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ABSTRACT

The research objective of this dissertation is to develop new facet-defining valid in-

equalities for several new multi-parameter multi-constraint mixed integer sets. These

valid inequalities result in cutting planes that significantly improve the efficiency of

algorithms for solving mixed integer programming (MIP) problems involving multi-

module capacity constraints. These MIPs arise in many classical and modern ap-

plications ranging from production planning to cloud computing. The research in

this dissertation generalizes cut-generating methods such as mixed integer rounding

(MIR), mixed MIR, continuous mixing, n-step MIR, mixed n-step MIR, migling, and

n-step mingling, along with various well-known families of cuts for problems such as

multi-module capacitated lot-sizing (MMLS), multi-module capacitated facility lo-

cation (MMFL), and multi-module capacitated network design (MMND) problems.

More specifically, in the first step, we introduce a new generalization of the contin-

uous mixing set, referred to as the continuous multi-mixing set, where the coefficients

satisfy certain conditions. For each n′ ∈ {1, . . . , n}, we develop a class of valid in-

equalities for this set, referred to as the n′-step cycle inequalities, and present their

facet-defining properties. We also present a compact extended formulation for this

set and an exact separation algorithm to separate over the set of all n′-step cycle

inequalities for a given n′ ∈ {1, . . . , n}.

In the next step, we extend the results of the first step to the case where conditions

on the coefficients of the continuous multi-mixing set are relaxed. This leads to an

extended formulation and a generalization of the n-step cycle inequalities, n ∈ N, for

the continuous multi-mixing set with general coefficients. We also show that these

inequalities are facet-defining in many cases.
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In the third step, we further generalize the continuous multi-mixing set (where

no conditions are imposed on the coefficients) by incorporating upper bounds on the

integer variables. We introduce a compact extended formulation and new families

of multi-row cuts for this set, referred to as the mingled n-step cycle inequalities

(n ∈ N), through a generalization of the n-step mingling. We also provide an exact

separation algorithm to separate over a set of all these inequalities. Furthermore, we

present the conditions under which a subset of the mingled n-step cycle inequalities

are facet-defining for this set.

Finally, in the fourth step, we utilize the results of first step to introduce new

families of valid inequalities for MMLS, MMFL, and MMND problems. Our com-

putational results show that the developed cuts are very effective in solving the

MMLS instances with two capacity modules, resulting in considerable reduction in

the integrality gap, the number of nodes, and total solution time.
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CHAPTER I

INTRODUCTION

Mixed integer programming (MIP) is a major optimization technique to solve a

wide variety of real-world problems involving decisions of discrete nature [81, 111]. In

general, MIPs are NP-hard to solve [43]. The branch-and-cut algorithm [83] is among

the most successful algorithms used to solve MIPs. Branch-and-cut is a branch-and-

bound algorithm [67, 81] in which cutting planes are used to tighten the formulations

of node problems and hence achieve better bounds (refer to Section II.1.2 for details).

As a result, developing strong valid inequalities as cutting planes is crucial for ef-

fectiveness of the branch-and-cut algorithm. To this end, studying the polyhedral

structure of mixed integer “base” sets which constitute well-structured relaxations

of important MIP problems is a promising approach. This is because oftentimes one

can develop procedures in which the valid inequalities (or facets) developed for the

base set are used to generate valid inequalities (or facets) for the original MIPs (see

[6, 16, 15, 14, 36, 51, 62, 96, 111] for a few examples among many others). Mixed

integer rounding (MIR) [82, 111] is one of the most basic procedures for deriving

cuts for MIPs which utilizes the facet of a single-constraint two-variable mixed inte-

ger base set. Several important generalizations of MIR (shown in Fig. 1), including

mixed MIR [51], continuous mixing [105], n-step MIR [62], mingling [6], mixed n-step

MIR [96], and n-step mingling [7], are derived by studying the polyhedral structure

of more complex mixed integer base sets (see Sections I.1, I.2, and I.3 for details).

*Some parts of this chapter are reprinted with permission from “n-step cycle inequalities: facets
for continuous n-mixing set and strong cuts for multi-module capacitated lot-sizing problem” by
Manish Bansal and Kiavash Kianfar, 2014. Integer Programming and Combinatorial Optimization
Conference, Lecture Notes in Computer Science, 8494, 102-113, Copyright 2014 by Springer.
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Figure 1: Generalizations of Mixed Integer Rounding (MIR)

Many well-known families of valid inequalities developed for MIP problems such as

knapsack set, lot-sizing (production planning), facility location, and network design,

are (or can be) derived using MIR and its aforementioned generalizations (see Table

1 for details).

As shown in Figure 1, in this dissertation, we generalize the aforementioned

cut-generating procedures by developing facet-defining valid inequalities for the fol-

lowing generalizations of the well-studied continuous mixing set [105] (a single-

parameter multi-constraint mixed integer set): (1) Continuous multi-mixing set (a

multi-parameter multi-constraint mixed integer set) with certain conditions on the

coefficients, (2) Continuous multi-mixing set with general coefficients, and (3) Con-

tinuous multi-mixing set with general coefficients and bounded integer variables. We

also present compact extended formulations for these sets and an exact separation

algorithm to separate over each family of valid inequalities developed for these sets

(see Sections I.1, I.2, and I.3 for details). These results provide a knowledge base

for developing new families of cutting planes for MIP problems involving “multi-

modularity capacity constraints” (MMCCs).

Existence of multiple modularities (module sizes) of (production/service/process-
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Problem type Inequalities in literature Are/can be developed by
Continuous cover [73] 2-step mingling

Knapsack Set Cover and pack [10, 11] 2-step mingling
n-step mingling [6, 7] n-step mingling
(k, l, S, I) [87] Mixing

Lot-Sizing Mixed (k, l, S, I) [51] Mixed MIR
Multi-module (k, l, S, I) [96] Mixed n-step MIR
Flow cover [84] MIR
Arc residual [68] MIR

Facility Location (k, l, S, I) [2, 3, 1] Mixed MIR
Mixed (k, l, S, I) [51] Mixed MIR
Multi-module (k, l, S, I) Mixed n-step MIR
(2-Modularity) cut-set [70] (2-step) MIR
Flow cut-set [19] MIR

Network Design Cut-set [9] MIR
Mixed partition [52] Mixed MIR
Partition [89] n-step MIR

Table 1: Relation between known inequalities and procedures in literature

ing/transmission/transportation/storage/power generation) capacity is inherent to

many classical and modern applications. One can easily find evidence of this fact in

the literature of applications such as data centers [58, 97, 110, 114], cloud computing

[27, 47, 55], (survivable fiber-optic) communication networks [8, 17, 18, 19, 20, 32, 48,

49, 50, 52, 72, 115], batteries for electric vehicles/wind turbines/solar panels [23, 38,

46, 64, 101], semiconductor manufacturing [44, 53, 54, 60, 91], power/energy/smart

grid systems [40, 57, 86, 104, 117], on-shore and off-shore construction in oil industry

[41, 80], offshore natural gas/oil pipeline systems [22, 69, 93, 94], pharmaceutical

manufacturing facilities [98, 102, 103], regional wastewater treatment systems [56],

chemical processes [95], bioreactors [109], transportation systems [4, 42, 65, 66, 76,

85, 107, 108], and production systems [90]. Nevertheless, the MIP cutting plane liter-

ature to date has almost entirely focused on problems with single-modularity capacity
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constraints. We introduce new classes of multi-row cuts for the MIP problems with

MMCCs, in particular multi-module capacitated lot-sizing (MMLS), multi-module

capacitated facility location (MMFL), and multi-module capacitated network design

(MMND). These inequalities generalize various well-known families of cuts (men-

tioned in Table 1) for MMLS, MMFL, and MMND problems. Our computational

results show that these cutting planes significantly improve the efficiency of algo-

rithms for solving the MMLS problem with(out) backlogging. See Section I.4 for

details. In the following sections, we present brief summary of our research contri-

bution.

I.1 Continuous Multi-Mixing Set

A well-known mixed integer base set is the continuous mixing set

Q := {(y, v, s) ∈ Zm × Rm+1
+ : yi + vi + s ≥ βi, i = 1, . . . ,m},

where βi ∈ R, i = 1, . . . ,m [105]. This set is a generalization of the well-studied

mixing set {(y, s) ∈ Zm × R+ : yi + s ≥ βi, i = 1, . . . ,m} [51], which itself is a

multi-constraint generalization of the base set {(y, s) ∈ Z × R+ : y + s ≥ β} that

leads to the well-known mixed integer rounding (MIR) inequality (page 127 of [111]).

In all these base sets each constraint has only one integer variable. Fig. 1 presents

a summary of the generalization relationship between these base sets and other base

sets of interest in this dissertation. The set Q arises as a substructure in relaxations

of problems such as lot-sizing (production planning) with backlogging [78], lot-sizing

with stochastic demand [5], capacitated facility location [2], and capacitated network

design [50]. Miller and Wolsey [77] presented an extended formulation for conv(Q)

with O(m2) variables and O(m2) constraints. Later, Van Vyve [105] gave a compact

and tight extended formulations with O(m) variables and O(m2) constraints for

4



conv(Q) and its relaxation to the case where s ∈ R. He also introduced the so-called

cycle inequalities (called 1-step cycle inequalities in this dissertation) for these sets

and showed that these inequalities along with bound constraints are sufficient to

describe the convex hulls of these sets. The MIR inequalities (called 1-step MIR

inequalities in this dissertation) of Nemhauser and Wolsey [82, 111] and the mixed

(1-step) MIR inequalities of Günlük and Pochet [51] are special cases of the 1-step

cycle inequalities for Q (Fig. 1). It is important to note that the 1-step MIR cuts

are equivalent to split cuts of Cook et al. [31] and Gomory mixed integer cuts [92],

and are a special case of the disjunctive cuts [12, 13] (also see [21, 37]). Zhao and

Farias [116] showed that the optimization over the relaxation of Q in which s ∈ R

can be performed in O(m logm) time. Furthermore, Conforti et al. [30] studied

two generalizations of Q: first, the intersection of several continuous mixing sets

with distinct s variables and common y and v variables, and second, the continuous

mixing set with flows. They introduced two extended formulations for the convex

hull of each of these sets.

