
 

 

 

 

ASSESSMENT OF THE POTENTIAL EFFECT OF CLIMATE CHANGE ON 

HURRICANE RISK AND VULNERABILITY IN FLORIDA  

 

 

A Thesis 

by 

MICHELLE RUIZ  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,  Steven M. Quiring 

Committee Members, Oliver W. Frauenfeld 

 Michael K. Lindell  

Head of Department, David M. Cairns 

 

December 2014 

 

 

Major Subject: Geography 

 

Copyright 2014 Michelle Ruiz



 

ii 

 

ABSTRACT 

 

 Hurricanes are a yearly threat to the eastern and Gulf coasts of the United States. 

An increase in frequency and intensity of hurricanes is a possible and dangerous 

consequence of future climate change. To assess the threat of more frequent and intense 

hurricanes, this research will address how climate change will affect future hurricane 

activity in Florida. A greater understanding of how climate change will affect hurricanes 

is vital for regions, such as Florida, that are vulnerable to these powerful storms.  

Hurricane return periods were calculated for all Florida counties based on 1900-

2010. Hurricane landfalls were quantified using a dynamic wind model which allowed 

for the spatial extent of each storm to be examined. A meta-analysis of the existing 

literature on the effects of climate change on hurricane behavior was performed. Using 

the findings from the meta-analysis, a sensitivity analysis was performed to determine 

how climate change may affect hurricane damage and loss for Florida. The HAZUS-MH 

Hurricane Model was used to estimate losses and damage from hurricane winds based on 

Florida’s growing population and increasing coastal development. 

 Results show that wind-derived return periods more accurately depict the 

distribution of a storm’s wind field. Counties in southern Florida have the lowest return 

periods based on the track-derived and wind-derived return periods. Based on the meta-

analysis, hurricane intensity is expected to increase by 2 to 11%. Hurricane frequency is 

expected to decrease or remain the same and storm tracks are not expected to change. 

The sensitivity analysis examined the influence of climate change on baseline (current), 
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moderate (15% increase), and extreme (35% increase) TC intensity scenarios. The most 

developed and populated regions are the most vulnerable to hurricane damages and 

losses. Based on the boxplots, the spread of percent values increases for building 

damage, economic losses, and shelter needs as storm intensity increases. The spread in 

the data shown in the scatterplots and boxplots is storm specific. This research found that 

southeastern Florida is at highest risk of future hurricane landfalls and most vulnerable 

to hurricane damages and losses. 
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CHAPTER I 

INTRODUCTION 

 

 An increase in the frequency and intensity of hurricanes is a possible and 

dangerous consequence of future climate change (Shepherd and Knutson 2007). This 

research will examine how climate change will affect hurricanes and their behavior. A 

greater understanding of the impacts of climate change is vital for regions that are 

vulnerable to these powerful storms (Pielke et al. 2005). Florida is one region that is 

extremely vulnerable to hurricanes since it is a peninsula that can be impacted from both 

the west coast and east coast. Although the relationship between hurricanes and climate 

change has been extensively studied (Elsner 2006; Emanuel 2005a; Emanuel 1987; 

Henderson-Sellers et al. 1998; Landsea et al. 2006), the relationship between climate 

change and hurricane event risk has not been quantified for Florida.  

Every year, from June to November (a period known as hurricane season), 

tropical cyclones form over the North Atlantic Ocean and are a threat to the eastern 

coastline of the United States and the Gulf of Mexico (Elsner and Kara 1999). Florida is 

extremely vulnerable to hurricane landfalls as it is surrounded by both the Atlantic 

Ocean and the Gulf of Mexico. Valuable properties and growing populations are at risk 

of devastating hurricane landfalls (Elsner 2006). With a continuous increase in coastal 

populations, future climate change may greatly impact these populations (Sarewitz et al. 

2003). An improved understanding of potential future changes in hurricane trends can 

help mitigate property damage and loss of life (Pielke et al. 2005). An awareness of 
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hurricane risk can aid local government officials and policymakers in improving 

evacuation planning and decisions and hurricane preparedness (Pielke et al. 2005). 

Improved preparation when facing the threat of a hurricane can help save property and 

lives. 

 Numerous studies have examined the relationship between climate change and 

hurricane activity, however, the results continue to be debated (Knutson et al. 2010). 

Hurricane event risk for vulnerable areas, such as Florida, has not been extensively 

quantified. Examining hurricane event risk for Florida can provide more information of 

the future effects of climate change. The findings of this study will allow researchers and 

scientists to apply similar methods to other vulnerable regions along the U.S. coastline. 

The application of a parametric wind field model may also provide a new perspective 

when examining the relationship between hurricanes and climate change since it has not 

been used in other studies. Further research on the impacts of climate change is vital in 

order to provide accurate information to affected populations and to prepare for the 

future. 

 

1.1 Research Objectives 

This thesis has three main objectives: 

1. Quantify hurricane event risk for all Florida counties based on observed data for 1900-

2010. 

2. Quantify how climate change will influence hurricane event risk by performing a 

meta-analysis of the literature.  
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3. Perform sensitivity analysis using the findings from the meta-analysis to determine 

how climate change will potentially affect hurricane damage and loss for Florida. 

In this study, the possible future changes in hurricane event risk due to climate 

change will be examined for all Florida counties. The future hurricane event risk for 

Florida’s counties will be quantified through a meta-analysis of the literature on climate 

change and hurricanes. The findings will then be applied using HAZUS-MH, a risk 

assessment tool used for analyzing damage and loss, to quantify potential future changes 

in hurricane related damages and losses in Florida. An assessment of potential hurricane 

risk and vulnerability can help the public and officials make sound decisions that may 

help save lives. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Hurricanes  

A tropical cyclone is defined by Elsner and Kara (1999) as a closed circulation 

system that forms over warm water. Tropical cyclones are called hurricanes in the 

Atlantic and the Northeast Pacific ocean basins (Elsner and Kara 1999; Emanuel 2005c). 

Tropical cyclones also form in the Northwest Pacific, where they are called typhoons 

and in the Indian and Southwest Pacific oceans where they are referred to as cyclones 

(Elsner and Kara 1999; Emanuel 2005c).   

Hurricanes are characterized by having a low central pressure that is typically 

around 950 millibars (mb) and sustained winds greater than  33 m s
-1

 (74 mph) (Elsner 

and Kara 1999). Tropical cyclones start as disturbances or waves that develop into 

tropical depressions (Elsner and Kara 1999). Tropical depressions are composed of a 

low-pressure center and have sustained winds less than 17 m s
-1 

(39 mph) (Elsner and 

Kara 1999). As the storm begins to strengthen, it becomes a tropical storm. Tropical 

storms are weaker than hurricanes, but heavy rains and strong winds are capable of 

causing damage (Elsner and Kara 1999). A tropical storm has sustained winds of 17 to 

32 m s
-1 

(39 to 73 mph) (Elsner and Kara 1999). Hurricanes have sustained winds greater 

than 33 m s
-1 

(74 mph) and the strongest hurricanes can have sustained winds of more 

than 69 m s
-1

 (155 mph) (Elsner and Kara 1999). The calmest winds are found in the eye 

of a hurricane (Emanuel 2005c). The eye is the region that has the lowest atmospheric 
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pressure (Elsner and Kara 1999). The fastest winds are found in the eyewall and winds 

typically decrease with distance from the eyewall (Emanuel 2003; Emanuel 2005c). 

Climate change has the potential to have a significant influence on hurricane 

activity (Emanuel 2005a; Kerr 2006). Although numerous studies have examined the 

relationship between climate change and hurricanes, there is a lack of consensus in the 

literature regarding the impact of climate change on hurricane intensity, frequency, and 

track. The potential impacts of climate change on hurricane behavior and trends will be 

discussed in detail in Chapter 5. 

 

2.2 Hurricane Formation and Development 

  Hurricanes commonly start as easterly waves that form in sub-Saharan Africa 

and make their way west across the Atlantic Ocean (Emanuel 2005c). Easterly waves 

have the cyclonic vorticity or rotation and the atmospheric instability that is necessary 

for tropical cyclogenesis (Emanuel 2005c). An easterly wave is classified as a tropical 

depression when its winds begin to rotate counterclockwise around a low pressure center 

(Emanuel 2005c). If a tropical depression gains strength, it may develop into a tropical 

storm and if conditions remain favorable, the tropical storm can become a hurricane 

(Emanuel 2005c). Storms that develop from easterly waves are called Cape Verde 

hurricanes (Elsner and Kara 1999).  

Tropical cyclogenesis can also be influenced by tropical upper-tropospheric 

troughs (TUTTs) (Elsner and Kara 1999). A TUTT is an upper-level trough that is 

located in the central subtropical Atlantic (Elsner and Kara 1999). TUTTs can produce 
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strong vertical wind shear which inhibits hurricane formation (Elsner and Kara 1999). 

Vertical wind shear occurs when winds along a column of air blow at different speeds 

(Elsner and Kara 1999). The difference in wind speeds at different altitudes prevent the 

storm from maintaining the symmetry of its circulation (Emanuel 2005c). The greater 

the difference in winds at two altitudes, the greater the wind shear and the lower the 

possibility of storm formation and/or development (Aiyyer and Thorncroft 2006; Elsner 

and Kara 1999). Regardless of where or how they form, storms need the right 

environmental conditions to continue to strengthen and develop as hurricanes.  

There are certain conditions that must be met for a hurricane to form. An 

unstable atmosphere capable of producing strong thunderstorms is needed (Emanuel 

2005c). Warm ocean water that is at least 27°C and at least 45 meters (150 feet) deep, a 

deep layer of humid air, little to no wind shear, and enough Coriolis force that will allow 

the system to develop a spinning motion are also necessary (Emanuel 2005c). Warm 

ocean waters provide a source of heat that acts as fuel during hurricane formation and 

development (Emanuel 2003). Ocean temperatures must reach at least 26-27°C for 

cyclones to form (Elsner and Kara 1999; Emanuel 2003). The surface layer of warm 

water must be deep to prevent colder water at greater depths from being mixed into the 

surface (Elsner and Kara 1999). Vorticity is vital for storm formation (Emanuel 2005c). 

Vorticity is a characteristic of tropical cyclones, and in the Northern Hemisphere, it 

causes storms to move in a counterclockwise motion (Emanuel 2003). The Coriolis force 

plays an important role in a storm’s rotating motion (Elsner and Kara 1999). The 

Coriolis force is strongest at the poles and weakest at the equator (0°), therefore, storms 
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cannot form close to the equator because of the weak Coriolis force (Elsner and Kara 

1999). Storms have difficulty developing in higher latitudes because of cooler waters 

(Emanuel 2005c). This limits the area in which a hurricane can form (Elsner and Kara 

1999; Emanuel 2003). The majority of storms that form in the North Atlantic Basin form 

in a region between 10° and 20°N known as the Main Development Region (MDR) 

(Goldenberg et al. 2001). 

 

2.3 Hurricane Damage 

Hurricane damage is caused primarily by wind, rainfall, and storm surge 

(Stanturf et al. 2007). Damage caused by hurricanes is categorized using the Saffir-

Simpson scale because it is a “hurricane potential damage scale” (Elsner and Kara 

1999). Each category is based on wind speeds (one minute maximum sustained winds) 

(Emanuel 2005c). Category one winds range from 33 to 42 m s
-1

 (74 to 95 mph), while 

category five hurricanes are capable of producing winds that are 69 m s
-1

 (155 mph) or 

greater (Elsner and Kara 1999; Emanuel 2005c).  

Storm surge occurs when ocean water is pushed onto shore by a storm’s winds 

and pressure (Emanuel 2005c). Storm surge is also influenced by factors such as 

astronomical tides and ocean bathymetry (Emanuel 2005c). The size and shape of a TC 

can also influence the amount of storm surge (Irish et al. 2008). Storm surge can cause 

massive flooding and result in significant damage (Emanuel 2005c).   

Billions of dollars in damages have been caused by hurricane winds (Elsner and 

Kara 1999; Emanuel 2005c; Willoughby and Rahn 2004). Hurricanes Katrina and Rita 
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caused approximately $2 to $3 billion in wind damage (Stanturf et al. 2007). In addition, 

approximately 16% of wind-related deaths between 1970 and 1999 were caused by 

hurricanes (Willoughby and Rahn 2004). In comparison, storm surge-related drownings 

caused 82% of deaths during the same time period (Willoughby and Rahn 2004). 

Although the number of wind-related deaths has significantly decreased, wind damage to 

structures has increased (Willoughby and Rahn 2004). For example, four storms made 

landfall in Florida within a six week time period in 2004 and they caused a total of $20.5 

billion in losses (Barnes 2007). 

 

2.4 Event Risk, Outcome Risk, and Vulnerability 

  This thesis will examine event risk, outcome risk, and vulnerability due to TCs. 

There are various definitions for risk and vulnerability in the literature (Füssel 2007). 

However, for this study, we will employ the definitions set forth by Sarewitz et al. 

(2003). These definitions of risk and vulnerability have been widely used by others 

(Füssel 2007; Jones et al. 2010; Jones and Preston 2011; Stanturf et al. 2007). Event risk 

is defined by Sarewitz et al. (2003) and Pielke et al. (2005) as the risk of the occurrence 

of a specific phenomenon or extreme event, such as a category 3 hurricane. 

Vulnerability, as defined by Sarewitz et al. (2003), refers to the characteristics of a 

system that have the potential to cause damage. Outcome risk is the result of event risk 

and vulnerability. Sarewitz et al. (2003) define outcome risk as the “risk of a particular 

outcome,” such as specific economic losses that result from a particular hurricane. 

Sarewitz et al. (2003) state that vulnerability is not reliant on the exact probability of a 
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future event. In their example, Sarewitz et al. (2003) project TC losses based on changes 

in societal vulnerability from 2000-2050 using two scenarios. Under the first scenario, 

climate remains constant while societal (demographic and socioeconomic) changes 

occur (Sarewitz et al. 2003). In the second scenario, climate changes while societal 

vulnerability remains constant (Sarewitz et al. 2003). Loss estimates for the first scenario 

were projected to be 20 to 60 times greater than losses for the second scenario (Sarewitz 

et al. 2003). This suggests that societal vulnerability is a vital component of risk 

assessment. 

 Event risk is defined by Lindell and Prater (2007)  as “hazard exposure”. Lindell 

and Prater (2007) apply event risk when delineating hurricane emergency response 

planning areas (ERPAs). For hurricane ERPAs, hurricane event risk is defined by 

examining storm surge and wind contours on hazards maps for storms of all categories 

on the Saffir-Simpson Scale (Lindell and Prater 2007).  

Stanturf et al. (2007) examine coastal forest management in areas where 

hurricanes act as a disturbance to the ecosystem. They apply event risk, outcome risk, 

and vulnerability to develop an adaptive strategy to reduce hurricane damage to coastal 

forests (Stanturf et al. 2007). Stanturf et al. (2007) use Sarewitz et al.’s (2003) 

definitions of risk and vulnerability. Event risk applies to the risk of occurrence of a 

major hurricane and is defined by determining the frequency and intensity of landfalling 

hurricanes in the southern United States from 1851-2005 (Stanturf et al. 2007). The 

event risk was used to assess the ecological outcome risk and vulnerability of recovery 

areas for an endangered bird species (Hooper and McAdie 1995).  
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Event risk is applied to various fields such as medicine, ecology, and economics 

(Driessen 2005; Hooper and McAdie 1995; Stanturf et al. 2007; van Wijk et al. 2005). 

Event risk, outcome risk, and vulnerability are also examined in the climate change 

adaptation literature (Füssel 2007; Jones et al. 2010; Jones and Preston 2011; Lim et al. 

2005; Nottage et al. 2010).  

Event risk identifies the probability of occurrence of an event and cannot be 

manipulated by those who identify it (Stanturf et al. 2007). It can be dynamic, as 

observed in this study, since event risk may be altered by future climate change (Stanturf 

et al. 2007). Outcome risk cannot be altered directly, however, it can be reduced by 

altering the vulnerability (Hooper and McAdie 1995; Sarewitz et al. 2003).  

This study aims to examine the impact of more intense and more frequent TCs 

making landfall in Florida. In this study, event risk will refer to the risk of the 

occurrence of high (low) TC frequency, high (low) TC intensity, and a change in TC 

tracks. Return periods for all storms will quantify Florida’s hurricane event risk. 

Vulnerability will be examined by projecting the socioeconomic impacts from 

intensifying storms as a result of climate change. The outcome risk will result from the 

projected event risk and vulnerability for the effect of climate change on hurricane trends 

for Florida.   

 

2.5 Hurricane Impacts in Florida  

 Florida is vulnerable to hurricanes every year. Previous studies examined the 

effects of specific storms, such as Hurricane Andrew (Powell et al. 1996). Powell et al. 
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(2005) created a model to assess the risk of residential damage due to hurricane winds in 

Florida. Jagger and Elsner (2006) used maximum wind speed values to create models of 

extreme hurricane winds near the coast of the United States (1899-2004). Their models 

were used to estimate the return periods for hurricane-force winds (Jagger and Elsner 

2006). They found that the entire Florida coastline will experience hurricane winds of 55 

m s
-1

 (108 kts), on average, every 5 years (Jagger and Elsner 2006).  

 Elsner and Bossak (2001) used a Bayesian approach to create a climatology of 

landfalling hurricanes along the U.S. coastline (Elsner and Bossak 2001). Their results 

indicated that 20 hurricanes should make landfall in Florida during the next 30 years.  

 Jagger et al. (2001) created a model for generating the annual probability of 

maximum hurricane wind speeds for coastal counties along the U.S. eastern coastline 

and it included all of Florida’s coastal counties. Their results highlighted Florida’s 

vulnerability to hurricane activity and they found southern Florida to have the greatest 

risk due to high probabilities for hurricane activity (Jagger et al. 2001).   

 

 

 

 

 

 

  



 

12 

 

CHAPTER III 

DATA AND METHODS 

 

3.1 Study Region  

 The state of Florida is a peninsula located in the southeastern United States. The 

Gulf of Mexico borders the western coast of Florida and the Atlantic Ocean borders the 

eastern coast. Florida’s location between two large bodies of water increases its 

vulnerability to tropical storm and hurricane landfalls. Florida’s warm climate and 

appealing beaches attract residents and tourists (Leatherman 1997). As coastal 

populations continue to increase, so does their vulnerability to hurricanes (Pielke et al. 

2008). Not only are people at risk, but properties, such as highly valuable oceanfront 

properties, and wildlife are exposed to storm-related damages (Duever et al. 1994; 

Pinelli et al. 2004). According to Elsner and Bossak (2001), the entire Florida coastline 

accounts for approximately 35% of the U.S. eastern coastline (from Brownsville, Texas 

to Eastport, Maine). Because of its geographic location, Florida is affected by hurricanes 

more than any other state (Matyas et al. 2011). Hurricanes can have significant economic 

and societal impacts in this region (Jagger and Elsner 2006).  

All Florida counties will be examined in this study. Although Florida’s coastal 

counties are more vulnerable to storm landfalls than inland counties, inland counties will 

also be considered. Figure 3.1 displays all Florida counties. There are 67 counties in 

total. In Florida, storms can easily make landfall on one coast and move across the state, 

affecting inland counties as the storm moves. Tropical Storm Fay (2008), for example, 
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made landfall four times in the state of Florida (Beven and Brown 2009). Inland counties 

are susceptible to damages from wind, tornadoes, and freshwater floods (Rappaport 

2000). Inland areas of Florida also experience an increase in tourism during hurricane 

season months (Matyas et al. 2011). Cities such as Orlando attract millions of tourists, 

typically during the summer months that coincide with hurricane season (Matyas et al. 

2011). An increase in tourism greatly increases the population at risk (Pielke Jr 1997). 

