost goes

to zero.
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Figure 37 shows the estimation results of homogeneous permeability  , by integration of tensile events of 

Figure 34. The red vertical line in the histogram shows the true value of k (0.005   ) which we are 

trying to estimate. Figure 37 just represents the histogram of permeability ensemble in some specific 

integration steps to make the representation more concise. In this estimation example we again see at 

integration step 3 (Figure 37.d) the histogram fully narrows down to the true   value which means almost 

perfect estimation of unknown permeability value. Figure 37.a, the permeability RMSE, also shows the 

estimation error almost goes to zero. 

 

 
(a) 

    
(b) (c) (d) (e) 

Figure 37: Results of homogeneous permeability  , estimation; Plot (a) shows the RMSE of estimation. Plots (b) to 

(e) show the evolution of ensemble histogram in integration steps. (true   = 0.005   ) 

 

The uncertainty quantification performance of SSBRC is also shown in Figure 38 in terms of ensemble 

spread throughout the integration steps. As we expect in a homogeneous parameter estimation problem 

the final original ensemble spread (Figure 38.a) is very insignificant (close to zero) since all the final 

estimated permeability realizations are almost equal to the true permeability. Figure 38.b still shows fairly 

promising final auxiliary ensemble spread of 45 % which yet can be improved by further increasing 

observation Std or using other improved uncertainty quantification methods. 

 

 

 

 

 

 

Figure 4.21: Results of homogeneous permeability k, estimation; Plot (a) shows the
RMSE of estimation. Plots (b) to (e) show the evolution of ensemble histogram in
integration steps (true k = 0.005 md).

In the next example setting we assume tensile strength T0, to be the unknown

parameter and estimate it by seismicity data integration. Again the true model is

shown in Figure 4.18 and we estimate homogeneous T0 by integrating tensile events.

The true tensile strength value is equal to −4 (MPa). Figure 4.22 illustrates the

estimation results including both T0 estimation error and T0 ensemble histogram
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evolution. Confirming the previous homogeneous parameter estimation results, we

can see the unknown homogeneous T0 is estimated perfectly.
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(a) permeability ensemble spread (b) 

Figure 38: ensemble spreads in estimating homogeneous permeability  , from MEQ events 

 

In the next example setting we assume tensile strength   , to be the unknown parameter and estimate it by 

seismicity data integration. Again the true model is shown in Figure 34 and we estimate homogeneous    

by integrating tensile events. The true tensile strength value is equal to -4 (   ). Figure 39 illustrates the 

estimation results including both    estimation error and    ensemble histogram evolution. Confirming 

the previous homogeneous parameter estimation results, we can see the unknown homogeneous    is 

estimated perfectly.  

 

 
(a) 

    
(e) (f) (g) (h) 

Figure 39: results of homogeneous tensile strength   , estimation; Plot (a) shows the RMSE of estimation. Plots (b) 

to (e) show the evolution of ensemble histogram in integration steps. (true    = -4    ) 

 

Similar pattern is again seen in the ensemble spread results of Figure 40. The final    ensemble spread 

(Figure 40.a) is almost zero which is expected in homogeneous parameter estimation and the final 

auxiliary ensemble spread (Figure 40.b) is equal to 30 % that indicates promising final spread value. 

 

 

Figure 4.22: Results of homogeneous tensile strength T0, estimation; Plot (a) shows
the RMSE of estimation. Plots (b) to (e) show the evolution of ensemble histogram
in integration steps (true T0 = −4 MPa).

Based on these three examples for estimating homogeneous geomechanical

reservoir parameters, we see the promise of using EnKF to effectively infer unknown

reservoir parameters using MEQ data.

4.4.2 Experiment 2: 2D Heterogeneous Tensile Strength

In this experiment we estimate heterogeneous tensile strength T0, distribution

from MEQ monitoring data. The true model specifications are shown in Figure 4.23.

Figure 4.23a shows the microseismicity cloud (due to only tensile failure) generated

by the geomechanical forward model for a given distribution of tensile strength T0,

(Figure 4.23b). In this setup, elastic modulus E, is assumed to be spatially random

distributed and known. In this experiment permeability k, is constant in space. In
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the estimation process all the parameters except T0 are assumed known and the

unknown (assumed) T0 is estimated. We generate Young’s modulus E, distribution

from a normal probability distribution by specific mean and standard deviation which

is shown in Figure 4.23 (µE = mean of normal distribution = 50 GPa, σE = standard

deviation of normal distribution = 15 GPa).
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(a) true microseismicity observation (b) true    map (c)    map 

Figure 41: true model specification.           (   )           (   )         (   )            
      (   )         (  ), Young’s modulus  , with Normal PDF (spatially random distribution)    

   (   )       (   ). Black cross at the center shows the injection well location. 

 

In this example the standard SSBRC method with MEQ density map on the original fine mesh is used for 

data integration. The observation error Std range (    ,     ) is also assumed 20 % to 55 % which is 

somewhat inflated comparing to the typical range of observation Std. Figure 42.a shows the estimation 

results by illustration of ensemble mean evolution throughout integration steps. In this EnKF procedure 

we use 100 random realizations of    distributions as the initial ensemble. Before using any observation 

(seismicity data) the mean of the initial ensemble does not have any spatial trend or feature because it is 

made of 100 random realizations (as we can see in Figure 42.a, initial ensemble mean is almost uniform 

and non-informative). By subsequent integration of seismicity observations we can see that the ensemble 

mean is developing some special features in it, and finally the ensemble mean becomes very similar to the 

true tensile strength   , map. From Figure 42.a it is clear that the final estimated ensemble mean 

(integration step 6) is very similar to the true map while the initial ensemble mean was completely non-

informative. Because the ensemble mean is so close to the true parameter, each of final realizations is also 

very close to the true tensile strength. Figure 42.b shows the estimation error evolution in time which is 

RMSE of    and is decreasing with time which means the estimation error is decreasing and the estimated 

map is becoming closer to true map. The tensile strength ensemble spread evolution throughout 

integration steps is shown in Figure 42.c and it clearly shows severe ensemble spread underestimation of 

standard SSBRC where the final spread in only 3 %.  

 

Figure 4.23: True model specification. Sh,min = 20 (MPa), SH,max = 15 (MPa),
Pini = 10 (MPa), Inj. Rate = 15 (Lit/s), k = 0.005 (md), Young’s modulus E, with
Normal PDF (spatially random distribution) µE = 50 (GPa), σE = 15 (GPa). Black
cross at the center shows the injection well location.

In this example the standard SSBRC method with MEQ density map on the

original fine mesh is used for data integration. The observation error Std range

(σmin, σmax) is also assumed 20 % to 55 % which is somewhat inflated comparing

to the typical range of observation Std. Figure 4.24a shows the estimation results

by illustration of ensemble mean evolution throughout integration steps. In this

EnKF procedure we use 100 random realizations of T0 distributions as the initial

ensemble. Before using any observation (seismicity data) the mean of the initial

ensemble does not have any spatial trend or feature because it is made of 100
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random realizations (as we can see in Figure 4.24a, initial ensemble mean is almost

uniform and non-informative). By subsequent integration of seismicity observations

we can see that the ensemble mean is developing some special features in it, and

finally the ensemble mean becomes very similar to the true tensile strength T0, map.

Figure 4.24b shows the estimation error evolution in time which is RMSE of T0

and is decreasing with time which means the estimation error is decreasing and the

estimated map is becoming closer to true map. The tensile strength ensemble spread

evolution throughout integration steps is shown in Figure 4.24c and it clearly shows

severe ensemble spread underestimation of standard SSBRC where the final spread

in only 3 %.

Figure 4.25a shows the evolution of an individual tensile strength realization

throughout MEQ data integration procedure in 3 integration steps (out of 6). In

Figure 4.25b, the corresponding MEQ clouds of the intermediate estimated T0 maps

are shown. As shown in Figure 4.25a, in terms of the estimated parameter, the

estimated T0 map becomes increasingly similar to the true T0 map (shown in Figure

4.23b) throughout integration steps. In terms of the predicted observation, it is clear

from Figure 4.25b that the corresponding predicted MEQ cloud of the intermediate

estimated T0 map develops high similarity with the true MEQ cloud (presented in

Figure 4.23a) during assimilation procedure. This result confirms the effectiveness

of the proposed SSBRC method for reservoir parameter estimation by MEQ data

integration in simultaneously appropriate adjustment of the reservoir property and

honoring the observed MEQ data.

The initial ensemble represents the uncertainty in the parameter before

integrating the seismicity observation. Having made of random samples the spread or

uncertainty in initial ensemble is high. In the integration procedure by incorporating

new data the samples are corrected and the new estimated ensemble will have
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(a) estimated    ensemble mean evolution through integration steps 

  
(b)    RMSE evolution in time (c)    ensemble spread 

Figure 42: tensile strength   , estimation results in terms of estimated ensemble mean map, RMSE and ensemble 

spread 

 

Figure 43 shows the evolution of a single realization or sample through integration steps. From Figure 43 

we can see the initial realization is completely different than the true map while after 6 seismicity data 

integration steps the differences become minor. 

 

Figure 4.24: Tensile strength T0, estimation results in terms of estimated ensemble
mean map, RMSE and ensemble spread.
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(a) evolution of one of the 𝑇0 samples by MEQ data integration (𝑇0 sample estimation evolution) 
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(b) corresponding simulated MEQ for each estimated 𝑇0 sample in each integration step 
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Figure 4.25: Evolution of a single tensile strength T0, realization and its
corresponding MEQ cloud throughout integration steps.

smaller uncertainty or standard deviation (Std). So the ensemble spread changes by

seismicity integration. As we integrate more data, the uncertainty in the ensemble

decreases which results in reduction of the ensemble spread. To analyze the ensemble

spread, the standard deviation (Std) of the ensemble is calculated. Figure 4.26 shows

the evolution of the standard deviation of tensile strength T0, ensemble and as it

is seen, the uncertainty in the ensemble is reduced. Uncertainty reduction in the

ensemble is what we expect from the EnKF method. However as we discussed before

the standard SSBRC with high resolution seismicity density map leads to severe

ensemble spread underestimation.

4.4.3 Experiment 3: 2D Heterogeneous Elastic Modulus

In this experiment we present the application of standard SSBRC to estimate the

heterogeneous distribution of Young’s modulus E, from the MEQ cloud observation.

To generate the seismicity density map, the original fine mesh is used in this

experiment. The synthetic true Young’s modulus distribution (parameter to
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Figure 44: evolution of tensile strength   , ensemble standard deviation map throughout integration steps 

 

Figure 45 shows the initial and final state of 6 realizations of tensile strength distributions (out of 100 

realizations). As we can see all 6 realizations change from their initial state (which is completely 

dissimilar to true) to a final state which is very similar to true tensile strength   , map. Ensemble spread 

reduction is also obvious from Figure 45, where 6 completely different distributions of    (wide variation 

or spread) converge to a specific distribution (narrow variation or spread). Since all of the final estimated 

samples are similar, the standard deviation of the final ensemble is extremely low (shown in Figure 44; 

integration step 6). 

It should be noted that we did not apply improved uncertainty quantification methods to this example. 

 

 

 

 

 

 

 

 

 

Figure 4.26: Evolution of tensile strength T0, ensemble standard deviation map
throughout integration steps.

estimate) and the corresponding seismicity cloud as the observed data are shown

in Figure 4.27. The far-field stress boundary conditions SH,max, Sh,min and Pini,

are all assumed 10 (MPa) to investigate only the effect of hydraulic stimulation

(injection-induced stress) in the reservoir. Fluid injection rate is equal 12.5 (Lit/s)

and permeability is homogeneous in the field and is equal 0.005 (md). Tensile

strength T0, is assumed spatially random distributed and its values come from a

Uniform PDF in the range of 5 (MPa) to 30 (MPa). In this experiment only tensile

failures (as MEQ events) are considered.

To illustrate the induced fracture and its propagation, the damage factor and

enhanced permeability at the end of hydraulic injection are recorded. The damage

factor distribution as well as the enhanced permeability distribution show the induced

fracture network and its propagation in the field. An example is presented in Figure
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4.4.4. Experiment 4: 2D Heterogeneous Elastic Modulus 

In this experiment we present the application of standard SSBRC to estimate the heterogeneous 

distribution of Young’s modulus  , from the MEQ cloud observation. To generate the seismicity density 

map, the original fine mesh is used in this experiment. The synthetic true Young’s modulus distribution 

(parameter to estimate) and the corresponding seismicity cloud as the observed data are shown in Figure 

48. The far-field stress boundary conditions       ,        and     , are all assumed 10 (MPa) to 

investigate only the effect of hydraulic stimulation (injection-induced stress) in the reservoir. Fluid 

injection rate is equal 0.005 (Lit/s) and permeability is homogeneous in the field and is equal 0.005 (md). 

Tensile strength   , is assumed spatially random distributed and its values come from a Uniform PDF in 

the range of 5 (MPa) to 30 (MPa). In this experiment only tensile failures (as MEQ events) are 

considered. 

 

  
(a) True Young’s modulus ( ) map (b) True microseismicity cloud (tensile events) 

Figure 48: true model setup; true Young’s modulus distribution and the corresponding MEQ cloud. 

 

This experiment was performed with the standard EnKF algorithm by a typical range of 5% to 10% for 

observation error standard deviation. The number of unknown parameters to estimate and observations 

are both equal to 10000 which is the number of nodes. Estimation results are shown in Figure 49. The 

evolution of the estimated ensemble mean of Young’s modulus realizations, an estimated individual 

realization and the standard deviation of the ensemble in integration steps are shown in Figure 49.d, e, f, 

respectively. The estimated Young’s modulus maps in Figure 49.d, e, tend to identify the major high- and 

low-value regions of elastic modulus in the reservoir. The final estimated maps (at 6
th
 integration step) of 

Figure 49.d, e., are very similar to the true Young’s modulus map in Figure 49.a, which confirms the 

promising estimation performance of SSBRC. It is evident from these maps that the EnKF can infer 

information about the Young’s modulus distribution by integrating the data about the distribution of the 

MEQ event locations. The decreasing trend of estimation RMSE in Figure 49.b, indicates increased 

Figure 4.27: True model setup; true Young’s modulus distribution and the
corresponding MEQ cloud.

4.28 where high damage factor regions as well as high enhanced permeability regions

(dark red regions) clearly show the induced fracture and its propagation (which looks

like a complex fracture network).

This experiment was performed with the standard EnKF algorithm by a typical

range of 5 % to 10 % for observation error standard deviation. Estimation results

are shown in Figure 4.29. The evolution of the estimated ensemble mean of Young’s

modulus realizations, an estimated individual realization and the standard deviation

of the ensemble in integration steps are shown in Figure 4.29a,b,c, respectively. The

estimated Young’s modulus maps in Figure 4.29a,b, tend to identify the major high-

and low-value regions of elastic modulus in the reservoir. The final estimated maps

(at 6th integration step) of Figure 4.29a,b, are very similar to the true Young’s

modulus map. However, the problem with these estimation results is a very low

final ensemble spread and ultimately collapsing the ensemble to a single realization

(final ensemble spread is only 3 % which means the ensemble loses 97 % of its

spread through data assimilation procedure). The experiment of Figure 4.29 is

the reference experiment that we will improve its results (ensemble spread) by our
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Figure 4.28: Showing the induced fracture propagation through damage factor and
enhanced permeability distribution.
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proposed approaches.

Figure 4.29: Young’s modulus E, estimation results of standard SSBRC with typical
range of observation error Std (the reference experiment).

In the performed experiments, as the typical pitfall with EnKF, the ensemble

collapse might be because of the small ensemble size (100 realizations). To

demonstrate that the issue of ensemble collapse is mostly arising from high

dimensional observation, we perform an experiment with a large ensemble size

(1000 realizations) to address the small ensemble size situation. This experiment

is performed with the unmodified or standard EnKF with the typical range of

observation error Std and will be called the reference spread experiment because

it shows what the value of ensemble spread would be with a large enough ensemble
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that removes the effect of small ensemble size. We will show that increasing the size

of ensemble will result in larger ensemble spread which demonstrates small ensemble

size is not solely the reason of ensemble spread underestimation and large number of

correlated observations also contribute to this underestimation. Figure 4.30 shows

the results of reference spread experiment. This figure shows that larger ensemble can

result in greater final ensemble spread and the main cause of spread underestimation

in this problem is the very high-dimensional observation. The final estimated elastic

modulus maps of Figure 4.30a,b are acceptably close to the true elastic modulus map.

Final ensemble spread is 22 % which is considerably higher than the final spread in

the reference experiment in Figure 4.29 (only 3 %). The final Std map in 4.30c (at

integration step 6) also demonstrates that large ensemble size will result in higher

ensemble spread and therefore the main cause of ensemble spread underestimation

in SSBRC is having too many observations.

This experiment with a large ensemble shows that by increasing the number

of realizations the final spread will become larger but still it is much lower than

the expected final spread for instance in applications where production data (well

bottom hole pressure and fluid rate data) is assimilated and this unusually small

final ensemble spread resulted from the nature of the observation in this application

which is very high dimensional and correlated. Figure 4.31 shows the comparison of

performance measures for small and large ensemble. As shown in Figure 4.31 the

estimation RMSE is the same for both small and large ensemble and also this figure

demonstrates that the final ensemble spread with large ensemble is considerably

higher than small ensemble case.

The experiments in this section (and many others with the same setup but

different reference reservoir property) shows promising estimation performance of

the SSBRC however the problem of ensemble spread underestimation is evident. In
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Figure 4.30: Young’s modulus E, estimation results of SSBRC with typical range of
observation error Std (the reference spread experiment with 1000 realizations), its
true model is shown in Figure 4.27.

Figure 4.31: Comparing the EnKF experiments with 100 (small ensemble) and 1000
(large ensemble) realizations
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the next set of experiments we apply the proposed methods for improving uncertainty

quantification to the example in Figure 4.29 (as the reference experiment) to resolve

ensemble spread underestimation issue.

4.4.4 Experiment 4: Improving Experiment 3

In this set of experiments, we apply the three methods of improving uncertainty

quantification in section 3.2 to the experiment 3 in Section 4.4.3 (reference

experiment) to resolve the issue of ensemble spread underestimation.

4.4.4.1 Inflated Observation Error Variance

The simplest way of avoiding spread underestimation or ensemble collapse is

adding large amount of noise to observation which can be done by specifying high

observation standard deviation (Std) through increasing σmin and σmax in Equation

(3.5). Figure 4.32 shows the estimation results of SSBRC with inflated observation

error Std range of 100 % - 200 %.

The decreasing trend of estimation RMSE in Figure 4.32b shows promising

estimation performance of SSBRC even with greatly increased Std range of

observation. Figure 4.32d,e,f, represent the evolution of ensemble mean, an individual

realization and standard deviation map throughout integration steps. As shown by

final estimated Young’s modulus maps (at 6th integration step) in Figure 4.32d,e,

SSBRC is successful in capturing the trends of true elastic modulus of Figure

4.32a. More importantly ensemble spread underestimation problem of SSBRC is

also resolved as can be seen in Figure 4.32c that shows the ensemble spread of the

estimated parameter.

In general in SSBRC, it is the correlation of MEQ events with the reservoir

parameter (elastic modulus in this case) that is exploited by the EnKF update to

reconstruct the trend in the reservoir property map.
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spread underestimation problem of SSBRC is also resolved as can be seen in Figure 50.c that shows the 

ensemble spread of the estimated parameter. From the final standard deviation map of (at integration step 

6) Figure 50.f, it is also evident that the ensemble spread is preserved during integration steps by the 

proposed method. (compare to the reference experiment results in Figure 49.c,f, where ensemble collapse 

happens). 

 

   
(a) true Young’s modulus map (b) estimation RMSE (c) ensemble spread 

 
(d) evolution of ensemble mean 

 
(e) evolution of an individual realization 

 
(f) standard deviation map evolution 

Figure 50: Young’s modulus  , estimation results of SSBRC with increased observation error Std (test # 3 from 

Table 10), its true model is shown in Figure 48. 

 
Figure 4.32: Young’s modulus E, estimation results of SSBRC with increased
observation error Std, its true model is shown in Figure 4.27.
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4.4.4.2 Reduced-Order Projection

In this section we apply the projection method of Section 3.2.2 to experiment 3 in

Section 4.4.3 to improve the final estimated ensemble spread. As mentioned earlier,

projection method has two tuning parameters; kernel bandwidth standard deviation

σh, and truncation number ntrunc that in this example are chosen to be 25 % and 100,

respectively. It should be noted that the number of observations is decreased from

10000 to 100, by projection method. The proposed observation projection approach

is successful in preserving the ensemble spread and resolving ensemble spread

underestimation of SSBRC through observation dimension reduction. However, the

resulted estimation RMSE with projection approach is not as low as the standard

SSBRC method. Detailed estimation results are shown in Figure 4.33.

We reduced the number of observations from 10000 (in the reference experiment)

to 100 (ntrunc) which resolves the observation redundancy issue of SSBRC. Figure 4.33

shows Young’s modulus E, estimation results by SSBRC with projection approach.

The final estimated Young’s modulus distributions of Figure 4.33, (at integration

step 6) are very similar to the true E distribution. The main advantage of projection

approach in preserving ensemble spread and preventing ensemble collapse is shown

by final ensemble Std map in Figure 4.33b (at integration step 6). Figure 4.33d

shows that final ensemble spread is 58 % which is significantly improved comparing

to the reference experiment (Figure 4.29) by final ensemble spread of only 3 %.

As explained and formulated in Section 2.3.1 there is also uncertainty in event

occurrence time that should be involved in the data integration process. Here the

results of SSBRC with the consideration of event occurrence time uncertainty is

presented. Examples determined that the time kernel bandwidth ht equal to three

times of time step should be a suitable choice. The projection approach parameters
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Figure 4.33: Young’s modulus E, estimation results of SSBRC with projection
approach, its true model is shown in Figure 4.27.
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of ntrunc and σh are 100 and 25 %, respectively. While the total stimulation time

is 20 (hr) consisting of 100 time steps of 720 (s), the standard time uncertainty

handling approach is capable of dealing with event occurrence time uncertainty (1D

Gaussian time Kernel bandwidth, ht) of 10 % of the time step (72 sec) to three

times of the time step (example with standard time uncertainty approach is not

presented here). In the standard approach time step refinement is not employed.

An example is presented in Figure 4.34 where SSBRC with projection approach

along with adaptive time step refinement is employed to estimate Young’s modulus

distribution from MEQ clouds. In this example the time uncertainty interval or 1D

time Guassian kernel bandwidth is set to 3 (s) while the method could handle any

given small time uncertainty interval.