In another direction (Fig. 1), Kianfar and Fathi [62] generalized the 1-step MIR

inequalities [82] and developed the n-step MIR inequalities for the mixed integer

knapsack set by studying the base set

Q1,n
0 =

{
(y, s) ∈ Z× Zn−1

+ × R+ :
n∑
t=1

αtyt + s ≥ β
}
,

where αt ∈ R+\{0}, t = 1, . . . , n and β ∈ R. Note that this base set has a single

constraint and n integer variables in this constraint. The n-step MIR inequalities

are valid and facet-defining for the base set Q1,n
0 if αt’s and β satisfy the so-called

5



n-step MIR conditions, i.e.

αt
⌈
β(t−1)/αt

⌉
≤ αt−1, t = 2, . . . , n. (1)

However, n-step MIR inequalities can also be generated for a mixed integer constraint

with no conditions imposed on the coefficients. In that case, the external parameters

used in generating the inequality are picked such that they satisfy the n-step MIR

conditions (see [62] for more details). The n-step MIR inequalities are facet-defining

for the mixed integer knapsack set in many cases [7, 62]. The Gomory mixed integer

cut [92] and the 2-step MIR inequalities [35, 36] are the special cases of n-step MIR

inequalities, corresponding to n = 1, 2, respectively. Kianfar and Fathi [62, 63]

showed that the n-step MIR inequalities define new families of facets for the finite

and infinite group problems.

Recently, Sanjeevi and Kianfar [96] showed that the procedure proposed by

Günlük and Pochet [51] to mix 1-step MIR inequalities can be generalized and used

to mix the n-step MIR inequalities [62] (Fig. 1). As a result, they developed the

mixed n-step MIR inequalities for a generalization of the mixing set called the n-

mixing set, i.e.

Qm,n
0 =

{
(y, s) ∈ (Z× Zn−1

+ )m × R+ :
∑n

t=1
αty

i
t + s ≥ βi, i = 1, . . . ,m

}
,

where αt ∈ R+\{0}, t = 1, . . . , n, and βi ∈ R, i = 1, . . . ,m, such that αt and βi satisfy

the n-step MIR conditions in each constraint. Note that this is a multi-constraint

base set with n integer variables in each constraint and a continuous variable which

is common among all constraints. The mixed n-step MIR inequalities are valid for

Qm,n
0 and under certain conditions, these inequalities are also facet defining for the

6



convex hull of Qm,n
0 .

In the first step of this dissertation, we generalize the concepts of continuous

mixing [105] and mixed n-step MIR [96] by introducing a more general base set

referred to as the continuous multi-mixing set which we define as

Qm,n :=
{

(y, v, s) ∈ (Z× Zn−1
+ )m × Rm+1

+ :
∑n

t=1
αty

i
t + vi + s ≥ βi, i = 1, . . . ,m

}
,

where αt > 0, t = 1, . . . , n and βi ∈ R, i = 1, . . . ,m such that αt and βi satisfy the n-

step MIR conditions (which are automatically satisfied if the parameters α1, . . . , αn

are divisible) in each constraint (see Fig. 1). Note that this set has multiple (m)

constraints with multiple (n) integer variables in each constraint; but it is more gen-

eral than the n-mixing set because in addition to the common continuous variable

s, each constraint has a continuous variable vi of its own. The continuous mixing

set Q is the special case of Qm,n, where n = 1 and α1 = 1, and the n-mixing set

of Sanjeevi and Kianfar [96] is the projection of Qm,n ∩ {v = 0} on (y, s). The

continuous multi-mixing set arises as a substructure in relaxations of multi-module

capacitate lot-sizing (MMLS) with(out) backlogging, MMLS with stochastic demand,

multi-module capacitated facility location (MMFL), and multi-module capacitated

network design (MMND) problems (we will describe these problems in Section I.4).

For each n′ ∈ {1, . . . , n}, we develop a class of valid inequalities for Qm,n which we

refer to as n′-step cycle inequalities, and obtain conditions under which these inequal-

ities are facet-defining for conv(Qm,n). We discuss how the n-step MIR inequalities

[62] and the mixed n-step MIR inequalities [96] are special cases of the n-step cy-

cle inequalities. We also introduce a compact extended formulation for Qm,n and

an efficient exact separation algorithm to separate over the set of all n′-step cycle

inequalities, n′ ∈ {1, . . . , n}, for set Qm,n.

7



I.2 Continuous Multi-Mixing Set with General Coefficients

In the next step, we relax the n-step MIR conditions on the coefficients of Qm,n and

consider the continuous multi-mixing set with general coefficients, denoted by

Y m :=

{
(y, v, s) ∈ Zm×N+ × Rm

+ × R+ :
N∑
t=1

aity
i
t + vi + s ≥ bi, i = 1, . . . ,m

}

where a ∈ RmN and b ∈ Rm. As mentioned before, Kianfar and Fathi [62] showed

that, for each n ∈ N, the n-step MIR facet of Q1,n
0 can be used to generate a

family of valid inequalities for the mixed integer knapsack set which is same as

Projy,s(Y
1∩{v = 0}). Later Atamtürk and Kianfar [7] showed that these inequalities

define facets for this set under certain conditions. In this dissertation, we generalize

the n-step cycle inequalities to develop valid inequalities for Y m and show that they

are facet-defining for conv(Y m) in many cases.

I.3 Continuous Multi-Mixing Set with Bounded Integer Variables

Despite the effectiveness of MIR inequalities to solve MIPs with unbounded integer

variables, cutting planes based on lifting techniques appear to be more effective for

MIPs with bounded integer variables [6, 74]. This is because, unlike lifting tech-

niques, the MIR procedure does not explicitly use bounds on integer variables. To

overcome this drawback, Atamtürk and Günlük [6] introduced a simple procedure

(called “mingling”) which incorporates the variable bound information into MIR and

gives stronger valid inequalities. They first developed the so-called mingling (and 2-

step mingling) inequalities for the mixed integer knapsack set and then showed that

the facets of this set derived earlier by superadditive lifting techniques are special

cases of mingling or 2-step mingling inequalities. In particular, these inequalities

subsume the continuous cover and reverse continuous cover inequalities of Marchand
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and Wolsey [73] as well as the continuous integer knapsack cover and pack inequalities

of Atamtürk [10, 11]. Recently, Atamtürk and Kianfar [7] generalized the mingling

procedure of Atamtürk and Günlük [6] and introduced a variant of the n-step MIR

inequalities [62] (which they call n-step mingling inequalities) for the mixed-integer

knapsack set with bounded integer variables. Unlike n-step MIR inequalities, the

n-step mingling inequalities utilize the information of bounds on integer variables to

give stronger valid inequalities, which are facet-defining in many cases [7]. In ad-

dition, they used n-step mingling inequalities to develop new valid inequalities and

facets based on covers and packs defined for mixed integer knapsack sets.

The third step of this dissertation is to unify the concepts of continuous multi-

mixing and n-step mingling by incorporating upper bounds on the integer variables of

the continuous multi-mixing set (where no conditions are imposed on the coefficients)

and developing new families of valid inequalities for this set (which we refer to as the

mingled n-step cycle inequalities). We denote this new generalization of continuous

multi-mixing set by

Zm :=

{
(y, v, s) ∈ Zm×N+ × Rm

+ × R+ :∑
t∈T

aty
i
t +
∑
k∈K

aky
i
k + vi + s ≥ bi, y

i ≤ ui, i = 1, . . . ,m

}

where (T,K) is a partitioning of {1, . . . , N} with at > 0 for t ∈ T , ak < 0 for k ∈ K,

and ui ∈ ZN+ for i ∈ {1, . . . ,m}. We develop a compact extended formulation for

Zm and provide a separation algorithm to separate over the set of all mingled n-step

cycle inequalities for a given n ∈ N. Furthermore, we obtain the conditions under

which a special case of mingled n-step cycle inequalities (referred to as the mingled

n-step mixing inequalities) are facet-defining for conv(Zm).
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I.4 Cuts for MMLS, MMFL, and MMND Problems

The objective of this step of dissertation is to utilize the n-step cycle inequalities to

develop a new family of valid inequalities for MIPs involving “multi-modularity ca-

pacity constraints”. In particular, we focus on the multi-modularity generalizations

(where capacity can be composed of discrete units of multiple differentially-sized

modularities) of three following high-impact classes of capacitated MIPs: lot-sizing

(LS), facility location (FL), and network design (ND) problems. Over the years a

large volume of the MIP cutting plane research has been dedicated to single modu-

larity or constant-capacity versions of the LS [78, 87, 88, 90, 106, 112], FL [1, 2, 51],

and ND [9, 26, 51, 70, 71] problems.

Recently, Sanjeevi and Kianfar [96] generalized the lot-sizing problem with con-

stant batches [87] (where the capacity in each period can be some integer multiple of

a single capacity module with a given size) and introduced the multi-module capaci-

tated lot-sizing (MMLS) problem. In this problem, the total production capacity in

each period can be the summation of some integer multiples of several capacity mod-

ules of different sizes. They showed that the mixed n-step MIR inequalities can be

used to generate valid inequalities for the MMLS problem without backlogging (which

we denote by MML-WB). They referred to these inequalities as the multi-module

(k, l, S, I) inequalities. These inequalities generalize the (k, l, S, I) inequalities and

mixed MIR inequalities which were introduced for the lot-sizing problem with con-

stant batches by Pochet and Wolsey [87] and Günlük and Pochet [51], respectively.

Similarly, they introduced multi-module capacitated facility location (MMFL) prob-

lem (a generalization of the capacitated facility location problem) and used mixed

n-step MIR inequalities to develop valid inequalities for this problem. These in-

equalities generalize the mixed MIR [51] and (k, l, S, I) based [2, 3] inequalities for

10



constant capacity facility location problem.

In literature, the cutting planes have been derived for multi-module capacitated

network design (MMND) problem and its special cases [9, 19, 52, 61, 70, 72, 89].