 

3.2 Datasets  

This study uses data from the National Hurricane Center’s hurricane database 

(HURDAT) (http://www.aoml.noaa.gov/hrd/hurdat/). This database provides 6-hourly 

data of latitude, longitude, wind speed, and pressure, as well as other variables, for 

storms dating back to 1851. HURDAT has been used in a number of previous studies 

(Elsner et al. 2006; Muller and Stone 2001; Brettschneider 2008). HURDAT also 

provides U.S. hurricane landfall data from 1851 to 2010 and county by county hurricane 

strikes for 1900 to 2010. HURDAT provides landfall data (from which frequency is 

determined) and track and intensity data (pressure and wind speed) to quantify hurricane 

event risk.  

There are some limitations to using HURDAT. For example, data from southern 

Florida is missing prior to 1900 (Elsner and Bossak 2001). Before the use of satellites 

and aircraft reconnaissance, hurricane data were difficult to obtain (Landsea et al. 2006; 

Landsea et al. 2004a). 

 

http://www.aoml.noaa.gov/hrd/hurdat/
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  Figure 3.1. Map of Florida’s counties. 
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Most of the historical hurricane data were obtained from ship observations, land stations 

and buoys or when the storms made landfall (Chang and Guo 2007; Landsea et al. 

2004a). There are several biases and errors found in HURDAT (Landsea et al. 2008). 

Measurements prior to 1931 were taken once a day and 6-hr positions and data were 

interpolated (Elsner et al. 2006). Interpolations were also made for 6-hr positions and 

data for hurricanes from 1931-1956 based off of twice daily measurements (Elsner et al. 

2006). Observations made prior to aircraft reconnaissance and satellite observations are 

likely undercounted (Landsea 2007). Since data collection was limited, a large number 

of storms could have been undetected and unrecorded (Landsea et al. 2004a). For the 

storm data that were collected, not all parameters are available. Parameters such as 

central pressure are missing up to the mid-1970s. Due to the incompleteness of the 

dataset, the trends observed over the entire hurricane record may be skewed (Landsea et 

al. 2008; Landsea et al. 2004a). Since recent hurricane data are more accurate, hurricanes 

may seem to be more abundant and intense when compared to past records (Landsea et 

al. 2006). Increases in hurricane activity were observed in the 1970s and 1980s, this 

period also corresponded with the development of technology in the field. In order to 

remove the inconsistencies found in older hurricane data records, a re-analysis project is 

underway. The re-analysis project is responsible for going back in the dataset to revise 

and alter any erroneous data from the 1800s and early 1900s (Landsea et al. 2004a). 

Examples of changes that have been part of the re-analysis project are the addition of 

undocumented storms from past years (late 1800s and early 1900s) and the upgrade of 
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Hurricane Andrew’s intensity at landfall from category 4 to category 5 (Landsea et al. 

2004b; Landsea et al. 2004a). Hurricane data from 1900 to 2010 were used in this study. 

The International Best Track Archive for Climate Stewardship (IBTrACS) 

(http://www.ncdc.noaa.gov/oa/ibtracs/) dataset provides hurricane track shapefiles that 

were used for mapping North Atlantic basin hurricane tracks using a GIS. IBTrACS was 

used to obtain hurricane track shapefiles for the years 1900 to 2010. IBTrACS combines 

tropical cyclone best track data from sources around the world to produce one uniform, 

standardized, and complete dataset (Knapp et al. 2010). The dataset is provided by the 

National Oceanic and Atmospheric Administration (NOAA)’s National Climatic Data 

Center. IBTrACS includes data from HURDAT and other regional specialized 

meteorological centers (RSMC) from around the globe (Knapp et al. 2010). By 

standardizing the data, a dataset that does away with discrepancies from different 

agencies is created (Knapp et al. 2010). Similar to the HURDAT dataset, there are 

inconsistencies in the dataset due to the lack of technology (satellites) or a difference in 

analysis techniques (Knapp et al. 2010). Certain parameters such as eye diameter, storm 

size and radius of maximum winds are not present in datasets like HURDAT (Knapp et 

al. 2010). By including missing parameters and creating a uniform dataset, IBTrACS can 

be an efficient and complete source of hurricane data (Knapp et al. 2010).  

The Tropical Cyclone Extended Best Track Dataset (EBT) uses Advanced 

Microwave Sounding unit (AMSU) data to derive tropical cyclone parameters (Demuth 

et al. 2006). The EBT acts as a supplement to HURDAT by providing storm structure 

parameters such as radius of maximum wind, eye diameter, and pressure and radius of 
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outer closed isobar (Demuth et al. 2006). The dataset for the Atlantic Ocean extends 

from 1988 to present. EBT was used for case study storms that were analyzed using 

HAZUS-MH.   

Not all data were obtained from the same source for all case study storms. 

Datasets were obtained based on their availability. For storms that formed prior to 1988, 

data were obtained from HURDAT. Data were obtained from EBT for storms that 

formed after 1988. Table 3.1 lists the case study storms by name, year of landfall, 

category at landfall, and data source. Radius of maximum wind (Rmax) values are 

unavailable for storms prior to 1988. Rmax values were calculated for storms with 

missing values by using an equation from Willoughby et al. (2006). Willoughby and 

Rahn (2004) used aircraft observations to validate the Holland (1980) model. The study 

continues in Willoughby et al. (2006) where sectionally continuous profiles are created 

to correct errors and improve the model from Willoughby and Rahn (2004). The 

equation used to calculate Rmax values was derived from the sectionally continuous 

profiles from Willoughby et al. (2006).   
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Table 3.1. List of case study storms examined in this thesis and their data source.  

 

Storms that formed prior to 1988 are also missing central pressure values. A 

scatterplot (Figure 3.2) was created for wind speed and central pressure values for all 

storms that passed through a 500 km buffer around Florida. Due to a lack of data, only 

values from 1975-2010 were used. Central pressure values were calculated using the 

linear regression equation derived from the scatterplot. The R² value for the linear 

Name Year Category at landfall Data Source 

Great Miami Hurricane 1926 4 HURDAT 

Labor Day Hurricane 1935 5 HURDAT 

Agnes 1972 1 HURDAT 

Andrew 1992 5 Extended Best Track 

Georges 1998 2 Extended Best Track 

Mitch 1998 TS Extended Best Track 

Irene 1999 1 Extended Best Track 

Charley 2004 4 Extended Best Track 

Frances 2004 2 Extended Best Track 

Ivan 2004 3 Extended Best Track 

Wilma 2005 3 Extended Best Track 

Fay 2008 TS Extended Best Track 
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regression equation was 0.87. This indicates that there is a strong relationship between 

wind speed and central pressure. As a storm’s wind speed increases, its central pressure 

decreases (Atkinson and Holliday 1977; Emanuel 1987; Holland 1980).    

 

 

  Figure 3.2 Scatterplot of wind speed and central pressure values for 1975-2010. 

 

3.3 Methods 

Objective 1: Quantify hurricane event risk for all Florida counties based on observed 

data. 

 Hurricane event risk for all Florida counties will be examined by quantifying 

hurricane landfalls for all counties in Florida. Several studies (Elsner and Kara 1999; 
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Muller and Stone 2001; Keim et al. 2007; Brettschneider 2008) have quantified 

hurricane landfalls using return periods. In these studies, hurricane landfalls have been 

quantified for the west and east coasts of Florida. Return periods indicate the average 

number of years between landfalls at a specific location (Elsner and Kara 1999; Muller 

and Stone 2001). In this study, return periods will be calculated for all storms. The return 

periods will be analyzed in four groups: all tropical storms and hurricanes, all tropical 

storms, all hurricanes, and all major hurricanes. Major hurricanes are those that are 

category 3 or higher (Elsner and Kara 1999). By creating a time series (Elsner and Kara 

1999) and calculating the frequency of hurricane strikes (Brettschneider 2008), hurricane 

landfalls for Florida’s counties can be quantified. This study will examine landfalls made 

by all tropical storms and hurricanes and examine landfalls made by major hurricanes 

(Elsner and Kara 1999). Tropical storms are still capable of impacting the areas in their 

path. For example, Tropical Storm Harvey (1999) made landfall on the southwest coast 

of Florida near Naples and deposited approximately 25 cm of precipitation (Davis et al. 

2004). In 2008, Tropical Storm Fay made landfall in Florida four separate times (Beven 

and Brown 2009). The storm first made landfall near Key West, then near Everglades 

City in southwest Florida (Beven and Brown 2009). TS Fay crossed the state and then 

reached the Atlantic Ocean (Beven and Brown 2009). After reaching the Atlantic, the 

storm was steered westward and made landfall along the central eastern coast near Cape 

Canaveral (Beven and Brown 2009). TS Fay crossed the state once again, reaching the 

Gulf of Mexico and then making landfall one last time in the panhandle (Beven and 

Brown 2009). Other states, such as Alabama and Georgia, were affected by TS Fay as it 
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moved eastward across the southeastern U.S. (Brown et al. 2010). TS Fay’s winds and 

heavy rainfall impacted the majority of Florida. Heavy rainfall was recorded across 

Florida, with the highest total reaching 70.2 cm in Melbourne (Beven and Brown 2009). 

TS Fay produced 19 tornadoes and flooded approximately 15,000 homes in Florida 

(Brown et al. 2010). TS Fay caused about $560 million in damages in the U.S. (Brown et 

al. 2010). 

Muller and Stone (2001) and Keim et al. (2007) created a model based on the 

average swath of hurricane-force winds to both the left and right of the center of the 

storm. This model does not adapt to individual storms, but the average of three groups of 

swath width (tropical storms, categories 1-2, and categories 3-5) are applied to each 

storm (Muller and Stone 2001). Since Muller and Stone’s (2001) model does not allow 

for flexibility and adaptability, a dynamic wind model will be used in this study.

 Willoughby and Rahn (2004) created a parametric wind model based on the 

Holland (1980) wind profile model. Holland’s (1980) model used the radius of 

maximum wind, maximum wind, and measure of profile width to explain the variation in 

the axisymmetric winds of a storm (Willoughby and Rahn 2004). The parametric wind 

model describes how hurricane winds weaken as distance from the eyewall increases 

(Willoughby and Rahn 2004). The eye is the region of a hurricane with the calmest 

winds (Emanuel 2003). In this region, air is sinking and preventing air from rising and 

condensing to form clouds (Emanuel 2005c). The eyewall that surrounds the eye is the 

region that experiences the highest wind speeds (Emanuel 2003). Beyond the eyewall, 

wind speeds start to decrease as the distance from the eye increases (Willoughby and 
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Rahn 2004). Parametric wind models have been used to estimate how winds and storm 

surge can impact an area (Willoughby and Rahn 2004). However, the model does not 

always portray the wind fields of individual storms accurately (Willoughby and Rahn 

2004). Parametric wind field models provide the basis for hurricane risk and catastrophe 

models (Vickery and Wadhera 2008; Willoughby and Rahn 2004). By considering a 

storm’s spatial extent, the effect of hurricane winds can be examined for all areas 

affected by a storm.  

The parametric wind model (Figure 3.3) will allow for the spatial extent of each 

storm to be examined. This model will be used when quantifying hurricane landfalls for 

Florida. To remain consistent with the rest of this study, the model will be run for all 

hurricanes from 1900-2010. A GIS will be used to display hurricane tracks for the years 

1900-2010. The centroid of each county will be used to create a 500 km buffer. The 

buffer includes storm tracks that directly and indirectly affect Florida counties. A 500 

km buffer has been used by Zhu and Quiring (2013) to examine spatial and temporal 

variations of tropical cyclone precipitation over Texas. Chu and Wang (1998) use a 463 

km buffer when calculating tropical cyclone return periods for Hawaii and its vicinity. 

The radius of outer closed isobar for tropical cyclones is generally less than 550 km (Zhu 

and Quiring 2013). However, storms such as Hurricane Sandy have had wind fields that 

surpassed 500 km (Halverson and Rabenhorst 2013). Only the storm tracks that intersect 

the 500 km buffer will be considered in this study. 
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 Figure 3.3. Parametric wind field model accounts for storm’s spatial extent. 

 

Objective 2:  Quantify how climate change will influence hurricane event risk by 

performing a meta-analysis of the existing literature. 

For the second objective, the peer-reviewed literature that explores the 

relationship between hurricane event risk (occurrence of frequency, intensity, and 

change in track) and climate change will be examined. The meta-analysis will consist of 

examining the literature and organizing the findings by study area, time period, method, 

variables and conclusions. Summaries will then be created for the pertinent articles of 

the literature review and then used to perform an analysis of the findings. A meta-

analysis is a type of research synthesis which is defined by Cooper et al. (2009) as “the 
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statistical analysis of a large collection of analysis results from individual studies for the 

purpose of integrating the findings.” Conducting an aggregate analysis may help in 

determining the frequency of scenarios found in the literature such as the studies that 

support the increase in hurricane trends due to climate change and those that do not 

(Cooper et al. 2009). The literature on hurricanes and climate change can be extensive, 

therefore, approximately 40-50 studies will be analyzed when conducting the meta-

analysis (Cooper et al. 2009). The studies analyzed in the meta-analysis will be 

compared to find differences and similarities between them (Cooper et al. 2009). 

Comparing the different time periods, study regions, and methods will allow for more 

concise findings to be found among the confounding literature (Hunter and Schmidt 

2004). The analysis will allow for the relationship between climate change and hurricane 

event risk to be quantified. The findings from this objective will be applied to Objective 

3.  

 

Objective 3:  Perform sensitivity analysis using the findings from the meta-analysis to 

determine how climate change will potentially affect hurricane damage and loss for 

Florida. 

 Using the observed event risk (Objective 1) and the findings from the meta-

analysis (Objective 2), the effect of climate change on the potential damage and loss for 

Florida will be determined by performing a sensitivity analysis. A sensitivity analysis 

allows for specific parameters in a model to be altered to observe changes (Laskey 1995; 

McCuen 1973). In this case, hurricane intensity will be altered according to the findings 
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from Objective 2. Based on their significance to Florida’s hurricane history, two storms 

from each category (a total of 12 case study storms) will be selected for further analysis. 

Different future scenarios will be created based on the findings from the meta-analysis. 

The scenarios will reflect the effect of climate change on hurricane winds and intensity. 

For example, if a 20% increase in hurricane intensity is found in the literature, the 

parameters of the case storms will be modified to reflect this increase. Three scenarios 

are expected; baseline, moderate, and extreme. FEMA’s HAZUS- MH Hurricane Wind 

Model will be run for all case study storms to determine how climate change will affect 

potential damage and loss for Florida under changing climatic conditions. The model 

will estimate building damage, economic losses, and social impacts from hurricane 

winds for all scenarios based on Florida's growing population and increasing coastal 

development.  

This study focuses on hurricane event risk. Risk refers to the probability of 

occurrence, in this case, the probability of hurricanes becoming stronger/weak or 

more/less frequent as a result of climate change (Cuevas 2011). Vulnerability focuses on 

the socio-economic factors and exposure that determine how those at risk will be 

impacted (Cuevas 2011). It is possible that climate change will not greatly influence 

Florida’s hurricane event risk in the future. However, an increase in Florida’s 

populations and an increase in the building of properties will increase Florida’s 

vulnerability regardless of its hurricane event risk (Pielke Jr 1997). To account for future 

changes in hurricane vulnerability for Florida’s population, FEMA’s HAZUS-MH 

Hurricane Wind Model will be used.   
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FEMA’s HAZUS-Multi Hazard (MH) is a risk assessment tool used by local 

governments and emergency managers (Beckmann and Simpson 2006). HAZUS-MH 

aids communities in the preparation, mitigation, response, and recovery of natural 

hazards such as earthquakes, floods, and hurricanes (Beckmann and Simpson 2006). The 

Hurricane Model is a component of HAZUS-MH used for estimating losses and 

damages from hurricane wind and/or storm surge (Vickery et al. 2006a). It is used as a 

risk assessment tool for analyzing the impact of past, present, and future storms 

(Beckmann and Simpson 2006). The program allows the user to create hurricane 

scenarios using historical data. The model can be run for hypothetical storms using the 

user defined hurricane scenario which runs on user defined data input (Beckmann and 

Simpson 2006). HAZUS is also used for disaster planning and response in the event of 

an approaching storm (Beckmann and Simpson 2006).  

The HAZUS-MH Hurricane Model is composed of a hurricane hazard model, 

terrain model, wind load/debris models, and damage and loss models (Vickery et al. 

2006a). The hurricane hazard model is based on a hurricane wind field model and an 

empirical storm track model created by Vickery et al. (2000a; 2000b). The wind field 

model is a dynamic numerical model of the planetary boundary layer used by Vickery et 

al. (2000b). It differs from other models used in hurricane risk assessment in that it 

accounts for air-sea temperature differences and the influence of sea surface roughness 

on wind speed (Vickery et al. 2000b). The empirical storm track model is used to model 

a storm’s track across the ocean, from its location of genesis to where it makes landfall 

(Vickery et al. 2000a). The physical damage model is based on load and resistance 



 

27 

 

analysis of building envelope elements (Vickery et al. 2006b). The economic building 

loss model estimates the cost of repairing and replacing building structures using 

implicit (building interior) and explicit (building exterior) cost functions (Vickery et al. 

2006b). All components of the hurricane model have been validated using observational, 

wind tunnel, and insurance loss data (Vickery et al. 2006b). HAZUS-MH provides 

model output in charts, tables, and maps (Beckmann and Simpson 2006).   

A limitation to using HAZUS is its lack of updated data (Beckmann and Simpson 

2006). HAZUS provides data from a default database, however, it does not contain the 

most up-to-date storm and demographic data (Beckmann and Simpson 2006). The model 

provides data for building damage, economic loss, shelter requirement, return period, 

and damage to essential facilities for both historic and hypothetical storms (Beckmann 

and Simpson 2006). The HAZUS-MH Hurricane Model was run for each case study 

storm for a baseline, moderate, and extreme scenario. To create user defined hurricane 

scenarios in HAZUS, storm track data need to be input manually. Data for latitude, 

longitude, time, radius to maximum winds, wind speed, central pressure, and inland 

points are necessary for each user defined hurricane scenario. Historical data for storms 

of category 3 or higher are found in HAZUS’s storm database and does not need to be 

provided by the user. Data for the baseline scenarios were found in the database for 

storms of category 3 or higher. Storms of category 2 or less require data to be provided 

by the user. Data for moderate and extreme scenarios for all storms were input manually. 

Rmax values remained constant as storm intensity was increased for moderate and 

extreme scenarios. Central pressure values were adjusted using the linear regression 
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equation for increases in intensity for moderate and extreme scenarios. The three 

intensity scenarios are explained further in Chapter 6. 

Using HAZUS- MH, building damage, economic losses, and social impacts from 

hurricane winds for all three scenarios will be estimated based on Florida's growing 

population and increasing coastal development. 
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CHAPTER IV 

HURRICANE EVENT RISK IN FLORIDA 

 

4.1 Return Periods 

The occurrence of non-periodic extreme events such as hurricanes, earthquakes, 

and floods can be defined by calculating their return periods (Elsner and Kara 1999). A 

return period is the inverse of the annual probability (Elsner and Kara 1999). In this 

study, a return period is referring to the inverse of the annual probability of a hurricane 

landfall. Return periods can be used to display the spatial distribution of hurricane 

landfalls for a specific region. The length of the study period may influence the return 

period’s accuracy (Elsner and Kara 1999). A longer study period will provide better 

results since it will take into consideration the frequency of rare storm events (Elsner and 

Kara 1999). Although return periods may not accurately represent the hurricane 

climatology for a specific location, they are useful for emergency management, 

planning, and insurance purposes (Elsner and Kara 1999). By providing an estimate of 

hurricane landfalls, local governments and other agencies can use the information to 

guide their planning and decision making processes. 

