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ABSTRACT

Pursuit-evasion games reside at the intersection of game theory and optimal

control theory. They are often referred to as differential games because the dynamics

of the relative system are modeled by the pursuer and evader differential equations of

motion. Pursuit-evasion games diverge from traditional optimal control problems due

to the participation of multiple intelligent agents with conflicting goals. Individual

goals of each agent are defined through multiple cost functions and determine how

each player will behave throughout the game. The optimal performance of each

player is dependent upon how much knowledge they have about themselves, their

opponent, and the system. Complete information games represent the ideal case in

which each player can truly play optimally because all pertinent information about

the game is readily available to each player.

Player performance in a pursuit-evasion game greatly diminishes as informa-

tion availability moves further from the ideal case and approaches the most real-

istic scenarios. Methods to maintain satisfactory performance in the presence of

incomplete, imperfect, and uncertain information games is very desirable due to

the application of optimal pursuit-evasion solutions to high-risk missions including

spacecraft rendezvous and missile interception. Behavior learning techniques can be

used to estimate the strategy of an opponent and augment the pursuit-evasion game

into a one-sided optimal control problem. The application of behavior learning is

identified in final-time-fixed, infinite-horizon, and final-time-free situations. A two-

step dynamic inversion process is presented to fit systems with nonlinear kinematics
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and dynamics into the behavior learning framework for continuous, linear-quadratic

games. These techniques are applied to minimum-time, spacecraft reorientation,

and missile interception examples to illustrate the advantage of these techniques in

real-world applications when essential information is unavailable.
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CHAPTER I

INTRODUCTION

Pursuit-evasion (PE) games reside at the intersection of game theory and op-

timal control theory. More specifically, these scenarios fall within the confines of

differential games (DGs) because the dynamics of the relative system are modeled

by the pursuer and evader differential equations of motion. Differential games di-

verge from traditional optimal control problems (OCPs) due to the participation

of multiple intelligent agents with conflicting goals. Individual goals of each agent

are defined through multiple cost functions - or objective functions, or performance

indices - and determine how each player will behave throughout the game. Addi-

tionally, the dynamic constraint found in traditional OCPs is now being modified by

the control input of multiple players instead of a single agent. The concept of DGs

was widely publicized by Issacs when studying the homicidal chauffeur problem [1].

The optimal performance of each player is dependent upon how much knowledge

they have about themselves, their opponent, and the system. Traditionally, PE

games are investigated through computer-based simulations under the assumption

of a complete information game. In a complete information game, each player has

access to all relevant information pertaining to the game. This information includes

the exact differential equations governing the motion of each agent, the control input

of each agent, and the behavior model each agent has assumed. The behavior of each

player includes their objective and strategy. Player objectives are defined by the form

of their cost function and strategy is determined by the selection of gains found within
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the cost function. Complete information games represent the ideal case in which each

player can truly play optimally because all information about the game is readily

available. The more realistic cases, however, are subject to incomplete information,

imperfect information, and uncertain information.

Incomplete information games are those in which one or more key pieces of

information about the system is not known precisely. In most incomplete information

games, the behavior of an opponent is unknown. This could mean the evader is not

aware of the pursuer’s strategy or vice versa. Most often, neither player is aware

of their opponent’s strategy. When an opponent’s strategy is unknown, a player

is unable to predict how that opponent will behave and therefore must play more

conservatively by assuming the opponent is attempting to achieve the exact opposite

objective using the same strategy. For example, if the evader’s behavior is unknown

to the pursuer and the pursuer is attempting to minimize a particular cost function

with specific gains, then the pursuer will assume the evader’s behavior is dictated by

maximizing the same cost function with the same gain selections. This conservative

play is referred to as a zero-sum strategy because the pursuer is assuming the evader

is playing the exact opposite game and therefore the sum of both optimal games

is zero. Behavior learning methods for incomplete information games have been

developed but rely on the assumption of a perfect information game [2].

Perfect information games assume the relative states are known exactly and

control history of the opponent is available. This is convenient because it allows batch

estimation methods to be used to determine the strategy of an opponent [2]. In real-

world scenarios, however, relative state measurements are subject to measurement
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noise and the control history of an opponent is unknown. Therefore, more advanced

methods must be used to help a player play more effectively than the conservative

zero-sum strategy. If the relative state measurements contain errors and the control

history of an opponent is unknown, then the game is referred to as an imperfect

information game.

By introducing modeling errors, it is possible to take the game further into the

realistic realm. Traditionally, simulations assume perfect modeling of the differential

equations which govern the motion of each player. The introduction of modeling

errors produces a disconnect between how each player believes the relative system will

evolve over time and how it actually evolves. This discontinuity has significant effects

on the outcome of a PE game and must be considered in any real-world application.

A game in which modeling errors are present is referred to as an uncertain information

game. Currently, methods designed to overcome the issues associated with imperfect

and uncertain information games are unavailable.

Pursuit-evasion games can take on any level of information availability. The

scope of the work and results presented here will consider all types of information

characteristics. Complete information games will be used as a baseline to aid in the

evaluation of the presented methods. Incomplete information will be used to de-

scribe simulations which experience imperfect and incomplete information because

measurement noise is a common factor in all realistic applications. Uncertain in-

formation will be used to describe simulations which experience the characteristics

of imperfect, incomplete, and uncertain information. These definitions are summa-

rized in Fig. I.1 and have been presented in this manner to allow for unambiguous
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descriptions of the simulations. Of course, PE games can take on any combination

of the information characteristics found in Fig. I.1. Pursuit-evasion games have a

Figure I.1. Information Characteristics of Pursuit-Evasion Games

wide variety of aerospace applications. Most scenarios involving multiple vehicles

with differing objectives that wish to behave optimally in some way can be cast into

a PE framework. Spacecraft rendezvous missions, where a capture spacecraft is at-

tempting to dock with an uncooperative or retired satellite, can be modeled as a PE

problem. The missile interception problem in which a vehicle is required to intercept

another before a destination is reached also fits into this framework. Aerial tracking

of one or more ground vehicles has the basic characteristics of a PE-type problem

along with other extensions of this work including tasking and spoofing methods.

These examples may involve multiple pursuers or evaders and the concepts can be

applied to any combination of vehicle types including aircraft, spacecraft, and ground

vehicles. Because PE games can be made up of an infinity number of combinations
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of pursuers and evaders, we will limit our discussion and focus on the one-pursuer,

one-evader scenario.

One major obstacle associated with real-world optimal control problems is that

the differential equations governing the dynamic constraints are commonly nonlinear.

This can pose an issue because nonlinear optimal control problems require iterative,

numerical solutions which add additional constraints on time and processing power,

depending on the application. Linear pursuit-evasion games have been studied in

depth and optimal control solutions to those types of problems are well known [3,4].

Moreover, the need for feedback solutions will be stressed. Feedback solutions are

essential to pursuit-evasion because players are not required to play a certain way.

They could take on any strategy at any time and those decisions can be exploited

by feedback control schemes. It would be ideal if nonlinear PE problems could be

transformed into their linear counterparts and the familiar linear techniques could be

applied. This allows the focus to remain on the behavior learning aspects associated

with the incomplete, imperfect, and uncertain information games instead of iterative

solutions. A useful method involves applying dynamic inversion to the system such

that the PE game can be designed with a convenient linear system. Dynamic inver-

sion can be a very useful tool for transforming complex control problems into more

manageable, but still effective systems. This concept has been proven in simulation

and on test flights of advanced weapon systems [5].
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I.A. Motivation

To gain a better understanding of how a player’s performance breaks down with

the varying levels of information availability, we will examine a specific pursuit-

evasion scenario and how the solution changes as information about the players and

system is revoked.

Consider differentially driven vehicles in the horizontal plane where each player

can control the magnitude of their forward velocity, v, and their turn rate, ω. The

no-slip kinematic model of a single player is defined as [6]

ẋ = v cos θ , (1.1)

ẏ = v sin θ , (1.2)

θ̇ = ω , (1.3)

where x and y represent the player position with respect to the inertial reference

frame and θ represents the orientation of the body-fixed reference frame with respect

to the inertial frame. The concept of flat dynamics can be applied to this system to

allow for a linear dynamic representation [7].

For Player i, the desired state representation is given by

zi = [xi, yi, ẋi, ẏi]
T = [zi1 , zi2 , zi3 , zi4 ]

T , (1.4)

żi = [zi3 , zi4 , ui1 , ui2 ]
T . (1.5)

Differentiation of Eqns. 1.1 and 1.2 lead to the definition of the true control inputs,

6



vi and ωi, in terms of the state vector, z, and new controls, ui1 and ui2 .

vi =
√
z2i3 + z2i4 , (1.6)

ωi =
zi3ui2 − zi4ui1
z2i3 + z2i4

. (1.7)

Note the denominator found in Eqn. 1.7 is equivalent to v2i and must not be equal to

zero for computation of the true controls. In practice, this is done by having non-zero

initial conditions [8].

By defining ui = [ui1 , ui2 ]
T , Eqn. 1.5 can be written in the vector-matrix form

żi = Azi +Bui , (1.8)

where

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, B =



0 0

0 0

1 0

0 1


. (1.9)

Formulation of the relative state vector is given by

z = zp − ze , (1.10)

where subscripts p and e denote the state vector of the pursuer and evader, respec-

tively. The motivational PE game is then defined by the zero-sum cost function

J =
1

2
zTf Sfzf +

1

2

∫ tf

t0

(
zTQz + uTpRpup − uTe Reue

)
dt , (1.11)

subject to

ż = Az +Bup −Bue . (1.12)

7



These equations make up a linear-quadratic, final-time-fixed game where sub-

script f dictates the vector or matrix at the final time, tf = 30. First, the results for

the complete information case will be shown as a baseline. Throughout these simu-

lations, the evader will be subject to an imperfect information game and assume a

zero-sum safe strategy in an effort to illustrate how the performance of the pursuer

degrades when its assumption of the evader’s strategy is inaccurate. The true gain

selection for both players is summarized by

Sf =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, Q =



0.009 0 0 0

0 0.009 0 0

0 0 0 0

0 0 0 0


,

and

Rp =

1 0

0 1

 , Re =

1.09 0

0 1.09

 . (1.13)

Figures I.2 - I.4 show the results for the complete information, zero-sum pursuit-

evasion game in which the pursuer and evader implement the same zero-sum cost

function described in Eqn. 1.11. Players start near the origin with non-zero initial

conditions. The aerial view of the players’ trajectories are shown in Fig. I.2. Fig-

ure I.3 contains plots of the relative states along with the total relative displacement

and speed while Fig. I.4 presents the cumulative cost and cost-to-go for each player.

The total cost for the pursuer and the evader are 1.0167 × 102 for this example.

Note that final cost, cumulative cost, and cost-to-go are identical for the pursuer

and evader because of the complete information, zero-sum strategy implementation.

To illustrate the effects of incomplete information, the same simulation was run
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Figure I.2. Final-Time-Fixed, Complete Information Aerial View

Figure I.3. Final-Time-Fixed, Complete Information Relative States
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Figure I.4. Final-Time-Fixed, Complete Information Cost Analysis

but slightly different gains were assumed by the pursuer while those of the evader

remained constant. The pursuer’s gain selection for the incomplete information case

is summarized by

Sfp =



0.95 0 0 0

0 0.95 0 0

0 0 0 0

0 0 0 0


, Qp =



0.01 0 0 0

0 0.01 0 0

0 0 0 0

0 0 0 0


, (1.14)

and

Rpp =

1 0

0 1

 , Rep =

1.1 0

0 1.1

 . (1.15)

The results for the incomplete, imperfect information game using the same initial

conditions are shown in Figs. I.5 - I.7. The aerial view of the players’ trajectories
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are shown in Fig. I.5. Figure I.6 contains plots of the relative states along with the

total relative displacement and speed while Fig. I.7 presents the cumulative cost and

cost-to-go for each player. The total cost of the pursuer is 1.9781×103 while that for

the evader is 1.9833×103. The introduction of incomplete information affected both

players as shown by the total cost. This is because the pursuer is now more interested

in the intermediate states yet did not properly assume how much control the evader

was willing to use. Therefore, the evader was able to maximize the performance

index more so than in the complete information game while the pursuer was unable

to minimize the desired performance index as well. Furthermore, the pursuer is

unable to close in on the evader as it was able to in the complete information game.

These results indicate how poor assumptions related to an opponent’s strategy can

decrease the performance of a player.

Finally, the effects of an incomplete, imperfect, uncertain information game are

shown in Figs. I.8 - I.10. In addition to the gain errors in the previous example, the

pursuer was also subject to modeling uncertainties. The relative dynamics are shown

in Eqn. 1.12. Here, modeling uncertainty is defined as errors in the model matrix

A. Therefore, the non-zero elements of the model matrix A assumed by the pursuer

were modified such that

A =



0 0 0.9 0

0 0 0 0.9

0 0 0 0

0 0 0 0


. (1.16)

The true dynamic model assumed by the evader remained constant throughout all

simulations.
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Figure I.5. Final-Time-Fixed, Incomplete Information Aerial View

Figure I.6. Final-Time-Fixed, Incomplete Information Relative States
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Figure I.7. Final-Time-Fixed, Incomplete Information Cost Analysis

Once the uncertain information is introduced to the game, the pursuer’s per-

formance greatly diminishes and the evader is able to completely evade capture as

illustrated in Figs. I.8 and I.9. The cost analysis for the uncertain information game

is shown in Fig. I.10. Total cost for the pursuer was 8.4537 × 104 while the evader

cost was 8.6271× 104. Again, the total cost for the pursuer increases more than an

order of magnitude once uncertain information is introduced. As desired, the evader

was able to obtain a larger total cost.

A summary of the cumulative cost experienced by the pursuer for all three

final-time-fixed simulations is found in Fig. I.11. It becomes very clear how much

performance can be lost as information pertaining to the game becomes less available.

The goal of the work presented in the following dissertation aims to increase the

performance of a player when faced with an incomplete information game. Behavior
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Figure I.8. Final-Time-Fixed, Uncertain Information Aerial View

Figure I.9. Final-Time-Fixed, Uncertain Information Relative States
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Figure I.10. Final-Time-Fixed, Uncertain Information Cost Analysis

learning techniques will be identified for different types of games defined by their

final-time: final-time-fixed, infinite-horizon, and final-time-free. Once a behavior

learning solution has been implemented and a player can predict their opponent’s

behavior for all time, it is then possible for a player to turn the pursuit-evasion

problem into a one-sided optimal control problem with a time-varying model matrix

A. It will be shown that when a player is subject to incomplete, imperfect, and

uncertain information, these methods can be used to allow the player to gain a

tactical advantage.

Final-time-fixed games are those in which the game occurs for a predetermined

amount of time. Games of these nature are best suited for those where a pursuer

must catch an evader in a fixed amount of time or the evader must not get caught

within a fixed amount of time. In the aerospace realm, final-fixed-time games are
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Figure I.11. Final-Time-Fixed, Cumulative Cost Comparison

best used to define missile interception problems. Often, an interceptor has a small

window in which it must intercept the target of interest before a specific destination

or altitude is reached.

Infinite-horizon games also occur for a predetermined amount of time. That

time, however, is specified as infinity. That is, the pursuit evasion game goes on

indefinitely. Spacecraft proximity operations type problems where one vehicle may

need to get into position to inspect another takes on this form. Another example

includes tracking of a ground vehicle by an aerial vehicle.

Final-time-free games do have have a specified amount of time to be played. In

these games, time is a variable which can be minimized (maximized) by the pursuer

(evader) in an effort to obtain the best performance. In some cases, if the relative

16



states or player control inputs are being considered, these games can be reduced to

simply a minimum time problem with a final-state-fixed constraint. Minimum time

problems can also be applied to missile interception in addition to orbit transfer

games for spacecraft rendezvous.

I.B. Literature Review

Differential games were first introduced by Issacs in 1954 [9–12] while at the

RAND Corporation. Over the following decade, DGs received a considerable amount

of interest due to the emergence of a new optimal control topic, but also because

of their obvious applications to warfare strategies including pursuit-evasion and the

popular proportional navigation law for interception [13, 14]. It was not until the

publication of Issacs book in 1964 that the true hurdles of DG theory application

became clear [1]. The largest obstacle involved the very different perspectives that

game theorists and control theorists approached the problem with. Issacs stressed the

need for non-traditional feedback solutions [15] and the true limitations to the theory

when an incomplete information scenario is introduced [1]. Feedback solutions play

a critical role in pursuit-evasion because the decisions made by an opponent must

be taken into account when a player desires a truly optimal solution. The inherent

issue with a feedback scheme is the possible lack of information related to the player,

the opponent, and the relative system.

Initially, zero-sum games in which a single performance index is maximized by

one agent and minimized by another, were studied in depth [16]. Following the

encouragement of Issacs towards a more realistic theory, Starr and Ho introduced
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the nonzero-sum game which takes advantage of the Nash equilibrium solution [17].

Issacs ideas involving information availability were reverberated by Ho in his 1970

survey of DGs where he placed emphasis on information sets and presented a gen-

eralized framework to help mesh the different points of view from game theorists

and control theorists [18]. By 1980, the discrepancies between theory and applica-

tion were apparent as Shinar managed to find a way to reliably apply PE theory to

air-to-air combat scenarios [19].

Work towards a theory with non-ideal state information was initiated by Rhodes

in 1968 when he proposed the use of a separation theorem to deal with measurement

noise in linear-quadratic games. Others built on his idea of stochastic games and laid

a framework for variable information sets which are defined based on ideal, noisy, or

no state measurements [20, 21]. More recently, a push towards multi-player teams

in PE scenarios has been of particular interest with the emergence of unmanned

air vehicles (UAVs) and their military applications. Search and state estimation

strategies for teams of players have been presented by Li and Antoniades, respectively

[22,23].

Still, the little work that been done in the area of incomplete information PE

games has focused on how to handle measurement noise and not on the actual esti-

mation of opponent strategy. The community has focused on imperfect information

games. Most recently, Satak has developed methods for behavior learning in DGs

by separating the estimation issue from the game theory and applying Gaussian-

least-squares-differential-correction (GLSDC) to opponent decision data to estimate

the assumed strategy of an opponent [2, 8]. As we work towards the most realistic
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PE scenarios, strategy estimation techniques are needed which act on relative state

measurements and not the control input of an opponent because that decision data is

most likely unavailable in the true incomplete information case. Additionally, meth-

ods to deal with uncertainties in the dynamic model are also of interest because of

the possible lack of intelligence regarding an opponent, which is prevalent in military

applications.

