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ABSTRACT 

 

This research investigation addresses the analysis and numerical simulation of 

two very important offshore engineering problems.  The first deals with the modeling of 

the steady state thermal field around buried pipelines conveying high temperature 

wellhead mixtures of oil and gas, and their associated dissolved impurities.  These 

pipelines may be buried using robotic trenching equipment for physical protection or to 

provide additional thermal insulation.  The solution to this complex multi-layer problem 

is examined using a boundary element model approach.  The second challenging 

problem is that of modeling a partially buried cable on the seafloor that is ensnared by 

commercial fishing equipment.  There are many cables on the seafloor and several 

obvious systems are oceanic communication cables and the increasing number of subsea 

power transmission systems associated with the continuing development of offshore 

wind farms.  In this problem an important numerical modeling challenge is to allow the 

cable to change its length as a result of the entanglement.  A different approach is 

presented, i.e. a meshfree formulation, is specifically developed for simulating this type 

of subsea cable problem. 

A two-dimensional boundary element model was developed specifically to 

investigate the local steady-state thermal field in the near field of the pipeline.  

Subsequently, a parametric study was preformed to evaluate the influence of the thermal 

power loss, burial depth, pipe diameter and soil thermal conductivity on the thermal 

field.  The numerical examples illustrate the significant influence of the backfill thermal 
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property on the temperature at the pipe wall, that the pipe diameter controls the required 

output thermal power needed to maintain the desired pipe wall temperature, and the 

importance of pipeline burial depth on seabed temperature distribution above the 

pipeline. 

In order to better address the problem of partially buried subsea cables, a three 

dimensional meshfree method was formulated and implemented to evaluate the 

structural response of cables in two dimensional space under accidental loads from 

trawling activities.  The methodology specifically was developed to allow the arbitrary 

layout of a cable on the seafloor, the lengthening of an ensnared cable length at a 

boundary, and the inclusion of geometrical nonlinearity due to large deflection.  This 

meshfree method is based upon a slender rod formulation, incorporates radial basis 

functions (RBF) for shape function construction, and utilizes a Galerkin weak 

formulation for the discretization of governing equations.  The methodology was 

validated against two benchmark examples which have analytical solutions, and shows 

good convergence rates to the analytical solutions.  Finally, a two dimensional gear-

cable example illustrating the adaptive nature of this formulation and implementation to 

address a sliding length boundary condition is presented. 
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NOMENCLATURE 

 

BEM Boundary Element Method 

CB Code_Bright 

DEHS Direct Electrical Heating System 

EFG Element Free Galerkin 

HTHP High Temperature High Pressure 

Mfree Meshfree Method 

FDM Finite Difference Method 

FEM Finite Element Method 

FVM Finite Volume Method 

HRPIM Hermite-type Radial Point Interpolation Method 

LPIM Local Point Interpolation Method 

LRPIM Local Radial Point Interpolation Method 

MLPG Meshless local Petrov-Galerkin 

PIM Point Interpolation Method 

PIP Pipe-in-Pipe 

RBF Radial Basis Function 

RPIM Radial Point Interpolation Method 

RKPM Reproducing Kernel Particle Method 

ROV Remotely Operated Vehicle 

U-value The Overall heat transfer coefficient 
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q   Heat Flux 

   Thermal conductivity 

T   Temperature 

i   Liquid Flux 

K   Hydraulic Permeability, m/s 

k   Intrinsic Permeability, m
2 

   Dynamic Viscosity of Fluid 

   Density 

   Thermal Expansion Coefficient of Fluid 

   Compressibility Coefficient of Fluid 

P Liquid Pressure in Porous Media 

t Time, s 

c Specific Heat 

   Porosity 

Subscripts 

sat Saturated Clay 

s Dry Clay Solid Grain 

w Saline Seawater 

0 Reference Value 
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1. INTRODUCTION

  

 

The increasing need for hydrocarbons as the primary source of energy is driving 

the exploration and eventual production of oil and gas discoveries in the Arctic and in 

worldwide ultra-deep water sites.  New engineering challenges have emerged for subsea 

pipeline systems designed to operate in these areas that include ice interaction with the 

seabed, freeze-thaw cycles, and high pressures as well as high temperature flows from 

the well-head.  The first arctic production pipeline was installed in the North American 

Arctic in 2000 and a few flow lines were deployed in 2005-2006 in the Gulf of Mexico 

in water depths of approximately 2750m.  Production safety, environmental risk 

management, structural integrity and flow assurance are of vital importance for the 

recovery of hydrocarbons at these often remote sites. 

Considering frozen soil at Arctic sites, temperature rise of soil due to buried 

pipelines may cause significant thaw settlement which may result in structural failure of 

pipelines (Braden et al., 1998).  Regarding structural stability, upheaval thermal buckling 

is another threat to buried pipelines, which is somehow different from the lateral thermal 

buckling of bare pipelines.  The low ambient temperature observed in very deepwater 

and at Arctic sites has led to innovative pipeline designs to assure the transport oil 

produced in these regions.  Hydrate formation and wax deposition are two major threats 

                                                 

 Part of the data reported in Section 1.1 of this chapter is reprinted with permission from “Modeling of 

deepwater seabed steady-state thermal fields around buried pipeline including trenching and backfill 

effects” by Yanbin Bai and John M. Niedzwecki, 2014.  Computers and Geotechnics, Volume 61, 221-

229, Copyright (2014) by Elsevier B.V. 
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that may result in blockage or possible plugging of pipelines transporting hot fluids from 

wellhead to collection points (Lenes et al., 2005).  As a consequence of the heat 

dissipation rates from pipelines transporting very hot multi-phase wellhead fluids to the 

surrounding environment, thermal insulation may be complimented with integrated 

heating systems in order to mitigate possible flow assurance issues.  Passive thermal 

insulation, pipe-in-pipe (PIP) heating, direct electrical heating systems (DEHS) or some 

combinations are designed for hydrate formation prevention.  Heggdal et al. (2012) 

investigated the use of the electrical heating for large diameter subsea pipelines intended 

for the deepwater application.  The major concerns when using the heating technology 

include the potential of aggravating the thermal buckling issue due to over-heating and 

the unintended consequences of the heat dissipated from subsea artificial heat source 

mainly pipelines and power cables that may adversely affect the local marine 

environment and ecosystem (Kogan et al., 2003).  In addition, subsea burial can play an 

important role in providing physical protection from accidental loads such as iceberg 

scouring of the seabed in arctic regions (DeGeer and Nessim, 2008), reducing uplift risk 

due to axial thermal expansion (Gharbawy, 2006), and improving thermal insulation by 

avoiding strong natural convection effect in seawater (Young et al., 2001).  Even though 

hydrate inhibitors are utilized to reduce hydrate formation, temperature management still 

plays a dominating role in hydrate formation prevention, wax deposition and plugging.  

Thus, thermal field investigation about buried subsea pipelines plays a key role in the 

pipeline system design, and may mitigate the possible thermal impact on the local 

marine ecosystem. 
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Besides the thermal problem about subsea pipelines, the interaction between 

modern bottom-trawling fishing gears as shown in Fig. 1.1 and submarine facilities such 

as subsea cables as shown in Fig. 1.2 is attracting more and more attention in the past 

decades, especially in Europe due to the mature development of the extensive subsea 

pipeline network and the fast growth of subsea power grid for offshore wind farms.  

Submarine flexible structures such as pipelines, power and telecom cables spanning 

oceans have been successfully used worldwide in the past a few decades.  The study of 

the interaction between trawl gears and submarine pipelines follows closely the trend of 

the extensive development of pipeline network, especially in the Gulf of Mexico and in 

the North Sea. 

 

 

Fig. 1.1 An example of bottom trawling fishing (Gelach, 2012) 



 

4 

 

 

Fig. 1.2 An example of a submarine power cable inspection (Heimbuch, 2010) 

 

The rapid growth of offshore wind energy production in Europe and the resulting 

and prospective extension of subsea power grid network as illustrated in Fig. 1.3 also 

presents interesting challenges, especially near shore and in the shallow water where 

trawl gears increasingly impact pipelines and various cable systems.  Drew (2009) 

reported that annually fishing and anchoring activities result in about 100-150 cable 

breakages.  Considering the increasing investment on offshore wind farms and on-going 

development of modern fishing gears, the interaction of trawl gears and cables is of 

interest.  This research study will examine the mechanics and behavior of cables under 

accidental loads, load dependent moving boundary conditions, and structural evaluation 

under specific scenarios. 
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Fig. 1.3 Offshore power grid in Europe (European Wind Energy Association, 2010) 

 

1.1 Heat Transfer of Subsea Buried Pipelines 

The two primary offshore classification societies, ABS and DNV, don’t provide 

detailed guidance on the thermal design of fully buried pipelines.  As for the preliminary 

thermal design, Bai et al. (2005) summarized the overall heat transfer coefficient (U-

value) method.  Burial depth and thermal conductivity of surrounding soil are included 

in the U-value method assuming the soil as a single homogeneous solid medium.  

However, the natural convection, trenching and backfill effects, and layered property of 

marine soils, which may pose significant impacts on the thermal field, are ignored in the 

U-value method.  Earlier research studies by Thiyagarijan et al. (1974), Martin et al. 

(1978) and Bau (1982) developed an analytical approach to study the thermal behavior 

of a buried pipe and the surrounding soil.  For cases where one wishes to investigate the 
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spatially dependent thermal properties or piecewise homogeneous domains of problem 

domain, numerical simulations and/or experimental measurements must be pursued in 

order to more accurately characterize the resulting thermal distributions.  Representative 

studies investigating buried pipelines and power cables using a variety of numerical 

methods are summarized in Tab. 1.1.  The thermal field in soil near power cables placed 

in a duct was investigated by Mitchell and Abdel-Hadi (1979), Gela and Dai (1988) and 

Hanna et al. (1993), and collectively these studies provide a guide for the design of 

sheathing for power cables.  In those studies the soil was modeled as a solid medium, 

and the critical parameters affecting the heat dissipation in the soil included the thermal 

property of backfill material, the burial depth, and layout of the cables.  Neglecting 

trenching and backfill aspects, Lu et al. (2008) used their model to investigate the phase 

change phenomenon of fully saturated soils around a buried pipe in winter conditions.  

They evaluated the heat conduction effects of crude oil in the pipeline and the natural 

convection of fluid flow induced in the soil during a shutdown period.  Assuming soil to 

be a homogeneous solid media, Barletta et al. (2008) studied the temperature fluctuation 

in a subsea pipeline under the start-up and shutdown conditions using a finite element 

model.  Later, Xu et al. (2010) used a finite volume method to investigate the shutdown 

time neglecting both the natural convection in soil and the backfill conditions.  In an 

experimental study, Newson et al. (2002) investigated the influence of moisture and void 

ratio changes on the thermal conductivity of marine clay in the North Sea.  They found 

that the moisture content of disturbed clay could be up to 95% and that the 

corresponding thermal conductivity decreased to 0.8 W/m·K compared to that of the 
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undisturbed soil, which approaches that of still seawater 0.65 W/m·K.  In contrast, the 

thermal conductivity of the undisturbed clay is typically around 1.0 W/m·K.  Based upon 

numerical simulations using a finite element program Code_Bright (UPC, 2013), it was 

found for the extremely low hydraulic permeability 10
-8

~10
-7

 m/s associated with 

deepwater clay that the natural convection resulted from the heat exchange with the 

pipeline controls the time required to reach the steady state but only slightly impacts the 

final steady state temperature distribution.  Thus, the natural convection effect is not 

considered in the steady state investigation around a pipeline buried in such clay. 

The modeling of subsea pipelines buried in layered soil where the effects of 

trenching and backfill are included, involves with a problem domain that has 

complicated interfaces.  Though it is true that transient analysis is essential for both start-

up and the cooling down of pipeline regarding the detailed thermal design of subsea 

pipeline, this study is focused on the steady state thermal field, which is sensitive to 

variations of key parameters associated with trenching and backfill topography in a 

layered seabed.  It is common that the transient start-up and cool-down analyses of a 

pipeline is used to investigate the time to reach steady state and to understand the natural 

convection in porous soil using a more simplified FEM model.  However, the boundary 

element method has been shown to be a very efficient approach that model multi-

piecewise media and multiple domains to solve two-dimensional steady state heat 

transfer (Atalay et al., 2004) and three-dimensional static elastic problems (Gao, 2007).  

Consequently, BEM has been adopted to mathematically model heat transfer of such a 

pipe-trenching problem. 
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Table 1.1 Methodologies compassion on selected papers 

Year Author 
Time 

dependence 

Numerical 

scheme 

Property 

of soil 
Dim. Operational mode Comment 

1979 Mitchell 
transient 

and steady 
FEM 

homogeneous 

mother soil 
2D 

Operational mode 

of power cables 

Convection of air was included.  Geometry of trench, 

thermal property of soil, cable size, and solar radiation 

were included.  Geometry of cable was not kept.  

Natural convection in soil was not considered.  Time 

consuming on modeling and computation. 

1988 Gela steady state BEM 
homogeneous 

mother soil 
2D 

Operational mode 

of power cables 

Convection of air was neglected.  Trenching and backfill 

were considered.  Natural convection in soil was not 

included.  Both single cable and multi-cable system 

were studied.  It is efficient on modeling and 

computation. 

1993 Hanna transient FDM 
homogeneous 

mother soil 
2D 

Operational mode 

of power cables 

Convection of air was handled.  Trenching and backfill 

effect were included.   Geometry of cable was not kept.  

It didn’t include natural convection. 

2008 Lu transient FDM 
homogeneous 

and porous 
2D 

Shut down of oil 

pipelines 

Convection of air was included.  Natural convection in 

soil and conduction between cooling oil and pipe wall 

were treated.  Trenching and backfill were not handled. 

2008 Barletta transient FEM homogeneous 2D 
Start-up of oil 

pipelines 

Natural convection was not considered.  Conduction and 

convection on seabed were not included.  Trenching and 

backfill were not considered. 

2010 Xu transient FVM homogeneous 2D 
Shut down of oil 

pipelines 

Equivalent conductivity was adopted to simplify 

convection between oil and pipe wall.  Convection of air 

was handled.  Natural convection in soil and trenching 

effect were not included. 
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1.2 Interference of Trawling and Subsea Structures 

The mechanism of the interaction between subsea cables and trawl gears is 

similar to that occurring with subsea pipelines located on the seabed that have increased 

bending stiffness and other design specifications.  DNV (2010) provides some design 

guidance of pipelines in the later instance considering the collision process and analysis 

procedures of trawl gear engaging a subsea pipeline.  The collision can be logically 

divided into three parts: the initial impact stage, the pull-over phase, and/or a final 

hooking event.  The hooking cases between a pipeline, a power cable, and the trawl 

board are illustrated in Fig. 1.4 and Fig.1.5. 

 

 

Fig. 1.4 Hooking scenario of a pipeline and trawl board (DNV, 2010) 
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Fig. 1.5 Hooking scenario of a power cable and trawl board (Drew, 2010) 

 

Most of the research studies reported on this topic were conducted in Europe 

recently, see for example Longva (2011), Vervik (2011), and Johnsen (2012).  While in 

this study, the focus is about the interaction of trawl gears with cables other than with 

pipelines.  Due to the differences of the flexibility and weight per unit length when 

compared to pipelines, the cable response will be dramatically different.  Since a cable is 

tension dominated and behaves like a flexible beam during the pulling process, assuming 

the towing speed of the fishing vessel is low, the damage to the subsea cable may not be 

too significant during the initial impact stage.  In the pull-hooking case, due to the 

massive weight of a typical trawling board up to 9 tonnes with an additional clump 

weight of 9-10 tonnes, the maximum pulling force may exceed the break load of the 

submarine cables.  Fig. 1.6 shows a model of an industry trawling board for 

experimental test.  If the pulling force reaches the break load of a cable in the pull-

hooking case, the pull of a trawl board and a clump weight on the cable is considered as 

a hooking case.  Seizing of cables into the gap between the warp line and trawling board 
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or clump weight is regarded as a direct hooking scenario.  Hooking is a rare situation for 

a pipeline as shown in Fig. 1.4, but may be a more common scenario for cables 

considering the relative dimension ratio of a typical cable to that of the trawling gear 

used in modern industry fishing.  Furthermore, the moving of partially buried cables 

along with gears introduces a drag force due to the friction of seabed soil.  Besides, the 

displacement boundaries also depend on the drag force since the cables move with the 

towing fishing gear or fishing net.  The friction force and moving boundary conditions 

make the response of cable under the pull of trawling gears more complicated and thus 

more challenging. 

 

 

Fig. 1.6 Front and side view of a scaled trawling board model (Teigen et al., 2009) 

 

 

The interference between trawling gears and submarine slender structures went 

back to the experimental study of fishing gear impact loads on pipelines in the 1970s.  
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Hermann et al. (1980) reported the maximum pull-over force around 200 KN and pull-

over duration around 1 second, which depends on the shape and weight of trawling gear 

and the diameter of a pipeline.  Attributed to the development of FEM on solving strong 

nonlinear problems using updated Lagrange approach, Longva et al. (2011) adopted 

SIMLA developed by MARINTEK and performed the dynamics response of pipeline 

including the impact and pull-over phase under the drag of trawl boards, which focuses 

on global response behavior of the pipeline.  The added mass and drag coefficient in the 

simulation are available by the model test conducted by Statoil (Teigen et al., 2009). 