Past studies have calculated return periods for landfalls and for wind events using 

different methods. Early studies, such as Simpson and Lawrence (1971), found the 

probabilities of occurrence of hurricane landfalls from observations and from a Poisson 

distribution. Batts et al. (1980) used probabilistic models to calculate return periods for 

hurricane winds. Later studies calculated return periods for hurricane landfalls and wind 
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events by using historical hurricane records or results from Monte Carlo simulations to 

produce values that were fitted to probability distributions (Chu and Wang 1998; Jagger 

and Elsner 2006; Neumann 1991; Rupp and Lander 1996). Neumann (1991) used 

historical tropical cyclone records to calculate return periods for tropical cyclone events 

and tropical cyclone intensities for San Juan, Puerto Rico. The return periods were 

calculated by fitting maximum wind values from historical records to a Weibull 

distribution (Neumann 1991). These calculations were part of a development of methods 

for risk analysis for the National Hurricane Center Risk Analysis Program (HURISK). 

Risk analysis information is vital for decision makers of regions that are commonly 

affected by tropical cyclones (Chu and Wang 1998).  

Jagger et al. (2001) examined the probability of wind events for coastal counties 

from Texas to North Carolina. They created a dynamic hurricane wind probability model 

that provides annual exceedence probabilities for maximum wind events of tropical 

cyclones (Jagger et al. 2001). The model can predict the probability that a specific 

county will experience hurricane wind events using climate data parameters from the 

Weibull distribution of maximum wind speeds and a dynamic model that includes 

climate variables such as ENSO and NAO (Jagger et al. 2001).  

Elsner and Kara (1999) calculated the return periods of hurricane landfalls for 

coastal counties for a region stretching from Texas to Maine and their methods will be 

used in this study. First, the average annual probability of a hurricane landfall is 

calculated using   

   𝑝 =
𝐿

𝑁
                 (1) 
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where p is the average annual probability of a landfall, L is the number of landfalls for a 

county, and N is the number of years in the study period (Elsner and Kara 1999). The 

return period is the inverse of the average annual probability of a landfall  

             𝑇 =
1

𝑝
                   (2) 

Simpson and Lawrence (1971), Muller and Stone (2001), and Keim et al. (2007) 

calculated return periods for 50-mile segments along the Gulf Coast and Eastern 

Seaboard. Batts et al. (1980) also examined 50-mile segments along the Gulf and East 

Coasts and considered hurricane winds that measured up to 124 miles inland. Using 50 

mile segments to calculate return periods results in an even distribution of area for each 

segment which makes comparison between segments easier. These segments, however, 

do not account for political boundaries which delineate segments at a county level. 

Elsner and Kara (1999) and Jagger et al. (2001) calculated return periods for coastal 

counties on the Gulf and Eastern Coasts. Calculating return periods at the county level 

may make comparisons between study regions difficult due to the unequal distribution of 

area between counties. However, an examination at the county level provides local 

governments with a more accurate assessment of tropical storm and hurricane wind 

impacts. 

This study will be the first to calculate return periods for all counties in Florida. 

Florida’s geographic location makes it extremely vulnerable to hurricane strikes since it 

is surrounded by the Gulf of Mexico and the Atlantic Ocean. Frequently, storms track 

across Florida, impacting inland counties as well as coastal counties. Inland counties 
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experience flooding and heavy rainfall events that can cause significant damages 

(Rappaport 2000). For this reason, inland counties are included as part of this study.   

For each Florida county, a track-derived and a wind-derived return period were 

calculated based on HURDAT data from 1900-2010 and from the parametric wind field 

model. Return periods were calculated for all storms and maps were created to display 

the return periods for: all storms, tropical storms only, hurricanes only, and major 

hurricanes only (categories 3-5). The track-derived return period is based on the number 

of tracks that crossed each county during the study period. Track-derived return periods 

are calculated using Elsner and Kara’s (1999)  method (see Equation 2). This method 

accounts for direct tropical storm and hurricane landfalls for all counties. However, it 

does not account for a storm’s spatial extent. A county that may not be in the storm’s 

direct path will not appear to have been affected by the storm. A storm’s wind swath 

typically extends far enough to affect more than one county (Muller and Stone 2001). 

Keim et al. (2007) found that the average hurricane’s wind swath extends approximately 

up to 50 km to the left of the center of circulation and up to 100 km ahead of and to the 

right. The parametric wind field model provides wind speed values experienced by each 

county for each storm.   

The wind speed frequencies from the histograms were used to calculate wind-

derived return periods for each county. Equation 3 was used to calculate wind-derived 

return periods,  

            𝑇 =
𝑊

𝑁
                 (3) 
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where T is the return period, W is the wind speed event frequency, and N is the number 

of years in the study period.  

The track-based return periods underestimate the impact of tropical storms and 

hurricanes, creating a bias. However, the wind-derived return periods result in an 

accurate representation of the effect of wind events for Florida counties.  

Results of the calculated return periods are displayed in Figures 4.3-4.10.  The 

results were categorized by storm intensity. Risk factors were also calculated for each 

county. For each storm category (tropical storms, hurricane, and major hurricane), the 

mean wind speed was divided by its return period. The sum of the quotients for each 

category is the risk factor value. Risk factor values were calculated for each county and 

were calculated separately using track-derived return periods and wind-derived return 

periods. The risk factor values describe the likelihood of a county experiencing a wind 

event ranging from tropical storm force winds to major hurricane force winds.  

 

4.2 Histograms  

Histograms displaying the distribution of wind speed values were created for 

each county. The histograms include wind speed events for all tropical storms and 

hurricanes that impacted Florida between 1900-2010. Figure 4.1 displays the frequency 

of tropical cyclone wind based events for Miami-Dade, Orange, Hillsborough, Duval, 

Leon, and Escambia Counties. These counties were chosen because of their geographical 

location as well as for the major cities that are located in each county. Pensacola 

(Escambia County), Tallahassee (Leon County), Jacksonville (Duval County), Orlando 
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(Orange County), Tampa (Hillsborough County), and Miami (Miami-Dade County) 

contain the majority of Florida’s population (U.S. Census Bureau 2013). Figure 4.2 

shows the geographical location of the counties. Based on the 2010 US Census 

population data for the six cities, Pensacola has the lowest population (51,923), while 

Jacksonville has the highest (821,784) (U.S. Census Bureau 2013).  

The histograms display the frequency of tropical cyclone wind based events 

based on the parametric wind field model. From the selected counties, Miami-Dade 

(Figure 4.1a), the southernmost county, experienced the most TC wind based events. For 

Miami-Dade, wind speeds ranged from 0 m/s to approximately 70 m/s. The majority of 

TC wind events were approximately 10 m/s. Miami-Dade experienced wind speeds 

approaching 70 m/s which are the highest wind speeds experienced by any of the six 

counties. Hillsborough and Orange Counties are located in the central part of the state. 

Hillsborough County is located off of Florida’s western central coast while Orange 

County is located inland.  
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Figure 4.1. Histograms of the frequencies of tropical cyclone wind based events for a) 

Miami-Dade, b) Orange, c) Hillsborough, d) Duval, e) Leon, and f) Escambia Counties. 

a. b. 

c. d. 

e. f. 
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Figure 4.2. Map of counties selected for displayed histograms. Major cities located in 

the selected counties are also highlighted. 
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The histograms for Orange (Figure 4.1b) and Hillsborough (Figure 4.1c) counties 

have similar distributions, however, Orange County has a higher frequency of TC wind 

events. Specifically, Orange County has more TC wind events between 5 and 15 m/s 

than Hillsborough County. The majority of TC wind events for Orange County are found 

between 5 and 15 m/s.   

The difference in the counties’ geographical location (coastal vs. inland) is 

reflected in the difference of the distribution of TC wind events. Leon and Orange 

Counties are inland while the remaining four are coastal counties. The coastal counties 

generally had higher frequencies of TC wind events than the inland counties. However, 

latitude seems to play a larger role in wind speed frequencies. As a county’s latitude 

increased, its frequency of TC wind events decreased.  This may be the result of fewer 

storms passing through counties that are higher in latitude. The majority of storms pass 

through south and central Florida resulting in higher frequencies of TC wind events for 

the counties in those regions. When comparing the two inland counties, Orange County 

in central Florida had a higher frequency of TC wind events than Leon County in the 

panhandle. The counties that are centrally located (Orange and Hillsborough) have a 

higher frequency of TC wind events in comparison to counties to the north and in the 

panhandle. Duval County is located along the northeast coast of Florida. Duval County 

(Figure 4.1d) has a similar distribution to the central counties, however, it has 

significantly fewer events. The majority of events for Duval are between 5 and 15 m/s. 

Leon (Figure 4.1e) and Escambia County (Figure 4.1f) are part of the panhandle. In 

comparison to the histograms for Escambia and Leon, Duval has the highest frequency 
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of TC wind events in northern Florida. This may be explained by Duval County’s 

location along the Eastern Seaboard; a region that is commonly affected by tropical 

storms and hurricanes (Elsner and Kara 1999). Escambia County is Florida’s 

westernmost county and borders the Alabama-Florida state line. Leon County is part of 

the Big Bend region and it is located along the Florida- Georgia state line. The Big Bend 

region of Florida is located on the northwest coast and is where the Florida Peninsula 

joins the Florida Panhandle (Weatherly and Thistle 1997). The counties located in the 

region are Dixie, Franklin, Gadsden, Jefferson, Leon, Liberty, Madison, Taylor, and 

Wakulla County. Escambia County is located on the coast while Leon County is located 

inland. The histograms for these northern panhandle counties vary greatly from the rest 

of the histograms. Northern counties experienced fewer TC wind events than central and 

southern counties. Leon County has the lowest frequency of wind events out of all six 

counties. The majority of Leon County’s TC wind events were between 5 and 10 m/s. 

Out of the six counties, it was the only county to not experience TC wind events over 40 

m/s.   

 Based on the histograms, Miami-Dade County had the highest frequency of TC 

wind events and Leon County had the lowest. Inland counties generally experienced less 

wind events than coastal counties. When examining histograms for all counties, the 

counties with the highest frequencies were located in the southernmost region of Florida. 

The counties with the lowest frequencies were those that were located along the 

panhandle, close to the state borders between Florida and Georgia and Alabama, and in 

the Big Bend region.  
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4.3 Return Period Maps 

4.3.1 All Storms 

The majority of Florida counties have a track-derived return period between 0-10 

years based on all storms (tropical storm and hurricane) (Figure 4.3). Counties with 

higher return periods were found mainly in northern Florida, the panhandle, central 

Florida and along the central western coast. Holmes, Washington, Gulf, Hamilton, 

Baker, Union, Gilchrist, Pinellas, and Manatee Counties all have track-derived return 

periods between 10-20 years and are all located along the panhandle and in northern 

Florida with the exception of Pinellas and Manatee Counties which are located along 

Florida’s central western coast. Bradford and Sarasota counties have return periods 

between 20-30 years. Bradford County is in northern Florida and Sarasota is found along 

the central western coast. Seminole County, which is centrally located, is the only 

county with a track-derived return period of 30-40 years. Figure 4.3 suggests that the 

majority of the state is at risk of experiencing a tropical storm or hurricane landfall every 

0-10 years. In comparison, the map for wind-derived return periods for all storms 

(Figure 4.4) shows that all Florida counties have a return period between 0-10 years. 

This indicates that all Florida counties can experience tropical storm or hurricane force 

winds every 0-10 years. Figure 4.4 highlights how every county is at risk from 

experiencing significant wind events within a short time span. Although Figure 4.3 

displays counties which have experienced direct storm hits, Figure 4.4 more accurately 

represents which counties are impacted by tropical storms and hurricanes and when 

those effects are expected to occur.  
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Figure 4.3. Calculated track-derived return periods (years) for all tropical storms and 

hurricanes based on 1900-2010 for all Florida counties.
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Figure 4.4. Calculated wind-derived return periods (years) for all tropical storms and 

hurricanes based on 1900-2010 for all Florida counties. 
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4.3.2 Tropical Storms Only 

Figure 4.5 shows that the majority of Florida counties have track-derived return 

periods between 0-10 years for tropical storms only. Counties with track-derived return 

periods of 10-20 years were mostly located along the Florida panhandle and included 

Escambia, Santa Rosa, Holmes, Washington, Bay, Jackson, Calhoun, Gadsden, Liberty, 

Franklin, Madison, Hamilton, Baker, Union, and Gilchrist. The remaining counties were 

located along the central western and eastern coasts with Hillsborough, Manatee, and 

Hardee Counties to the west and Indian River, St. Lucie, and Martin to the east. Broward 

County stood out as the only county in southern Florida to have a track-derived return 

period between 10-20 years. Pinellas, Sarasota, and DeSoto Counties are located along 

the central western coast and have track-derived return periods between 20-30 years. 

Gulf County in the panhandle was the only county with a track-derived return period 

between 30-40 years. Bradford and Seminole Counties in north central Florida have 

track-derived return periods of 40-110 years. 

For tropical storms, all counties have a wind-derived return period between 0-10 

years (Figure 4.6). All counties are expected to experience tropical storm force winds 

every 0-10 years. Similar to the maps for all storms, there was a difference between the 

track-derived and wind-derived return period maps. The track-derived return period map 

(Figure 4.5) had counties with return periods ranging from 0-110 while the wind-derived 

return periods (Figure 4.6) only had return periods between 0-10 years. The track-

derived return period map may inaccurately display where the effects from tropical 

storms can be felt. 
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Figure 4.5. Calculated track-derived return periods (years) for all tropical storms based 

on 1900-2010 for all Florida counties. 
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Figure 4.6. Calculated wind-derived return periods (years) for all tropical storms based 

on 1900-2010 for all Florida counties. 
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4.3.3 Hurricanes Only 

For hurricanes only, counties in southwestern (Mainland Monroe and Collier) 

and southeastern (Martin, Palm Beach, Broward, Miami-Dade, and Florida Keys 

Monroe) Florida have a track-derived return period between 0-10 years along with Polk 

County which is located in central Florida (see Figure 4.7). The majority of counties in 

central Florida (Marion, Putnam, Citrus, Hernando, Pasco, Lake, Volusia, Brevard, 

Indian River, St. Lucie, Okeechobee, Highlands, Hardee, DeSoto, Lee) have a track-

derived return period between 10-20 years. Bay County is the only county in the 

panhandle to have a return period between 10-20 years. Counties with return periods 

between 20-30 years are scattered along the panhandle (Escambia, Santa Rosa, Walton, 

Gulf, and Franklin) and central Florida (St. Johns, Sumter, Orange, Osceola, Charlotte). 

With the exception of Hillsborough and Hendry Counties located in central and southern 

Florida respectively, the counties with track-derived return periods 30-40 years are 

located along the panhandle (Okaloosa, Holmes, Washington, Jackson, Calhoun, 

Liberty, Taylor, and Union). Counties throughout the state had track-derived return 

periods between 40-110 years. They are located along the panhandle (Gadsden, Leon, 

Wakulla, Jefferson,), northern Florida (Madison, Hamilton, Suwannee, Lafayette, 

Columbia, Nassau, Duval, Clay, Bradford, Alachua, Levy, Flagler), central Florida 

(Seminole, Glades), and the central western coast (Pinellas, Manatee, Sarasota) of 

Florida. Return periods for Baker, Dixie, and Gilchrist Counties were 0 which is not a 

valid value for return periods since it is a result of dividing the number of landfalls, 



 

46 

 

which is 0 by the years in the study period. For those counties, return period values were 

not available.  

The map for wind-derived return periods for hurricanes (Figure 4.8) looks more 

segregated than the track-derived return period map (Figure 4.7). Counties with wind-

derived return periods between 0-10 years are found exclusively in the panhandle 

(Escambia, Santa Rosa, Okaloosa, Walton, Holmes, Washington, Bay, Calhoun, Gulf, 

Franklin, Liberty, Wakulla) and in southern Florida (Hillsborough, Manatee, Sarasota, 

Hardee, DeSoto, Highlands, Okeechobee, Osceola, Brevard, Indian River, St. Lucie, 

Martin, Palm Beach, Broward, Miami-Dade, Mainland Monroe, Florida Keys Monroe, 

Collier, Hendry, Lee, Charlotte, Glades). Gadsden, Leon, Suwannee, and Columbia 

Counties in the north had return periods between 20-30 years. Madison and Taylor 

Counties in the Big Bend region have wind-derived return periods between 30-40 years  

Nassau, Hamilton, Jefferson, also in northern Florida, had return periods between 40-110 

years. The remaining counties located mainly in central and north central Florida, with 

the exception of Jackson County in the panhandle, have wind-derived return periods 

between 10-20 years. Figure 4.8 clearly shows the areas affect most by hurricanes. 

Counties in the southern part of the state and in the panhandle are the most susceptible to 

hurricane force winds. 
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Figure 4.7. Calculated track-derived return periods (years) for all hurricanes based on 

1900-2010 for all Florida counties. 

Legend 

FL Counties- Hurricanes Only 1900-2010 

Track-derived Return Periods 
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Figure 4.8. Calculated wind-derived return periods (years) for all hurricanes based on 

1900-2010 for all Florida counties. 

 

Legend 

FL Counties- Hurricanes Only 1900-2010 

Wind-derived Return Periods 



 

49 

 

4.3.4 Major Hurricanes Only 

As shown in Figure 4.9, the counties with the lowest track-derived return period 

between 10-20 years are found in the southern tip of Florida (Martin, Palm Beach, 

Miami-Dade, Mainland Monroe, Florida Keys Monroe, and Collier). Polk County also 

has a track-derived return period between 10-20 years but it is found in central Florida. 

A large number of storms pass through Polk County when they cross Florida. This may 

account for the county’s high track frequency. Polk stands out from its surrounding 

counties in central Florida. Lee, DeSoto, and Highlands Counties have track-derived 

return periods between 20-30 years. Broward County is the only county in the southern 

tip of Florida to have a return period between 20-30 years. The counties surrounding it 

have return periods between 10-20 years. In central Florida, Pasco, Hardee, and 

Okeechobee Counties have track-derived return periods between 30-40 years. No 

counties had return periods between 40-50 years. Counties with track-derived return 

periods between 50-110 years are located in the panhandle (Escambia, Santa Rosa, 

Okaloosa, Walton, and Holmes), central Florida, (St. Johns, Flagler, Volusia, Orange, 

Lake, Sumter, Citrus, Hernando, and Hillsborough) and southern Florida (St. Lucie, 

Glades, Hendry, and Charlotte). The rest of the counties, the majority being in the Big 

Bend region and in north central Florida, have not been affected by a major hurricane. 

The legend for the major hurricane map (Figure 4.9) is different from the rest of the 

maps. No county had a return period between 0-10 for major hurricanes. The legend on 

the figures was adjusted so that the lowest calculated return period is 10 years.  
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The wind-derived return period map (Figure 4.10) for major hurricanes has the 

southern tip of Florida (Martin, Palm Beach, Miami-Dade, Mainland Monroe, Florida 

Keys Monroe, and Collier) as the region with highest risk since its counties have wind-

derived return periods between 10-20 years. St. Lucie, Highlands, Hendry, Charlotte, 

and Lee Counties in south central Florida have wind-derived return periods between 20-

30 years. Escambia County in the panhandle and Broward County in the southern tip of 

the state stand out in their regions with their return periods of 20-30 years. The counties 

surrounding Escambia have higher return periods of 50-110 years while the counties 

surrounding Broward have lower return periods of 10-20 years. Hardee, Glades, and 

Okeechobee Counties in south central Florida have wind-derived return periods between 

30-40 years. No counties have wind derived return periods between 40-50 years. With 

the exception of Jackson, Washington, Bay, Calhoun, Gadsden, Liberty, Wakulla, Leon, 

Jefferson, Madison, Taylor, Hamilton, Baker, Nassau, Duval, Brevard, and Manatee 

Counties which have no available data, the remaining counties in the panhandle and 

central Florida have wind-derived return periods between 50-110 years. 
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Figure 4.9. Calculated track-derived return periods (years) for all major hurricanes 

(categories 3-5) based on 1900-2010 for all Florida counties. 