I.C. Outline

The following pages present the development and implementation of a behav-

ior learning framework for linear and nonlinear PE systems which are subjected to

incomplete, imperfect, and uncertain information scenarios. Behavior learning tech-

niques for final-time-fixed, infinite-horizon, and final-time-free cases will be examined

and compared to baseline results generated from the corresponding complete infor-

mation case. Although these methods can be extended to team-based PE games,

the scope of this work is limited to one-pursuer, one-evader scenarios and the terms

“pursuer” and “Player p” will be used interchangeably along with the terms “evader”

and “Player e”. Throughout the chapters, special focus will be given to the perfor-

mance of the pursuer who will be enabled with behavior learning while the evader

will always assume a zero-sum conservative strategy.

Chapter II presents behavior learning for the final-time-fixed case which is the

most traditional type of pursuit-evasion game found in the literature. The zero-

sum solution to the PE game is derived and the incomplete information behavior

learning method is introduced. An extension to this behavior learning method to
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include the uncertain information case is also derived. It is then shown how a player

can augment their strategy once a behavior learning solution has been obtained,

such that the player enabled with behavior learning can simplify their solution into

that of a one-sided optimal control problem. An extended Kalman filter version

of the final-time-fixed behavior learning technique is developed and implemented

for the motivational example provided in Section I.A. The results for the behavior

learning filter applied to the incomplete and uncertain information cases is compared

to the complete information case and the incomplete and uncertain information cases

without behavior learning.

Behavior learning for infinite-horizon PE is the focus of Ch. III. An infinite-

horizon zero-sum solution is derived and behavior learning methods for incomplete

and uncertain information scenarios are introduced. Strategy augmentation is pro-

vided which a player implements after converging on a behavior learning solution.

The extended Kalman filter is used to implement the infinite-horizon behavior learn-

ing method and apply it to the motivational example found in Section I.A. The

results for the behavior learning filter applied to the incomplete and uncertain infor-

mation cases is compared to the complete information case and the incomplete and

uncertain information cases without behavior learning.

Chapter IV breaks down how behavior learning techniques can be applied to

final-time-free PE games. Specifically, behavior learning for minimum-time PE is

examined with a focus on state space trajectories. A minimum-time pursuit-evasion

example is developed in Ch. V. The feedback solution is derived and behavior

learning is applied to this scenario. A comparison of the assumed and true state
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space trajectories are provided along with the results that arise from implementing

a minimum-time behavior learning filter.

In an effort to allow nonlinear systems to fit within the linear-quadratic behavior

learning framework, a two-step dynamic inversion process is presented in Chapter VI.

Dynamic inversion allows a system with nonlinear kinematics and dynamics to take

on the response specified by the user. Of course, caution must be exercised when

forcing a nonlinear system to behave as a desired linear system.

Two key applications are given in Chapters VII and VIII. Chapter VII contains

a spacecraft attitude reorientation PE scenario which takes on the form of an infinite-

horizon game. The nonlinear model for each spacecraft is developed and dynamic

inversion is applied to test the robustness of behavior learning when key assumptions

made about the model are false. Results for the incomplete information behavior

learning algorithm are compared against complete and incomplete information sce-

narios.

Chapter VIII contains a military application of behavior learning as the missile

interception problem is studied. Following the model derivation, the realistic space

made up of all states defining a single vehicle is transformed to a reduced space and

a proportional-derivative (PD) controller is introduced to allow for proper control

of the missile. The effectiveness of behavior learning is tested with the presence of

dynamic inversion and the control manipulation. Results for complete, incomplete,

and incomplete information with behavior learning are compared.

Finally, Chapter IX contains a summary of the results and conclusions regarding

the development and implementation of behavior learning. Limitations and exten-
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sions to the presented behavior learning framework are given.
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CHAPTER II

FINAL-TIME-FIXED BEHAVIOR LEARNING

In pursuit-evasion games, it is natural for a player to assume a zero-sum safe

strategy if their opponent’s behavior is unknown. As shown in Section I.A, an in-

correct zero-sum strategy assumption can be devastating to a player’s performance,

especially in the presence of imperfect and uncertain information scenarios. Fortu-

nately, behavior learning techniques can be used to estimate the strategy of an op-

ponent. Once an opponent’s strategy is known, it is possible for a player to augment

their performance index as necessary to account for the modeled opponent behavior

which includes modifying the pursuit-evasion game into a one-sided optimal control

problem.

Behavior learning techniques for final-time-fixed pursuit-evasion games were in-

troduced by Satak [2]. These methods are based on the batch estimation technique

GLSDC. The major drawback of these techniques are the assumption of a perfect

information game in which the control input of the opponent is readily available for

processing. As the discussion of pursuit-evasion moves further from the ideal scenario

and approaches most realistic cases, it becomes apparent that the control input of an

opponent will be unavailable in the most realistic pursuit-evasion games. In an effort

to allow implementation of behavior learning in the most realistic pursuit-evasion

scenarios, it is critical for the methods to be applicable to incomplete, imperfect,

and uncertain information games.

This chapter identifies the form of behavior learning needed for final-time-fixed
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pursuit-evasion games with varying levels of information availability. Once the form

of behavior learning is identified, it is possible to utilize any one of several estimation

techniques to estimate the parameters which capture the behavior of a given oppo-

nent. The methods presented here assume an incomplete and imperfect information

scenario where the only measurements available to the player are the relative states

associated with the pursuit-evasion model. Relative state measurements are subject

to a zero-mean Gaussian noise distribution. It will also be shown that under cer-

tain conditions, these behavior learning methods can be extended to the incomplete,

imperfect, and uncertain information scenarios.

The methods outlined in this chapter will follow many of the same game as-

sumptions previously discussed. For consistency, we will always consider the pursuer

to be enabled with behavior learning. The evader will continue to play using the

same type of behavior used in the previous examples. Specifically, the evader will be

subject to an incomplete information game and will assume a zero-sum safe strategy

for the duration of the game. The evader will not be using any type of behavior

learning and will always be subject to an imperfect and certain information game.

That is, the evader’s relative state measurements will be subject to a zero-mean

Gaussian noise distribution and the evader’s relative dynamic model will contain no

inaccuracies. Of course, it is possible for either or both players to be enabled with

behavior learning and be subject to varying levels of information availability. The

assumptions made here are done in an effort to limit the scope of the discussion to

study how well the developed techniques perform for a single intelligent player with

behavior learning enabled against an opponent that assumes a safe strategy with
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reliable modeling information possibly gathered from a reconnaissance mission.

When considering the perspective of the pursuer, we wish to enable the pursuer

with a means to improve its total cost for the PE game. When faced with an incom-

plete information game, it will not be possible to achieve the same performance of an

complete information game even with behavior learning enabled because the com-

plete information game represents the ideal case. However, if the overall performance

of the pursuer can be improved by a quantifiable means for a game with incomplete

information, then the behavior learning method has been successful. Behavior learn-

ing aims to estimate the the strategy of the PE opponent using an assumed objective

function. The strategy is defined as the gain selection the opponent uses to compute

its control.

Pursuit-evasion games can be defined by an infinite number of cost function

and dynamic system combinations. The focus of this discussion will be limited to

continuous-time, linear-quadratic, PE games. These types of games are defined by

quadratic cost functions subject to a continuous, linear, dynamic constraint. Optimal

solutions to zero-sum games will be reviewed before identifying where player strategy

manifests within the solution. It is possible to add additional constraints to these

PE games. Final-state constraints can be used to require interception or rendezvous.

Control constraints can also be implemented. Unfortunately, these additional con-

straints tend to rely on iterative solution methods such as multiple shooting which

do not use feedback. As mentioned in Chapter I, feedback solutions are absolutely

critical for pursuit-evasion applications and their importance will continue to play a

primary role in this framework.
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II.A. Pursuit-Evasion

In a traditional two-player PE scenario involving no external objectives, the

pursuer is interested in driving some or all of the relative states between the two

players, z, to zero while conserving enough control input, up, to do so. For an

intercept problem, the pursuer is most concerned about the relative position. The

relative velocity at intercept is not of interest because an intercept generally means

destruction of both vehicles. In a rendezvous problem, the pursuer may want to drive

the relative position and velocity to zero so neither vehicle is damaged if rendezvous

occurs.

Simultaneously, the evader is attempting to maximize some or all of the relative

states in an effort to prevent capture. The evader must also be cautious about

the amount of control, ue, being spent. These characteristics allows the game to

be formulated as an optimal control problem with the dynamic constraint being

modified by two intelligent agents.

Zero-sum pursuit-evasion games are those in which a single cost function is used

to define the entire game. The pursuer attempts to minimize the zero-sum cost

function while the evader works to maximize it. These types of games have also

been referred to as minimax games [24]. A zero-sum, final-time-fixed, LQ PE game

is traditionally defined by a performance index of the form

JZSfix
= φ (zf , tf ) +

∫ tf

t0

L (z,up,ue, t) dt , (2.1)

JZSfix
=

1

2
zTf Sfzf +

1

2

∫ tf

t0

(
zTQz + uTpRpup − uTe Reue

)
dt , (2.2)
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subject to the linear dynamic constraint

ż = f (z,up,ue) = Az +Bup −Bue , (2.3)

where z ∈ Rn and up,ue ∈ Rm. Matrices Sf , Q, Rp, and Re represent the gains for

the zero-sum game and subscript f is used to denote the state or gain at the final

time tf . Matrices Sf and Q are symmetric and positive semidefinite, while Rp and

Re are symmetric and positive definite. Here, the relative plant in Eqn. 2.3 and the

weight matrices are assumed to be time-invariant.

As discussed in Ch. I and stressed by Issacs [15], we seek a closed-loop control

solution. The Hamiltonian is defined by

H = L+ λTf , (2.4)

H =
1

2

(
zTQz + uTpRpup − uTe Reue

)
+ λT (Az +Bup −Bue) . (2.5)

Control solutions are given by the stationarity conditions

∂H

∂up
= 0 → up = −R−1p BTλ , (2.6)

∂H

∂ue
= 0 → ue = −R−1e BTλ . (2.7)

When Eqns. 2.6 and 2.7 are substituted into the state equation given by Eqn. 2.3,

this yields

ż = Az −BR−1p BTλ+BR−1e BTλ . (2.8)

The costate equation is given by

∂H

∂z
= −λ̇T → λ̇ = −Qz − ATλ , (2.9)

and optimal control theory [4], the terminal condition is given by

λ(tf ) =
∂φ

∂z tf
= Sfzf . (2.10)
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The initial condition is given by initial states z0 and the two-point boundary-

value problem can be solved using the sweep method [3]. Assuming the state and

costate satisfy a linear relation that takes on the form of Eqn. 2.10 for all time

t ∈ [t0, tf ], then

λ = Sz . (2.11)

If such an S can be found, then the assumption given in Eqn. 2.11 is valid.

The solution requires differentiating the costate.

λ̇ = Ṡz + Sż . (2.12)

By substituting Eqns. 2.9 and 2.8 into Eqn. 2.12 and rearranging, the differential

equation for S becomes

Ṡ = −Q− ATS − SA+ SBR−1p BTS − SBR−1e BTS . (2.13)

Equation 2.13 takes on the form of a modified matrix Riccati equation used for PE.

An effective gain R can be computed based on Rp and Re to transform it into a

standard matrix Riccati equation. If

R−1 = R−1p −R−1e , (2.14)

then

Ṡ = −Q− ATS − SA+ SBR−1BTS . (2.15)

Using the backwards sweep method, S can now be solved for at every time t by

starting at time tf and integrating backwards through time using Sf as the terminal

condition. The feedback control solutions become

up = −Kpz , (2.16)

ue = −Kez , (2.17)
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with the time-varying Kalman gains Kp and Ke defined as

Kp = R−1p BTS , (2.18)

Ke = R−1e BTS . (2.19)

The single cost function found in Eqn. 2.2 is used for a complete information

game. In an incomplete information game, a zero-sum safe strategy could be im-

plemented by either player if they are not confident in their assumed opponent’s

objective and strategy. Each player would assume their own cost function of the

form shown in Eqn. 2.2 which is done in an attempt to implement a conservative

strategy. This strategy assumes an opponent is attempting to accomplish the exact

opposite objective.

II.B. Incomplete Information Behavior Learning

Because behavior is made up of an objective and strategy, it is necessary to

assume a form for the opponent’s (or in this case, the evader’s) objective function in

order to estimate any type of strategy. If the evader is not enabled with behaving

learning as well, it is reasonable to assume that the evader is implementing a zero-

sum safe strategy whose solution is given by Eqn. 2.17. Before implementing a

behavior learning technique, it is necessary to identify where the strategy manifests

itself within the evader’s optimal control solution.

The optimal control for the evader is dictated by the relative states, z, and

the Kalman gain which is given by Eqn. 2.19. From the solution derivation shown

in Section II.A, it is clear that Ke = Ke(B, S,Re), and because the differential

equation Ṡ = Ṡ(A,B, S,Q,Rp, Re) from Eqn. 2.13, it can be concluded that Ke =
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Ke(A,B, S,Q,Rp, Re). In a certain information game, system matrices A and B are

known exactly and the behavior learning objectives evolves into the estimation of

Ke = Ke(S,Q,Rp, Re). Because the gains are relative and the optimal solution is

indifferent to scaled gain selections, it is possible to consider the evader’s selection

of gains Q, Re, and S relative to Rp = 1, where 1 is an identity matrix of the

appropriate size. It follows that for an incomplete and imperfect information game

where the evader assumes a zero-sum safe strategy, the entire strategy assumed by

the evader is captured in the Kalman gain Ke and the objective of behavior learning

has evolved into estimating Ke = Ke(S,Q,Re).

One issue that must still be addressed involves the fact that for the final-time-

fixed case, the Kalman gain Ke is time-varying because of the influence of Eqn. 2.13.

Depending on the nature of the game, reasonable assumptions can be made about

the form of the gains Sf , Q, and Re. For example, it is already known that these

gain matrices are symmetric, which decreases the number of independent elements

to be estimated. Additionally, these gain matrices are most often diagonal to reduce

unwanted cross-coupling effects. If system matrices A and B are known perfectly,

then their sparceness can also help determine which elements of the optimal gains

influence Ke.

The final hurdle is the relationship between the estimated S and the chosen Sf

of the evader. It should be noted what the pursuer must do after solving the behavior

learning problem. It will be shown that if Ke can be computed for each instance

in time, then the pursuer can augment their cost function such that the two-sided

pursuit-evasion problem becomes a one-sided optimal control problem. The gain Sf
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simply provides the terminal condition for the two-point boundary value problem

and allows for calculation of S before the game starts. If the gains S, Q, and Re can

be estimated with Rp = 1, then S can be computed at each instance in time using

Eqn. 2.13. The chosen Sf simply allows for the calculation of S by specifying S at

tf . Therefore, if S can be determined through another means at a given t, then its

solution at each instance in time can be determined.

Recall from Eqn. 2.36 that after behavior learning occurs, the one-sided OCP

that the pursuer switches to requires the computation of the gain Ke in a backwards

sweep fashion. Thus, S must be known at every instance in time prior to implement-

ing the modified Kp based on the one-sided OCP. This can be accomplished by using

the estimated evader Q and Re and propagating S forward in time. This means that

the evader’s entire strategy can be defined by the estimated values Q, Re, and S

along with Eqn. 2.15 when it is assumed that Rp = 1.

Sequential estimation techniques require differential state equations for the states

being estimated. In an imperfect information game, the relative states of interest

defined by z are measured through some means whether directly or by measuring

the inertial movements of both players then computing the necessary relative states.

Therefore, it is assumed the relative states are subject to a zero-mean Gaussian

distribution and the estimation of z is also of interest.

It has been shown here that the entire strategy assumed by the evader is cap-

tured in the time-varying Kalman gain Ke. To implement the most efficient behavior

learning techniques, it is essential to apply all knowledge about the system. There-

fore, the details of Ke must be investigated. Consider the example with differentially
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driven vehicles in the horizontal plane presented in Section I.A. The relative system

is given by Eqn. 1.12.

If the evader is interested in the relative position only, weighs the x- and y-

components equally, and also weighs the control inputs for x and y equally, then the

gains will take on the form

Sf =



sf 0 0 0

0 sf 0 0

0 0 0 0

0 0 0 0


, Q =



q 0 0 0

0 q 0 0

0 0 0 0

0 0 0 0


, Rp =

1 0

0 1

 , Re =

r 0

0 r

 .

(2.20)

With these selections and the help of Eqn. 2.13, the instantaneous S takes on the

form

S =



s1 0 s3 0

0 s1 0 s3

s3 0 s2 0

0 s3 0 s2


. (2.21)

We now see for this particular problem, Ke as a function of S and Re becomes

Ke =

 s3r 0 s2
r

0

0 s3
r

0 s2
r

 . (2.22)

The way in which player strategy manifests within the control computation for

the final-time-fixed scenario has been identified. Next, the state equations for the

parameters must be identified to implement any of several estimation tools to carry

out the parameter estimation. The objective is to estimate the relative states, z,

and the independent elements of S, Q, and Re the evader has assumed using the
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measured relative states and the known control input of the pursuer, up.

The states to estimate are given by the vector

x = [z1, z2, z3, z4, s1, s2, s3, q, r]
T , (2.23)

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T , (2.24)

where states x1 − x7 are time-varying. Because these states are time-varying, it is

necessary to implement a sequential estimator to identify these states. The state

equations for x1 − x4 are given by Eqn. 2.3 and the state equations for x5 − x7 are

given by the corresponding scalar elements of Eqn. 2.13.

At first glance, Eqn. 2.3 appears to be linear. However, after substitution of

Eqns. 2.17 and 2.19, it becomes nonlinear in the states.

ż = Az +Bup +BR−1e BTSz . (2.25)

Therefore, a nonlinear estimator is required. The states x8 and x9 are constant so

the corresponding state equations are simply zero.