Though both the power cable and pipeline are slender structures and subject to 

the similar accidental impact loads, both the global response behavior and local damage 

mechanism are somewhat different due to the discrepancy in diameter, structural 

configuration, and flexural rigidity.  Regarding the global displacement response, the 

power cable may experience large deflection, which is a strong geometrically nonlinear 

problem.  The slender rod model such as Bernoulli-Euler model and Kirchhoff-Love 

model considering finite-strain is well suited for solving the static and dynamic problem 

of submarine slender structures.  Nordgren (1974) and Garrett (1982) have formulated 

the equation of motion of slender rods by vector analysis in a curvilinear coordinate and 

solved this problem by FDM and FEM respectively.  Subsequently, Ma and Webster 

(1994) extended this formulation to risers with internal pressure under complex 

hydrodynamic loading for offshore applications in 2-D space.  Later, Chen and Zhang 

(2001) introduced a new constraint condition allowing large elongation to tension 

dominant slender rod and further implemented the 3-D formulation in Cable3D (Chen, 
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2002). 

In recent years, innovative meshfree methods have been proposed to solve 4
th

 

order partial differential equations, such as beam and shell bending problems.  A 

meshfree method doesn’t need a confined mesh grid over the problem domain and has 

comparative advantages on domain representation and on strong nonlinearities over 

FEM.  Pioneers including Belytschko et al. (1994), Liu et al. (1993), Atluri and Zhu 

(1998), Liu and Gu (1999) etc. have paved the road for the meshfree method and have 

proposed the element free Galerkin (EFG) method, reproducing kernel particle method 

(RKPM), the meshless local Petrov-Galerkin method (MLPG), the point interpolation 

method (PIM), and the radial point interpolation method (RPIM), respectively.  The 

differences between these methods include weak formulations and field interpolation 

techniques.  Moreover, the meshfree methods have been applied to both the thin and 

thick beams by a few scholars.  Chen et al. (1996) adopted the RKPM approach for the 

construction of shape functions for the field interpolation and constitutive law, and then 

solved the large deformation of a thick beam considering both geometry and material 

nonlinearities.  Donning et al. (1998) applied Galerkin weak formulation and RKPM 

interpolation scheme to a curved beam and a Mindlin plate.  Consequently, the MLPG 

was validated by a comparison to the analytical solution of Bernoulli-Euler beam theory 

(Atluri et al., 1999).  Using the local weak formulation, the PIM was applied to a straight 

thin beam by Gu and Liu (2001), which adopts the idea of MLPG for the discretization 

of strong-form governing equation.  Recently, Cui et al. (2008) applied the gradient 

smoothing technique proposed by Liu (2008) to a thin beam treating the rotation angle 
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and displacement as independent variables in the field value interpolation, where the 

weak formulation is developed by one gradient smoothing technique.  As a generalized 

numerical technique, the meshfree method adopts field nodes to represent the problem 

domain other than mesh grid in FEM.  It overcomes the difficulty of instantaneous 

remeshing of deformed structures experiencing large deflections and avoids the element 

distortion problem in FEM.  Thus, it is suited to solve the large rigid body rotation and 

deflection of a slender rod, which will be applied to the interference of bottom trawling 

and cables. 

 

1.3 Research Objectives 

A major objective of this research is to further formulate the Boundary Element 

Method and a Meshfree Method to subsea structures and to develop efficient computer 

tools for some subsea engineering applications.  These techniques will be used to gain a 

better understanding of assumptions regarding the thermal field around subsea buried 

pipelines and subsea cable systems often simply placed on the seafloor.  In the latter 

case, the issues investigated will revolve around the interaction of bottom trawl gears 

with cables and the resulting response leading to possible failure of cables.  The research 

study including two kinds of offshore applications is logically divided into two parts. 

The first part of this study focuses on the formulation of Boundary Element 

Method (BEM) to the steady state heat transfer of a subsea pipeline-multilayer soil 

system.  The thermal field is modeled as a two-dimensional vertical slice along a 

pipeline.  The heat transfer for layered media is first formulated and then implemented in 
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Matlab.  Later, corresponding formulations are accomplished for the modeling of a pipe-

trench problem so that key parametric variations and their impacts on the thermal fields 

can be investigated.  The BEM was selected, since remotely operated vehicles (ROVs) 

especially designed to bury pipelines are widely used and the subsequent installation 

results in a multiple layered soil domains with complex interfaces.  The numerical model 

addresses trenching and backfill effects, layered property of subsea soils, and the cooling 

conductive effect of seawater, while neglecting the natural convection effect in the deep-

water clay with extremely low hydraulic permeability.  This aspect of the proposed 

research study targets the preliminary thermal design of buried pipelines intended for 

deepwater and arctic applications and a possible thermal impact on the subsea marine 

ecology. 

In the second part of this research study, a meshfree method will be further 

formulated to slender cables that is based in part upon the slender rod formulation 

originally developed by Nordgren (1974) and Garrett (1982).  Herein the focus will be 

on the exploration of the potential of the meshfree method to slender rod structures and 

the structural response analysis of subsea cables laid on the surface of the seabed or 

partially buried in the seafloor.  Their initial configurations on the seabed need not be a 

straight path and can be somewhat arbitrary.  As the load imposed on a cable by trawl 

gears can be load-dependent moving boundaries consistent with that of partially buried 

subsea cables.  The meshfree method formulation is to be implemented in Matlab and 

will be used to investigate the behavior of subsea cables subject to accidental loads from 

bottom trawling fishing activities. 
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2. FORMULATION OF HEAT TRANSFER IN LAYERED MEDIA 

 

2.1 Literature Review of BEM on Heat Transfer 

Jointing with domain methods such as Finite Difference Method (FDM), Finite 

Element Method (FEM), Finite Volume Method (FVM), and Meshfree Methods, 

Boundary Element Method (BEM) has been evolving as an efficient and complementary 

numerical method for a bunch of partial differential equations.  Numerous scientists and 

researchers have enriched the mathematical foundation of the boundary integral method 

which was historically depicted by Cheng and Cheng (2005).  The term BEM was first 

adopted by Brebbia and Dominguez (1977) and then widely accepted in the academia.  

Taking advantage of weighted residual technique and weak formulation, Brebbia and 

Dominguez (1977) developed a direct formulation of boundary integral equation for 

potential problem governed by Laplace’s equation.  Attributed to the enormous efforts 

exerted on the implementation of BEM, a number of BEM variants has been emerged in 

the past three decades and successfully applied to a broad topics such as acoustics, solid 

mechanics, hydrodynamics, structural vibration and heat transfer (Yu et al., 2010).  

Apart from the extensive applications of these BEM variants, an innovative 

computational acceleration scheme, Fast Multipole BEM (FMM), has been proposed by 

Rokhlin and Greengard (1985, 1987).  FMM reduces the computation by one order of 

operation in order to solve large scale problems. 

Regarding thermal field problems, BEM is well suited to solve steady and 

transient heat transfer in solid media as well as in porous media restricted to a steady 
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state scenario.  In an earlier study, Wrobel and Brebbia (1979) applied the direct BEM 

formulation to heat conduction in homogeneous solid media and incorporated a time-

dependent fundamental solution for the linear transient heat conduction problem.  Later, 

the nonlinear heat conduction, resulted from temperature-dependent material has been 

solved by Kikuta et al. (1987) using a Kirchhoff transformation scheme, and by Wrobel 

and Brebbia (1988) using dual reciprocity BEM (DRM).  Subsequently, multiple 

reciprocity BEM (MRM) (Nowak and Brebbia, 1989) and triple-reciprocity BEM 

(Ochiai et al., 2006) have been proposed in order to eliminate the background cell for 

some field integration terms.  All of these studies rely on a time-dependent fundamental 

solution so as to eliminate some field integrals.  Meanwhile, other BEM variants have 

also been further developed to solve transient problem such as Galerkin BEM (Sutradhar 

et al., 2002) and Laplace transform DRM (Zhu and Satravaha, 1996). 

For cases involved with spatial-dependent material and multiple domains, efforts 

have also been made in both analytical approaches and numerical schemes.  Simões and 

Tadeu (2005) derived the Green’s functions for a multi-layer medium in the frequency 

domain and retrieved the time domain temperature distribution by the inverse Fourier 

transformation.  Following the procedure of the collocation BEM, Gao (2006) solved the 

steady state heat conduction in a spatial-dependent material, which adopted a radial 

integration method (Gao, 2002) so as to convert the existing domain integral into 

boundary integrals.  Additionally, Gao (2006) proposed an interface integral BEM 

(IIBEM) for multi-domain problems by assuming a thin layer between two adjacent 

domains.  Based upon the direct BEM, the most direct numerical scheme for multiple 
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domains was named as multiple domain BEM and described by Atalay et al. (2004) and 

Gao et al. (2007). 

BEM facilitates the numerical implementation and the computational modeling 

from two aspects.  On one hand, through transforming the strong-form governing 

equation to a weak-form boundary integral representation and by approximating 

boundary value using the boundary element technique, BEM greatly reduced the number 

of algebraic equations needed to solve unknowns on boundaries.  This makes it a 

computationally efficient numerical method.  On the other hand, the reduction in 

discretization dimension also facilitates the mesh of the problem domain especially for 

those problems comprising multiple regions and complex geometries. 

In this study, boundary element method for homogenous medium has been 

further developed to solve the steady state heat conduction in layered medium 

with/without internal heat source.  One computer program called Layered Medium 

Boundary Element Method (LBEM) is constructed based on the proposed methodology 

and procedure.  It is capable of handling heat conduction in layered media with all 

plausible boundary conditions and applicable to any real cable/pipeline configuration in 

layered soil.  LBEM adopting a quadratic element, which is better at dealing with curved 

boundaries, was verified by benchmark scenarios compared with IIBEM and FEM.  

Finally, LBEM was applied to steady state heat conduction in layered soil after the setup 

of a heat pipeline with the inclusion of trenching and backfill effects in deepwater in 

Chapter 3. 
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2.2 BEM Formulation of Heat Transfer in Layered Media 

First, a boundary integral equation for a homogeneous isotropic medium is 

applied to each layer.  Then by assuring the continuity of temperature and normal heat 

flux on the interface of two adjacent layers, global systematic algebraic equations are to 

be assembled from formulations of all layers.  The complete and detailed steps in the 

formulation are elaborated here for completeness. 

The Laplace equation governs the steady-state heat transfer problem in each 

isotropic homogeneous subdomains depicted in Fig. 2.1.  Brebbia et al. (1992) utilized 

Green’s theorem and a weighted residual technique to develop the integral form of this 

governing equation as 

 * *( ) ( ) ( , ) ( ) ( ) ( , )y y x y x x x yc T T q d T q d
 

      (2.1) 

where, y ( , )s sx y  is the source point, x  ( , )f fx y  is the field point, ( )c y  takes on a value 

of 1.0 when the source point is inside the domain and a value of 0.5 for smooth 

boundaries without sharp corners, and 
*T  and *q  are the fundamental solutions for 

temperature and directional derivative respectively. 

 



 

20 

 

 

Fig. 2.1 Illustration of multiple layers media model ( j ≥ 3) 

 

Herein, the fundamental solution satisfies the Laplace’s equation and denotes the 

field due to a unit source in an infinite space.  As for an isotropic two-dimensional 

medium, the fundamental solution and its derivative are expressed as (Brebbia and 

Dominguez, 1992 and Gao, 2006) 
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  


     
 

  (2.2) 

where, ( , )x yn n n  is the unit outward normal vector to the boundary   in Eq. (2.1), and 

r  is the distance between the source point and the field point in Eq. (2.1). 

According to Fourier’s law, heat flux on the boundary of each problem domain is 

the product of the thermal conductivity and the directional derivative.  The directional 

derivative is chosen as the independent variable instead of the heat flux. 

Transforming the partial differential equation into a boundary integral equation is 
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the first critical step of BEM.  Besides, discretizing the boundary element is the other 

crucial technique.  In this formulation the quadratic element comprising of three nodes is 

adopted to discretize domain boundaries.  Analogous with an isoparametric element used 

in FEM, the same concept is utilized for BEM.  Quadratic functions are introduced for 

both the coordinate transformation and interpolations of temperature and derivative in 

each boundary element.  For a 2D problem, the transformation of Cartesian coordinate to 

natural coordinates is shown in Fig. 2.2.  The interpolations are of the form 

 
1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

x x x x T T T T

y y y y q q q q

     

     

      
 

      
  (2.3) 

where, 1 ( 1) / 2    , 2 (1 )(1 )     , and 3 ( 1) / 2     are the shape functions, 

(x1,y1), (x2,y2), and (x3,y3) are boundary nodes, 1T , 2T  and 3T  are nodal temperatures, 1q , 

2q , and 3q  are nodal directional derivative in the direction of outward normal at nodes of 

a boundary element. 

 

 

Fig. 2.2 The coordinate transformation of a quadratic element 

 

When the boundary has been discretized into quadratic elements, the boundary 

integral equation Eq. (2.1) can be rewritten as  
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 * *

1 1

( ) ( )y y

n n

NE NE

n n

c T Tq d T qd
  

        (2.4) 

where, NE is the number of boundary elements, and n  is the n
th 

element. 

It should be pointed out that both the temperature and heat flux should be 

continuous inside an element.  While the temperature has a single value at the node 

possessed by two adjacent elements, the heat flux may be different.  According to Eq. 

(2.4) and boundary conditions, one can obtain all the unknown boundary values, and 

then the temperature and heat flux at any point of interest inside the domain can be 

evaluated. 

By substituting Eq. (2.3) into Eq. (2.4), the line integration can be transformed 

into a one dimensional integration referring to the ξ-coordinate as follows 

    
1 1

* *

1 2 3 2 1 2 3 2

1 1

3 3
n n

n n

NE NE
i i n n

n nn n

T q

c T q Jd T T Jd q

T q

       
  

   
   

    
   
   

     (2.5) 

where, “i” denotes source point,

2 2

dx dy
J

d d 

   
    

   
 is the Jacobian in the coordinate 

transformation, and n represents the n
th 

boundary element.  By introducing the following 

boundary integral equations, Eq. (2.5) will be further simplified for later formulation 

 

*

*

n

n

in

m m

in

m m

h q Jd

g T Jd

 

 





 









  (2.6) 

where, 
in

mh  and 
in

mg  are the influence coefficients. 

Regarding the evaluation of these influence coefficients using the collocation 



 

23 

 

BEM (Brebbia and Dominguez, 1992), which is adopted in the theoretical formulation, 

two scenarios must be considered.  One scenario is that the collocation point doesn’t 

coincide with any boundary node on one boundary element and the other one is that the 

collocation point coincides with any one of the three boundary nodes on one quadratic 

element. 

 

2.2.1 Collocation point is outside the n
th

 element 

Consider the first case when the collocation point is not one of the three nodes of 

the n
th

 boundary element.  Suppose that the collocation point “i” (source point) is 

( , )s sx y and then the integration point ( , )n n

t tx y  in the n
th

 element can be interpolated by 

Eq. (2.3) 
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  (2.7) 

Consequently, the first derivative of Eq. (2.7) in respect of   are written as 
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  (2.8) 

Let ( , )n n n

x yn n n  denote the unit normal at this integration point on the n
th

 

element.  The unit normal must be evaluated for each integration point in each element. 
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where, 
2 2

1 2 3 3 1 1 2 3 3 1

1 1
[ ( ) ( )] [ ( ) ( )]

2 2

n n n n n n n n n nJ x x x x x y y y y y           . 

Substitute Eq. (2.2) and Eq. (2.9) into Eq. (2.6) resulting in  
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  (2.10) 

 

2.2.2 Collocation point is one of the three nodes 

When the collocation point coincides with any of the three nodes of one 

quadratic element, a local coordinate system L Lx oy  and a third natural η-coordinate, 

which is associated with the natural ξ-coordinate are needed in order to treat the 

singularity in the numerical integration.  For the quadratic element, there are three 

different cases for this local η-coordinate. 

When the origin of the local coordinate coincides with the first node of a 

boundary element, the local coordinate and a third natural coordinate are presented in 

Fig. 2.3.  
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Fig. 2.3 The origin of the local coordinate locates at the first node of n
th

 element 

 

To be consistent, take the n
th

 element for example.  The local coordinates of the 

three nodes on the n
th

 element can be expressed as 

 1 3 3 12 2 1

1 3 3 12 2 1

0

0 , ,

n nn n
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n nn n
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y y y yy y y
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  

     
  (2.11) 

The interpolation functions under this coordinates using Eq. (2.3) are written as 

 2 2 3 3 1 1

2 2 3 3 2 2

( ) (1 )( )

( ) (1 )( )

L L L
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x x x A B
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

    
  (2.12) 

where, 1 3 2( 2 ) / 2L LA x x  , 1 2LB x , 2 3 2( 2 ) / 2L LA y y  , and 1 2LB y . 