 

FL Counties- Major Hurricanes Only 1900-2010 
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Figure 4.10. Calculated wind-derived return periods (years) for all major hurricanes 

(categories 3-5) based on 1900-2010 for all Florida counties. 

 

FL Counties- Major Hurricanes Only 1900-2010 
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4.4 Risk Factors  

The risk factor maps have values ranging from 0-20. A county with a risk factor 

of 0 will have little to no risk of experiencing tropical storm or hurricane force winds 

while a county with a risk factor value of 20 has the highest risk of experiencing tropical 

storm or hurricane force winds. Risk factors were calculated separately using track-

derived return periods and wind-derived return periods.   

For risk factor values calculated using track-derived return periods (Figure 4.11), 

the majority of counties had a risk factor between 0-5 and were located in the panhandle, 

northern Florida, and central Florida. Counties with a risk factor value between 5-10 

were located in southern (Highlands, Okeechobee, St. Lucie, Martin, Broward, Mainland 

Monroe, and Lee) and central (Citrus and Pasco) Florida. Counties in the southern tip of 

Florida (Palm Beach, Miami-Dade, Florida Keys Monroe, and Collier) had a risk factor 

value between 10-15. Polk County stands out in central Florida with a risk factor of 10-

15. No counties had a risk factor value between 15-20. Counties in the southern tip of 

Florida have the highest risk of experiencing tropical storm or hurricane force winds 

based on track-derived return periods.  

The map for risk factor values calculated using wind-derived return periods 

(Figure 4.12) shows large differences when compared to the map created using track-

derived risk factor values (Figure 4.11). Only four counties have risk factor values 

between 0-5. These counties are Jefferson, Taylor, Hamilton, and Nassau and are located 

in the northernmost of Florida. The remaining counties in the panhandle and northern 

Florida have a risk value between 5-10. Counties in central Florida (Marion, Lake, 



 

54 

 

Volusia, Seminole, Orange, Brevard, St. Lucie, Indian River, Okeechobee, Highlands, 

Glades, Lee, Charlotte, DeSoto, Hardee, Sarasota, Manatee, Hillsborough, Pinellas, 

Pasco, Hernando, Polk, and Osceola) have risk factor values between 10-15 with the 

exception of Escambia and Franklin Counties in the panhandle and St. Johns in northern 

Florida. The entire southern tip of Florida has counties (Martin, Palm Beach, Broward, 

Miami-Dade, Florida Keys Monroe, Mainland Monroe, Collier, and Hendry) with a risk 

factor value of 15-20. In Figure 4.12, the southern tip of Florida has the highest risk of 

tropical storm and hurricane wind events which coincides with the results from Figure 

4.11.  

 

4.5 Conclusion 

The results from the track-derived return periods differ from the wind-derived 

return periods. However, the return period maps coincide in having southern Florida as 

the region that is most likely to experience tropical storm and/or hurricane force winds.  

The risk factor maps also indicate that southern Florida has the highest risk of 

experiencing tropical storm and/or hurricane force winds. The regions with the longest 

return periods varied between the track-derived and wind-derived return periods. For the 

track-derived return periods, counties in north Florida, north central Florida, and the 

panhandle had the highest return periods and lowest risk factors. For the majority of 

wind-derived return period maps, counties in northern Florida, along the Florida-Georgia 

state line, had the highest return periods and lowest risk factors.  
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Figure 4.11. Calculated wind event risk factor using track-derived return periods for all 

tropical storms and hurricanes based on 1900-2010 for all Florida counties. 
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Figure 4.12. Calculated wind event risk factor using wind-derived return periods for all 

tropical storms and hurricanes based on 1900-2010 for all Florida counties. 
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For wind-derived return periods for major hurricanes, counties in central Florida and in 

the panhandle have the highest return periods.    

According to Jagger et al. (2001), Miami-Dade County has a 10% chance of 

experiencing 41 m s
-1

 (80 kt) winds or greater in any one year and a 4% chance for a 51 

m s
-1

 (100 kt) winds. The results from the calculated return periods and risk factors in 

this thesis coincide with Jagger et al.’s (2001) annual exceedence probabilities results for 

Miami-Dade County. Miami-Dade consistently has a return period between 0-10 years 

and has a high risk factor. Similar to the results from the return periods and the risk 

factors, the counties with the highest probabilities in Jagger et al. (2001) were those in 

southern Florida. Annual probabilities for category 1 hurricane winds ranging from 15-

25% were calculated for southern Florida by their model (Jagger et al. 2001). The lowest 

probability values were less than 10% and were found along the northern region of the 

Florida peninsula. However, along the west coast of the Florida peninsula, the scale of 

the wind probability gradient increased as wind speed increased (Jagger et al. 2001). The 

gradient becomes stronger for storms of major hurricane intensity while the gradient is 

smaller for tropical storms (Jagger et al. 2001).   

Jagger et al.’s (2001) dynamic probability model found that the region most at 

risk of hurricane wind events were in southern Florida and the region with the lowest 

risk was in the Big Bend region of Florida. The return period and risk factor maps also 

show that counties in the Big Bend region have high return periods and low risk factor 

values. Although the Jagger et al. (2001) study used a different methodology, it found 

similar results and therefore validates the results from this study. 
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Track-derived return periods may inaccurately represent the number of affected 

counties since they only account for the counties in which the eye of the storm passed 

through. Surrounding counties are not considered in this method. Wind-derived return 

periods account for the effects of a storm’s wind swath as it makes landfall. Wind-

derived return periods account for all counties affected by a storm’s wind field. Knowing 

which counties have the highest risk of experiencing TC winds can help local 

governments make decisions such as whether or not to close public schools and public 

offices.  
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CHAPTER V 

META-ANALYSIS OF THE INFLUENCE OF CLIMATE CHANGE ON 

HURRICANE EVENT RISK 

 

5.1 Introduction  

Increases in atmospheric concentrations of greenhouse gases such as carbon 

dioxide (CO2) and methane (CH4) have caused global temperatures to increase (Mathez 

2013). This warming has been attributed to human activity based on increases in fossil 

fuel consumption (Mathez 2013). A changing climate leads to uncertainty about future 

hurricane behaviors and trends. Anthropogenic climate change may lead to changes in 

hurricane frequency, intensity, and movement. The influence of climate change on 

hurricane behavior has been examined by various authors (Elsner 2006; Emanuel 1987; 

Henderson-Sellers et al. 1998; Holland and Webster 2007; Knutson et al. 2010; Landsea 

et al. 2006; Pielke et al. 2005; Webster et al. 2005). Yet, there is no clear relationship 

between climate change and hurricane characteristics. There are conflicting results as to 

how climate change will impact hurricane behavior (Knutson et al. 2010). Natural 

variability in hurricane frequency, intensity, and movement has also been influenced by 

atmospheric teleconnections such as the El Niño/Southern Oscillation (ENSO). The 

effect of climate change on tropical cyclones is often examined at a global scale 

(Emanuel 2005a; Henderson-Sellers et al. 1998; Knutson et al. 2010). However, the 

influence of climate change on hurricane behavior may be more easily observed if the 

relationship were examined at a regional scale (Christensen et al. 2013; Pielke et al. 
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2005). This thesis will focus on the Atlantic basin (which includes the Caribbean and 

Gulf of Mexico) since this basin is most relevant to the study region. However, this 

chapter will also review and discuss global TC projections. 

This chapter will examine the influence of climate change on potential hurricane 

behaviors and trends. A meta-analysis of the literature will quantify the expected 

changes in hurricane frequency, intensity, and movement as a result of climate change. 

The findings will be applied to the sensitivity analysis in Objective 3 that will determine 

how hurricane damage and loss will potentially be affected by climate change.  

 

5.2 Hurricane Intensity and Climate Change 

Emanuel (1987) used a Carnot cycle model and a general circulation model 

(GCM) to predict how maximum TC intensity will respond to increases in SST and 

increases in atmospheric CO₂. The Carnot cycle is a thermodynamic cycle which is used 

to explain the function of a heat engine. Similar to a heat engine, TCs use heat energy as 

a source of mechanical energy (Emanuel 2005c). Heat engines are composed of a heat 

source and a heat sink (Emanuel 2005c). The greater the temperature difference between 

the two, the more efficient the engine (Emanuel 2005c). Heat energy is provided mostly 

by latent heat of vaporization and by sensible heat (Emanuel 1987). Moisture is 

evaporated from the ocean surface and flows toward the center of the storm and upward 

into the eyewall (Emanuel 2005c). As moist air rises and condenses, energy is released 

as latent heat and transforms into sensible heat (Emanuel 2005c). The energy released is 

used by the storm to power its winds (Emanuel 2005c). Emanuel (1987, 2005c) 
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considers TCs to be ideal and efficient examples of a heat engine. What makes tropical 

cyclones exceptionally efficient is how they reuse energy (Emanuel 2005c). Some of the 

energy from the winds from the outer bands sinks back to the surface (Emanuel 2005c). 

The air then flows back toward the center where frictional dissipation takes place 

(Emanuel 2005c). Friction creates heat which is added to the air flowing into the eyewall 

at the inflow layer (Emanuel 2005c). Through this process, storms are able to increase 

their efficiency by reusing “waste heat” (Emanuel 2005c).  

The Carnot cycle model was used to calculate the minimum sustainable central 

pressures and maximum wind speeds for TCs (Emanuel 1987). Relative humidity, 

surface pressure, and thermodynamic efficiency remained constant while central 

pressure and wind speeds varied as a function of SST (Emanuel 1987). The Carnot cycle 

model is dependent on changes in SST to determine changes in maximum TC intensity 

(Emanuel 1987). Emanuel (1987) found that a 3°C increase in SST led to a 30-40% 

increase in maximum pressure drop and a 15-20% increase in wind speed. These results 

indicate that small increases in SST lead can large changes in intensity (Emanuel 1987).  

Emanuel (1987) used a GCM (the Goddard Institute for Space Studies General 

Circulation Model II), to study how doubling the amount of atmospheric CO₂ influences 

SST and maximum TC intensity. SSTs were simulated for five Augusts. Changes in SST 

ranged between 2.3°C and 4.8°C and were added to climatological August SSTs. 

Emanuel (1987) found that the minimum sustainable pressures were lower in the Gulf of 

Mexico and the Bay of Bengal than in any other region. The model estimated a 40-50% 

increase in hurricane destructive potential with increases of up to 60% in some regions 
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(Emanuel 1987). He concluded that climatic changes from increases in CO₂ will result in 

increases in TC intensity. Emanuel (1987) did not examine changes in TC frequency.  

Emanuel (2000) concluded that changes in potential intensity as a result of SST 

increases would influence the distribution of actual intensity. If potential intensity 

increased by 10-20% as a result of climate change, Emanuel (2000) concluded that 

actual intensity should increase by the same amount.  

Emanuel et al. (2004) used a simple coupled ocean-atmosphere model to observe 

the influence of various environmental factors which impact hurricane intensity. Their 

model has an atmospheric component that calculates the intensity of a storm by taking 

into account its potential intensity. A hurricane’s potential intensity is based on the 

storm’s energy cycle and is the “maximum steady intensity” that a storm can reach 

(Emanuel et al. 2004). The atmospheric model is then combined with a one-dimensional 

ocean model is used to account for the role that upper-ocean dynamics play in storm 

formation and development. Emanuel et al. (2004) concluded that wind shear is the most 

important factor that influences intensity (Emanuel et al. 2004).  

Knutson and Tuleya (2004) used nine global coupled climate models to create 

different scenarios to determine the influence of increased CO2 on TC intensity and 

precipitation rates. The Geophysical Fluid Dynamics Laboratory (GFDL) R30 coupled 

model is used to run scenarios under current (control) and increased CO2 conditions. 

Atmospheric CO2 was increased by 1% for 80 years and this increased SST by 0.88° C 

to 2.48°C (Knutson and Tuleya 2004). Maximum surface wind speeds are expected to 

increase by 6% under warming conditions (Knutson and Tuleya 2004). The scenarios 
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only considered environmental factors from the GCMs and did not take vertical wind 

shear into consideration (Knutson and Tuleya 2004). Knutson and Tuleya (2004) also 

ran the model to evaluated changes in TC potential intensity based on Emanuel’s (1987) 

theory. A 7.5% increase in potential intensity was found based on Emanuel’s (1987) 

methods. Although the Knutson and Tuleya (2004) has limitations (e.g., it uses only a 

single model, it does not account for vertical wind shear), they concluded that under 

warming climate conditions, TC intensity is expected to increase as SST increases. In a 

later study, Knutson et al. (2008) found that maximum mean wind speed increases by 

2.9% for all TCs and it increases by 1.7% for hurricanes.  

Michaels et al. (2005) suggested that Knutson and Tuleya (2004) was inaccurate 

and unrealistic. Michaels et al. (2005) consider the GFDL model used by Knutson and 

Tuleya (2004) to be inaccurate at forecasting hurricane intensity. They also believe that a 

yearly 1% increase in CO2 is unrealistic (Michaels et al. 2005). Michaels et al. (2005) 

suggest a 0.5% yearly increase in CO2 which is coincides with the increase of current 

CO2 trends. After adjusting CO2 values, Michaels et al. (2005) expect maximum TC 

wind speeds to increase by 3% which is half of what Knutson and Tuleya (2004) 

predicted. 

Emanuel (2005a) calculates a power dissipation index (PDI) over the North 

Atlantic Ocean which determines the total power that was dissipated by a storm over its 

lifetime. Emanuel (2005a) uses PDI as an indicator of TC intensity. SST has a strong 

influence on PDI (Emanuel 2005a). Emanuel (2005a) states that theoretically TC peak 

wind speed should increase by 5% for every 1°C increase in SST. For example, an SST 
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increase of 0.5°C causes wind speed to increase by 2-3% and PDI to increase by 6-9%. 

The PDI is expected to increase by 8-12% when the increase in a storm duration is 

considered (Emanuel 2005a). Increases in wind speed and PDI are only partly explained 

by an increase of SST as a result of anthropogenic climate change (Emanuel 2005a). 

Other causes such as vertical wind shear may also play a role (Emanuel 2005a). 

Emanuel’s (2005b) prediction that wind speed will increase by 10% based on a 2°C 

increase in SST is in agreement with Emanuel’s (2005a) intensity theory of a 5% 

increase for every 1°C. 

Webster et al. (2005) compared trends in observed SST and TC frequency and 

intensity from 1970 to 2004 for all ocean basins and found that hurricane intensity and 

frequency have increased since 1995. The number of hurricanes, intensity distribution, 

and number of storm days for all ocean basins were examined and compared to changes 

in SST trends (Webster et al. 2005). The short time period in this study is not ideal for 

definite relationships to be found, however, with the satellite era commencing in the 

1960s, it provides the most complete data record available. Between 1970 and 2004, 

tropical SST increased by 0.5°C and they found a positive, statistically significant 

relationship between hurricane frequency and intensity, and SST. An increase in the 

number of intense hurricanes (categories 4 and 5) and a decrease in the number of storms 

in the North Pacific, Indian and Southwest Pacific ocean basins was also observed 

(Webster et al. 2005). An increase in the number of TCs and storm days was found in the 

Atlantic (Webster et al. 2005). The Atlantic Ocean basin also experienced an increase in 

intense hurricanes, however, it experienced the smallest increase out of all the ocean 
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basins (Webster et al. 2005). Webster et al. (2005) found that GCMs run under doubled 

CO2 scenarios both generally agree that hurricane intensity will increase as the climate 

warms. 

Landsea et al. (2006) used the Dvorak Technique, a method that uses satellites to 

calculate maximum sustained surface winds, to determine hurricane intensity. Since the 

technique was developed in the 1970s, hurricane intensity data may not be as accurate as 

data collected with today’s satellite technology (Landsea et al. 2006). It is possible that 

some past storms may have been stronger than indicated by the Dvorak technique 

(Landsea et al. 2006). Due to this discrepancy in the data and to a lack in a consistency 

in the trends relating intensity and anthropogenic global warming, Landsea et al. (2006) 

concludes that it is not possible to determine whether hurricane intensity has increased 

significantly and whether hurricane intensity has been influenced by climate change.    

Elsner (2006) examined the relationship between TC intensity and SST. Elsner 

(2006) used SST anomaly data and global mean temperature anomalies for the months of 

August to October for 1871-2005 and calculated a PDI similar to Emanuel (2005a). 

Elsner (2006) hypothesized that an increase in SSTs results from anthropogenic climate 

change or from the influence of the AMO. Regression models and Granger causality 

tests were used to test Elsner’s (2006) hypotheses. The Granger causality test between 

hurricane activity, Atlantic SSTs, and PDI had a significant F value of 4.30. The 

influence of global temperature on Atlantic SST was also tested and had an F value of 

7.07. Elsner (2006) concluded that anthropogenic climate change has a greater effect on 

SSTs and TC intensity than the AMO.   
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Trenberth (2007) examined the relationship between trends in hurricane activity 

and SST and found that although there may be natural causes for an increase in hurricane 

trends and SSTs, the increases may also be attributed to climate change. According to 

his findings, since 1970 climate change has increased global SSTs by 0.6°C which is 

enough to increase a hurricane’s intensity by one category (Trenberth 2007).   

  To measure the influence of global warming on hurricane intensity, Kossin et al. 

(2007) created a new hurricane data record of satellite observations for 1983-2005 for all 

ocean basins. Kossin et al. (2007) found that PDI values increased in the North Atlantic 

basin over the study period. Since hurricane activity in the Atlantic accounts for less than 

15% of global hurricane activity, Kossin et al. (2007) state that their results do not 

substantiate the theory that increasing SSTs are responsible for increased hurricane 

activity in the Atlantic.  

Pielke (2007) performed a sensitivity analysis to examine the future economic 

impacts from TCs under climate and socioeconomic scenarios for 2050 and 2100. By 

2050, intensity is expected to increase by 0-18% and frequency is expected to experience 

changes between -20% to +20%. By 2100, intensity is expected to increase by 0-36% 

and frequency is expected to experience changes between -40% to +40% (Pielke 2007). 

Pielke (2007) used intensity increases of 18% and 36% for 2050. Due to the disparity in 

frequency values, Pielke’s (2007) sensitivity analysis assumed no changes in frequency. 

Results from the sensitivity analysis show that total damages significantly increase as 

TC intensity increases (Pielke 2007). Pielke (2007) used a baseline TC damage value of 

$1.00. An 18% increase by 2050 would result in a damage value of $4.60 while a 36% 
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increase would result in a damage value of $7.04 (Pielke 2007). Damage values increase 

by approximately 360% from the baseline to the 18% increase scenario. From the 18% 

to 36% increase scenario, damage values increase by approximately 53%.    

Although there are conflicting views on how climate change may affect 

hurricanes in the future, Knutson et al. (2010) conclude that hurricane intensity may 

increase by 2 to 11% and changes in frequency and track are unlikely to occur. The 

current assessment report from the IPCC (AR5) is in agreement with Knutson et al. 

(2010) and also projects hurricane intensity to increase by 2 to 11% (Christensen et al. 

2013). Holland and Bruyère (2014) state that overall TC intensity is expected to increase 

by 5% for every °C increase in SST. Table 5.1 provides a summary of the findings 

regarding hurricane intensity and climate change. Based on Table 5.1, approximately 

94% of the studies expect an increase in TC intensity. 
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Table 5.1. Summary of expected changes in TC intensity. 

Author(s) Year Increase/Decrease Expected Changes 

Emanuel 1987 Increase 
3°C increase in SST results in 15-

20% increase in wind speed 

Emanuel 2000 Increase 

If potential intensity increases, 

actual intensity will increase the 

same. 