For this particular example, with up = [up1 , up2 ], the corresponding state equa-

tions are summarized as

ẋ(t) = f (x(t),u(t), t) , (2.26)
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where

f =



x3

x4

x1x7
x9

+ x3x6
x9

+ up1

x2x7
x9

+ x4x6
x9

+ up2

x27 −
x27
x9
− x8

x26 −
x26
x9
− 2x7

x6x7 − x5 − x6x7
x9

0

0



. (2.27)

The measurements available for the behavior learning filter are

ỹk = h (xk) = [x1 , x2 , x3 , x4]
T . (2.28)

Equations 2.26 and 2.28 are in the standard form needed for a nonlinear filter

such as the extended Kalman or unscented filters. Once a nonlinear estimator is

employed and has converged on a solution for the estimates given by Eqn. 2.24, the

pursuer can then compute the evader’s Kalman gain at each instance in time using

Eqns. 2.22 and 2.13. As the complexity of the relative dynamic system increases,

so does the chance for observability issues to occur. Nonlinear observability can be

computed using the Lie derivative [25]. If a linearized filter is implemented such as an

extended Kalman filter, observability can be computed by checking the rank of the

observability matrix O [25]. For this particular example, the system is observable.

Observability must be treated on a case-by-case basis because each system model

and associated strategy assumptions are different.

34



II.C. Uncertain Information Behavior Learning

The behavior learning framework presented in the previous section may be ex-

tended to the uncertain information case. In an uncertain information game, a player

is subject to modeling errors present in the relative dynamic model. In Section I.A,

this was defined to be errors in the model matrix A. The independent elements of

A can be added to the state estimate vector described by Eqn. 2.27.

For the ongoing example, the true model matrix is given by

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


. (2.29)

It is important that all available information about the system is applied. For this

specific example, it will be assumed that A contains two independent elements defined

by

A =



0 0 a1 0

0 0 0 a2

0 0 0 0

0 0 0 0


. (2.30)

For the time-invariant case, the state equations describing these new parame-

ters are simply ȧ1 = ȧ2 = 0. The behavior learning state estimate vector is then

augmented such that

x = [z1, z2, z3, z4, s1, s2, s3, q, r, a1, a2]
T , (2.31)

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11]
T , (2.32)
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and the state equation vector becomes

f =



x3x10

x4x11

x1x7
x9

+ x3x6
x9

+ up1

x2x7
x9

+ x4x6
x9

+ up2

x27 −
x27
x9
− x8

x26 −
x26
x9
− 2x7x10

x6x7 − x5x10 − x6x7
x9

0

0

0

0



. (2.33)

No additional measurements are available, therefore the form of Eqn. 2.28 re-

mains the same. It is obvious that as model parameters are added to the state

estimate vector, the possibly for the system to be unobservable become greater. For

this particular example, the observability matrix O is of full rank. This form of the

behavior learning algorithm will be implemented by the pursuer for the uncertain

information case.

II.D. Augmented Strategy

If an agent is enabled with behavior learning, it is possible for that agent to

turn the pursuit-evasion game into a one-sided optimal control problem. The goal

of behavior learning is to give an agent a tactical advantage in an incomplete infor-
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mation game. The objective is to estimate the opponent’s strategy then use that

information to play more effectively than simply assuming a zero-sum strategy. By

taking on the pursuer’s perspective, it becomes apparent that the pursuer is inter-

ested in estimating the evader’s Kalman gain, Ke. Equation 2.19 reveals that for the

final-time-fixed case, Ke is time-varying because of the influence of the solution of S.

If the pursuer can properly estimate Ke such that it can be computed for any time

t, then the new one-sided optimal control problem for the pursuer becomes

JPfix
= min

1

2
zTf Sfzf +

1

2

∫ tf

t0

(
zTQz + uTpRpup

)
dt , (2.34)

subject to the modified system

ż = (A+BKe) z +Bup . (2.35)

Following the same solution derivation process for the zero-sum strategy, the

Hamiltonian is formed and the stationarity condition coupled with the costate equa-

tion solution yields the same feedback control law given by Eqns. 2.16 and 2.18.

Here, S is found using

Ṡ = −Q− (A+BKe)
T S − S (A+BKe) + SBR−1p BTS . (2.36)

Note the S, Q, and Rp here are the pursuer’s assumed gains and different from

those which are estimated and those which are assumed by the evader. The estimated

gains are used in the computation of Ke.

II.E. Extended Kalman Filter Implementation

One of the most pivotal contributions to optimal estimation came from Kalman

in 1960 with the introduction of the Kalman filter for estimation of linear systems [26].
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Because aerospace systems are most commonly nonlinear, extensions to his work were

soon introduced [27, 28]. The nonlinear extension of the Kalman filter came to be

known as the extended Kalman filter (EKF) and has been the de facto estimation

technique for nonlinear systems, especially for navigation applications. Because of

the nonlinearities in the the behavior learning problem shown in Eqn. 2.15, the EKF

lends itself nicely to behavior learning applications.

By blindly applying an extended Kalman filter to the imperfect information

motivational example problem in an attempt to estimate the relative states and gain

matrices Q, Re, and S, one would find themselves with 40 states to estimate. This

is taking Rp as identity and scaling all gains with respect to Rp. By applying system

knowledge and choosing the independent elements of these matrices to estimate, it

is possible to reduce the number of state estimates to 9. Observability can become

an issue if the system becomes too complex, the number of independent elements

cannot be reduced, or if relative state measurements are unavailable. Observability

should be treated on a case-by-case basis and can be computed for nonlinear systems

using the Lie derivative [25]. However, due to the structure of the extended Kalman

filter and how it is linearized using a first-order Taylor series expansion about the

estimated state, linear observability methods can be applied as well.

A continuous-discrete extended Kalman filter takes on the form [29]

ẋ(t) = f(x(t),u(t), t) +G(t)w(t), w(t) ∼ N(0, Q(t)) , (2.37)

ỹk = h(xk) + vk, vk ∼ N(0, Rk) , (2.38)

where the states to be estimated are designated by the vector x and the discrete

measurements are designated by the vector ỹk. The model process noise is denoted
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by w(t) and G(t) is the process noise distribution matrix. Measurement noise at

each time-step is given by vk. Matrices Q(t) and Rk make up the covariance for

noise processes w(t) and vk, respectively. Note the vector function f(x(t),u(t), t) is

fundamentally different from those used in the dynamic inversion process.

For the dynamic model, recall the relative system of the motivational example

given by Eqn. 1.12 and consider the pursuer attempting to learn evader’s behavior.

ż = Az +Bup −Bue , (2.39)

where

z = [xr, yr, ẋr, ẏr]
T , up = [up1 , up2 ]

T , ue = [ue1 , ue2 ]
T , (2.40)

and

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, B =



0 0

0 0

1 0

0 1


. (2.41)

The states xr, yr, ẋr, and ẏr represent the relative position and velocity of the

two players in the horizontal plane while ui denotes the control input vector for

player i. It is also assumed that all elements of z can be measured at each instance

in time.

When considering the perspective of the pursuer, it is known what the computed

up is for each instance in time. However, the evader’s control input ue is unknown.

It is necessary to assume a form for the evader’s control. Here, it is assumed the

evader is using a zero-sum safe strategy without behavior learning. For a zero-sum
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strategy game, the evader’s control input takes on the form

ue = −R−1e BTSez , (2.42)

where

Ṡe = −Qe − ATSe − SeA+ SeBR
−1
p BTSe + SeBR

−1
e BTSe . (2.43)

Matrices Se and Qe are of size 4× 4 while Re and Rp are of size 2× 2. Matrices Se

and Qe are symmetric positive semidefinite while Re is symmetric positive definite.

Furthermore, it is a reasonable assumption that Qe and Re are diagonal. Using these

characteristics with the known form of A and B, it is possible to estimate the unique,

non-zero elements in Qe, Re, and Se. Gain Rp is assumed to be identity. That is,

the elements of Qe, Re, and Se are normalized with respect to Rp.

Relating back to the EKF dynamic model, the state estimate x is now an 9× 1

vector made up of the following elements:

z =



x1

x2

x3

x4


, Se =



x5 0 x7 0

0 x5 0 x7

x7 0 x6 0

0 x7 0 x6


, Qe =



x8 0 0 0

0 x8 0 0

0 0 0 0

0 0 0 0


, Re =

x9 0

0 x9

 .

(2.44)

By substituting Eqn. 2.42 into Eqn. 2.39, the state equations for x1 through x4

are given by

f1:4 = ż = Az +Bup −BR−1e BTSez , (2.45)

while the state equations for x5 through x7 are given by the corresponding scalar

equations found in Eqn. 2.43. Because the matrices Qe and Re are constant, the
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state equations for their elements are simply f8:9 = 0. This behavior learning form

of the EKF is representative of a incomplete and imperfect information game.

The pursuer is equipped with the necessary sensors such that z can be measured.

Mathematically, h = z. In practice, this could be done by measuring the relative

states directly or by computing the pursuer’s inertial states using strapdown inertial

navigation then tracking the evader using a ground station with a communication

link to the pursuer.

II.E.1. Incomplete Information Results

The incomplete information example shown in Section I.A was simulated again

but this time with an EKF version of the behavior learning algorithm running. At t =

5, a new optimal control solution was computed by the pursuer using the augmented

strategy defined in Section II.D. Figures II.1 - II.6 convey the results for the behavior

learning case. By computing a new solution based the the behavior learning results,

the pursuer was able to reduce its total cost to 1.0414× 102 while the evader’s cost

was computed to be 1.0348 × 102. The pursuer’s behavior learning algorithm was

able to converge on estimates for the independent elements found in gain matrices

Q, Re, and S assumed by the evader as shown in Figs. II.4 and II.5. A comparison of

the cost and cost-to-go for the complete, incomplete, and incomplete with behavior

learning cases in Fig. II.6.
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Figure II.1. Final-Time-Fixed, Incomplete Information with Behavior
Learning Aerial View

Figure II.2. Final-Time-Fixed, Incomplete Information with Behavior
Learning Relative States
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Figure II.3. Final-Time-Fixed, Incomplete Information with Behavior
Learning Cost Analysis

II.E.2. Uncertain Information Behavior Learning Results

The incomplete information example shown in Section I.A was simulated again

but this time with an EKF version of the behavior learning algorithm running. At

t = 5, a new optimal control solution was computed by the pursuer using the aug-

mented strategy defined in Section II.D. Figures II.7 - II.13 convey the results for

the behavior learning case. By computing a new solution based the the behavior

learning results, the pursuer was able to reduce its total cost to 1.6519 × 102 while

the evader’s cost was computed to be 1.6567× 102. The pursuer’s behavior learning

algorithm was able to converge on estimates for the independent elements found in

gain matrices Q, Re, and S assumed by the evader as shown in Figs. II.10 and II.11.

Moreover, the estimates of the independent elements found within model matrix A
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Figure II.4. Final-Time-Fixed, Incomplete Information with Behavior
Learning S Estimates
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Figure II.5. Final-Time-Fixed, Incomplete Information with Behavior
Learning Q and R Estimates

Figure II.6. Final-Time-Fixed, Incomplete Information Cumulative Cost
Comparison
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properly converged as evident from Fig. II.12. A comparison of the cost and cost-to-

go for the complete information, incomplete information, and incomplete information

with behavior learning cases in Fig. II.13.

Figure II.7. Final-Time-Fixed, Uncertain Information with Behavior
Learning Aerial View
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Figure II.8. Final-Time-Fixed, Uncertain Information with Behavior
Learning Relative States

Figure II.9. Final-Time-Fixed, Uncertain Information with Behavior
Learning Cost Analysis
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Figure II.10. Final-Time-Fixed, Uncertain Information with Behavior
Learning S Estimates
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Figure II.11. Final-Time-Fixed, Uncertain Information with Behavior
Learning Q and R Estimates

Figure II.12. Final-Time-Fixed, Uncertain Information with Behavior
Learning A Estimates
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Figure II.13. Final-Time-Fixed, Uncertain Information Cumulative Cost
Comparison
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II.F. Summary

By identifying how player strategy manifests itself within the Kalman gain, it

becomes possible to implement a behavior learning filter to estimate opponent strat-

egy from an assumed behavior model and relative state measurements. Seemingly

linear-quadratic games may require nonlinear estimation techniques due to the non-

linearities present in the Riccati equation and relative equations of motion once the

form of the opponent’s control input is substituted.

A cumulative cost comparison for all five cases of the final-time-fixed pursuit-

evasion game is summarized in Fig. II.14. In both the incomplete and uncertain

information cases, behavior learning was able to increase the pursuer’s performance

when a new solution was computed at t = 5. The pursuer’s final cost summary is

shown in Table II.1.
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Figure II.14. Final-Time-Fixed, Cumulative Cost Comparison Summary

Table II.1. Planar Game Final-Time-Fixed Cost Summary

Information Type Pursuer Cost

Complete 1.0167× 102

Incomplete 1.9781× 103

Uncertain 8.4537× 104

Incomplete + BL 1.0414× 102

Uncertain + BL 1.6567× 102
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CHAPTER III

INFINITE-HORIZON BEHAVIOR LEARNING

This chapter identifies the form of behavior learning needed for infinite-horizon

pursuit-evasion games with varying levels of information availability. It is possible

to implement any one of several estimation methods to estimate the parameters

which capture the behavior of a given opponent once the form of behavior learning

is identified. Many of the same assumptions made for the final-time-fixed case will

also be exploited for infinite-horizon behavior learning. The methods presented here

assume an incomplete and imperfect information scenario where the only measure-

ments available to the player are the relative states which are subject to a zero-mean

Gaussian noise distribution. Behavior learning for the incomplete information case

will also be extended to encompass the uncertain information case.

Similar to the previous chapter, we will always consider the pursuer to be enabled

with behavior learning. The evader will continue to be subject to an incomplete

information game and will assume a zero-sum safe strategy for the duration of the

game. The evader will not be using any type of behavior learning and will always be

subject to an imperfect and certain information game.
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III.A. Pursuit-Evasion

A zero-sum infinite-horizon LQ PE game is traditionally defined by a perfor-

mance index of the form

JZSinf
=

∫ ∞
t0

L (z,up,ue) dt , (3.1)

JZSinf
=

1

2

∫ ∞
t0

(
zTQz + uTpRpup − uTe Reue

)
dt , (3.2)

subject to the same dynamic constraint shown in Eqn. 2.3. Matrices Q, Rp, and Re

take on the same symmetry and definiteness assumptions found in the final-fixed-time

case. The Hamiltonian for the infinite-horizon case takes on the same form defined

by Eqn. 2.4 and subsequently, the stationarity conditions and costate equations yield

the same results shown in Eqns. 2.6, 2.7, and 2.9.

As the final-time approaches infinity, the Riccati equation in Eqn. 2.15 can

converge to a limiting solution S(∞). If S(∞) exists, then the optimal feedback

control laws for the infinite-horizon case take on the form [4]

up = −Kpz , (3.3)

ue = −Kez , (3.4)

with the Kalman gains Kp and Ke defined as

Kp = R−1p BTS (∞) , (3.5)

Ke = R−1e BTS (∞) . (3.6)

The solution to S(∞) is given by the modified algebraic Riccati equation (ARE)

0 = Q+ ATS + SA− SBR−1p BTS + SBR−1e BTS , (3.7)
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which can be simplified to the standard ARE

0 = Q+ ATS + SA− SBR−1BTS , (3.8)

using the effective control weight matrix relation

R−1 = R−1p −R−1e . (3.9)

Equation 3.8 can be solved for S using the Schur method [30]. Note that if z, up, and

ue are scalar, then the solution to Eqn. 3.8 simply reduces to the quadratic equation.

III.A.1. Infinite-Horizon Example

A complete information example is provided along with incomplete and uncer-

tain information examples to show how the performance of the pursuer degrades

as information is revoked from the infinite-horizon pursuit-evasion game. The pla-

nar system described in Section I.A is used, only a new performance index of the

form shown in Eqn. 3.2 is implemented. The complete information gain selection is

summarized by

Q =



10 0 0 0

0 10 0 0

0 0 0 0

0 0 0 0


, Rp =

1 0

0 1

 , Re =

1.09 0

0 1.09

 , (3.10)

Figures III.1 - III.3 show the results for the complete information, zero-sum

pursuit-evasion game in which the pursuer and evader implement the same zero-sum

cost function described in Eqn. 3.2. Players start near the origin with the same non-

zero initial conditions as those used for the final-fixed-time cases. The aerial view
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of the players’ trajectories are shown in Fig. III.1. Figure III.2 contains plots of the

relative states along with the total relative displacement and speed while Fig. III.3

presents the cumulative cost and cost-to-go for each player. The total cost for the

pursuer and the evader are 3.4449 × 106 for this example. Note that final cost,

cumulative cost, and cost-to-go are identical for the pursuer and evader because of

the complete information, zero-sum strategy implementation.

Figure III.1. Infinite-Horizon, Complete Information Aerial View

To illustrate the effects of incomplete information, the same simulation was run

but slightly different gains were assumed by the pursuer while those of the evader

remained constant. The pursuer’s gain selection for the incomplete information case
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Figure III.2. Infinite-Horizon, Complete Information Relative States

Figure III.3. Infinite-Horizon, Complete Information Cost Analysis

57



is summarized by

Qp =



9.5 0 0 0

0 9.5 0 0

0 0 0 0

0 0 0 0


, Rpp =

1 0

0 1

 , Rep =

1.1 0

0 1.1

 . (3.11)

The results for the incomplete, imperfect information game using the same initial

conditions are shown in Figs. III.4 - III.6. The aerial view of the players’ trajectories

are shown in Fig. III.4. Figure III.5 contains plots of the relative states along with the

total relative displacement and speed while Fig. III.6 presents the cumulative cost and

cost-to-go for each player. The total cost of the pursuer is 7.5409×1046 while that for

the evader is 7.5037×1046. The introduction of incomplete information affected both

players as shown by the total cost and turns out to be completely devastating to the

pursuer’s performance. These results indicate how poor assumptions related to an

opponent’s strategy can decrease the performance of a player in the infinite-horizon

case.

Finally, the effects of an incomplete, imperfect, uncertain information game are

shown in Figs. III.7 - III.9. In addition to the gain errors in the previous example,

the pursuer was also subject to modeling uncertainties. Here, modeling uncertainty

is defined as errors in the model matrix A. Therefore, the non-zero elements of the
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Figure III.4. Infinite-Horizon, Incomplete Information Aerial View

Figure III.5. Infinite-Horizon, Incomplete Information Relative States
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Figure III.6. Infinite-Horizon, Incomplete Information Cost Analysis

model matrix A assumed by the pursuer were modified such that

A =



0 0 0.9 0

0 0 0 0.9

0 0 0 0

0 0 0 0


. (3.12)

The true dynamic model assumed by the evader remained constant throughout all

simulations.