The distance between the collocation point and the integration point ( )r   is 

expressed as 

        
2 2

1 1 2 21r A B A B          (2.13) 

Since a new reference coordinate is introduced, Eq. (2.2) should be derived in the 

new coordinate system which can be expressed as 
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where, 
1 L L
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Finally, the influence coefficients in

mh  and in

mg  for the n
th

 element are as follows 
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  (2.15) 

where,  1 / 2   , 1( ) ( 1)(2 1)      , 2 4 (1 )    , 3 (2 1)    , and 

2 2

1 1 1 1 2 2 2( ) (4 ) (4 )J A A B A A B         in the last term of in

mg .  The last term of 

in

mg  can be numerically computed by the logarithmic Gauss quadrature integration 

(Brebbia and Dominguez, 1992). 

The local coordinate and a third natural coordinate are presented in Fig. 2.4 when 

the origin of the local coordinate coincides with the middle node of a boundary element. 
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Fig. 2.4 The origin of the local coordinate locates at the middle node of n
th

 element 

 

In order to numerically evaluated in

mh  and in

mg  in Eq. (2.6), the element is divided 

into two parts due to the setup of the local coordinate.  In the interest of simplicity, these 

two terms can be written as 
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Investigate the integration between node 2 and node 3 shown in Fig. 2.4 first.  

Similarly, the local coordinates of the three nodes can be expressed as 
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  (2.17) 

Then the coordinate transformation functions are as follows 
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x x x A B
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    


   


    


  (2.18) 

where, 
1 1 3L LA x x  , 

1 3 1L LB x x  , 
2 1 3L LA y y   and 

2 3 1L LB y y  .   
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Subsequently, ( )r   can be written as 

 2 2

1 1 2 2

1
( ) ( ) ( )

2
r A B A B         (2.19) 

Considering another coordinate transformation between the ξ-coordinate and η-

coordinate   , the shape function is expressed in the η-coordinate as follows 
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 


 
  

  (2.20) 

Finally, substitute Eq. (2.9), Eq. (2.18), Eq. (2.19) and Eq. (2.20) into Eq. (2.16) 

resulting in in

mh  and in

mg  in the section between node 2 and node 3 as shown in Fig. 2.4. 
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  (2.21) 

where, 

2 2

1 2
1 2( )

2 2

B B
J A A  

   
      

   
 and 

2 2

1 2
2 1 2( )

2 2

B B
J A A  

   
      

   
.   

Note that the last term of in

mg  can be evaluated by the logarithmic Gauss 

quadrature integration.  See for examples Brebbia and Dominguez, 1992 and París and 

Cañas, 1997.  

And then by substituting Eq. (2.6) into Eq. (2.5) one can obtains the discrete 

form of the governing equation 
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3 3

1 1 1 1

NE NE
i i in n in n

m m m m

n m n m

c T h T g q
   

     (2.22) 

where, NE is the number of boundary elements, n

mT  and n

mq  correspond to the nodal 

temperature and directional derivative at the m
th

 node of the n
th

 element respectively. 

When a source point coincides with a node, i.e. in

mh and in

mg , their values are 

numerically evaluated using the local coordinates, see for example París and Cañas 

(1997).  The formulations are also derived in detail here, which are consistent with the 

notation used in this dissertation.  One can rewrite the resulting equations in matrix form 

and solve for the unknown temperatures and derivatives at boundary nodes. 

 HT GQ  (2.23) 

where, 1 2 2*[ , , , ]NET t t t  is the temperature vector, 1 2 3*[ , , , ]NEQ q q q  is the 

derivative vector, and NE is the number of boundary elements. 

When all the unknown temperature and heat flux are solved, the temperature in a 

field point can be achieved by Eq. (2.7).  Furthermore, the directional derivatives at the 

internal point “i” can be obtained  
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  (2.24) 

where, 

*u

x




,

*u

y




,

*q

x




, and 

*q

y




 are function of  . 
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For the piecewise homogeneous medium presented in Fig. 2.1, Eq. (2.8) is 

applied to each layer and one global matrix can be assembled from all sub-matrices 

based upon the continuity of temperature and heat flux on the interfaces between two 

adjacent layers.  To accomplish this step, the columns of H  and G  matrices for each 

layers are grouped based upon the external boundary nodes and the interface nodes as 

follows 

 1 1

1 1

1 1
1 1 1 1

1 1

e e
e eT q

H H G G
T q

 
 

   
         

   
  (2.25) 
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 

   
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         
      

  (2.26) 
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  (2.27) 
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j j
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j j j j
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T q
H H G G

T q
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         
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  (2.28) 

where, the subscript j means that a node is at the j
th

 layer, the superscript e means that a 

node is on the external boundary, and the superscript   means node is on the j
th

 

interface. 

Since the direction of the external boundary of each layer is counterclockwise, 

the direction of the interface and the outward normal direction to the interface of two 

adjacent layers are opposite to each other.  Assuming that (1) these directions of j-1
th

 

layer’s j-1
th

 interface following j-1
th

 layer, and (2) these direction of j
th

 layer’s j-1
th

 

interface refers to that of j-1
th

 layer, the interface information can be defined once in the 
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input file.  Thus, the issue pointed out by Gao and Wang (2009) that interface 

information has to be read twice in MDBEM has been resolved in the LBEM, which is 

read one time and will be elaborated in detail in the following section. 

In order to deal with discontinuous prescribed heat fluxes on boundaries, each 

quadratic element is assigned three derivative terms, which are directly related with heat 

fluxes in Eq. (2.8).  Following the direction of boundary, the heat flux in the upstream 

direction is called flux before a node and the other in the downstream direction is called 

flux after a node.  However, the heat flux is continuous at the joint node of two 

neighboring elements for those interfacial nodes.  Thus, the columns of G corresponding 

to interfacial nodes should be collected at the joint nodes in Eq. (2.10) thru. Eq. (2.13), 

which is termed as CG after the collection operation. 

Next, CG and the columns of H associated with interfacial nodes should be 

reordered according to the order of boundary nodes before assembling into a global 

matrix.  Then, some CG matrices are denoted as IG, where some columns of CG are 

reordered. 

Subsequently, by introducing the continuity conditions of temperature and heat 

flux on the interfaces of two adjacent layers, the global algebraic system equation for 

multilayers model can be achieved as follows 
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  (2.29) 

where, the 
j  is the thermal conductivity of the j

th
 layer, and 

1

1
j

jcq 

  is the collected nodal 

derivative vector of j-1
th

 layer’s j-1
th

 interface. 

By substituting boundary conditions into Eq. (2.14), all unknowns on the external 

boundary as well as the temperature and heat flux on interfaces can be obtained.  And 

then Eq. (2.7) is used to compute temperature for each layer.  Moreover, the internal heat 

flux can be reached by Eq. (2.9). 

Additionally, an interpolation scheme is utilized to treat the node with flux 

discontinuity at a corner as depicted in Fig. 2.5.  When a corner exists at certain 

boundary nodes, the normal heat fluxes cannot be obtained by Eq. (2.8) directly because 

of two unknowns existing at one boundary node.  Since heat flux is related with the 
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gradient of temperature via Fourier’s law, temperature in the neighboring domain around 

the discontinuous node can be interpolated by the three nodal values in the vicinity of 

this corner as shown in Fig. 2.5. 

 

 

Fig. 2.5 Linear interpolation of temperature at a corner 

 

It is assumed that the node with heat flux discontinuity is node k and two 

neighboring nodes are termed as node k-1 and node k+1.  Since temperatures at the three 

nodes are independent variables, the temperature distribution can be linearly interpolated 

at this corner.  Then, the normal derivatives before node k  and after node k  depend on 

the temperature gradient at this node as illustrated in Fig. 2.6.  In the interest of 

simplicity, letting 2 1kx x  , 2 1ky y  , 3 kx x , 3 ky y , 4 1kx x  , 2 1kT T  , 3 kT T , and 

4 1kT T  , the interpolated temperature field can be expressed as 
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Then the gradient of temperature can be derived from Eq. (2.15) as 
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  (2.31) 

where,      2 3 4 3 2 3 4 2D y y x x x x y y      . 

Since the quadratic element is used as shown in Eq. (2.3), two boundary elements 

comprised of five nodes are employed in the interpolation.  The directional derivatives 

with outward normal on each element before and after node k  can be expressed by the 

normal directions on the two elements and the gradient via Eq. (2.16) at this node. 

 kb kb

ka ka

q n T

q n T

 

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  (2.32) 

where, kan  and kbn  are the unit outward normal vectors before and after node k . 

Since any point on a boundary element can be expressed by a local coordinate 

, the unit normal before the node can be derived in the natural coordinate shown below 
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.  Similarly, the unit normal after node k  can be expressed as 

 
1 1

,ka

dy dx
n

d J d J 

 
  
 

  (2.34) 



 

35 

 

where, 4 3 5

3 1
2

2 2

dx
x x x

d
   , 4 3 5

3 1
2

2 2

dy
y y y

d
   , 5 2kx x  , and 5 2ky y  . 

 

 

Fig. 2.6 Discontinuity of heat flux at a corner 

 

2.3 Numerical Implementation 

Regarding the regular topology of the layered medium model, a generalized 

numerical procedure, which is capable of solving heat conduction problems in multi-

layers medium with all kinds of plausible boundary conditions, is proposed and 

elaborated here.  Following the mathematical formulations shown in Eq. (2.25) thru. Eq. 

(2.34), one computer program called Layered Medium Boundary Element Method 

(LBEM) is designed and constructed for the two-dimensional heat transfer problem in 

Matlab.  The program flow chart is now illustrated in Fig. 2.7. 
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Interface 

inform.
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conditions
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SOLVERB.C. 

and I.I.

BACKSUBNodes and 

Elements

INTERNAL

(Field point evalution)

POSTPROCESS

(Graphical representation)  

Fig. 2.7 Flow chart and modules of LBEM 

 

LBEM is comprised of eight modules whose functionalities are stated herein.  

INPUT is designed to read BEM model information from a format *.txt file including 

the order and coordinates of boundary nodes, boundary elements, interface elements, 

interface directions, and material properties.  In order to handle all kinds of boundary 

conditions, the type of boundary condition of each node must be identified and stored for 

three modules: ASSEMBLE, SOLVER and BACKSUB as shown in Fig. 2.7.  CODE is 

utilized to identify and store the type of boundary and interfacial nodes using values 

listed in Tab. 2.1.  HGSUB is used to compute H and G of each layer by Eq. (2.23).  

ASSEMBLE forms the global matrix which follows Eq. (2.24) thru. Eq. (2.29).  
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SOLVER solves the algebraic equation by substituting boundary conditions into Eq. 

(2.29).  BACKSUB separates temperatures and derivatives from the solved unknowns 

and then stores temperatures and derivatives of boundary nodes in order of the sequence 

nodes for each layer.  INTERNAL computes the temperature and heat flux at internal 

points of interest in each layer using Eq. (2.22) and Eq. (2.24).  POSTPROCESS 

displays the temperature contour of specific BEM model and generates a family of 

curves for parametric study.  Note that case 5 in Tab. 2.1 stands for the discontinuity of 

heat flux at corners of the BEM model.  Linear extrapolation of temperature (París and 

Cañas, 1997) in the vicinity of this kind of corner is adopted in LBEM using Eq. (2.31). 

 

Table 2.1 Identity of the B.C. type of a boundary node 

ID Temperature Node before node Node after node 

1 unknown known known 

2 known unknown known 

3 known unknown known 

4 known unknown unknown (continuous) 

5 known unknown unknown (corner) 

6 known unknown unknown (interface) 

7 known unknown (interface) unknown 

8 unknown known unknown (interface) 

9 unknown unknown (interface) known 

10 unknown unknown (mid. node) unknown (mid. node) 

11 unknown unknown (end node) unknown (end node) 

 

2.4 Program Validation 

The numerical predictions obtained using the boundary element model were 

validated by comparing them to the predictions from FEM and IIBEM for the first 
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example (Gao et al., 2009) and FE program Code_Bright (UPC, 2013) for the second 

example.  The unit of length is meter and the unit of temperature is Kelvin and Celsius 

for the first and the second problem respectively.  Fig. 2.8 shows dimensions, boundary 

conditions and thermal conductivities of a two layers plate.  The corresponding boundary 

element model is presented in Fig. 2.9 using the same mesh on boundaries and interface 

adopted in the FE and IIBEM analysis (Gao et al., 2009).  The boundary element model 

consists of 24 quadratic elements for each layer and 38 elements for the whole model.   

 

 

Fig. 2.8 Configuration and boundary conditions of two layers medium plate 

 

 

Fig. 2.9 Boundary element model of the two layers medium plate 
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Fig. 2.10 shows the temperature contour, which has the same pattern of 

temperature as the results obtained by IIBEM.  Due to the fundamental solution, 

numerical results are not accurate when the distance between the evaluated internal point 

and boundary element is much less than the length of neighboring boundary elements.  

However, the temperature and heat flux are accurate and reliable as they are solved 

directly from the system equation when the mesh of the boundary and interface is fine 

enough and the aspect ratio issue doesn’t arise (Yang et al., 2002). 

 

 

Fig. 2.10 Temperature distribution of two layers medium example (K) 

 

Fig.2.11 and Fig. 2.12 show the temperatures along x=0.5 and x=1 using LBEM 

are provided in compared to IIBEM and FEM.  Temperature distributions along y=0, 

x=0.5 and x=1.0 by IIBEM, FEM, and BEM are listed in Tab. 2.2 and Tab. 2.3 for 

comparison.  The maximum relative error is 0.57% compared to FEM results.  

Additionally, interface boundary elements are input only once in LBEM compared to 

twice in MDBEM as commented by Gao et al. (2009). 
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Fig. 2.11 Temperature distribution along y=0 of the two layers case 

 

              Table 2.2 Temperature along y=0 of two layers medium case 

x IIBEM FEM LBEM 

0.0 0.00000 0.00000 0.00000 

0.1 0.10761 0.10770 0.10823 

0.2 0.21244 0.21262 0.21365 

0.3 0.31181 0.31209 0.31358 

0.4 0.40324 0.40359 0.40549 

0.5 0.48449 0.48492 0.48717 

0.6 0.55364 0.55414 0.55667 

0.7 0.60910 0.60966 0.61240 

0.8 0.64910 0.65021 0.65311 

0.9 0.67428 0.67490 0.67789 

1.0 0.68256 0.68319 0.68621 

1.1 0.67428 0.67490 0.67789 

1.2 0.64961 0.65021 0.65311 

1.3 0.60910 0.60966 0.61240 

1.4 0.55364 0.55414 0.55667 

1.6 0.48449 0.48492 0.48717 

1.7 0.40324 0.40359 0.40549 

1.8 0.31181 0.31208 0.31358 

1.9 0.21244 0.21262 0.21365 

2.0 0.10761 0.10770 0.10823 
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Fig. 2.12 Temperature distribution along x=0.5 and x=1 of the two layers example (K) 

 

Table 2.3 Temperature along x=0.5 and x=1 of two layers medium case 

y 
x=0.5 x=1.0 

IIBEM FEM LBEM IIBEM FEM LBEM 

0.5 0.67368 0.67438 0.67669 0.93861 0.93953 0.94257 

0.4 0.60660 0.60773 0.61004 0.84870 0.85024 0.85328 

0.3 0.55573 0.55667 0.55896 0.77989 0.78122 0.78425 

0.2 0.51896 0.51980 0.52207 0.72981 0.73103 0.73406 

0.1 0.49528 0.49610 0.49835 0.69740 0.69859 0.70161 

0.0 0.48449 0.48492 0.48717 0.68256 0.68319 0.68621 

-0.1 0.44351 0.44035 0.44253 0.62560 0.62112 0.62409 

-0.2 0.40908 0.40684 0.40896 0.57775 0.57430 0.57723 

-0.3 0.38483 0.38349 0.38558 0.54408 0.54164 0.54452 

-0.4 0.37015 0.36973 0.37179 0.52384 0.52234 0.52521 

-0.5 0.36504 0.36517 0.36724 0.51709 0.51596 0.51882 

 

The second model shown in Fig. 2.13 is a two layered medium with an internal 

heat source located at the interface of two layers.  Fig. 2.13 includes the dimensions, 

boundary conditions, and material properties. 
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Fig. 2.13 Configuration of the two layers medium model with internal heat source 

 

Fig. 2.14 and Fig. 2.15 illustrate the FEM mesh and BEM mesh details 

respectively.  Note that the origin of coordinates is located at the center of the model, 

where the x-axis is in the horizontal direction and the y-axis is in the vertical direction.  

The FEM model had a total of 1580 nodes while the BEM model utilized only 230 nodes 

to accurately model the same problem. The number of equations to be solved was 

reduced by a factor on the order of 5~6 for the same mesh size on the model boundary. 

 

 

Fig. 2.14 FE model of the two layers medium model with internal heat source 
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Fig. 2.15 BEM model of the two layers medium model with internal heat source 

 

By matching the mesh on outermost boundaries, the maximum relative error was 

found to be less than one percent along the vertical axis at x=0 as illustrated in Fig. 2.16.  

The discontinuity shown in Fig. 2.16 resulted from the cavity at the interface of two 

layers.  Temperature contours are shown in Fig. 2.17 and Fig. 2.18 using symmetric 

model via FEM and BEM with finer mesh on the boundary so as to obtain accurate 

results of the internal points close to the interface. 