Knutson and 

Tuleya 
2004 Increase 

1% CO2 increase/year, SST 

increased 0.88°C to 2.48°C, wind 

speeds increase 6% 

Emanuel  2005a Increase 
Wind speed increase of 5% for 

every 1°C SST 

  2005b Increase 
Wind speed increase of 10% for 

every 2°C SST 

Michaels et 

al. 
2005 Increase 

0.5% CO2 increase/year, wind speed 

increase of 3% 

Webster et al. 2005 Increase As climate warms 

Landsea et al. 2006 Insufficient data 
Difficult to determine due to 

inconsistent dataset 

Elsner 2006 Increase 
Anthropogenic climate change 

influences increases 

Trenberth 2007 Increase 

Global SST increased since 1970 by 

0.6°C, enough to increase intensity 

by one category 

Kossin et al. 2007 Increase Increase in PDI in Atlantic basin 

Pielke 2007 Increase 0-18% by 2050, 0-36% by 2100  

Knutson et al. 2008 Increase 
2.9% wind speed for all TCs, 1.7% 

for hurricanes 

Knutson et al. 2010 Increase 
2 to 11% based on 2.8°C increase 

by 2100 (A1B scenario) 

IPCC AR5 2013 Increase 
2 to 11%  based on 2.8°C increase 

by 2100 (A1B scenario) 

Holland and 

Bruyère 
2014 Increase 

Intensity increases 5% for every °C 

SST  

    

Number of 

studies 

expecting an 

increase:  

 15 out of 16  
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5.3 Hurricane Frequency and Climate Change 

The relationship between climate change and TC frequency is less clear than TC 

intensity. Emanuel (1987) states that there is no reason for TC frequencies to 

significantly decrease if atmospheric CO₂ levels were to double. The changes in 

hurricane trends over the last few decades have sparked the debate over whether those 

changes are occurring naturally or if they are being influenced by climate change (Kerr 

2006).  

Knutson and Tuleya (2004) focus on TC intensity and their study, which is 

described above, is not designed to measure changes in TC frequency. However, if TC 

frequency were to remain the same, they expect increases in the event risk of category 5 

storms as a result of higher CO2 conditions and warmer SSTs.  

Emanuel (2005a) states that there is no trend in global annual TC frequencies. A 

number of studies (Henderson-Sellers et al. 1998; Knutson and Tuleya 2004) find 

relationships between SST and frequency inconclusive. According to Webster et al. 

(2005), global climate models run under doubled CO2 scenarios have contradictory 

results regarding hurricane frequency. Some models predict an increase in hurricane 

frequency, while others predict a decrease (Webster et al. 2005). However, Webster et 

al. (2005) observed an increasing trend in TC frequency for the Atlantic basin from 1970 

to 2005 (Webster et al. 2005).  

 However, other studies (Landsea 2007; Landsea et al. 2010; Mann et al. 2007) 

state that these relationships are likely a result of improved satellite observations and 

data collection, rather than the result of a warming climate. Landsea (2007) examined 
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undercount bias in the historical dataset when exploring the relationship between climate 

change and hurricane frequency. Prior to the use of satellites, hurricanes were observed 

when they approached land or by ships in the Atlantic (Landsea 2007). The number of 

TCs is likely underestimated prior to satellite era due to inconsistent data collection and 

undeveloped technology (Chang and Guo 2007; Landsea 2007). When storms missing 

from the record are accounted for, the number of hurricanes prior to the satellite era 

increases (Landsea 2007). An increase in hurricane activity in recent years is likely 

attributed to the technological advancements in hurricane detection and observations 

rather than a warming climate (Landsea 2007).  

Using the ECHAM5 GCM, Latif et al. (2007) found a strong correlation between 

vertical wind shear and the Accumulated Cyclone Energy (ACE) Index. The ACE Index 

measures TC activity by considering the number, duration, and intensity of all TCs 

during a season (Latif et al. 2007). Latif et al. (2007) found an increase in SST over the 

Indian and Pacific Oceans due to an increase of vertical wind shear in the Atlantic. Latif 

et al. (2007) also found that an increase in SST in the North Atlantic relative to the 

warming of the Indian and Pacific Oceans resulted in a decrease in vertical wind shear. 

Vertical wind shear in the North Atlantic is dependent on the warming of Indian and 

Pacific Oceans (Latif et al. 2007; Wang and Lee 2008). A decrease in vertical wind shear 

results in an increase of hurricane activity (Latif et al. 2007). Latif et al. (2007) found 

that trends in TC frequency did not stray from the natural multidecadal variability of TC 

activity. For example, Latif et al. (2007) associate the decreases in TC activity in 2006 to 
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the small temperature gradient between the North Atlantic and Indian and Pacific 

Oceans as a result of El Niño. 

Knutson et al. (2008) use a non-hydrostatic model and ensemble-mean global 

model projections to examine the role of increased SSTs on TC frequency. They found 

that an increase in Atlantic SST resulted in an 8% decrease in the frequency of major 

hurricanes (Knutson et al. 2008). Out of 27 model runs where the control is compared to 

warmer SSTs, 22 of those runs showed a decrease in tropical storm frequency (Knutson 

et al. 2008). Knutson et al. (2008) believe that environmental changes in moisture or 

circulation may be the cause for decreased storm frequency.  

Knutson et al. (2010) used high resolution global models to project changes in 

hurricane behavior as a result of climate change. Some studies (Webster et al. 2005) 

state that trends in increased TC frequency have recently been observed. However other 

studies such as Landsea (2007), state that these relationships are more than likely a result 

of improved satellite observations and data collection rather than the result of a warming 

climate.  

TC frequency is expected to remain the same or decrease in a warming 

environment (Knutson et al. 2010). The IPCC AR5 (2013) is also in agreement that TC 

frequency is expected to decrease or remain the same. However, the frequency of the 

most intense storms is expected to increase (Christensen et al. 2013). It is unlikely that 

an anthropogenic climate change signal has been present in the historical data record but 

it will likely show up in future TC activity and intensity trends (Holland and Bruyère 
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2014). Based on the studies shown in Table 5.2, 27% of studies expect an increase in the 

frequency of intense storms while 36% of studies expect a decrease or no change in TC  

frequency.  

 

     Table 5.2. Summary of expected changes in TC frequency. 

  

Author(s) Year Increase/Decrease Expected Changes 

Henderson-Sellers 

et al. 
1998 Inconclusive SST and frequency 

Knutson and Tuleya 2004 Increase in category 5 frequency 

    Inconclusive SST and frequency 

Emanuel  2005a No trend   

Webster et al. 2005 Increase 
in frequency of intense 

hurricanes 

Kossin et al.  2007 Inconclusive 

Results do not support 

increase in activity due to 

increased SST 

Pielke 2007   
 -20% to +20% by 2050, -

40% to +40% by 2100 

Landsea 2007 Inconclusive 
Observed increases attributed 

to inconsistent dataset 

Knutson 2008 Decrease 
8% decrease in major 

hurricanes 

Knutson et al. 2010 
Remain same or 

decrease 
  

IPCC AR5 2013 Increase Most intense storms 

    Decrease 
Overall, frequency expected 

to decrease or remain same 

    

Number of studies 

expecting increase, 

decrease, or no 

change: 

 

3 out of 11 (increase 

in intense storms)  

 

4 out of 11 (decrease 

or stay the same) 
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5.4 Hurricane Track and Climate Change  

 There is a relatively strong consensus regarding how TC tracks will change as a 

result of a warming climate. Storm trajectories are dependent on factors such as SST and 

atmospheric circulations which are also dependent on the influence of climate change. 

Using a K-means cluster analysis and a Poisson regression, Elsner (2003) found 

that during a negative NAO phase and during a La Niña year, hurricanes are more likely 

to make landfall along the Gulf Coast, from Texas and through South Carolina. 

Hallegatte (2007) used synthetic hurricane tracks to assess the impact of climate 

change on hurricane risk analysis. Hallegatte (2007) modified hurricane intensity by 

10%, but did not alter hurricane tracks because hurricane tracks are not expected to be 

effected by climate change (Hallegatte 2007).     

Knutson et al. (2008) concluded that climate change is not expected to cause the 

region of TC formation in the Atlantic to expand. As tropical SSTs increase as a result of 

global warming, the temperature threshold for tropical cyclogenesis is expected to 

increase at the same rate (Knutson et al. 2008). This would result in little to no change in 

TC formation regions and storm trajectories (Knutson et al. 2008).    

Emanuel et al. (2008) examined the influence of climate change on hurricane 

tracks by creating two track models. One model was based on historical track records 

and statistics and the other was a “beta and advection model” (BAMS) used to predict 

tracks based on large-scale wind fields (Emanuel et al. 2008). The spatial variability of 

the synthetic tracks created was in agreement with the historical tracks (Emanuel et al. 

2008). Little to no variability in tracks was observed (Emanuel et al. 2008).   
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Variability in North Atlantic TC tracks is examined by Kossin et al. (2010). They 

separated historical tracks into four groups and analyzed each group individually. 

Clusters were defined by quadratic regression models and they found that tracks are 

greatly influenced by atmospheric circulation patterns such as NAO and El Niño since 

storms are steered by these patterns (Kossin et al. 2010). Storms need to form and 

develop over favorable regions to in order to strengthen (Kossin et al. 2010). Since 

storms are dependent on favorable conditions for development, track variability can 

greatly influence storm intensity and duration (Kossin et al. 2010).  

Bender et al. (2010) found an increase in storm tracks in the western Atlantic 

(between 20°N and 40°N) for intense (category 4 or 5) hurricanes. Decreases in track 

density in the western Atlantic and increases in the middle and eastern Atlantic have 

been observed by long-term trend analyses (Knutson et al. 2010). However, these trends 

are most likely due to changes in storm observations in the eastern Atlantic (Knutson et 

al. 2010). Model projections show that large-scale changes in storm tracks are not 

expected to occur (Knutson et al. 2010). Climate change is not expected to result in a 

significant variation in storm tracks (Knutson et al. 2010). The spatial distribution of 

Atlantic SSTs as well as the influence of atmosphere-ocean circulations (such as ENSO 

and NAO) will have the most significant influences on the variability of TC tracks 

(Christensen et al. 2013). Based on the studies from Table 5.3, 50% of studies agree that 

TC tracks should expect little to no change.   

  



 

75 

 

Author(s) Year Expected Changes 

Elsner 2003 
Gulf coast landfall more likely 

during NAO (-), La Niña 

Hallegatte 2007 Not expected to change 

Knutson et al. 2008 Little to no variability 

Emanuel et al. 2008 Little to no variability 

Kossin et al. 2010 
Changes dependent on 

atmospheric circulation patterns 

Bender et al. 2010 
Increase for cat 4 or 5 hurricanes 

in W. Atlantic 

Knutson et al. 2010 No expected changes 

IPCC AR5 2013 

Changes dependent on SST 

distribution and atmosphere-

ocean circulations 

   

Number of 

studies 

expecting little 

to no change: 

4 out of 8  

 

 Table 5.3. Summary of expected changes in TC tracks. 

 

5.5 Summary 

A review of the literature indicate that climate change will cause TC intensity to 

increase by 5% for every 1°C increase in SST (Emanuel 2005a; Holland and Bruyère 

2014). Intensity changes vary from an increase of 3% (Michaels et al. 2005) to an 

increase of 36% (Pielke 2007). According to the IPCC AR5, an increase in TC intensity 

of 2 to 11% is likely (Christensen et al. 2013; Knutson et al. 2010). Approximately 94% 

of the studies in the meta-analysis expect TC intensity to increase. The frequency of the 

most intense storms is expected to increase (Knutson and Tuleya 2004; Webster et al. 

2005). However, there is no consensus on overall changes in TC frequency. It is most 
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likely that overall TC frequency will either decrease or remain the same according to 

36% of the studies reviewed in this objective (Christensen et al. 2013; Knutson et al. 

2010). TC tracks are dependent on SST patterns and on atmosphere-ocean circulations 

(Knutson et al. 2008). Half of the studies expect little to no change in TC tracks as a 

response to climate change (Emanuel et al. 2008; Knutson et al. 2010), although there 

will continue to be significant inter- and intra-annual variability in storm tracks.  

For Objective 3, changes in TC intensity as a result of climate change will be 

based on findings from this chapter. Two TC intensity scenarios will selected based on 

Pielke (2007). An increase of 15% will be applied to a moderate intensity scenario and a 

35% increase will be applied to an extreme intensity scenario. No changes in TC 

frequency or track will be applied. Regardless of how climatic factors influence 

hurricane frequency, activity, and tracks in the future, an increase in both coastal and 

inland populations will increase Florida’s vulnerability to hurricanes (Pielke et al. 2005).   
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CHAPTER VI 

SENSITIVITY ANALYSIS OF THE IMPACT OF CLIMATE CHANGE ON 

HURRICANE DAMAGE AND LOSS IN FLORIDA  

 

HAZUS-MH Hurricane Model was used to determine the possible impact of 

climate change on hurricane damage and loss for Florida. The HAZUS Hurricane Model 

is composed of a hurricane wind field model and a damage and loss model. HAZUS was 

run for a baseline, moderate, and extreme climate change scenario for all case study 

storms. The baseline scenario assumes current climatic conditions. The moderate 

scenario reflects a 15% increase in storm intensity as a result of climate change and the 

extreme scenario reflects a 35% increase. All storm parameters are taken from past 

observations provided by the HAZUS database or from the datasets described in section 

3.2.  

For the baseline scenario, storms of category 2 or less were run using the user 

defined hurricane scenario and required all storm parameters to be provided by the user. 

The user defined scenario requires data for latitude, longitude, time, radius to maximum 

winds, wind speed, central pressure, and inland points to create a storm track. The 

historic hurricane scenario was run for storms of category 3 or higher. The data for these 

storms was provided by the HAZUS database. Storm parameters were not modified for 

the baseline scenario.   

Using the findings from Objective 2, storm intensity was modified for the 

moderate and extreme climate change scenarios. Data for all case study storms were 
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input manually. The only storm parameters that were modified were wind speed and 

central pressure. Wind speed values were increased by 15% for the moderate scenario 

and by 35% for the extreme scenario. Central pressure values were modified to reflect 

increases in intensity by using the method described in section 3.2.  

The damage and loss models were run for the data provided by HAZUS. The 

models were run for a total population of 15,982,378 based on 2000 U.S. Census data. 

The study region contains approximately 6.8 million buildings with a total replacement 

value of $1.2 billion dollars (2006 dollars).  

Structural damage from hurricane winds was estimated by the damage model by 

using a load and resistance methodology (Vickery et al. 2006b). Building damage 

categories are determined by the degree of damage done to the building envelope 

(Vickery et al. 2006b). There are five damage categories which range from no damage to 

complete destruction (Vickery et al. 2006b). As defined by Vickery et al. (2006b), the no 

damage category experiences little to no visible damage from the outside to the roof or 

windows. There is also little to no water damage. The minor damage category 

experiences damage to a maximum of one window, door, or garage door. There is also 

moderate roof damage and marks and dents to walls of the structure. Buildings 

experiencing moderate damage experience major damage to the roof and moderate 

breakage of windows. There is also some water damage to the building interior. The 

severe damage category experiences major damage to windows and roof, major roof 

loss, and extensive water damage to building interiors. The destruction damage category 
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experiences complete failure of the roof and/or wall frame and a loss of at least 50% of 

roof sheathing.  

The damage categories described above are for residential buildings but similar 

descriptions are applied to other building types (Vickery et al. 2006b). For user defined 

storms, HAZUS provides an estimate of the average number of damaged buildings for 

each damage category (Vickery et al. 2006b). Only residential and commercial building 

types are considered in this study. 

The economic loss model calculates estimates of building damage economic loss 

and calculates the total cost of all building components. Depending on the damage 

category of the building, the cost of rebuilding a damaged structure is calculated. 

Explicit cost functions are used to calculate loss for building exteriors and implicit cost 

functions are used to calculate loss for building interiors.  

 

6.1 Case Study Storms 

The HAZUS Hurricane Model was run for a total of 12 case study storms. In 

order to include storms of all categories in the sensitivity analysis, two storms were 

chosen for each storm category (tropical storm to category 5). The storms were chosen 

based on their historical and cultural significance. The majority of the storms have had 

significant societal and economic impacts in Florida. For example, the Great Miami 

Hurricane of 1926 made landfall in Downtown Miami a few years after the city 

experienced an economic and demographic boom (Barnes 2007). Miami’s recovery after 

the storm was delayed by The Great Depression which occurred a few years after the 
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storm’s landfall (Barnes 2007). A list of the case study storms is provided in Table 3.1. 

A map of the track is shown for each storm. Graphs were created for the model output 

for building damage by count for residential and commercial occupancy types, building 

economic estimated losses based on occupancy type and shelter needs and requirements. 

 

 6.1.1 Great Miami Hurricane (1926) 

The Great Miami Hurricane of 1926 made landfall as a category 4 storm in 

southeast Florida (Figure 6.1) on September 18
th

, 1926. The city of Miami, which was 

named the “fastest growing city in the country” the previous year, was devastated by the 

storm’s impacts (Barnes 2007). Miami’s inexperienced population, as well as a lack of 

storm reports and timely warnings, contributed to the population’s vulnerability (Barnes 

2007). The storm also impacted the Pensacola area after crossing the state and entering 

the Gulf of Mexico. A report released by the Red Cross in October 1926 estimated the 

total death toll to be 373 (Barnes 2007). Approximately 43,000 people were left 

homeless and the property losses were estimated to be $159 billion (Barnes 2007). Blake 

et al. (2011) estimated the death toll to be 372 and the damage costs to be $164 billion  

when ranked using 2010 inflation, population, and wealth normalization values. The 

storm was also ranked as one of the ten most intense mainland storms with a minimum 

pressure of 930 mb at landfall (Blake et al. 2011). 
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6.1.1.1 Building Damage by Count 

The majority of the residential buildings experienced no damage under the 

baseline conditions. Figure 6.2a shows the number of damaged buildings decreases as 

the damage type increases (e.g., minor damage (642,092), moderate (480,003), severe 

(233,020), and total destruction (77,903)). Under the moderate hurricane scenario, the 

majority of buildings experience no damage, however, the number of damaged buildings 

increased for severe and total destruction categories. For the extreme scenario, the 

number of buildings decreased in the no damage, minor damage, and moderate damage 

categories and increased in the severe damage and total destruction categories. There 

was a 6% (3%) decrease in the no damage category between the baseline and extreme 

(moderate and extreme) scenarios. The remaining damage categories also decreased 

between the baseline and extreme scenarios, except for the severe and destruction 

categories. The severe damage category increased by 81% (2%) from the baseline to 

extreme (moderate to extreme) scenario. The destruction damage category increased by 

936% (86%) from the baseline to extreme (moderate to extreme) scenario. The total 

number of damaged buildings (minor, moderate, severe, destruction) increased by 20% 

(9%) from the baseline to the extreme (moderate to extreme) scenario. Most commercial 

buildings are in the no damage category (296,456) for the baseline scenario and there are 

fewer buildings in the minor (30,898), moderate (42,816), severe (48,557) and 

destruction (2,439) categories. The distribution of commercial buildings in the damage 

categories follows a similar trend for the moderate scenario and the extreme scenarios 

(Figure 6.2b). 
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 Figure 6.1. Track of the Great Miami Hurricane (1926). 
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Figure 6.2. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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There is a 4% decrease in the number of commercial building in the no damage 

category between the baseline and extreme scenarios and a 3% decrease between the 

moderate and extreme scenarios. There was an increase of 8% (7%) between the 

baseline and extreme scenarios (moderate and extreme scenarios) in the total number of 

damaged buildings.   

 

6.1.1.2 Building Economic Estimated Losses 

Figure 6.3a shows estimated economic losses for residential, commercial, and all 

occupancy types. Economic losses for residential buildings increased by 204% from the 

baseline to extreme scenario and by 41% from the moderate to the extreme scenario. 