Once the uncertain information is introduced to the game, the pursuer’s per-

formance diminishes even further as illustrated in Figs. III.7 and III.8. The cost

analysis for the uncertain information game is shown in Fig. III.9. Total cost for the

pursuer was 3.8193× 1060 while the evader cost was 3.7995× 1060.

Figure III.10 illustrates how the pursuer’s performance degrades as information

is revoked from the infinite-horizon pursuit-evasion game.
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Figure III.7. Infinite-Horizon, Uncertain Information Aerial View

Figure III.8. Infinite-Horizon, Uncertain Information Relative States
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Figure III.9. Infinite-Horizon, Uncertain Information Cost Analysis

Figure III.10. Infinite-Horizon, Cumulative Cost Comparison

62



III.B. Incomplete Information Behavior Learning

From Eqn. 3.6 it is immediately apparent that the evader’s Kalman gain is

dependent on B, S, and Re. Because S is the solution to the ARE found in Eqn. 3.7,

the Kalman gain is once again Ke = Ke(A,B, S,Q,Rp, Re). Taking A and B to

be known and scaling the gains with respect to Rp = 1, we can define Ke as a

function of the unknowns Ke = Ke(S,Q,Re). It is important to apply all pertinent

knowledge about the game to simplify the behavior learning task. Considering the

same example problem of differentially driven vehicles in the horizontal plane, as

described in Sect. II.A, the same form of the gain assumptions will be applied here.

With the assumed form of Q and Re shown in Eqn. 2.20, solution of the the

ARE in Eqn. 3.7 produces an S of the form

S =



s1 0 s3 0

0 s1 0 s3

s3 0 s2 0

0 s3 0 s2


. (3.13)

Substituting the form of S and Re into Eqn. 3.6, the 2× 4 Kalman gain used by the

evader is

Ke =

 s3r 0 s2
r

0

0 s3
r

0 s2
r

 . (3.14)

Recall that the form of S from the solution to the ARE is constant. This is

important because it follows that with a constant Re, the evader’s Kalman gain is

also a constant. The form for Ke for the differentially driven vehicles in the plane

is encouraging because we have revealed for this particular example, the evader’s
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Kalman gain is made up of only two independent and constant elements. Therefore,

we can conclude that the entire strategy for the evader taking part in an infinite-

horizon pursuit-evasion game can be captured by the parameters k1 and k2 where

Ke =

k1 0 k2 0

0 k1 0 k2

 . (3.15)

Note that the form of Ke in Eqn. 3.15 is not always the case. However, it should

always be possible to reduce the number of independent elements found in Ke by

applying knowledge to the system. For the case with four relative states and two

control inputs, Ke will have at most eight unique elements and will always be constant

for the infinite-horizon scenario.

For infinite-horizon behavior learning, the states to estimate are now defined by

the vector

x = [z1, z2, z3, z4, k1, k2] , (3.16)

x = [x1, x2, x3, x4, x5, x6] , (3.17)

where states x1 − x4 are time-varying and whose state equations are given by

ż = Az +Bup +BKez (3.18)

The state equations needed for the nonlinear estimator are summarized by

ẋ(t) = f (x(t),u(t), t) , (3.19)
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where

f =



x3

x4

x1x5 + x3x6 + up1

x5x7 + x4x6 + up2

0

0


, (3.20)

and up = [up1 , up2 ].

The measurements available are the relative states defined by

ỹk = h (xk) = [x1 , x2 , x3 , x4]
T . (3.21)

Equations 3.19 and 3.21 are in the standard form needed for a nonlinear filter.

Once a nonlinear estimator is employed and has converged on a solution for the

estimates given by Eqn. 3.17, the pursuer can then compute the evader’s Kalman

gain at each instance in time because it is fixed. The gain can be continuously

monitored and the pursuer has the ability to modify the solution as necessary.

III.C. Uncertain Information Behavior Learning

The behavior learning framework presented in the previous section may be ex-

tended to the uncertain information case. In an uncertain information game, a player

is subject to modeling errors present in the relative dynamic model. In Section I.A,

this was defined to be errors in the model matrix A. The independent elements of

A can be added to the state estimate vector described by Eqn. 3.20.

Much like the final-time-fixed case, it is essential that all available information
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about the system is applied. Assuming the same form for A as provided in Sec-

tion II.C, the new parameters to estimate become a1 and a2. For the time-invariant

case, the state equation describing these new parameters are simply ȧ1 = ȧ2 = 0.

The behavior learning state estimate vector is then augmented such that

x = [z1, z2, z3, z4, k1, k2, a1, a2] , (3.22)

x = [x1, x2, x3, x4, x5, x6, x7, x8] , (3.23)

and the state equation vector becomes

f =



x3x7

x4x8

x1x5 + x3x6 + up1

x5x7 + x4x6 + up2

0

0

0

0



. (3.24)

No additional measurements are available, therefore the form of Eqn. 3.21 remains

the same. For this infinite-horizon, uncertain information example, the observabil-

ity matrix O is of full rank. This form of the behavior learning algorithm will be

implemented by the pursuer for the uncertain information case.

III.D. Augemented Strategy

When an agent is enabled with behavior learning in an infinite-horizon scenario,

it is possible for that agent to turn the pursuit-evasion game into a one-sided optimal
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control problem, just like the final-time-fixed scenario. The objective is to estimate

the opponent’s strategy then use that information to play more effectively by pre-

dicting the opponent’s behavior with the behavior learning solution. By taking on

the pursuer’s perspective, it becomes apparent that the pursuer is interested in es-

timating the evader’s constant Kalman gain, Ke. Once Ke is known, then the new

one-sided optimal control problem for the pursuer becomes

JPinf
= min

1

2

∫ ∞
t0

(
zTQz + uTpRpup

)
dt , (3.25)

subject to the modified system

ż = (A+BKe) z +Bup . (3.26)

Following the same augmentation process as the final-time-fixed case, the Hamil-

tonian is formed and the stationarity condition coupled with the costate equation

solution yields the same feedback control law given by Eqns. 2.16 and 2.18. For the

infinite-horizon framework, S is found using

0 = Q+ (A+BKe)
T S + S (A+BKe)− SBR−1p BTS . (3.27)

which still takes on the form of an ARE. Note the Q, and Rp here are the pursuer’s

assumed gains and different from those which are estimated by the pursuer and

assumed by the evader.

III.E. Implementation

A behavior learning filter for an infinite-horizon scenario reduces to a much

simpler implementation than that employed for the final-time-fixed case. This is
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because the independent elements of Kalman gain matrix are constant. If enough

knowledge can be applied to the system, it was shown in Sect. III.B that the number

of independent Kalman gain elements can be reduced to two.

Using the same extended Kalman filter framework reviewed in Sect. III.B, an

incomplete information version of this filter for the infinite-horizon case can be im-

plemented using Eqns. 3.20 and 3.21. Similarly, the uncertain information behavior

learning filter uses Eqns. 3.24 and 3.21.

III.E.1. Incomplete Information Results

The incomplete information example shown in Section III.A was simulated again

but this time with an EKF version of the behavior learning algorithm running. At t =

1, a new optimal control solution was computed by the pursuer using the augmented

strategy defined in Section III.D. Figures III.11 - III.15 convey the results for the

incomplete information behavior learning case. By computing a new solution based

the the behavior learning results, the pursuer was able to reduce its total cost to

2.3957× 105 while the evader’s cost was computed to be 2.4772× 105, compared to

the non-behavior learning values of 7.5409 × 1046 and 7.5037 × 1046 for the purser

and evader, respectively.

The pursuer’s behavior learning algorithm provided effective gain estimates de-

scribing the influence of k1 and k2 on the system shown in Fig. III.14. A comparison

of the cost and cost-to-go for the complete, incomplete, and incomplete with behavior

learning cases in Fig. III.15.
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Figure III.11. Infinite-Horizon, Incomplete Information with Behavior
Learning Aerial View

Figure III.12. Infinite-Horizon, Incomplete Information with Behavior
Learning Relative States
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Figure III.13. Infinite-Horizon, Incomplete Information with Behavior
Learning Cost Analysis

Figure III.14. Infinite-Horizon, Incomplete Information with Behavior
Learning K Estimates
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Figure III.15. Infinite-Horizon, Incomplete Information Cumulative Cost
Comparison

III.E.2. Uncertain Information Results

The uncertain information example shown in Section I.A was simulated again

but this time with an EKF version of the behavior learning algorithm running. At t =

2, a new optimal control solution was computed by the pursuer using the augmented

strategy defined in Section III.D. Figures III.16 - III.21 convey the results for the

behavior learning case. By computing a new solution based the the behavior learning

results, the pursuer was able to reduce its total cost to 2.4221×107 while the evader’s

cost was computed to be 2.4946× 107 compared to the non-behavior learning values

of 3.8193× 1060 and 3.7995× 1060 for the pursuer and evader, respectively.

The pursuer’s behavior learning algorithm was able to provide effective estimates

for k1 and k2 as shown in Fig. III.19. Moreover, the estimates of the independent

elements found within model matrix A provided reasonable estimates as evident from
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Fig. III.20. A comparison of the cost and cost-to-go for the complete information,

incomplete information, and incomplete information with behavior learning cases in

Fig. III.21.

Figure III.16. Infinite-Horizon, Uncertain Information with Behavior
Learning Aerial View
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Figure III.17. Infinite-Horizon, Uncertain Information with Behavior
Learning Relative States

Figure III.18. Infinite-Horizon, Uncertain Information with Behavior
Learning Cost Analysis
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Figure III.19. Infinite-Horizon, Uncertain Information with Behavior
Learning K Estimates

Figure III.20. Infinite-Horizon, Uncertain Information with Behavior
Learning A Estimates
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Figure III.21. Final-Time-Fixed, Uncertain Information Cumulative Cost
Comparison

III.F. Summary

Figure III.22 shows a cumulative cost comparison for all five cases of the infinite-

horizon pursuit-evasion game. In both the incomplete and uncertain information

cases, behavior learning was able to increase the pursuer’s performance when a new

solution was computed. Note the time of strategy augmentation for the pursuer

occurs at t = 1 for the incomplete information case and t = 2 for the uncertain

information case. The pursuer’s final cost summary is shown in Table III.1.

Infinite-horizon behavior learning can be computationally more efficient due to

the fact that the unique elements found within the Kalman gain matrix are constant

which simplifies things from a behavior estimation perspective. However, it was

shown that the the behavior learning filter converged on effective gains for k1 and

k2 that were not necessarily the true gains. Still, this confirms that the behavior
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Figure III.22. Infinite-Horizon, Cumulative Cost Comparison Summary

Table III.1. Planar Game Infinite-Horizon Cost Summary

Information Type Pursuer Cost

Complete 3.4449× 106

Incomplete 7.5409× 1046

Uncertain 3.8193× 1060

Incomplete + BL 2.3957× 105

Uncertain + BL 2.4221× 107
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learning framework can be effective even if the true behavior of the opponent is not

perfectly modeled. All a player needs to do is develop a model that is representative

of their opponent’s behavior. If a model can be converged upon, then the player has

the opportunity to play more effectively than simply using a zero-sum safe strategy.
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CHAPTER IV

FINAL-TIME-FREE BEHAVIOR LEARNING

Pursuit-evasion games of the final-time-free nature are not often studied. De-

pending on the performance index, these types of scenarios most often reduce to

minimum-time games. One major hurdle issue with minimum-time pursuit-evasion

games is that a final-state constraint is used to completely define the problem. These

final state constraints usually define interception or rendezvous and can only be valid

if the pursuer is guaranteed to capture the evader. That is, the pursuer must be more

agile than the evader. This chapter will develop a minimum-time pursuit-evasion

game and discuss how behavior learning can be used to help the pursuer compute

his control for an incomplete information game.

IV.A. Minimum-Time Pursuit-Evasion

Consider a scalar, minimum-time pursuit-evasion game defined by the perfor-

mance index

Jmin =

∫ tf

t0

dt , (4.1)

and the state equation

ẍ = up − ue , (4.2)
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where x represents the relative state between the pursuer and the evader. Each

player is subject to control constraints which are defined by

|up| ≤ 1 , (4.3)

|ue| ≤ Ke . (4.4)

By defining the relative state and its rate as x = z1 and ẋ = z2, the solution must

satisfy the final state constraint

zf =

z1f
z2f

 = 0 , (4.5)

where the subscript f denotes the state at the final time, tf .

The pursuer’s goal is to minimize the amount of time it takes to satisfy the final-

state constraint while the evader wants to maximize the amount of time necessary.

Because of these similar but opposite objectives, this can be defined as a zero-sum,

minimum-time pursuit-evasion game. Both players will exert their maximum allow-

able control due to the minimum-time nature of the problem and because there is

no weighting present on any control variables in the performance index. In order

for the final-state constraint to be satisfied and for a solution to exist, the pursuer

must have more control authority or be more agile than the evader. Mathematically,

Ke < 1. The solution will be of the bang-bang type that is typical of minimum-time

problems. The PE solution requires the switching function to be found [3].

The Hamiltonian can be written as

H = 1 + λ1ż1 + λ2ż2 = 1 + λ1z2 + λ2up − λ2ue . (4.6)

By inspection of Eqn. 4.6, if the goal is for the pursuer (evader) to minimize (max-

imize) the Hamiltonian, then the switching function for both players is dependent
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upon the sign associated with λ2. We can conclude

if λ2 < 0 then up = 1, ue = Ke , (4.7)

if λ2 > 0 then up = −1, ue = −Ke . (4.8)

From the costate equations, it follows

∂H

∂z1
= −λ̇1 → λ̇1 = 0 , (4.9)

∂H

∂z2
= −λ̇2 → λ̇2 = −λ1 . (4.10)

The ideal solution trajectory lies on intersecting parabolas and the optimal tra-

jectory for a game of this nature utilizes two parabolas. The first parabola depends

on the initial conditions and the second parabola always intersects the final-state

constraint. For this particular example, the final state constraint is represented by

the state space origin. The shape of these parabolas are defined by the total control

input which is defined as

w = up − ue = 1−Ke . (4.11)

The parabola equations can be solved for by manipulation of the state equations

given by ż1 = z2 and ż2 = w.

dz1
dz2

=
dz1/dt

dz2/dt
=
ż1
ż2

=
z2
w
. (4.12)

Therefore,

wdz1 = z2dz2 , (4.13)

which can be integrated on both sides to produce∫ tf

t0

wdz1 =

∫ tf

t0

z2dz2 , (4.14)

w
(
z1f − z10

)
=

1

2

(
z22f − z

2
20

)
. (4.15)
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By imposing the final-state constraint given by Eqn. 4.5, Eqn. 4.15 becomes the

trajectory parabola equation given by

wz10 =
z220
2
. (4.16)

Recall the control switching functions given by Eqns. 4.7 and 4.8. For these

cases, wmin and wmax can be defined.

wmax = w (λ2 < 0) = 1−Ke , (4.17)

wmin = w (λ2 > 0) = −1 +Ke . (4.18)

The parabolas can be plotted in the state space of z1 and z2. When wmax is used

with Eqn. 4.16, the coefficient on z10 is positive and the parabola vertex is located

on the left side of the trajectory. A negative coefficent is present on z10 when wmin is

used and the vertex is located on the right side of the parabola. Because the shape

of these trajectory parabolas are dictated by w and up is fixed for this example, the

trajectory becomes a function for the selection of Ke by the evader. Figures IV.1,

IV.2, and IV.3 illustrate these shape differences for Ke selections of 0, 0.25, and

0.75, respectively. Note that when Ke = 0, the trajectory becomes that of a simple

bang-bang minimum-time solution for a single agent because Ke = 0 represents no

evader input [3].

The path for wmin parabolas follow a downward trajectory while the wmax

parabolas follow an upward trajectory. Depending upon the initial conditions, the

game trajectory would begin a particular parabola and follow it until it met the

parabola that intersects the origin. At that instance in time, the control switches

and the game path takes the appropriate trajectory to the origin.
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Figure IV.1. Minimum-Time PE Trajectories with Ke = 0

Figure IV.2. Minimum-Time PE Trajectories with Ke = 0.25
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Figure IV.3. Minimum-Time PE Trajectories with Ke = 0.75

IV.B. Incomplete Information Behavior Learning

The optimal PE solutions begin on one trajectory parabola and continue on

it until that parabola intersects with one which leads to the origin. It is at this

intersection where the switching function λ2 crosses zero and wmax switches to wmin

or vice versa. If the switching function is not properly evaluated, then the trajectory

must remain on the new parabola until it intersects one which leads to the origin

again. Based on the trajectories shown in Fig. IV.1 - IV.3, it becomes clear that the

selection of Ke is essential to where the intersections occur and therefore necessary

to know in order for the pursuer to switch at the appropriate time.

An incomplete information minimum-time game is one in which a player is

unaware of the their opponent’s strategy. For the minimum-time case, it will be as-

83



sumed that the evader plays a complete information game and can properly evaluate

the switching function. In this minimum-time example, behavior learning aims to

estimate the value of Ke which defines the control constraint imposed on the evader.

If the pursuer can estimate Ke, then the pursuer has the ability to switch control

schemes at the correct time to switch to the proper trajectory and arrive at the

final-state constraints.

For minimum-time behavior learning, the states to estimate are defined by the

vector

x =


z1

z2

Ke

 =


x1

x2

x3

 , (4.19)

where states x1 and x2 are time-varying and whose state equations are given by

ż1 = z2 , (4.20)

ż2 = up −Ke . (4.21)

The state equations needed for the estimator are summarized by

ẋ(t) = f (x(t),u(t), t) , (4.22)

where

f =


x2

up − x3

0

 . (4.23)

Relative states are available for measurement and are defined by

ỹk = h (xk) = [x1 , x2]
T . (4.24)
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Equations 4.22 and 4.24 are in the standard form needed for an estimator. For

this particular example, a linear estimator can be used because the states appear

linearly in f . In the event the evader decides to play non-optimally, i.e. uses a value

for Ke that is less than the originally specified Ke, it would be ideal for the pursuer to

be aware of this because it would alter the optimal trajectory. Therefore, it is in the

best interest of the pursuer to continuously monitor the value used for Ke and use

a sequential linear estimator for processing. A full estimator would allow the state

measurements to be smoothed that are brought about by imperfect information and

provide an estimate of Ke needed to deal with the incomplete information.

IV.C. Summary

Behavior learning plays an important role in the minimum-time pursuit-evasion

scenario. Because of the switching nature of the state space trajectory, behavior

learning is used to estimate the gain K associated with an opponent which dic-

tates when the optimal trajectory switch occurs. When faced with an incomplete

information minimum-time game, a player runs the risk of improperly evaluating

the switching function and missing the optimal time at which to switch trajectory

parabolas.