Figure 4.34 presents the results of SSBRC with time step refinement for handling

event occurrence time uncertainty. The estimated maps and estimation RMSE as

well as ensemble spread show promising performance of SSBRC in estimating Young’s

modulus while there is uncertainty in occurrence time. Comparing to the case with

only consideration of location uncertainty, it seems that the consideration of time

uncertainty does not change the estimation results considerably, and in the case of

considering time uncertainty, implementing either large or small time uncertainty

does not have significant effect on the estimation results.

4.4.4.3 Coarse-Scale Microseismicity Density Map

The number of observations is equal to the dimension of seismicity density map.

To reduce the dimension of the seismicity density map which is the major reason of

the ensemble spread underestimation we build the seismicity density map on a coarse

mesh or grid system instead of the original fine mesh. So we only need to evaluate

continuous seismicity density map on a new coarse grid system. In 2D case studies
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Figure 4.34: Young’s modulus E, estimation results of SSBRC with projection
approach with the consideration of uncertainty in event occurrence time along with
adaptive time step refinement.
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where the node configuration size is 100 × 100 (Nb = 10000, NX = 100) we choose

the coarse seismicity density mesh size e.g. equal to 10 × 10 (Nb = 100 seismicity

observations, NX,red = 10) which reduces the dimension of the observation vector by

orders of magnitude. It should be noted that the range of the observation error Std

in coarse seismicity density approach is the typical range of 5 % to 10 % which leads

to ensemble collapse in the regular approach i.e. reference experiment in Figure 4.29

(where the size of seismicity density mesh is equal to the size of parameter mesh).
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It should be noted that the range of the observation error Std in coarse seismicity density approach is the 

typical range of 5% to 10% which leads to ensemble collapse in the regular approach i.e. reference 

experiment in Figure 49 (where the size of seismicity density mesh is equal to the size of parameter 

mesh). 

 

   

(a) final true seismicity cloud (b)           (c)           

   

(d)           (e)           (f)               

Figure 52: microseismicity density maps (with different sizes) for final seismicity cloud. (b-e) show coarse 

seismicity density maps. (f) reference seismicity density map. (black cross at the center shows the injection well 

location) 

 

Figure 52 shows the seismicity density maps with different sizes (based on final seismicity cloud of 

Young’s modulus estimation problem from tensile seismicity events in section  4.4.4). Different 

microseismicity density map sizes produces different number of observations and help in reducing the 

number of observations to resolve the observation space redundancy and ultimately ensemble spread 

underestimation in EnKF process. The dimension of microseismicity density map is considered in terms 

of number of nodes in x direction (the field configuration is square). As explained before the number of 

parameters to estimate is equal to the number of nodes so in this 100 100 field, there are 10000 

parameters to estimate (unknown Young’s modulus at each node). For coarsening of the seismicity 

density map, we specify different sizes of        equal to 10, 20, 30, 40, that decreases the number of 

Figure 4.35: Microseismicity density maps (with different sizes) for final seismicity
cloud. (b-e) show coarse seismicity density maps. (f) reference seismicity density
map (black cross at the center shows the injection well location).

Figure 4.35 shows the seismicity density maps with different sizes (based

on final seismicity cloud of Young’s modulus estimation problem from tensile
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seismicity events in Section 4.4.3). Different microseismicity density map sizes

produces different number of observations and help in reducing the number of

observations to resolve the observation space redundancy and ultimately ensemble

spread underestimation in EnKF process. The dimension of microseismicity density

map is considered in terms of number of nodes in x direction (the field configuration

is square). There are 10000 parameters to estimate. For coarsening of the seismicity

density map, we specify different sizes of NX,red equal to 10, 20, 30, 40, that decreases

the number of observations to 100, 400, 900, 1600, respectively where in the reference

experiment by NX,red = NX = 100, there are 10000 observations.

Figure 4.36: Effect of coarse microseismicity density dimension on the performance of
SSBRC in Young’s modulus estimation experiment (initial Young’s modulus RMSE
= 6.8134 GPa).

The effect of different dimensions of microseismicity density map on the

performance of SSBRC process is shown in Figure 4.36. Figure 4.36 shows both

final estimation RMSE and final (original and auxiliary) ensemble spread of these

five experiments. Based on Figure 4.36, it is seen that there is an optimal size of

the seismicity density map which results in the minimum RMSE (at NX,red = 30).
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It should be noted that this coarse seismicity density map size is optimal in RMSE

sense however we are looking for both low RMSE and high spread simultaneously.

Figure 4.36 shows the final ensemble spread (both original Young’s modulus ensemble

and auxiliary ensemble) versus size of seismicity density map. As we already

expected, by increasing the size of the density map there will be higher number of

observations which consequently results in more underestimation of ensemble spread.

As the result, the improvement of the ensemble spread is obviously seen in Figure

4.36 (spread curve) by decreasing the size of the seismicity density map (or using

coarse seismicity density map). To choose the appropriate size of the density map,

we are looking for fairly low RMSE and high spread in Figure 4.36, respectively.

Based on the obtained results, the density size of 10 to 30 (in a 100× 100 field) for

coarse-scale mesh can be a suitable choice.

The estimation results of SSBRC with coarse seismicity density map NX,red = 10,

are shown in Figure 4.37 which represents the evolution of ensemble mean, an

individual realization and standard deviation map throughout integration steps. The

final estimated ensemble mean and an individual realization (at integration step 6)

show appropriate performance of SSBRC in capturing the unknown true Young’s

modulus distribution. Considering the performance of SSBRC with coarse density in

terms of ensemble spread, final standard deviation map of elastic modulus ensemble

clearly shows appropriate amount of ensemble spread at the final integration step.

From Figure 4.37d, we also see that the final ensemble spread is 52 % which

shows promising performance of coarse seismicity density method in preserving the

ensemble spread.
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Figure 4.37: Results of SSBRC with coarse seismicity density map NX,red = 10, for
Young’s modulus estimation. Its true model is shown in Figure 4.27.
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4.4.5 Experiment 5: 2D Heterogeneous Permeability

In this experiment we estimate permeability distribution from MEQ cloud (shear

failures). In this example we apply the projection method of Section 3.2.2 along with

SSBRC to estimate permeability distribution from MEQ cloud and to improve the

final estimated ensemble spread. The true setup of the model is shown in Figure 4.38.

The far field stress regime (boundary condition) is assumed [Smin, Smax, Pini] =

[20, 15, 10] (MPa). There is one injection well at the center of the model. Fluid

injection rate is equal 12.5 (Lit/s) and Young’s modulus E, is homogeneous in the

field and equal 40 (GPa). Cohesion C, is assumed spatially random distributed with

Normal PDF by 20 (MPa) and 7 (MPa) as its mean and Std, respectively. Friction

angle φ, is assumed homogeneous and equal 25◦.
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integration step. The estimation performance of SSBRC is also shown in Figure 55.b,c by RMSE and 

spread. Continuous reduction of estimation error (RMSE) by integration step in Figure 55.b from 6.8 

(GPa) to 3.7 (GPa) confirms the suitability of SSBRC for this estimation problem. From Figure 55.c, we 

also see that the final ensemble spread is 45% which shows promising performance of coarse seismicity 

density method in preserving the ensemble spread.  

 

4.4.6. Experiment 6: 2D Heterogeneous Permeability (Shear Events) 

In this experiment we estimate permeability distribution from MEQ cloud (shear failures). In this 

experiment we apply the standard SSBRC method with high resolution seismicity density map on the 

original fine mesh. The observation error Std range is also the typical interval of 5 % to 10 %. The true 

setup of the model is shown in Figure 56. The far field stress regime (boundary condition) is assumed 

[                  ]  [        ] (   ). There is one injection well at the center of the model. Fluid 

injection rate is equal 0.005 (Lit/s) and Young’s modulus  , is homogeneous in the field and equal 40 

(GPa). Cohesion  , is assumed spatially random distributed with Normal PDF by 20 (MPa) and 7 (MPa) 

as its mean and Std, respectively. Friction angle  , is assumed homogeneous and equal    . 

 

  
(a) True permeability ( ) map (b) True microseismicity cloud 

Figure 56: true model setup; true   distribution and the corresponding MEQ cloud 

 

Permeability estimation results are shown in Figure 57. The number of unknown parameters to estimate 

and observations are both equal to 10000 which is the number of nodes. The evolution of the estimated 

ensemble mean of permeability realizations, an estimated individual realization and the standard deviation 

of the ensemble in integration steps are shown in Figure 57.d,e,f, respectively. The estimated permeability 

maps in Figure 57.d,e, tend to identify the major high- and low-value regions of permeability in the 

reservoir. The final estimated maps (at 6
th
 integration step) of Figure 57.d, e., are very similar to the true 

permeability map in Figure 57.a, which confirms the promising estimation performance of SSBRC. It is 

Figure 4.38: True model setup; true k distribution and the corresponding MEQ
cloud.

As mentioned earlier, projection method has two tuning parameters; kernel

bandwidth standard deviation σh, and truncation number ntrunc that are set equal to

25 % and 100, respectively. As we can see from this test, the permeability estimation
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RMSE is fairly low and as the objective of the projection method, ensemble spread

is greatly preserved (final ensemble spread is 70 %). It should be noted that, in this

experiment, the number of observations is decreased from 10000 to 100, by projection

method. Therefore the proposed observation projection approach is successful in

preserving the ensemble spread and resolving ensemble spread underestimation of

SSBRC through observation dimension reduction.

Figure 4.39 shows permeability k, estimation results by SSBRC with projection

approach. The final estimated permeability distributions of Figure 4.39d,e, are

reasonably similar to the true k distribution in Figure 4.39a. The main advantage of

projection approach in preserving ensemble spread and preventing ensemble collapse

is shown by final ensemble Std map in Figure 4.39f. Figure 4.39c shows that final

ensemble spread is 70 %.

4.4.6 Experiment 6: 3D Heterogeneous Elastic Modulus

In this section, we apply SSBRC to the developed 3D fully coupled

thermo-poroelastic finite element method (FEM) model. We present the results of

estimating 3D Young’s modulus distribution from MEQ cloud using SSBRC. In this

experiment we use coarse-scale seismicity density method to preserve the ensemble

spread through update steps.

In the 3D model the injection well as a point source is at the center of the field.

Permeability distribution is homogeneous in the field and equal to 0.5 (md). We

suppose there are only tensile failures, so in order to avoid any shear failures, the

cohesion as a homogeneous property in the field is assumed a very high value of

1000 (MPa). In this experiment, the far-field stress boundary conditions including

initial reservoir pressure Pini, minimum horizontal stress Sh,min, maximum horizontal

stress SH,max and vertical stress Sv, are equal 10 (MPa), 13 (MPa), 15 (MPa) and
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(a) true permeability map (b) estimation RMSE (c) ensemble spread 

 
(d) evolution of ensemble mean 

 
(e) evolution of an individual realization 

 
(f) standard deviation map evolution 

Figure 59: permeability  , estimation results of SSBRC with projection approach, 

its true model is shown in Figure 56. 

 

4.4.7.3. Coarse-scale microseismicity density map 

In standard SSBRC method, the number of observations is equal to the dimension of seismicity density 

map. To reduce the dimension of the seismicity density map (number of observations to integrate) which 

is the major reason of the ensemble spread underestimation we build the seismicity density map on a 

coarse mesh instead of the original fine mesh. So we only need to evaluate continuous seismicity density 

map on a new coarse grid system. In 2D case studies where the node configuration size is 100x100 (   = 

10000,    = 100) we choose the coarse seismicity density mesh size e.g. equal to 15x15 (   = 225 

Figure 4.39: Permeability k, estimation results of SSBRC with projection approach,
its true model is shown in Figure 4.38.
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18 (MPa), respectively. In each forward simulation, time step length is 3600 (s)

and there are 72 time steps so the stimulation period is 72 (hr). The injection rate

scenario is shown in Figure 4.40.
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1200
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Figure 4.40: Injection rate scenario.

The true Young’s modulus distribution (as the parameter to estimate), the

assumed tensile strength (failure criteria) and the MEQ cloud response (the true

monitoring MEQ data to be integrated in EnKF) are shown in Figure 4.41. In

Figure 4.41c, the microseismic events are tensile failures as mentioned previously.

By SSBRC stochastic estimation algorithm, we estimate the 3D Young’s modulus

distribution (Figure 4.41a) which is assumed unknown from discrete MEQ cloud

observation (Figure 4.41c).

The vertical black line in MEQ cloud plots (e.g. Figure 4.41c) indicates the

location of the injection well and the injection point (point source) is at the center

of the model (at the middle of the black line). In SSBRC estimation procedure
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(a) true Young’s modulus distribution (b)    distribution (c) true microseismicity cloud 

Figure 65: true model setup; true Young’s modulus and    distribution and the corresponding MEQ cloud. 

 

The vertical black line in MEQ cloud plots (e.g. Figure 65.c) indicates the location of the injection well 

and the injection point (point source) is at the center of the model (at the middle of the black line). To 

better illustrate true MEQ data, Figure 66 represents it in 4 different views. 

 

  
(a) original view (b) XY view 

  
(c) XZ view (d) YZ view 

Figure 66: true MEQ cloud in different views 

 

In SSBRC estimation procedure we consider 6 integration time steps. The true MEQ cloud is shown 

throughout these 6 integration steps in Figure 67. We sequentially integrate the monitoring MEQ data at 

each integration step by EnKF to estimate the Young’s modulus distribution.  

 

Figure 4.41: True model setup; true Young’s modulus and T0 distribution and the
corresponding MEQ cloud.

we consider 6 integration time steps. We sequentially integrate the monitoring MEQ

data at each integration step by EnKF to estimate the Young’s modulus distribution.

In this example we consider using coarse-scale seismicity density method to reduce

the number of observations.

The final true MEQ cloud is converted to MEQ density map with different sizes

of coarse-scale mesh and the resulted density maps are shown in Figure 4.42. From

the investigation of Figure 4.42 and performing the EnKF analysis equation after

one integration step with different sizes of coarse scale mesh we chose 20 × 20 × 10

mesh as the appropriate size for coarse-scale continuous MEQ interpretation.

For the EnKF algorithm, the ensemble size (number of realizations) is assumed

100. We also considered 6 integration steps regularly specified in 72 (hr) of total

forward run simulation. Initially to make sure we will resolve ensemble spread

underestimation of SSBRC we utilize coarse-scale seismicity density method. Since

the forward 3D model is very computationally expensive to run, it was not convenient

to run SSBRC with coarse-scale density for different sizes of coarse mesh. Therefore

to find the appropriate size of coarse mesh, we investigated different sizes of

coarse-scale seismicity density map after one integration step only. So we propagated
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(a) (b) 

  
(c) (d) 

Figure 69: final (at 6th integration step) true MEQ density maps on different coarse size meshes 

 

As seen in Figure 69, it is clear how the resolution of the seismicity density map reduces by coarsening 

the continuous interpretation mesh which consequently results in reducing the number of observations. As 

of Figure 69, the number of observations in plots (a), (b), (c) and (d) are 500, 4000, 13500 and 108000 

respectively. The coarse-scale seismicity density map on 20×20×10 mesh is shown in Figure 70 

throughout integration steps. By using 20×20×10 coarse scale mesh, we reduce the dimension of the 

observation from 108000 to 4000 which results in preserving the ensemble spread through data 

integration using EnKF. In our SSBRC estimation experiment the seismicity density plots of Figure 70 

are observation data. 

 

 

 

 

Figure 4.42: Final (at 6th integration step) true MEQ density maps on different
coarse size meshes.
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the initial ensemble till the first integration step and performed the first EnKF

analysis equation with different coarse mesh configuration then we decided about the

optimal size based on the best values of RMSE and Spread. By applying coarse-scale

seismicity density method in SSBRC for this experiment, we estimate or update

108000 parameters (Young’s modulus value at each node) from 4000 observation

values (coarse seismicity density map dimension for 20×20×10 mesh configuration) at

each integration time step. In the estimation procedure we assume all the parameters

of the true model are known but the Young’s (elastic) modulus distribution. The

true model setup is shown in Figure 4.41.

As the first estimation result we show the estimated mean of elastic modulus

ensemble through integration steps in Figure 4.43. While the initial ensemble mean

(Figure 4.43b) is almost homogeneous and completely uninformative about the true

elastic modulus (Figure 4.43a), as we can see in Figure 4.43b-h by marching through

integration steps and integrating MEQ data the estimated ensemble mean becomes

more similar to the true Young’s modulus distribution (Figure 4.43a) and ultimately

the final estimated ensemble mean (Figure 4.43h) captures the trends and features

of the true parameter distribution.

The estimation performance of SSBRC is also represented by the root mean

squared error (RMSE) of estimated elastic modulus ensemble through time

(Figure 4.44a). Continuous reduction of estimation RMSE from 5.5 (GPa)

to 2 (GPa) through integration steps confirms successful application of SSBRC

in characterization of 3D geomechanical models by MEQ data. Uncertainty

quantification performance of SSBRC estimation procedure is shown by the ensemble

spread which should not reduce to a very low value. Both the original Young’s

modulus ensemble spread and auxiliary ensemble spread are shown in Figure 4.44b,c,

respectively. The ensemble spread percentage is defined as the ratio of the ensemble
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integration time step. In the estimation procedure we assume all the parameters of the true model are 

known but the Young’s (elastic) modulus distribution. The true model setup is shown in Figure 65. 

As the first estimation result we show the estimated mean of elastic modulus ensemble through 

integration steps in Figure 71. While the initial ensemble mean (Figure 71.b) is almost homogeneous and 

completely uninformative about the true elastic modulus (Figure 71.a), as we can see in Figure 71.b-h by 

marching through integration steps and integrating MEQ data the estimated ensemble mean becomes 

more similar to the true Young’s modulus distribution (Figure 71.a) and ultimately the final estimated 

ensemble mean (Figure 71.h) captures the trends and features of the true parameter distribution. 

 

  

(a) (b) 

   
(c) (d) (e) 

   

(f) (g) (h) 

Figure 71: Young’s modulus estimation results: evolution of estimated ensemble mean through integration steps 

 

 

 

Figure 4.43: Young’s modulus estimation results: evolution of estimated ensemble
mean through integration steps.
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spread at each integration step to the initial ensemble spread. As can be seen the

final ensemble spread is 30 % which is a promising in EnKF estimation procedure

and it confirms that ensemble collapse did not happen and the ensemble spread

underestimation issue is resolved.
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The estimation performance of SSBRC is also represented by the root mean squared error (RMSE) of 

estimated elastic modulus ensemble through time (Figure 72.a). Continuous reduction of estimation 

RMSE from 5.5 (GPa) to 2 (GPa) through integration steps confirms successful application of SSBRC in 

characterization of 3D geomechanical models by MEQ data. Uncertainty quantification performance of 

SSBRC estimation procedure is shown by the ensemble spread which should not reduce to a very low 

value. Both the original Young’s modulus ensemble spread and auxiliary ensemble spread are shown in 

Figure 72.b,c, respectively. The ensemble spread percentage is defined as the ratio of the ensemble spread 

at each integration step to the initial ensemble spread. As can be seen the final ensemble spread is 30 % 

which is a promising in EnKF estimation procedure and it confirms that ensemble collapse did not happen 

and the ensemble spread underestimation issue is resolved.  

 

   

(a) (b) (c) 

Figure 72: estimation performance measures 

 

To better represent promising estimation performance of SSBRC, evolution of a single sample 

(realization) through integration steps is shown in Figure 73. Again we start with an initial elastic 

modulus sample (Figure 73.b) that is completely different than true modulus distribution (Figure 73.a) 

and through integration steps the estimated sample captures the features of the true elastic modulus 

distribution and the final estimated realization (Figure 73.h) is very close to the true model. 

 

 

 

 

Figure 4.44: Estimation performance measures.

As mentioned before the uncertainty quantification performance of SSBRC is

evaluated by ensemble spread or ensemble standard deviation. Therefore the

evolution of the ensemble standard deviation map is shown in Figure 4.45 which

represents the reduction of the ensemble spread throughout the integration steps

that means the realizations are becoming more and more similar and in the same

time they are getting close to the true elastic modulus distribution. Reduction of

ensemble spread or standard deviation shows that the initial guesses are becoming

more similar to true value.

4.4.7 Joint Parameter Estimation in Geomechanical Model

To this point we assumed only one reservoir property is unknown and the rest of

the reservoir properties are known. In this section to relax this assumption we present

a 2D and a 3D model example to show the suitability of SSBRC to jointly estimate

132



122 

 

 
 

(a) 

   
(b) (c) (d) 

   
(e) (f) (g) 

Figure 76: evolution of the standard deviation map of Young’s modulus ensemble 

 

The results of the above experiments (and many others with similar well setup but different reference 

reservoir property maps that were not included) indicate that the EnKF can be used to successfully infer 

hydraulic and geomechanical reservoir parameter distributions from continuous interpretations (through 

KDE) of the discrete MEQ monitoring measurements. This outcome has important implications for 

characterization of subsurface reservoirs from MEQ events as an emerging monitoring technology in 

several important energy and environmental applications. While simple and easy to implement, the EnKF 

proves to be an effective model calibration tool for nonlinear problems where the optimality requirements 

of the original Kalman filter update equation, namely jointly Gaussian states and measurements and linear 

state-space model assumptions, are not strictly met. While the examples illustrated in this work clearly 

show the feasibility of applying the EnKF to constrain different reservoir parameter distributions based on 

Figure 4.45: Evolution of the standard deviation map of Young’s modulus ensemble.
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more than one parameter of the reservoir. Assuming that more parameters are

unknown or some of the parameters are uncertain will for sure add more uncertainty

to the integration procedure and consequently the jointly estimated results are not

as good as individual estimation.

4.4.7.1 Joint Estimation of Elastic Modulus and Permeability in 2D

Model

Here we present the application of SSBRC to jointly estimate the heterogeneous

distribution of Young’s modulus E, and permeability k, from the MEQ cloud

observation. The synthetic true Young’s modulus and permeability distributions

(parameters to estimate), tensile strength map and the corresponding seismicity

cloud as the monitoring data are shown in Figure 4.46a,b,c,d. The far-field stress

boundary conditions SH,max, Sh,min and Pini, are equal to 13, 11 and 10 (MPa),

respectively. Fluid injection rate is equal 12.5 (Lit/s). Tensile strength T0, is

assumed spatially random distributed and taken from a Normal PDF with mean

and standard deviation of −15 and 5 (MPa), respectively. In this experiment only

tensile failures (as MEQ events) are considered. For parameter ensemble generation,

Young’s modulus and permeability ensembles are assumed uncorrelated but with the

same variogram parameters.