Economic losses for commercial buildings increased by 182% (34%) from the baseline 

to extreme (moderate to extreme) scenario. All occupancy types (agriculture, 

commercial, education, government, industrial, religion, and residential) experienced an 

increase in losses of 199% (39%) from the baseline to the extreme (moderate to extreme 

scenario) scenario.   

 

6.1.1.3 Shelter Needs and Requirements 

The number of people and households affected by the change in storm intensity 

are shown in Figure 6.3b. The number of displaced households increases by 205% (37%) 

from the baseline to the extreme (moderate to the extreme) scenario. There is an increase 

of 190% between the baseline and extreme scenario and of 33% between the moderate 

and extreme scenarios for the number of people in need of short-term shelter.          
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Figure 6.3. (a) Building Economic Estimated Losses based on Occupancy Type and (b) Shelter 

Needs and Requirements  

b. 

(+15%) 

(+15%) 

a. 
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The Great Miami Hurricane of 1926 was a powerful storm that greatly impacted 

south Florida at a time when the region was rapidly developing. The baseline scenario 

displays the damage caused by the storm’s intensity at landfall and the significant impact 

caused in Miami. An increase in storm intensity as a result of climate change would  

cause the region to experience increases of up to 20% in residential building damages, 

8% in commercial building damages, up to 199% in economic losses for all occupancy 

types and up to 205% in the number of displaced households. Miami’s growing 

population and coastal development exacerbate the city’s vulnerability to intense storms.   

 

6.1.2. Labor Day Hurricane (1935) 

One of the most significant hurricanes in Florida’s history is the Labor Day 

Hurricane of 1935. The powerful hurricane struck the Florida Keys on September 2, 

1935 and made landfall over Long Key and Lower Matacumbe Key (Figure 6.4). During 

this time, the Overseas Highway connecting Key West with the Florida mainland, was 

being built by war veterans working for the Federal Emergency Relief Administration 

(FERA) (Barnes 2007). The Weather Bureau provided residents with warnings, but the 

storm intensified more rapidly than anticipated (Barnes 2007). The day prior to landfall, 

the storm was classified as a small tropical disturbance by the Weather Bureau and it 

made landfall as a category 5 hurricane (Barnes 2007). A train was sent from Miami to 

pick up the war veterans, residents, and visitors that did not evacuate in time (Barnes 

2007). However, the train was washed off its tracks shortly after arriving in the Florida 

Keys due to the approaching hurricane’s storm surge (Barnes 2007). The death toll was 
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estimated to have been 408 (Blake et al. 2011). The Labor Day Hurricane had a central 

pressure of 892 mb which is the lowest pressure recorded for a U.S. landfalling 

hurricane since record keeping began in 1851 (Blake et al. 2011). On September 4, the 

storm made a second landfall near Cedar Key. The building damage, loss, and shelter 

need values for this storm also account for the second landfall made along Cedar Key.    

 

6.1.2.1 Building Damage by Count 

The majority of residential buildings experienced no damage under baseline 

(6,122,197), moderate (5,179,103), and extreme (4,963,143) conditions (Figure 6.5a). 

The number of building in the no damage category decreased by 19% (4%) between the 

baseline and extreme (moderate and extreme) scenarios. The number of buildings in the 

minor damage category increased by 238% (9%) between the baseline and extreme 

(moderate and extreme) scenarios. Similarly, moderate damage increased from 14,716 to 

210,116 (1328% increase) in the extreme scenario. The number of buildings in the 

severe and destruction categories increased from 2,960 (baseline) to 267,102 (extreme) 

and from 4,909 (baseline) to 550,667 (extreme), respectively. The total number of 

damaged buildings increased from 87,240 (baseline) to 1,246,293 (extreme), an increase 

of 1329%.  
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Figure 6.4. Storm track of the Labor Day Hurricane 
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Figure 6.5. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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For commercial buildings (Figure 6.5b) there was an 18% decrease between the 

baseline and the extreme scenarios and a 4% decrease between the moderate and the 

extreme scenarios for the no damage category. The number of buildings in the minor 

damage category increased by 157% from the baseline to the extreme scenario. The 

number of buildings in the moderate damage category increased from 1,442 to 13,603 

from the baseline to the extreme scenario.   

Severe damage increased from 501 buildings in the baseline scenario to 36,614 in 

the extreme scenario. The number of buildings in the destruction category increased 

from 172 (baseline) to 19,587 (extreme). The total number of damaged buildings 

increased from a baseline of 6,203 to 80,307 in the extreme scenario.    

 

6.1.2.2 Building Economic Estimated Losses  

For residential properties, the estimated economic losses for the baseline scenario 

are $2.3 billion and increase to $108 billion in the extreme scenario (Figure 6.6a). 

Residential economic losses increased by 42% from the moderate to the extreme 

scenario. Commercial building losses increased from $3.4 million (baseline) to $20 

billion (extreme) and increased from the moderate scenario to the extreme scenario by 

49% (Figure 6.6b). For all building occupancy types, baseline losses of $2.7 billion 

increased to $136 billion in the extreme scenario. There was a 44% increase in economic 

losses between the moderate and extreme scenarios. 
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Figure 6.6. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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6.1.2.3 Shelter Needs and Requirements 

 

The number of displaced households increased from a baseline of 6,695 to an 

extreme scenario of 791,063 as shown in Figure 6.6b. The number of displaced 

households increased by 47% from the moderate to the extreme scenarios. The number 

of people in need of short-term shelter increased from 1,572 (baseline) to 196,962 in the 

extreme scenario (Figure 6.6b).  

 

6.1.2.4 Summary 

The Labor Day Hurricane of 1935 is one of the strongest hurricanes to have 

made landfall in the U.S. An increase in intensity of a storm such as the Labor Day 

Hurricane would result in devastating impacts in any region of Florida. Large increases 

from the baseline to the extreme scenario were observed for building damage, building 

economic loss, and shelter needs. The Labor Day Hurricane may have had a greater 

economic and societal impact if the storm had made landfall along the coast of mainland 

Florida.  

 

6.1.3 Hurricane Agnes (1972)  

Hurricane Agnes made landfall as a category 1 on June 19, 1972 along the 

Florida panhandle (Figure 6.7). Although Agnes was a weak storm when it made 

landfall, it was one of the costliest U.S. storms due to inland floods that resulted from 

heavy rain (Blake et al. 2011). Winds from Agnes caused above normal tides and fifteen 

tornadoes formed across Florida as the storm made landfall (Barnes 2007). In Florida, 
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Agnes was responsible for 9 deaths, 119 injuries, and more than $40 million in damages 

(Barnes 2007). Agnes affected other states in the South and along Eastern Seaboard. 

There was a total of $2.1 billion in damages in the U.S. and a total of 122 deaths (Barnes 

2007).   

 

6.1.3.1 Building Damage by Count 

For Agnes, the majority of the residential buildings experienced no damage for 

all three scenarios (Figure 6.8a). In the baseline scenario, there were 6,209,055 buildings 

in the no damage category, 365 in the minor damage category, 16 in the moderate 

damage and 0 for both the severe and destruction categories. The moderate and extreme 

scenarios followed a similar trend. The differences between the no damage category for 

the baseline to extreme scenarios and between the moderate to extreme scenarios were 

both close to 0%. For the minor damage category, the number of buildings increase from 

365 in the baseline scenario to 17,125 in the extreme scenario. For the moderate to 

extreme scenarios, the number of buildings increased from 2,744 to 17,125. Moderate 

damage buildings increased from 16 for the baseline scenario to 3,689 for the extreme 

scenario. The number of buildings in the severe damage category increased from 0 to 

214 from the baseline to the extreme scenario. For the destruction damage category, 

there was an increase from 0 to 80 from the baseline to extreme scenarios. There were 

relatively few commercial buildings that were damaged and these values did not change 

much in the moderate and extreme scenarios (Figure 6.8b).  
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Figure 6.7. Storm track for Hurricane Agnes. 
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Figure 6.8. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 



 

96 

 

6.1.3.2 Building Estimated Economic Losses 

Building economic losses for residential occupancy types increase from 

approximately $10 million for the baseline scenario to $45 million for the moderate 

scenario and to $203 million for the extreme scenario (Figure 6.9a). Commercial 

building economic losses increased for the baseline scenario from $332,000 to about $22 

million for the extreme scenario. For all occupancy types, economic losses for the 

baseline scenario are approximately $11 million and they increase to about $235 million 

for the extreme scenario.  

 

6.1.3.3 Shelter Needs and Requirements 

The number of displaced households is 0 for the baseline scenario and increased 

to 24 for the moderate scenario and 449 for the extreme scenario (Figure 6.9b). The 

number of people in need of short-term shelter is 0 for the baseline scenario, 6 for the 

moderate scenario and 117 for the extreme scenario.     
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Figure 6.9. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

 

 

a. 

b. 

(+15%) 

(+15%) 
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6.1.4 Hurricane Andrew (1992) 

On August 24, 1992, Hurricane Andrew made landfall in south Miami-Dade 

County as a category 5 storm that effected most of South Florida (Figure 6.10). 

Hurricane Andrew is the most intense storm to impact Florida since the Labor Day 

Hurricane in 1935 (Barnes 2007). The storm had maximum sustained winds of 

approximately 73 m s
-1

 (165 mph) and gusts up to 85 m s
-1

(190 mph) (Barnes 2007). 

Most of the damage caused by Andrew was a result of high winds and storm surge 

(Barnes 2007). It weakened after making landfall but quickly re-strengthened to a 

category 4 before impacting Louisiana and Texas (Barnes 2007). As a result of Andrew, 

700,000 people were evacuated, 175,000 were left homeless, 80,000 lived in shelters, 

and 25,000 homes were destroyed (Barnes 2007). It is estimated that Andrew caused 43 

deaths and more than $30 billion in damages (Barnes 2007).  

 

6.1.4.1 Building Damage by Count 

For the baseline scenario, the no damage category (5,861,084 buildings) had the 

highest number of buildings of all the damage types (Figure 6.11a). For the no damage 

category, there is an 8% decrease between the baseline and the extreme scenarios. The 

minor damage category for the baseline scenario is 137,854 and it increased by 9% in 

the extreme scenario. The moderate damage category 
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Figure 6.10. Storm track for Hurricane Andrew 
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Figure 6.11. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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increased from 113,782 buildings in the baseline scenario to 125,727 buildings in the 

moderate scenario. Severe damage increased by 146% from the baseline (68,182) to the 

extreme (167,583) scenario. There is an increase in 131% in the total number of 

buildings damaged from the baseline to the extreme scenario.  

The number of undamaged commercial buildings decreased as the intensity of 

the scenarios increased (Figure 6.11b). Between the baseline and the extreme scenarios, 

the number of buildings in the no damage category decreased by 11%. The number of 

buildings in the minor damage category decreased by 18% from the baseline to the 

extreme scenario. The number of buildings in the severe damage category increased by 

141% from the baseline to the extreme scenario. The number of buildings in the 

destruction category increased from 765 (baseline) to 27,294 (extreme). The total 

number of damaged buildings increased by 116% between the baseline and extreme 

scenarios.   

 

6.1.4.2 Building Economic Estimated Losses 

Residential properties experienced higher economic losses than commercial 

properties (Figure 6.12a). Economic losses for residential properties increased from 

$16.5 billion in the baseline scenario to $90.5 billion. An increase of 41% was observed 

between the moderate and extreme scenarios for residential buildings. Commercial 

buildings increased from $4.2 billion (baseline) to $28.6 billion (extreme). All 

occupancy types increased from $21.9 billion between the baseline and extreme 
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scenarios and by 43% (from $89.3 billion to $127.6 billion) between the moderate and 

extreme scenarios.  

 

6.1.4.3 Shelter Needs and Requirements 

The number of displaced households and people in need of short-term shelter are 

higher in the baseline scenario for Andrew compared to other storms such as Agnes 

(Figure 6.12b). The number of displaced households increased from 115,180 in the 

baseline scenario to 718,620 in the extreme scenario (a 524% increase). The number of 

people in need of short-term shelter increased from 32,746 to 221,726 between the 

baseline and extreme scenarios and increased by 41% between the moderate and extreme 

scenario. 

 

6.1.5 Hurricane Georges (1998) 

 

 Georges passed through the Florida Keys as a category 2 storm on September 25, 

1998 (Figure 6.13). In Key West, a peak gust of 38 m s
-1

 (87 mph) was recorded and 21 

cm (8.3 in.) of rain were reported (Barnes 2007). After crossing the Keys, Georges made 

landfall in Mississippi and then crossed along the Florida-Georgia border until it reached 

the Atlantic where it dissipated (Barnes 2007). Although the storm did not directly make 

landfall in Florida, the effects of Georges were experienced in regions across the state. In 

the panhandle, 61.7 cm (24.3 in.) of rain were reported at Elgin Air Force Base. 

Approximately 1,500 homes were damaged and 173 were destroyed in the lower Keys. 
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Figure 6.12. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.13. Storm track for Hurricane Georges 
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6.1.5.1 Building Damage by Count 

 The majority of residential buildings experienced no damage for all three 

scenarios (Figure 6.14a). For minor, moderate, and severe damage categories, the 

damage increased the most for the extreme scenario. Minor damage in the extreme 

scenario is five times greater than the baseline scenario. For the moderate damage 

category, the extreme scenario was almost nine times greater than the baseline scenario 

and almost 18 times greater for the severe damage category. Changes between the 

scenarios were insignificant for the destruction damage category.  

 Commercial building damages follow a similar trend to residential buildings. For 

all three scenarios, the majority of commercial buildings experienced no damage (Figure 

6.14b). The highest number of buildings in the minor, moderate, and severe damage 

categories were for the extreme scenario. The greatest difference between the baseline 

and extreme scenarios was for the severe damage category. The extreme scenario was 

about 13 times greater than the baseline scenario. The number of buildings for the 

destruction category were under 500 for all three scenarios.   

 

6.1.5.2 Building Economic Estimated Losses  

 The greatest economic losses were experienced by residential buildings in the 

extreme scenario (Figure 6.15a). Losses for residential buildings are approximately $1.4 

billion for the baseline scenario. The extreme scenario experienced losses of 

approximately $9.6 billion for residential buildings. Commercial buildings also 

experienced the greatest loss in the extreme scenario. The economic losses for the     
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Figure 6.14. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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extreme scenario are about ten times greater than the economic loss for the baseline 

scenario. Overall, all occupancy types experienced economic losses of about $1.5 billion 

for the baseline scenario and about $11.8 billion in the extreme scenario. 

 

6.1.5.3 Shelter Needs and Requirements 

 The number of displaced households and number of people in need of short-term 

shelter greatly increased between the baseline and extreme scenarios (Figure 6.15b). The 

number of displaced households is about 18 times greater for extreme scenario than the 

baseline scenario. The number of people in need of short term shelter increase from 600 

to approximately 11,000 in the extreme scenario.   

 

6.1.6 Tropical Storm Mitch (1998) 

 

By the time TS Mitch reached Florida, it had already devastated Central America 

as a category 5 storm. The official death toll for Central America is 9,086 which made 

Mitch one of the deadliest Atlantic hurricanes (Barnes 2007). TS Mitch made landfall 

near Naples and affected the Florida Keys (Figure 6.16). Strong winds, heavy rains, and 

tornadoes resulted in 65 injuries and 645 destroyed homes (Barnes 2007).  
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Figure 6.15. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.16. Storm track for Tropical Storm Mitch 
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6.1.6.1 Building Damage by Count 

For residential occupancy type, the majority of buildings experienced no damage 

for all scenarios (Figure 6.17a). The number of damaged buildings in the no damage 

category decreased by 1% from the baseline scenario to the extreme scenario. In the 

minor damage category, the number of buildings increased from ~4,600 to ~60,000. In 

the moderate damage category, the extreme scenario is about 30 times greater than the 

baseline. The number of buildings in the severe damage category increased from 10 

(baseline) to 200 in the extreme scenario.  

The majority of commercial buildings are in the no damage category (Figure 

6.17b). The number of buildings in this category decreased by 1% between the baseline 

and extreme scenarios. The number of buildings in the minor damage category increased 

from ~900 in the baseline scenario to ~5000 in the extreme scenario. The number of 

buildings in the severe and destruction categories are close to zero.  

 

6.1.6.2 Building Economic Estimated Losses  

 Residential buildings experience greater economic loss than commercial 

buildings (Figure 6.18a). Economic losses for residential buildings are approximately 

$150 million for the baseline scenario and increase to almost $1.5 billion for the extreme 

scenario. Under the baseline scenario, commercial buildings experience losses of about 

$7.2 million which is approximately 15 times less than the losses for the extreme 

scenario. For all occupancy types, losses under baseline conditions are about $160 

million and increase to about $1.6 billion under the extreme scenario.      



 

111 

 

       
 

       
 

Figure 6.17. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.18. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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6.1.6.3 Shelter Needs and Requirements 

The number of displaced households and number of people in need of short-term 

shelter greatly increased between the baseline and extreme scenarios (Figure 6.18b). The 

number of displaced households is about 60 times greater for the extreme scenario than 

the baseline scenario. The number of people in need of short-term shelter increased by 

12 for the extreme scenario.  

6.1.7 Hurricane Irene (1999) 

Irene made landfall as a category 1 storm on October 15, 1999. The Keys and the 

Southern Florida mainland were impacted by Irene (Figure 6.19). After a near miss with 

Hurricane Floyd, which was expected to make landfall as a category 4, people did not 

adequately prepare for Irene because of its minimal strength (Barnes 2007). The majority 

of damages were caused by heavy rains and flooding (Barnes 2007). Most South 

Florida cities reported rainfall amounts of at least 25.4 cm (10 in.) (Barnes 2007). A total 

of 8 deaths and $800 million in damages were reported (Barnes 2007). 

6.1.7.1 Building Damage by Count 

Residential buildings were mostly left undamaged for all scenarios (Figure 

6.20a). The number of undamaged buildings decreased by 14% from the baseline 

scenario to the extreme scenario. The number of buildings in the minor and moderate 

damage categories are greater than for storms such as Georges and Mitch. 
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Figure 6.19. Storm track for Hurricane Irene 
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Figure 6.20. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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The number of buildings in the minor (moderate) damage category is about 13 (35) 

times greater in the extreme scenario as compared to the baseline. There was a 

significant increase in the number of buildings in the destruction category between the 

baseline and extreme scenarios (from 1 to 6,628). 

 The majority of commercial buildings remained in the no damage category 

(Figure 6.20b). The number of buildings in the no damage category decreased by 19% 

from the baseline to the extreme scenario. There were ~35,000 buildings in the minor 

and moderate damage categories for the extreme scenario. For the severe damage 

category, the number of buildings increased from 22 (baseline) to 11,629 in the extreme 

scenario. 

 

6.1.7.2 Building Economic Estimated Losses  

 Residential occupancy types experience greater economic losses than 

commercial occupancy types (Figure 6.21a). In the baseline scenario, residential 

building economic losses are approximately $1.5 billion and increase to $16.6 billion in 

the extreme scenario. Commercial building losses increase from $85 million to 

approximately $3.7 billion. Economic losses for all occupancy losses are approximately 

$1.6 billion for the baseline scenario and increase to approximately $21.5 billion in the 

extreme scenario.  
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Figure 6.21. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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6.1.7.3 Shelter Needs and Requirements 

 Shelter needs for populations affected by Irene greatly increased as the intensity 

of the scenarios increased (Figure 6.21b). The number of displaced households for the 

baseline scenario increased from about 3,000 to about 80,000 for the extreme scenario. 

Under the extreme scenario the number of people in need of short-term shelter was 25 

times greater than for the baseline scenario.   