In the presented framework, the choice of the gain Ke determines the agility or

control authority associated with the evader which in turn dictates the shape of the

state space trajectory. Depending on the complexity of the relative state equations,

the behavior learning filter could be implemented with a linear estimator.
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CHAPTER V

A MINIMUM-TIME EXAMPLE

Minimum-time optimal control problems are a specific type of final-time-free

problems in which the total time is the only factor considered in the performance

index. Problems of the minimum-time nature are ill posed without additional con-

straints because the solution would simply be the selection of a control input which

is infinite. Therefore, limits on the magnitude of the control input are specified

along with a final-state-constraint. The final-state-constraint is used to specify an

end condition so an interesting solution exists.

Three major hurdles exist in the implementation of PE games of the minimum-

time type. The first is that a final-state-constraint must be imposed to completely

define the problem, yet to do this, the pursuer must be able to catch the evader.

That is, the problem can only be properly defined if the evader is guaranteed to

be captured. Second, the control switching that occurs from the limits imposed by

on the control magnitude are undesirable, especially when more than one intelligent

agent is making decisions. The simple minimum-time problem that once had a bang-

bang solution can now undergo constant switching. Finally, the ongoing desire for

feedback solutions becomes more difficult to fulfill as minimum-time solutions are

generally open loop.

Minimum-time pursuit-evasion problems have the potential to be applicable to

several types of aerospace related scenarios. The most popular military applica-

tion would be the missile interception problem which is traditionally solved using a
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final-time-fixed approach. Other examples include minimum-time orbit transfer for

spacecraft rendezvous and asset allocation for a team of UAVs tasked with track-

ing multiple targets. Because of the potential implications behavior-learning could

have on minimum-time solutions to these types of scenarios, the simple case still has

merit. This chapter will present an academic minimum-time problem based on the

principles proposed in Ch. V.

V.A. Model

Consider an agent which undergoes rectilinear motion and is influenced by

acceleration-level control,

ẍi = ui . (5.1)

If the state vector is defined as

zi = [x, ẋ] , (5.2)

then the vector-matrix form of the agent’s equations of motion can be written as

ż = Azi +Bui , (5.3)

where

A =

0 1

0 0

 and B =

0

1

 . (5.4)

If a pursuing and evading agent both behave according to Eqn. 5.3 and the

relative state vector is defined as

z = zp − ze , (5.5)
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then the relative model can be written as

ż = Az +Bup −Bue . (5.6)

V.B. Minimum-Time Pursuit-Evasion

The final-time-free, zero-sum pursuit-evasion game is defined by the performance

index

J =

∫ tf

t0

dt , (5.7)

and subject to the dynamic constraint given by Eqn. 5.6. The initial conditions are

given by

z0 =

z10
z20

 . (5.8)

and the final state constraints are specified as

zf =

z1f
z2f

 =

0

0

 . (5.9)

Additionally, the control input for each player is subject to the constraints

|up| ≤ 1 , (5.10)

|ue| ≤ Ke . (5.11)

The goal is to drive the relative position and velocity between the two players

to zero while satisfying the control constraints. The pursuer aims to do this in

minimum-time while the pursuer wishes to maximize Eqn. 5.7 and therefore do this

in maximum-time. In order for a solution to exist, Ke must satisfy Ke < 1, otherwise,

the final-state-constraint cannot be satisfied. Note that this formulation is the same
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as that posed in Section IV.A. The solution is given by Eqns. 4.7 and 4.8 while the

costate equations are shown in Eqns. 4.9 and 4.10.

The costate λ2 is a function of time that can be written as

λ2 = λ1 (t− t0) + λ20 = λ1 (tf − t) + λ2f . (5.12)

Note from Eqn. 5.12 that the switching function is a linear function of time and can

therefore change sign once, at most.

Recall Isaacs’ push for feedback solutions to pursuit-evasion games. By defining

w = up − ue, we can manipulate the switching function based on the sign of λ2 into

a feedback switching function. If

ż2 = w , (5.13)

then it follows

z2 = w (t− t0) + z20 = w (t− tf ) + z2f . (5.14)

The terminal conditions are defined as z1f = z2f = 0 therefore Eqn. 5.14 reduces to

z2 = w (t− tf ) . (5.15)

Integration of z2 yields

z1 =
w (t− tf )2

2
=

z22
2w

, (5.16)

and solving for w in terms of z1 and z2 gives

w =
z22
2z1

. (5.17)

Equation 5.17 can be rewritten as

sgn (w) abs (w) =
z22
2z1

. (5.18)
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Note that Eqn. 5.17 is consistent with the parabola equation given by Eqn. 4.16.

The parabola plots shown in Figs. IV.1 - IV.3 can be used with the help of the

parabola equation to form the feedback control solution in terms of z1 and z2. From

the switching curve it can be concluded that above the curve, w = wmin, and below

the curve, w = wmax, because sgn (wmin) = −1 and sgn (wmax) = +1. Together with

Eqn. 5.18, the feedback solution is given by

w = wmax if
[
z22sgn (z2) < −2z1abs (wmax)

]
or

[
z22sgn (z2) = −2z1abs (wmax) , z1 > 0

]
,

w = wmin if
[
z22sgn (z2) > −2z1abs (wmin)

]
or

[
z22sgn (z2) = −2z1abs (wmin) , z1 < 0

]
, (5.19)

where

wmax = 1−Ke , (5.20)

wmin = −1 +Ke . (5.21)

V.C. Behavior Learning

For the type of game presented, it was revealed in Chapter IV that behavior

learning can be used by the pursuer to estimate the evader’s selection of Ke. For this

minimum-time pursuit evasion game, we will explore the effects of behavior learning

with slightly different assumptions on the evader’s game play. The evader will always

play a complete, perfect, and certain information game. That is, the evader will

know precisely the pursuer’s control bounds, up = ±1. Additionally, the evader’s

measurements of the relative states z1 and z2 will free of measurement noise. There
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are no uncertainties present in the evader’s relative model. These characteristics of

the evader will remain fixed for all simulations. For the imperfect information case,

the evader may switch too early or too late which can cause oscillating behavior

especially when it occurs near the true switch time. Although this would be a more

realistic situation, it distracts the reader from the usefulness of behavior learning in

the minimum-time case.

The evaluation of w given by Eqn. 5.19 dictates which value for up is selected by

the pursuer. The value of Ke plays an important role in this determination which is

done independently by the pursuer and the evader. The switching function is used

so the pursuer can jump to the proper trajectory to the state-space origin at the

correct time. If this switching function is not properly evaluated, then the pursuer

will not be able to switch at the correct time to drive the relative states to the origin

in minimum-time.

When the pursuer is subject to an incomplete, imperfect, certain information

game, the states to be estimated become those given by Eqn. 4.19. The state equa-

tions are given by Eqn. 4.23 and the measurements of the relative states are summa-

rized in Eqn. 4.24. Because the state equations and measurements are both linear

functions of the states given by Eqn. 4.19, a linear estimator can be used to estimate

the time varying parameters z1 and z2 along with the constant control bound of the

evader given by Ke. In the event that the evader decides to play non-optimally, i.e.

use |ue| < Ke, then it is in the best interest of the pursuer to continuously monitor

the estimate x3 = Ke so the switching function can always be properly evaluated.

Therefore, the pursuer wishes to filter the states z1 and z2 while estimating the pa-
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rameter Ke. For these reasons, a standard Kalman filter is used for behavior learning

in this example.

V.D. Simulation

The initial conditions for each player were chosen to be

zp0 =

2.5

1

 , and ze0 =

 1

0.5

 , (5.22)

which produce the relative initial conditions

z0 =

1.5

0.5

 . (5.23)

Three sets of simulation results are presented for the minimum-time behavior

learning example. The complete information case is used as a baseline to show how

the game should play out in the ideal scenario. The incomplete information case is

used to show the consequences of the pursuer not being able to properly evaluate

the switching function. Finally, an incomplete information example with the pursuer

enabled with behavior learning is shown to illustrate the usefulness of these methods

for the minimum-time example.

For the incomplete information examples, the pursuer is also subject to im-

perfect information. In incomplete information simulations, the pursuer’s relative

state measurements are subject to a zero-mean Gaussian noise distribution with a

standard deviation of σ = 0.001.
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V.D.1. Complete Information

The results for the complete information simulation are shown in Figs. V.1 - V.3.

This example used a true value of Ke = 0.2 which was known by both players. The

state space trajectory is shown in Fig. V.1 along with the optimal trajectories that

were generated using Ke = 0.2. The game trajectory after the switching point which

leads to the origin resides slightly lower than the actual optimal trajectory. In theory,

this does not occur because the exact switching time can be computed. However, in

practice, simulation are forced to rely on discrete time. As the simulation timestep

approaches zero, the game trajectory converges on the optimal trajectory.

Figure V.1. Complete Information State Space Trajectory
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Figure V.2 contains the pursuer, evader, and relative states. Note that at the

final time tf = 3.503 seconds, the relative states go to zero. The pursuer control,

up, evader control, ue, and total control, w, are illustrated in Fig. V.3. The pursuer

and evader are both able to properly evaluate the switching function and therefore

switch in unison.

Figure V.2. Complete Information States
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Figure V.3. Complete Information Control Input

V.D.2. Incomplete Information

For the incomplete information case, the pursuer continued to assume Ke = 0.2

but the evader’s control constraint was actually Ke = 0.4. The results for these

assumptions are found in Figs. V.4 - V.6. The state space trajectory is shown in

Fig. V.4 along with the optimal trajectory assumed by the pursuer using Ke = 0.2

and the actual optimal trajectory given by Ke = 0.4. Figure V.5 contains the states

given by the incomplete information case and the control input is shown in Fig. V.6.

Figures V.4 and V.6 show that the pursuer assumes it is on the wrong trajectory

given by Ke = 0.2 and switches after the evader causing the trajectory to deviate

from the optimal trajectory. Because the pursuer switches too late, the resulting

trajectory is parallel to that of the optimal trajectory and the switching function must

be evaluated again in order to get to the proper trajectory to the origin. This cycle
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Figure V.4. Incomplete Information State Space Trajectory

continues until the system finally converges. The presence of incomplete information

raises the final time from tf = 3.503 to tf = 6.820.

V.D.3. Incomplete Information with Behavior Learning

The incomplete information case was simulated again with the pursuer using a

Kalman filter for behavior learning. These results are shown in Figs. V.7 - V.10 using

the same selections for Ke as in the incomplete information simulation. With the

use behavior learning, the evader is able to estimate the true value of Ke using its

own assumption as the initial guess as illustrated in Fig. V.10. Even though K̇e = 0

is exact, a considerable amount of process noise was needed on that parameter to

ensure a short transient time after the control switch. This is desirable in case the
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Figure V.5. Incomplete Information States
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Figure V.6. Incomplete Information Control Input

evader decides to play with a non-optimal selection of Ke.

Figure V.7 confirms that the switching function was properly evaluated by both

players at the optimal trajectory was taken. The final time with behavior learning

implemented was tf = 4.209. The discrepancy between this final time and that of

the complete information case is because the complete information case uses a true

Ke of 0.2 while the incomplete version uses Ke = 0.4. This was done to show the

trajectory that the pursuer expected.
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Figure V.7. Incomplete Information with Behavior Learning State Space
Trajectory
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Figure V.8. Incomplete Information with Behavior Learning States
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Figure V.9. Incomplete Information with Behavior Learning Control In-
put

Figure V.10. Incomplete Information with Behavior Learning Estimate
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V.E. Summary

A comparison of the complete, incomplete, and behavior learning minimum-

time trajectories are shown in Fig. V.11. When a player incorrectly assumes their

opponent’s control input, it becomes impossible to properly evaluate the switching

function and the evolution of the state space path is forced to take a sub-optimal

trajectory. The process noise associated with the gain Ke in the behavior learning

estimator was intentionally set high in order to accommodate the switching na-

ture of the control. The final cost summary is shown in Table V.1. Although the

Figure V.11. Minimum-Time State Space Trajectories

minimum-time problem presented here is a purely academic example, it is apparent
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Table V.1. Minimum-Time Game Cost Summary

Information Type Pursuer Cost

Complete 3.503

Incomplete 6.820

Incomplete + BL 4.209

how behavior learning can play an important role in final-time-free PE games which

are subject to incomplete information. In practice, additional issues arise such as

missing the proper switching time due to the chosen discrete time step size. As

the time step between measurements increases, the time between when the switch

should occur and when the switch is properly evaluated increases. As the update

rate increases, this issue becomes less prevalent.

One other concern includes improper evaluation of the switching function based

on the imperfect nature of state measurements subject to noise. When zero-mean

white noise is added to the measurements, a player could think the switch should

occur then re-evaluate such that the switch should not occur at the next time step.

As the magnitude of the additive noise increases, so does the probability that this

phenomenon will occur. This issue has a cascading effect when behavior learning is

enabled because a player estimates their opponent’s behavior based on the relative

states which are driven by the control input. When the opponent continues to

incorrectly evaluate the switching function, it could have negative effects on the

player enabled with behavior learning. Because filtering of the relative states is a
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byproduct of the behavior learning framework presented, a single player can reduce

the possibility of this happening for their own switching function computation by

implementing a behavior learning filter.
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CHAPTER VI

DYNAMIC INVERSION

As outlined in the previous chapters, feedback solutions are critical for PE sce-

narios. The need for closed-loop control has shaped the discussion around games that

are linear-quadratic in nature. Before continuing, an important detail must be ad-

dressed concerning real-world dynamic systems. In the aerospace industry, dynamic

systems are most commonly nonlinear which can be problematic when approaching a

PE game which requires a feedback solution. Therefore, a reliable method is needed

to help transform common nonlinear systems, including Euler’s rotational equations

of motion or a those describing a vehicle in flight, into their linear counterpart such

that they fit into the framework of a linear-quadratic pursuit-evasion game.

Over the years, techniques have been developed to aid in the control of vehicles

whose motion is described by nonlinear differential equations. The most common

method involves linearization by taking partial derivatives of the nonlinear equations

about equilibrium points. If a vehicle can stay within a certain motion envelope, these

techniques can hold true. Linearization can be performed both analytically [31] or

experimentally [32]. The drawback to this method, however, is that the states that

are of interest in a pursuit-evasion game are often not the same states that make

up the linearized model. For example, the linearized model for an aircraft in flight

is based upon the Euler angles that make up the aircraft’s attitude, and for good

reason. The stability of an air vehicle is very important in order for it to maintain

desired, stable, flight characteristics. However, most often the position of a vehicle
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is of interest in a PE scenario.

Another tool used to provide a linear transformation for a naturally nonlin-

ear system is dynamic inversion [33]. The method of dynamic inversion allows the

engineer to select a desired, linear system response and subsequently compute the

necessary control input for the nonlinear system to achieve the desired response.

This method has been shown to be useful in the control of highly maneuverable ve-

hicles [34], its stability and robustness verified [35–37], and it has even been used on

flight tests of advanced military applications [5].

VI.A. Model

The method of dynamic inversion can be very useful when applied to general-

ized nonlinear equations of motion. Consider the nonlinear differential equations of

motion for a single player which take on the form

q =
[
rT , sT

]T
, (6.1)

ṙ = H (r) s , (6.2)

ṡ = f (r, s) +G (s)v , (6.3)

where r, s,f ∈ Rn, v ∈ Rm, H ∈ Rn×n, and G ∈ Rn×m.

Vector q is the state vector with r and s representing the position and velocity

level variables, respectively. Vector v signifies the control input. The kinematics and

dynamics are defined by Eqn. 6.2 and Eqn. 6.3, respectively, while vector and matrix

functions f(r, s), G(s), and H(r) may or may not be nonlinear. This particular class

of systems is affine in the controls meaning the the control input appears linearly in

the nonlinear state differential equations. This form is common among aerospace sys-
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tems and therefore the following discussion will be limited to control-affine nonlinear

systems.

Nonlinear optimal control problems, including solutions to PE games, become

significantly more difficult when the optimal solution must adhere to a nonlinear dy-

namic constraint. Analytical, closed-form feedback solutions to the optimal control

problem are desired. Therefore, it is of particular interest to find useful transforma-

tions to map the relationships found in Eqns. 6.2 and 6.3 to suitable linear versions.

To accomplish this, a two-step dynamic inversion process is used.

VI.B. Method

Dynamic inversion is applicable to nth-order nonlinear systems that are control-

affine like those found in Eqn. 6.3 [5]. Consider a desired linear dynamic model,

defined as ṡdes, which can be prescribed later for whichever system we choose. To

force the nonlinear system to follow the dynamics of the desired linear model, set

the right hand side of Eqn. 6.3 equal to the desired dynamic model and solve for the

control input vector.

ṡdes = f +Gv ,

v = G−1 [ṡdes − f ] . (6.4)

Equation 6.4 is used to compute the control input vector v required to make the

nonlinear dynamics in Eqn. 6.3 behave as those prescribed by ṡdes. Note that the

matrix function G must be invertible. If G is square then m = n and the number of

control inputs for the original system are equal to the number of position coordinates.

Inversion is possible if it is of full rank. A minimum norm solution can also be used
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if m > n which is representative of an over-actuated system. This makes sense

because if we wish to drive the relative position states to zero, we need at least that

many control inputs to have enough control authority to maneuver the system. Still,

the possibility for nonlinear kinematics exists as given by Eqn. 6.2. The concept of

dynamic inversion can be applied a second time to this system.

Again, consider the desired dynamics w that are yet to be specified. By setting

this desired behavior equal to the time derivative of the right hand side of Eqn. 6.2

and substituting the desired ṡdes, it is possible to compute the consistent ṡdes based

on the specified w.

w = r̈ ,

w = Ḣs+Hṡ ,

w = Ḣs+Hṡdes ,

ṡdes = H−1
[
w − Ḣs

]
. (6.5)

Applying two-step dynamic inversion to the specific class of systems described

by Eqns. 6.2 and 6.3 yields a convenient double integrator problem. First, w is

chosen and is used for the pursuit-evasion optimal control solution. Then, Eqn. 6.5

is used to compute the consistent ṡdes for the double integrator framework. Finally,

Eqn. 6.4 is used to compute the actual input to the original system. Each variable

is evaluated using the current states at the current timestep. Note that the actual

system still behaves according to Eqn. 6.3 which is used to simulate the evolution

of motion in computer-based applications. This two-step process rids the system

of the complications associated with nonlinear kinematics and allows for a double-

integrator form for the equations of motion. It is important to note that for the
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common kinematic relationship ṙ = s, H takes on the form of an identity matrix

then ṡdes is simply equal to w.