Interestingly, the cuts developed in [19, 70, 72] for two-modularity ND with divisible

capacities (2MND-DC) and in [9] for MMND can be derived just using 1-step MIR

procedure. The fact that the problem is multi-modularity, is not used in developing

potentially many more classes of cuts. The same is true for the mixed partition in-

equalities for 2MND-DC [52], which can be derived just using mixed MIR procedure.

To our knowledge, the only classes of cuts derived by actually exploiting the existence

of multiple modularities are the two-modularity cut-set inequalities for 3MND-DC

[70] (which do not exploit the third modularity) and the partition inequalities for

the single-arc MMND-DC [89]. The former can be derived using the 2-step MIR

[36, 62], and the n-step MIR not only generates the latter but also generalizes them

to non-divisible capacities [61].

In this dissertation, we introduce MMLS with backlogging (MML-B) and use n-

step cycle inequalities to develop a new family of cutting planes for MML-(W)B,

MMFL, and MMND problems which subsume valid inequalities introduced in [51,

87, 96] for LS problems, [2, 51, 96] for FL problems, and [9, 19, 51, 52, 61, 70, 72, 89]

for ND problems, respectively. We also computationally evaluate the effectiveness

of the n-step cycle inequalities for the MML-(W)B problem using our separation

algorithm.

I.4.1 Computational Results

Our computational results on applying 2-step cycle inequalities using our separa-

tion algorithm show that our cuts are very effective in solving MML-WB and MML-B

with two capacity modules, resulting in considerable reduction in the integrality gap
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(on average 85.90% for MML-WB and 86.32% for MML-B) and the number of nodes

(on average 132 times for MML-WB and 31 times for MML-B). Also, the total time

taken to solve an instance (which also includes the cut generation time) is in average

58.3 times (for MML-WB) and 9.9 times (for MML-B) smaller than the time taken

by CPLEX with default settings (except for very easy instances). More interestingly,

in these instances adding cuts by applying 2-step cycle inequalities over 1-step cy-

cle inequalities has improved the closed gap (on average 19.47% for MML-WB and

15.96% for MML-B), the number of nodes (on average 43 times for MML-WB and 14

times for MML-B), and the total solution time (on average 18 times for MML-WB

and 4 times for MML-B).

I.5 Dissertation Structure

The dissertation is organized as follows: In Chapter II, we present a brief in-

troduction to mixed integer programming and review some fundamental definitions,

concepts, and theorems in MIP and polyhedra to the extent required as background

for the results in this dissertation. We present our research on continuous multi-

mixing set, continuous multi-mixing set with general coefficients, continuous multi-

mixing set with bounded integer variables, and cuts for MMLS, MMFL, and MMND

problems in Chapters III, IV, V, and VI, respectively. We provide a conclusion in

Chapter VII along with some future research plans.

12



CHAPTER II

MIXED INTEGER PROGRAMMING, POLYHEDRAL THEORY,

AND GENERALIZATIONS OF MIXED INTEGER ROUNDING

This chapter presents an introduction to mixed integer programming and a theory of

valid inequalities for mixed integer linear sets to the extent required as background

for the results in this dissertation. In Section II.1, we define general (mixed) in-

teger program, briefly discuss their importance and applications, and review three

algorithms used to solve them (i.e. branch-and-bound, cutting plane, and branch-

and-cut algorithms). We also reproduce the concept of extended formulation along

with some fundamental definitions and theorems in polyhedral theory. In Section

II.2, we review the MIR cut-generating procedure [81, 111] and its various general-

izations (in particular, continuous mixing [105], n-step MIR [62], mixed n-step MIR

[96], and n-step mingling [6, 7]).

II.1 Mixed Integer Programming

Mixed Integer Programming is a powerful method to formulate and solve op-

timization problems containing discrete decision variables with numerous applica-

tions in business, science, and engineering. In general, MIPs are NP-hard problems.

Therefore, it is challenging to improve the existing algorithms (or develop new effi-

cient algorithms) for solving MIP problems arising in applications such as production

and distribution planning, facility location, telecommunication, transportation, air-

line crew scheduling, electricity generation planning, molecular biology, VLSI, and

many more [81, 111].
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A mixed integer program (MIP) can be written as

min cv + hy

Av +Gy ≤ b

y ∈ Zn, v ∈ Rp

where A is an m by n matrix, G is an m by p matrix, c and h are row-vectors

of dimensions n and p, respectively, and v, y are the decision variables. In this

formulation, if p = 0, i.e. all variables are integer, we get the pure integer program

min{hy : Gy ≤ b, y ∈ Zn}

and if all variables are binary, we have the binary integer program

min{hy : Gy ≤ b, y ∈ {0, 1}n}.

Furthermore, the linear problem obtained by dropping the integrality restrictions on

decision variables of a MIP is called the linear relaxation of the MIP.

II.1.1 Some Definitions and Theoretical Results in Polyhedral Theory

In this section, some definitions and fundamental theoretical results in polyhedral

theory are replicated from [81, 111] to the extent required to present our research

results. We also define the concepts of extended formulation and projection (see

[28, 29, 34, 113] for more details).

Definition 1. The feasible region of a MIP (denoted by PMIP ⊆ Zn×Rp) is the set
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of points (y, v) ∈ Zn × Rp which satisfy its constraints:

PMIP := {(y, v) ∈ Zn × Rp : Av +Gy ≥ b}.

Definition 2. A subset of Rp described by a finite set of linear constraints P = {v ∈

Rp : Av ≥ b} is a polyhedron.

Definition 3. Given a set X ⊆ Rn, the convex hull of X, denoted conv(X), is

defined as: conv(X) = {x : x =
∑t

i=1 λix
i,
∑t

i=1 λi = 1, λi ≥ 0 for i = 1, . . . , t over

all finite subsets {x1, . . . , xt} of X}.

Theorem 1. conv(PMIP ) is a polyhedron, if the data A,G, b is rational.

The proof of Theorem 1 is provided in [81].

Definition 4. An inequality πx ≤ π0 is a valid inequality for X ⊆ Rn if πx ≤ π0

for all x ∈ X.

Theorem 2. [81] If πx ≤ π0 is valid for X ⊆ Rn, it is also valid for conv(X).

Definition 5. If πx ≤ π0 and µx ≤ µ0 are two valid inequalities for P ⊆ Rn
+,

πx ≤ π0 dominates µx ≤ µ0 if there exists u > 0 such that π ≥ uµ and π0 ≤ uµ0

and (π, π0) 6= (uµ, uµ0).

Observation 1. If πx ≤ π0 dominates µx ≤ µ0, then {x ∈ Rn
+ : πx ≤ π0} ⊆ {x ∈

Rn
+ : µx ≤ µ0}.

Definition 6. The points x1, . . . , xk ∈ Rn are affinely independent if the k − 1

directions x2−x1, . . . , xk−x1 are linearly independent, or alternatively the k vectors

(x1, 1), . . . , (xk, 1) ∈ Rn+1 are linearly independent.

Definition 7. The dimension of P , denoted dim(P ), is one less than the maximum

number of affinely independent points in P .
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Definition 8. F defines a face of the polyhedron P if F = {x ∈ P : πx = π0} for

some valid inequality πx ≥ π0 of P .

Definition 9. F is a facet of P if F is a face of P and dim(F ) = dim(P )− 1.

Definition 10. If F is a face of P with F = {x ∈ P : πx = π0}, the valid inequality

πx ≥ π0 is said to represent or define the face.

Definition 11. Given a polyhedron P ⊆ (Rn × Rp), the projection of P onto the

space Rn, denoted by Projx(P ), is defined as

Projx(P ) := {x ∈ Rn : (x,w) ∈ P for some w ∈ Rp}.

Definition 12. Given a set X ⊆ Rn and a polyhedron P := {(x,w) ∈ Rn × Rp :

Ax+Bw ≤ b} such that conv(X) ⊆ Projx(P ), the system Ax+Bw ≤ b provides an

extended formulation for the set X.

i) In case Projx(P ) = conv(X), we call the extended formulation is tight.

ii) An extended formulation is compact if the addition of polynomial number of

extra variables results in a formulation with a polynomial number of inequalities.

II.1.2 Algorithms for Solving MIP Problems

Branch-and-cut algorithm is among the most successful algorithms used to solve

MIPs. Branch-and-cut is a branch-and-bound algorithm in which cutting planes are

used to tighten the formulations of node problems and hence achieve better bounds.

This algorithm was first introduced by Padberg and Rinaldi [83], and today most of

the commercial and non-commercial MIP solvers use it. This is because it combines

the advantages of both branch-and-bound and cutting plane algorithms, and hence

overcomes the drawbacks associated with each of those algorithms.
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Branch-and-bound (BB) was first proposed by Land and Doig [67] for integer

programming. The idea behind the BB algorithm for a maximization problem is

as follows: The algorithm starts at the root node. The BB is done over a BB

tree. Each node in the tree corresponds to a subset of the solution space. At each

node, the upper bound for the best solution value obtainable in the solution space

corresponding to the node is calculated. This is done by solving the linear relaxation

(or any other easily solvable relaxation) of the MIP. Based on the upper bound at the

node and best known feasible solution value (i.e. best lower bound of the problem),

the node is either pruned or branched. A node can be pruned for two reasons: 1) if

the upper bound value on that node is smaller than the best feasible solution value

found so far. In this case there is no point in searching the node for optimal solution

anymore (this is the main idea behind BB). 2) if a solution is found, the lower bound

will be updated if this solution has a larger objective value. On the other hand, if a

node cannot be pruned, the solution space of the node is subdivided into two or more

subspaces (by generating child nodes). This action is known as branching. There are

different problem dependent strategies for choosing the branching scheme in a node

and also for choosing the next node in the tree. While solving the MIP, one commonly

used branching strategy at a given node is to create two child nodes by adding the

constraint (yi ≤ by∗i c for first node and yi ≥ dy∗i e for second node, where yi is an

integer variable with the fractional LP solution y∗i ) to the linear relaxation at this

node. The problem is solved when all nodes are pruned and the best lower bound

will be the optimal value. The efficiency of the method depends strongly on the

branching (node-splitting procedure) and on the upper and lower bound estimators.