We apply SSBRC along with projection approach to this example (kernel

bandwidth Std and truncation number are 15 % and 100, respectively). Detailed

estimation result is shown in Figure 4.46. The Young’s modulus and permeability

estimation results confirm the promising performance of SSBRC with projection

method in parameter estimation as well as preserving ensemble spread.
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Figure 4.46: Joint Young’s modulus (top) and permeability (bottom) estimation with
reduced-order projection approach.
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4.4.7.2 Joint Estimation of Tensile Strength and Permeability in 3D

Model

In this 3D example we present the application of SSBRC to jointly estimate the

heterogeneous distribution of tensile strength T0, and permeability k, from the MEQ

cloud observation. The synthetic true tensile strength and permeability distributions

(parameters to estimate), Young’s modulus map, injection rate scenario and the

corresponding seismicity cloud as the monitoring data are shown in Figure 4.47.

The far-field stress boundary conditions Sv, SH,max, Sh,min and Pini, are equal to 18,

15, 13 and 10 (MPa), respectively. Young’s modulus E, is assumed spatially random

distributed and taken from a Normal PDF with mean and standard deviation of 50

and 20 (GPa), respectively. In this experiment only tensile failures (as MEQ events)

are considered. For parameter ensemble generation, tensile strength and permeability

ensembles are assumed uncorrelated but with the same variogram parameters.

We apply SSBRC along with projection approach to this example with kernel

bandwidth standard deviation σh, and truncation number ntrunc of 25 % and 100,

respectively. In fact we reduce the dimension of the observation from 108000 to

100. Detailed estimation result is shown in Figure 4.48. The tensile strength

estimation results in Figure 4.48a-h and permeability estimation results in Figure

4.48i-p confirm the promising performance of SSBRC with projection method in

parameter estimation as well as preserving ensemble spread.

The results of the above experiments (and many others with similar well setup

but different reference reservoir property maps that were not included) indicate

that the EnKF can be used to successfully infer hydraulic and geomechanical

reservoir parameter distributions from continuous interpretations (through KDE)

of the discrete MEQ monitoring measurements. This outcome has important
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(a) true tensile strength   , map (b) true permeability  , map (c) Young’s modulus  , map 

 
 

(d) injection rate scenario (e) true microseismicity cloud 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.47: True specifications of 3D model for joint estimation; true tensile strength
and permeability distribution, Young’s modulus map, injection rate scenario and the
corresponding MEQ cloud.

implications for characterization of subsurface reservoirs from MEQ events as an

emerging monitoring technology in several important energy and environmental

applications. While simple and easy to implement, the EnKF proves to be an effective

model calibration tool for nonlinear problems where the optimality requirements

of the original Kalman filter update equation, namely jointly Gaussian states and

measurements and linear state-space model assumptions, are not strictly met. While

the examples illustrated in this work clearly show the feasibility of applying the EnKF

to constrain different reservoir parameter distributions based on microseismic event

locations, we did not consider the seismic analysis step that is required to provide the

MEQ sources locations. In addition to event locations, other information about the

seismic source may be extracted from the raw seismic data (e.g., the magnitude and

confidence of events) and be used to further constrain rock property distributions.
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Figure 4.48: Results of joint tensile strength (top) and permeability (bottom)
estimation in 3D model with projection approach.
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An important aspect that was not considered in this study is the presence, initiation

and propagation of fractures in the rock during the hydraulic fracturing process.

In general, microseismic events can carry important information about the location

and geometrical attributes of the fractures, which can be exploited for fracture model

calibration purposes.

4.4.8 Application of SSBRC to KTB Site

To show the application of SSBRC to real field data, the monitored microseismic

cloud in the German Continental Deep Drilling site (KTB) in fluid injection

experiment in 2000 is utilized. For simplicity the 2D configuration of the monitored

MEQ data is chosen as the observed data (shown in Figure 4.49). Our purpose is to

estimate the permeability distribution from this 2D MEQ cloud (integration data).

As the forward model, we employed the pore pressure diffusion forward model and

we assumed criticality distribution is known. We discretized the field to 100x100

grids. We chose 6 integration steps and used 100 realizations (some assumptions

made about the spatial correlation of the permeability distribution; variogram model

and its parameters). SSBRC along with the reduced projection method is used to

avoid ensemble collapse. The estimation results in terms of ensemble mean and

ensemble Std maps are given in Figure 4.50. Ensemble spread is also shown in

Figure 4.51 showing that the ensemble spread is preserved because of using reduced

order projection method.

139



Figure 4.49: The 2D configuration of KTB microseismic cloud which is used as the
integration data here (the pink cross is the injection well) (events chosen from a
depth interval of the 3D MEQ cloud)

Figure 4.50: Estimating permeability distribution form MEQ cloud in Figure 4.49
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Figure 4.51: Ensemble spread through integration steps
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5. APPLICATION AND EXTENSION TO HYDRAULICALLY

FRACTURED RESERVOIRS

5.1 Application of SSBRC to Horizontal Well with Multistage Hydraulic

Fractures

The application of SSBRC for reservoir and hydraulic fractures characterization

by MEQ data integration is shown in this section with presenting a set of different

numerical examples.

5.1.1 Estimating Permeability Distribution in Hydraulically Fractured

Reservoir

In this section we aim at illustrating the utility of SSBRC to infer reservoir

properties from MEQ cloud in hydraulically fractured reservoirs. To be able to

realistically model the treatment phase in a reservoir with horizontal well and

multistage hydraulic fractures, a reservoir simulator with coupled fluid flow and

geomechanics effects, fracture propagation model, rock damage and permeability

model capabilities is required. In this experiment to present a preliminary example

and show the applicability of SSBRC we set up an unsophisticated reservoir model

based on some assumptions to be able to utilize the available reservoir model tools

for the mentioned purpose. The experiment is based on the pore pressure diffusion

assumption in Section 2.1 and no fracture propagation model is utilized which implies

that the hydraulic fractures are created in the very first moments of fluid injection

and the induced MEQ events are triggered because of change in the stress and pore

pressure distribution around the fracture after its creation. To model this process

Eclipse [77] is utilized and as the failure criterion criticality or critical pore pressure is

assigned to each grid block. The reservoir, well and hydraulic fractures configuration
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is schematically shown in Figure 5.1.

The specifications of the reservoir model are as follows:

• A horizontal well with 8 transverse hydraulic fractures (regularly spaced).

• Horizontal well length is equal to reservoir length.

• Stimulation period is 48 (hr).

• Three phase fluid system (oil, water and gas).

• There are three periods of fluid flow in hydraulically fractured reservoir:

treatment (hydraulic stimulation), flow back and production. In here we

simulate the treatment period.

• The injection pressure is specified (water is injected).

• Shapiro assumptions and model setup are followed [26].

• Eclipse (E100) is used for reservoir simulation [77].

• Local grid refinement is used in the grids with hydraulic fracture.

• Spatially random criticality is used (taken from a Normal or Gaussian PDF).

• Permeability distribution is the target parameter to estimate.
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Reservoir configuration 100× 30× 30

Grid size 30(ft)× 30(ft)× 5(ft)

Reservoir size 3000(ft)× 900(ft)× 150(ft)

Initial reservoir pressure 4000 (psi)

Reservoir depth 6000 (ft)

Fracture height 65 (ft)

Number of fractures 8

Fracture half-length 150 (ft)

Fracture width 2 (in)

Fracture permeability 10000 (md)

Injection pressure 10000 (psi)

Dimensionless fracture conductivity CD 0.28

Table 5.1: Reservoir model parameter values.

To realistically model fluid flow in and around the hydraulic fractures (because of

the high contrast of permeability in fracture and matrix) the local grid refinement is

performed in the grid where the hydraulic fracture is present. The size of the refined

grids (refinement perpendicular to fracture plane; in x direction) are smaller in the

middle of the grid (the refined grid at the middle is the fracture grid which has the

high permeability) and are larger in the two sides as shown in Figure 5.3. The local

grid refinement configuration in each direction is as follows:

• x direction: 1 grid to 11 refine grids.

• y direction: 1 grid to 2 refine grids.

• z direction: 1 grid to 1 refine grids (no refinement).
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x 

y z 

Figure 5.1: The configuration of the multistage hydraulic fractures and the horizontal
well in the reservoir.

The top view of the reservoir including the permeability (in md) distribution and

the location of the stages is presented in Figure 5.2.

Figure 5.2: True model configuration (top view), the location of the fractures and
the reservoir permeability distribution.

Figure 5.3 shows the configuration and the refinement of two stages.
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1 
Hydraulically Fractured Reservoir with MEQ Observation M. Tarrahi 

Local Grid Refinement 

 Local grid refinement configuration (top view of two fractures) 

 Refinement in each direction: 

• x direction: 1 grid to 11 refine grids 

• y direction: 1 grid to 2 refine grids 

• z direction: 1 grid to 1 refine grids (no refinement) 

Horizontal 

well 

𝑋𝑓 = frac half-length 

= 150 (ft) 

Y 

X 

Figure 5.3: The top view of the two fracture stages to illustrate the refinement
configuration.

The true permeability distribution as well as the criticality map are presented in

Figure 5.4.
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Figure 5.4: The distributions of true log-permeability (implemented hydraulic
fractures as in Figure 5.1 are not shown here) and criticality. The criticality or
critical pore pressure values come from a Gaussian random distribution with mean
and standard deviation of 5850 (psi) and 550 (psi), respectively.

The pore pressure distribution in the reservoir during the hydraulic injection is

presented in Figure 5.5. As expected higher pore pressure occurs in the vicinity of
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the fracture stages since the pressure front travels faster in these regions. It is clear in

Figure 5.5d that the pore pressure distribution reflects the features (low/high values)

of permeability distribution of Figure 5.4a.
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Figure 5.5: Evolution of the pore pressure distribution in the reservoir model during
the hydraulic stimulation.

Figure 5.6 shows the evolution of the microseismicity cloud throughout the

hydraulic injection. As we expected, the high density of the MEQ events along

the hydraulic fracture stages (resulted from the high pore pressure in these regions)

is clearly distinguishable in Figure 5.6a,b.

In this example to estimate permeability distribution from the spatio-temporal

MEQ cloud we apply SSBRC approach along with the reduced-order projection
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Figure 5.6: Evolution of the MEQ cloud in the reservoir model during the hydraulic
stimulation.
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method to avoid ensemble collapse. In this experiment 100 permeability realizations

is used as always and ntrunc and σh (the reduced-order projection parameters) are

100 and 25 %, respectively. The estimation result of SSBRC in terms of estimated

ensemble mean is shown in Figure 5.7. The final estimated ensemble mean in Figure

5.7d shows acceptable similarity with the true permeability map in Figure 5.4a.
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Figure 5.7: Initial and final estimated ensemble mean.

The performance measures of SSBRC method in terms of estimation RMSE and

ensemble spread are presented in Figure 5.8. The continuous decrease of RMSE in

Figure 5.8a confirms the promising estimation capability of SSBRC and the final

ensemble spread of almost 40 % in Figure 5.8b illustrates that the reduced-order

projection method helps significantly in preserving the ensemble spread throughout

the integration procedure.

Figure 5.9 shows the initial and final standard deviation map which again

demonstrates the promising final ensemble spread because of utilizing the projection

approach.

This experiment clearly shows the utility of SSBRC to estimate rock properties
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Figure 5.8: Evolution of estimation RMSE and ensemble spread throughout the
integration steps.
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Figure 5.9: Evolution of the Std map throughout the integration steps.
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in the hydraulically fractured reservoirs (multistage fractures) with horizontal well.

While the presented experiment is based on the assumption of pore pressure

relaxation hypothesis and it lacks a fracture propagation model, by relaxing these

assumptions and making the reservoir model more physically realistic, SSBRC

applicability conditions will not change and it still will have promising utility in

inferring reservoir properties from MEQ data. This experiment is presented as a

preliminary example of applying SSBRC to a hydraulic fracture case with horizontal

well that can be extended to any complex reservoir model with planar or complex

fracture network and natural fractures. SSBRC can also be extended to be used

for characterizing hydraulic fractures (estimating hydraulic fracture geometry and

conductivity) and inferring the structure of the induced fracture network. It is clear

to do so one needs to acquire more involved reservoir simulators with geomechanical

effects, natural fracture handling capability, fracture propagation model and the

interaction between natural and induced fractures.

5.1.2 Estimating Permeability Distribution with the Assumption of

Unknown Hydraulic Fractures Characteristics

In this section we present the results of employing SSBRC for characterization of

hydraulically fractured reservoir. In the previous section an example was presented

for estimating matrix permeability estimation from MEQ data while we assumed

that all the hydraulic fracture characteristics are known. In this section we present

the same example but we assume that the fractures are also unknown and we try to

estimate the reservoir permeability distribution to see if SSBRC can infer fracture

locations by assigning high permeability to fractured regions of the reservoir.

The true model specifications are presented in the previous example. There are 8

equally spaced hydraulic fractures with the same geometries and conductivity, shown
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in Figure 5.1. The previous example showed the results of matrix permeability

distribution estimation by integration MEQ data in a hydraulically fractured

reservoir by the assumption of known hydraulic fractures. In that example the

hydraulic fractures locations and characteristics were known and they were already

implemented in all the realizations and the matrix permeability distribution was the

only unknown. While in the new experiment we do not implement hydraulic fractures

in the initial realizations in advance. We assume that the hydraulic fractures and

matrix permeability distribution are unknown and we integrate MEQ data to infer

permeability distribution and consequently the hydraulic fractures (their locations

and permeabilities). So the purpose of this experiment is to investigate if the SSBRC

approach can reveal the hydraulic fractures location and permeability through MEQ

integration. In case of successful application the signature of hydraulic fractures

should be seen as extremely high permeability (narrow rectangular) regions around

the well (represented by high permeability grid blocks).

As one of the major pitfalls of EnKF, it tends to smooth out the distribution

of estimated parameter and the dynamic range of the estimated parameter will

always be underestimated. Therefore inferring extremely high permeability regions

as hydraulic fractures when dynamic range of permeability is much lower is not

feasible in EnKF context.

The hydraulic fractures are explicitly implemented in the true model through local

grid refinement (explained in previous example) and highly increasing permeability

values at fracture grid blocks while within EnKF procedure in the permeability

realizations the hydraulic fractures are not implemented (as high permeability regions

in permeability distribution) and it is expected that MEQ integration would detect

the hydraulic fractures regions.

In Figure 5.4 (true permeability and criticality distribution) the hydraulic
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fractures are not shown while they are implemented as high permeability narrow

rectangular regions around the wellbore however for the ensemble of permeability

distributions hydraulic fractures are not implemented.

The stimulation time is 48 (hr). The pore pressure distribution during the

stimulation is shown in Figure 5.5. It is clear that the pore pressure goes high

at the location of the stages.

The evolution of the MEQ cloud during stimulation process is shown in Figure

5.6. We can see that the MEQ events are mostly gathered around the fracture stage

locations.
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Figure 5.10: Evolution of ensemble mean throughout the integration steps.

Figure 5.10 shows the initial and final estimated ensemble mean. The final

estimated permeability map is not similar to the true permeability distribution and

also there is no sign of high permeability regions (fracture stages) which implies the

unsuccessful application of SSBRC to estimate reservoir permeability distribution

(matrix and fracture in the same time) from MEQ data in this setup (using pore

pressure relaxation assumption).
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Figure 5.11: Evolution of estimation RMSE and ensemble spread throughout the
integration steps.

While in Figure 5.11a, estimation RMSE shows continuous reduction, the

estimated map is not close to the true map and the fracture locations are not detected.

Overall if we assume that the fractures characteristics as well as matrix

permeability distribution are unknown and try to estimate hydraulic fractures

through permeability estimation (finding high permeability regions around the well

as stages), SSBRC does not show successful performance.

5.1.3 Estimating Hydraulic Fracture Characteristics

In this section we employ SSBRC to infer hydraulic fractures geometries (fracture

half-length and height) from MEQ data while we assume the matrix permeability is

known. We applied SSBRC to a wide range of matrix permeability such as relatively

high matrix permeability (could be resulted from preexisting natural fractures

and rock weaknesses) which results in a very scattered MEQ cloud (representing

complex fracture network) and also extremely low matrix permeability (to represent

unconventional shale resources) which leads into grouped, elongated and well-shaped

MEQ cloud (representing planar fractures). We also performed examples with

medium matrix permeability range (to cover a wide spectrum of matrix permeability
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values) to demonstrate the utility of the method for a wide range of matrix

permeability. We aim to verify the successful performance of SSBRC in hydraulic

fracture characterization for any possible range of matrix permeability which means

any type of MEQ cloud shape ranging from well-shaped clouds (placed along the

planar hydraulic fractures) to very scattered MEQ cloud (in case of complex fracture

network).

The well known approach of fracture characterization from MEQ cloud is

recognized as hydraulic fracture mapping [113, 114, 115] to find the planar fracture

characteristics (geometries like half-length, height and orientation) from microseismic

cloud which is a direct or explicit solution to this problem. This method works by

fitting line segments and planes to the scattered events in each stage. Complex

fracture network also can be inferred by hydraulic fracture mapping methods where

a set of parallel and perpendicular line segments which construct the complex

fracture network are fitted to the MEQ cloud. Here we propose to infer hydraulic

fractures characteristics by inversion or inverse modeling from MEQ data using

SSBRC method. Hydraulic fracture mapping methods are straightforward to use

for elongated and well-shaped MEQ clouds but it is problematic for scattered MEQ

clouds.
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Fracture Stage # True Fracture Half-length (ft) True Fracture Height (ft)

1 180 120

2 350 90

3 260 100

4 100 92

5 240 100

6 180 40

7 75 130

8 410 140

Table 5.2: True geometries (half-length and height) of 8 hydraulic fracture stages.

As shown in Figure 5.12, we assume 8 equally spaced hydraulic fractures with

different geometries (presented in Table 5.2). The fracture permeability is also set

at 10000 (md) as in the previous example.

In the performed examples we estimate hydraulic fractures geometries by

integrating MEQ data using SSBRC method while assuming known high and low

matrix permeability. There are 8 hydraulic fractures and each with two geometry

parameters (half-length and height) therefore we estimate 16 parameters and we

do not assume any correlation between parameters. The ensemble size is 100

and Uniform PDF is used to generate initial realizations. Based on the reservoir

configuration and size the half-length samples are coming from interval [5, 450] (ft)

and height samples are generated from interval [5, 150] (ft).

To summarize the matrix permeability ranges of all four experiments, the

important statistics and ranges of matrix permeabilities are given in Table 5.3. As
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Figure 5.12: The true configuration and geometries (half-length and height) of the
multistage hydraulic fractures (8 stages) and the horizontal well in the reservoir.

presented in this table, the chosen matrix permeability ranges well cover the possible

reservoir permeability values in wide range of applications. It should be noted

again that the matrix permeability statistical distribution is Log-normal. Detailed

estimation results of only one of the experiments (Medium # 2) are reported here.
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Matrix perm.

range

Mean Median Mode Min. Max. 90% quantile

Low 6.52× 10−4 4.44× 10−4 4.76× 10−4 1.98× 10−5 0.0169 0.0014

Medium #1 0.026 0.018 0.0193 8.02× 10−4 0.7 0.05

Medium #2 1.06 0.7271 0.7797 0.03 27 2.2

High 39 27 28 1.1873 1009 81

Table 5.3: The matrix permeability statistics of all four experiments (all values are
in md).

The MEQ clouds even for the very low matrix permeability case (clear sign of

hydraulic fractures in MEQ cloud) might seem relatively noisy. As explained before

the SBRC approach is followed here and the critical pore pressure or criticality map

is assumed spatially random therefore the resulting MEQ cloud has some signatures

of the random criticality map.

Here we consider a medium range matrix permeability (Medium # 2) distribution

with the previously defined hydraulic fracture setup. The matrix permeability

distribution, final pore pressure and MEQ cloud are shown in Figure 5.13. As shown

in this Figure 5.13d, the MEQ cloud hardly has sign of the planar fractures and shows

very scattered behavior however it is not as scattered as the high matrix permeability

case.

The estimation results are presented in Figure 5.14. As seen in Figure 5.14a, the

fracture half-length ensemble tend to converge to the true values during integration

steps. Figure 5.14b also shows that the fracture height ensembles become closer to

true height values through integration steps.

Figure 5.15 shows performance of SSBRC in estimating fracture half-length
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Figure 5.13: The distribution of matrix permeability (implemented hydraulic
fractures as in Figure 5.12 are not shown here). Both Log-permeability and
permeability (md) values are shown in this figure. Final pore pressure distribution
and MEQ cloud are also shown.
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Figure 5.14: Evolution of hydraulic fractures geometries (half-length and height)
ensembles through integration steps. Blue stars depict the realizations and red circles
show the true hydraulic fracture geometry value.
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and height in terms of estimation RMSE. Continuous reduction of both estimated

ensemble half-length and height confirms the promising performance of SSBRC in

inferring fracture geometries.
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Figure 5.15: Evolution of estimation RMSE of half-length and height ensembles
throughout the integration steps.

The hydraulic fractures characteristics estimation results with SSBRC for

different matrix permeabilities are summarized in Table 5.4.

Matrix perm.

range

Xf RMSE (ft) H RMSE (ft)

Low 9.3 3.39

Medium #1 7.17 2.88

Medium #2 9.73 2.79

High 42.49 6.13

Table 5.4: The estimation results of all four experiments (initial Xf RMSE = 164.74
ft, initial H RMSE = 53.05 ft).
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5.2 Assessment of Welltest Techniques for Hydraulic Fracture

Characterization and its Integration with MEQ Data

Well test can be utilized to help estimating effective hydraulic fracture length

and conductivity, for low-complexity fractures, and effective matrix surface area

for high-complexity (complex fracture networks) situations [116]. Fracture type

curves can be used to determine the flow regimes in the hydraulically fractured

reservoirs (based on the dimensionless fracture conductivity and drainage area) e.g.

linear or bilinear flow. Although some hydraulic fracture information as well as

drainage volumes can be obtained from well test, it is impossible to assess fracture

or SRV geometry. Microseismic fracture mapping as the existing technology as well

as the proposed SSBRC method can be used to provide critical information regarding

fracture geometry (height, length and azimuth) and complexity, and also can be used

to provide SRV limits and shape. The integration of well test (RTA) and microseismic

fracture mapping can provide a promising framework to efficiently characterize

hydraulic fractures and reservoir as well as ultimately plan field development and

optimize hydraulic fracturing strategy.