Upon implementation, dynamic inversion creates a main outer control loop and

a dynamic inversion inner control loop which usual runs at a faster rate. The main

outer control is computed using the desired dynamics defined by w, like that from a

pursuit-evasion game, then those results are used to compute the necessary input v

for the inner control loop. Dynamic inversion has been proven to be very useful when

the execution rate is fast enough to deal with the system nonlinearities [5]. It is not

uncommon for the inner control loop to run at a rate an order of magnitude greater

than the outer control loop. The desired dynamics, w, would remain constant during

the extra computational steps of the inner control loop and updated at its own rate

as necessary.

The dynamic inversion process is used to provide a linear transformation for a

single vehicle or player. To form the relative equations of motion needed for the PE

dynamic constraint, it is necessary to perform two-step dynamic inversion for each

system.

VI.C. Relative Model

If the original system for Player i is nonlinear, the desired linear representation

could be selected as

wi = ui =

ui1
ui2

 , (6.6)

which represents a system with acceleration level control under the influence of no

external forces.
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For a point mass system moving in the horizontal plane, the linear representation

of the state vector and its time derivative are then written as

zi = [xi, yi, ẋi, ẏi]
T = [zi1 , zi2 , zi3 , zi4 ]

T , (6.7)

żi = [zi3 , zi4 , ui1 , ui2 ]
T . (6.8)

In vector-matrix form, Eqn. 6.8 becomes

żi = Azi +Bui , (6.9)

where

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, B =



0 0

0 0

1 0

0 1


. (6.10)

When the pursuer and evader are both modeled by Eqn. 6.9 and therefore have

the same system matrices A and B, the relative equations of motion can be formed

as

zr = zp − ze , (6.11)

żr = żp − że = Azp +Bup − Aze −Bue , (6.12)

żr = A [zp − ze] +Bup −Bue , (6.13)

żr = Azr +Bup −Bue , (6.14)

where subscripts p and e denote states and control inputs of the pursuer and evader,

respectively. The relative differential equations found in Eqn. 6.14 define the dynamic

constraint for a PE game between Player p and Player e. Because dynamic inversion
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is used to produce a linear constraint, familiar feedback solutions to linear optimal

control problems such as the linear-quadratic regulator can be applied.

Note that it is not always the case that the relative equations of motion take on

the exact form shown in Eqn. 6.14. For example, a spacecraft reorientation PE game

will be studied later which takes into account the relative attitude and attitude rates.

Special attention must be paid to systems whose relative states cannot be computed

using a simple difference relation like that in Eqn. 6.11. The relative attitude and

the associated rates must be computed consistently using the necessary form of the

attitude influence matrix [38].

VI.D. Summary

Although the robustness of dynamic inversion has been verified in certain ap-

plications [36], it must be used with caution and its robustness examined on a case-

by-case basis. Depending on the selection of the desired linear dynamics and the

feasibility of those dynamics by the true nonlinear system, there exists the possibil-

ity that what is being requested of the system is unobtainable. In the most extreme

cases, the choice for the desired dynamics may produce undesirable system charac-

teristics which may include control saturation or system instability.

Control saturation is brought about by large magnitudes being required in or-

der for the nonlinear system to behave like the desired system. Control saturation

can become catastrophic for nonlinear systems that are already inherently unstable.

These large magnitudes may also produce system oscillations and can lead to system

instability.
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It is essential to cautiously select the desired linear response w. Most often,

selections which yield a damped linear response perform much better than those

selection which do not. Nevertheless, some agility must be sacrificed when selecting

a particular stable response. For example, instead of a model matrix A, A∗ could be

selected for a more obtainable desired system.

A =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, A =



0 0 1 0

0 0 0 1

−k 0 −c 0

0 −k 0 −c


, (6.15)

where k and c are positive.

The method of two-step dynamic inversion for nonlinear systems presented can

be extremely useful when applied to pursuit-evasion games if its application is ex-

ercised with caution. The selection of w is critical for complex systems in which

stability could become an issue.
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CHAPTER VII

APPLICATIONS: SPACECRAFT PROXIMITY OPERATIONS

Recently, automated spacecraft proximity operations has become a major area

of interest among government and private entities. Several factors have been the

major driving force behind these research interests including automated removal of

space debris, servicing of damaged spacecraft, re-purposing of out-of-date satellites

by means of on-orbit disassembly and assembly, resupply of the International Space

Station by private companies, and reconnaissance missions involving uncooperative

spacecraft. Many of these factors can be adapted to fit the framework of a pursuit-

evasion scenario. Spacecraft differential games have been developed [39] and solutions

to the optimal guidance laws presented [40]. However, these pursuit-evasion results

are limited to final-time-fixed and restricted to the complete information case.

Consider a space-based reconnaissance mission involving two spacecraft which

are modeled as rigid bodies and whose attitude is defined through three degrees-

of-freedom. The spacecraft are non-cooperative and the objective for the pursuer

spacecraft is to match the attitude and angular velocities of the second evader space-

craft. That is, the pursuer spacecraft wants to drive the relative attitude error to

zero while simultaneously driving the relative angular velocities to zero. The pursuer

wishes to accomplish this task for an undetermined amount of time making a game

of this nature best suited for an infinite-horizon PE scenario.
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VII.A. Model

First, consider the attitude kinematics and dynamics of each vehicle individually.

The attitude can be represented by several choices of attitude coordinates including

Euler angles, Euler parameters, the classic Rodrigues parameters (CRPs), modified

Rodrigues parameters (MRPs), or the principle vector and angle. The selection of

attitude coordinates is important because they can make the problem more or less

convenient with the implementation of dynamic inversion.

For this problem, the CRPs are used for two reasons. The first is that they

are a minimum attitude representation meaning three parameters are used to define

the three degrees-of-freedom associated with the attitude. This is important because

the attitude influence matrix which relates the angular velocity to the attitude rates

is square [38]. A square matrix is necessary for a valid implementation of dynamic

inversion. It is possible for a four parameter set to be chosen such as the Euler

parameters but this requires the kinematic constraint to be appended to the attitude

influence matrix. For these reasons, a minimum attitude set is desired.

The second reason the CRPs are chosen in favor of the MRPs is that minimum

attitude sets are susceptible to singularities. The MRPs have an orientation singular-

ity when the principal angle φ = ±2π. This is undesirable because once the relative

attitude is formed, this corresponds to when the pursuer matches the evader’s atti-

tude exactly, which is the goal. Because the game is defined as infinite-horizon, the

pursuer intends to hold the desired relative attitude at zero infinitely. The CRPs

contain an orientation singularity when φ = ±π. When considering the relative atti-

tude, This singularity corresponds to when the two vehicles have the absolute most
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attitude error. This can be avoided if the pursuer has more control authority than

the evader and the initial conditions are defined such that the relative φ 6= ±π.

Another solution to these issues would be to use a shadow set of coordinates

such as the shadow MRPs. These attitude coordinates always avoid the orientation

singularity by computing the attitude one of two ways. The drawback of this selection

is it would introduce inconsistencies in the attitude description and could negatively

affect the feedback solutions to the PE game.

By defining the attitude and angular velocity vectors for player i as

qi = [qi1 , qi2 , qi3 ]
T , (7.1)

ωi = [ωi1 , ωi2 , ωi3 ]
T , (7.2)

the attitude kinematics for the CRPs are defined for a single vehicle as

q̇i = Hiωi , (7.3)

where qi represents the CRPs and ωi represents the body angular velocities with

respect to the inertial reference frame, resolved in the body-fixed reference frame.

The attitude influence matrix, Hi, is a function of the attitude coordinates and takes

on the form

Hi =
1

2


1 + q2i1 qi1qi2 − qi3 qi1qi3 + qi2

qi1qi2 + qi3 1 + q2i2 qi2qi3 − qi1

qi1qi3 − qi2 qi2qi3 + qi1 1 + q2i3

 . (7.4)

If the moment of inertia tensor and the torque input vector are of the form

Ii =


Ii1 0 0

0 Ii2 0

0 0 Ii3

 , and `i =


`i1

`i2

`i3

 , (7.5)
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respectively, then Euler’s rotational equations of motion for a rotating rigid body

provide the attitude dynamics which are given by

ω̇i1 =
1

Ii1
(Ii2 − Ii3)ωi2ωi3 +

1

Ii1
`i1 , (7.6)

ω̇i2 =
1

Ii2
(Ii3 − Ii1)ωi1ωi3 +

1

Ii2
`i2 , (7.7)

ω̇i3 =
1

Ii3
(Ii1 − Ii2)ωi1ωi2 +

1

Ii3
`i3 . (7.8)

Both the attitude kinematics and rotational dynamics are nonlinear for a single

vehicle. Therefore, we wish to impose dynamic inversion in an effort to put the

equations of motion into a form that can be used for the implementation of a pursuit-

evasion game with feedback solutions and behavior learning elements. The dynamics

can be rewritten as

ω̇i = fi +Givi , (7.9)

where

fi =


1
Ii1

(Ii2 − Ii3)ωi2ωi3
1
Ii2

(Ii3 − Ii1)ωi1ωi3
1
Ii3

(Ii1 − Ii2)ωi1ωi2

 , Gi =


1
Ii1

0 0

0 1
Ii2

0

0 0 1
Ii3

 , (7.10)

and

vi = [`i1 , `i2 , `i3 ]
T . (7.11)

Equations 7.3 and 7.9 now take on the same form as the model used for dynamic

inversion in Eqns. 6.2 and 6.3. By applying two-step dynamic inversion, the necessary

consistent angular velocity vector, ω̇ic , is defined as

ω̇ic = H−1i

[
q̈idesired − Ḣiωi

]
, (7.12)
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and the true control input can be computed using

vi = G−1i [ω̇ic − fi] . (7.13)

In Eqns. 7.12 and 7.13, ωi and fi are evaluated using the current angular velocity,

Gi is constant, Hi is evaluated using the current attitude, and Ḣi is evaluated at the

current attitude and attitude rates using

Ḣi =
1

2

q̇i1


2qi1 qi2 qi3

qi2 0 −1

qi3 1 0

+ q̇i2


0 qi1 1

qi1 2qi2 qi3

−1 qi3 0

+ q̇i3


0 −1 qi1

1 0 qi2

qi1 qi2 2qi3



 .

(7.14)

By imposing this two-step process to remove the kinematic and dynamic nonlin-

earities, we are free to choose q̈idesired as we see fit. Note that through this dynamic

inversion process, the attitude rates are used in place of the angular velocities and

the desired dynamics are imposed on the the coordinates directly. This is done in

the pursuit-evasion control computation and the dynamic inversion relations given

by Eqns. 7.12 and 7.13 are used to compute the actual required controls for each

system based on the desired attitude dynamics.

Direct control of each attitude coordinate is possible by defining

q̈idesired = ui = [ui1 , ui2 , ui3 ]
T . (7.15)

If player i ’s state vector is

zi = [qi1 , qi2 , qi3 , q̇i1 , q̇i2 , q̇i3 ]
T , (7.16)

then the vector-matrix form for single player EoMs become

żi = Azi +Bui , (7.17)
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where

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


. (7.18)

Two-step dynamic inversion is imposed on both players to allow for a linear

formulation of the attitude dynamics. The attitude and dynamics of each individual

vehicle is defined with respect to the inertial reference frame. For the PE game,

the relative attitude equations must be formed. During implementation, special

consideration must be given to the relative attitude when also keeping track of the

inertial attitude of each player.

Even with the implementation of dynamic inversion on each vehicle individually,

the relative attitude kinematics and dynamics still exhibit nonlinearities due to the

relationship between the body angular velocities and the attitude coordinate rates.

To push the limits of behavior learning, an invalid assumption will be made pertaining

to the relative attitude model. It will be assumed that the relative attitude dynamics

behave linearly, which is not the case. The goal here is to show that even if the

player’s assumed model of the relative system is wrong, behavior learning can still

be effective by producing some solution that can be used to model the system. If a

player can converge on a model for their opponent’s behavior, even if is not necessarily

the correct model, a player should have the ability to perform better than by simply

employing a zero-sum safe strategy.
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The relative attitude coordinates of the pursuer with respect to the evader are

defined as

q = [q1, q2, q3]
T . (7.19)

The invalid assumption is that the acceleration of the attitude coordinates can be

written linearly in terms of the pursuer and evader inputs as

q̈ = up − ue . (7.20)

Following this assumption, writing the relative state vector as

z = [q1, q2, q3, q̇1, q̇2, q̇3]
T , (7.21)

the relative attitude dynamics can be expressed as

ż = Az +Bup −Bue , (7.22)

where A and B are defined in Eqn. 7.18.

VII.B. Pursuit-Evasion Game

The infinite-horizon spacecraft reorientation pursuit-evasion game is defined by

the zero-sum performance index

JSR =
1

2

∫ ∞
t0

(
zTQz + uTpRpup − uTe Reue

)
dt , (7.23)

subject to the linear dynamic constraint defined by Eqn. 7.22. The optimal solutions

are given by

up = −R−1p BTSz , (7.24)

ue = −R−1e BTSz , (7.25)
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where S is the solution to the ARE

0 = Q+ ATS + SA+ SB
(
R−1e −R−1p

)
BTS . (7.26)

VII.C. Behavior Learning

Behavior learning will attempt to estimate the evader’s Kalman gain which was

shown to be constant for the infinite-horizon case. This gain is a 3× 6 matrix with

at most 18 independent gains to estimate. The evader’s Kalman gain is defined by

Ke = R−1e BTS . (7.27)

With the form of A and B known and given by Eqn. 7.18, and the reasonable

assumptions that:

• the evader implements a zero-sum safe strategy,

• the evader is not capable of bahavior learning,

• the evader weighs each of the relative coordinates equally,

• the evader weighs each of the relative coordinate rates equally,

• the evader weighs each of the control inputs equally, and

• the evader does not weigh any cross-coupling terms

the form of Ke can be reduced to

Ke =


k1 0 0 k2 0 0

0 k1 0 0 k2 0

0 0 k1 0 0 k2

 . (7.28)
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The behavior learning algorithm becomes an estimator for the relative attitude

coordinates and coordinate rates given by z, and the two independent elements of

Ke. These states are summarized by the estimate vector

x =



z1

z2

z3

z4

z5

z6

k1

k2



=



x1

x2

x3

x4

x5

x6

x7

x8



, (7.29)

where states x1 − x6 are time-varying and whose state equations are given by

ż = (A+BKe) z +Bup . (7.30)

The state equations needed for the nonlinear estimator are summarized by

ẋ(t) = f (x(t),u(t), t) , (7.31)
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where

f =



x4

x5

x6

x1x7 + x4x8 + up1

x2x7 + x5x8 + up2

x3x7 + x6x8 + up3

0

0



, (7.32)

and up = [up1 , up2 , up3 ]
T . The measurements available are the relative states defined

by

ỹk = h (xk) = [x1 , x2 , x3 , x4 , x5 , x6]
T . (7.33)

Equations 7.31 and 7.33 are in the standard form needed for a nonlinear filter.

Any of several nonlinear estimation techniques can be used to filter the relative states

and estimate the strategy parameters k1 and k2. These estimates can be continuously

monitored and the pursuer can then employ a one-sided optimal control solution.

The one-sided optimal control solution is given by Eqns. 2.16 and 2.18. If the

pursuer notices a significant change in the evader’s gains k1 or k2, Eqn 3.27 must be

used to compute a new solution for S before this information can be accounted for.

VII.D. Simulation

To develop a baseline case for comparison purposes, a complete information case

is simulated along with incomplete information and behavior learning enabled cases.
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The complete information gain selections are summarized by

Qe =



7 0 0 0 0 0

0 7 0 0 0 0

0 0 7 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (7.34)

Rpe =


1 0 0

0 1 0

0 0 1

 , Ree =


15 0 0

0 15 0

0 0 15

 . (7.35)

For the complete information case, each player assumes a zero-sum strategy using

the gains defined in Eqns. 7.34 and 7.35.

The initial conditions for all cases were chosen to be

qp0 = [0.07, 0.02, 0.1]T , (7.36)

qe0 = [0.25, 0.5, 0.33]T , (7.37)

with the initial angular velocities of

wp0 = [−0.05, 0, 0.07]T rad/s, (7.38)

we0 = [0.15, −0.1, 0]T rad/s. (7.39)

These initial conditions produce a relative attitude defined by the CRP vector

qr0 = [−0.1201, −0.2593, −0.1533]T , (7.40)
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and an initial relative angular velocity of

ωr0 = [−0.20, 0.10, 0.07]T rad/s. (7.41)

The spacecraft moment of inertia tensors define equivalent near-axisymmetric

rigid bodies.

I =


1 0 0

0 2.25 0

0 0 2

 . (7.42)

Imperfect information dictates that the relative state measurements are subject

to a zero-mean Gaussian noise distribution. A standard deviation of σ = 0.005

was used on all relative state measurements which include the attitude coordinates

and coordinate rates. In practice, the relative attitude could be measured using a

stereo or laser-based imager. The relative attitude can be computed and given in

the appropriate attitude coordinates. Aided with gyros measuring inertial angular

velocity, a relative angular velocity could be estimated. Using the attitude influence

matrix, the relative coordinate rates could also be provided for computation of the

pursuit-evasion feedback control solution.

VII.D.1. Complete Information

The simulation results for the complete information case are shown in Figs. VII.1

- VII.5. Total relative attitude error is computed using

eatt = cos−1

[
tr
(
RtR

T
e

)
− 1

2

]
, (7.43)

124



where tr(∗) is the trace of ∗, Rt is the desired attitude matrix which is identity, and

Re is the attitude matrix formed from the relative CRPs, q, using

Re = [1]− 2

1 + q2
[
q×
]

+
2

1 + q2
[
q×
] [
q×
]
, q2 = q21 + q22 + q23 . (7.44)

The relative, pursuer, and evader states for the 300 second simulation are illus-

trated in Figs. VII.1, VII.2, and VII.3, respectively. The control input which consists

of those requested by the PE solution and the actual applied torques from dynamic

inversion are shown in Fig. VII.4. The cumulative cost and cost-to-go are found in

Fig. VII.5.