 

  

Fig. 2.16 Temperature distribution along x=0 from FEM and BEM results (˚C) 
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Fig. 2.17 Temperature distributions using symmetric model in Code_Bright 

 

 

Fig. 2.18 Temperature distribution of the two layers medium model with internal heat 

source using BEM (˚C) 
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3. MODELING OF THERMAL FIELDS AROUND SUBSEA BURIED 

PIPELINES

 

 

Heat transfer about buried subsea pipelines is a complex problem, the designers 

may consider multi-phase flows, coatings, thermal insulation, a necessary active heating 

plan, trenching and backfill, layered porous soils, routing and sea water depths in the 

process of design and validation of subsea pipelines especially for deepwater and arctic 

projects.  The thermal field that develops and encompasses the buried pipeline is of 

critical concern from the point of view of flow assurance and structural safety.  This 

significant temperature difference of mixture of oil and gas inside pipeline and the 

ambient seawater in deepwater poses some interesting design challenges on pipelines 

transporting hydrocarbons and associated impurities from reservoirs to collection sites.  

Depending on the circumstances, these pipelines may be buried for physical protection 

or for additional thermal insulation using a specially designed ROV.  Burial provides an 

effective way of separating these pipelines from the strong cooling effect of cooler 

seawater caused by natural convection of seawater near pipelines (Osborne et al., 2001).  

Fig. 3.1 shows an illustration of deepwater ROV for pipeline burial and a photo of the 

duct trenched by this ROV is presented in Fig. 3.1 provided by Osborne et al. (2001). 

                                                 

 Part of the data reported in Section 3.1 of this chapter is reprinted with permission from “Numerical 

investigation of thermal fields around subsea buried pipelines” by Yanbin Bai, John M. Niedzwecki, and 

Marcelo Sanchez, 2014.  Proceedings of the ASME 2014 33
rd

 International Conference on Ocean, 

Offshore and Arctic Engineering, OMAE2014-24678, Copyright (2014) by ASME. 
*
 Part of the data reported in Section 3.2 and 3.3 of this chapter is reprinted with permission from 

“Modeling of deepwater seabed steady-state thermal fields around buried pipeline including trenching and 

backfill effects” by Yanbin Bai and John M. Niedzwecki, 2014.  Computers and Geotechnics, Volume 61, 

221-229, Copyright (2014) by Elsevier B.V.
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The process begins with the lay of a pipeline on the seafloor.  Then an ROV rides 

along the pipeline digging a trench beneath it, and lowering it into the trench 

simultaneously shown in Fig. 3.2(a).  To fully bury this pipe, sidewalls are collapsed by 

the ROV which causes a slump on the seabed illustrated in Fig. 3.2(b).  Consequently, 

installation results in a domain with multiple domains and complex interfaces. 

 

 

Fig. 3.1 ROV and photo of a deepwater burial project (Osborne et al., 2001)  

 

 

(a) Trenching and place pipe in duct      (b) Simplified trench after backfilling 

Fig. 3.2 Illustration of installation of a pipeline by an ROV 
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In the present study, a recently developed steady state two-dimensional boundary 

element model was used to investigate the thermal field surrounding buried pipelines.  

The domain of interest includes multiple domains and complex interfaces typically 

encountered in the actual installation such as trenching and backfill.  As the submarine 

soil is partially or fully saturated porous media, the influence of natural convection even 

in marine clay with extreme low hydraulic permeability (10
-8

~10
-7

 m/s) should be 

examined first.  In order to establish the timeframe to achieve steady state conditions in 

the thermal field, a finite element code developed at the Technical University of 

Catalonia (2013) was used to conduct the natural convection simulation in a typical 

deepwater marine clay.  The purpose of this FEM simulation is to scrutinize later 

assumption of the BEM formulation on the steady state heat transfer of buried pipelines. 

The FEM results demonstrate that the fluid convection cell induced by 

temperature gradients in this marine clay affects the time required to reach the steady 

state but only slightly impacts the steady state temperature distributions in clay 

surrounding the buried pipeline.  Subsequently, a boundary element model, 

incorporating layered seabed soils and conductive cooling effect of seawater near the 

seabed, was established.  The BEM formulation further developed in Chapter 2 is 

updated according to the topology of multiple domains, which accounts for the 

installation issues.  In terms of numerical investigation, the procedure proposed and 

elaborated in Chapter 2 is well suited to conduct a parametric study about the impacts of 

burial depth, backfilling and thermal power loss from the pipeline on the thermal fields. 
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3.1 FEM Investigation of Natural Convection in a Marine Clay 

Regarding heat transfer in saturated porous media, Olivella et al. (1994) derived 

a set of mathematical formulas for the thermal-hydraulic-mechanical (THM) problem, 

which established the framework of Code_Bright (CB) (UPC, 2013) utilized in the 

current numerical study.  CB adopts these assumptions: 1) thermal conductivity is 

independent of temperature; 2) the marine clay is a homogeneous isotropic porous 

media; 3) the marine clay is fully saturated; 4) the induced flow in clay is two 

dimensional and laminar; 5) the solid skeleton remains at rest; and 6) water contained in 

clay is not allowed to evaporate. 

Along with the thermal conductive law (Fourier’s law), the hydraulic conductive 

law (Darcy’s law), initial conditions, and boundary conditions, the governing equations 

can be formulated and solved by FEM iteratively.  In this thermal-hydraulic coupled 

problem, temperature and the liquid pressure are the two primary variables, which are 

formulated by the conservation of mass and energy.  The coupling mechanism between 

the temperature and liquid flow is captured by an iterative scheme between the 

temperature and pressure at each time step in CB.  The thermal constitutive law relates 

the conductive heat flux with the temperature gradient. 

 q T     (3.1) 

With the inclusion of compressibility of water, the hydraulic conductive law 

using the generalized Darcy’s law, which correlates the liquid flow with the liquid 

pressure, is expressed in Eq. (3.2).  The natural convection effect is driven by the 

buoyancy force resulted from the change of the density of seawater (Gebhart et al., 
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1978) in marine clays as given in Eq. (3.2) 

     0 0 0| z
w z w w w

w

k
i g T T P P  


        (3.2) 

where, 
zk  is the intrinsic permeability in z-direction. 

In contrast, the conventional heat transfer equation describes the heat transfer 

problem in a solid medium.  Governing equation for the heat transfer in a non-

deformable homogeneous isotropic solid medium is given in Eq. (3.3). 

 2

c

T
T q c

t
 


  


  (3.3) 

where, κ is the thermal conductivity, qc is the internal heat source/sink term, ρ is mass 

density, c is the specific thermal capacity, T is temperature and t is time. 

The thermal conductivity in fully saturated clay is defined as 

 1

sat s w

      (3.4) 

where,   is the porosity of the marine clay. 

By considering Fourier’s law, temperature and conductive heat flux evolution 

can be obtained iteratively according to convergence of some nodal values in CB.  To 

investigate the natural convection effect on the thermal field around buried pipelines, 

solid medium and porous medium case studies were performed and compared.  Solid 

case simulation uses the thermal properties of fully saturated clay derived from the 

properties of solid and liquid phases of a marine clay as listed in Tab. 3.1.  In addition, 

Tab. 3.1 summarizes some ambient parameters essential for these two FEM studies. 
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Table 3.1 Problem data: marine clay properties and ambient parameters 

 Name Symbol Value Unit 

Solid 

media 

case 

Thermal conductivity of saturated clay sat  0.92 W/m·K 

Specific heat of saturated clay satc  2237 J/kg·K 

Density of saturated clay sat  1327 kg/m3 

Porous 

media 

case 

Thermal conductivity of solid clay grain s  1.6 W/m·K 

Specific heat of solid clay grain sc  800 J/kg·K 

Density of solid clay grain s  1800 kg/m3 

Reference density of seawater 0w  1025 kg/m3 

Thermal conductivity of seawater w  0.65 W/m·K 

Specific heat of seawater wc  3850 J/kg·K 

Thermal expansion coefficient of seawater α 0.00034 ˚C
-1

 

Compressibility of seawater β 0.00045 MPa 

Viscosity of seawater w  0.0018 kg/m·s 

Porosity   0.61 / 

Hydraulic permeability K 1.0E-7 m/s 

 Gravity g 9.81 m/s
2
 

 Water depth H 2750 m 

 Ambient temperature Ta 5 ˚C 

 

In the interest of simplicity, a simplified but representative 2-D pipe-soil model is 

adopted to study the natural convection effect on thermal field around a pipeline buried 

in marine clay as depicted in Fig. 3.3.  The soil around buried pipe is assumed as a single 

homogeneous medium.  Constant temperature on the seabed and lower bound of the 

truncated model are prescribed initially and the lateral heat flux conditions were the 

approximation of zero temperature gradient in the horizontal direction in the far field.  

Initial condition is selected as the ambient temperature as listed in Tab. 3.1.  The heat 

flux dissipated from the heat pipeline is selected to be 20 W/m
2
, which can be estimated 

from the thermal loss of the pipeline.   
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Fig. 3.3 2-D pipe-soil model for FE investigation 

 

The FEM mesh of this model is illustrated in Fig. 3.4 with finer mesh in the 

vicinity of the pipe in order to guarantee numerical convergence and accuracy.  This 

model has a total of 986 nodes and 920 quadrilateral elements. 

 

 

Fig. 3.4 FEM mesh of the pipe-soil model 

 

According to the time evolution of temperature distribution in the problem 

domain, it is revealed that the time required for the porous case to reach the same 

temperature distribution is slightly longer than that of the solid media case as 
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demonstrated in Fig. 3.5.  The natural convection cells developed around the pipeline 

contribute to this time lag. 

 

 

Fig. 3.5 Temperature distribution (˚C) for solid media case at 60 days and for porous 

media case at 63days 

 

The nonlinear temperature rise in both the solid and porous case was observed 

from these simulations.  It must be addressed that the burial depth has a critical influence 

on the time evolution history.  The deeper the burial, the larger the time difference 

between these two cases.  Regarding the convective liquid flow inside the clay in the 

problem domain, four convection cells were developed when the thermal field reached 

steady state.  In this transient analysis, the thermal field in the porous media case is 

cooled down by the fluid flow driven by temperature gradients as shown in Fig. 3.6. 
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Fig. 3.6 Liquid flux around a buried pipe at 63 days for the porous media simulation 

 

According to this comparative numerical study, it is recommended to include the 

natural convection in the transient analysis, including the start-up and cooling down 

operational modes, especially for soils with much larger hydraulic permeability such as 

silt and sand.  While in the steady state evaluation, the cooling down effect of natural 

convection is not significant on the thermal field for this marine clay.  Thus, it is 

reasonable to neglect this phenomenon in this marine clay used in the BEM investigation 

of the steady state thermal field. 

 

3.2 BEM Formulation of Thermal Field about a Buried Pipeline 

A 2-D vertical slice of the irregular sub-seafloor geometry that results from the 

trenching and backfilling processes is depicted in Fig. 3.7.  The 2-D model includes 

consideration of both layered and disturbed marine soil conditions where the buried 
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pipeline is subject to high internal temperatures.  This model encompasses four domains: 

two layers of undisturbed soils, a third coming from the backfilling, and the fourth 

containing seawater.  In the model of the domain containing seawater adjacent to the 

seafloor, the fluid is assumed to be a hydraulically quiescent layer where the inclusion of 

seawater convection initiated in the seabed is neglected.  The problem variables used in 

the formulation of the boundary element model are presented in Fig. 3.7.  The variables 

1 , 2 , 3  and 4  denote the sub-layer soil, the top layer soil, the backfill region, 

and the seawater domains respectively.  The variables 1 , 2 , 3  and 4  are used to 

represent the domain boundaries for their respective domains.  The geometric parameters 

defining vertical dimensions of the problem domain are 1D , 2D  and 4D .  The 

horizontal width of the model is denoted as L .  The cover depth of pipeline is Db ; the 

dimension at the lower section of the trench is Dt ; the collapsed gap due to backfilling 

is cD ; the width of the trench at the top is Lt t ; and the width of the trench on which the 

pipeline rests is tbL .  As for the boundary conditions, wT  is the initial temperature of the 

seawater domain; bT  is the temperature at the bottom of the sub-layer soil layer; and 1Q , 

2Q  and 4Q  are the heat flux specified at the lateral boundaries of the subdomains.  The 

variable 0d  is the outer diameter of the pipeline where either an essential condition 

(temperature, Tp ) or a natural condition (heat flux, Qp
) is specified.  The natural 

convection of seawater was found to be negligible for steady-state heat transfer in 

deepwater clay when the soil permeability is in the range of 10
-8

~10
-7

 m/s.  Additionally, 
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natural convection effect is also negligible compared to the heat conduction.  

Consequently, this provides the basis to further assume that the soil can be modeled as a 

homogeneous isotropic media for each domain using the equivalent thermal conductivity 

of a saturated soil. 

 

 

Fig. 3.7 Sketch of 2D pipe-trench model for BEM numerical investigation 

 

The mathematical formulation using BEM follows the numerical procedure 

elaborated in Chapter 2.  However, due to an additional domain resulted from trenching 

and backfill, the global matrix presented by Eq. (2.29) cannot be directly applied to this 

specific problem.  As a consequence of having multiple domains, i.e. soil and seawater, 

the formulation must be assembled in a way so that the assembled system of equations 

are ordered in a manner assuring the continuity of temperatures and heat fluxes on the 
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interfaces between adjacent domains.  To accomplish this, the columns of H and G 

matrices for each layer were grouped based upon the external boundary nodes and the 

interface nodes as follows 

 1 1

1 1

1 1
1 1 1 1

1 1
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e eT q
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  (3.8) 

where, the subscript j means the j
th

 domain, the superscript e  denotes the external 

boundary, and the superscript 
j  represents the node on the j

th
 interface. 

The assembly of the global matrix used the same procedure demonstrated in 

Chapter 2.  The steps leading to the final form are fairly straightforward and are 

summarized here for completeness.  The compression, inversion, and reordering of 

columns of the subdomain matrices are performed according to the order of boundary 

nodes.  The heat flux is continuous at two adjacent elements and is discontinuous at the 

corners of interfaces and external boundaries.  In the process, an extra unknown that 

exists at the joint node of the interfaces 2 , 3  and 4  was addressed in order to 

obtain a solvable system of linear equations.  There are four unknowns at this joint node 
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including three nodal heat fluxes associated with three boundary elements on the three 

interfaces and one nodal temperature.  The interpolation scheme proposed in Chapter 2 

via Eq. (2.30) thru. Eq. (2.34) is adopted to introduce one more relation about the nodal 

heat fluxes at this joint node.   

Then utilizing Eq. (3.5) thru. Eq. (3.8) and performing a series of matrix 

manipulations lead to the final from of the assembled global matrix equations in the 

form 
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  (3.9) 

where, the prefix term ‘C’ and ‘c’ represent compression of original columns 

respectively, and ‘I’ denotes reordering the columns according to numbering of nodes. 

By substituting Eq. (2.32) and boundary conditions into Eq. (3.9), the solution for 

the thermal field at the boundaries can be achieved.  Then the temperatures at internal 
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points of interest can be evaluated using Eq. (2.5).  Note that singularities can cause 

some numerical issues when evaluating internal points that are close to the nearest 

boundary element (Yang et al., 2002).  It is suggested that in the discretization step, one 

should be careful to avoid internal points that fall within a half-length radius of the 

nearest boundary element.  This issue can be ameliorated by increasing the mesh density. 

The two-dimensional boundary element model was initially depicted in general 

terms in Fig. 3.7.  The model provides for a change of thermal properties in each 

domain.  The specific dimensions and material properties used in this model are 

presented in Tab. 3.2.  The outside diameter of the heat pipeline is also a parameter that 

will be part of the parametric study.  The thermal conductivity ratio for the backfill is 

estimated with reference to the thermal conductivity of the topsoil layer.  Since the 

thermal conductivity varies with the consolidating process of the backfill soil, this ratio 

will also be discussed in the parametric study. 

 

Table 3.2 Primary dimensions and thermal properties of the BEM model 

 Name Symbol Value Unit 

Dimension 

Thickness of the sub-layer soil D1 8.0 m 

Thickness of the top-layer clay D2 2.8 m 

Thickness of the seawater D4 8.0 m 

Bottom depth of trench Dt 0.4 m 

Width of the truncated model L 20 m 

Top width of the backfill region Ltt 3.6 m 

Bottom width of the backfill region Ltb 1.2 m 

Outside diameter of pipeline d 0.4 m 

Thermal 

conductivity 

Sub-layer thermal conductivity κ1 1.2 W/m·K 

Top-layer thermal conductivity κ2 1.0 W/m·K 

Thermal conductivity of seawater κ4 0.65 W/m·K 
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A sense of the problem symmetry and the boundary element discretization for the 

illustrative example is shown in Fig. 3.8, and some of the realistic problem values are 

noted.  The lateral temperature gradients of the two soil layers and the seawater layer are 

specified as being zero, and this approximates the boundary conditions in the far field in 

the horizontal direction.  A constant temperature of 5.2°C accounting for geothermal 

gradient is adopted at the lower bound of the sub-layer soil.  Due to the forced 

convection of bottom currents near the seabed, the temperature of the seabed is assumed 

to be constant by some researchers (Lu et al. 2008, Xu et al. 2010, and Barletta et al. 