Numerical experiments are done and well test analysis is applied to their results

to illustrate the outcome of PTA application for reservoir characterization. The

performed examples (to illustrate application of PTA) include single hydraulic

fracture fully penetrating the formation (fracture height is equal to the formation

thickness). Fracture half-length is assumed to be 200 (ft). We performed two

numerical examples with different formation permeabilities of 600 (nd) and 0.02 (md).

Our case is effectively acting as infinite conductivity fracture. (fracture permeability

kf = 10000 md, dimensionless fracture conductivities CD are also reported next).

The linear flow regime (half slope section in pressure derivative curve) is analyzed
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as following:

∆p′ =
1

2
mlf

√
∆t⇒ mlf =

2∆p′√
∆t

(5.1)

xf
√
k =

(
4.064∆qB

mlfh

)(
µ

φct

) 1
2

(5.2)

where xf is hydraulic fracture half-length (ft) and k is matrix or formation

permeability (md). mlf can be obtained by the given formula using any point on

the half slope section of the pressure derivative curve. In the performed examples

(drawdown test) the linear flow regime is clear in the log-log plot of pressure change

and pressure derivative versus time. Using PTA specifically for linear flow regime

in hydraulic fracturing treatment, we can estimate xf
√
k (fracture half-length and

formation permeability provided which data is available).

Based on the given formulation in the half slope part of diagnostic plot of Figure

5.16, the estimated xf
√
k is 5.73 (the true value is 4.90) and if we assume the

formation permeability is known the estimated fracture half-length is 234 (ft).

Based on the given formulation in the half slope part of diagnostic plot of Figure

5.17, the estimated xf
√
k is 31.6 (the true value is 28.28) and if we assume the

formation permeability is known the estimated fracture half-length is 223 (ft).

Well testing is a model based fracture diagnostic method that requires accurate

permeability and reservoir pressure estimates. Microseismic mapping techniques

(microseismic data integration; by microseismic data here we mean the microseismic

events location and time obtained after microseismic processing and locating the

MEQ source) can determine hydraulic fracture length, height, azimuth, dip and

asymmetry (generally hydraulic fractures geometry and configuration) and also in

case of complex fracture network can determine SRV extent, shape and volume.

While well testing techniques may determine (based on the available flow regime
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Figure 5.16: The log-log plot of pressure change and pressure derivative versus time
(diagnostic plot) and the associated linear flow part (matrix permeability = 600 nd,
CD = 13889).
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Figure 5.17: The log-log plot of pressure change and pressure derivative versus time
(diagnostic plot) and the associated linear flow part (matrix permeability = 0.02 md,
CD = 417).
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in acquired data) fracture length, width and conductivity [117]. We need to

obtain matrix permeability independently from other sources of information such

as pre-fracture well test [118, 119]. Well testing technique is limited to estimating

a single stage fracture half-length (fully penetrating) while microseismic data

integration (e.g. SSBRC) can infer half-length and height (and orientation; in general

fracture geometry) of each fracture in multi-stage hydraulic fracturing.

As presented in detail in previous section (for different ranges of matrix

permeability), SSBRC is able to estimate geometries (half-length and height) of

multi-stage hydrauilic fractures. It is also shown that if the hydraulic fracture

characteristics are available (from another source of information e.g. tiltmeter), MEQ

data integration through SSBRC can determine the distributed matrix permeability

(estimating the heterogeneous matrix permeability distribution).

5.3 Discussion and Recommendations for Real-time Application of

SSBRC

The utility of SSBRC in characterizing the reservoir based on the MEQ

observations will be of great advantage if it can be applied to a reservoir in the

real-time fashion. We accomplished applying SSBRC to different reservoir simulators

and demonstrated its capability to estimate hydraulic and geomechanic reservoir

distributed parameters from MEQ data. The pore pressure diffusion model is not

very physically involved which leads to less computational complexity and makes

it a much faster option. On the other hand the geomechanical forward model is a

fully coupled reservoir model and is very computationally expensive. In performing

inversion with SSBRC by geomechanical reservoir simulator as the forward model

it might seem that the total simulation time is not feasible in some cases. For

instance if the SSBRC simulation time is comparable to the real field stimulation
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time then the inversion procedure can hardly be considered as real-time. So to make

the whole SSBRC procedure faster we recommend to implement some variations

of the EnKF-based integration approach and we also recommend to utilize faster

reservoir simulators. To utilize the fast pore pressure diffusion model for achieving

to a real-time SSBRC procedure we need to incorporate or translate the reservoir

geomechanical properties in the criticality or critical pore pressure [120].

The available geomechanical forward reservoir simulator is in the executable

form and to speed up the SSBRC process using this reservoir model all the

improvements need to be done in the SSBRC inversion algorithm. Having access

to the geomechanical model source code we can though make the simulator faster

by:

• Removing some of the physical effects e.g. removing temperature effect,

assumption of isothermal process.

• Using coarser finite element mesh (less nodes) in geomechanical model.

• Performing the process in iterative or uncoupled fashion.

The improvements that need to be done in regards to the SSBRC algorithm in

the way to reduce the required number of forward simulations can be as follows:

• Reducing the number of integration steps.

• Reducing the ensemble size.

• Utilizing more CPU in the parallel inversion process.

• Using sequential EnKF instead of EnKF with confirmation step.

• A combination of these approaches.
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Test #
Ensemble size

Ne

# of integration

steps

CPU run

time (hr)

Final RMSE

(%)

Final Spread

(%) Sp(m)

1 (Reference) 100 6 42.9 54.72 54.34

2 50 6 23.3 60.53 55.65

3 25 6 12.06 54.42 44.49

4 100 3 26.1 63.92 64.79

5 50 3 13.8 66.99 66.37

6 25 3 6.5 61.57 62.15

7 100 1 13.2 77.82 84.70

8 50 1 7.0 80.19 87.19

9 25 1 3.7 79.53 88.05

Table 5.5: Performance comparison of SSBRC with different ensemble sizes Ne, and
number of integration steps.

For the experiment that its true model is shown in Figure 4.27, the performance

comparison of SSBRC with different number of realizations and integration steps

is presented in Table 5.5. The results clearly show that reducing the number of

integration steps and ensemble size significantly reduces the computational load of

the SSBRC procedure. As presented in Table 5.5, with a fixed number of integration

steps, ensemble size does not have a significant effect on RMSE and ensemble spread

values. In Table 5.5 since we are using reservoir property ensemble with different

sizes, to be consistent we present the percentage of the final RMSE to the initial

RMSE. It should be noted that the real-field stimulation period is 20 (hr) as indicated

in the MEQ cloud in Figure 4.27. In all these experiments to avoid ensemble collapse,

projection approach is utilized and in each test ntrunc and σh are equal to the ensemble
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size of the test and 25 %, respectively. To run the experiments, a same machine

with 4 CPUs in parallel was utilized. The final estimated ensemble mean of all the

performed tests are shown in Figure 5.18. In terms of final estimated ensemble mean,

the test with 3 integration steps and 25 realizations (Test # 6 in Table 5.5) resulted

in the promising estimated map in Figure 5.18g comparing to true map in Figure

5.18a as well as the reference test result in Figure 5.18b while it is almost 7 times

faster than the reference test.

The pore pressure diffusion model and geomechanical model seem to be at

the two extremes of the physics-based reservoir simulations. The pore pressure

diffusion model (using a commercial reservoir simulator Eclipse [77]) only has the

single phase fluid flow effect and it loosely includes geomechanical effects and failure

criteria by incorporating criticality or critical pore pressure (low-order physics-based

model). In contrast the geomechanical reservoir model [27, 28, 29, 30] (which we

have access to its executable file) handles the fully coupled effects of fluid flow,

temperature and rock deformation as well as geomechanical failure criteria and

damage and permeability model (high-order physics-based model) that makes this

model very slow to run. To make use of both advantages of this two modeling

approaches we recommend to utilize a reservoir simulator with both features i.e.

a fast commercial reservoir simulator with uncoupled fluid flow and geomechanics

effects. We recommend and introduce a novel approach to combine Eclipse (using

its uncoupled or iterative geomechanics module) with MATLAB (to implement the

geomechanical failure criteria, damage and permeability model) to build a rather

computationally inexpensive reservoir model which though has the geomechanical

effects. The overall workflow of the proposed approach is presented in Figure 5.19.

Therefore we can use Eclipse with its geomechanics module along with MATLAB

to develop a faster geomechanics-based reservoir simulator. We first reproduce

169



X (node #)

Y
 (

no
de

 #
)

True (E) Young Modulus (GPa)

 

 

20 40 60 80 100

20

40

60

80

100

5

10

15

20

25

30

(a)

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(b) int. step = 6, Ne = 100

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(c) int. step = 6, Ne = 50

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(d) int. step = 6, Ne = 25

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(e) int. step = 3, Ne = 100

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(f) int. step = 3, Ne = 50

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(g) int. step = 3, Ne = 25

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(h) int. step = 1, Ne = 100

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(i) int. step = 1, Ne = 50

Final Ensemble Mean

20 40 60 80 100

20

40

60

80

100

(j) int. step = 1, Ne = 25

Figure 5.18: Comparison of final estimated ensemble mean for different SSBRC
setups in Table 5.5.
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pore pressure and principal stress distributions by Eclipse then we can read these

distributions into MATLAB. We set up the failure criteria, damage and permeability

model in MATLAB to generate MEQ events and update the permeability and elastic

modulus values because of the failure, then we feed back the updated permeability

and elastic modulus to Eclipse to move forward to the next time step. This developed

model by combining Eclipse and MATLAB is more physically realistic that pore

pressure relaxation model and faster than the fully coupled FEM model.

Eclipse + 

Geomechanics 

Module 

Pore-pressure and 

principal stress 

distribution 

Hydraulic and 

geomechanical properties 

Rock strength 

properties 

MATLAB: 

Failure criteria + 

damage and 

permeability 

model 

Damaged 

permeability 

and elastic 

modulus 

elastic modulus 

distribution (GPa) 

permeability 

distribution (md) 

tensile strength 

distribution (MPa) 

cohesion 

distribution (MPa) 

microseismicity cloud 

Figure 5.19: The overall workflow of the proposed geomechanical forward model by
combining Eclipse and MATLAB.

Utilizing Eclipse and its geomechanics module combined with Matlab offers the

following advantages:

• Implementing horizontal, deviated or any complex well trajectory.
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• Multiple well and multiple stage configuration.

• Implementing stimulated reservoir volume (SRV).

• Simulating all three phases of treatment, flow back and production.

• Explicitly implementing the pre-existing anomalies in the reservoir (faults and

natural fractures).

• Capability of natural fracture modeling.

• Capability to integrate various types of data (production data, MEQ data,

geological and geomechanical data).

• Handling large number of grid blocks.
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6. ASSESSING THE PERFORMANCE OF THE ENSEMBLE

KALMAN FILTER FOR SUBSURFACE FLOW DATA

INTEGRATION UNDER VARIOGRAM UNCERTAINTY∗

6.1 Introduction

The uncertainty in the spatial distribution of subsurface hydraulic properties can

lead to unreliable predictions of fluid flow displacement behavior, which can adversely

impact the strategies for the development of subsurface hydrological and energy

resources. The complexity associated with heterogeneity and spatial variability of

subsurface transport properties at several scales, together with the high cost and

lack of convenient access to the subsurface environment for direct sampling, leads to

significant uncertainty and systematic errors in subsurface characterization studies

[121, 122, 123]. Characterization of geological heterogeneity from various sources

of measurements has been extensively studied by researchers in the hydrogeology

and petroleum engineering community, among others. Inference of flow-related

heterogeneous rock properties, such as permeability, from flow measurements leads

to a nonlinear dynamic inverse problem that is inherently underdetermined, i.e.,

has more unknowns than can be uniquely resolved by available measurements

[124, 125, 126, 121, 122, 127]. In general, it is possible to find several distinct models

that describe the available data equally well but provide different predictions for

future flow displacement behavior. To account for the ill-posed nature of the problem,

uncertainty assessment and quantification are an important part of any parameter

estimation approach used to characterize heterogeneous subsurface properties.

∗Reprinted with permission from “Assessing the performance of the ensemble Kalman filter
for subsurface flow data integration under variogram uncertainty” by Behnam Jafarpour and
Mohammadali Tarrahi, 2011. Water Resources Research, 47, Copyright 2011 by John Wiley and
Sons.
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The problem of uncertainty quantification is closely tied to selection (sampling)

of relevant model parameters m using the existing measurements y, the likelihood

model p(y|m), and the prior model p(m) (here p(·) represents the probability

density function (pdf) and p(y|m) denotes the pdf of measurements y conditioned

on a specified set of parameters m). From a probabilistic perspective, the model

identification problem can be formulated as characterization of the pdf, p(m|y), by

conditioning a prior model density p(m) on available measurements y. The Bayesian

approach [128] provides an elegant framework for conditioning model parameter

distributions on available data through the likelihood function, i.e., p(y|m). In

practice, however, except for a very limited number of simplified cases, complete

characterization of the conditional density p(m|y) is not feasible [128]. Therefore,

it is common to either estimate representative point statistics of the conditional

distribution (e.g., mean or mode), with a related estimation error metric, or to

approximately describe the conditional distribution p(m|y) by estimating N sample

realizations from it, i.e., {m}1:N ∈ p(m|y). Rigorous sampling from an often

high-dimensional and possibly complex (e.g., multimodal) conditional density is

nontrivial [128, 129], which becomes only more complicated in this case where the

conditional distribution is unknown.

To deal with the nonuniqueness of the solution in subsurface inverse problems

and to quantify the corresponding uncertainties, stochastic inversion methods have

become increasingly popular for groundwater model calibration [130, 131, 132,

133, 134, 135, 136, 60, 137, 62]. Conditional simulation techniques either update

individual realizations from a prior distribution to generate multiple samples that

can be regarded as realizations from the conditional distribution [130, 131, 132, 133]

or collectively process an ensemble of realizations to generate several conditional

realizations at once [54, 60, 137, 62] (see also [61] and [62] for further discussion).

174



The former approach is known to suffer from high computational complexity, while

efficient implementations of the latter approach have only been developed for

relatively simple schemes, e.g., the ensemble Kalman filter (EnKF), which is based on

a linear second-order update equation [54, 138]. In this work, we focus on ensemble

methods and, in particular, assess the performance of the ensemble Kalman filter

under variogram structural uncertainty.

The EnKF model calibration procedure provides a systematic mechanism for

approximating the uncertainty in model predictions using a finite set of realizations.

As an ensemble data assimilation approach, the filter was originally introduced to

extend the optimal linear Kalman filter for state estimation in nonlinear systems

[54]. It has been widely used for state and parameter estimation in several branches

of engineering and science, including meteorology and oceanography [58, 54, 57],

hydrology [56, 60], and oil reservoir characterization [135, 136, 137, 67]. For

subsurface flow model calibration, the method is mainly used as a parameter

estimation tool to identify the spatial distribution of aquifer hydraulic properties from

flow data. Under correctly specified variogram models, the performance of EnKF

in estimating underground hydraulic properties has been shown to be encouraging

[67]. This success can be largely attributed to the strong correlations in the spatial

distribution of hydraulic properties and their significant cross correlation with the

flow response. The former implies that the true dimension of the underlying

parameter space is far less than its nominal dimension. This important fact may

be used to explain why a small ensemble of permeability models that is derived from

a correct variogram model can effectively capture the main spatial variability in the

seemingly high-dimensional parameter space. In addition, the permeability values

directly appear in the flow equations and leave a strong and explicit signature on

both local and global flow behavior. Thus, the permeability field tends to be strongly
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correlated with the flow data, which can be effectively exploited by the second-order

Kalman update equation.

In practice, however, variogram models are generated by combining geologic

expertise with qualitative information (e.g., outcrop maps and regional geology)

and limited static measurements. Hence, the functional form and parameters of

variogram models can carry significant uncertainty. In a broader context, one could

also consider the uncertainty in the type of geologic continuity and the conceptual

model used to describe the main variability in subsurface physical properties. In

many cases, however, the geologic history of the site and exploratory surveys

(well logs, seismic, and core analysis) can reveal important information about the

formation type. In this work, we assume variogram-based modeling of subsurface

heterogeneity without considering the uncertainty in the type of conceptual geologic

continuity model. The uncertainty in the geologic continuity is clearly an important

topic that deserves future research attention. The main focus of this work is on the

effect of variogram uncertainty on the EnKF performance.

To date, very few studies in the literature have considered the application of the

EnKF for estimating hydraulic properties of geologic formations under incorrectly

specified individual variogram parameters [60, 137, 62]. However, to our knowledge,

a systematic evaluation of the EnKF update under uncertain variogram models and

direct estimation of the variogram model parameters is not available. In [60], The

authors applied the EnKF to sequentially update groundwater model parameters

and states such as hydraulic conductivity and pressure head, respectively. They

used a two-dimensional example to demonstrate the capability of EnKF and its

sensitivity to different factors, including the number of realizations, measurement

times, and the initial ensemble. The authors found that EnKF provides an efficient

approach for obtaining satisfactory estimation of the hydraulic conductivity field
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from dynamic measurements. They also studied the effect of incorrect variogram

models on the estimation results and applied the EnKF to a three-dimensional model.

However, a stochastic treatment of the variogram model parameters to account for

the uncertainty in the variogram model parameters or to estimate the parameters of

the variogram model from dynamic flow data was not considered.

In [137], the authors studied the performance of EnKF for continuously updating

an ensemble of permeability models to match real-time multiphase production data

in oil reservoirs. They avoided the physical inconsistency between model parameters

and states by resolving the flow equations from the previous assimilation step to

the current step using the updated permeability models (the authors called this

step a confirming option). While in [137] improved results are reported due to

the confirming option, in [61] little or no improvement was found as a result of

applying the restart option. In [137] the sensitivity of using a different number

of realizations in the EnKF is also investigated and found that a relatively large

number of realizations are needed to obtain stable results, particularly for a reliable

uncertainty assessment. The sensitivity of the estimation results to using different

covariance functions is also considered in [137]. A systematic analysis to deal with

possible uncertainty in the variogram parameters is not included in [137]. In [139],

a combination of laboratory-based aquifer tracer experimentation and a bias-aware

EnKF is presented to demonstrate that systematic modeling errors in source loading

dynamics and the spatial distribution of hydraulic conductivity pose severe challenges

to groundwater transport forecasting under uncertainty.

Given the importance of the variogram model parameters (or parameters

controlling global continuity in other spatial models) and the significant uncertainty

associated with them, it is imperative to acknowledge and incorporate variogram

uncertainty in applying EnKF to realistic problems. Intuitively, the flow data
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are expected to carry important information about the structural attributes of

the hydraulic conductivity field and hence can be used to constrain variogram

parameters. In this work, we report the results of our investigation of the EnKF

performance for nonlinear dynamic flow data integration under uncertain variogram

models. The main contributions of this work can be summarized as (1) assessing

the feasibility of directly estimating structural variogram parameters from flow data

using the EnKF, (2) investigating the sensitivity of the EnKF performance to errors

in individual variogram parameters, (3) evaluating the EnKF performance when

variogram model parameters are unknown, and (4) illustrating the advantage of

overestimating the uncertainty in the variogram model and initializing the EnKF

with a diverse ensemble. The results reported in this work provide important insights

about effective design and implementation of the EnKF in realistic settings where

one is usually in doubt about the uncertainty in the geologic continuity and hence

the global flow displacement patterns.

We begin our discussion in Section 6.2 with a brief overview of the EnKF method

and variogram modeling, followed by a description of the experimental setup for

the water-flooding numerical examples and a set of two-dimensional examples to

motivate the significance of variogram model uncertainty in model calibration with

EnKF. Section 6.3 presents two sets of experiments in which EnKF is used (1) to

directly infer variogram parameters and (2) to estimate permeability maps under

highly uncertain initial variogram parameters. A final example with a single layer of

the SPE10 model is presented to assess the validity of the discussed method under

more realistic settings. The conclusions drawn from these experiments and their

implications in application of the EnKF under variogram uncertainty are presented

in Section 6.4.
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6.2 Methodology

6.2.1 Ensemble Kalman Filter

For large-scale nonlinear state-space models, derivation of the states’ forecast

mean and error covariance under a nonlinear state transition function is not trivial.

Linearized versions of the Kalman filter, such as the extended Kalman filter (EKF),

have been used to address nonlinear error propagation for small- to medium-scale

problems and when nonlinearities are mild [111]. However, the additional cost of

linearization makes the EKF-type methods impractical for large-scale or strongly

nonlinear problems. In [54] an alternative ensemble-based solution is provided by

using the Monte Carlo forward simulation for error propagation under nonlinear

dynamical models, which has found widespread application in ensemble-based data

assimilation across several disciplines [54, 58, 56, 135, 136, 67].

The EnKF proceeds by nonlinear forecasting of the state density using a Monte

Carlo simulation with a finite number of samples from the prior density as follows:

xjt|t−1 = ft

(
xjt−1|t−1, αt−1,w

j
t−1

)
, j = 1, 2, ..., N

yjt|t−1 = ht

(
xjt|t−1

)
+ vjt , j = 1, 2, ..., N

(6.1)

where j = 1, 2, ..., N is the jth replicate of the state vector, αt−1 denotes a vector

of nonrandom and generally timedependent model input and control variables, wj
t

and vjt are the jth realizations of model and measurement errors, respectively, and

the functions ft(·, ·) and ht(·) represent the nonlinear state transition function and

measurement operator that relates the states to measured quantities, respectively.

The forecast ensemble is then used to approximate the forecast mean and covariance

that are needed in a slightly modified LLS update equation, written for individual

samples in the ensemble. The ensemble version of Equation (6.1) is written as [138]
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x̂jt|t = xjt|t−1 + Pe
t|t−1H

T
t

(
HtP

e
t|t−1H

T
t + Rt

)−1 (
yjt −Htx

j
t|t−1

)
, j = 1, 2, ..., N

(6.2)

where the superscript e is used to indicate ensemble approximated statistics.

The system of Equations in (6.1) and (6.2) together with the initial ensemble of

states xj0|0, define the ensemble Kalman filter recursion for a nonlinear problem. It is

important to note that instead of updating the first- and second-order moments (as

done in the original Kalman filter), the ensemble form of the filter updates individual

samples (or their perturbations from the mean depending on the implementation),

which can then be used to approximate any desired (update) statistics. At this point,

a few implementation remarks are in order.

First, for a parameter with physical bounds smin ≤ s ≤ smax , we can apply the

following pair of inverse (before update) and forward (after update) error function

transforms:

sT = erf−1
(

2s− (smin + smax)

smax − smin

)
⇔ s =

(smin + smax)

2
+

(smax − smin)

2
erf(sT ) (6.3)

where sT denotes the transformed (unbounded) variables. This transformation

tends to impart (univariate) Gaussian properties on the estimation parameters. In

the past, we have applied this transform to saturation states and obtained acceptable

results [66]. In this work, we apply this transformation to variogram parameters.