In order to solve minimization problem using BB, interchange the lower bound and

upper bound in the description above. More details and references can be found in

[81, 111].
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Gomory [45, 92] presented the cutting plane algorithm to solve (M)IPs. In [45], he

showed how a modified version of the simplex algorithm provides a finite algorithm

to solve pure integer programs. This algorithm utilizes valid inequalities (referred

to as the cuts or cutting planes) that are violated by the optimal solution of the

current linear program, but satisfy all integral solutions. The algorithm in [92] is

an extension of the cutting plane algorithm for pure integer programs [45] to MIPs.

The basic idea behind this algorithm is as follows: Given a MIP, we solve its LP

relaxation (LPR), generate a “strong” cut that is violated by the optimal solution of

LPR (in case it does not satisfy integrality constraints), and add the cut to the LPR

which tighten its feasible region without changing the feasible region of MIP. Then

we re-solve LPR and repeat the procedure until all integer constraints are satisfied.

Note that a cutting plane is called “stronger” than others if it cuts off bigger portion

from the feasible region of the LPR, in comparison to others. Therefore, facets of the

convex hull of integer solutions are the strongest possible cuts. The major advantage

of this algorithm is that it can solve a pure integer program to optimality in finite

number of steps. Despite that this approach on its own is not very effective in

practice because of the so-called tailing-off phenomenon [24], i.e. after some steps

the portion cuts off from the feasible region of the LPR by each cut becomes very

small.

In branch-and-cut algorithm, the cutting planes are utilized to provide a tighter

formulation of node problems and whenever the tailing-off begins (due to the addition

of cutting planes) branching is used to create new nodes (see [39, 59, 75, 79] for

surveys on different aspects of branch-and-cut algorithm). As a result, developing

strong valid inequalities as cutting planes is crucial for effectiveness of the branch-

and-cut algorithm. This fact is the major motivation for the research in the area of

cutting planes.
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II.2 Generalizations of Mixed Integer Rounding

Studying the polyhedral structure of mixed integer base sets which constitute

well-structured relaxations of important MIP problems is a promising approach. This

is because oftentimes one can develop procedures in which the valid inequalities (or

facets) developed for the base set are used to generate valid inequalities (or facets) for

the original MIPs (see [6, 36, 51, 62, 96, 111] for a few examples among many others).

In this section, we briefly review the mixed integer rounding (MIR) cut-generating

procedure [81, 111] and its various generalizations (in particular, continuous mixing

[105], n-step MIR [62], mixed n-step MIR [96], and n-step mingling [6, 7]).

II.2.1 Mixed Integer Rounding (MIR)

One fundamental procedure to develop cuts for general MIPs is the MIR procedure

[82, 111] which utilizes the facet of a single-constraint mixed integer base set,

Q1,1
0 := {(y, s) ∈ Z× R+ : α1y + s ≥ β}

where α1 > 0 and β ∈ R, referred to as the (1-step) MIR facet (page 127 of [111]). It

is interesting to note that all the facets of a general 0-1 MIP can be generated using

MIR [82] and for general MIP, MIR can be used to obtain strong valid inequalities

based on 1-row relaxations [74]. Furthermore, the 1-step MIR cuts are equivalent to

split cuts of Cook et al. [31] and Gomory mixed integer cuts [92], and are a special

case of the disjunctive cuts [12, 13] (also see [21, 37]). Because of computational

effectivenes, the MIR procedure is being used in many MIP solvers today.

Theorem 3. [111] The inequality (1-step MIR facet)

y1 +
v

β − α1 bβ/α1c
≥
⌈
β

α1

⌉
, (2)
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is valid and facet-defining for conv(Q1,1
0 ).

In a general setting, the 1-step MIR facet (2) for conv(Q1,1
0 ) can be used to

generate strong valid inequalities for a single-constraint mixed integer knapsack set

with general coefficients. We define this set as follows:

Y 1
0 := {(y, s) ∈ ZN+ × R+ :

N∑
t=1

atyt + s ≥ b}

where the coefficients at, t = 1, . . . , N and b are real numbers (no conditions imposed

on them). Note that Y 1
0 = Projy,s(Y

1 ∩ {v = 0}). By choosing a parameter α1 > 0

such that b(1) = b− α1 bb/α1c > 0, the defining inequality of Y 1
0 can be relaxed to

∑
t∈J0

α1

⌈
at
α1

⌉
yt +

∑
t∈J1

(⌊
aj
α1

⌋
+ a

(1)
j

)
yj + s ≥ b (3)

by partitioning {1, . . . , N} into two disjoint subsets J0, J1, relaxing at in the defining

inequality of Y 1
0 to α1 dat/α1e (≥ at) for t ∈ J0, and replacing at in the defining

inequality of Y 1
0 by baj/α1c + a

(1)
j (= at) for t ∈ J1. This is a relaxation because

yt ≥ 0, t ∈ J0. Observe that the terms in inequality (3) can be rearranged to have a

structure similar to the defining inequality of Q1,1
0 , i.e. inequality (3) can be written

as

α1

(∑
t∈J0

⌈
at
α1

⌉
yt +

∑
t∈J1

⌊
at
α1

⌋
yt

)
+

(∑
t∈J1

a
(1)
t yt + s

)
≥ b. (4)

Setting

y :=
∑
t∈J0

⌈
at
α1

⌉
yt +

∑
t∈J1

⌊
at
α1

⌋
yt and s̄ :=

∑
t∈J1

a
(1)
t yt + s, (5)

inequality (4) becomes of the same form as the defining inequality of Q1,1
0 (notice
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that s̄ ∈ R+ and y ∈ Z). Therefore the MIR inequality for (4), given by

b(1)

(∑
t∈J0

⌈
at
α1

⌉
yt +

∑
t∈J1

⌊
at
α1

⌋
yt

)
+

(∑
t∈J1

a
(1)
t yt + s

)
≥ b(1)

⌈
b

α1

⌉
, (6)

is valid for Y 1
0 . Interestingly, inequality (6) becomes the Gomory Mixed Integer

(GMI) cut [92] when α1 = 1. In a compact form, the MIR inequality (6) for Y 1
0 can

be written as follows:
N∑
t=1

µ1
α1,b

(at)yt + s ≥ µ1
α1,b

(b), (7)

where µ1
α1,b

= b(1) bt/α1c+min{b(1), t(1)} is referred to as the 1-step MIR function.

II.2.2 Continuous Mixing

Van Vyve [105] generated the cycle inequalities for the continuous mixing set Q as

follows: Define β0 := 0, fi := βi−bβic , i ∈ {0, . . . ,m} and without loss of generality

assume that fi−1 ≤ fi, i = 1, . . . ,m. Let G := (V,A) be a directed graph, where

V := {0, 1, . . . ,m} and A := {(i, j) : i, j ∈ V, fi 6= fj}. Note that G is a complete

graph except for the arcs (i, j) where fi = fj. An arc (i, j) ∈ A is called a forward

arc if i < j and a backward arc if i > j. To each arc (i, j) ∈ A, associate a linear

function ψij(y, v, s) defined as

ψij(y, v, s) :=


s+ vi + (fi − fj + 1)(yi − bβic)− fj if (i, j) is a forward arc,

vi + (fi − fj)(yi − bβic) if (i, j) is a backward arc,

where v0 = y0 = 0. See Fig. 2.

Theorem 4 ([105]). Given an elementary cycle C = (VC , AC) in the graph G, the
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Figure 2: Each cycle in graph G gives rise to a cycle inequality.

inequality

∑
(i,j)∈AC

ψij(y, v, s) ≥ 0, (8)

referred to as the cycle inequality, is valid for Q.

In [105], the validity of the cycle inequality (8) was proved indirectly through the

following extended formulation for Q:

Qδ =
{

(y, v, s, δ) ∈ Rm × Rm+1
+ × Rm+1 :

ψij(y, v, s) ≥ δi − δj for all (i, j) ∈ A,

yi + vi + s ≥ βi, i = 1, . . . ,m
}
.

Note that the set of all original inequalities, all cycle inequalities, along with the

bound constraints v, s ≥ 0, define Projy,v,s(Q
δ). Van Vyve [105] showed that for every

extreme point (or extreme ray) of Q, there exists a point (or a ray) in its extended

formulation Qδ. This implies Q ⊆ Projy,v,s(Q
δ), and hence, the cycle inequalities are

valid for Q. Furthermore, it was shown in [105] that conv(Q) = Projy,v,s(Q
δ) and

the separation over conv(Q) can be performed in O(m3) time by finding a negative

weight cycle in G. Similar results were presented for the relaxation of Q to the case

22



where s ∈ R.

II.2.3 n-step MIR Inequalities

In another direction, Kianfar and Fathi [62] developed the n-step MIR inequalities

(a generalization of MIR inequalities [82, 111]) for the base set

Q1,n
0 =

{
(y, s) ∈ Z× Zn−1

+ × R+ :
n∑
t=1

αtyt + s ≥ β
}
,

where αt ∈ R+\{0}, t = 1, . . . , n, β ∈ R, and αt’s and β satisfy the so-called n-step

MIR conditions, i.e.