2008).  However, it has been reported that in the North Sea in shallow water where 

seafloor current is present, heat dissipated from buried cables still imposes a significant 

impact on the local submarine ecology system (Kogan, 2003).  If the constant 

temperature on the seabed were used, it is prescribed by assuming that there is not any 

thermal impact from the buried cable or pipeline, which is not true in reality.  Even when 

seafloor current is present, the local thermal impact still exists. 
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Fig. 3.8 BEM mesh of the pipe-trench model 

 

In this numerical investigation, a visual view of the thermal field on the seafloor 

and the local thermal impact can be evaluated using the BEM model developed in this 

study.  Considering the low seawater temperature in deep water, a constant seawater 

temperature of 5°C is assumed at the upper bound of the seawater far away from the 

seabed.  This approach is conservative since the temperature gradient on the seafloor 

induces the natural convection of seawater near the seabed.  Finally, regarding the 

complexity of the multi-phase flow inside transporting pipes, a uniform heat flux 

dissipated from the pipe is used for the parametric study. 
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3.3 Parametric Study of Thermal Field around a Buried Pipeline 

The model allows for one to account for the complex geometries in the near field 

associated with site-specific multi-layered soil conditions, the seawater adjacent to the 

seafloor, and the burial technique demonstrated previously.  The numerical examples 

illustrate 1) the influence of the backfill thermal property on the temperature at the pipe 

wall, 2) the correlation of the pipe diameter and the required output thermal power 

needed to maintain the desired pipe wall temperature, and 3) the burial depth’s influence 

on the seabed temperature distribution above the pipeline. 

 

3.3.1 The thermal insulation efficiency of different materials 

The deepwater buried pipelines transport mixtures of oil and gas, and their 

associated impurities.  These impurities are sensitive to temperature and pressure, and 

are consequently deposited and accumulate under different conditions.  For example wax 

typically becomes an issue at around 30~50°C, and hydrates form around 20°C at 10 

MPa (Su, et al., 2003).  Under the normal operational conditions the temperature of 

hydrocarbons being transported has to stay above 55°C (Osborne et al., 2001).  To 

examine the thermal power required to maintain this wall temperature, the following 

parameters were selected: outer pipe diameter of 0.4 m, the initial cover depth of 1.6 m, 

and a conductivity ratio of 0.9.  The minimum required heat flux, 55 W/m
2
, was screened 

out for the pipes without insulation treatment.  Fig. 3.9 shows the temperature 

distribution in the surrounding soil.  The white space seen in Fig. 3.9 illustrates null 

value regions where temperature is not evaluated in order to avoid numerical singularity 
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issues. Refining the boundary mesh can minimize this numerical issue. 

 

 

Fig. 3.9 Temperature in clay around the pipeline with heat flux of 55 W/m
2
 

 

Fig. 3.10 shows the temperature distribution along the external surface of 

pipeline in terms of uniform heat flux.  Since the fluctuation of temperature at the 

external side of the pipe is relatively small, the uniform heat flux is approximately 

equivalent to the uniform temperature at the external boundary of the pipe.  However, 

variance of the temperature distribution slightly increases with the output heat flux.  A 

linear fit between the mean temperature and heat flux for this specific example is 

obtained and plotted in Fig. 3.11 with the inclusion of temperature variance 

 0.894 5.13extT Q    (3.10) 

where, 
extT  is the average temperature (°C) and Q  ( W/m

2
) is the output heat flux. 

0 1 2 3 4 5
4

5

6

7

8

9

10

X (m)

Y
 (

m
)

 

 

15

20

25

30

35

40

45

50
°C



 

63 

 

Neglecting the thermal resistance of the steel pipe wall, the approximate inner 

wall temperature can be obtained by the following expression 

 /extwall inT T Q t      (3.11) 

where, t is the thickness and κin is the thermal conductivity of thermal insulation layer. 

 

 

Fig. 3.10 Temperature along the circumferential surface of external pipe wall  

 

 

Fig. 3.11 Linear fit of external mean temperature and heat flux 
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The thermal power loss is the product of the output heat flux and the 

circumference of pipes using the outer diameter.  Assuming the insulation layer 

thickness of 30 mm, the thermal power loss needed to maintain different inner wall 

temperatures is listed in Tab. 3.3 for three typical insulation materials.  These results 

reveal that the pipe-in-pipe (PIP) is much more effective than the integrated external 

insulation technique in terms of maintaining temperature.  However, the PIP is less cost-

effective than the integrated coating (Grealish, et al., 2002). 

 

Table 3.3 Insulation efficiency of pipe operated at different temperature 

Inner pipe wall temperature (°C) 55 60 65 70 75 80 

Thermal 

power loss 

(W/m) 

Without insulation 70.10 77.13 84.16 91.18 98.21 105.24 

Soild polypropylene 

(0.22 /W m K ) 60.82 66.92 73.02 79.12 85.21 91.31 

polypropylene foam 

(0.15 /W m K ) 57.28 63.03 68.77 74.51 80.26 86.00 

PIP polyurethane 

(0.025 /W m K ) 29.93 32.93 35.93 38.93 41.93 44.93 

Insulation 

efficiency 

(%) 

Soild polypropylene 13.23% 

polypropylene foam 18.28% 

PIP polyurethane 57.31% 

Note: thermal conductivity of insulation material refers to Grealish et al. (2002).  

 

3.3.2 Influences of thermal conductivity of backfill soil 

Since moisture and void ratio can change the thermal conductivity of soil and the 

thermal conductivity of backfill changes during the consolidation process (Newson, et 

al., 2002), the influence of the conductivity ratio between the backfill soil and the 

undisturbed top layer is studied next.  Consider the pipe-trench model with the outer pipe 



 

65 

 

diameter of 0.4 m without thermal insulation and the initial cover depth of 1.6 m.  Under 

the thermal power loss of 80 W/m, the temperature along the circumferential outer 

surface of the pipeline is presented in Fig. 3.12.  The right horizontal point and the upper 

top point of the pipeline correspond to 0° and 90° respectively.  Fig. 3.12 includes two 

extreme cases of the thermal conductivity of backfill soil.  The ratio of 0.65 indicates 

that the trench is filled with seawater.  The ratio of 1.0 denotes the situation where the 

thermal conductivity difference between backfill and the undisturbed soil is neglected.  It 

can be seen that the maximum temperature difference occurs when the pipe is placed in 

the trench without coverage.  However, the natural convection of seawater driven by 

buoyancy force due to temperature gradients may reduce the temperature difference.  

But, it is observed that backfill reduces temperature difference between the upper surface 

and the lower surface of a pipeline, which can reduce the upheaval risk due to thermal 

expansion. 

 

 

Fig. 3.12 Temperature along the circumferential external surface of the pipeline 
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Fig. 3.13 and Fig. 3.14 show temperature distributions on the seabed and under 

the pipeline in the vertical direction.  The horizontal distance away from the centerline of 

the pipeline is normalized by the pipeline’s outer diameter.  A seabed temperature 

slightly higher than 30°C is observed on the seabed directly above the pipeline, and this 

may be reduced if the seawater convection effect is included. 

 

 

Fig. 3.13 Temperature distributions on the seabed vs. thermal conductivity ratio 

 

 

Fig. 3.14 Temperature distribution under the pipe 
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To evaluate the influence of the conductivity variation on the external pipe wall 

and on the seabed temperature, Fig. 3.15 is presented with a temperature ratio 

normalized by the corresponding temperature for a conductivity ratio of 1.  It can be 

noted that neglecting trenching and backfill effects may underestimate the temperature 

difference between the upper and the lower part of the pipeline.  Backfill can reduce this 

temperature difference.  The temperature difference is small when the pipeline exterior is 

maintained at an average of 55 ˚C.  However, this difference grows when the average 

temperature increases and may aggravate the thermal buckling issue due to thermal 

expansion.  Even though the significance of the temperature gradient is small compared 

to the imperfection of welded joint along pipelines and unevenness of the seafloor or 

burial trench for thermal buckling.  The significance should be quantitatively 

investigated by either model test or numerical simulation.  The average temperature may 

control the upheaval buckling.  However, the small bending initiated by the small 

temperature difference between the upper surface and the lower surface of the pipeline is 

important.  It is worth considering this effect in the thermal buckling analysis when 

checking the structural stability of subsea pipeline, where failure may result in 

catastrophic impact to the ocean environment.  Thus, it is worth considering the 

installation effect in the thermal buckling analysis when checking the structural stability 

of a subsea heat pipeline. 
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Fig. 3.15 Normalized temperature versus the thermal conductivity ratio 

 

From Fig. 3.13 thru. Fig. 3.15, it can be also concluded that the thermal 

conductivity variation of backfilling has only a local impact and a limited influence on 
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variation is less than 3%. 
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ratio of 0.9 was selected reflecting the consolidation process of the backfill clay. 

 

 

Fig. 3.16 BEM mesh of the trench and pipe showing different actual burial depth 

 

Under various cover depth conditions, the temperature distribution along the 
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3.19 shows that the cover depth has a greater impact on the seabed than the external 

surface of the pipeline.  The three points along the circumferential surface of the pipeline 

are defined in a polar coordinate where 0˚ starts from the horizontal plane.  Thus, 0˚, 90˚  

and 270˚ denotes the middle point, the top point, and the bottom point respectively. 

 

 

Fig. 3.17 Temperature on the external pipeline surface versus initial cover depth ratios 

 

 

Fig. 3.18 Temperature distribution on the seabed with cover depth variation 
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Fig. 3.19 Normalized temperature versus the initial cover depth 
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heat dissipation path.  It was found that deeper coverage does not significantly reduce 
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may vary. For this study it was assumed to be 2 m.  The thermal conductivity ratio was 

selected as 0.9.  Fig. 3.20 shows the BEM mesh on the local pipe-trench model with 

various diameters. 

Under the same thermal power loss of 80 W/m, temperature distributions along 

the external circumferential surface for a number of pipelines with different outer 

diameters are shown in Fig. 3.21.  The numerical simulation reveals two important 

results.  First, the temperature fluctuation on the pipe wall is small.  Second, if the same 

wall temperature is to be maintained for different pipes, the required output thermal 

power increases with the pipe diameter. 

 

 

Fig. 3.20 Detail of pipe-trench with different size of pipes 
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Fig. 3.21 Temperature along the external pipeline surface versus outside diameter 

 

To examine how deep the heat can penetrate into the soil, Fig. 3.22 shows 

temperature distributions directly beneath the pipe.  These results demonstrate that the 

size of pipes only significantly impacts the local temperature field within the range of 

only a few pipeline diameters.  Further, it only slightly influences the far field, seven 

meters below the pipelines, where the temperature increased less than 5°C.  This local 

impact comes from the distance to the center of heat source and geometry configuration 

of the pipe-trench system due to the variation of pipe diameters. 
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Fig. 3.22 Temperature distribution in soil beneath the pipe versus pipeline diameter 

 

A numerical simulation was performed using CB to investigate the transit heat 

transfer of a pipeline in both a solid and porous medium.  The objective is to determine 

the conditions one could pursue the analysis of this complex system assuming steady-
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observed two-month period. 

The thermal field encompassing the deep sea buried pipeline was efficiently 

modeled using the boundary element method.  The proposed multi-layer model 

addressed the complex geometries of trenching and backfill effects, as well as, taking 

advantage of the problem symmetry.  A comparison of FEM and BEM values at nodal 

points showed a difference much less than one-half a percent for solid media case.   

Linear correlation between the uniform heat flux and the mean internal pipe wall 

temperature can be obtained using this pipe-trench model and BEM based approach.  

Burial depth poses a significant impact on thermal field on the seabed but a limited 

influence on the temperature variation along the circumferential pipe wall.  Both 

trenching and backfill effects should not be neglected, since the thermal conductivity of 

backfill clay can significantly impact the thermal field along the external pipe wall.  

Finally, the BEM model as discussed can be extended to address the preliminary thermal 

insulation design of heated pipeline. 
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4. MESHFREE FORMULATION OF SUBSEA CABLES 

 

Fishing and anchoring activities impose potential hazards to the submarine cables 

and these two causes contribute to around 70% of telecom cable damage in the Atlantic 

(Worzyk, 2009).  Though enlightenment about the interference between fishing gears 

and cables can be gained from experience of the interaction between gears and pipelines, 

the response behavior of cables is somewhat different because of both structural 

specifications and boundary conditions including displacement and force boundary 

conditions.  Regarding the bending stiffness, a cable is much more flexible than a 

pipeline. Subsequently it results in different seabed layout configurations for the exposed 

pipelines and cables.  Even though a cable route is planned to avoid exposure in places 

where fishing activity is massive, free spanning is inevitable in rocky areas and in the 

places where a bottom current induces aggressive sediment transport on the seabed and 

creates sand waves as illustrated in Fig. 4.1.  The interaction process between gears and 

cables is elaborated first and subsequently a mathematical description of slender rod is 

selected for physical investigation. 

From the point of view of structural integrity, DNV (2010) released the 

recommended practice guidance on the interference of trawl gears and pipelines, which 

provides insight on the structural evaluation of pipelines in case of accidental loads from 

trawl gears such as clump weights, trawl boards and beams. 
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(a) A free cable span between rocks 

 

(b) A free cable span between sand waves 

Fig. 4.1 Two scenarios of free spans of subsea cables (Drew, 2010) 

 

The interference mechanism between a cable and a trawl gear resembles 

somewhat that of a pipeline and a gear: (1) The initial collision is the instantaneous 

impact when a trawl gear hits the cable.  Fig. 4.2(a) shows the initial impact case.  Since 

the cable behaves like a slender rod during this interaction and the towing speed of the 

gear is slow, the damage to the cable may not be significant in this scenario and is not of 

interest in this study; (2) The pull-hooking phase is the stage following the short impact 

under which the trawl equipment is dragged over the cable.  Fig. 4.2(b) demonstrates a 

trawl board pulls a cable stuck between rocks or sand waves.  Due to the massive weight 

of a typical industry trawl board (2-9 tons) and clump weight (9-10 tons), the maximum 

pulling force (200 kN) may exceed the break load or cause evident damage to the 
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submarine cables.  Hooking may happen during the pulling phase and is termed as pull-

hooking for clarity and should be investigated considering structural integrity of cables; 

and (3) Direct hooking describes the case where the cable is entangled with gears.  Fig. 

4.2(c) shows a cable is being towed by a board and is hooked by rocks or sand waves as 

shown in Fig. 4.2(d).  It is a rare situation for pipelines but may be a common situation 

for cables as the much smaller relative dimension of a cable to a gear than that of a pipe 

to a gear.  This case involving movable boundary conditions and displacement-

dependent loading is the other interest of this study. 

 

 
                    (a) Initial impact case                                (b) Pull-hooking case 

 

                    (c) Direct hooking case                    (d) Cable hooked in direct hooking case 

Fig. 4.2 Sketch of the interaction phases between trawl board and cable 

 

Since the interaction scenarios are stated, arbitrary layout configuration, moving 

boundaries, drag force due to partial burial on the seafloor, and strong nonlinearity due 
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to large deflection of cables are the challenging issues that need to be handled properly.  

Assumptions are made so as to propose a reasonable model which can handle these 

aforementioned issues.  According to the layout of cables on the seabed (Drew, 2009) 

and exposed spans illustrated in Fig. 4.1, the curvilinear coordinate shown in Fig. 4.3 is 

well suited to represent the center line of a deformable cable in 3-D space and to benefit 

the derivation of governing equations.  The position vector r  is a function of the arc-

length s .  Since the cable is extensible, elongation due to axial tension will be included.  

This mathematical description was adopted by earlier studies, see for example Nordgren 

(1974), Garrett (1982), Ma and Webster (1994) and Chen and Zhang (2001). 

 

 

Fig. 4.3 Illustration of curve coordinate for the interaction model 

 

The slender rod theory is to be reviewed to establish the governing equations for 

the cable problem.  The state art of meshfree methods on solid mechanics applications is 

to be critically reviewed intended to filter out a candidate meshfree method considering 

all numerical implementation facets such as field value approximation, weak 

formulation, discretization, and numerical integration of point stiffness.  Local radial 

point interpolation method (LRPIM) is further formulated to apply to the cable problem 

and associated numerical issues will be investigated subsequently such as node 
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distribution, shape parameters, and numerical convergence by two benchmark examples. 

 

4.1 Review of Slender Rod Theory and Meshfree Method 

The study assumes uniform bending stiffness, no shear deformation and no 

rotational inertia.  In order to derive the equation of motion of a slender cable, the cable 

is assumed inextensible first and thus the deformed and undeformed states coincide.  The 

instantaneous configuration of a cable is described by ( , )r s t  as shown in Fig. 4.4. 

 

 

Fig. 4.4 Coordinates for mathematical formulation 

 

In Fig. 4.4, the unit tangent vector, the unit normal vector, and the unit binormal 

vector are denoted as t , n  and b .  Some basis in the differential geometry of curves 

including the Serret Frenet formulae are utilized and then the unit normals are defined as 

 ' '', / ,t r n r b t n      (3.12) 

where, prime denotes the derivative with respect to s  and   is the curvature defined by 
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an identity 
2 '' '' ' '''r r r r      . 

Fig. 4.5 illustrates a differential element on the cable.  According to the 

conservation of linear and angular momentum, the equations of motion are expressed as 

 F q r    (3.13) 

 
' 0M t F m      (3.14) 

where,   is the mass per unit length, q  and m  are the distributed force and moment 

along the cable per unit length respectively, and F  and M  are internal force and 

moment of the cross section.  Double dot means the second derivative with respect to 

time. 