Second, it is common to update the predicted measurements by including them

in the state vector, which facilitates the calculation of cross correlations between

measurements and states. As a result, the measurement matrix Ht becomes a
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simple selection operator that extracts the observation part of the new state vector.

Moreover, the EnKF formulation as presented in Equations (6.1) and (6.2) is only a

state estimation approach. In this work, however, we apply the EnKF to estimate

the static parameters (i.e., permeability or variogram parameters) of a subsurface

flow model. Application of the EnKF to parameter estimation is easily accomplished

by augmenting the state vector with uncertain parameters. That is, to estimate

the parameter vector m, we define a new (augmented) state vector composed of the

original states and parameters to be estimated; that is, xaug
t = [xt mt]

T . After

this simple modification, the analysis equation (Equation (6.2)) is applied to xaug
t

to update both states and parameters. Note that the forecast for time-invariant

parameters is the same as the updated parameters at the previous analysis step, i.e.,

mt+1|t = mt|t.

Last, substituting the theoretical covariances with a low-rank sample

approximation introduces sampling errors that can lead to rank deficiency,

ill-conditioning and inaccuracies of the matrices involved in the update equation.

Determination of the ensemble size is problem specific and, in general, depends

on the dimensionality and complexity of the problem and, in practice, is limited by

available computational resources [140]. For a linear model in which the uncertainties

are described with jointly Gaussian statistics, in the limit of an infinite number of

samples, the solution converges to the MMSE estimate given by the Kalman filter

[141, 55]. However, when a nonlinear model is used to propagate the state vector, the

forecast states are not likely to have a Gaussian distribution even if the distributions

of the initial state and model errors are Gaussian. As a result, the EnKF update

becomes suboptimal even when an infinitely large ensemble size is used. Nonetheless,

one can still apply the simple Kalman filter (KF) update form to find the LLS

estimate regardless of the prior and measurement distribution types. In this work,
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we have used the square root filter of [112, 73] to implement the EnKF updates. In

all experiments, an ensemble size of N = 100 is used.

6.2.2 Prior Structural Model: Variogram

A traditional approach for representing spatially variable properties such as

permeability or porosity is through (second-order) stationary random processes

characterized by a variogram model γ(h), or equivalently a covariance model C(h),

where the correlation in the field is a function of distance only (for a specific

direction). A stationary variogram function describes the structural variability

through point-to-point (or two-point) correlation in space [104]. Among the most

commonly used parametric variogram models for describing spatial rock properties

are the spherical γSph(h; a, c1), Gaussian γG(h; a, c1), and exponential γE(h; a, c1)

models [104]. The parameters a and c1 are used to denote the range and sill

of a one-dimensional variogram, respectively. In one-dimensional problems, these

variogram functions are completely characterized by their (effective) range or

characteristic correlation length a, which represents the smallest distance at which

the variogram function takes its (effective) maximum value, i.e., the variance of the

random process. For two-dimensional variograms the major direction of continuity

θ and the anisotropy ratio, i.e., amax/amin, are introduced as two new variables

[104]. The underlying assumption is that the direction of minimum continuity is

perpendicular to the direction of maximum continuity.

6.2.3 Experimental Setup

In Section 6.3, several numerical water-flooding experiments are used to illustrate

the estimation performance of the EnKF under variogram uncertainty. We refer to

the three models used in this chapter as model A (two-dimensional 64× 64 model),

model B (one-dimensional 100×1 model), and model C (layer 3 of the SPE10 model,
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60 × 220). The detailed description of simulation and data integration parameters

for each case is summarized in Table 6.1. The bottom hole pressure at the injection

ports and water and oil rates at the production ports are measured before being

assimilated. In each example, the measurements were obtained every 3 months by

running a forward flow simulation with a (synthetic) reference log permeability field.

The first set of experiments is performed using symmetric 13-spot well configurations,

consisting of nine water injection wells and four oil production wells (Figure 6.1a) in

a 64× 64 (two-dimensional) domain, which is model A.

apply the update form in equation (4) to find the LLS esti-
mate regardless of the prior and measurement distribution
types. In this paper, we have used the square root filter of
Evensen [2004] and Sakov and Oke [2008] to implement
the EnKF updates. In all experiments, an ensemble size of
N ¼ 100 is used.

2.2. Prior Structural Model: Variogram
[19] A traditional approach for representing spatially vari-

able properties such as permeability or porosity is through
(second-order) stationary random processes characterized
by a variogram model �ðhÞ, or equivalently a covariance
model C(h), where the correlation in the field is a function
of distance only (for a specific direction). A stationary vario-
gram function describes the structural variability through
point-to-point (or two-point) correlation in space [Deutsch
and Journel, 1998]. Among the most commonly used para-
metric variogram models for describing spatial rock proper-
ties are the spherical �Sphðh; a; c1Þ, Gaussian �Gðh; a; c1Þ,
and exponential �Eðh; a; c1Þ models [Deutsch and Journel,
1998]. The parameters a and c1 are used to denote the range
and sill of a one-dimensional variogram, respectively. In
one-dimensional problems, these variogram functions are
completely characterized by their (effective) range or char-
acteristic correlation length a, which represents the smallest
distance at which the variogram function takes its (effective)
maximum value, i.e., the variance of the random process.
For two-dimensional variograms the major direction of
continuity � and the anisotropy ratio, i.e., amax/amin, are
introduced as two new variables [Deutsch and Journel,
1998]. The underlying assumption is that the direction of
minimum continuity is perpendicular to the direction of
maximum continuity.

2.3. Experimental Setup
[20] In section 3, several numerical water-flooding experi-

ments are used to illustrate the estimation performance of

the EnKF under variogram uncertainty. We refer to the three
models used in this paper as model A (two-dimensional 64
� 64 model), model B (one-dimensional 100 � 1 model),
and model C (layer 3 of the SPE10 model, 60 � 220). The
detailed description of simulation and data integration para-
meters for each case is summarized in Table 1. In each
experiment, the injection ports are constrained to inject at a
specified dynamic rate, reported in Table 2, during the
36 month simulation time in each example. The production
ports operate under pressure control with a constant bottom
hole pressure. Under these settings, the bottom hole pressure
at the injection ports and water and oil rates at the production
ports are measured before being assimilated. In each exam-
ple, the measurements were obtained every 3 months by run-
ning a forward flow simulation with a (synthetic) reference
log permeability field. The first set of experiments is per-
formed using symmetric 13-spot well configurations, con-
sisting of nine water injection wells and four oil production
wells (Figure 1a) in a 64 � 64 (two-dimensional) domain,
which is model A.

2.4. Motivating Example
[21] A common practice in geostatistical reservoir model-

ing is to estimate the variogram model from available static
data (log, core, and time-lapsed seismic) and use it to
construct multiple realizations of property maps that are
subsequently conditioned on dynamic flow measurements.
Throughout this inversion process, it is typically assumed
that the variogram model is known. However, since the var-
iogram model is constructed from limited data and given
that it has a significant global effect on the description of
the spatial property distribution, it is critical to acknowledge
and account for the uncertainty in the variogram model pa-
rameters. In particular, model calibration with the EnKF is
significantly helped (or misled) by assuming a known cor-
rect (or incorrect) variogram model. For instance, the EnKF
update may have difficulty in compensating for incorrect

Table 1. General Simulation and Assimilation Informationa

Model A (64 � 64) Model B (1-D) Model C (SPE10-L3)

General Simulation Inputs
Phases oil/water oil/water oil/water
Simulation time 12 � 3 months 12 � 3 months 12 � 3 months
Grid system 64 � 64 � 1 100 � 1 � 1 60 � 220 � 1
Cell dimensions 10 � 10 � 10 10 � 10 � 10 10 � 10 � 10
Rock porosity 0.20 (constant) 0.20 (constant) 0.20 (constant)
Initial oil saturation 0.90 (uniform) 0.90 (uniform) 0.90 (uniform)
Initial pressure 3000 psi (uniform) 3000 psi (uniform) 3000 psi (uniform)
Geostatistical simulation SGSIM SGSIM SGSIM
Injection volume 1 PV 1 PV 1.5 PV
Number of injectors 9 1 15
Number of producers 4 2 8
Injection well constraints water flow rate water flow rate water flow rate
Production well constraints pressure pressure pressure

Data Assimilation Parameters
Observation interval 3 months 3 months 3 months
Observation at injection wells pressure pressure pressure
Measurement noise STD 50 psi 10%–20%b (mean 30 psi) 10%–20%b (mean 45 psi)
Observation at production wells oil and water rate oil and water rate oil and water rate
Measurement noise STD 100 STBD 10%–20%b (8 STBD) 10%–20%b (105 STBD)

aPV, pore volume; STD, Standard Deviation; psi, pounds per square inch (6895 Pa); STBD, stock tank barrel per day.
bOf the dynamic range.

W05537 JAFARPOUR AND TARRAHI: PERFORMANCE OF ENKF UNDER VARIOGRAM UNCERTAINTY W05537

5 of 26Table 6.1: General simulation and assimilation informationa.
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Figure 1. Reservoir well configuration for model A with reference log permeability models and snapshots of corre-
sponding saturation profiles. (a) Thirteen-spot well configuration with nine injectors (open circles) and four producers
(solid circles). (b) Reference log permeability RM1 and corresponding saturation profiles after 0, 6, 12, 24, and 36
months. The log permeability model RM1 is generated using the SGSIM algorithm using an exponential variogram
with parameters � ¼ 45�, amax ¼ 500 m, and amin ¼ 100 m. (c) Reference log permeability model RM2 and correspond-
ing saturation profiles after 0, 6, 12, 24, and 36 months, generated from an exponential variogram model with � ¼ 90�,
amax ¼ 500 m, and amin ¼ 100 m.
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Figure 6.1: Reservoir well configuration for model A with reference Lperm models and saturation profiles. (a) 13-spot
well configuration. (b) Reference Lperm RM1 and corresponding saturation profiles. (c) Reference Lperm model RM2
and corresponding saturation profiles.
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6.2.4 Motivating Example

A common practice in geostatistical reservoir modeling is to estimate the

variogram model from available static data (log, core, and time-lapsed seismic) and

use it to construct multiple realizations of property maps that are subsequently

conditioned on dynamic flow measurements. Throughout this inversion process, it is

typically assumed that the variogram model is known. However, since the variogram

model is constructed from limited data and given that it has a significant global effect

on the description of the spatial property distribution, it is critical to acknowledge

and account for the uncertainty in the variogram model parameters. In particular,

model calibration with the EnKF is significantly helped (or misled) by assuming a

known correct (or incorrect) variogram model. For instance, the EnKF update may

have difficulty in compensating for incorrect structural assumptions. The first two

examples in this section are used to motivate the topic and the experiments that

follow in the remainder of the this chapter. Throughout this chapter, the variogram

type is assumed to be known, the nugget effect is ignored, and the uncertainty in the

structural model is only introduced through specification of the main variogram

parameters, i.e., direction of maximum continuity as well as the maximum and

minimum ranges for the two-dimensional variogram models.

In example 1 of this section, a synthetic reference log permeability field is

estimated from production measurements using the EnKF. The reference model

(RM1) in this case is generated using the SGSIM algorithm and an exponential

variogram model with a maximum continuity direction of θ = 45◦ and maximum and

minimum ranges of 500 and 100 m, respectively (i.e., θ = 45◦, amax = 500 m, and

amin = 100 m). Figure 6.1b shows the synthetic reference log permeability model and

snapshots of the corresponding saturation plots at specified times. For this example,
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the initial ensemble of log permeabilities is also derived from the same variogram

model with different random seed numbers and by conditioning the realizations on

the hard data at well locations. Hence, the initial ensemble is structurally consistent

with the reference log permeability model (through honoring the variogram) and

locally captures the variability around the wells (due to conditioning on hard data).

Figure 6.2a shows samples from the initial log permeability ensemble. The EnKF

updated permeabilities are shown for 3, 18, and 36 months. As can be seen from these

results, when the initial ensemble is structurally consistent with the reference model

RM1, the EnKF can use the measurements to identify the location and orientation of

the main features in the reference field. The ensemble forecast of the flow response

for sample production wells is shown in Figure 6.2c. The final updated models

tend to provide more accurate predictions of the flow that envelope the true values

(suggesting little bias in the flow predictions).
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Figure 2. The ensemble Kalman filter (EnKF) estimation results for log permeability with correct and incorrect initial variogram models. (a)
(top) Reference log permeability model RM1 and (middle) a sample and (bottom) the ensemble mean of the estimated log permeabilities for
example 1. (top) Reference log permeability model RM1 and (middle) a sample and (bottom) the ensemble mean of the log permeability estima-
tion results for example 2. (c) Sample water flow rate forecast with the initial and final permeability ensemble for example 1. (d) Sample water
flow rate forecast with initial and final permeability ensemble for example 2. The estimation results show a sample log permeability realization
and the corresponding log permeability ensemble mean. The number of ensemble replicates is N ¼ 100.
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Figure 6.2: Ensemble Kalman filter (EnKF) estimation results for log permeability with correct and incorrect initial
variogram models. (a) (top) Reference log permeability model RM1 and (middle) a sample and (bottom) the ensemble
mean of the estimated log permeabilities for example 1. (top) Reference log permeability model RM1 and (middle) a
sample and (bottom) the ensemble mean of the log permeability estimation results for example 2. (c) Sample water flow
rate forecast with the initial and final permeability ensemble for example 1. (d) Sample water flow rate forecast with
initial and final permeability ensemble for example 2. The estimation results show a sample log permeability realization
and the corresponding log permeability ensemble mean. The number of ensemble replicates is N = 100.
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Example 2 replicates example 1, with the only exception being that the reference

log permeability in this case (reference model RM2) is generated from a variogram

model with parameters θ = 90◦, amax = 500 m, and amin = 100 m. Note that the two

ranges are the same as in the previous model (RM1) and are consistent with the initial

ensemble. In this case, the observations are generated by running the multiphase

flow simulation forward with this reference model. The initial ensemble and all other

experimental conditions remain identical to example 1, which means that now the

direction of continuity in the initial ensemble (θ = 45◦) is inconsistent with the

reference model RM2 (θ = 90◦). The updated log permeability results are shown in

Figure 6.2b. The results suggest that a bias in specifying the variogram continuity

direction tends to persist during the EnKF updates in time and can significantly

degrade the inversion performance. As can be observed in Figure 6.2b, the EnKF

updates are not able to compensate for the specified error in the structure of the

variogram model. An important observation is that the ensemble variance (spread)

is reduced after each update in both examples; however, this reduction of variance is

not a measure of filter update accuracy and only reflects the effect of observations on

bringing the ensemble members closer to each other and increasing the confidence in

model predictions. The flow response in Figure 6.2d shows a bias in the predictions

even in this case where the given well configuration significantly constrains the flow

pattern and well responses.

Since the error in the variogram parameters can significantly degrade the

performance of the EnKF, it is necessary to account for the uncertainty in the

variogram model and represent it in the initial ensemble. Moreover, if the uncertainty

in the variogram model is significant, it is important to know which variogram

parameter(s) has more impact on the EnKF performance. Furthermore, one would

ideally like to use the production data as additional information to improve the
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description of the variogram model. Therefore, we also consider application of the

EnKF to directly updating variogram parameters.

6.3 EnKF Performance Under Variogram Uncertainty

In this section we explore the performance of the EnKF when the variogram

model parameters are unknown or highly uncertain. We follow two alternative

methods to deal with unknown variogram parameters: (1) directly estimating

the variogram parameters and (2) estimating permeability values after assuming

uniform noninformative distributions for variogram parameters in generating the

initial ensemble. The objective is to find out whether the flow data reveal structural

information about the permeability field and, if so, to evaluate the performance of

EnKF in inferring the structural information from the measurements.

6.3.1 Direct Estimation of Variogram Model Parameters

In this section, instead of estimating log permeability maps, we use the EnKF

to update the three variogram parameters θ, amax, and amin (in two-dimensional

examples) by augmenting them to the state vector. Hence, we generate

an ensemble of three variogram model parameters using the following wide

(noninformative) distributions: θ ∼ U(0◦, 180◦), amax ∼ U(100 m, 1000 m), and

amin ∼ U(10 m, 1000 m) ≤ amax. The uniform distribution on variogram parameters

allows for including a broad range of uncertainty on variogram parameters without

any preference (bias) on the expected value of these parameters. It is important to

note that while these parameters are not Gaussian, the transformation applied to

them through Equation (6.3) before the update step imparts univariate Gaussian

properties on them.

Random samples from these variogram model parameters are used to generate an

ensemble of conditional (to hard data) log permeability fields that are used during
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the forecast steps to predict the ensemble of states and flow measurements. The cross

correlations between the flow predictions and variogram parameters are calculated

and used in an EnKF analysis step to update the ensemble of states and variogram

parameters. The updated variogram parameters are then used to generate a new

ensemble of log permeability maps for the next prediction step, and the sequence

of forecast and update steps are repeated until all measurements are assimilated.

It is important to note that the new permeability fields that are generated from

the updated variogram models are not conditioned on the flow data (discussed

in Section 6.3.1.2). We also note that similar to the log permeability fields, the

variogram parameters do not change during the forecast steps. Furthermore, to keep

the variogram direction of anisotropy within its natural constraints 0◦ ≤ θ ≤ 180◦,

we used a similar transformation pair as in Equation (6.3) with appropriate bounds

of θmin = 0◦, θmax = 180◦. Another constraint to honor during the updates is

amin ≤ amax to avoid shifting anisotropy direction. We implemented this constraint

by updating amax and the inverse of the anisotropy ratio 0 ≤ r ≤ 1, with the latter

constraint being imposed in a similar fashion using Equation (6.3).

6.3.1.1 Two-Dimensional Example

Figure 6.3 (top) shows the histogram of the variogram parameters after selected

update steps in experiment A1 for reference model RM1. Noting that the reference

field is generated with variogram model parameters θ = 45◦, amax = 500 m, and

amin = 100 m, the EnKF update results for θ = 45◦ and amax = 500 m are poor.

To better evaluate these results, a similar example using the reference model RM2

is also shown in Figure 6.3 (bottom) (experiment A2). The reference model RM2

is constructed from a variogram model with parameters θ = 90◦, amax = 500 m,

and amin = 100 m. Also in this case, it is evident that the EnKF update provides
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estimates that are far from the true values. The results clearly indicate that the

EnKF is not able to correctly update the three parameters of the variogram. This

outcome may seem surprising since the EnKF is used to update only three parameters

from the dynamic flow data at several locations. In particular, the results seem to

contradict the promising outcomes that are often obtained when the EnKF is used to

update thousands of grid block log permeability parameters. The filter seems to have

failed in estimating the three parameters in this case. It appears that the success of

EnKF in parameter estimation depends on the nature and complexity of the problem

and, more importantly, on the strength of linear correlation between observations and

unknown parameters. The results of other experiments that we performed to estimate

variogram parameters were also inconsistent (not shown). What can partly explain

this poor performance is the complex and nonunique relation between variogram

parameters and flow data, which is hard to describe with the linear second-order

correlations that are used in the EnKF update. A particular issue that makes

the problem rather challenging is solution nonuniqueness since a single variogram

model can generate many permeability realizations that share similar structures but

have completely different spatial distribution and hence flow response. In the same

manner, incorrect combinations of variogram parameters may result in flow responses

that better match the data than some of the realizations generated with correct

variogram parameters. Next, we investigate this important issue by estimating the

variogram range in a set of simple one-dimensional examples.

6.3.1.2 One-Dimensional Example

To remove the effect of the interaction between the three variogram parameters,

in this section we evaluate the performance of the EnKF in estimating a single range

parameter in a one-dimensional (1-D) problem. We have also considered (not shown)
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Figure 3
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Figure 6.3: Estimation results for experiments A1 and A2. (top) The histogram of

the estimated variogram model parameters with the EnKF for reference model RM1 in

experiment A1. The true values of the variogram parameters are θ = 45◦, amax = 500,

and amin = 100. (bottom) The histogram of the estimated variogram model parameters

with the EnKF for reference model RM2 in experiment A2. The true values of the

variogram parameters are θ = 45◦, amax = 500, and amin = 100. The initial variogram

model parameters are described with the uniform distributions θ ∼ U(0◦, 180◦), amax ∼
U(100 m, 1000 m), and amin ∼ U(10 m, 1000 m) ≤ amax. The EnKF is used to directly

update the variogram parameters at the update steps. The number of ensemble replicates

is N = 100.
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estimating only one single parameter in a two-dimensional setting where the other

two variogram parameters are fixed at their true values (where similar conclusions

are drawn). However, we present a set of one-dimensional examples to completely

remove the effect of the other two parameters. Figure 6.4 shows the experimental

setup (Figure 6.4a), the true one-dimensional permeability map (Figure 6.4b), and

the saturation profiles corresponding to the true permeability map (Figure 6.4c).

There is one injector in the center and two producers at the two ends of the domain.

The simulation domain is discretized into a total number of 100 grid blocks.

covers the full range of variability in the structural continu-
ity model.

3.2. Permeability Estimation Under Uncertain
Variograms

[35] An alternative approach to deal with unknown var-
iogram parameters is to use the regular EnKF with a very
diverse initial log permeability ensemble by assuming non-
informative variogram model parameters. Hence, in this
section we use the same assumptions and distributions as in
section 3.1, but now we apply the EnKF to update the grid
block log permeability parameters. Next, we present a brief
sensitivity analysis to study the influence of incorrectly
specified variogram parameters of the two-dimensional
model (model A) on the EnKF performance.

3.2.1. Experiment A3: Sensitivity to Variogram
Direction of Major Continuity

[36] In the first set of experiments, the sensitivity of the
EnKF to the direction of maximum continuity is studied by
changing the parameter � while fixing the other two vario-
gram parameters at their correct values (i.e., amax ¼ 500 m
and amin ¼ 100 m).

[37] Experiments A3-1 to A3-4 are used to evaluate the
performance of the EnKF when � ¼ 0�, 30�, 90�, and 135�,
respectively. In these experiments, deviation of � from its
correct value is considered, and its effect on the perform-
ance of the EnKF is examined. For brevity, we only show
the initial and final mean of the log permeability plots and
report the main observations. The results are summarized in
Figure 9a. In all of these experiments the initial ensembles
of log permeabilities are conditioned on the hard data from
the 13 wells. Hence, the regions with high and low perme-
ability values (left and right parts of the domain) are evident
in the initial ensemble. However, the features in the updated
log permeability mean are not sharp, and their exact location
and orientation are not consistent with those in the reference
model. A qualitative comparison between the reference and
updated map of the mean log permeability indicates that
while the EnKF inversion has been able to apply reasonable
local updates, the bias in the specified continuity direction is
not corrected. The estimated log permeability fields in these
examples tend to preserve their initial direction of major
continuity. This is particularly evident for � ¼ 0�; � ¼ 90�,
and � ¼ 135�, which represent larger deviations. The exam-
ple with � ¼ 30�, however, suggests that the EnKF updates
are not severely affected by a small bias in specifying the
variogram direction of major continuity.