αt
⌈
β(t−1)/αt

⌉
≤ αt−1, t = 2, . . . , n. (9)

Note that Q1,n
0 = Projy,s

(
Q1,n ∩ {v = 0}

)
. The n-step MIR inequality for this set is

s ≥ β(n)

(
n∏
l=1

⌈
β(l−1)

αl

⌉
− β(n)

n∑
t=1

n∏
l=t+1

⌈
β(l−1)

αl

⌉
yt

)
, (10)

where the recursive remainders β(t) are defined as

β(t) := β(t−1) − αt
⌊
β(t−1)/αt

⌋
, t = 1, . . . , n, (11)

and β(0) := β (note that 0 ≤ β(t) < αt for t = 1, . . . , n). By definition if a > b,

then
∑b

a(.) = 0 and
∏b

a(.) = 1. For inequality (10) to be non-trivial, we assume

that β(t−1)/αt /∈ Z, t = 1, . . . , n. Kianfar and Fathi [62] showed that the n-step MIR

inequality (10) is valid and facet-defining for the convex hull of Q1,n
0 . In a more

general setting, Kianfar and Fathi [62] used n-step MIR facets of Q1,n
0 to generate

n-step MIR inequalities for Y 1
0 , a single-constraint mixed integer knapsack set with
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general coefficients. Recall that Y 1
0 = Projy,s(Y

1 ∩ {v = 0}). For each n ∈ N,

by choosing a parameter vector α = (α1, . . . , αn) > 0 that satisfy the n-step MIR

conditions,

αt
⌈
b(t−1)/αt

⌉
≤ αt−1, t = 2, . . . , n, (12)

they introduced the so-called n-step MIR function to generate an n-step MIR in-

equality for Y 1
0 . The n-step MIR function is defined as follows:

µnα,b(x) =



g∑
q=1

n∏
l=q+1

⌈
b(l−1)

αl

⌉⌊
x(q−1)

αq

⌋
b(n) +

n∏
l=g+2

⌈
b(l−1)

αl

⌉⌈
x(g)

αg+1

⌉
b(n) if x ∈ Ing , g =

0, . . . , n− 1

n∑
q=1

n∏
l=q+1

⌈
b(l−1)

αl

⌉⌊
x(q−1)

αq

⌋
b(n) + x(n) if x ∈ Inn

where for g = 0, . . . , n− 1,

Ing := {x ∈ R : x(q) < b(q), q = 1, . . . , g, x(g+1) ≥ b(g+1)};

Inn := {x ∈ R : x(q) < b(q), q = 1, . . . , n}.

The n-step MIR inequality for Y 1
0 is then

N∑
t=1

µnα,b(at)yt + s ≥ µnα,b(b). (13)

Kianfar and Fathi [62] proved that, for n ∈ N, inequality (13) is valid for Y 1
0 ,

and later, Atamtürk and Kianfar [7] showed that these inequalities also have facet-

defining properties in several cases. Please refer to [7, 62] for more details.
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II.2.4 n-step Mingling Inequalities

Atamtürk and Günlük [6] and Atamtürk and Kianfar [7] considered the mixed-

integer knapsack set with bounded integer variables

Z1
0 :=

{
(y, s) ∈ ZN+ × R+ :

∑
t∈T

atyt +
∑
k∈K

akyk + s ≥ b, y ≤ u
}
,

where (T,K) is a partitioning of {1, . . . , N} with at > 0 for t ∈ T , ak < 0 for k ∈ K,

and u ∈ ZN+ . Atamtürk and Günlük [6] introduced (1-step) mingling and 2-step

mingling inequalities for Z1
0 which are generalized by Atamtürk and Kianfar [7] to

n-step mingling inequalities, n ∈ N, for Z1
0 . Unlike n-step MIR inequality (13), the

n-step mingling inequality utilizes the information about the bounds and is derived

as follows [6, 7]. Assuming b ≥ 0, let T+ := {1, . . . , n+} ⊆ {t ∈ T : at > b} and

K̄ := {k ∈ K : ak +
∑

t∈T+ atut < 0}. We index T+ in non-increasing order of at’s.

For k ∈ K \ K̄, we define a set Tk, an integer lk, and the numbers ūtk such that

utk ≤ ut for t ∈ Tk as follows:

Tk := {1, . . . , q(k)}, where q(k) := min
{
q ∈ T+ : ak +

q∑
t=1

atut ≥ 0
}

;

lk := min
{
l ∈ Z+ : ak +

q(k)−1∑
t=1

atut + aq(k)l ≥ 0
}

; and

ūtk :=


ut, if t < q(k),

lk, if t = q(k).

Now for k ∈ K̄, let Tk := T+, q(k) := n+, lk := un+ , and ūtk := ut for t ∈ Tk. We

also define Kt := {k ∈ K : k ∈ Tk}; as a result, for t ∈ T \ T+, Kt = ∅. Also for

k ∈ K, let τk := min
{
b, ak +

∑
t∈Tk atūtk

}
, and therefore, 0 ≤ τk ≤ b for k ∈ K \ K̄

and τk < 0 for k ∈ K̄. Using the (n− 1)-step MIR function, they then proved that
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for n ∈ N, the n-step mingling inequality

∑
t∈T+

µn−1
α,b (b)

[
yt −

∑
k∈Kt

ūtkyk

]
+
∑

t∈T\T+

µn−1
α,b (at)yt

+
∑
k∈K

µn−1
α,b (τk)yk + s ≥ µn−1

α,b (b)

(14)

is valid for Z1
0 for a parameter vector α = (α1, . . . , αn−1) > 0 that satisfy the (n−1)-

step MIR conditions (12). Note that for n = 1, we define µn−1
α,b (x) = x. These

inequalities are used when integer variables are bounded from both sides. The n-

step mingling utilizes the bounds on integer variables to give stronger inequalities,

which are facet-defining in many cases [7]. Atamtürk and Günlük [6] proved that

the 1-step mingling inequalities are facet-defining for conv(Z1
0) if b − min{τk : k ∈

K̄} ≥ max{ai : ai > b, i ∈ T\T+}. For n ≥ 2, Atamtürk and Kianfar [7] proved

that the n-step mingling inequalities are facet-defining for conv(Z1
0) if the following

conditions are satisfied (Theorem 2 in [7]):

i) b(n−1) > 0 and αd = aid where id ∈ T\T+ for k = 1, . . . , n− 1;

ii) T+ = {i ∈ I : ai ≥ α1 db/α1e} and αd−1 ≥ αd
⌈
b(d−1)/αd

⌉
for d = 2, . . . , n− 1;

iii) ut1 ≥
⌈
b
α1

⌉
−
⌈

min{τk:k∈K̄}
α1

⌉
and utd ≥

⌈
b(d−1)

αd

⌉
for d = 2, . . . , n− 1.

It is important to note that for T+ = ∅, the 1-step mingling inequality reduces

to the base inequality and for n ≥ 2, the n-step mingling inequality reduces to the

(n − 1)-step MIR inequality (13). Also, for n > 1, the n-step mingling inequality

(14) dominates the inequality obtained by applying the (n− 1)-step MIR procedure

on 1-step mingling inequality [7]. Moreover, the facet-defining continuous integer

cover inequality [10] (obtained by superadditive lifting) for Z1
0 is a special case of
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inequality (14) for n = 2, b > 0, K̄ = ∅, T+ = {t ∈ T : at ≥ α1 db/α1e}, and α1 = αd

for some d ∈ T . Please refer to [6, 7] for more details.

II.2.5 Mixed n-step MIR Inequalities

As mentioned in Chapter I, Sanjeevi and Kianfar [96] generalized the MIR mix-

ing procedure of Günlük and Pochet [51] to the case of n-step MIR and devel-

oped the mixed n-step MIR inequalities for the n-mixing set Qm,n
0 . Note that

Qm,n
0 = Projy,s

(
Qm,n ∩ {v = 0}

)
. These inequalities are generated as follows: With-

out loss of generality, we assume β
(n)
i−1 ≤ β

(n)
i , i = 2, . . . ,m. Let K̂ := {i1, . . . , i|K|},

where i1 < i2 < · · · < i|K̂|, be a non-empty subset of {1, . . . ,m}. If the n-step MIR

conditions (9) hold for each constraint i ∈ K̂, i.e. αt

⌈
β

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n,

then the inequalities

s ≥
|K̂|∑
p=1

(
β

(n)
ip
− β(n)

ip−1

)
φnip(y

ip) (15)

s ≥
|K̂|∑
p=1

(
β

(n)
ip
− β(n)

ip−1

)
φnip(y

ip) +
(
αn − β(n)

i|K̂|

) (
φni1(y

i1)− 1
)
, (16)

are valid for Qm,n
0 , where β

(n)
i0

= 0 and

φni (yi) :=
n∏
l=1

⌈
β

(l−1)
i

αl

⌉
−

n∑
t=1

n∏
l=t+1

⌈
β

(l−1)
i

αl

⌉
yit (17)

for i ∈ K̂. Inequalities (15) and (16) are referred to as the type I and type II mixed

n-step MIR inequalities, respectively. Inequality (15) is shown to be facet-defining

for Qm,n
0 . Inequality (16) also defines a facet for Qm,n

0 if some additional conditions

are satisfied (see [96] for details). Note that the function φni (yi) has the same form

as the multiple of β(n) in the right-hand side of the n-step MIR inequality (10). This
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function can alternatively be written as follows (see proof of Lemma 10 in [96]):

φni (yi) := 1 +
n∑
t=1

n∏
l=t+1

⌈
β

(l−1)
i

αl

⌉(⌊
β

(t−1)
i

αt

⌋
− yit

)
. (18)
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CHAPTER III

CONTINUOUS MULTI-MIXING SET

In this chapter, we introduce a multi-parameter multi-constraint mixed integer

base set referred to as the continuous multi-mixing set which we define as

Qm,n :=
{

(y, v, s) ∈ (Z× Zn−1
+ )m × Rm+1

+ :
n∑
t=1

αty
i
t + vi + s ≥ βi, i = 1, . . . ,m

}
,

where αt > 0, t = 1, . . . , n and βi ∈ R, i = 1, . . . ,m such that the n-step MIR

conditions for i ∈ {1, . . . ,m} hold, i.e.