 

 

Fig. 4.5 A differential element on a cable 

 

Though a small deformation is presumed, it still allows large deflection of the 

cable due to small rotational angle caused by bending and rigid body motion.  Therefore, 

Bernoulli-Euler beam theory is still applicable for the constitutive law adopted here, 
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where the bending moment and torque are proportional to curvature and twisting angle 

per unit length, respectively. 

  ' '' 'M EI b Ht r EIr Hr       (3.15) 

  
'

' ' '' ' ' ''M r EIr H r Hr      (3.16) 

where, EI is the bending stiffness, H C  is torque, C is the torsional rigidity, and   is 

the angle of twist per unit length.  By substituting Eq. (4.5) into Eq. (4.2), one obtains  

 ' '' ' ' ' '' '( ) 0r EIr H r Hr r F m         (3.17) 

Cross product of both sides of Eq. (4.6) by 
'r yields the expression of F   

  
'

' ''F r EIr    (3.18) 

Substituting Eq. (4.7) into Eq. (4.1) leads to the equilibrium equation 

 '''' ' '( ) (s)EIr r q r       (3.19) 

where, 2T EI    is the Lagrange multiplier. 

Then, a small elongation is introduced to the constraint condition  

  
2

2
2' ' 1 1

EI
r r

EA

 


 
     

 
  (3.20) 

where, /T EA   is the normal strain, 2T EI    is the local tension, and A is the 

equivalent section area of cable. 

After the two primary parameters r  and   are determined by Eq. (4.8) and Eq. 

(4.9) together with proper initial conditions and boundary conditions, the internal 

resultant force and moment can be achieved as follows 
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 ' '' '( )F r EIr    (3.21) 

 ' ''( )M r EIr    (3.22) 

The governing equations are well established and to be numerically solved by a 

meshfree method.  Meshfree methods, which don’t rely on mesh grid, are successfully 

applied to elasticity problems with arbitrary geometry of plates, moving boundary 

conditions, and strong nonlinearity due to large deflection (Atluri, 2004, Chen et al., 

1996, Chen et al., 1997, Liew et al., 2002, Han et al., 2005).  Pertinent literatures on 

meshfree methods of structural mechanics, especially about specific approaches 

applicable to beam-like structures, are critically reviewed so as to screen out the most 

feasible shape function construction schemes and weak formulation approaches for the 

subsequent formulation of the interaction between trawl gears and partially buried 

cables.  Various meshfree methods have been developed and successfully demonstrated 

their capabilities on structural analysis of conventional structures in the past decade, e.g. 

beam, plate, and shell.  Categorization of these studies on solid mechanics helps one 

figure out feasible technical route of the cable problem.  Basically, there are two ways to 

classify meshfree methods: discretization of governing equations and field value 

approximation.  Strong and weak formulation are the two major ways to transforming a 

PDE in to a series of linear algebraic equations.  Furthermore, weak formulation 

comprises of the global and local weak formulations.  More variants of shape function 

construction schemes are summarized, which are practical to structural analyses such as 

static, vibration, and buckling. 

Based upon the strong-form, meshfree collocation methods combining moving 
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least square (MLS) and radial base functions (RBF) were employed by Zhang et al. 

(2000) and Zhang et al. (2001) respectively and were validated against a cantilever 

beam.  MLS and RBF are adopted to construct the shape functions for the field value 

approximation.  Besides the series representation, smooth particle hydrodynamics (SPH) 

(Chen et al., 1999), hp-clouds method (Duarte and Oden, 1996), and the reproducing 

kernel particle method (RKPM) (Chen et al., 1996) use integral form of kernel 

interpolation schemes for field value approximations, which are also strong-form based 

methods.  However, SPH and hp-cloud are less employed for structural analysis.  

Mendonca et al. (2000) studies the sensitivities of weight functions, enrichment function 

and cloud overlapping via a shear deformation beam.  Li et al. (2004) developed a 

Hermite-type cloud method to fluid-structure interaction between sea bottom current and 

a pipeline, where the pipe was simplified into a two-dimensional plate and the problem 

was simplified into a plane stress problem.  In contrast, RKPM is widely utilized for 

beam, plate and shell structures, especially for nonlinear problem due to large 

deformation (Chen et al, 1996, Chen, et al., 1997, Donning and Liu, 1998, Liew et al., 

2002). 

The other group of meshfree methods is based on weak formulation, either the 

global weak-form or the local Petrov-Galerkin weak-form.  The basis functions used for 

weight function and the weighted domain differentiate the global and the local form.  

Joint with Galerkin global weak-form, element-free Galerkin (EFG) method (Belytschko 

et al., 1994), point interpolation method (PIM) (Liu and Gu, 1999), and radial point 

interpolation method (RPIM) (Wang and Liu, 2002) have been proposed and applied to 
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the computational solid mechanics.  As for the meshfree methods adopting global weak-

form, background cell is essential for numerical integrations of the point stiffness matrix.  

While the methods based on the local weak-form introduce a local integration domain 

associated with nodes, these methods that avoid the use of background cells are true 

mesh free methods.  Using the local weak-form, Atluri et al. (1999) proposed the 

meshless local Petrov-Galerkin (MLPG) method and applied to an Euler-Bernoulli 

beam, which adopted the MLS scheme for deflection approximation.  Later, Cho and 

Atluri (2001) applied this new meshless method to investigate the possibility of this 

approach on a shear deformable beam, which demonstrated the potential of MLPG on 

large deflection problems.  Gu and Liu (2001) combined PIM and the idea of MLPG and 

then proposed a local point interpolation method (LPIM) to study the response of a thin 

beam under static and dynamic load.  Subsequently, Liu and Gu (2001) collaborated the 

RPIM interpolation scheme and a local weak formulation to the dynamics of a cantilever 

beam simplified as a 2-D plate.  Additionally, Liu and Gu (2005) and Liu (2010), studied 

the effects of shape parameters of RPIM and recommended the optimal parameters 

based on their comparative numerical studies of the most four common radial basis 

function families. 

The meshfree method has its own advantage and disadvantage based on either 

the global or local weak formulation.  According to two research groups’ work (Atluri 

2004 and Liu and Gu, 2005), numerical performances of RPIM, LRPIM and MLPG 

using weighted least squares are briefly summarized here.  The convergent rate and 

efficiency of RPIM and MLPG is better than LRPIM.  However, RPIM based on the 
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global weak form requires background cell and compatibility of shape functions for 

point stiffness in the whole domain.  In contrast, LRPIM and MLPG are true meshfree 

methods and don’t require compatible shape functions over the whole domain. 

Four most often used RBFs are listed in Tab. 4.1 see for reference (Liu, 2002).  

Franke (1982) numerically compared 29 data interpolation algorithms with respect to 

parameter sensitivity, complexity of implementation, accuracy and visual quality of 

fitted surface.  This comparative study rated Hardy’s multi-quadric (MQ) (Hardy, 1971) 

approach as one scheme of best performance.  Later, Schaback (1995) found the trade-

off of error and condition numbers for radial basis function interpolation.  Wang and Liu 

(2002) preliminarily studied the optimal selection of shape parameters of modified MQ-

RBF and EXP-RBF and provided reasonable range of these parameters for in the 

implementation of the RPIM to two-dimensional plane stress problems. 

 

Table 4.1 Four typical RBFs 

No. Name Expression Shape parameters 

1 MQ 
2 2( ) ( )q

j jR x d C   C, q 

2 Gaussian (EXP) 
2( ) exp( )j jR x cd   c 

3 TPS ( )j jR x d  η 

4 Logarithmic RBF ( ) logj j jR x d d  η 

 

With the intent to reduce the requirement on the order of continuity of field 

interpolation function, the weighted residual statement is often combined with 

integration by part technique.  In respect of weak formulation applied to the cable 
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problem, the global Galerkin weak form is not applicable when integration by part is 

used because of the shape function is locally supported.  Considering the trade-off of 

numerical implementation, convergence, symmetry of global matrix, and accuracy, 

LRPIM is screened out as one qualified candidate meshfree method to further formulate 

to solve the 4
th

 order differential equations presented in Eq. (4.8) and (4.9).  Three 

variables position vector, tangent vector, and the Lagrange multiplier exist at each node 

in the meshfree formulation. 

In addition, meshfree formulation for cable problems, Cable_3D (Chen, 2002), 

and commercial FEM programs for beam structures are briefly summarized regarding 

major numerical implementation issues in Tab. 4.2.  Cable_3D differentiates itself from 

commercial beam FEM programs in respect of the field values interpolated in an element 

due to different primary variables.   

 

Table 4.2 Comparison of Meshfree, Cable_3D and commercial programs 

Item Meshfree 

(Cable) 

FEM  

(Cable3D) 

FEM beam 

(ABAQUS, ANSYS) 

Field  

values 

position, tangent, 

stiffness, distributed 

load and mass 

position, tangent, 

stiffness, distributed 

load and mass 

deflection, rotation 

angle, distributed 

mass, material 

Shape  

function 

local constructed, 

different for all local 

support domains 

local constructed, 

the same for all 

elements 

local constructed, 

may use different 

elements 

weak 

formulation 

global form, 

local form 
local form local form 

Numerical 

integration  

of stiffness 

node based, 

cell based 

element  

based 

element  

based 
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So far no meshfree method has been applied to the slender rod structures such as 

mooring line and subsea cables adopting the slender rod formulation.  Thus, a further 

formulation is needed so as to solve Eq. (4.8)-(4.9) and to be extended to cables. 

 

4.2 Meshfree Formulation of the Subsea Cables 

Since construction of shape functions is the most critical issue and the very first 

step when deploy meshfree methods, the most basic requirements on shape functions are 

summarized in this section (Liu, 2002, Atluri, 2004, and Li and Mulay, 2005). 

First, shape functions are linearly independent for all nodes in a local support 

domain where field values are approximated.  Second, the partition of unity condition 

must be satisfied for all nodes through the problem domain, that is 

 
1

( ) 1
n

j

j

x


   (3.23) 

where, n is the number of shape functions which is equal to the number of nodes used in 

the support domain and ( )i x  is the shape function at the i
th

 node.  Third, the field value 

approximation must be able to reproduce a linear field. 

 
1

( )
n

j j

j

x x x


   (3.24) 

Last, shape functions are preferable to possess the Kronecker delta function 

properties as follows 

  ( ) , 1,2, , ; 1,2, ,j i ijx i n j n      (3.25) 

Additionally, the shape functions of all nodes in the whole problem domain are 



 

89 

 

required to be compatible in the global weak-form approach.  Numerical consistency had 

better to be satisfied for the interpolations of position vector and Lagrange multiplier 

considering the constraint condition demonstrated in Eq. (4.9). 

The governing equation expressed in Eq. (4.8) is based on the undeformed 

configuration, which assumes that a small elongation doesn’t significantly differentiate 

the stretched configuration from unstretched one.  Some assumptions about a cable are 

adopted: uniformly distributed mass, uniform bending stiffness, and constant axial 

stiffness.  The theoretical formulation can be divided into five parts: 

1) Field value interpolation using RPIM with polynomial reproduction 

Field values needed for interpolation include the position of a cable in the global 

Cartesian coordinate, the Lagrange multiplier related to tension, and the distributed load 

including drag force from seafloor and trawling force.  The slope at point of interest on a 

cable is considered an independent variable which is first proposed by Wu (1992) for 

data interpolation using radial basis functions (RBFs).  Polynomial terms are introduced 

to RPIM based upon the following considerations: (1) ensure the some resultant matrices 

are invertible when constructing shape functions; (2) guarantee the shape function can 

reproduce a linear field and retain numerical consistency; and (3) improve numerical 

accuracy.  Hermite-type RPI (HRPI) functions are adopted to ease the implementation of 

natural boundary conditions including position and tangent.  By adopting the enhanced 

HRPI, the three primary field values are approximated in a local support domain.  The 

approximation of   and q  are independent of the position vector using polynomial 

only (summation of dummy index is applied.). 
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( , ) ( , )

( , ) ( )

( , ) ( , )

h

l l

j j

h

l l

r s t u s t e

s t p s

q s t q s t e

 







  (3.26) 

where,  

the superscript h denotes a local support domain; 

l=1-3 is a dummy index corresponding to components in x, y, and z direction; 

j=1-m and m is the number of polynomial terms; 

le  is a unit base vector in the global coordinate; 

jp  is a monomial and 
j  is the corresponding coefficient; 

( , )h

lu s t  and ( , )h

lq s t  are the component terms in the global coordinate, which are 

approximated using RBFs with polynomial reproduction and pure polynomial basis 

respectively as follows 

 ,

1 1 1

( , ) ( ) ( ) ( ) R α R α p β
n n k

h s u T T s T ui
l i li li j lj l s l l

i i j

R
u s t R s s p s

s
  

  


     


    (3.27) 

 
1

( , ) ( ) p β
m

h q T q

l j lj l

j

q s t p s 


   (3.28) 

where,  

 2 2( ) ( ), ( )i i i iR s R d d s s    is a RBF and ( )jp s  is a monomial; 

     1 2, , ,R
T

nR s R s R s     and 
11, , ,p

T ks s      for ( , )h

lu s t ; 

11, , ,p
T ms s      for ( , )h

lq s t ; 

‘,s’ represents the first derivative with respect to arc-length s; 
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n is the number of nodes in the local support domain; 

The RBFs adopting modified multi-quadric (MQ) will be employed in the study.  

The shape parameters are critical to the approximation performance of the Hermite-type 

RBF.  To determine the coefficients   and  in Eq. (4.16), the interpolation functions 

are forced to pass through all nodes and to possess an equal tangent at each node in the 

local support domain.  Different from the deflection interpolation with slope as an 

independent variable, see for example (Atluri et al., 1999, Gu and Liu, 2001 and Liu, 

2006), the small-angle approximation is not applicable in this study since position 

interpolations are adopted.  However, the tangent vector can be described by the first 

derivative of Eq. (4.16) with respect to the arc-length s in the global Cartesian 

coordinate.  Moreover, the three position vector components are approximated 

independently. 

 
α α β X

α α β Θ

s u

l s l l l

s u

s l ss l s l l

A A C

A A C

   


  
  (3.29) 

where, 

 1 2, , ,
T

l l l lnu u uX ,  1 2cos ,cos , ,cos
T

l l l ln  Θ , 1,2,3l  ; 

 1 2 3, ,j j ju u u  and    1 2 3 4 5 6cos ,cos ,cos , ,j j j j j ju u u     is the position and the 

tangent of node in the global Cartesian coordinate corresponding to  ,jr s t ; 

 ij j i jiA R s A  ,  ,sij j s i sijA R s A   ,  ,ssij j ss i ssjiA R s A  , , 1i j n  ; 

 ij j iC p s ,  ,sij j s iC p s , , 1i j n  , 1j k  ; 

subscript ij of A , sA , ssA , C , and sC  represents the (i,j) element; 
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Additionally, constraints conditions on the polynomial terms used in Eq. (4.16) 

are needed to obtain a unique set of coefficients in each local support domain.  

Complementary 3k equations are introduced by the following constraint conditions 

    ,

1 1

0,
n n

s

j i li j s i li

i i

p s p s 
 

     (3.30) 

where, 1,2,3l   and 1j k  .  In the matrix form, they can be written as 

 0α α
T T s

l s lC C    (3.31) 

Considering Eq. (4.18) and Eq. (4.19), the equations in matrix form are 

 
1 1 2 2 3 3

1 1 2 2 3 3

1 2 3

, ,

0 0 0

α X α X α X

α Θ α Θ α Θ

β β β

s s s

u u u

G G G

          
           

             
           

          

  (3.32) 

where, 

0

s

s ss s

T T

s

A A C

G A A C

C C

 
 
 
  

. 

When the coefficients in Eq. (4.15) are resolved, the approximation of position is 

 
1

,( , ) R R p
h T T T

l s l lu s t G U U       (3.33) 

where,  

       1 1 1

,g , ,g 2 ,g

1 1 1

n n k

g i i i s i n j j n

i i j

s R s G R s G p s G   

 

  

     , 1 2g n    

 ,X Θ
T

l l lU  , 1,2,3l  . 

Similarly, the coefficients for tension and distributed load interpolations can be 

obtained by imposing interpolation functions to equal the nodal values at all nodes.   
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   1 ˆ ˆ, p
Ts t P       (3.34) 

 1( , ) p
h T q

l l lq s t P Q Q    (3.35) 

where, 
11, , ,p

T ms s     ,  ij j iP p s ,    1
ˆ , ,

T

mt t      ,  1 2, , ,
T

l l l lnQ q q q . 

The properties of shape functions using MQ based RPI approach is first 

demonstrated by a two-dimensional curve which is represented by four nodes shown in 

Tab. 4.3.  The shape parameters C=0.005 and q=1.5 are used herein.  The curve is 

expressed by a function shown in Eq. (4.25) in the domain 0, / 2 . 