[38] It can be argued that specifying a highly inaccurate
variogram continuity direction is a rather pessimistic repre-
sentation of prior knowledge. The fifth column in Figure 9a
shows the results in which the direction of major continuity
is assumed uncertain and described with a noninformative
distribution � � Uð0�; 180�Þ. In this case, the EnKF is ini-
tialized with a wide ensemble that covers the full range of
possible structural continuity directions. While this assump-
tion still seems too pessimistic, it is intentionally adopted to
illustrate the performance of the EnKF in the extreme case
of having no knowledge about the continuity direction.
Apart from the initial log permeability ensemble, the EnKF
implementation for updating the spatial log permeability
fields is identical to its regular form discussed above. The
updated mean for this case is shown in the fifth column of
Figure 9a. As seen from Figure 9a, the approximate direc-
tion and location of the main high- and low-permeability
trends are captured. The results suggest that including the
full range of uncertainty in variogram anisotropy direction
can be more advantageous to making a strict deterministic
assumption about uncertain parameters. We note that in
these experiments it was assumed that the other two vario-
gram parameters are fixed at their correct values (this
assumption will be relaxed in section 3.2.4, Figure 10).

3.2.2. Experiment A4: Sensitivity to Variogram
Maximum Range

[39] A similar set of experiments to those in section 3.2.1
was conducted to assess the sensitivity of the EnKF updates
to the variogram maximum range amax. In this case, the

Figure 5. True log permeability model and saturations
for the one-dimensional example (model B): (a) rough
sketch of model domain and well configuration, (b) true log
permeability model with a ¼ 700 m, and (c) oil saturation
profiles in time.

Table 2. Injection and Production Well Specifications for Model A

Well Group Wells

Specifications

0–24 Months 24–36 Months

Injection 1 I1–I4, I6–I9 1/12 PV 0
Injection 2 I5 0 1/3 PV
Production P1–P4 2900 psi 2900 psi

W05537 JAFARPOUR AND TARRAHI: PERFORMANCE OF ENKF UNDER VARIOGRAM UNCERTAINTY W05537
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Figure 6.4: True log permeability model and saturations for the one-dimensional
example (model B): (a) rough sketch of model domain and well configuration, (b)
true log permeability model with a = 700 m, and (c) oil saturation profiles in time.
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Figure 6.5 provides the summary of the estimation results where the true value

of the variogram range is 700 m. The variogram type is Gaussian and features a

smooth large-scale variability across the domain. The initial permeability ensemble

in this experiment was obtained by conditioning each realization on the hard data.

The initial realizations are generated from a random sample of the variogram range

distribution a a ∼ U(100 m, 1000 m). Figure 6.5a shows the evolution of the

estimated variogram range histogram after selected update steps. The true value

is shown with the red bar. It is clear that the estimated variogram parameters

are not acceptable. Figures 6.5b and 6.5c show the RMSE and spread (S) for the

estimated variogram range as a function of time.

The spread and RMSE measures become very similar when the estimated

ensemble mean approaches the true parameter. Clearly, the updates do not provide

correct estimates of the variogram range. To show that this outcome does not result

from insufficient information in the data, we have also provided the results when the

EnKF is used to update the grid block log permeability field in the next experiment.

However, before proceeding with the next set of examples, we point out that to make

our previous results statistically significant, we repeated a modified version of the

above experiment 100 times, each time with a new true variogram range and the

corresponding set of observations. The results (included in Appendix) show that the

EnKF updates do not provide consistent estimates and the overall performance of

the filter in updating a single variogram range is not satisfactory. One way to explain

this behavior is to examine the correlation between the flow response and variogram

parameters (shown in Figure 6.5d). From Figure 6.5d, it can be seen that among the

types of well responses the pressure data seem to have larger correlation coefficients

with the range; however, the computed correlations in Figure 6.5d are not significant

(relative to similar correlations with the permeability distribution).
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effect of amin on EnKF performance was not as pro-
nounced as the other two parameters (in particular, the
direction of anisotropy).

[42] The results of experiments A3, A4, and A5 suggest
that the performance of EnKF in estimating permeability
values is more robust and reliable when the initial ensemble
represents the full range of possible structural variability.
When the uncertainty is not accounted for and deterministic
variogram models are applied, the EnKF updates cannot
correct the systematic errors from an incorrect structural
assumption. One way to explain these results is to write the
updated ensemble of states in equation (6) as a weakly

nonlinear combination of forecast ensemble [Evensen,
2003]; that is,

x̂i
tjt ¼

XN

j¼1

�jx
j
tjt�1; ð9Þ

where �j are the weights associated with each forecast
ensemble member. Equation (9) implies that the updated
ensemble is spanned by the ensemble of forecast variables,
a result that can be used to explain the poor (better) per-
formance of the filter when the forecast ensemble is biased
(diverse). Since each updated ensemble member is obtained

Figure 6. Direct variogram estimation results for the one-dimensional variogram range (experiment
B1): (a) estimated histogram of the variogram range, (b) the root-mean-square error (RMSE) of the esti-
mated range values, (c) the ensemble spread of the estimated range values, (d) cross correlation between
the flow response and variogram range, (e) cross correlation between the flow response and log perme-
ability values generated using the correct variogram range, and (f) cross correlation between the flow
response and log permeability values generated using random variogram ranges.
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Figure 6.5: Direct variogram estimation results for the one-dimensional variogram
range (experiment B1): (a) estimated histogram of the variogram range, (b) the
root-mean-square error (RMSE) of the estimated range values, (c) the ensemble
spread of the estimated range values, (d) cross correlation between the flow response
and variogram range, (e) cross correlation between the flow response and log
permeability values generated using the correct variogram range, and (f) cross
correlation between the flow response and log permeability values generated using
random variogram ranges.
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Plotted in Figures 6.5e and 6.5f are the correlations of the dynamic well response

variables with grid block permeabilities when the initial permeability ensemble is

generated using the correct and randomly specified variogram ranges, respectively.

The correlations are shown in time (y axis) for each grid block permeability value

(shown on the x axis). The flow responses have significantly larger and physically

more meaningful correlations with the grid block permeability than they do with

the variogram range. Clearly, this correlation is stronger and more accurate when

the correct variogram range is used. Since the relationship between variogram

parameters and flow response is rather complex and nonunique, the linear content of

the flow information (i.e., correlations) does not seem to provide the resolving power

necessary for the EnKF to estimate variogram parameters. (The EnKF update

equation only exploits the linear information in the measurements; thus, it appears

to have difficulty updating variogram parameters from the weak correlations between

variogram parameters and flow response.)

In estimating variogram parameters, we used the updated saturation and pressure

fields to initialize the EnKF forecast for the next step, which introduces inconsistency

between states and parameters. We tested two alternative approaches to assess

possible drawbacks of this assumption and potentially improve the results. The first

approach is to forecast the states and observations, after each update step, from the

initial time step. This would ensure (at the cost of extra computation) that the states

and parameters are consistent; however, the spatial distribution of the permeability

would not be conditioned on the flow data. In the second approach, both variogram

parameters and permeabilities were updated simultaneously; the log-permeability

models were updated to improve the quality of the state forecasts for the next time

step. Neither of the above schemes, however, provided results significantly different

from what was reported above.
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Figure 6.6 shows the estimation results for the one-dimensional example when

the EnKF is used to update grid block log permeability values. The initial ensemble

and other experimental conditions remain the same as in the previous example.

Figure 6.6a shows the evolution of the log-permeability ensemble (and its mean)

throughout the updates. The results clearly show improvements in the accuracy of

the reconstructed permeability fields. Figures 6.6b and 6.6c show the RMSE and

spread, respectively, of the log-permeability values that can be used to quantify the

performance of the EnKF. The initial and final oil and water production plots for the

two production wells are shown in Figures 6.6d and 6.6e. The results indicate that

even with three wells, the grid permeability values can be successfully reconstructed

if the initial uncertainty in the ensemble covers the full range of variability in the

structural continuity model.

6.3.2 Permeability Estimation Under Uncertain Variograms

An alternative approach to deal with unknown variogram parameters is to use

the regular EnKF with a very diverse initial log permeability ensemble by assuming

noninformative variogram model parameters. Hence, in this section we use the

same assumptions and distributions as in Section 6.3.1, but now we apply the

EnKF to update the grid block log permeability parameters. Next, we present a

brief sensitivity analysis to study the influence of incorrectly specified variogram

parameters of the two-dimensional model (model A) on the EnKF performance.

6.3.2.1 Experiment A3: Sensitivity to Variogram Direction of Major

Continuity

In the first set of experiments, the sensitivity of the EnKF to the direction of

maximum continuity is studied by changing the parameter θ while fixing the other

two variogram parameters at their correct values (i.e., amax = 500 m and amin = 100
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Figure 8. Grid block log permeability estimation results for the one-dimensional example (experi-
ment B2): (a) estimated log permeability ensemble for selected time steps, (b) RMSE of the estimated
log permeabilities in time, (c) ensemble spread of the estimated log permeabilities in time, (d) initial
and final ensemble water production forecasts for sample production wells, and (e) initial and final en-
semble water production forecasts for sample production wells.

Figure 9. Sensitivity of the EnKF performance in estimating log permeability to errors in the variogram parameters
(experiments A3–A5): (a) sensitivity of the EnKF to direction of major continuity � (experiment A3), (b) sensitivity of
the EnKF to maximum range amax (experiment A4), and (c) sensitivity of the EnKF to maximum range amin (experiment
A5). A sample and the ensemble mean of the log permeability for the (top) initial and (bottom) final ensemble are shown
in each case. The number of ensemble replicates is N ¼ 100.
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Figure 6.6: Grid block log permeability estimation results for the one-dimensional
example (experiment B2) : (a) estimated log permeability ensemble for selected time
steps, (b) RMSE of the estimated log permeabilities in time, (c) ensemble spread
of the estimated log permeabilities in time, (d) initial and final ensemble water
production forecasts for sample production wells, and (e) initial and final ensemble
water production forecasts for sample production wells.
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m).

Experiments A3-1 to A3-4 are used to evaluate the performance of the EnKF

when θ = 0◦, 30◦, 90◦, 135◦, respectively. In these experiments, deviation of

θ from its correct value is considered, and its effect on the performance of the

EnKF is examined. For brevity, we only show the initial and final mean of the log

permeability plots and report the main observations. The results are summarized in

Figure 6.7a. In all of these experiments the initial ensembles of log permeabilities

are conditioned on the hard data from the 13 wells. Hence, the regions with high

and low permeability values (left and right parts of the domain) are evident in the

initial ensemble. However, the features in the updated log permeability mean are

not sharp, and their exact location and orientation are not consistent with those in

the reference model. A qualitative comparison between the reference and updated

map of the mean log permeability indicates that while the EnKF inversion has been

able to apply reasonable local updates, the bias in the specified continuity direction

is not corrected. The estimated log permeability fields in these examples tend to

preserve their initial direction of major continuity. This is particularly evident for

θ = 0◦, θ = 90◦, and θ = 135◦, which represent larger deviations. The example with

θ = 30◦, however, suggests that the EnKF updates are not severely affected by a

small bias in specifying the variogram direction of major continuity.

It can be argued that specifying a highly inaccurate variogram continuity direction

is a rather pessimistic representation of prior knowledge. The fifth column in

Figure 6.7a shows the results in which the direction of major continuity is assumed

uncertain and described with a noninformative distribution θ ∼ U(0◦, 180◦). In

this case, the EnKF is initialized with a wide ensemble that covers the full range

of possible structural continuity directions. While this assumption still seems too

pessimistic, it is intentionally adopted to illustrate the performance of the EnKF
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Figure 9
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Figure 6.7: Sensitivity of the EnKF performance in estimating log permeability to errors in

the variogram parameters (experiments A3A5): (a) sensitivity of the EnKF to direction of

major continuity θ (experiment A3), (b) sensitivity of the EnKF to maximum range amax

(experiment A4), and (c) sensitivity of the EnKF to maximum range amin (experiment

A5). A sample and the ensemble mean of the log permeability for the (top) initial and

(bottom) final ensemble are shown in each case. The number of ensemble replicates is

N = 100.
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in the extreme case of having no knowledge about the continuity direction. Apart

from the initial log permeability ensemble, the EnKF implementation for updating

the spatial log permeability fields is identical to its regular form discussed above.

The updated mean for this case is shown in the fifth column of Figure 6.7a. As

seen from Figure 6.7a, the approximate direction and location of the main high- and

low-permeability trends are captured. The results suggest that including the full

range of uncertainty in variogram anisotropy direction can be more advantageous

to making a strict deterministic assumption about uncertain parameters. We note

that in these experiments it was assumed that the other two variogram parameters

are fixed at their correct values (this assumption will be relaxed in Section 6.3.2.4,

Figure 6.8).

6.3.2.2 Experiment A4: Sensitivity to Variogram Maximum Range

A similar set of experiments to those in Section was conducted to assess the

sensitivity of the EnKF updates to the variogram maximum range amax. In this

case, the direction of anisotropy and the minimum range are fixed at their true

values, i.e., θ = 45◦ and amin = 100 m. All other experimental conditions are kept

the same. Overall, the estimation results seem to be in good agreement with the

global high- and low-permeability trends in the reference model. In experiments

A4-1 to A4-4 the maximum range is incorrectly specified at 100, 250, 750, and 1000

m, respectively. Figure 6.7b displays the initial (Figure 6.7b, top) and final (Figure

6.7b, bottom) mean permeability estimation results for this case. For small amax

values, i.e., 100 and 250 m, the estimated log permeability fields do not represent

the correct correlation length scales. On the other hand, large values of the range,

i.e., amax = 750 m and amax = 1000 m, lead to persistent overestimation of the

correlation length in the reference model. Consistent with the results in experiments
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A3-1 to A3-4, the outcomes of experiments A4-1 to A4-4 indicate that an error

in a prespecified variogram maximum range is carried over throughout the EnKF

updates. It also appears that overestimation of the correlation length seems to have

a smaller adverse effect than its underestimation.

Experiment A4-5 is performed to estimate the log permeability field when the

maximum range of the variogram model is described with a uniform distribution

amax ∼ U(100 m, 1000 m). This choice was made to ensure that the direction of

anisotropy does not shift ; that is, the constraint amax ≥ amin was explicitly enforced

in generating the variogram parameters. The estimated log permeabilities are shown

in the fifth column of Figure 6.7b.

Overall, the log permeability updates have reconstructed the main features of the

reference model without showing a particular structural trend.

6.3.2.3 Experiment A5: Sensitivity to Variogram Minimum Range

A suite of experiments is also carried out to evaluate the impact of the variogram

minimum range amin on the EnKF performance. Experiments A5-1 to A5-4 are

used to update the initial ensemble of log permeability fields when the minimum

range of the variogram is incorrectly specified as amin = 25, 50, 250, and 500

m, respectively. A summary of the estimation results is provided in Figure 6.7c.

The effect of underestimating or overestimating the initial value of the minimum

variogram range also seems to prevail throughout the assimilation. This is clearly

observed by examining the increase in the average width of the diagonally oriented

high-permeability feature as amin increases in experiments A5-1 to A5-4. While

the effect of incorrectly specified amin is notable, the regions with low and high

permeability values are clearly identified in all experiments. Experiment A5-5 shows

the results when the variogram minimum range is uncertain and follows a uniform
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distribution amin ∼ U(50 m, 500 m). The constraint amax > amin is again explicitly

enforced. The results are shown in the fifth column of Figure 6.7c. A comparison

of the initial log permeability mean with the updated mean reveals that the EnKF

updates have reconstructed the location and major trends in the reference model. In

these examples, the effect of amin on EnKF performance was not as pronounced as

the other two parameters (in particular, the direction of anisotropy).

The results of experiments A3, A4, and A5 suggest that the performance of

EnKF in estimating permeability values is more robust and reliable when the initial

ensemble represents the full range of possible structural variability. When the

uncertainty is not accounted for and deterministic variogram models are applied,

the EnKF updates cannot correct the systematic errors from an incorrect structural

assumption. Next, we use the EnKF to estimate the log permeability maps when all

three variogram parameters are uncertain, which introduces additional diversity into

the initial ensemble.

6.3.2.4 Experiment A6: Accounting for Full Variogram Uncertainty

In this section, uncertainty in all three parameters of a two-dimensional variogram

model is accounted for. The initial ensemble of variogram parameters θ, amax, and

amin are generated independently and, with the probability distributions specified in

section 3.1, to cover a wide range of structural variability. Each triplet of sample

variogram parameter realizations is used to generate one replicate of the initial

ensemble of log permeability maps, and N = 100 of these maps compose the initial

ensemble used in the sequence of EnKF forecasts and updates.

Figure 6.8 summarizes the results. Even though a large variability is assumed

in specifying the variogram parameters, the updated log permeability fields can

identify the main permeability features in the reference model. It can be seen from
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the updated results that the identified features do not have the sharp structural

attributes of the reference model. While this can be, in part, due to a lack of sufficient

measurements to convey such detailed information, the high level of variability in

the initial ensemble can also lead to a “noisy” or “spurious” covariance model, as a

contributor to this effect.

The results thus far appear to suggest that the EnKF is, in fact, an effective

estimation approach for reconstruction of the spatial distribution of log permeability

fields from fluid flow measurements under highly uncertain variogram models. In

particular, the performance of the filter seems to be quite encouraging when the

full range of structural uncertainty is incorporated in the initial ensemble. When

the uncertainty in the prior structural model is not accounted for, the filter fails to

correct the initial structural bias; however, even in that case the log permeability

values near the observation points appear to be updated correctly.

6.3.3 Application to SPE10 Model (Model C)

In previous examples, we used small synthetic models for which we knew the

correct values of the variogram parameters. As our last example, we consider

application of the EnKF under highly uncertain variogram models to update a scaled

version of layer 3 in the SPE10 model. Figure 6.9a shows the well configuration that

we have used for this example. In Figures 6.9b and 6.9c the reference log permeability

model and the corresponding saturation profile at the end of the simulation (36

months) are shown, respectively. Details about the simulation and assimilation

information can be found in Table 6.1 (fourth column). The high-permeability

trend in the reference model seems to be in two different directions, with small

θ ' 20 and large θ ' 160 angles from the horizontal (i.e., x) axis, which can

make the description of the permeability field with a single variogram structure
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Figure 10. The log permeability estimation results for experiment A6 with the EnKF and where all
three variogram parameters are assumed to be uncertain and follow the uniform distributions
� � Uð0�; 180�Þ, amax � Uð100 m; 1000 mÞ, and amin � Uð10 m; 1000 mÞ � amax. The estimation results
show two sample log permeability realizations, the corresponding log permeability ensemble mean, and
ensemble variance. The number of ensemble replicates is N ¼ 100.
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Figure 6.8: The log permeability estimation results for experiment A6 with the
EnKF and where all three variogram parameters are assumed to be uncertain and
follow the uniform distributions θ ∼ U(0◦, 180◦), amax ∼ U(100 m, 1000 m), and
amin ∼ U(10 m, 1000 m) ≤ amax. The estimation results show two sample log
permeability realizations, the corresponding log permeability ensemble mean, and
ensemble variance. The number of ensemble replicates is N = 100.
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more difficult. The values of the true variogram model parameters are unknown,

and the EnKF is initialized with a very wide ensemble of permeability models using

the following variogram parameters: θ ∼ U(0◦, 180◦), amax ∼ U(100 m, 3000 m), and

amin ∼ U(10 m, 3000 m) ≤ amax.

[45] The results thus far appear to suggest that the EnKF
is, in fact, an effective estimation approach for reconstruc-
tion of the spatial distribution of log permeability fields
from fluid flow measurements under highly uncertain vario-
gram models. In particular, the performance of the filter
seems to be quite encouraging when the full range of struc-
tural uncertainty is incorporated in the initial ensemble.
When the uncertainty in the prior structural model is not
accounted for, the filter fails to correct the initial structural
bias; however, even in that case the log permeability values
near the observation points appear to be updated correctly.

3.3. Application to SPE10 Model (Model C)
[46] In previous examples, we used small synthetic mod-

els for which we knew the correct values of the variogram
parameters. As our last example, we consider application of
the EnKF under highly uncertain variogram models to
update a scaled version of layer 3 in the SPE10 model.
Figure 11a shows the well configuration that we have used
for this example. In Figures 11b and 11c the reference log
permeability model and the corresponding saturation
profile at the end of the simulation (36 months) are shown,
respectively. Details about the simulation and assimilation
information can be found in Table 1 (fourth column). The
high-permeability trend in the reference model seems to be
in two different directions, with small � ’ 20� and large
� ’ 160� angles from the horizontal (i.e., x) axis, which can
make the description of the permeability field with a single
variogram structure more difficult. The values of the true
variogram model parameters are unknown, and the EnKF
is initialized with a very wide ensemble of permeability
models using the following variogram parameters:
� � Uð0�; 180�Þ, amax�Uð100 m; 3000 mÞ, and amin�U
ð10 m; 3000 mÞ � amax.

[47] Figure 12 shows the estimation results. Displayed in
Figure 12a is the time evolution of three log permeability
samples (first through third columns) and the mean of the
log permeability ensemble (fourth column). As can be veri-
fied from the first row of Figure 12a, the initial ensemble
has very diverse and noninformative structures. The initial
log permeabilities are generated without conditioning on the

hard data to introduce even more variability. Figure 12a
shows that the final ensemble of permeability maps is con-
sistent with the reference model. Figure 12b contains the
RMSE, ensemble spread, and scatter plots for the log per-
meability field. These plots are consistent with the updates
to the permeability field and, combined with the log per-
meability results in Figure 12a, reveal significant (struc-
tural) improvements after the EnKF updates. Water
production flow rates for all producers are shown in Figure
12c. The final ensemble of log permeability clearly pro-
vides improved forecasts that are closer to the predictions
by the true model. Similar results are also obtained for the
oil production rate and the injection BHP at the well loca-
tions (not shown). We also carried out this experiment
using incorrect (biased) variogram parameters to generate
the initial log permeability ensemble, which resulted in
significantly degraded performance (not shown). Also not
shown here are the results of updating variogram parame-
ters from the flow data, which did not yield reliable
updates, consistent with our observation in previous
examples.