 

 

6.1.8 Hurricane Charley (2004) 

 

On August 13, 2004, Hurricane Charley made landfall in Punta Gorda on the 

southwestern coast of Florida as a category 4 storm (Figure 6.22). Charley initially made 

landfall at 3:45 p.m. and then quickly crossed central Florida and reached Daytona 

Beach by midnight (Barnes 2007). The pressure dropped to 941 mb and sustained winds 

were recorded to have exceeded 64 m s
-1

 (145 mph) (Barnes 2007). Charley was a small 

storm with an eye diameter of 8 km (5 mi) (Barnes 2007). Consequently, winds were the 

main cause of damage from Charley (Barnes 2007). Those impacted by Hurricane 

Charley compared the damage it caused to the damage caused by Hurricane Andrew 

(Barnes 2007). An estimated 1 million people lived within ~48 km (30 mi) of where 

Hurricane Charley made landfall (Barnes 2007). 25 of Florida’s 67 counties were 

declared disaster areas (Barnes 2007). Charley caused approximately $15 billion in 

damages and 33 deaths (Barnes 2007). 
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6.1.8.1 Building Damage by Count 

 Charley caused significant damage to residential buildings in the moderate and 

extreme scenarios (Figure 6.23a). The number of buildings in the no damage category 

decreased by 24% from the baseline to the extreme scenario. The number of buildings in 

the minor damage category were about 5 times greater for the extreme scenario than the 

baseline scenario. The number of buildings in the moderate damage category increased 

from a baseline of about 40,000 to ~450,000 in the extreme scenario. The number of 

buildings in the severe damage category were about 25 times greater for the extreme 

scenario than the baseline scenario. The number of buildings in the destruction category 

increased from about 6,000 in the baseline scenario to ~370,000 in the extreme scenario.  

 Under baseline conditions, the majority of commercial buildings experienced no 

damage (Figure 6.23b). There is a 24% decrease from the baseline to extreme scenario in 

the number of buildings in the no damage category. For the extreme scenario, about 

44,000 buildings were severely damaged, while 22,000 experienced minor damage, 

32,000 experienced moderate damage, and 9,000 were destroyed.    

 

6.1.8.2 Building Economic Estimated Losses  

 Economic losses for residential occupancy types increase from about $3.3 billion 

in the baseline scenario to about $86 billion in the extreme scenario (Figure 6.24a). 

Commercial occupancy types experience losses of around $400 million in the baseline 

scenario. Those losses increase to about $16 billion in the extreme scenario. For all  
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Figure 6.22. Storm track for Hurricane Charley 
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Figure 6.23. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.24. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

 

a. 

b. 

(+15%) 

(+15%) 
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occupancy types, baseline scenario losses are almost $4 billion and increase to about 

$108 billion in the extreme scenario. 

 

6.1.8.3 Shelter Needs and Requirements 

The number of displaced households and people in need of short-term shelter 

greatly increased between the baseline and extreme scenarios (Figure 6.24b). Displaced 

households increased from ~13,000 to almost 600,000 in the extreme scenario. The 

number of people in need of short-term shelter is 45 times greater in the extreme 

scenario than in the baseline scenario.   

 

 

 

6.1.9 Hurricane Frances (2004) 

 

Hurricane Frances made landfall as a category 2 in Martin County on September 

5, 2004 (Figure 6.25). It moved to the northwest across Florida and into the Gulf of 

Mexico (Barnes 2007). Frances made a second landfall as a tropical storm along 

Florida’s Big Bend region (Barnes 2007). The storm was approximately twice the size of 

Hurricane Charley (Barnes 2007). Peak wind gusts of 48 m s
-1

 (108 mph) were recorded 

in Fort Pierce and peak gusts between 38-42 m s
-1

 (85-95 mph) were recorded in 

surrounding areas (Barnes 2007). There were measurements of up to 40.6 cm (16 in.) of 

rain in some areas and 23 tornadoes were reported (Barnes 2007). Frances is estimated to 

have caused $9 billion in damages (Barnes 2007). 
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6.1.9.1 Building Damage by Count 

 The majority of residential buildings experienced no damage (Figure 6.26a). For 

the minor damage category, there was a 243% increase from the baseline scenario to the 

extreme scenario. Significant increases occurred in the severe and destruction categories. 

The severe damage category increased from 347 in the baseline scenario to 129,483 in 

the extreme scenario. For the destruction damage category, there was an increase from 

69 to 106,010 in the extreme scenario.   

 The majority of commercial buildings experienced no damage (Figure 6.26b). 

For the no damage category, the number of buildings decreased by 11% in the extreme 

scenario. The most significant increases were observed in the severe damage and 

destruction categories. For the severe damage category, 119 buildings were damaged in 

the baseline scenario and this increased to 19,047 in the extreme scenario. Two buildings 

experienced were destroyed under baseline conditions and this increased to 2,057 under 

the extreme scenario.   

 

6.1.9.2 Building Economic Estimated Losses  

Residential occupancy types experienced greater economic losses than 

commercial occupancy types (Figure 6.27a). Under the baseline scenario, residential 

economic losses were about $2.2 billion. Residential economic losses increased to 

approximately $33 billion under the extreme scenario. Commercial economic losses for 

the baseline scenario are about $150 million and the losses increase to about $6.5 billion  
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Figure 6.25. Storm track for Hurricane Frances 
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Figure 6.26. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.27. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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under the extreme scenario. Total economic losses for all occupancy types are $2.4 

billion under baseline conditions and $42 billion under extreme conditions. 

 

6.1.9.3 Shelter Needs and Requirements 

 Shelter needs greatly increased between the baseline scenario and extreme 

scenarios (Figure 6.27b). The number of displaced households under baseline conditions 

is 3,352 and it is 227,569 under the extreme scenario. There are 850 people in need of 

short-term shelter for the baseline scenario and 56,740 people under the extreme 

scenario. 

 

 

6.1.10 Hurricane Ivan (2004) 

 

Hurricane Ivan made landfall along the Alabama-Florida border on September 

16, 2004. Ivan was a category 3 at landfall and it continued to move northeastward 

towards Virginia (Figure 6.28). After reaching the Atlantic, Ivan became an extratropical 

low and it was steered southward towards Florida (Barnes 2007). The remnants of Ivan 

crossed southern Florida and made it into the Gulf of Mexico where it regained tropical 

storm status and made landfall in Louisiana (Barnes 2007). The highest peak gust 

recorded at landfall was 47 m s
-1

 (107 mph) at Pensacola Naval Air Station (Barnes 

2007). Ivan produced 18 tornadoes and heavy rainfall which resulted in flooding for 

most regions in Ivan’s path (Barnes 2007). The storm was responsible for 14 deaths and 

$8 billion in damages in Florida (Barnes 2007). 
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6.1.10.1 Building Damage by Count 

For all three scenarios, the majority of residential buildings experienced no 

damage (Figure 6.29a). When compared to no damage category, the number of buildings 

in the other damage categories are insignificant. Minor damage increased by 33% from 

the baseline scenario to the extreme scenario. For the moderate, severe, and destruction 

damage categories, the number of buildings greatly increased from the baseline to the 

extreme scenario. The largest increase occurred in the destruction category where the 

number of buildings increased from 109 in the baseline scenario to 7,709 in the extreme 

scenario. The majority of commercial buildings were in the no damage category (Figure 

6.29b). The severe damage category experienced the greatest difference between the 

baseline and extreme scenarios. Under baseline conditions, there were 145 buildings in 

the severe damage category and this increased to 2,206 under the extreme scenario.     
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Figure 6.28. Storm track for Hurricane Ivan 
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Figure 6.29. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Type 

a. 

b. 

(+15%) 

(+15%) 
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Figure 6.30. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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6.1.10.2 Building Economic Estimated Losses  

 Economic losses for residential occupancy losses were about $500 million under 

baseline conditions (Figure 6.30a). Losses increase to $3 billion under extreme 

conditions. Commercial economic losses were approximately $60 million for the 

baseline scenario and are about ten times greater for the extreme scenario. The losses for 

all occupancy types for the baseline scenario were approximately $600 million and $3.8 

billion for the extreme scenario.    

 

6.1.10.3 Shelter Needs and Requirements 

 Hurricane Ivan greatly affected the shelter needs of the population (Figure 

6.30b). The number of displaced households increased from 1,196 to 20,926 as the 

intensity of scenarios increased from the baseline to extreme. The number of people in 

need of short-term shelter in the baseline scenario was 315 and it increased to 5,373 in 

the extreme scenario.  

 

6.1.11 Hurricane Wilma (2005) 

 

Hurricane Wilma made landfall on October 24, 2005, making it the second latest 

storm to make a U.S. landfall during a hurricane season (Blake et al. 2011). Wilma made 

landfall as a category 3 in Everglades City in Southwest Florida (Figure 6.31). With an 

eye diameter of 96 km (60 mi), Wilma greatly impacted Southern Florida as it crossed 

towards the Atlantic (Barnes 2007). Storm surge caused by Wilma led to significant 

flooding (Barnes 2007). Power outages affected approximately 6 million people making 
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it the most widespread outage in the state’s history (Barnes 2007). Wilma was 

responsible for 6 deaths and $12 billion in damages (Barnes 2007).   

 

6.1.11.1 Building Damage by Count 

 Although the majority of buildings experienced no damage, Wilma caused minor 

to severe damages to buildings in all three scenarios (Figure 6.32a). The number of 

buildings in the no damage category decreased by 12% in the extreme scenario. The 

number of buildings in the minor damage category decreased by 7% lower in the 

baseline scenario. Moderate damage increased by 200% from the baseline to the extreme 

scenario. The number of buildings in the destruction category increased from 1,041 

(baseline) to 221,948 (extreme). 

 The majority of commercial buildings remained undamaged in all scenarios 

(Figure 6.32b). Under baseline conditions, ~28,000 buildings experienced minor damage 

and only about 50 buildings were classified as destroyed. Buildings in the minor damage 

category decreased by 28% in the extreme scenario.  
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Figure 6.31. Storm track for Hurricane Wilma 
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Figure 6.32. Building Damage by Count for (a) Residential and (b) Commercial 

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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In the extreme scenario there are 125 times more buildings that were destroyed than in 

the baseline scenario.        

 

6.1.11.2 Building Economic Estimated Losses  

 Economic losses were significant for both residential and commercial occupancy 

types under baseline conditions (Figure 6.33a). Residential buildings experienced 

economic losses of approximately $8 billion under baseline conditions and about $85 

billion in losses under the extreme scenario. The difference in losses between the 

baseline and extreme scenarios for commercial buildings isn’t as significant as the 

difference for residential buildings. Commercial building losses in the baseline scenario 

were $1.4 billion and $18 billion in the extreme scenario. For all occupancy types, losses 

were almost $10 billion under baseline conditions and $109 billion under extreme 

conditions.  

 

6.1.11.3 Shelter Needs and Requirements 

 A significant number of Florida’s population were displaced from their homes or 

placed in shelters as a result of Hurricane Wilma (Figure 6.33b). Hurricanes Ivan and 

Wilma made landfall as a category 3 storm, however, a greater number of people had 

shelter needs and requirements for Wilma. Under baseline conditions, the number of 

displaced households was 37,977 and the number of people in need of short-term shelter 

was 10,909. This increased to 640,787 and 160,343, respectively, in the extreme 

scenario.  
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Figure 6.33. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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6.1.12 Tropical Storm Fay (2008) 

 

Tropical Storm Fay formed on August 14, 2008 and made its first Florida 

landfall over Key West on August 18 (Figure 6.34). The next day, TS Fay made its 

second landfall in Southwest Florida, near Cape Romano (Beven and Brown 2009). On 

August 20, TS Fay passed Cape Canaveral and entered the Atlantic (Beven and Brown 

2009). The storm made a third landfall along the Flagler-Volusia county lines on August 

23 (Beven and Brown 2009). The storm made landfall a total of eight times, four of 

those landfalls were in Florida (Beven and Brown 2009). The strongest peak gust 

recorded was 34 m s
-1

 (78 mph) and up to 70.2 cm (27.65 in.) of rain were reported in 

Melbourne (Beven and Brown 2009). The storm also produced 19 tornadoes and 

minimal storm surge (Stewart and Beven 2009). In Florida, TS Fay was responsible for 

five deaths and approximately $195 million in damages (Stewart and Beven 2009).  

 

6.1.12.1 Building Damage by Count 

 The majority of residential buildings experienced no damage or only minor 

damage in all scenarios (Figure 6.35a). The largest differences between the baseline and 

extreme scenario are in the moderate, severe, and destruction damage categories. 

Moderate damage increased from 87 buildings in the baseline scenario to 14,726 in the 

extreme scenario. Only four buildings were severely damaged under the baseline 

scenario as compared to 491 buildings in the extreme scenario. For baseline conditions, 

no buildings were in the destruction category. Under extreme conditions, 228 buildings 

were in the destruction category.   
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Figure 6.34. Storm track for Tropical Storm Fay 
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Figure 6.35. Building Damage by Count for (a) Residential and (b) Commercial  

Occupancy Types 

a. 

b. 

(+15%) 

(+15%) 
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Commercial buildings were mostly in the no damage category for all scenarios 

(Figure 6.35b). The number of buildings with minor damage was almost 13 times greater 

in the extreme scenario than the baseline. Moderate damage increased from 7 buildings 

in the baseline scenario to 1,955 in the extreme scenario. No buildings were classified 

under the severe and destruction damage categories for the baseline scenario and less 

than 200 buildings are classified under severe and destruction damage categories for the 

extreme scenario.     

 

6.1.12.2 Building Economic Estimated Losses  

 Economic losses for Tropical Storm Fay were not as significant as losses caused 

by other storms such as Hurricanes Andrew or Charley (Figure 6.36a). Loss estimates 

were lower for TS Fay when compared to TS Mitch. Residential losses were 

approximately $80 million for baseline conditions and approximately $2 billion under 

extreme conditions. For commercial buildings, losses were $2.8 million under baseline 

conditions and increased to approximately $130 million in extreme conditions. For all 

occupancy types, losses were approximately $83 million for the baseline scenario and 

increased to $2.1 billion for the extreme scenario.   

 

6.1.12.3 Shelter Needs and Requirements 

 TS Fay had a minimal impact on shelter needs and requirements (Figure 6.36b). 

Under the baseline scenario, there were no displaced households and no people in need 

of short-term shelter. Under the extreme scenario, the number of displaced households 
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Figure 6.36. (a) Building Economic Estimated Losses based on Occupancy Type and (b) 

Shelter Needs and Requirements 

a. 

b. 

(+15%) 

(+15%) 
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increased to 2500 and the number of people in need of short-term shelter increased to 

637.   

 

 

 

6.2 Conclusion 

  

 The case study storms in this analysis represented the past and potential future 

hurricane impacts experienced by Florida. Using the HAZUS-MH Hurricane Model, 

building damage, economic losses, and social impacts from hurricane winds for all three 

scenarios were estimated based on Florida's growing population and increasing housing 

and property development. Storms classified as major hurricanes were expected to have 

the greatest impact as their intensity was increased in the climate change scenarios. 

However, results show that storm intensity is not an accurate indicator of building and 

economic losses. The values for building damage, economic losses, and social impacts 

for all case study storms are summarized in Tables 6.1-6.3.  

Residential buildings typically experienced more damage than commercial 

buildings. Major hurricanes generally caused the greatest building damages in Florida. 

Damage values for the extreme scenario greatly increased from the baseline scenario for 

major hurricanes. All major hurricanes followed this trend except for Hurricane Ivan. 

Although Ivan was a category 3 at landfall, the values for damage categories (except for 

no damage category) were insignificant. Economic losses for all occupancy types for 

Ivan under the extreme scenario were approximately $4 billion. Hurricane Wilma, which 

was also category 3 at landfall, experienced losses of almost $110 billion under the  
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Storm Name Residential Building Damage by Count Economic Losses Shelter Needs 

 
No 

Damage 
Minor Moderate Severe Destruction Residential Commercial All 

Displaced 

Households 

Short 

Term 

Shelter 

Miami 1926 
4,776,418 

 

 

642,092 

 

 

480,003 

 

233,020 

 

77,903 

 

 

59,039,383.34 

 

16,356,432.73 

 

 

80,508,243.26 

 

453,323 

 

 

133,368 

 

Labor Day 1935 
6,122,197 

 

64,655 

 

14,716 

 

2,960 

 

4,909 

 

2,313,824.61 

 

335,505.68 

 

2,738,871.09 

 

6,695 

 

1,572 

 

Agnes 
6,209,055 

 

365 

 

16 

 

0 

 

0 

 

10,381.55 

 

332.40 

 

10,824.99 

 

0 

 

0 

 

Andrew 
5,861,084 

 

137,854 

 

113,782 

 

68,182 

 

28,535 

 

16,490,143.02 

 

4,218,721.89 

 

21,980,109.57 

 

115,180 

 

32,746 

 

Georges 
6,144,896 

 

51,129 

 

11,501 

 

1,359 

 

552 

 

1,360,910.21 

 

150,537.18 

 

1,552,477.29 

 

2,447 

 

618 

 

Mitch 
6,204,456 

 

4,666 

 

303 

 

12 

 

0 

 

152,896.99 

 

7,241.56 

 

161,787.83 

 

52 

 

12 

 

Irene 
6,154,391 

 

48,452 

 

6,474 

 

119 

 

1 

 

1,497,746.45 

 

85,356.41 

 

1,600,781.56 

 

3,018 

 

834 

 

Charley 
6,038,361 

 

111,798 

 

41,714 

 

11,654 

 

5,910 

 

3,310,680.52 

 

412,010.02 

 

3,894,417.06 

 

13,533 

 

3,536 

 

Frances 
6,098,319 

 

97,501 

 

13,202 

 

347 

 

69 

 

2,218,823.98 

 

149,803.50 

 

2,411,232.60 

 

3,352 

 

850 

 

Ivan 
6,164,591 

 

36,824 

 

7,534 

 

379 

 

109 

 

516,585.78 

 

59,155.00 

 

597,147.84 

 

1,196 

 

315 

 

Wilma 
5,735,003 

 

361,481 

 

105,606 

 

6,306 

 

1,041 

 

8,142,415.75 

 

1,415,574.35 

 

9,980,630.59 

 

37,977 

 

10,909 

 

Fay 
6,206,932 

 

2,414 

 

87 

 

4 

 

0 

 

79,019.30 

 

2,775.07 

 

83,216.06 

 

0 

 

0 

 

 

Table 6.1. Summary of building damage, economic losses, and shelter needs for all case study storms under the baseline 

(current) scenario.
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Storm Name Residential Building Damage by Count Economic Losses Shelter Needs 

 
No 

Damage 
Minor Moderate Severe Destruction Residential Commercial All 

Displaced 

Households 

Short 

Term 

Shelter 

Miami 1926 
4,635,393 

 

334,382 

 

391,440 

 

413,912 

 

434,310 

 

127,252,050.14 

 

34,470,861.55 

 

172,514,344.87 

 

1,008,233 

 

291,731 

 

Labor Day 

1935 

5,179,103 

 

240,168 

 

235,863 

 

232,846 

 

321,457 

 

76,443,337.02 

 

13,472,234.87 

 

94,847,784.32 

 

538,961 

 

131,219 

 

Agnes 
6,206,447 

 

2,744 

 

240 

 

5 

 

1 

 

45,257.92 

 

2,109.18 

 

48,005.25 

 

24 

 

6 

 

Andrew 
5,548,865 

 

148,685 

 

125,727 

 

165,450 

 

220,710 

 

64,186,458.19 

 

19,553,757.30 

 

89,334,519.51 

 

517,187 

 

157,635 

 

Georges 
6,043,209 

 

120,549 

 

33,492 

 

8,225 

 

3,961 

 

3,701,840.01 

 

547,924.64 

 

4,412,376.96 

 

12,764 

 

3,271 

 

Mitch 
6,194,471 

 

13,533 

 

1,401 

 

32 

 

0 

 

445,114.27 

 

22,886.17 

 

472,696.88 

 

426 

 

104 

 

Irene 
5,936,825 

 

227,633 

 

43,572 

 

1,202 

 

205 

 

4,571,999.28 

 

486,975.84 

 

5,192,398.06 

 