 2

0
, sin , 1 cos

t

x t y t s udu      (3.36) 

 

Table 4.3 Node distribution of the tested curve  

No. s x y θx θy 

1 0 0 0 45˚ 45˚ 

2 0.7241 0.5236 0.5000 40.9˚ 49.1˚ 

3 1.3646 1.0472 0.8660 26.6˚ 63.4˚ 

4 1.9101 1.5708 1.000 0˚ 90˚ 

 

The RPI shape functions with linear polynomials is shown in Fig. 4.6(a), which 

doesn’t use the tangent vector information.  Fig. 4.6(a) shows the Kronecker delta 

property of all four shape functions.  Also the unity partition requirement expressed by 

Eq. (4.12) has been confirmed for these shape functions in this example.  Consequently, 

the reproduction of linear field are also satisfied.  The cubic shape functions independent 

of nodal distribution are presented in Fig. 4.6(b).  Shape functions N1 and N3 associated 

with nodal value also possess the Kronecker delta property. 
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                   (a) RPI shape functions            (b) FEM cubic shape functions (Garret, 1982) 

Fig. 4.6 Shape functions for RPIM and FEM formulation 

 

Curve fitting performance of this MQ-RBF is evaluated using shape parameters 

suggested by Wang and Liu (2002).  The fitted positions at points of interest on the 

curve are plotted against exact value and nodal values in Fig. 4.7.  The fitted values pass 

all four nodes attributed to the Kronecker delta property of shape functions.  

Interpolations utilizing the MQ-RBF in the RPIM formulation are compared to that 

using cubic shape functions in Garret’s FEM formulation in Fig. 4.8.  Both of these two 

interpolations used four nodal values: (1) RPI used four nodes where each node has one 

nodal value, and (2) FEM two end nodes for which each node has one position and one 

slope term.  It can be seen that the RPI provides more accurate interpolation than cubic 

shape functions.  However, MQ-RBF interpolation predicts worse results at the ends of 

curves.  This edge property is to be demonstrated by  3 /100 siny x x x    in the 

domain of [0, 7].  This curve fitting uses 10 nodes and the same shape parameter as the 

first curve fitting example.  The nodal distribution, interpolated value and exact value are 
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plotted in Fig. 4.9(a).  The error of interpolated values are presented in Fig. 4.9(b) where 

the edge feature is revealed and the error decays when points are close to center of the 

interpolated domain.   

 

 

       (a) Fitted x with respect to arc length          (b) Fitted y with respect to arc length 

Fig. 4.7 Interpolated Cartesion coordinates with respect to arc length s 

 

 

        (a) Fitted error of x with respect to s             (b) Fitted error of y with respect to s 

Fig. 4.8 Interpolated errors using MQ-RBF and cubic shape functions 
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               (a) Fitted y with respect to x                (b) Fitted error of y with respect to x 

Fig. 4.9 Edge property of interpolated function using MQ-RBF 

 

2) Local weak formulation of governing equations 

Considering Eq. (4.8), the weak formulation is performed by making the residual 

of governing equation to zero in an integral form over a local support domain.  Since the 

weight function plays a critical role on the numerical performance of a meshfree method, 

it should at least satisfies the condition of continuity (Alturi, 1999 and Liu and Gu, 

2001).  Although the spline weight function may simplify the numerical integration 

procedure, it is not sufficient to apply in the HRPIM as derivative is included in the field 

value approximation.  Due to the same reason, Gu and Liu (2001) adopted the weight 

functions using the same basis as the field interpolations.  To be specific, this weighted 

residual technique is called Galerkin formulation. 

   
'

(4) ' 0
s

lr EIr r q r  


      (3.37) 

where, s  is the local domain for weight functions, and lr  (l=1,2,3) is a weight 
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function in the domain.  Regarding arbitrary independent virtual nodal displacement and 

integrating by part of Eq. (4.26), yield in 

     '' '' ' ' '' ' ' '''

0s

L

j j j j j jr EIr r q ds EIr r EIr        


        (3.38)  

where, '

,j j s  , ''

,j j ss  , 1 2j n  , and L is the length of local domain.  The right 

hand side of represents natural boundary conditions associated with internal moments 

and forces at the ends of the support domain. 

3) Discretization of the weak formulation 

Substituting Eq. (4.22) thru. (4.24) into the weak form Eq. (4.27) leads to a set of 

discrete equations for a cable allowing a small elongation (summation is employed) 

 
     
 

'' '' ' '

s s s

s

k j lk k j lk i k j i lk

q

i j li lj

ds U EI ds U ds U

ds Q f

        

 

  



 

 

  


 (3.39) 

where, 1 3l   , 1 2k n  , 1 2j n  , 1i m  , and   '' ' ' '''

0

L

lj l j l l jf EIr r EIr      

which has only contribution on free ends of the cable in the global algebraic equation. 

4) Compute the inertia and point stiffness term 

To simplify the numerical implementation of the HRPIM, the number of 

polynomial terms m is selected to equal to the number of nodes n in the local domain.  In 

respect of numerical integration in Eq. (4.28), either the nodal integration (Liu et al., 

2007) or the standard Gauss quadrature may be employed to compute the inertia and 

stiffness coefficients.  On one hand, the general force terms will be vanish when the 

natural boundary condition is applied.  On the other hand, these force terms is not 
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required to be explicitly computed when the essential boundary conditions are imposed 

at the free ends of the cable.  Then, the discretized form of equation of motion of the 

local domain on the cable can be obtained with l and j as the free index 

 
kj lk kj lk ikj i lk ij li ljU EI U U Q f          (3.40) 

where,  

 1 11 12 1 41 42 4, , , , , , ,
T

n nU u u u u u u ; 

 2 21 22 2 51 52 5, , , , , , ,
T

n nU u u u u u u ; 

 3 31 32 3 61 62 6, , , , , , ,
T

n nU u u u u u u ; 

s
kj k jds  


  ; '' ''

s
kj k jds  


  ; ' '

s
ikj i k jds   


  ; 

s

q

ij i jds  


  . 

Similarly, the constraint condition expressed in Eq. (4.9) can be also discretized 

in the same local domain assuming the curvature is small. 

 2ikj lk lj i ig g igp g p igg g gU U              (3.41) 

where, 

s
i i ds 


  , 

s
ig i g ds   


  , 

s
igp i g p ds     


  , , , 1i g p n  . 

It should be noted that all the nodal terms use local numbering systems and all 

coefficients will be assembled into the global algebraic equation using a global 

numbering system with the numbering of node from 1 to N (N is the number of nodes 

used in the entire domain).  Therefore, considering Eq. (4.29) and Eq. (4.30), 7N nodal 

terms can be formulated in 7N algebraic equations.  Moreover, the discretized motion of 

equation are nonlinear equations shown in Eq. (4.29) due to the coupling of tension and 
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position vector of one stiffness coefficient term. 

In summary, as long as the union of the local domains can cover the entire 

problem domain and the boundary condition of each local domain is applied in the 

global system equation, the equilibrium of the entire problem domain and boundary 

conditions on the free ends will be satisfied using this local HRPIM meshfree method. 

5) Static analysis procedure 

Since the towing speed of trawl gears is low, the vibration of cable during the 

interaction of gears and cables may not be significant under the scenarios considered in 

the current work and may be investigated when necessary.  Static problem is first solved 

to study the response behavior of cables under movable boundary conditions.  For easy 

implementation, Newton’s method is adopted here as earlier studies Garret (1982), Ma et 

al., and Chen (2002).  Assuming an initial guess and introducing a disturbance of 

position vector and   lead to 

 
0

0

lk lk lk

i i i

U U U

  

  


 

  (3.42) 

Substituting new values into Eq. (4.29) and Eq. (4.30), neglecting time associated 

term, getting rid of high order terms in respect of the disturbances and neglecting the 

deviation of the stretch in the vertical direction resulted from gravity, yield in 

  0 0 0 0 0

kj ikj i lk ikj lk i ij li kj lk ikj i lk ljEI U U Q EI U U f                 (3.43) 

  0 0 0 01
2

2

g

ikj lj lk ig i ig g ikj lj lkU U U U
EA


             (3.44) 

To facilitate the assembly of the global equation, the nodal terms in the local 
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domain is rearranged as  11 61 1 1 6, , , , , , , ,u
T

n n nu u u u  .  Then, the incremental 

form of the equation of motion and constraint condition may be written 

 u=A B   (3.45) 

where, A is a coefficient matrix evaluated by the left hand side of in Eq. (4.32) and Eq. 

(4.33) and B is computed by the right hand side of Eq. (4.32) and Eq. (4.33). 

According to the aforementioned algorithm, the static problem is iteratively 

solved until boundary conditions at free ends of the cable are satisfied including position 

and tangent.  As the shape functions constructed by HRPI possess the Kronecker delta 

property, the essential boundary conditions can be imposed directly without any 

additional efforts such as penalty method in other point interpolation methods PIM and 

RPIM.  At the converged step, the internal resultant forces such as axial tension and 

moment can be achieved for the structural evaluation of the cable. 

 

4.3 Numerical Implementation of the Meshfree Method 

The formulated Meshfree method is to be implemented in Matlab using the 

working flow chart presented in Fig. 4.10.  The steps circled by the dash frame is the 

iteration scheme for one incremental force step, where the trawling force may be 

distributed at the contact region of a gear and a cable.  The initial layout of a cable is 

given and the response behavior of the cable under trawling is the purpose of study. 
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Fig. 4.10 Flow chart of the static analysis program 

 

One critical step of the static analysis is to form the stiffness coefficient matrix A 

and the vector B using the further developed HRPIM based upon local weak 

formulation.  The most general procedure to evaluate point stiffness matrix by the local 

weak form meshfree method is incorporated with the current configuration as shown in 

Fig. 4.11 to evaluate matrix A and vector B by Eq. (4.34).  The standard Gauss 

quadrature is adopted for the numerical integration in Eq. (4.29) and Eq. (4.30). 
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Fig. 4.11 Flow chart of computing coefficient matrix A and vector B 

 

Different from the FEM approach, quadrature points in the same quadrature 

domain of a node may use different local support domains for the construction of shape 

functions in this meshfree method.  This special treatment may improve the interpolation 

accuracy by overcoming the edge property as illustrated in Fig. 4.9(b).  However, the 

trade-off is paid by much more complicated integrand for the evaluation of point 

stiffness coefficient due to overlap of the local interpolation domains of different 

quadrature points. 

There are three different local domains involved in the local HRPIM method: (1) 



 

103 

 

the weight function domain 
s  at which the weight functions is constructed, (2) the 

integration domain 
q  for Gauss quadrature, and (3) the interpolation domain i  for a 

quadrature point to compute shape functions for this point.  The requirement 
q s   

must be satisfied as the weighted residual technique is applied to the weight function 

domain and integration is performed inside the weight function domain.  When all 

quadrature points in one quadrature domain use the weight function domain, the 

numerical integration procedure is the same as FEM.  The meshfree method is still 

different from FEM as different integration domains adopt different local support shape 

functions in meshfree methods.  In contrast, FEM uses the same shape functions for the 

same type element all through the problem domain. 

A few numerical issues are needed for further investigations by the two 

benchmark examples.  In respect of the order of consistency for position vector and   in 

Eq. (4.8) and Eq. (4.9), number of node, highest order of the polynomial term for   , 

and shape parameter should be selected properly to meet the consistency requirement.  

Regarding numerical integration for coefficient matrix, number of quadrature points in 

the Gauss quadrature is to be determined.  Numerical convergence and adaptive analysis 

are to be investigated in terms of density and distribution of field nodes.  In addition, the 

parameter sensitivity of shape parameters for shape function construction using the MQ-

RBF need more study in these benchmark cases. 
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4.4 Program Validation 

A computer program is developed in Matlab based upon the further developed 

meshfree method formulated in detail in the precious section.  It is to be validated by two 

benchmark examples, which are also compared with FEM results using the same slender 

rod theory (Garret, 1982, Ma and Webster, 1994) to reveal the effectiveness and 

demonstrate the accuracy of the meshfree method LHRPIM.  These two cases are also 

adopted to perform numerical convergence and parametric study. 

Intended to validate the developed meshfree formulation for a slender cable, the 

post buckling behavior of a column is adopted, which was first theoretically studied by 

Love (1944).  The column steps into large deflection stage rather than immediate 

collapse after the initial buckling.  Fig. 4.12 depicts the elastic behaviors of a column 

when the compressive load P exceeds the critical load.    is the angle between the 

tangent direction at the top end of the column and the vertical direction.  The original 

length of the column is L.  The bottom end is clamped and the top end is free.  A few 

numerical cases using regularly distributed nodes are compared with Timoshenko’s 

analytical results (1936) listed in Tab. 4.4 for convergence study and parametric 

investigation.  When L=3 m, the maximum vertical difference is less than 5% when only 

three nodes are used.  As can be concluded, the numerical results converge to analytical 

solution when more nodes are used.  Regarding numerical accuracy, the developed local 

Hermite-RPIM is excellent even if the three meters long column is only represented by 7 

nodes. 
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Fig. 4.12 Post buckling of a column 

 

Table 4.4 Numerical results of the deflection data for the column 

Analytical Meshfree P/Pc 

  3 7 11 15 25  

θ (˚) 

60 58.485 59.938 59.984 59.995 60.000 1.1521 

100 98.412 99.883 99.951 99.965 99.985 1.5184 

120 118.857 119.862 119.941 119.958 119.970 1.8844 

140 140.666 139.874 139.958 139.976 139.987 2.5423 

xa/L 

0.5932 0.5803 0.5927 0.5931 0.5931 0.5932 1.1521 

0.7915 0.7845 0.7912 0.7914 0.7915 0.7915 1.5184 

0.8032 0.8012 0.8032 0.8032 0.8032 0.8032 1.8844 

0.7504 0.7564 0.7508 0.7506 0.7505 0.7504 2.5414 

za/L 

0.7410 0.7549 0.7416 0.7412 0.7411 0.7410 1.1521 

0.3491 0.3751 0.3505 0.3496 0.3494 0.3492 1.5184 

0.1234 0.1563 0.1252 0.1240 0.1237 0.1235 1.8844 

-0.1069 -0.0640 -0.1045 -0.1062 -0.1066 -0.1068 2.5410 

Note: Pc is the critical load for initial buckling and (xa, za) is the position of the free end. 

 

The fast convergence rate in part is attributed to the accuracy of the HRPI 
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scheme adopted for field value interpolation.  The performance of HRPI are illustrated 

with intend to provide a visual perspective of its capability using three nodes.  The 

follow curve is used for demonstration in the domain [0, / 2] : sin , cos ,s tx t y t   .  

Considering field value interpolation accuracy, the optimal shape parameters C=0.05 

and q=2.1 are used.  The interpolation of field value, first and second derivatives are 

presented in Fig. 4.13.  As can be seen even the second derivatives can get good 

approximations. 

 

 

                      (a) Interpolated curve                                   (b) Interpolation error       

 

              (c) Interpolated first derivatives            (d) Interpolated error of first derivatives  
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            (e) Interpolated second derivatives       (f) Interpolated error of second derivatives  

Fig. 4.13 Illustration of interpolation performance of HRPI 

 

The influence of the number of Gauss points for numerical integration of point 

stiffness on the accuracy is investigated under the case P/Pc=1.1521.  The corresponding 

positions of the free end of the column are presented in Fig. 4.14.  The results reveal that 

4 quadrature points can reach the same accuracy as the case using 12 points.  Thus, less 

points can be used for considerate long slender cables without trade-off of accuracy. 

 

 

Fig. 4.14 Position of the free end of the column 
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According to a parametric study on the shape parameter C, it must be a small 

number in the range of 0.001~0.18 in order to get rid of singularity issues for this 

problem.  0.001~0.05 is suggested to be used considering accuracy and numerical 

stability.  Moreover, q is a more critical shape parameter in respect of accuracy.  Fig. 

4.15 shows the errors of the free end using C=0.05 and 11 nodes.  According to Wang 

and Liu (2002), the shape parameter q is investigated in the range [1.01, 3.0].  However, 

stable and accurate results are obtained in the range of [1.85, 2.15], which is consistent 

with the optimal parameter range in respect of the interpolation accuracy of field values 

when construct shape functions.  Note that q cannot be integer otherwise singularity 

issue rises. 

 

 

Fig. 4.15 Logarithm error of the normalized end point 
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weight and no bending stiffness, which is dragged by a horizontal force P at the free end. 

 

 

Fig. 4.16 Top pinned catenary with prescribed force at the free end 

 

Both meshfree and FEM results are provided in Tab. 4.5, the position converges 

faster than the top angle.  When 11 nodes are used in the further developed LRPIM, it 

gives excellent agreement with FEM beside the heeled angle.  However, more equations 

are involved in the FEM simulation due to the middle dummy nodes at each element for 

the interpolation of the Lagragian multiplier .  It increases the computation cost for 

FEM from this point.  However, the interpolation is much more complicated and should 

be performed for each subdomain which increases the computation cost of the LRPIM.  