4. Conclusion
[48] Application of the EnKF to groundwater model cali-

bration and history matching of oil reservoirs has been
extensively investigated in recent years. In this paper, we
evaluated the performance of this approach under uncertain
variogram models, which is essential for field applications
where geologic continuity can only be known with signifi-
cant uncertainty. Since the structural continuity dominates
the global flow patterns in subsurface formations, to obtain
reliable solutions and quantify the corresponding uncertain-
ties in a meaningful manner, it is imperative to include the
uncertainty about the geologic continuity model in the
inversion. The view taken in this paper is that the dynamic
flow data can be used as an additional source of information
to constrain the global variability in subsurface hydraulic
properties and the resulting flow and transport behavior.
While the type of geologic continuity, and the correspond-
ing conceptual models to describe them, can also be viewed

Figure 11. (a) Field setup and well configuration, (b) the true log permeability, and (c) the final satura-
tion profile for the top layer of the SPE10 model (model C).

W05537 JAFARPOUR AND TARRAHI: PERFORMANCE OF ENKF UNDER VARIOGRAM UNCERTAINTY W05537

20 of 26

Figure 6.9: (a) Field setup and well configuration, (b) the true log permeability, and
(c) the final saturation profile for the top layer of the SPE10 model (model C).

Figures 6.11 and 6.10 shows the estimation results. Displayed in Figure 6.11a is

the time evolution of three log permeability samples (first through third columns) and

the mean of the log permeability ensemble (fourth column). As can be verified from

the first row of Figure 6.11a, the initial ensemble has very diverse and noninformative

structures. The initial log permeabilities are generated without conditioning on the

hard data to introduce even more variability. Figure 6.11a shows that the final

ensemble of permeability maps is consistent with the reference model. Figure 6.10b

contains the RMSE, ensemble spread, and scatter plots for the log permeability field.

These plots are consistent with the updates to the permeability field and, combined

with the log permeability results in Figure 6.11a, reveal significant (structural)
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improvements after the EnKF updates. We also carried out this experiment using

incorrect (biased) variogram parameters to generate the initial log permeability

ensemble, which resulted in significantly degraded performance (not shown). Also

not shown here are the results of updating variogram parameters from the flow data,

which did not yield reliable updates, consistent with our observation in previous

examples.

Figure 12. (continued)
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Figure 6.10: Estimation results for experiment C. (b) The RMSE (left), ensemble
spread (middle), and scatterplot (right) of the log permeability estimates. The
initial ensemble is generated from a variogram model with parameters sampled from
the following uniform distributions θ ∼ U(0◦, 180◦), amax ∼ U(100 m, 3000 m), and
amin ∼ U(10 m, 3000 m) ≤ amax. The number of ensemble replicates is N = 100.
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Figure 12. Estimation results for experiment C. (a) Sample and ensemble mean of the log permeability updates in time. (b) The RMSE (left),
ensemble spread (middle), and scatterplot (right) of the log permeability estimates. (c) Initial and final ensemble water production forecasts for
all producers. The initial ensemble is generated from a variogram model with parameters sampled from the following uniform distributions
� � Uð0�; 180�Þ, amax�Uð100 m; 3000 mÞ, and amin�Uð10 m; 3000 mÞ � amax. The number of ensemble replicates is N ¼ 100.
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Figure 6.11: Estimation results for experiment C. (a) Sample and ensemble mean of the log permeability updates in
time.
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6.4 Discussion and Summary

Application of the EnKF to groundwater model calibration and history matching

of oil reservoirs has been extensively investigated in recent years. In this chapter,

we evaluated the performance of this approach under uncertain variogram models,

which is essential for field applications where geologic continuity can only be known

with significant uncertainty. Since the structural continuity dominates the global

flow patterns in subsurface formations, to obtain reliable solutions and quantify the

corresponding uncertainties in a meaningful manner, it is imperative to include the

uncertainty about the geologic continuity model in the inversion. The view taken

in this work is that the dynamic flow data can be used as an additional source of

information to constrain the global variability in subsurface hydraulic properties and

the resulting flow and transport behavior. While the type of geologic continuity,

and the corresponding conceptual models to describe them, can also be viewed as a

major source of uncertainty (for example, Gaussian versus non-Gaussian or fractal

random fields), we limited our attention to Gaussian random functions and studied

the effect of uncertainty in the variogram model parameters.

We presented a series of numerical experiments to evaluate the performance of

the EnKF under significant uncertainty in the variogram model. The importance

of the variogram model was first illustrated in a simple example to motivate the

topic and the experiments that followed. The first set of experiments consisted of

direct estimation of three unknown variogram parameters (i.e., anisotropy direction

and maximum and minimum ranges) of a two-dimensional permeability model from

flow measurements. The resulting EnKF estimates for these variogram parameters

were discouraging, which was explained by the complexity and nonuniqueness

of the relation between the flow data and variogram parameters. Additional
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one-dimensional experiments were conducted and showed that the flow data had little

sensitivity to the variogram range. We presented a different suite of experiments,

when updating grid block permeability values, to investigate the sensitivity of

the EnKF performance to errors in specification of individual variogram model

parameters. Our sensitivity analysis suggests that a structural error (bias) introduced

in generating the initial ensemble of permeabilities tends to carry over and persist

during the EnKF update and forecast sequence. In particular, the results of our

sensitivity study indicate that a large error in specifying variogram parameters,

e.g., direction of major continuity, is not corrected throughout the EnKF analysis

steps; however, reasonable local updates may be obtained near the measurements,

implying that the situation may be improved under spatially dense measurement

configurations. Other noteworthy observations from these experiments were the

stronger sensitivity of the filter to errors in the direction of anisotropy and higher

degradation of the EnKF performance when the maximum variogram range was

underestimated rather than when it was overestimated.

In another set of experiments, we investigated the performance of the EnKF for

permeability estimation when the initial ensemble of permeabilities was generated

by overly uncertain (noninformative) variogram parameters (described via a set of

wide independent distributions). The results from these experiments supported the

hypothesis that permeability estimation with the EnKF can still be quite promising

under significant uncertainty in the initial variogram parameters as long as the

initial permeability ensemble accounts for the full range of variability in structural

continuity. We explained the observed behavior by noting that the ensemble of

updated permeabilities is obtained by combining the prior permeability ensemble

with appropriate weights that are determined by the EnKF update equation.

Thus, when the initial ensemble has incorrect structural continuity, the updated
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permeability ensemble (being constructed by combining the prior permeability

ensemble) cannot depart too far from the imposed incorrect initial structure. On

the other hand, when the initial permeability ensemble contains structurally diverse

realizations, the EnKF can identify the update weights such that after a few updates

the new ensemble gradually reveals the correct continuity structure.

In conclusion, the experiments and analysis presented in this chapter suggest that

in designing the EnKF initial ensemble it is important to account for the full range

of uncertainty in the geologic continuity model. Although introducing significant

uncertainty in the prior geologic model significantly reduces the confidence in the

initial ensemble, the results in this chapter indicate that this initial uncertainty can

be substantially reduced after the first few updates and the structural diversity in

the initial ensemble tends to facilitate the reconstruction of the correct geologic

continuity in the field. Consequently, in designing the filter for subsurface model

calibration, it is safer to overestimate the uncertainty in the variogram model than to

underestimate or disregard it at the risk of introducing persistent structural errors.

While the flow data seem to contain information about the local distribution of

subsurface hydraulic properties as well as the structural continuity of the important

features in them, our results suggest that estimating variogram parameters from the

complex relation between the flow data and variogram parameters requires more

sophisticated inversion approaches than the second-order linear update in the EnKF

approach. The findings of this work underscore the need to develop more advanced

model calibration methods that can utilize the complex variogram structural

information in the flow measurements to consistently improve the description of

the geologic continuity model (global trends) as well as the spatial distribution of

subsurface properties (local variabilities).
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7. USING EFFICIENT PSEUDO-FORECASTS AND GEOLOGICAL

MODEL CLUSTERING WITH ENSEMBLE KALMAN FILTER

FOR FAST HISTORY MATCHING

7.1 Introduction

Ensemble methods present a practical framework for uncertainty assessment in

estimating heterogeneous reservoir properties from production data. In particular,

application of ensemble Kalman filter (EnKF) to history matching problems has

received extensive attention, primarily because of its simplicity and successful

performance in several applications. The EnKF implementation relies on flow

predictions with a relatively large number of model realizations, which in the case

of realistic reservoir models can be computationally prohibitive. When a small

number of model realizations are used the statistics computed for the EnKF model

updating step become inaccurate and can lead to inaccurate results. Therefore,

several localization methods have been introduced to account for statistical errors

due to limited ensemble sizes. While these practical considerations have been useful,

they do not address the core issue that a larger ensemble size is needed to accurately

compute the required update statistics.

High resolution and fidelity reservoir simulators e.g. ECLIPSE [77] are

computationally expensive. So the major computational cost in history matching

problems such as EnKF is the time used on propagating the forward model

[142, 143]. Moreover to appropriately represent geological model we need to use

large number of realizations. Therefore it is expensive to use EnKF with large

ensemble size. Since the quality of the covariance estimates depends highly on

the size of ensemble, reducing the size of ensemble to accelerate EnKF leads to
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inaccurate estimates and ensemble collapse. To alleviate this difficulty previously

covariance localization, Kalman gain regularization and improved initial sampling

were proposed [144, 145, 146]. These methods work with a few realizations that

hardly cover the parameter space. They try to correct the sample covariance or

Kalman gain (calculated by limited realizations) that generally are not a good

approximation of real covariance or Kalman gain. Although these methods add

extra degree of freedom and expand parameter space they are not quite able to make

a representative ensemble like what a large ensemble does. Our purpose here is

improving the performance and computation time of EnKF using limited ensemble

size (limited high fidelity forward model simulations) and more representative initial

ensemble along with updating large enough auxiliary ensemble utilizing a fast or

pseudo forecast method.

We propose to use a large ensemble of models to improve the calculation of

ensemble statistics while using a fast approximate forecast method to reduce the

computational cost of the EnKF. The forecast for each realization in this case is

derived from linearization around a representative or similar realization for which

full simulation is performed. We use adjoint model generated gradient [147, 148]

or an ensemble-calculated gradient approximation as tangent linear model for the

linearization purpose. In the forecast step of our implementation we perform full

forecasts for very few realizations to compute ensemble-based gradients. We then

perform approximate (pseudo) forecasts for the remaining models in the ensemble

by linearizing about representative models for which full forecasts are computed.

The representative realizations for full forecast in each step are selected through a

well-established clustering procedure [101, 149, 150].

Our proposed method to reduce the computational time of EnKF is using a

fast pseudo model for reservoir simulation that is model linearization around some
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representative realizations. Model linearization and using model gradient were

applied successfully to history matching through Extended Kalman Filter (EKF),

Maximum Likelihood Ensemble Filter (MLEF) and Ensemble Randomized Maximum

Likelihood Filter (EnRML) to handle model nonlinearity [151, 152, 153, 154]. For

model gradient (sensitivities) we use either Adjoint model (e.g. implemented in

ECLIPSE) or ensemble based gradient approximation. Latter method makes our

procedure fully independent of forward simulator and does not need extra routine.

Here we rectify the problem of inaccurate covariance by using large ensemble size

to be more representative of uncertainty space. In each forecast step of EnKF we

do full forecast for only a few realizations then calculate ensemble based gradient

and we do pseudo forecast for the rest of them. The number of realizations with full

forecast is comparatively very fewer than the typical number of realizations which

we need to avoid ensemble collapse. The representative realizations for full forecast

in each step is selected by clustering procedure consistent with pseudo forecast

method. The geological model clustering is also a form of improved sampling which

helps covering more parameter space. The (initial) ensemble representativeness (how

representative or general the initial ensemble is) has important and determining effect

in the performance and success of EnKF procedure [144], therefore an appropriate

clustering or model selection method should be used to pick the best realization

candidates as the ensemble representatives for high fidelity or full resolution reservoir

simulation.

The reminder of this chapter covers first the standard ensemble Kalman filter

approach for history matching then the proposed efficient EnKF with pseudo forecast

and clustering method. Finally We validate the performance of the proposed

method using several numerical experiments in 1D, 2D and 3D dimensional reservoirs

including benchmark reservoir models of PUNQ-S3 and SPE10 and demonstrate its
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applicability to large-scale model calibration problems.

7.2 Inverse Problem Methodology Development

7.2.1 Ensemble Kalman Filter

Ensemble Kalman filter’s formulations and algorithm and its successful

application in data assimilation problems were already extensively introduced and

presented in the previous chapters. This section is more focused in presenting the

proposed improvements and modifications to the standard EnKF to enhance its

performance. The probability density function or the statistical characteristics of the

reservoir parameter is represented by an ensemble of realizations in EnKF so to better

represent the probabilistic characteristic the ensemble should be as large as possible.

However due to computational limitations (expensive reservoir simulation run at

EnKF propagation step) it is not possible to utilize a large ensemble of reservoir

geological models in the history matching problem. Using small ensemble also leads

to incorrect and biased estimation results and mostly leads to ensemble collapse.

To resolve the issue with small ensemble size and also better represent the initial

probability space as well as reduce the computational load of EnKF procedure we

propose to perform reservoir simulation only for a few realizations and utilize an

efficient pseudo forecast (proxy modeling) to approximate the production data for

the rest of the ensemble members.

Through the EnKF analysis step the reservoir state vector becomes updated

by integrating the available observations. To build the state vector, only the

reservoir parameter and its corresponding observation or reservoir response are used.

Therefore for solving this problem, the EnKF with confirmation option or restart

EnKF is utilized [137] which is consistent with the proposed fast history matching

approach. Consequently it is only needed to approximate the observations (reservoir
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response e.g. fluid rates and BHPs) for the clusters members from the cluster

representatives full forecast (high fidelity forecast using the reservoir simulator). And

the reservoir state variables (e.g. saturations and pressure) are not needed in the

integration procedure.

7.2.2 Efficient Ensemble Kalman Filter with Pseudo-Forecasts and

Geological Model Clustering

The proposed efficient EnKF approach consists of two main ingredients: 1) pseudo

forecast method, 2) geological clustering method. In the proposed algorithm to

preserve the ensemble spread and avoid ensemble collapse we keep the typical number

of realizations (no reduction in ensemble size) and to improve the computational

efficiency we only perform numerical reservoir simulation for a small subset (cluster

representatives) of original ensemble. For the rest of the ensemble we develop an

efficient and fast pseudo forecast method (based on linearization of the reservoir

simulator) to predict the production data. The linearization is performed around

the representative realizations which their production forecasts are obtained from

simulation. To best select the ensemble representatives we propose to apply a

clustering method (based on the similarity of the permeability values) to the

ensemble (initially and after each EnKF update) and pick the clusters’ centroids

as the representative realizations. The detailed proposed efficient EnKF algorithm

is presented in Table 7.1.

7.2.2.1 Forward Model Linearization as an Efficient Pseudo-Forecast

Our proposed method for approximating the forward reservoir model (reservoir

simulator) is the linearization (gradient-based pseudo forecast) around the cluster

centroids. For this purpose we need the gradient of the production data with respect

to the reservoir parameter. This gradient can be obtained through ensemble-based
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Efficient EnKF Pseudo Code

1: Generate Ne initial parameter (mj) realizations (initial ensemble)

2: Generate perturbed observations (yj) from true observation (based on Cd)

3: For t = 1 to tN do (integration time steps)

4: Apply k -means clustering to Ne realizations and build k clusters

5: For i = 1 to k do (full reservoir simulation for cluster representatives)

6: Initialize the reservoir simulator

7: Write the ith cluster’s representative (centroid) (mc,i) as the reservoir parameter

8: Run reservoir simulator from beginning until current integration time (corresponds to t)

9: Record the corresponding reservoir response (production data)

10: End For

11: Calculate ensemble-based gradient G ∗

12: Calculate (approximate) the pseudo forecasts for the cluster members

13: Calculate ensemble statistics of x̄j
f , Ce

x , and Kalman gain K using all realizations (Ne) data

14: Update all realizations by EnKF analysis equation

15: End For

t = integration time step index which corresponds to integration time

tN = the total number of integration time steps
∗ If the reservoir simulator has adjoint model and provides gradient data, gradient data is recorded

in step 9 and step 11 is removed.

Table 7.1: Efficient EnKF algorithm using pseudo forecasts and clustering for fast
history matching.

approximation and directly from the simulator if the adjoint model is implemented

in the reservoir simulator (e.g. Eclipse). Here we utilize both approaches which lead

to promising estimation results for improved EnKF. The ensemble-based gradient

is calculated from the production forecasts of centroids and this approach is more

general which can be applied along with any reservoir simulator and does not need

adjoint model as well as it is faster and does not have the over head time of adjoint

model computation. We investigate both gradient-based pseudo forecast methods

(adjoint provided directly by forward model and ensemble based gradient) in this

study. The proposed pseudo forecast’s computation time advantage over the run

time of perfect forecast e.g. Eclipse is very significant.
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To estimate the production data (or reservoir response) of the members

(realizations) of each cluster, the following equation is applied:

ĝ(mj) ≈ g(mc) +G(mj −mc) (7.1)

where g(·) is the reservoir simulator response which produces production data

from the input parameters e.g. permeability, mj is a parameter realization member

of a cluster, mc is the centroid or representative realization of the corresponding

cluster, and G is the gradient (sensitivity matrix) of reservoir response (production

data) with respect to reservoir parameters (e.g. permeability). The high fidelity or

full reservoir simulation response of the cluster centroid is represented by g(mc) and

ĝ(mj) is the linear approximation of g(mj) (actual reservoir response of member

mj) around the cluster centroid response. In this study the reservoir responses

or observations are injectors BHP and producers oil, water and gas rates and the

parameter to estimate is permeability distribution. This approximation procedure is

done in each integration step. If the observation is a p-dimensional vector (at each

time step) and parameter is an n-dimensional vector then gradient matrix dimension

is p× n.

Ensemble-based gradient approximation is performed using ensemble-based

(sample) parameter (m) covariance matrix and cross-covariance matrix of reservoir

parameter (m) and reservoir response (d or g) [154]:

Cm,d ≈ CmG
T (7.2)

where Cm,d is the sample cross-covariance matrix of parameter and observation

and its size is n×p and Cm is the sample covariance matrix of parameter and its size

is n×n. The cross-covariance matrix (that needs the parameter and its corresponding
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reservoir response) is calculated with the results of running the simulator for cluster

representatives (centroids) and covariance matrix of parameters is calculated with

the entire parameter ensemble. This matrix equation is solved for G using gmres

method [101].

7.2.2.2 Clustering as Improved Sampling and Geological Model Selection

Method

To pick the most representative realizations for high fidelity forecast (reservoir

simulation), we propose to utilize clustering method. Clustering method alone (as

an improved initial sampling approach) will improve EnKF performance [144] by

introducing a more representative initial sample space. Effect of improved sampling

and the importance of ensemble representativeness is also shown by a numerical

example in Section 7.3.2 while comparing the results of two similar size ensembles, one

wide spread, and the other narrow spread. We aim to construct an improved ensemble

(smaller size) that is more representative of the initial ensemble space. We propose to

use k -means clustering method [101, 149, 150] which is a well-established clustering or

unsupervised learning method. Clustering is performed based on Euclidean distance

of samples (grid block property values e.g. permeability values).

k -means clustering is vector quantization method, originally from signal

processing which is popular for cluster analysis in data mining. k -means clustering

aims to partition N samples into k clusters in which each sample belongs to the

cluster with the nearest mean which is serving as a prototype or representative of

the cluster.

Given a set of samples (x1,x2, ...,xN) (e.g. an ensemble of permeability

realizations), where each observation is an n-dimensional real vector, k -means

clustering aims to partition the N samples into k (≤ N) sets (or clusters) S =
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{S1, S2, ..., Sk} so as to minimize the within-cluster sum of squares (WCSS). In other

words, its objective is to find:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (7.3)

where µi is the mean of points or samples in Si.

The most common algorithm uses an iterative refinement technique. Given an

initial set of k means (initially they can be k randomly generated samples), the

algorithm proceeds by alternating between two steps: [155]

Assignment step: Assign each sample to the cluster whose mean yields the

least within-cluster sum of squares (WCSS). Since the sum of squares is the squared

Euclidean distance, this is intuitively the ”nearest” mean.

Update step: Calculate the new means to be the centroids of the samples in

the new clusters. (Since the arithmetic mean is a least-squares estimator, this also

minimizes the within-cluster sum of squares (WCSS) objective.)

The commonly used initialization methods are Forgy and Random Partition [156].

The Forgy method randomly chooses k samples from the data set and uses these as

the initial means. The Random Partition method first randomly assigns a cluster to

each observation and then proceeds to the update step, thus computing the initial

mean to be the centroid of the cluster’s randomly assigned points.

With this algorithm each cluster’s representative is the clusters centroid which

is the mean of the cluster members. Therefore there is no guaranty that the cluster

centroid is a member of the cluster. Since we aim to perform reservoir simulation

with one of the reservoir parameter realizations (namely as the centroid of each

cluster), we pick the closest (Euclidean distance) member of each cluster to the

cluster’s centroid as the cluster’s representative.
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Clustering is performed at each update step, the ensemble representatives or

cluster centroids are updated at each integration or update step i.e. a new set of

clusters are made after each EnKF update.

Clustering method and measure are in fact compatible with pseudo forecast

method. Clustering is based on the Euclidean distance of geological models

and cluster the realizations based on similarity and closeness of pixel values

which is compatible with the proposed pseudo forecast method that linearize the

forward model around each cluster representative (or cluster centroid) and calculate

(approximate) the forecast based on the difference of each (e.g. permeability)

realization with its cluster representative.

7.3 Numerical Experiments

In this section, a series of 1D, 2D and 3D reservoir model examples are presented

to verify the utility of the proposed EnKF method for fast history matching. A 1D

reservoir model case with homogeneous permeability is presented with numerous trial

simulations to demonstrate that the promising performance of the proposed method

is statistically consistent.

In all performed experiments by the proposed method there is no rank deficiency

(in all updates states) in cross covariance matrix of simulated observations and

permeabilities (or the matrix of state vectors ensemble). It means by clustered

EnKF method when the number of realizations is Ne and the number of clusters

or full forecasts is k, then always the rank of state ensemble matrix is Ne. So by

linearization of some realizations observations around centroids no rank deficiency

in state ensemble matrix happens.
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7.3.1 1D Reservoir Model with Homogeneous Permeability

In this example to show the statistically consistent performance of the proposed

method, we set up a simple 1D homogeneous reservoir and repeat the EnKF

experiments several times and compare and analyze the mean of the performed

experiments. The reservoir model is 1D (100 × 1 × 1 grid configuration) with

2-phase fluid (oil and water). The permeability (the parameter to estimate) is

homogeneous so in the estimation procedure we estimate a single value. There are

two wells at the two ends of the reservoir (one injector and one producer). The total

simulation (history matching) period is 180 days (6 regularly spaced integration

steps). Production is at constant BHP and the water injection scenario is shown in

Figure 7.1.