αt

⌈
β

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n, i ∈ {1, . . . ,m}. (19)

These n-step MIR conditions are automatically satisfied if the parameters α1, . . . , αn

are divisible. The polyhedral study of this set generalizes the concepts of MIR

[81, 111], mixed MIR [51], continuous mixing [105], n-step MIR [62], and mixed n-step

MIR [96] (see Fig. 1). Note that this set has multiple (m) constraints with multiple

(n) integer variables in each constraint; but it is more general than the n-mixing set

(discussed in Chapter II) because in addition to the common continuous variable s,

each constraint has a continuous variable vi of its own. The continuous mixing set Q

is the special case of Qm,n, where n = 1 and α1 = 1, and the n-mixing set of Sanjeevi

and Kianfar [96] is the projection of Qm,n ∩ {v = 0} on (y, s). The continuous

multi-mixing set arises as a substructure in relaxations of MML-WB, MML with

*Some parts of this chapter are reprinted with permission from “n-step cycle inequalities: facets
for continuous n-mixing set and strong cuts for multi-module capacitated lot-sizing problem” by
Manish Bansal and Kiavash Kianfar, 2014. Integer Programming and Combinatorial Optimization
Conference, Lecture Notes in Computer Science, 8494, 102-113, Copyright 2014 by Springer.
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backlogging (MML-B), MML with stochastic demand, multi-module facility location

problem, and multi-module capacitated network design problem. In Section III.1,

for each n′ ∈ {1, . . . , n}, we develop a class of valid inequalities for Qm,n which we

refer to as n′-step cycle inequalities, and discuss how the n-step MIR inequalities

[62] and the mixed n-step MIR inequalities [96] are special cases of the n-step cycle

inequalities. We also introduce a compact extended formulation for Qm,n. In Section

III.2, we obtain conditions under which n′-step cycle inequalities are facet-defining

for conv(Qm,n). In Section III.3, we present an efficient exact separation algorithm

to separate over the set of all n′-step cycle inequalities, n′ ∈ {1, . . . , n}, for set Qm,n.

III.1 Valid Inequalities and Extended Formulation

In this section, we show that for each n′ ∈ {1, . . . , n}, there exist a family of valid

inequalities for Qm,n, which we refer to as the n′-step cycle inequalities. In proving the

validity of these inequalities, Theorem 4 will become necessary. As mentioned before,

Van Vyve [105] proved Theorem 4 indirectly by defining the extended formulation

Qδ and showing that every extreme point (ray) of the set Q has a counterpart in Qδ

(see [105] for details). We have developed a direct proof for Theorem 4, which only

uses the original inequalities and the cycle structure. We believe this proof can be

insightful in further pursuit of research in this area. Here, we present an alternative

form of Theorem 4 and provide our proof:

Lemma 1. Let C = (VC , AC) be a directed Hamiltonian cycle over q nodes, where

VC = {1, . . . , q}, AC := {(1, i2), (i2, i3), . . . , (iq, 1)}, and i2, . . . , iq ∈ {2, . . . , q} are

distinct. Let σ ∈ R, α ∈ R+, and to each node i ∈ {1, . . . , q} assign the values

ωi ∈ R+, κi ∈ Z, and γi ∈ R+ such that γi < α, i = 1, . . . , q, γi−1 < γi, i = 2, . . . , q.

If

σ + ωi + ακi ≥ γi i = 1, . . . , q, (20)
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then the cycle inequality

∑
(i,j)∈F

(σ + ωi − γj + (γi − γj + α)κi) +
∑

(i,j)∈B

(ωi + (γi − γj)κi) ≥ 0, (21)

is valid, where F and B are the sets of forward and backward arcs in AC, respectively

(i.e. F = {(i, j) ∈ AC : i < j} and B = {(i, j) ∈ AC : i > j}).

Proof. For p ∈ {1, . . . , q}, let Ap be the arcs in the path from 1 to ip+1 in C, i.e.

Ap := {(1, i2), (i2, i3), . . . , (ip, ip+1)} (we define iq+1 := 1). Denote the set of forward

and backward arcs in Ap by Fp and Bp, respectively (note that if p′ < p, then

Ap′ ⊂ Ap, Fp′ ⊆ Fp, and Bp′ ⊆ Bp). Also, let T (.) be an operator that, when applied

on an arc set, returns the set of tail nodes of the arcs in that arc set. Define the

index gp ∈ {i1, . . . , ip} recursively as follows: g1 := 1, and

gp :=



gp−1 if ip ∈ T (Fp), gp−1 ∈ T (Fp−1), κgp−1 ≥ κip ,

ip if ip ∈ T (Fp), gp−1 ∈ T (Fp−1), κgp−1 < κip ,

gp−1 if ip ∈ T (Fp), gp−1 ∈ T (Bp−1), κgp−1 > κip ,

ip if ip ∈ T (Fp), gp−1 ∈ T (Bp−1), κgp−1 ≤ κip ,

gp−1 if ip ∈ T (Bp), gp−1 ∈ T (Bp−1), κgp−1 ≤ κip ,

ip if ip ∈ T (Bp), gp−1 ∈ T (Bp−1), κgp−1 > κip ,

gp−1 if ip ∈ T (Bp), gp−1 ∈ T (Fp−1), κgp−1 < κip ,

ip if ip ∈ T (Bp), gp−1 ∈ T (Fp−1), κgp−1 ≥ κip ,

for p = 2, . . . , q and for p = 1, . . . , q, define ∆p = γgp − γip+1 , if gp ∈ T (Bp), and 0 if
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gp ∈ T (Fp). In order to prove the theorem, we first show that the inequality

∑
(i,j)∈Fp

(γi − (γi − γj + α)κi) +
∑

(i,j)∈Bp

(γi − γj) (1− κi)

≤ (|Fp| − 1)σ +
∑

i∈T (Ap)\{gp}

ωi −
(
γ1 − γip+1 + α

)
κgp + γ1 + ∆p,

(22)

is valid for p = 1, . . . , q. We prove this by induction on p. For p = 1, the inequality

(22) is trivial because A1 = {(1, i2)}, F1 = A1, B1 = ∅, and ∆1 = 0, and therefore,

both sides of the inequality reduce to γ1 − (γ1 − γi2 + α)κ1.

For simplicity, we denote the left-hand and right-hand sides of inequality (22) for p

by Lp and Rp, respectively. Now as the induction hypothesis we assume Lp−1 ≤ Rp−1.

We then prove Lp ≤ Rp. Consider the following cases (which correspond to the cases

in the gp definition):

I. ip ∈ T (Fp). This means γip < γip+1 , Fp = Fp−1 ∪ {(ip, ip+1)}, and Bp = Bp−1.

Therefore we can write

Lp = Lp−1 + γip −
(
γip − γip+1 + α

)
κip

≤ (|Fp−1| − 1)σ +
∑

i∈T (Ap−1)\{gp−1}

ωi

−
(
γ1 − γip + α

)
κgp−1 + γ1 + ∆p−1 + γip −

(
γip − γip+1 + α

)
κip

(23)

where the last inequality is based on (22) for p − 1. Now, consider the following

subcases:

I.1. gp−1 ∈ T (Fp−1), κgp−1 ≥ κip. This implies gp = gp−1, and hence ∆p = ∆p−1 =

0. Now notice that 0 ≤
(
γip − γip+1

) (
κip − κgp−1

)
, and by inequality (20)

for ip, 0 ≤ σ + ωip + ακip − γip . Adding these two inequalities to inequality
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(23), we get

Lp ≤ |Fp−1|σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωip

−
(
γ1 − γip+1 + α

)
κgp−1 + γ1 + ∆p−1

= (|Fp| − 1)σ +
∑

i∈T (Ap)\{gp}

ωi

−
(
γ1 − γip+1 + α

)
κgp + γ1 + ∆p = Rp.

(24)

The first identity is true because |Fp−1| = |Fp| − 1, T (Ap−1)∪ {ip} = T (Ap),

gp−1 = gp, and ∆p−1 = ∆p(= 0).

I.2. gp−1 ∈ T (Fp−1), κgp−1 < κip. This implies gp = ip, and hence gp ∈ T (Fp).

Therefore, ∆p−1 = ∆p = 0. Notice that 0 ≤
(
γ1 − γip

)
(
κgp−1 + 1− κip

)
, 0 ≤ γgp−1 − γ1, and by inequality (20) for gp−1, 0 ≤

σ + ωgp−1 + ακgp−1 − γgp−1 . By adding these three inequalities to inequality

(23), we get

Lp ≤ |Fp−1|σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωgp−1

−
(
γ1 − γip+1 + α

)
κip + γ1 + ∆p−1 = Rp.

The final identity is true because |Fp−1| = |Fp| − 1, T (Ap−1) = T (Ap)\{ip},

ip = gp, and ∆p−1 = ∆p(= 0).

I.3. gp−1 ∈ T (Bp−1), κgp−1 > κip. This means gp = gp−1, ∆p−1 = γgp−1 −

γip , and ∆p = γgp − γip+1 = γgp−1 − γip+1 . Adding valid inequalities 0 ≤(
γip − γip+1

) (
κip + 1− κgp−1

)
and 0 ≤ σ+ωip +ακip − γip to inequality (23)

gives
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Lp ≤ |Fp−1|σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωip

−
(
γ1 − γip+1 + α

)
κgp−1 + γ1 + ∆p−1 + γip − γip+1 = Rp.

(25)

The final identity holds because |Fp−1| = |Fp| − 1, T (Ap−1) ∪ {ip} = T (Ap),

gp−1 = gp, and ∆p−1 + γip − γip+1 = γgp−1 − γip+1 = ∆p.

I.4. gp−1 ∈ T (Bp−1), κgp−1 ≤ κip. This means gp = ip, and hence gp ∈ T (Fp).

Therefore, ∆p = 0. Also, ∆p−1 = γgp−1 − γip . Now adding valid inequalities

0 ≤
(
γ1 − γip

) (
κgp−1 − κip

)
and 0 ≤ σ+ ωgp−1 +ακgp−1 − γgp−1 to inequality

(23) gives

Lp ≤ |Fp−1|σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωgp−1

−
(
γ1 − γip+1 + α

)
κip + γ1 + ∆p−1 + γip − γgp−1 = Rp.

The final identity is true because |Fp−1| = |Fp| − 1, T (Ap−1) = T (Ap)\{ip},

ip = gp, ∆p−1 + γip − γgp−1 = 0, and ∆p = 0.

II. ip ∈ T (Bp). This means γip > γip+1 , Fp := Fp−1, and Bp := Bp−1 ∪ {(ip, ip+1)}.

Therefore we can write

Lp = Lp−1 +
(
γip − γip+1

) (
1− κip

)
≤ (|Fp−1| − 1)σ +

∑
i∈T (Ap−1)\{gp−1}

ωi

−
(
γ1 − γip + α

)
κgp−1 + γ1 + ∆p−1 +

(
γip − γip+1

) (
1− κip

)
(26)

where the last inequality is based on (22) for p − 1. Now, consider the following

subcases:
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II.1. gp−1 ∈ T (Bp−1), κgp−1 ≤ κip. This means gp = gp−1, ∆p−1 = γgp−1 −

γip , and ∆p = γgp − γip+1 = γgp−1 − γip+1 . Adding valid inequalities 0 ≤(
γip − γip+1

) (
κip − κgp−1

)
and 0 ≤ ωip to inequality (26), we get the same

inequality as (25) except for the coefficient of σ which will be |Fp−1| − 1.