Both numerical methods are able to make accurate prediction with a few nodes for these 

two benchmark examples, which validates their accuracy and efficiency. 
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Table 4.5 Comparison of meshfree and FEM results 

 

Meshfree (node) FEM (element) WL/P 

 
3 5 11 1 10 

 

θ (˚) 

44.545 44.906 44.983 44.626 45.000 1 

25.874 26.477 26.551 26.723 26.566 2 

11.658 11.273 11.304 14.295 11.311 5 

7.336 5.759 5.708 9.280 5.711 10 

xa/L 

0.8814 0.8814 0.8814 0.8814 0.8814 1 

0.7216 0.7218 0.7218 0.7219 0.7218 2 

0.4629 0.4623 0.4625 0.4676 0.4625 5 

0.3033 0.3001 0.2998 0.3017 0.2998 10 

za/L 

-0.4142 -0.4142 -0.4142 -0.4143 -0.4142 1 

-0.6179 -0.6180 -0.6180 -0.6179 -0.6189 2 

-0.8179 -0.8196 -0.8198 -0.8222 -0.8189 5 

-0.9046 -0.9039 -0.9050 -0.9206 -0.9050 10 

Note: 10 elements in the FEM scheme contains 11 nodes and 10 dummy points. 
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5. APPLICATION TO THE INTERACTION OF TRAWLING AND CABLES 

 

Since the fishing activities mainly the modern bottom trawling fishing induce 

damage to subsea cables, a specification overview of cables benefits the understanding 

of damage and possible failure modes.  Light cable shown in Fig. 5.1(a) is introduced to 

supply power for oil and gas production units and connect wind turbine terminates to 

land grids.  The outer diameter of light cables is typically in the range of 40~100 mm and 

the unit weight runs from 4.7 to 29 kg/m.  The outer diameter of an optic fiber cable is 

typically around 70 mm.  Single core power cable mainly comprises of conductor, 

polyethylene insulation, screen layer, steel armor and outer protection.  Optic fiber 

presented in Fig. 5.1(b) which is more vulnerable to damage usually incorporates 

stronger armor layers. 

 

               

   (a) HVDC light cable (Courtesy of ABB)   (b) Optic fiber cable (Courtesy of Ericsson) 

Fig. 5.1 Power cable and telecom cable for offshore applications 

 

In the energetic zone typically coastal seas where bottom trawling fishing are 
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active, trawl gears may frequently sweep on the seafloor and may be occasionally 

tangled with these submarine cables.  Trawl scars were recorded as shown in Fig. 5.2(a) 

and (b) and some cable damages were reported see for example in Fig. 5.2(c) and (d). 

 

         

               (a) Sonar image of trawl scars                (b) Trawl scars on the seafloor 

         

            (c) Cable damage by trawl gears            (d) Cable snagged by a fishing gear 

(International Cable Protection Committee, 2010) 

Fig. 5.2 Impact of trawl fishing activities on sea floor and submarine cables 

 

Due to the mechanical performance discrepancy of the core of power cable and 
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optic fiber cable, the possible failure mode varies from power cables to optic fiber cable, 

which may also depend on design specification for the same type of cable.  The bend 

radius of fiber cable is restricted to 20 cable diameters.  Possible structural damages to 

the cores may include the following patterns: (1) bending is in excess of the allowable 

bend radius; (2) tension exceeds the axial breakage load of the armor layer. 

This chapter focuses on the application of the LHRPIM developed in Chapter 4 

to a two dimensional cable-gear interaction model.  The remaining issues include drag 

and friction due to the contact of cables with the seafloor and moving boundary 

conditions.  Regarding the distributed load from the seafloor, it depends on burial 

condition, soil, the topology of a seafloor and marine growth on exposed cable section.  

So far, a simplified friction model, which relies on submerged cable weight and friction 

coefficient, is adopted in the present study.  One representative moving boundary 

scenario is to be investigated. 

 

5.1 Submarine Cables with Moving Boundary Conditions 

Considering a partially buried cable with spans exposed to sea water in the rocky 

or the active moving sand wave area, the exposed part may get seized and then be towed 

by a trawl gear.  It is assumed that the cable is not tensioned before being captured by a 

gear.  The two ends of a cable segment entangled with a gear are buried in sand waves or 

hooked by either rocks or other subsea facilities.  A simplified seafloor friction model is 

used for the numerical investigation for the purpose of illustrating the proposed model 

and algorithm.  The cable experiencing friction force resulted from contact with the 



 

114 

 

seabed is expressed as 

 
f s fq W     (4.1) 

where, 
fW  (N/m) is submerged weight and 

f  is an equivalent friction coefficient. 

A two dimensional model shown in Fig. 5.3 is established to simulate the 

behavior of a towed cable under sliding boundary conditions.  Since two ends of a cable 

span are hooked by obstacles, the target cable segment may slide at the hooked points as 

shown by the green line in Fig. 5.3 when tension exceeds the resistance force at the ends.  

Before the cable slides around the hooking points, the two ends are simply supported.  

The trawl load is distributed over the contact area between a trawl board and the cable.  

In the vicinity of the contact area, bending may control the failure of cable in a small 

region and the bending moment should be monitored and checked at this bending 

dominating zone as well as tension.  Outside the bending zone, tension determines the 

possible breakage of the cable.  The target cable segment length changes due to the 

sliding boundaries. 

 

 

Fig. 5.3 A two dimensional trawl-cable model with moving boundaries 
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5.2 Analysis Scheme of a Cable with Moving Boundaries 

The work flow aims to conduct static analysis of slender rods with the inclusion 

of incremental load has been elaborated and verified in Section 4.3.  To investigate the 

impact of this length variation, an iterative scheme is proposed to simulate the sliding 

boundary condition for a preliminary study.  A working flow presented in Fig. 5.4 is 

proposed to be integrated with flowchart shown on page 102 specially addressing 

moving boundary conditions. 

 

 

Fig. 5.4 Flow chart of solving this moving boundary condition problem 

 

First, it is necessary to obtain the equilibrium state under which the trawl load 

overcomes the friction force from the seafloor.  Second, the trawl load may keep 

increasing until the tension at the two ends of this cable segment reaches the maximum 

resistance force (TR) at these two hooked points.  The maximum resistance forces and 
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the subsequent allowable sliding lengths may be different at these two ends.  When both 

ends release the maximum sliding lengths (Ls), the trawl load can be gradually applied 

till the maximum trawl load.  Maximum tension and bending moment in the bending 

dominating zone can be monitored at every analysis step for structural integrity 

evaluation. 

 

5.3 Response of a Cable Span Sliding at One End 

Up to this point, the arbitrary initial layout, large deflection, deflection-dependent 

trawl load, and moving boundary have been handled in the developed scheme and 

meshfree method.  A cable span with the inclusion of one sliding boundary is adopted to 

demonstrate the potential of the developed scheme and to simulate the interaction 

between a trawl board and a submarine cable.  The specifications of a cable and 

dimensions of a cable span are listed in Tab. 5.1.  Initial layout of this cable span is 

illustrated in Fig. 5.5 in which the span is pin-pin supported and subjected to incremental 

trawl load before span reaches the initial equilibrium state.  Some analysis parameters 

are presented in Tab. 5.2. 

 

Table 5.1 Specification of a cable and data for the cable segment 

Axial stiffness 

(EA, N·m
2
) 

Bending stiffness 

(EI, N) 

Span length 

(L, m) 

Gear location 

(LT ,m) 

Cable length 

(Lc, m) 

1.4560E8 1.8625E4 100 50 101.56 

Note: the armor layer bears all the external loads. 

 



 

117 

 

 

Fig. 5.5 Initial layout of a cable segment and node representation 

 

Table 5.2 Load and parameters for simulation 

Unit weight 

(N/m) 

Friction  

coefficient (
f ) 

Max. resistance  

 (TR, kN) 

Max. sliding  

length (Ls, m) 

Max. trawl  

load (Ft, kN) 

235 0.5 35 5 200 

 

Since the static analysis solves a nonlinear equation and fulfilled by an iterative 

scheme, the trawl load may be increased step by step so as to achieve the initial 

equilibrium state in case of numerical divergence due to large deflection.  The initial 

equilibrium configuration presented in Fig. 5.6 is reached under the trawl load of 11.75 

kN.  At the meantime, tension is plotted in Fig. 5.7 in which tension drops at the contact 

area due to the presence of trawl board.  Also Fig. 5.6 reveals bending near the trawling 

point may be significant than the tension dominant zone as bending depends on 

curvature. 
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Fig. 5.6 Equilibrium configuration with maximum friction from seafloor 

 

 

Fig. 5.7 Tension along the cable span at the initial equilibrium state 

 

Then the trawl load is keep increasing to pull the cable until tension at the right 

end of the span reaches the maximum resistance.  The trawl load of 13.55 kN is figured 

out corresponding to the resistance force 35 kN.  The tension at the end increases 

linearly with the trawl load since the configuration changes slightly as demonstrated in 

Fig. 5.8.  The trawl point moves forward only 0.16 m. 
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Fig. 5.8 Configuration when tension at right end reaches maximum resistance 

 

The cable is gradually pulled out at the right hooked point as the trawl load 

increases.  Consequently the cable length between the hooked points are increased 

during this pull-out process.  Additional nodes are keeping appended to capture the 

length change in the static analysis.  The resulted configuration of the cable spans are 

depicted in Fig. 5.9.  The trace of the trawling point can be recorded assuming the 

direction doesn’t change in the pull-out process.  Then, the trawl load also increases with 

the sliding length as shown in Fig. 5.10, which shows nonlinear correlation with the 

sliding length.  Fig. 5.11 presents maximum tension, which occurs at different point 

along the cable span. 
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Fig. 5.9 Equilibrium configurations under different sliding lengths 

 

 

Fig. 5.10 Trawl load versus sliding length 

 

 

Fig. 5.11 Maximum tension versus sliding length 
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Eventually, the sliding end releases the maximum allowable sliding cable length, 

the ultimate strength analysis can be performed using the scheme demonstrated in Fig. 

4.10, which can handle incremental external loads.  Fig. 5.12 shows the maximum 

tension along the cable span with respect to trawl load and linear correlation is obtained 

because the configuration slightly changes during the ultimate loading process.  The 

maximum tension and bending moment are also able to be reported in the ultimate 

strength loading stage, which can be adopted to predict possible breakage or failure of 

the cable span. 

Different failure modes may be considered for both telecom cable and power 

cable and for different loading scenarios.  In reality a few more moving boundary cases 

may exist and need scrutiny in respect of a thorough structure evaluation of submarine 

cables.  Taking advantage of the proposed meshfree method and analysis procedures, 

cable responses may be explored under more scenarios. 

 

 

Fig. 5.12 Maximum tension along the cable span 
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6. SUMMARY 

 

This first part of this research document presents and discusses a computationally 

efficient 2-D boundary element model that can be used for the initial investigation of the 

steady state thermal field surrounding a subsea pipeline conveying high temperature 

wellhead fluids.  The model address pipelines buried in layered soils with low hydraulic 

permeability and is used to facilitate parametric studies of key design parameters.  The 

second part of this research investigation as reported, focused on the formulation and 

application of a meshfree method.  After careful scrutiny of available mathematical 

modeling approaches, a formulation utilizing slender rod theory and the Local Hermite-

type Radial Point Interpolation Method (LRPIM) was developed.  Use of the slender rod 

formulation provided the means to handle the large deflection of slender rods where the 

flexibility to address regions where bending stiffness, tension and elongation may result 

when subsea cables are ensnared by commercial fishing gears. 

 

6.1 Summary on the Thermal Field Problem 

The steady state heat transfer in a deepwater layered media was further 

formulated and a generalized numerical procedure was proposed in Section 2, which is 

able to accommodate complex geometries and plausible boundary conditions.  Two 

comparative examples with finite element solutions were presented to demonstrate the 

computational efficiency of BEM and the accuracy of the resulting numerical 

predictions.  Next a finite element simulation was performed in order to access the 
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significance of natural convection on the thermal field in a typical deepwater marine 

clay.  This was performed using Code_Bright for cases assuming impermeable or 

permeable soil conditions.  This comparison provided the rational for neglecting 

convective fluid flow in clay with extremely low hydraulic permeability, as was assumed 

for the BEM simulations.  Complicated multi-domain configurations, typical of robotic 

trenching were used to illustrate the utility of the BEM for parametric studies involving 

curved boundary conditions.  The parametric studies presented quantitatively assessed 

the factors that impact thermal fields surrounding a pipeline buried in a multi-layered 

environment. 

The importance of soil stratification, geometric profiles of trenching and backfill 

included in the boundary element model were investigated.  The evidence suggests that 

these aspects are important for design and the evaluation of the thermal field and should 

be included in numerical simulations providing information for the structural and 

thermal design of buried pipelines.  Linear correlation between the uniform heat flux and 

the mean internal wall temperature using a specific case offers guidance on the 

preliminary thermal design of buried pipelines such as the insulation material, the 

coating thickness, and the optimized burial depth.  The significance of backfill thermal 

conductivity on temperature distributions along the external pipe wall was quantitatively 

evaluated.  Additionally, regarding the same external pipe wall temperature, larger 

diameter pipes require greater output thermal power in order to maintain the pipe wall 

temperature as smaller pipes and the output thermal power can be quantitatively 

evaluated based on the proposed model. 
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6.2 Summary on the Subsea Cable Problem 

The formulation using HRPIM presented in this study is the first time it has been 

used to approximate the position of a curve in the three dimensional space specifically 

with respect to the arc-length s.  This is different from the conventional interpolation of 

deflection of beam or shell structures, where the small deflection assumption is used to 

correlate slope and partial derivative of displacement.  The positions of some smooth 

curves including both first and second derivative were shown to be accurately recovered 

when only a limited number of nodes were involved, for example three nodes for 

HRPIM and four nodes for RPIM.  However, the accuracy of the second derivative 

deteriorates even if an optimal shape parameter q=2.1 was used in the MQ-RBF.  It was 

found the interpolation accuracy is not sensitive to the other parameter C in the range of 

[0.001, 1].  Subsequently, the HRPIM was applied to construct the shape function for 

position vector and the PIM was used to interpolate the distributed load and Larangian 

multiplier    using three nodes in a local support domain.  The local Galerkin weak 

form was then adopted to discretize the governing equations, as it does not rely on 

background cells for numerical integration needed in the global weak form.  The static 

problem was numerically implemented in Matlab for further application in a manner 

consistent with program flow charts presented in the text.  Finally, the effectiveness and 

accuracy of the methodology and computer program were confirmed via two benchmark 

examples that have analytical solutions.  The first involves the simulation of the post 

buckling analysis of a column and it demonstrates that the slender rod with bending 

stiffness and incremental point loading can be accurately use the new formulation.   The 
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second example involves the solution of a chain without bending stiffness under self-

weight and a point load and demonstrates the accuracy of the LRPIM formulation for 

slender structures subjected to distributed loads.   

One simplified but representative submarine cable span with the inclusion of 

deflection-dependent load, moving boundary and nonlinearity due to large deflection is 

scrutinized using the developed HRPIM meshfree method and proposed procedures 

addressing sliding boundary condition.  In fact, this is a problem involving with variable 

structure since the cable length keeps changing when one end slides, effectively 

changing the length of the cable.  The simulation analysis for this cable span is logically 

divided into four steps.  The structural evaluation of the cable can be performed at each 

stage and the consequent possible failure may be identified.  First, the initial equilibrium 

configuration is achieved through an iterative loading scheme considering the maximum 

friction force from the seafloor.  Second, the trawl load proceeds to the value under 

which the tension at the end allowing sliding condition reaches the maximum resistance 

force.  Then the node representation is updated according to the instantaneous 

configuration of the cable span with the inclusion of length variation due to sliding 

boundary.  The status of the cable span is reported for the moving boundary stage 

including configuration, tension and trawl load.  Finally, load exerted by the entangled 

fishing trawler equipment is incrementally increased to reach the maximum trawl load 

depending on the capability of the fishing vessel.  This example demonstrates the 

capability and potential of the methodology developed in the current study to explore a 

wide range of cable entanglement problems in the future. 
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APPENDIX 

 

A1. Validation of LBEM for Three Different Boundary Condition Cases 

LBEM is first validated in a homogeneous medium in a single domain with the 

three basic boundary conditions: Neumann, Dirichlet, and mixed boundary condition.  

The unit of length is meter and the unit of temperature is Kelvin for all three cases.  The 

boundary conditions and temperature distributions are shown in Fig. A1.1 to Fig. A1.3. 

 

       

Fig. A1.1 Neumann boundary condition case 
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Fig. A1.2 Dirichlet boundary condition case 

 

 

Fig. A1.3 Mixed boundary condition case 

 

A2. Format Input File of LBEM 

A format *.txt file is designed to prepare the input information for LBEM, which 

defines node, element, boundary condition, sub-regions, interface, and material property.  

An input file example is listed below. 
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*Number of node, element, sub-regions, and interfaces (NES) 

330 166 2 1 

**Coordinates of boundary nodes (NODE) 

*Node     X         Y 

1 -4 0 

2 -3.9 0 

... 

329 4 -0.2 

330 4 -0.1 

**Numbering of element and node of each element (ELEM) 

*Element    node1   node2   node3 

1 1 2 3 

2 3 4 5 

... 

165 327 328 329 

166 329 330 85 

*Boundary condition (KODE) 

10 0 10 0 10 0 

... 

1 0 1 0 1 0 

**Number of element for each sub-region (NEMS) 

*Group 

1 102 

2 102 

**Element of each sub-region (ELMS) 

*Region01 

1 1 

... 

1 102 

*Region02 

1 108 

... 

0 1 

1 107 

**Number of interfaces (NI) 

*Nint 

1 38 

**Interface of regions, element of the interface (ELIN) 

*Interface01 

1 

2 

... 

41 

42 

**Material for each region (Thermal conductivity) (MAT) 

*Material property 

1 1 

2 10 