After 300 seconds the relative state attitude error is 0.9472 degrees with a rel-

ative angular velocity of 0.0015 deg/s. No adverse effects result in the control input

computation from the imposed two-step dynamic inversion as evident in Fig. VII.4.

The cumulative cost and cost-to-go for the pursuer and evader are equivalent as ex-

pected from the complete information, zero-sum game. The total cost for the pursuer

and evader was computed to be 4.9093 while the cost-to-go was 0.4233× 10−3.

VII.D.2. Incomplete Information

For the incomplete information case, the pursuer’s gains remained constant and

those assumed by the evader were altered. The evader’s gains for the incomplete
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Figure VII.1. Complete Information Relative States

Figure VII.2. Complete Information Pursuer States
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Figure VII.3. Complete Information Evader States

Figure VII.4. Complete Information Control Input
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Figure VII.5. Complete Information Relative Cost

information case are summarized by

Qe =



6.5 0 0 0 0 0

0 6.5 0 0 0 0

0 0 6.5 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (7.45)

Rpe =


1 0 0

0 1 0

0 0 1

 , Ree =


20 0 0

0 20 0

0 0 20

 . (7.46)

The relative, pursuer, and evader states for the 300 second simulation are illus-

trated in Figs. VII.6, VII.7, and VII.8, respectively. The control input which consists
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of those requested by the PE solution and the actual applied torques from dynamic

inversion are shown in Fig. VII.9. The cumulative cost and cost-to-go are found in

Fig. VII.10.

After 300 seconds the relative state attitude error is 19.0259 degrees and with

a relative angular velocity of 0.0031 deg/s. Again, no adverse effects result in the

control input computation from the imposed two-step dynamic inversion as evident

in Fig. VII.9, verifying the selection of the desired system for this particular example.

The total cost for the pursuer was computed to be 3.6394 × 102 while that of the

evader was 4.6851 × 102. The cost-to-go at the end of 300 seconds was 0.1739 and

0.1638 for the pursuer and evader, respectively.

Figure VII.6. Incomplete Information Relative States
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Figure VII.7. Incomplete Information Pursuer States

Figure VII.8. Incomplete Information Evader States
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Figure VII.9. Incomplete Information Control Input

Figure VII.10. Incomplete Information Relative Cost
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VII.D.3. Incomplete Information with Behavior Learning EKF

The objective of behavior learning for the infinite-horizon spacecraft reorienta-

tion problem involves reducing the final cost-to-go such that the slope of the cumula-

tive cost decreases when compared to the incomplete information case. Additionally,

the final attitude error and relative angular velocity at the 300 second mark should

also be reduced. Even though the behavior learning filter was used for the entire

game, the solution was recomputed a single time at t = 10 seconds.

The relative, pursuer, and evader states for the 300 second simulation are il-

lustrated in Figs. VII.11, VII.12, and VII.13, respectively. The control input which

consists of those requested by the PE solution and the actual applied torques from

dynamic inversion are shown in Fig. VII.14. The cumulative cost and cost-to-go are

found in Fig. VII.15 while the effective estimates are shown in Fig. VII.16.

After 300 seconds the relative state attitude error is 15.6157 degrees and with a

relative angular velocity of 0.0021 deg/s. No adverse effects result in the control input

computation from the imposed two-step dynamic inversion as evident in Fig. VII.9.

The total cost for the pursuer was computed to be 7.2333 × 101 while that of the

evader was 4.0062 × 102. The cost-to-go at the end of 300 seconds was 0.1608 and

0.1096 for the pursuer and evader, respectively.

Even though the gain estimates did not converge on the true gains used by the

evader, the pursuer was still able to improve its performance using behavior learning.

The reason for non-convergence is because of the invalid assumption made regarding

the linear attitude dynamics found in Eqn. 7.20. Despite the improperly modeled

relative system, the pursuer is still able to estimate values for k1 and k2 that are
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Figure VII.11. Behavior Learning Relative States

Figure VII.12. Behavior Learning Pursuer States
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Figure VII.13. Behavior Learning Evader States

Figure VII.14. Behavior Learning Control Input
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Figure VII.15. Behavior Learning Relative Cost

Figure VII.16. Effective Evader Gain Estimates

135



consistent with the measured values for the relative states and the assumed model.

This gives the pursuer some indication of how the evader is behaving and is used to

help the pursuer perform better than if a zero-sum strategy was implemented for the

entire game.

VII.E. Summary

Cumulative cost and cost-to-go comparisons for each of the three cases are shown

in Figs. VII.17 and VII.18. The pursuer is able to increase its performance for

the incomplete information scenario with the help of behavior learning. With the

effective estimates shown in Fig. VII.16, it can be concluded that behavior learning

algorithms will not always converge on the true solution but their results can still be

effective, much like the principles found in adaptive control [41]. The pursuer’s final

cost summary is shown in Table VII.1.

In the presence of severe modeling deficiencies, behavior learning aided the

pursuer in playing more effectively. The transient of the gain estimates shown in

Fig. VII.16 suggest that continuously augmenting the pursuer’s control solution could

be more effective than a single recomputation at the ten second mark. However, due

to the nature of infinite horizon games, the evader’s feedback gain Ke remains fixed.

If the pursuer were to continuously augment its solution, the evader would contin-

uously respond to the relative states which would actually decrease the pursuer’s

performance when compared to the incomplete information game with no behavior

learning enabled. Therefore, when subjected to an infinite horizon game, it is of the

best interest of the pursuer to converge on a behavior solution as quickly as possible
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Figure VII.17. Pursuer Cumulative Cost Comparison

Figure VII.18. Pursuer Cost-To-Go Comparison
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Table VII.1. Spacecraft Reorientation Cost Summary

Information Type Pursuer Cost

Complete 4.9093× 100

Incomplete 3.6394× 102

Incomplete + BL 7.2333× 101

then perform a control solution augmentation once.
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CHAPTER VIII

APPLICATIONS: MISSILE INTERCEPTION

The interception problem has been one of the most popular military applications

of differential games since the mid 1960’s [14]. Interception can be applied to a variety

of aircraft and missile scenarios including air-to-air combat of fighter jets, missile

guidance for aircraft interception, defensive maneuvering of an aircraft to prevent a

missile strike, and interception of an intercontinental ballistic missile (ICBM) by a

missile defense system. Because of the expensive and high-risk testing that must be

done in the development of systems that can achieve such goals, applicable pursuit-

evasion solutions to the intercept problem are of high national interest.

With the help of differential game theory, several optimal missile guidance laws

have been developed which take advantage of a pursuit-evasion framework [42–45].

These guidance laws have been developed with both offensive and defensive strategies

in mind. Guidance laws that take into account the bounded control nature of missile

systems have also been studied [46], including applications of time-varying systems

[47]. For the interception of ICBMs upon reentry, linearized and multiple model

techniques have also been developed [48, 49]. More recently, cooperative solutions

have been of particular interest with focus on defensive strategies for missile and

aircraft teams [50–52].

Due to the important application of pursuit-evasion strategies to military de-

fense strategies, the need for these techniques to work under incomplete information

scenarios remains essential. The possible lack of intelligence associated with an oppo-
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nent continues to be an ongoing issue. Therefore, the application of behavior learning

techniques to the missile interception problem can be very helpful in reducing the

risk associated with development, testing, and final execution of the pursuit-evasion

based guidance laws.

Consider an ICBM at some altitude that has been detected by a missile defense

system. The flight of ICBMs can be separated into three phases: boost or ascent

phase, midcourse phase, and terminal phase. During the boost phase, the missile

aims to reach the exoatmosphere while achieving a specified flight envelope. During

midcourse, maneuvering via aerodynamic forces and moments is unavailable due to

air density. Following the midcourse phase, reentry occurs and the ICBM follows

a ballistic trajectory. A diagram illustrating these phases of flight are shown in

Fig. VIII.1.

Figure VIII.1. Flight Phases of an ICBM

Upon the detection of an enemy ICBM launch via reconnaissance satellites, a

second interceptor is launched to engage the threat and eliminate it. The goal of
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the interceptor is come within a specified range of the target such that the onboard

warhead’s effective kill radius can destroy the evading missile within a fixed amount of

time. Beyond that time, it could be possible for the evading missile system to deploy

other defensive measures, separate another stage creating confusion of the specified

target for the pursuer, or reach the exoatmosphere such that the aerodynamic forces

and moments used to control the interceptor are ineffective. This scenario has a direct

application to the ICBM interception problem which is an ongoing concern of military

defense agencies. Figure VIII.2 shows a desired trajectory for the interceptor.

Figure VIII.2. Desired Interception of an ICBM

The following chapter develops a pursuit-evasion missile interception scenario,

illustrates how an incomplete information game can affect the performance of the
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interceptor, and shows how behavior learning can be used to carry out a successful

mission in the presence of incomplete information.

VIII.A. Model

It will be assumed that the pursuing interceptor’s launch site lies directly below

the trajectory taken by the evading ICBM and neither the ICBM nor the interceptor

experience any lateral motion. By doing this, the missile interception problem can

be modeled in the vertical plane. The following additional assumptions are made

about both vehicles:

• Each vehicle is equipped with a variable thruster which must remain positive.

• Each vehicle is equipped with control surfaces producing a total aerodynamic

moment.

• Each vehicle maintains a constant mass throughout the game.

• The moment of inertia can be modeled by a constant density cylinder.

• Each vehicle experiences drag effects with a constant drag coefficient of 0.7.

• Drag is a function of speed and air density, which is a function of altitude.

• Drag acts through the center of pressure and opposite of the velocity vector.

• The earth is flat and acceleration due to gravity is constant.

The forces and moments which govern the motion of the missile in flight are

shown in Fig. VIII.3. The inertial reference frame is denoted by n1 and n2 while the

body-fixed reference frame is denoted by b1 and b2.
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Figure VIII.3. Missile Model

The equations of motion for a single vehicle with respect to the inertial reference

frame take on the form

mẍ = −D cos (α + ψ) + T cos (ψ) , (8.1)

mÿ = −W −D sin (α + ψ) + T sin (ψ) , (8.2)

Iψ̈ = dcopD sin (α) +Maero , (8.3)

where x and y describe the inertial position of the vehicle and ψ describes the ori-

entation of the vehicle with respect to the horizon. Angle ψ represents the angle of

attack which is defined as the angle between the velocity vector and a body-fixed

axis running from the center of mass out through the missile nose cone. Forces W

and D are those from weight and drag, respectively, while dcop is the distance from

the center of mass to the center of pressure. The controls are given by the thrust

force, T , and the aerodynamic moments Maero. The vehicle’s mass properties are

143



made up of mass m and moment of inertia I.

The objective of the pursuit-evasion game will rely on relative position, therefore

Eqns. 8.1 and 8.2 are of primary interest. Unfortunately, only one control, T , is

present in these equations. It is possible to take advantage of Eqn. 8.3 and use the

control Maero to track a reference value for ψ. By doing this, ψ can now be used as

an additional control within Eqns. 8.1 and 8.2 which provides two control inputs for

two degrees-of-freedom. Because the two-step dynamic inversion framework is affine

in the controls, it is necessary to define inputs v1 = T cos(ψ) and v2 = T sin(ψ).

For player i, equations 8.1 and 8.2 can be rewritten as

ṡi = fi +Givi , (8.4)

where

si = [xi, yi]
T , v = [vi1 , vi2 ]

T , (8.5)

and

fi =

 1
mi

(−Di cos (αi + ψi))

1
mi
−Wi −Di sin (αi + ψi)

 , Gi =

 1
mi

0

0 1
mi

 . (8.6)

Equation 8.4 is in the form necessary for dynamic. At first glance, vector func-

tion fi seems to be linear in the states, which can be true depending on how one

wishes to consider the drag force Di. Drag is calculated using

Di =
1

2
ρiv

2
iCdiAci , (8.7)

where ρi is the air density which is computed as a function of altitude yi, and vi is

the airspeed which is a function of ẋi and ẏi. The drag coefficient and cross-sectional

area are denoted by Cdi and Aci , respectively. Therefore, it could be argued that Di
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is a nonlinear function of the states yi, ẋi, and ẏi, making fi a nonlinear function

of the states. If fi is considered to simply be a time-varying vector of parameters,

then it can also be modeled as a disturbance. For either case, implementing dynamic

inversion on the system will allow us to write the relative system in the familiar form

ż = Az +Bup −Bup.

By requesting that the acceleration level variables ẍi and ÿi be directly controlled

by ui1 and ui2 , respectively, it follows

vi = G−1i [wi − fi] , (8.8)

where

wi = [ui1 , ui2 ]
T . (8.9)

Vectorwi is provided from the pursuit-evasion optimal control solution, then Eqn. 8.8

is used to compute the necessary vi required to force the system to follow the dy-

namics imposed by wi. Finally, the necessary Ti and ψ∗i is computed using

ψ∗i = tan−1
(
vi2
vi1

)
, (8.10)

Ti = vi1 cos (ψi) + vi2 sin (ψi) . (8.11)

By implementing a proportional-derivative (PD) or similar controller on ψ∗i using

Eqn. 8.3, a required value for Maeroi can be computed. This framework allows the

states of interest, xi and yi, to be controlled using the available controls Ti and Maeroi .

One item to address is whether ψi or ψ∗i should be used for the computation of Ti

in Eqn. 8.11. For consistency, the current value of ψi was used over the requested

ψ∗i based on the verified assumption that the controller on ψi can settle and track
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ψ∗i with the appropriate performance. The act of considering multiple degrees-of-

freedom and reducing them to the minimum number of states needed for the PE

game is referred to as transforming the realistic space to the reduced space [1].

For this system, dynamic inversion is used on a subset of the available states

based on the goals of the players. If this process is performed for each player, the

pursuit-evasion dynamics for Player i become

żi = Azi +Bui , (8.12)

where

zi = [xi, yi, ẋi, ẏi]
T , ui = [ui1 , ui2 ]

T , (8.13)

and

A =



0 0 1 0

0 0 0 1

−k 0 −c 0

0 −k 0 −c


, B =



0 0

0 0

1 0

0 1


, (8.14)

with k and c being positive constant. This particular selection of A allows the system

to experience damped oscillation if so desired. When k = c = 0, then Eqn. 8.12

reduces to the same single player model used in the previous chapters.

By defining the relative states as

z = zp − ze , (8.15)

the relative system equations of motion become

ż = Az +Bup +Bue . (8.16)

It is now possible to employ a linear-quadratic pursuit-evasion game for the two

missiles.
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VIII.B. Pursuit-Evasion Game

The final-time-fixed missile interception pursuit-evasion game is defined by the

zero-sum performance index

JMI =
1

2
zTf Sfzf +

1

2

∫ tf

t0

(
zTQz + uTpRpup − uTe Reue

)
dt , (8.17)

subject to the linear dynamic constraint defined by Eqn. 8.16. The optimal solutions

are given by

up = −R−1p BTSz , (8.18)

ue = −R−1e BTSz , (8.19)

where S is the solution to the differential Riccati equation

Ṡ = −Q− ATS − SA− SB
(
R−1e −R−1p

)
BTS . (8.20)

VIII.C. Behavior Learning

Behavior learning, which is enabled by the pursuer, will attempt to estimate a

model for the evader’s strategy and therefore a means to predict the evader’s behavior

for all time. This behavior is captured in the opponent’s Kalman gain Ke which takes

on the form shown in Eqn. 8.21.

Ke = R−1e BTS . (8.21)

Because of the final-time-fixed nature of the game, Ke is time-varying. With A and

B known, all reasonable assumptions about the system should be applied in an effort

to reduce the number of states that need to be estimated to find a solution for the
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opponent’s behavior. The following assumptions are made by the pursuer’s behavior

learning algorithm:

• The evader implements a zero-sum safe strategy.

• The evader is not capable of behavior learning.

• The evader is not concerned with the relative states during game play.

• The evader weighs each of the relative position states at tf equally.

• The evader is not concerned with the relative velocity states at tf .

• The evader weighs each of the control inputs equally.

• The evader does not weigh any cross-coupling terms.

Under these assumptions, the evader’s Kalman gain gain takes on the form

Ke =

 s3r 0 s2
r

0

0 s3
r

0 s2
r

 , (8.22)

where

Sf =



sf 0 0 0

0 sf 0 0

0 0 0 0

0 0 0 0


, S =



s1 0 s3 0

0 s1 0 s3

s3 0 s2 0

0 s3 0 s2


, Rp =

1 0

0 1

 , Re =

r 0

0 r

 .

(8.23)

and Q = 0. Variables s2 and s3 found within Ke are time-varying and subject to

Ṡ = −ATS − SA− SB
(
R−1e −R−1p

)
BTS . (8.24)
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The behavior learning algorithm becomes an estimator for the relative state

vector z, the three independent elements of S, and r. These states are summarized

by the estimate vector

x =



z1

z2

z3

z4

s1

s2

s3

r



=



x1

x2

x3

x4

x5

x6

x7

x8



. (8.25)

The state equations for x1 − x4 are given by

ż = (A+BKe) z +Bup , (8.26)

while those for x5− x7 are given by the scalar counterparts found in Eqn. 8.24. The

state equation for x8 is zero.

The state equations needed for the nonlinear estimator are summarized by

ẋ(t) = f (x(t),u(t), t) , (8.27)
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where

f =



x3

x4

up1 − x3
(
c− x6

x8

)
− x1

(
k − x7

x8

)
up2 − x4

(
c− x6

x8

)
− x2

(
k − x7

x8

)
2kx7 − x27

(
1
x8
− 1
)

x26

(
1− 1

x8

)
+ 2cx6 − 2x7

cx7 − x5 + kx6 − x6x7
(

1
x8
− 1
)

0



, (8.28)

and up = [up1 , up2 ]
T . The measurements available are the relative states defined by

ỹk = h (xk) = [x1 , x2 , x3 , x4]
T . (8.29)

Equations 8.27 and 8.29 are in the standard form needed for a nonlinear filter.

Any of several nonlinear estimation techniques can be used to filter the relative states

and estimate the strategy parameters s1, s2, s3 and r. By estimating these strategy

parameters, the pursuer can then propagate these states forward in time to arrive

at the estimated Sf . Because propagating the Riccati equation forward in time can

lead to instability, caution must be exercised. The results shown were obtained by

propagating the Riccati equation forward in time, then using the computed Sf to

propagate backwards in time again in order to arrive at the best S for all time to

define the behavior of the evader. If desired, these estimates can be continuously

monitored and the pursuer may recompute its solution as necessary. The one-sided

optimal control solution when Ke is known for all time is given in Section II.D.
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Additional constraints also exist on the matrices S and Re. From the opti-

mal control theory these solution were derived from, S must be symmetric positive

semidefinite for all time and Re must be positive definite for all time. These con-

straints can be imposed by computing the nearest symmetric positive definite matrix

VIII.D. Simulation

To develop a baseline case for comparison purposes, a complete information case

is simulated along with incomplete information and behavior learning enabled cases.