15,887 

 

4,464 

 

Charley 
5,302,748 

 

424,285 

 

230,312 

 

140,974 

 

111,117 

 

33,767,815.28 

 

5,547,501.32 

 

41,492,949.77 

 

225,412 

 

56,070 

 

Frances 
5,817,805 

 

196,683 

 

122,315 

 

52,565 

 

20,069 

 

12,249,585.44 

 

2,391,129.17 

 

15,560,841.63 

 

67,412 

 

16,583 

 

Ivan 
6,135,282 

 

47,087 

 

21,270 

 

4,178 

 

1,620 

 

1,234,748.38 

 

182,345.55 

 

1,501,076.36 

 

5,465 

 

1,385 

 

Wilma 
5,319,361 

 

395,615 

 

288,919 

 

148,625 

 

56,918 

 

37,589,620.32 

 

8,320,275.96 

 

48,588,231.25 

 

252,779 

 

64,053 

 

Fay 
6,193,950 

 

14,509 

 

950 

 

23 

 

4 

 

443,925.10 

 

16,412.91 

 

466,835.05 

 

102 

 

20 

 

 

Table 6.2. Summary of building damage, economic losses, and shelter needs for all case study storms under the moderate 

(15%) scenario.  
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Storm 

Name 
Residential Building Damage by Count Economic Losses Shelter Needs 

 
No 

Damage 
Minor Moderate Severe Destruction Residential Commercial All 

Displaced 

Households 

Short 

Term 

Shelter 

Miami 

1926 

4,493,427 

 

234,076 

 

252,898 

 

421,768 

 

807,269 

 

179,199,810.05 

 

46,141,953.69 

 

240,370,158.10 

 

1,380,477 

 

387,120 

 

Labor 

Day 

1935 

4,963,143 

 

218,408 

 

 210,116 

 

267,102 

 

550,667 

 

108,252,563.52 

 

20,119,415.10 

 

 

136,214,987.70 

 

791,063 

 

 

196,962 

 

Agnes 
6,188,329 

 

17,125 

 

3,689 

 

214 

 

80 

 

203,748.55 

 

22,779.77 

 

234,965.29 

 

449 

 

117 

 

Andrew 
5,406,226 

 

149,638 

 

119,858 

 

167,583 

 

366,132 

 

90,487,409.27 

 

28,641,612.74 

 

127,657,160.58 

 

718,620 

 

221,726 

 

Georges 
5,816,709 

 

260,186 

 

90,671 

 

24,849 

 

17,022 

 

9,623,834.09 

 

1,643,375.59 

 

11,798,098.04 

 

43,731 

 

11,250 

 

Mitch 
6,138,522 

 

60,902 

 

9,757 

 

228 

 

28 

 

1,474,147.53 

 

108,940.16 

 

1,607,341.99 

 

3,292 

 

842 

 

Irene 
5,302,476 

 

614,725 

 

253,239 

 

32,369 

 

6,628 

 

16,604,910.87 

 

3,723,375.52 

 

21,562,466.55 

 

78,864 

 

21,893 

 

Charley 
4,577,278 

 

525,293 

 

450,099 

 

287,976 

 

368,791 

 

86,014,767.94 

 

16,096,691.89 

 

108,613,465.63 

 

598,029 

 

151,220 

 

Frances 
5,465,823 

 

334,170 

 

173,951 

 

129,483 

 

106,010 

 

33,281,367.94 

 

6,453,370.51 

 

42,266,284.45 

 

227,569 

 

56,740 

 

Ivan 
6,099,919 

 

48,909 

 

37,423 

 

15,477 

 

7,709 

 

3,061,294.81 

 

511,723.07 

 

3,814,905.06 

 

20,926 

 

5,373 

 

Wilma 
5,020,899 

 

337,725 

 

316,443 

 

312,423 

 

221,948 

 

85,188,745.69 

 

18,169,649.13 

 

109,381,299.39 

 

640,787 

 

160,343 

 

Fay 
6,087,055 

 

106,937 

 

14,726 

 

491 

 

228 

 

1,936,121.08 

 

129,198.25 

 

2,118,897.75 

 

2,500 

 

637 

 

 

Table 6.3. Summary of building damage, economic losses, and shelter needs for all case study storms under the extreme (35%) scenario. 
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extreme scenario for all occupancy types. A similar trend can be seen for shelter needs 

and requirements values between Ivan and Wilma where values are greater for Wilma 

than for Ivan. This may be a result of the location of landfall for both storms. Hurricane 

Ivan made landfall in the Florida Panhandle, while Wilma made landfall in South 

Florida. Wilma impacted a more populated region and affected major cities such as Fort 

Lauderdale and Miami.   

Hurricanes Irene and Frances were not major hurricanes when they made 

landfall, yet they greatly affected the regions where they made landfall. Hurricane Irene 

made landfall as a category 1 storm. It had a significant impact on the Keys and then 

made landfall in southwest Florida. Irene also had an impact on southeast Florida. 

Hurricane Frances was a category 2 storm when it made landfall in southeastern Florida. 

Frances crossed central Florida and then made landfall in the Big Bend region. Both 

storms made landfall in regions that are highly populated. Under extreme scenario 

conditions, Irene caused minor and moderate damages to both residential and 

commercial buildings. Frances caused damages in all the damage categories. The 

increases in scenario intensity made a difference in the impact Frances had on South 

Florida. Economic losses for all occupancy types under extreme conditions were 

approximately $22 billion for Irene and $42 billion for Frances. For Irene, the number of 

displaced households is approximately 80,000 under extreme conditions and about 

20,000 people are in need of short-term shelter. Shelter needs were higher for Frances. 

Approximately 200,000 households were displaced and over 50,000 people were in need 

of short-term shelter under the extreme scenario. Building damage, economic loss, and 
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shelter needs were higher for Irene and Frances than for Agnes (category 1) and Georges 

(category 2). Although Agnes and Georges were of a similar intensity, they had less of 

an impact because they made landfall in less populated regions.       

The 2004 hurricane season was extremely active for Florida. In a six week 

period, Hurricanes Charley, Frances, Ivan and Jeanne all made landfall in Florida 

(Barnes 2007). Out of those four storms, only Ivan did not cross through central Florida. 

Polk County is located in central Florida (Figure 3.1). It stands out among the counties in 

central Florida because of its track-derived return periods. The track-derived return 

periods from Objective 1 for Hurricanes Only (Figure 4.7) and for Major Hurricanes 

Only (Figure 4.9) are lower for Polk County than for its surrounding counties. The 2004 

storm tracks partially validate the calculated track-derived return periods for Polk 

County. According to Barnes (Barnes 2007), the four storms caused damages that totaled 

$20.5 billion in losses. Hurricane Jeanne was not included as a case study in this 

objective. The total building economic losses under baseline conditions for the three 

storms (Charley, Frances, and Ivan) were approximately $7 billion. Under the extreme 

scenario, the economic losses increased to approximately $155 billion. There were 

approximately 846,000 displaced households and 213,000 people in need of short-term 

shelter as a result of Charley, Frances, and Ivan under the extreme scenario.  

The percent increases in building damages, economic losses, and shelter needs 

and the percent increase in TC intensity were compared in Figures 6.37a to 6.37c. The 

scatterplots help determine which storms experience the greatest increase in values  
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Figure 6.37. Comparison of percent increase in (a) building damage, (b) economic 

losses, and (c) shelter needs versus percent increase in TC intensity. 
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Figure 6.37. Continued.  

 

 

 

between the baseline and moderate intensities and the baseline and extreme intensities. 

For building damage, weaker storms such as Agnes and Fay had a greater percent 

increase between the baseline and extreme intensity scenarios (Figure 6.37a). The 

percent increases correspond with the histograms for the storms which had the majority 

of the damage values in the no damage category (Figures 6.8a and 6.35a). However, the 

Labor Day hurricane had the highest percent increase for the 15% intensity increase. For 

economic losses, major hurricanes such as the Labor Day hurricane and Charley had the 

greatest percent increases for both the 15% and 35% intensity increases (Figure 6.37b). 

These storms affected regions in southern Florida that are densely populated. The Labor 

Day hurricane also had the greatest percent increase in shelter needs (Figure 6.37c). TS 
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Mitch and Hurricane Frances followed the Labor Day hurricane with the second and 

third highest percent increase values. The changes in shelter needs are the most sensitive 

to intensity increases for the Labor Day hurricane, TS Mitch, and Hurricane Frances. 

The storms vary in category but all made landfall in densely populated areas throughout 

central and southern Florida. The population of the landfall locations may account for 

the storms’ percent increase values. The Labor Day hurricane is among the highest 

values for all scatterplots. This storm made landfall as a category 5 and there would be 

serious implications if a similar yet more intense storm were to make landfall in Florida 

in the future. 

           The boxplots show the spread of the ranges of the data for the moderate and 

extreme intensity scenarios. The baseline intensity scenario was not included since the 

values are all zero. For building damage, the average percent increase is 350% and the 

range of increase is 100-800% for the moderate (15%) intensity scenario. For the 

extreme (35%) intensity scenario, the average increase is 740% and the spread is 100-

1700% (Figure 6.38a). For economic losses, the moderate intensity scenario had an 

average of 390% and a spread of 200-650%. The extreme intensity scenario had an 

average of 1400% and a range of 300-2800% (Figure 6.38b). The average for the 

moderate intensity scenario for shelter needs is 406% and the range of the percent 

increases is from 0-800%. 
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Figure 6.38. Boxplots of percent increase in (a) building damage, (b) economic losses, 

and (c) shelter needs versus percent increase in TC intensity.  
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Figure 6.38. Continued.  
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were subjectively chosen to display the distribution of storm intensities. These 12 

storms, however, may not be fully representative of all storms that have made landfall in 

Florida. Objective 3 only examines the influence of a warming climate on TC intensity. 

The intensity scenarios were subjectively chosen based on the findings from Objective 2. 

Changes in TC frequency and track are not observed in this analysis. The results from 

the analysis are not fully representative of the effects of climate change on hurricane 

behavior. The findings may not be generalizable to other regions but illustrate how 

storms influenced by climate change may affect Florida. 

Location of landfall significantly determines a storm’s impact. A storm’s 

category does not accurately determine the impact it can have on a region. The greatest 

effects of a storm will be experienced in densely populated areas in spite of climatic 

changes. The majority of case study storms in this analysis made landfall in South 

Florida. South Florida is a highly populated region that continues to grow and develop. 

Regardless of what changes in storm intensity occur in the future, the population of 

South Florida will remain extremely vulnerable to storm impacts as a result of its 

continuous growth. 
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CHAPTER VII 

CONCLUSION 

 

7.1 Summary  

In this study, the potential influence of climate change on hurricane 

characteristics and impacts was analyzed for Florida. In Objective 1, track-derived and 

wind-derived return periods were calculated for all Florida counties. Results were 

categorized into four groups; all storms, tropical storms only, hurricanes only, and major 

hurricanes only. The track-derived return periods reflect the number of times a storm has 

crossed through a county. Wind-derived return periods account for the spatial extent of a 

storm’s wind field. Both track-derived and wind-derived return periods show southern 

Florida as the region that is most prone to TC landfalls and winds for all categories. Risk 

factors were calculated for all counties with South Florida having the highest risk factor 

values. Results from Objective 1 show that south Florida counties have the highest risk 

of experiencing TC landfalls and wind impacts in the future based on past observations.     

The effects of a warming climate on hurricane behavior and trends remain a 

contested topic in the literature. Objective 2 examined the role of climate change in 

future TC frequency, intensity, and tracks. Potential changes in TC behaviors may be 

attributed to anthropogenic climate change or to natural variability. Globally, storm 

frequency has not changed significantly since 1970 (Knutson et al. 2010). In the Atlantic 

basin, trends of increasing storm frequency have been observed. However, the increases 

are likely attributed to the increased storm counts as a result of a storm undercount in the 
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pre-satellite era (Landsea 2007). An increase in short duration storm counts may have 

also biased the trend of storm frequency for the Atlantic basin (Landsea et al. 2010). 

Although a variety of models have been used to project a change in storm frequency, 

there is no consensus among them. Models predict an increase in the frequency of the 

most intense storms for the Atlantic basin (Bender et al. 2010; Knutson et al. 2010). TC 

frequency is expected to either remain the same or to decrease (Knutson et al. 2010).  

According to theory and climate model projections, an increase in SST will likely 

result in an increase in TC intensity (Emanuel 2005a). It is still difficult to determine 

whether increases in intensity can be attributed to a warming climate or if the trends are 

a result of natural variability. Model simulations project mean maximum wind speed to 

increase globally by 2-11% by 2100 (Knutson et al. 2010). According to Pielke (2007), 

global TC intensity is projected to increase by 0-18 % by 2050 and by 0-36% by 2100. 

Bender et al. (2010) showed an increase in storm tracks for category 4 or 5 

hurricanes in the western Atlantic (between 20°N and 40°N). However, model 

projections show that large-scale changes in storm tracks are not expected to occur 

(Knutson et al. 2010). Storm tracks are not expected to vary as a result of climate change 

(Knutson et al. 2010). Natural variability in TC frequency, intensity, and tracks can be 

attributed to atmospheric oscillations. Ocean-atmosphere circulation patterns can 

influence SST, vertical wind shear, and other factors that influence TC activity, 

intensity, and tracks (Goldenberg et al. 2001).  

Pielke (2007) examines the economic and societal impacts of future influences of 

climate change on TCs. He used an increase of 18% and 36% for the sensitivity analysis 
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in his study (Pielke 2007). Based on the findings in the literature, three hurricane 

intensity scenarios were created for Objective 3. A baseline scenario reflecting current 

climate conditions, a moderate scenario reflecting a 15% increase in storm intensity and 

an extreme scenario with a 35% storm intensity increase were used in Objective 3.    

In the final objective, twelve case storms were chosen to simulate how climate 

change may potentially affect hurricane damage and loss for Florida. Using the HAZUS-

MH Hurricane Model, each case storm was run under three storm intensity scenarios. 

The baseline scenario simulated what would happen if the storm were to make landfall 

under current conditions. The moderate scenario examines impacts under a 15% increase 

in storm intensity. Under the extreme scenario, storm intensity is increased by 35%. 

Results show that landfall location plays a significant role on the impacts caused by TCs. 

Storm intensity at landfall also determined the degree of damages and losses caused by 

the storm. Based on the boxplots, the spread of percent values increases as storm 

intensity increases for building damage, economic losses, and shelter needs. The spread 

in the data shown in the scatterplots and boxplots is storm specific. Changes in TC 

intensity as a result of climate change will have the greatest impact on economic losses.  

In Objective 1, Florida’s hurricane event risk was defined by the calculated 

return periods. The counties most likely to experience TC landfalls were found in 

southeastern Florida. Based on the damage and loss values obtained from Objective 3, 

Florida’s vulnerability is dependent on where a storm makes landfall. Damage and loss 

values will be greater in more populated and developed areas. Outcome risk is the 

product of event risk and vulnerability. Case study storms were analyzed to determine 
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the effect of intensified storms in Florida. Based on its landfall history and high 

population, southeastern Florida has the highest outcome risk of intense landfalling 

storms.    

A storm can be classified as a major hurricane yet not cause as much damage or 

losses as a weaker storm if it made landfall in a less populated area. Although storm 

intensity can be used to predict the impact a storm will have at landfall, where it makes 

landfall is just as significant. Regardless of how TC intensity changes as a result of 

future climate change, regions that are densely populated will remain the most 

vulnerable to TC related damages and losses. 

 

7.2 Implications 

 The results of this study have various implications for regions vulnerable to 

hurricane landfalls. Climate change can potentially exacerbate hurricane impacts for 

regions, such as Florida, that already experience devastating effects from hurricanes. 

The hurricane seasons of 2004 and 2005 were record-breaking and significant for 

Florida. In 2004, there were 14 named storms, 9 of which became hurricanes and four of 

those made landfall in the U.S. (Kantha 2006). All four U.S. landfalling hurricanes made 

landfall in Florida within a six week period (Barnes 2007). The 2005 hurricane season 

was a record-breaking season. There were 27 named storms of which 14 became 

hurricanes (Anthes et al. 2006). Three of the fourteen hurricanes reached category 5 

(Katrina, Rita, Wilma) and all made a U.S. landfall. Hurricane Wilma made landfall in 

Florida as a category 3. Wilma was the last major hurricane to make landfall in the U.S 
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in October 2005. Complacency can result from such a gap between hurricane landfalls 

(Pielke Jr 1997). According to sociologists, the worst impacts of a hurricane are 

remembered by people for approximately seven years (Blake et al. 2011). Although 

Florida has been impacted by tropical storms, such as Fay, since Wilma, residents may 

perceive their risk to have decreased as a result of the large gap between landfalls. This 

complacency can result in a lack of preparedness and concern. 

The methodology used in this study can be applied to other hurricane prone 

regions. The application of a parametric wind field model may also provide a new 

perspective when examining the relationship between hurricanes and climate change 

since it has yet to be done by other studies.  

This study can benefit federal, state and local governments in evacuation 

decisions and disaster planning. Local governments are often in charge of issuing 

evacuation orders and the role of local emergency management is also important during 

disasters (Burby 2006). Emergency management consists of four major roles; hazard 

mitigation, emergency preparedness, emergency response and disaster recovery (Lindell 

2004). The Federal Emergency Management Agency (FEMA) provides funds to 

populations impacted by a natural disaster as well as mitigation funds in order to lessen 

the impact of natural disasters in areas that are vulnerable (Dynes 1992). Non-profit 

organizations such as the American Red Cross also provide vulnerable populations with 

resources to prepare and recover from an event (Lindell 2004). Information on how 

hurricane trends are expected to change in the future can help government, agencies and 

organizations in preparing for any changes in their actions.  
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Knowing how hurricanes will affect a certain area in the future can provide the 

public with the knowledge necessary to increase their preparedness (Lindell 2004). 

Hurricane preparedness and education can help increase awareness and could lead to 

informed decisions when faced with a storm (Lindell 2004).  

Disaster mitigation is important in preparing a vulnerable area for the possible 

effects of a natural hazard. Mitigation allows for the effects of threatening events to be 

lessened by preparing the public. As coastal populations continue to increase, the 

number of lives and properties at risk greatly increases as well (Dawson 2006). 

Understanding how climate change may affect future hurricane trends in vulnerable 

areas can play a vital role in protecting both property and lives. 

 

7.3 Limitations 

Limitations in this study include the use of hurricane data starting from 1900. 

Data from the pre-satellite era may result in an undercount of storms (Landsea 2007). 

This may result in an inaccurate number of storms included in the return period 

calculations. Storm data were collected for 12 case study storms for Objective 3. The 

data were obtained from different datasets. Central pressure and Rmax values were 

provided for storms that formed after 1988. For earlier storms, the values were 

calculated and may not be as accurate as the values collected from observations. 

HAZUS-MH Hurricane Model was used to estimate damages and losses in Objective 3. 

The model only considers changes in hurricane intensity and does not consider changes 

in frequency or track. Results do not include all storms and may not be a representative 
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sample of the effects of a warming climate. The intensity scenarios chosen for this study 

were subjectively selected and the results may be sensitive to those decisions. Although 

HAZUS-MH was an appropriate choice for the analysis performed in this study, the 

results from this study may not be precise for predicting the effects that storms will have 

on damages and losses. 

Future research could utilize the same methodology employed in this study to 

investigate hurricane impacts in other coastal states. The HAZUS-MH Hurricane Model 

could also be run for a larger number of storms to validate the results of this study.    

 

7.4 Conclusion 

Florida is one of the most vulnerable regions in the U.S. when it comes to TC 

impacts. The effects of a warming climate have the potential to devastate an already 

vulnerable region. Regardless of how climate change affects TC frequency, intensity, 

and track in the future, the population at risk of TC impacts will increase as cities across 

Florida continue to grow and develop. 
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