This inequality is true for the same reasons stated in case I.3 and the fact

that |Fp−1| = |Fp| in this case.

II.2. gp−1 ∈ T (Bp−1), κgp−1 > κip. This means ∆p−1 = γgp−1 − γip . Also, gp = ip,

and hence gp ∈ T (Bp). Therefore, ∆p = γgp − γip+1 = γip − γip+1 . Adding

valid inequalities 0 ≤
(
γ1 − γip + α

) (
κgp−1 − κip − 1

)
, 0 ≤ γ1 − γgp−1 + α,

and 0 ≤ ωgp−1 to inequality (26) gives

Lp ≤ (|Fp−1| − 1)σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωgp−1

−
(
γ1 − γip+1 + α

)
κip + γ1 + ∆p−1 + γip − γgp−1 + γip − γip+1 = Rp.

The final identity is true because |Fp−1| = |Fp|, T (Ap−1) = T (Ap)\{ip},

ip = gp, ∆p−1 = γgp−1 − γip , and γip − γip+1 = ∆p.

II.3. gp−1 ∈ T (Fp−1), κgp−1 < κip. This implies gp = gp−1, and hence ∆p =

∆p−1 = 0. Adding valid inequalities 0 ≤
(
γip − γip+1

) (
κip − 1− κgp−1

)
and

0 ≤ ωip to inequality (26), we get the same inequality as (24) except for the

coefficient of σ which will be |Fp−1| − 1. This inequality is true for the same

reasons stated in case I.1 and the fact that |Fp−1| = |Fp| in this case.

II.4. gp−1 ∈ T (Fp−1), κgp−1 ≥ κip. This means ∆p−1 = 0. Also, gp = ip, and

hence gp ∈ T (Bp). Therefore ∆p = γgp − γip+1 = γip − γip+1 . Adding valid

inequalities 0 ≤
(
γ1 − γip + α

) (
κgp−1 − κip

)
and 0 ≤ ωgp−1 to inequality (26)

gives
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Lp ≤ |Fp−1|σ +
∑

i∈T (Ap−1)\{gp−1}

ωi + ωgp−1

−
(
γ1 − γip+1 + α

)
κip + γ1 + ∆p−1 + γip − γip+1 = Rp.

The final identity is true because |Fp−1| = |Fp|, T (Ap−1) = T (Ap)\{ip},

ip = gp, ∆p−1 = 0, and γip − γip+1 = ∆p.

All cases are exhausted, and therefore, inequality (22) is valid for any p = 1, . . . , q.

Now recall that iq+1 = 1. This implies Aq = AC , and therefore,

Lq =
∑

(i,j)∈F

(γi − (γi − γj + α)κi) +
∑

(i,j)∈B

(γi − γj) (1− κi)

=
∑

(i,j)∈F

(γj − (γi − γj + α)κi)−
∑

(i,j)∈B

(γi − γj)κi
(27)

The second identity is true because
∑

(i,j)∈F γi +
∑

(i,j)∈B (γi − γj) =∑
(i,j)∈F (γi − γj + γj)+

∑
(i,j)∈B (γi − γj) =

∑
(i,j)∈F γj+

∑
(i,j)∈AC (γi − γj) =

∑
(i,j)∈F γj.

Note that
∑

(i,j)∈AC (γi − γj) = 0 because the arcs in AC form a cycle. Now based

on inequality (22) for p = q and inequality (27), we have

∑
(i,j)∈F

(γj − (γi − γj + α)κi)−
∑

(i,j)∈B

(γi − γj)κi

≤ (|F | − 1)σ +
∑

i∈T (AC)\{gq}

ωi − ακgq + γ1 + ∆q,

≤ |F |σ +
∑

i∈T (AC)

ωi + ∆q + γ1 − γgq ≤ |F |σ +
∑

i∈T (AC)

ωi,

(28)

where the second inequality is true by adding the valid inequality 0 ≤ σ+ωgq+ακgq−

γgq to the first inequality, and the third inequality is true because we have either

∆q = 0 or ∆q = γgq − γiq+1 = γgq − γ1, and hence, ∆q + γ1− γgq ≤ min{γ1− γgq , 0} =
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γ1 − γgq ≤ 0. By rearranging the terms in inequality (28), we get inequality (21).

This completes the proof.

Now given n′ ∈ {1, . . . , n}, we develop the n′-step cycle inequalities for Qm,n as

follows: Without loss of generality, we assume β
(n′)
i−1 ≤ β

(n′)
i , i = 2, . . . ,m, where β

(n′)
i

is defined as (11). Also define β0 := 0. Now similar to the graph defined for the cycle

inequalities (see Section II.2.2), here we define a directed graph Gn′ = (V,A), where

V := {0, 1, . . . ,m} and A := {(i, j) : i, j ∈ V, β(n′)
i 6= β

(n′)
j }. Gn′ is a complete graph

except for the arcs (i, j) where β
(n′)
i = β

(n′)
j . Here to each arc (i, j) ∈ A, we associate

the linear function ψn
′

ij (y, v, s) defined as

ψn
′

ij (y, v, s) :=


s+ vi +

n∑
t=n′+1

αty
i
t + β

(n′)
ij

(
1− φn′i (yi)

)
− β(n′)

j if i < j,

vi +
n∑

t=n′+1

αty
i
t +
(
β

(n′)
i − β(n′)

j

) (
1− φn′i (yi)

)
if i > j,

(29)

where β
(n′)
ij := β

(n′)
i − β

(n′)
j + αn′ for all (i, j) ∈ A, i < j, the functions φn

′
i (yi),

i = 1, . . . ,m, are defined as (17) and by definition, v0 := 0, y0 := 0, and φn
′

0 (y0) := 1.

We show that each elementary cycle of graph Gn′ corresponds to a valid inequality

for the set Qm,n, which we refer to as the n′-step cycle inequality. To do this in

addition to Lemma 1, we need the following lemma:

Lemma 2. For i ∈ {1, . . . ,m} and n′ ∈ {1, . . . , n}, the inequality

s+ vi +
n∑

t=n′+1

αty
i
t + αn′

(
1− φn′i (yi)

)
≥ β

(n′)
i (30)

is valid for Qm,n if the n′-step MIR conditions (9) hold for constraint i of Qm,n, i.e.

αt

⌈
β

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n′.

Proof. Kianfar and Fathi [62] proved that the following inequality
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s+ vi +
n∑

t=n′+1

αty
i
t

+ αn′

(
n′∑
t=1

n′∏
l=t+1

⌈
β

(l−1)
i

αl

⌉
yit −

n′∏
l=1

⌈
β

(l−1)
i

αl

⌉
+

⌈
β

(n′−1)
i

αn′

⌉)
≥ β

(n′−1)
i

(31)

is valid for the relaxation of Qm,n defined by its i’th constraint, i.e. {(yi, vi, s) ∈

(Z× Zn−1
+ )× R+ × R+ :

∑n
t=1 αty

i
t + vi + s ≥ βi}, if the n′-step MIR conditions for

constraint i hold. Therefore, it is also valid for Qm,n. Subtracting αn′

⌊
β
(n′−1)
i

αn′

⌋
from

both sides and rearranging the terms in (31) gives (30).

Theorem 5. Given n′ ∈ {1, . . . , n} and an elementary cycle C = (VC , AC) of graph

Gn′, the n′-step cycle inequality

∑
(i,j)∈AC

ψn
′

ij (y, v, s) ≥ 0 (32)

is valid for Qm,n if the n′-step MIR conditions for i ∈ VC, i.e.

αt

⌈
β

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n′, i ∈ VC . (33)

Proof. Consider a point (ŷ, v̂, ŝ) ∈ Qm,n. Based on Lemma 2, inequality (30) is

satisfied by the point (ŷ, v̂, ŝ) for each i ∈ VC\{0} because of (33). But notice that

inequality (30) for this point is the same as inequality (20) if we define σ := ŝ,

α := αn′ , and ωi := v̂i+
∑n

t=n′+1 αtŷ
i
t, κi := 1−φin′(ŷi), γi := β

(n′)
i , i ∈ VC\{0}. Also,

in case 0 ∈ VC , if we define ω0, κ0, and γ0 in a similar way, inequality (20) for i = 0

reduces to the valid inequality ŝ ≥ 0 because as we defined before y0 := 0, v0 := 0,

φn
′

0 (y0) := 1, and β0 := 0. With these definitions, we have ωi ≥ 0, κi ∈ Z, i ∈ VC and

0 = γ0 ≤ γ1 < γ2 < · · · < γ|VC | < αn′ . Therefore, according to Lemma 1, inequality

(21) in which σ, α and ωi, κi, γi, i ∈ VC are replaced with the values defined here is
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valid. It is easy to see that this inequality is exactly the same as the n′-step cycle

inequality (32) for the point (ŷ, v̂, ŝ). This completes the proof.

Special Cases: The n-step MIR inequalities [62] and the mixed n-step MIR in-

equalities [96] are special cases of the n-step cycle inequalities.

I. The n-step cycle inequality (32) written for cycle C = (VC , AC) such that

AC = {(0, i), (i, 0)} and vi = 0 gives the n-step MIR inequality (10) written for

constraint i in Qm,n
0 .

II. The n-step cycle inequality (32) written for cycle C = (VC , AC) such that

AC = {(i1, i2), . . . , (iq, i1)} with only one forward arc (i1, i2), followed by

backward arcs (i1, i2), . . . , (iq, i1) and vi = 0 for all i ∈ K, gives the follow-

ing inequalities for Qm,n
0 : the type I mixed n-step MIR inequality (15) where

K = {iq, . . . , i2}, if i1 = 0, and the type II mixed n-step MIR inequality (16)

where K = {iq, . . . , i1}, if i1 6= 0.