The complete information gain selections are summarized by

Sf =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, Rp =

1 0

0 1

 , Re =

5 0

0 5

 . (8.30)

For the complete information case, each player assumes a zero-sum strategy using

the gains defined in Eqn. 8.30.

The initial conditions for all cases were chosen to be

zi0 =



xi0 [m]

yi0 [m]

ψi0 [rad]

ẋi0
[
m
s

]
ẏi0
[
m
s

]
ψ̇i0
[
rad
s

]


, zp0 =



1000

0

π
2

100 cos
(
π
2

)
100 sin

(
π
2

)
0


, ze0 =



0

3000

π
12

150 cos
(
π
12

)
150 cos

(
π
12

)
0


. (8.31)

The additional properties used to define the missile vehicles and environment are

given in Table VIII.1.
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Table VIII.1. Missile Mass Properties

Property Value Units

Mass 100 kg

Length 0.5 m

Radius 0.05 m

Drag Coefficient 0.7 N/A

Acceleration due to Gravity 9.81 m/s2

Imperfect information dictates that the relative state measurements are subject

to a zero-mean Gaussian noise distribution. A standard deviation of σ = 0.03 was

used for the relative position measurements and σ = 0.1 was used for the relative

velocity measurements. In practice, the relative position could be measured directly

from relative sensors onboard the missile such at heat signature, radar, or laser based

sensors. Based on the difference of these measurements between time steps and with

the help of an inertial measurement unit, the relative velocities could be computed. It

is also possible for a player to use a GPS-aided inertial navigation system to measure

its own inertial states and have the inertial states of the opponent provided via

communication link with a satellite- or ground-based tracking system. The relative

measurements could then be formed from both sets of inertial states.
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VIII.D.1. Complete Information

The complete information scenario was simulated in an effort to gain an un-

derstanding of the baseline performance. For each case, a final-time of 30 seconds

was used along with a time step of 0.1 seconds. Results for this case are shown in

Figs. VIII.4 - VIII.6. Figure VIII.4 gives a view of the vertical plane the game takes

place in. The relative states for the 30 second game are summarized in Fig. VIII.5.

Cumulative cost and cost-to-go plots are shown in Fig. VIII.6. The final cost for

both players was calculated to be 1.3686× 103.

Figure VIII.4. Complete Information Vertical Plane View
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Figure VIII.5. Complete Information Relative States

Figure VIII.6. Complete Information Cost Analysis
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VIII.D.2. Incomplete Information

For, the incomplete information case, the pursuer assumed the same gains from

the complete information case while the evader decided on a different gain selection.

These gains are summarized by

Sfe =



1.5 0 0 0

0 1.5 0 0

0 0 0 0

0 0 0 0


, Rpe =

1 0

0 1

 , Ree =

4 0

0 4

 . (8.32)

The results for the incomplete information scenario are shown in Figs. VIII.7 - VIII.9.

Figure VIII.7 gives a view of the vertical plane the game takes place in. The relative

states for the 30 second game are summarized in Fig. VIII.8. Cumulative cost and

cost-to-go plots are shown in Fig. VIII.9. As expected, the total cost for both the

pursuer and evader increased with the gain assumptions associated with the incom-

plete information scenario. The pursuer’s total cost was computed at 1.8537 × 103

while that of the evader was 1.7561× 103.

VIII.D.3. Incomplete Information with Behavior Learning

The incomplete information scenario was simulated again with the pursuer en-

abled with a behavior learning algorithm. Behavior learning was used to compute

and implement a one-sided optimal control solution at t = 3 seconds. Results for

this case are illustrated in Figs. VIII.10 - VIII.18.

Figure VIII.10 gives a view of the vertical plane the game takes place in.

Behavior learning estimates for the first five seconds of the game are are shown
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Figure VIII.7. Incomplete Information Vertical Plane View

Figure VIII.8. Incomplete Information Relative States
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Figure VIII.9. Incomplete Information Cost Analysis

in Figs. VIII.11 and VIII.12. The relative states are summarized in Fig. VIII.13

while the inertial states for the pursuer and the evader can be seen Figs. VIII.14

and VIII.15, respectively.

Approximately one second passes before the S estimates can properly converge

on the true values. In addition to the transients associated with the EKF, this

is also brought about by the response in orientation tracking by the two vehicles.

The response time for the commanded ψ for each vehicle is shown in Figs. VIII.14

and VIII.15. A PD controller was implemented to exploit ψ as a control input for the

PE game. Large gain selections of Kψp = 25 and Kψe = 10 were chosen to achieve the

quick but damped response. These PD gain selections were used for both vehicles. A

satisfactory response in ψ is essential for the behavior learning algorithm to properly

estimate the strategy gains.

The implementation of the new control solution is evident at the 3 second mark

in Fig. VIII.14 when the pursuer’s requested ψ makes a drastic switch once the
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Figure VIII.10. Incomplete Information with Behavior Learning Vertical
Plane View

Figure VIII.11. Incomplete Information with Behavior Learning S Esti-
mates
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Figure VIII.12. Incomplete Information with Behavior Learning R Esti-
mate

Figure VIII.13. Incomplete Information with Behavior Learning Relative
States
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opponent’s behavior can be predicted.

Figure VIII.14. Incomplete Information with Behavior Learning Pursuer
States

The actual and requested input by the dynamic inversion process is shown in

Fig. VIII.16. This discrepancy is also a product of the response time in the ψ-

tracking. Larger errors in the requested and actual input are shown at the beginning

of the game when each vehicle becomes aware of their opponent. The true missile

control inputs are illustrated in Fig. VIII.17. The thrust input for the pursuer peaks

at approximately 2.4 kN and trails off to approximately 800 N. This is representative

of an engine equipped with a maximum thrust of 2.5 kN which can be throttled down
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Figure VIII.15. Incomplete Information with Behavior Learning Evader
States
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to approximately 30%. The evader’s thrust characteristics would require an engine

size with a maximum thrust value of 1.2 kN with throttling capabilities down to 75%.

Recently, Space Exploration Technologies Corporation has included the capability

of throttling down to 70% in their Merlin 1D rocket engines [53]. Although anti-

missile systems are generally equipped with solid rocket boosters unlike the Merlin

1D engines, newer examples of interceptor missile have adopted liquid rocket designs

specifically for their throttling capabilities.

Figure VIII.16. Incomplete Information with Behavior Learning Dynamic
Inversion Input

Cumulative cost and cost-to-go plots are shown in Fig. VIII.18. The total cost

for the pursuer was decreased as a result of the behavior learning algorithm, but it

was still higher than that associated with the complete information scenario. The

pursuer’s total cost was computed at 1.3745 × 103 while that of the evader was
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Figure VIII.17. Incomplete Information with Behavior Learning Missile
Input

1.4984× 103.
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Figure VIII.18. Incomplete Information with Behavior Learning Cost
Analysis

VIII.E. Summary

A comparison of the pursuer’s cumulative cost for each of the three simulation

found in this chapter are shown in Fig. VIII.19. With the introduction of behavior

learning, the pursuer is able to predict how the evader will respond and modify the

two-sided pursuit-evasion problem into a one-sided optimal control problem. The

advantage of this method when in the presence of incomplete information is sum-

marized by the cumulative cost comparison. With behavior learning, the pursuer’s

final cost approaches that of the complete information case. Is it clear that behavior

learning can be extremely useful when applied to final-time-fixed interception prob-

lems and robust enough to provide a solution when dynamic inversion and alternate

control methods are necessary for implementation. The pursuer’s final cost summary

is shown in Table VIII.2. The primary limitation of final-time-fixed behavior learn-

ing is due to the unstable nature of the Riccati equation when propagated forward
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Figure VIII.19. Pursuer Cumulative Cost Comparison

in time. Therefore, it is essential for the behavior learning algorithm to converge

on proper strategy estimates before using those estimates to propagate forward in

time to compute Sf . A few additional steps are necessary to make this algorithm

robust enough for repeatable execution. The estimates related to the Q and R gain

matrices that are used for the new solution computation should be selected based

on their covariance. That is, throughout the first few seconds of the game, those

values with the smallest associated covariance value should be selected. The selected

estimates of S are also of critical importance. After the covariance converges, a set

of estimates for each parameter should be taken into consideration over the period of

one to three seconds. Because the Riccati equation experiences near-linear behavior

at the beginning of the game, the effective estimate for each of these parameters can

be taken as the mean of the values from the desired period. These mean values are
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Table VIII.2. Missile Interception Cost Summary

Information Type Pursuer Cost

Complete 1.3686× 103

Incomplete 1.8537× 103

Incomplete + BL 1.3745× 103

then used to determine an effective S at a time at the midpoint of the sample period.

This process was implemented to achieve robustness and repeatability.

One possible solution to the Riccati forward propagation issue is the implemen-

tation of the inverse Riccati equation. Its use, however, does not necessarily eliminate

all forward propagation issues. The inverse Riccati equation is useful for certain gain

selections, but in many cases, can produce a solutions for the independent elements

of S which exhibit additional dynamic characteristics which are undesirable. Its use

should also be exercised with caution. With that, it would be more convenient if

a single forward propagator could be used reliably and handle all types of gain se-

lections because the initialization of an opponent’s strategy is simply a guess. An

opponent’s strategy could be defined by any number of gain combinations and for

this reason, the implemented forward Riccati propagation with additional statistical

analysis proved to be the most effective. The inverse Riccati equation could be used

in addition to the method presented here and the best solution could be implemented

for the control solution augmentation.
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CHAPTER IX

CONCLUSION

This dissertation presented behavior learning frameworks for final-time-fixed,

infinite-horizon, and final-time-free pursuit-evasion games which are applicable to the

incomplete, imperfect, and uncertain information scenarios. The developed methods

focus on continuous-time pursuit-evasion games whose cost functions are quadratic

in nature and whose relative dynamic systems are defined by linear differential equa-

tions. A two-step dynamic inversion technique was introduced to allow these behavior

learning methods to be extended to nonlinear, control-affine dynamic systems. The

two-step process outlined allows systems that are nonlinear in the kinematics and

dynamics to take on the form of a linear double-integrator.

Two key aerospace applications were shown which invoked the behavior learn-

ing and dynamic inversion methods presented. Spacecraft rendezvous and missile

interception are problems of current national interest that could benefit greatly from

the implementation of behavior learning techniques in parallel with optimal pursuit-

evasion solutions. It was shown that although a behavior learning algorithm may

not always converge on the exact behavior of an evader, it remains an effective way

to give a player a tactical advantage over simply implementing a zero-sum strat-

egy. Behavior learning provides a model to an opponent’s strategy that can be used

to predict their behavior and allow a player to turn a pursuit-evasion game into a

one-sided optimal control problem.

An example pertaining to the minimum-time case was also studied. Although

167



the minimum-time formulation can become increasingly complex when multiple degrees-

of-freedom are considered, the simple scalar example has merit due to the obvious

application of minimum-time solutions and behavior learning to the missile intercep-

tion and associated warfare problems.

IX.A. Chapter Summary

A motivational example was presented in Ch. I which illustrated how a player’s

performance diminishes as key information about the game and system is revoked.

Chapter II identified the behavior learning aspects of incomplete information final-

fixed-time games and extended those concepts to the uncertain information case. The

role of behavior learning in infinite-horizon PE games was examined in Ch. III and

techniques for the incomplete and uncertain information scenarios were presented.

Insight to behavior learning for final-time-free games was given in Ch. IV and

the role of behavior learning was identified for minimum-time games. Chapter V

presented a minimum-time behavior learning example and the utility for behavior

learning for the minimum-time case. A two-step dynamic inversion method was

presented in Ch. VI to allow for the use of these behavior learning methods for

nonlinear, control-affine dynamic systems.

Chapter VII presented a spacecraft reorientation example which took on the

form of an infinite-horizon pursuit-evasion game. Dynamic inversion was used to

allow the nonlinear system to fit within the behavior learning framework that was

developed. In the presence of significant modeling deficiencies, it was shown that

although the behavior learning algorithms may not converge on the true solution
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defining an opponent’s strategy, it remains effective at modeling behavior and giv-

ing a player a tactical advantage. It was learned that behavior learning for the

infinite-horizon case provides the best performance when used to implement a con-

trol augmentation at a single, early time during the PE game.

A missile interception example was provided in Ch. VIII which utilized a final-

time-fixed pursuit-evasion game. Dynamic inversion was implemented to a system

that could be deemed to be nonlinear or linear with a disturbance. The orientation

state, ψ, was used as a control variable to allow for the system to fit within the

control-affine framework of dynamic inversion as the relative states were transformed

from the realistic space to a reduced space. Behavior learning was applied to the

incomplete information case and was effective at reducing the total cost for the

pursuer. Details for robust and repeatable implementation were outlined to account

for the unstable nature of the Riccati equation when propagated forward in time.

IX.B. Limitations

A few limitations became apparent during the development of the behavior

learning framework. One potential issue with any any filter-type implementation

is observability. Observability should always be treated on a case-by-case basis. If

observability becomes a concern, a simplified model can be used to obtain a repre-

sentative model of the opponent’s behavior. To do this, assumptions must be made

about the opponent’s behavior and all relevant knowledge about the system must

be applied including gain matrix properties such as positive definiteness and diag-

onalness. Additionally, multiple model approaches can be used in conjunction with
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different combinations of assumptions to produce multiple behavior learning solu-

tions. A blended solution or the solution with the best statistical properties can

then be used to augment a player’s strategy.

It is important to exercise caution when applying two-step dynamic inversion.

Based on the feasibility of the selection of desired dynamics, large control magnitudes

can be experienced. It is also possible for system oscillations to occur if the natural

response of the nonlinear and desired linear systems significantly disagree. Therefore,

it is important that the desired linear dynamics are carefully selected based on the

nonlinear system of interest. Oscillation and damping terms can be added to the

desired system in effort to achieve an acceptable response.

As previously mentioned, infinite-horizon behavior learning can be exceptionally

difficult to implement because the feedback gain K is fix for a player until they decide

to augment their solution. Because of this fixed gain, if behavior learning is used

multiple times throughout the game, the pursuer runs the risk of continuously driving

the opponent further and further away while exhausting control input. The nature

of infinite-horizon pursuit-evasion games dictates that behavior learning is best done

at a single instance in time, as soon as a solution for the opponent’s behavior is

obtained. By doing so, the pursuer is able to quickly augment their strategy without

sacrificing an excessive amount of control and driving the evader farther away at the

same time. Infinite-horizon pursuit-evasion is not a type of differential game that

is often examined giving these observations merit as the study of behavior learning

evolves.

Finally, the forward propagation of the Riccati equation can cause instabilities.
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In the final-time-fixed case where the forward propagation of the Riccati equation is

necessary, it is essential to select valid gains for solution recomputation. Additional

data processing proved useful in order to arrive at an acceptable solution that could

be propagated forward in time without difficulty. One possible solution to the Riccati

forward propagation issue is the implementation of the inverse Riccati equation.

The inverse Riccati equation may prove to be useful in some instances where

instabilities are observed. Its use, however, does not necessarily eliminate all forward

propagation issues. The inverse Riccati equation is useful for certain gain selections,

but in many cases, can produce solutions for the independent elements of S which

exhibit additional dynamic characteristics which are undesirable. Its use should also

be exercised with caution. With that, it would be more convenient if a single forward

propagator could be used reliably and handle all types of gain selections because the

initial value of an opponent’s strategy is simply a guess. An opponent’s strategy could

be defined by any number of gain combinations and for this reason, the implemented

forward Riccati propagation with additional statistical analysis proved to be the

most effective. The inverse Riccati equation could be used in addition to the method

presented here and the best solution could be implemented for the control solution

augmentation.

IX.C. Extensions

The behavior learning framework presented focused on the perspective of the

pursuer. In each example, the pursuer was enabled with behavior learning such that

it was able to gain a tactical advantage over the evader. Even though the evader con-
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tinued to invoke a zero-sum safe strategy, there is nothing preventing the evader from

also implementing its own behavior learning algorithm. Furthermore, both players

can be enabled with behavior learning in an effort to study the effects of continuously

evolving opponent models. The assumptions made about an opponent may need to

be modified to account for an intelligent challenger with the same behavior learning

abilities. Depending on the accuracy of the model and the frequency of opponent

strategy augmentation, player performance could increase or decrease drastically.

Behavior learning can be implemented for offensive or defensive purposes.

Multiple model solutions would allow opponent behavior to be modeled by a

bank of possible objective functions. This could include external objectives - such as

hitting a specified target - and could aid in determining an asset that an opponent

is attempting to conquer. Different assumptions defining the strategy gains could

be used to help determine what the opponent is most interested in. The behavior

learning solution may be defined by a blended solution or it may become a function

of the solution with the most appealing statistical characteristics such as the model

with the lowest associated covariance values.

Behavior learning is highly applicable to pursuit-evasion teams or teams of ve-

hicles. Specifically, teams of unmanned aerial vehicles who may be working coopera-

tively but who want to maintain minimum distances throughout a trajectory. If each

teammate’s behavior can be properly modeled then a more comprehensive forward

propagation can be used to predict vehicle interaction throughout a flight path. This

has direct applications to path planning for commercial aviation and has the poten-

tial to have significant impact once fully autonomous flight systems are adopted.
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With pilot-in-the-loop applications, greater safety measures can be defined around

high traffic areas such as airports during the take-off and landing processes.

Minimum-time applications are a rich topic and an extension of the major prin-

ciples from the final-time-fixed and infinite-horizon scenarios can be applied further.

This can become a complicated issue due to the presence of constraints and the

desire for feedback solutions. Minimum-time is most applicable to military applica-

tions where a threat must be recognized and intercepted immediately so secondary

defenses can be utilized if the initial line of defenses are unsuccessful at exterminating

the threat.

Behavior learning has proven to be a powerful tool for pursuit-evasion games.

It can be used to enhance the performance of a player in the presence of incomplete,

imperfect, and uncertain information. Although some characteristics of the frame-

work need to be exercised with care, the methods presented have a broad impact on

aerospace applications of high national interest including spacecraft rendezvous and

missile defense.
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