Figure 7.1: Water injection rate scenario.

EnKF with confirmation step is used i.e. in all integration steps, propagation of
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realizations is performed from the beginning). At each integration step there are 3

observations (oil rate, water cut and injection BHP). In EnKF procedure here, we

only have one parameter to estimate (homogeneous permeability field). This very

simple model setup was chosen because the permeability estimation results (just

one number) is completely representative of the estimation performance (no need

for ensemble forecasts) and the ensemble based gradient estimation (calculation) is

also very straight forward (just estimating one value for each observation which is

its sensitivity with respect to homogeneous permeability). By this simple setup we

also could run large number of experiments to show that our results are statistically

consistent.

The homogeneous permeability of the true case is 150 (md). To make initial

ensemble, we generate random numbers (each random number is a realization) from

a Gaussian distribution with µ = 400 (md) and σ = 200 (md). There are three

different setups:

1. Small ensemble: simple EnKF with 3 realizations (ensemble size = 3)

2. Large ensemble: simple EnKF with 20 realizations (ensemble size = 20)

3. Clustered EnKF: improved EnKF by clustering and pseudo forecast with 20

realizations and 3 clusters (ensemble size = 20 and 3 full forecasts)

To show statistically consistent results we performed 100 trial experiments for

each setup. The difference in each try or experiment is the chosen initial ensemble.

We made an initial large ensemble of realizations and then for each try we randomly

picked 20 realizations then ran all three mentioned setups. Totally 300 simulations

(i.e. 300 EnKF experiments) were done.
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Experiment setup

(100 tries for each)

Mean of final

ensemble means

Std of final

ensemble means

Mean of final

ensemble RMSE

1 (Small ensemble) 93.57 78.41 73.51

2 (Large ensemble) 147.18 4.97 4.42

3 (Clustered EnKF) 144.94 18.76 7.02

True permeability = 150 (md)

Table 7.2: The final estimation results of all trial experiments.

As shown in the Table 7.2, the result of clustered EnKF is significantly better than

small ensemble setup and is slightly worse than large ensemble setup. Also obtaining

these results from 100 experiments for each setup confirms that improvement by

clustered EnKF method is generally promising. The histograms in Figure 7.2 are

also indicating improved performance of clustered EnKF approach.

Figure 7.2: Histograms of final ensemble mean of all trial experiments for each setup
(red line shows the true permeability value).
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7.3.2 1D Reservoir Model with Heterogeneous Permeability

This example is a 1D reservoir model (100 × 1 × 1 grid configuration) with

5 wells (2 injectors and 3 producers). Constant BHP is set for producers and

the water injection scenario is show in Figure 7.3. To generate initial ensemble,

sgsim algorithm (unconditional simulation) is used. History matching is done for

8 integration steps (each step is 90 days). Production forecast is performed for 16

steps. The heterogeneous permeability is the parameter to estimate by integrating

injector’s BHP and producers oil and water rate.

3 
 

2 (large ensemble) 147.18 4.97 4.42 

3 (clustered EnKF) 144.94 18.76 7.02 

 

As it is shown in the table, the result of clustered EnKF is significantly better than small ensemble setup and is slightly 
worse than large ensemble setup. Also obtaining these results from 100 experiments for each setup confirms that 
improvement by clustered EnKF method is generally promising. The following histograms are also indicating improved 
performance of clustered EnKF approach. 
 

 
 

Figure: Histograms of final ensemble mean of all trial experiments for each setup (red line shows the true permeability value.) 
 

Case study #2: 
 
Model specifications: 
 
1D, 100 gridblocks, 5 wells (2 injection, 3 production), constant injection rate and constant production BHP 
sgsim (unconditional simulation) used to make initial ensemble 
history matching for 8 integration steps (each step = 90 days) 
forecast was performed for 16 steps 
the injection scenario is as following: 

 
 
 
 

Figure 7.3: Water injection rate scenario.

In this example we also demonstrate the effect of initial improved sampling

in enhancing the EnKF performance through providing more representative initial

ensemble that covers more of possible initial parameter space than randomly selected

initial ensemble. After generating 100 realizations we perform following experiments.
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There are 4 setups for this model:

1. Small ensemble EnKF (10 realizations)

2. Small ensemble EnKF with improved initial sampling (10 realizations which

are the centroids of 100 realizations. We perform clustering on 100 realizations

and pick 10 most representative samples.)

3. Clustered EnKF (100 realizations with 10 clusters)

4. Large ensemble EnKF (100 realizations)

Experiment 1 is actually the simplest setup which results in the poorest

performance. In experiment 1 we just run EnKF by 10 realizations picked randomly

from initial 100 realizations. By an initial clustering of 100 realizations to 10 clusters

then picking the centroids of the clustered we perform improved initial sampling to

build a more representative initial ensemble even though the ensemble size is still

small.

The estimation results of all 4 experiments in terms of Lperm estimation RMSE

are shown in Figure 7.4. As expected, improved initial sampling resulted in less

RMSE comparing to the random ensemble and the clustered EnKF RMSE is

significantly lower than the small ensemble case and is comparable to large ensemble.
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4 
 

 
 
 
 
Experiments setup: 
 
After generating 100 realizations we perform following experiments.  
There are 4 setups for this model: 
 
1- small ensemble EnKF (10 realizations) 
2- small ensemble EnKF with improved initial sampling (10 realizations which are the centroids of 100 realizations. We 
do clustering on 100 realizations and pick 10 most representative samples.) 
3- clustered EnKF (100 realizations with 10 clusters) 
4- large ensemble EnKF (100 realizations) 
 
Experiment #1 is actually the simplest setup which results in the poorest performance. In experiment #1 we just run EnKF 
by 10 realizations picked randomly from initial 100 realizations. By an initial clustering of 100 realizations to 10 clusters 
then picking the centroids of the clustered we sort of do improved initial sampling to build a more representative initial 
ensemble even though it still is small. 
 
 
 
 

 

 
Comparison of Lperm RMSE of 4 experiments 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4: Comparison of Lperm RMSE of 4 experiments.
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1- Small ensemble 2- Small ensemble (centroids)

3- Clustred EnKF 4- Large ensemble

Figure 7.5: Lperm ensemble estimation results (initial and final ensemble in all 4 experiments).
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The estimation results shown in Figure 7.5, also verifies the promising

performance of improved initial sampling and the improved EnKF method.

Water rate of one of the production wells (initial and final ensemble forecast)

is shown in Figure 7.6 for all 4 experiments which again verifies the utility of the

proposed EnKF method for reservoir data assimilation.

7.3.3 2D Reservoir Model

The example presented in this section is a 2D 2-phase reservoir model with 100×

100 × 1 grid configuration. The well pattern is a single 9-spot (one injector and 8

producers) and unconditional simulation is used to generate the initial ensemble. The

history matching period is 8 years (12 integration steps and each step is 8 months).

The true Lperm distribution is also shown in Figure 7.7.

The goal here is to estimate the permeability distribution by integrating the

production data. We perform three experiments as follows:

1. Small ensemble EnKF with 20 realizations

2. Clustered (improved) EnKF with 200 realizations and 20 clusters

3. Large ensemble EnKF with 200 realizations

Figure 7.7 shows the estimated results of these 3 experiments in terms of the

final estimated mean. As shown the estimated permeability map of clustered EnKF

approach is significantly closer to the true permeability map comparing to the small

ensemble experiment. The final estimated mean of clustered EnKF is also comparable

with the large ensemble case while its computation time is much less that verifies

the applicability of the proposed method for fast history matching.

The estimation RMSE and ensemble spread of three experiments are shown in

Figure 7.8. As it is shown by ensemble spread plots, the small ensemble EnKF almost
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Figure 7.6: Comparison of ensemble forecast for all 4 experiments (water rate);
vertical blue line indicates the end of history matching period.
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True Lperm map 1- Small ensemble 2- Clustered EnKF 3- Large ensemble 

 
 
 
 
 
 
 

Final ensemble mean of each experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7: Comparison of final (after 12 integration steps) estimated ensemble mean
for all 3 experiments.

collapsed. The RMSE of the small ensemble case also shows unacceptable result (not

continuously decreasing) while the clustered EnKF RMSE is very close to the large

ensemble experiment.

10 
 

2D model, 2 phase, grid size: 100x100, 9-spot (one injection and 8 productions) 
Using unconditional simulation (sgsim) to build initial ensemble 
8 years of history matching (12 integration steps and each step = 8 months) 
16 years of production forecast 
Water injection scenario is plotted here. 
 

 
 
Experiments setup: 
 
There are three setups: 
 
1- small ensemble EnKF with 20 realizations 
2- clustered EnKF with 200 realizations and 20 clusters  
3- large ensemble EnKF with 200 realizations 
 
 

 
 

 
 
 
 
 

RMSE and ensemble spread of three experiments 
As it is shown by ensemble spread plots, the small ensemble EnKF almost collapsed. 
 

Figure 7.8: Comparison of permeability estimation RMSE and ensemble spread of
three experiments.
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7.3.4 PUNQ-S3 Model

In this section the proposed improved EnKF method is applied to the PUNQ-S3

reservoir model [157]. This is a 3D and 3-phase reservoir model with 19 × 28 ×

5 grid configuration. There are 1761 active grid blocks and 6 producers with no

injectors. We are simultaneously estimating X, Y and Z permeabilities and also the

porosity by integrating BHP, oil rate, water cut and GOR. We consider 8 years of

history matching and 16.5 years of production forecast. The ensemble size is 200

and we consider 20 clusters (i.e. the number of full reservoir simulations or full

forecasts). Therefore in each integration time we perform 20 full forecasts and 180

pseudo forecasts. For this example ensemble-based estimated gradient is used.

Again for this example we perform three experiment setups to show the utility

of the proposed method:

1. Small ensemble EnKF with 20 realizations

2. Clustered (improved) EnKF with 200 realizations and 20 clusters

3. Large ensemble EnKF with 200 realizations

The true porosity map, the reservoir and wells configuration are shown in Figure

7.9.

As shown in Figure 7.10, the final estimated result of EnKF with small ensemble

fails to detect the major features of the true porosity map while the improved EnKF

is successful in capturing the shape and low/high value regions of the true map and

has close estimation result to the large ensemble EnKF case.

The ensemble variance results of the experiments in Figure 7.11 also show the

promising performance of improved (clustered) EnKF in preserving the ensemble
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PUNQS-3; Model Specifications 

 number of grid blocks = 19x28x5

 1761 active grid blocks

 6 producer, no injector

 strong aquifer on the west and north

 8 years history matching, 16.5 years forecast

 ensemble size = 200, (20 full simulations)

 XY, Z permeability and porosity estimation

 integration of BHP, oil rate, watercut, GOR

Layer 1 Layer 5Layer 4Layer 3Layer 2

Figure 7.9: Reservoir model configuration and the true porosity maps of PUNQ-S3
model in all layers.

spread while it only performs 20 full reservoir forecasts. From Figure 7.11 it is also

clear that small ensemble EnKF collapsed.

As presented in Table 7.3, the proposed improved EnKF approach significantly

expedite the history matching process and makes the data integration procedure

considerably faster.

Experiment Computation time (hr)

EnKF (20 realizations) 0.39

EnKF (200 realizations) 3.87

EnKF (200 realizations, 20 clusters) 1.07

Table 7.3: Computation time comparison of the performed experiments (machine
specifications: Intel Xeon CPU 3.07 GHz, 6.0 GB RAM).

To verify the promising performance of the proposed improved EnKF method

in providing the proper production forecasts, the boxplots of ensemble forecasts are

presented in Figure 7.12. It is clear from this figure that the improved EnKF provides

233



17 
 

 
True porosity map 

  
1- Small ensemble 

  
2- Clustered (improved) EnKF 

  
3- Large ensemble 

 
 
 
 

Ensemble mean results (porosity layer 1) 
 
 
 
 
 

Figure 7.10: Estimation results in terms of estimated ensemble mean (porosity of
layer 1).
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1- Small ensemble 

 
 

2- Clustered (improved) EnKF 

 
 

3- Large ensemble 
 
 
 
 

Ensemble variance maps (porosity layer 1) 
 
 
 
 

Figure 7.11: Estimated ensemble variance map (porosity of layer 1).
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less biased and much closer forecasts comparing to the small ensemble EnKF. Also

the results of improved EnKF is comparable with the large ensemble EnKF.

Figure 7.12: Performance comparison in terms of ensemble forecasts of final
cumulative gas and water production by boxplot.

7.3.5 SPE10 Model

In this section we apply the proposed method to SPE10 model. We use 5 top

layers of SPE10 model and put 23 wells in the model. The reservoir is 3-phase black

oil model and the grid configuration is 60×220×5 (66000 grid blocks). The unknown

parameter to estimate in the permeability distribution and BHP, oil, water and gas

rates are integrated. Similar to the previous examples, three sets of experiments are

performed. The small and large ensemble sizes are 200 and 20, respectively. The

clustered (improved) EnKF is done with 200 realizations and 20 clusters. To generate

the ensemble of permeability realizations conditional simulation is used.

The reservoir and well configurations are shown in Figure 7.13. There are both

water and gas injection wells in the reservoir. Again to show the promising estimation
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SPE10; Model Specifications 

7 Gas Injector

8 Water Injector

8 Producer

Figure 7.13: SPE10 model and well configuration and specifications.

performance of the proposed method, we conduct three experiments, first with small

ensemble (20 realizations) and then with a large ensemble (200 realizations) and

finally we perform the improved EnKF with 200 realizations and 20 clusters. The

estimation results in terms of estimated ensemble mean and ensemble variance map

are shown in Figure 7.14. True log-permeability distribution, initial ensemble mean

and initial ensemble variance map are presented and also the final ensemble mean

and final ensemble variance map of all three experiments are shown too. Firstly it

is clear from the variance map of small ensemble experiment that ensemble collapse

happened. The estimated ensemble mean of small ensemble case is also very different

from the true map. The final ensemble mean mean of the improved EnKF is very

well in agreement with the one from large ensemble experiment and both are close

to the true map. The final ensemble variance map of improved EnKF experiment

also proves that the proposed method is successful in preserving the spread of the

ensemble.
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SPE10
True log-permeability layer 1

Ensemble Mean

Final 20 real.

Final 200 real

Final Imp-EnKF

Variance MapInitial

Figure 7.14: Comparison of the estimated ensemble mean and ensemble variance
map for the three experiments.
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Successful application of the proposed EnKF algorithm for SPE10 model proves

the utility of this approach for fast history matching of realistic large-scale reservoirs.

7.4 Discussions and Summary

In this chapter to develop a computationally efficient EnKF-based history

matching method, we propose to use efficient and fast pseudo forecasts along with

geological model clustering in EnKF framework. The performing Monte Carlo

simulation or propagation step of EnKF is the major computation load of EnKF

procedure. Therefore to reduce the computation time we perform high fidelity

reservoir forecast (reservoir simulation) for a few reservoir model realizations and

for the rest of them we approximate the production data by a fast proxy method.

We choose to linearize the reservoir forward model (pseudo forecast approach)

around some representative samples which their forecasts results are obtained by

reservoir simulation. For linearization we obtain the gradient of production data

with respect to reservoir parameters either from adjoint model (implemented in

reservoir simulator) or ensemble-based gradient calculation. A clustering method

is also used to group the original ensemble to some subsets or clusters and choose

the clusters’ representatives for reservoir simulation. With ensemble-based gradient

approximation method, this approach can be applied to any type of reservoir

simulator (with any observation or parameter) for model updating. This approach

showed significant improvement in computational load of EnKF procedure and made

it considerably faster. We applied this approach along with Eclipse as the reservoir

simulator to a suit of different reservoir models including two benchmark reservoir

models and verified its promising estimation performance comparing to small and

large ensemble EnKF.
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8. SUMMARY AND CONCLUSION

Seismicity-based reservoir characterization is a promising approach for monitoring

and improving reservoir performance in a number of important energy and

environmental applications. We formulated an EnKF-based model calibration

approach to integrate discrete MEQ events into the description of reservoir property

distributions in both pore-pressure diffusion and fully coupled geomechanical forward

model. Since the EnKF is a continuous estimation approach, we introduced a new

interpretation of the MEQ event locations as a continuous seismicity density map

that is amenable to assimilation with the EnKF. A main advantage of the EnKF to

previously introduced SBRC methods is that it is a stochastic inversion that provides

an ensemble of solutions to facilitate uncertainty assessment. Other important

advantages of the EnKF are the ability to systematically incorporate uncertainty

in models and observations, and its generality for application under any forward

model, failure criteria, and MEQ event triggering mechanisms. In addition, the

simple and versatile implementation of the EnKF allows for estimation of different

types of parameters from various data types.

In this work, we developed a coupled geomechanical reservoir simulator with

rock failure criteria and damage mechanics model, and focused on developing a

framework called stochastic seismicity-based reservoir characterization (SSBRC) for

automatic and robust integration of MEQ-type discrete data sets using the EnKF.

We first developed 2D and 3D FEM fully coupled thermo-poro-elastic models with

Mohr-Coulomb failure criterion (including tension cut-off) and, permeability and

damage model to relate hydraulic and geomechanical reservoir parameters to discrete

microseismicity cloud. An important property of the EnKF is that its sequential

240



update scheme provides different representations of unknown parameters after each

update. By construction, the EnKF is designed to update time-varying states of

a system. In forward geomechanical model that rock damage is reflected in the

alteration of elastic modulus and permeability, field stress disturbances change the

rock physical properties (parameters) with time, the EnKF-type sequential filtering

techniques prove quite useful for estimation of dynamically varying parameters. We

also set up 2D and 3D pore-pressure diffusion forward models using a finite difference

based commercial reservoir simulator that relates permeability distribution to MEQ

cloud distribution.

In pore-pressure forward model, by applying SSBRC we can infer permeability

distribution from MEQ data. Considering the coupled flow and geomechanics-based

forward model, SSBRC method is capable of inferring permeability, elastic modulus,

tensile strength, cohesion and friction angle from MEQ event cloud. Here, both

tensile and shear failures are considered as microseismicity events.

Using KDE to generate seismicity density map on the same fine grid system of

pore pressure diffusion model or fine mesh of FEM model leads to high-dimensional

and redundant observation. EnKF update with large number of correlated

observations results in severe ensemble spread underestimation. We proposed three

methods to preserve the ensemble spread and improve uncertainty quantification

of SSBRC. We resolved this issue by either artificially adding large random noise

to observation or reducing the number of observations by spectral and spatial

dimension reduction. As the simplest method of avoiding ensemble collapse,

we proposed to inflate observation error variance. We also proposed projecting

the microseismic data onto a low-dimensional subspace that is defined by left

singular vectors of the perturbed observations matrix, and lastly using coarse-scale

continuous representation of the microseismic data. The proposed KDE approach for
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transforming the discrete MEQ data in this work inevitably introduces some error

into the estimation results. A more natural estimation approach for integration

of MEQ data is one that does not convert the discrete events into continuous

measurements. Developing discrete data integration algorithms can eliminate the

discrete data quantification step and potentially lead to additional improvements in

the estimation results.

SSBRC also showed a promising performance in inferring reservoir properties and

also hydraulic fracture characteristics from MEQ data when applied to hydraulically

fractured reservoirs. Reservoir matrix permeability distribution was successfully

estimated from microseismic data by SSBRC in reservoir setting with multiple

transverse induced fractures. SSBRC was also successfully employed for microseismic

fracture mapping in place of the traditional methods.

Here, we adopted a continuum approach and did not include fracture systems in

the estimation. In general, one may need to characterize fractures and fracture

networks as part of the model calibration process. Further refinements of the

workflow may also be possible by including seismic modeling as one of the components

in the inversion framework that can help better characterize the MEQ events both

in terms of their distribution and intensity. Analyses of the raw microseismic data

can lead to additional information about the induced fractures and their properties.

The experiments and analysis presented in Section 6 suggest that in designing

the EnKF initial ensemble it is important to account for the full range of uncertainty

in the geologic continuity model. Although introducing significant uncertainty in the

prior geologic model significantly reduces the confidence in the initial ensemble, the

results indicate that this initial uncertainty can be substantially reduced after the

first few updates and the structural diversity in the initial ensemble tends to facilitate

the reconstruction of the correct geologic continuity in the field. Consequently, in
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designing the filter for subsurface model calibration, it is safer to overestimate the

uncertainty in the variogram model than to underestimate or disregard it at the

risk of introducing persistent structural errors. While the flow data seem to contain

information about the local distribution of subsurface hydraulic properties as well as

the structural continuity of the important features in them, our results suggest that

estimating variogram parameters from the complex relation between the flow data

and variogram parameters requires more sophisticated inversion approaches than

the second-order linear update in the EnKF approach. The findings of this work

underscore the need to develop more advanced model calibration methods that can

utilize the complex variogram structural information in the flow measurements to

consistently improve the description of the geologic continuity model (global trends)

as well as the spatial distribution of subsurface properties (local variabilities).

In Section 7 to develop a computationally efficient EnKF-based history matching

method, we propose to use efficient and fast pseudo forecasts along with geological

model clustering in EnKF framework. The performing Monte Carlo simulation

or propagation step of EnKF is the major computation load of EnKF procedure.

Therefore to reduce the computation time we perform high fidelity reservoir forecast

(reservoir simulation) for a few reservoir model realizations and for the rest of them

we approximate the production data by a fast proxy method. We choose to linearize

the reservoir forward model (pseudo forecast approach) around some representative

samples which their forecasts results are obtained by reservoir simulation. For

linearization we obtain the gradient of production data with respect to reservoir

parameters either from adjoint model (implemented in reservoir simulator) or

ensemble-based gradient calculation. A clustering method is also used to group the

original ensemble to some subsets or clusters and choose the clusters’ representatives

for reservoir simulation. With ensemble-based gradient approximation method, this
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approach can be applied to any type of reservoir simulator (with any observation or

parameter) for model updating. This approach showed significant improvement in

computational load of EnKF procedure and made it considerably faster. We applied

this approach along with Eclipse as the reservoir simulator to a suit of different

reservoir models including two benchmark reservoir models and verified its promising

estimation performance comparing to small and large ensemble EnKF.
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