Remark: For the special case where the parameters α1, . . . , αn′ are divisible, i.e.

αt|αt−1, t = 2, . . . , n′, the n′-step MIR conditions are automatically satisfied no

matter what the value of βi is.
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Example 1. Consider the following continuous multi-mixing set with 6 rows:

Q6,2 = {(y, v, s) ∈ (Z× Z+)6 × R7
+ :

50y1
1 + 12y1

2 + v1 + s ≥ 87,

50y2
1 + 12y2

2 + v2 + s ≥ 39,

50y3
1 + 12y3

2 + v3 + s ≥ 141,

50y4
1 + 12y4

2 + v4 + s ≥ 93,

50y5
1 + 12y5

2 + v5 + s ≥ 45,

50y6
1 + 12y6

2 + v6 + s ≥ 71}.

So we have α = (α1, α2) = (50, 12), β1 = 87, β2 = 39, β3 = 141, β4 = 93, β5 = 45,

β6 = 71. Note that β
(1)
6 = 21 < β

(1)
1 = 37 < β

(1)
2 = 39 < β

(1)
3 = 41 < β

(1)
4 = 43 <

β
(1)
5 = 45 and β

(2)
1 = 1 < β

(2)
2 = 3 < β

(2)
3 = 5 < β

(2)
4 = 7 < β

(2)
5 = β

(2)
6 = 9. Note that⌈

β
(1)
i /α2

⌉
= 4 for i = 1, . . . , 5,

⌈
β

(1)
6 /α2

⌉
= 3 and clearly the 2-step MIR conditions

(33), i.e. α1 ≥ α2

⌈
β

(1)
i /α2

⌉
, are satisfied for i = 1, . . . , 6.

2-step cycle inequalities for Q6,2: Setting n′ = 2, the set of nodes and arcs of the

graph G2 will be V2 = {0, . . . , 6} and A2 = {(i, j) : i, j ∈ V2}\{(5, 6), (6, 5)} because

β
(2)
5 = β

(2)
6 . The linear function ψ2

ij(y, v, s) associated with each arc (i, j) ∈ A2 is

defined by (1) where n′ = 2, i.e.

ψ2
ij(y, v, s) :=


s+ vi +

(
β

(2)
i − β(2)

j + α2

)
(1− φ2

i (y
i))− β(2)

j if β
(2)
i < β

(2)
j ,

vi +
(
β

(2)
i − β(2)

j

)
(1− φ2

i (y
i)) if β

(2)
i > β

(2)
j ,

where φ2
i (y

i) =
⌈
β

(1)
i /α2

⌉
dβi/α1e −

⌈
β

(1)
i /α2

⌉
yi1 − yi2, for i = 1, . . . , 6, and v0 :=

0, y0 := 0, and φ2
0(y0) := 1. Based on Theorem 5, the 2-step cycle inequali-
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ties corresponding to the cycles in G2 are valid for Q6,2. For example, the 2-step

cycle inequality corresponding to a cycle C2
1 = (VC2

1
, AC2

1
) in G2 where AC2

1
=

{(1, 3), (3, 6), (6, 4), (4, 5), (5, 2), (2, 1)} is ψ2
13 + ψ2

36 + ψ2
64 + ψ2

45 + ψ2
52 + ψ2

21 ≥ 0,

i.e.

(s+ v1 + 32y1
1 + 8y1

2 − 61) + (s+ v3 + 32y3
1 + 8y3

2 − 97)

+ (v6 + 6y6
1 + 2y6

2 − 10) + (s+ v4 + 40y4
1 + 10y4

2 − 79)

+ (v5 + 24y5
1 + 6y5

2 − 18) + (v2 + 8y2
1 + 2y2

2 − 6) ≥ 0.

(34)

Likewise, for a cycle C2
2 in G2 with AC2

2
= {(2, 4), (4, 3), (3, 5), (5, 2)}, the 2-step

cycle inequality is ψ2
24 + ψ2

43 + ψ2
35 + ψ2

52 ≥ 0, i.e.

(s+ v2 + 32y2
1 + 8y2

2 − 31) + (v4 + 8y4
1 + 2y4

2 − 14)

+ (s+ v3 + 32y3
1 + 8y3

2 − 33) + (v5 + 24y5
1 + 6y5

2 − 18) ≥ 0,

(35)

and for a cycle C2
3 in G2 with AC2

3
= {(0, 6), (6, 4), (4, 1), (1, 0)}, the 2-step cycle

inequality is ψ2
06 + ψ2

64 + ψ2
41 + ψ2

10 ≥ 0, i.e.

(s− 9) + (v6 + 6y6
1 + 2y6

2 − 10) + (v4 + 24y4
1 + 6y4

2 − 56)

+ (v1 + 4y1
1 + y1

2 − 7) ≥ 0.

(36)

1-step Cycle Inequalities for Q6,2: Setting n′ = 1, the set of nodes and arcs of the

graph G1 will be V1 = {0, 6, 1, . . . , 5} and A1 = {(i, j) : i, j ∈ V1} because β
(1)
6 < β

(1)
1 .

The linear function ψ1
ij(y, v, s) associated with each arc (i, j) ∈ A1 is defined by (1)
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where n′ = 1, i.e.

ψ1
ij(y, v, s) :=


s+ vi + α2y

i
2 +

(
β

(1)
i − β(1)

j + α1

)
(1− φ1

i (y
i))− β(1)

j if β
(1)
i < β

(1)
j ,

vi + α2y
i
2 +

(
β

(1)
i − β(1)

j

)
(1− φ1

i (y
i)) if β

(1)
i > β

(1)
j ,

where φ1
i (y

i) = dβi/α1e − yi1, for i = 1, . . . , 5, and v0 := 0, y0 := 0, and φ1
0(y0) := 1.

Based on Theorem 5, the 1-step cycle inequalities corresponding to the cycles in

G1 are valid for Q6,2. For example, the 1-step cycle inequality corresponding to a

cycle C1
1 = (VC1

1
, AC1

1
) in G1 where AC1

1
= {(6, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} is

ψ1
61 + ψ1

12 + ψ1
23 + ψ1

34 + ψ1
45 + ψ1

56 ≥ 0, i.e.

(s+ v6 + 34y6
1 + 12y6

2 − 71) + (s+ v1 + 48y1
1 + 12y1

2 − 87)

+ (s+ v2 + 48y2
1 + 12y2

2 − 41) + (s+ v3 + 48y3
1 + 12y3

2 − 139)

+ (s+ v4 + 48y4
1 + 12y4

2 − 93) + (v5 + 24y5
1 + 12y5

2) ≥ 0.

(37)

Likewise, for a cycle C1
2 in G1 with AC1

2
= {(6, 2), (2, 5), (5, 6)}, the 1-step cycle

inequality is ψ1
62 + ψ1

25 + ψ1
56 ≥ 0, i.e.

(s+ v6 + 32y6
1 + 12y6

2 − 71) + (s+ v2 + 44y2
1 + 12y2

2 − 45)

+ (v5 + 24y5
1 + 12y5

2) ≥ 0,

(38)

and for a cycle C1
3 in G1 with AC1

3
= {(0, 4), (4, 6), (6, 0)}, the 1-step cycle inequality

is ψ1
04 + ψ1

46 + ψ1
60 ≥ 0, i.e.

(s− 43) + (v4 + 22y4
1 + 12y5

2 − 22) + (v6 + 21y6
1 + 12y6

2 − 21) ≥ 0. (39)

Theorem 6. The following linear program is a compact extended formulation for
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Qm,n, if conditions (33) hold.

ψn
′

ij (y, v, s) ≥ δn
′

i − δn
′

j for all (i, j) ∈ A, n′ ∈ {1, . . . , n} (40)∑n
t=1αty

i
t + vi + s ≥ βi, i = 1, . . . ,m (41)

y ∈ (R× Rn−1
+ )m, v ∈ Rm

+ , s ∈ R+, δ ∈ Rn(m+1). (42)

Proof. Let Qm,n,δ := {(y, v, s, δ) satisfying (40)-(42)}. Clearly Projy,v,s(Q
m,n,δ) is

defined by the set of all n′-step cycle inequalities (32), for n′ = 1, . . . , n, and bound

constraints s, v ≥ 0. This means all the inequalities which define Projy,v,s(Q
m,n,δ)

are valid for Qm,n if conditions (33) hold which implies Qm,n ⊆ Projy,v,s(Q
m,n,δ)

under the same conditions. This proves that Qm,n,δ is an extended formulation for

Qm,n.

III.2 Facet-Defining n-step Cycle Inequalities

In this section, we show that for any n′ ∈ {1, . . . , n}, the n′-step cycle inequalities

define facets for conv(Qm,n) under certain conditions. In order to prove this, we first

define some points and provide some properties for them.

Definition 13. For i ∈ {1, . . . ,m}, define the points P i,d,Qi,d ∈ Z × Zn−1
+ , d =

1, . . . , n, as follows:

P i,dt :=



⌊
β
(t−1)
i

αt

⌋
t = 1, . . . , d− 1,⌈

β
(t−1)
i

αt

⌉
t = d,

0 t = d+ 1, . . . , n,

Qi,dt :=


⌊
β
(t−1)
i

αt

⌋
t = 1, . . . , d,

0 t = d+ 1, . . . , n,

and the point Ri ∈ Z × Zn−1
+ (assuming

⌊
β

(n′−1)
i /αn′

⌋
≥ 1) as Ri = Qi,n′ − en′,
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where en′ is the n′th unit vector in Rn. Also, define the points S i,d ∈ Z × Zn−1
+ ,

d = 2, . . . , n′, (assuming
⌊
β

(d−1)
i /αd

⌋
≥ 1, d = 2, . . . , n′) as follows:

S i,dt :=



Qi,n′t t = 1, . . . , d− 2, d+ 1, . . . , n⌊
β
(t−1)
i

αt

⌋
− 1 t = d− 1,

2

⌊
β
(t−1)
i

αt

⌋
+ 1 t = d.

Moreover, for i, j ∈ {1, . . . ,m} such that β
(n′)
i > β

(n′)
j , define the points T i,j,d ∈ Z×

Zn−1
+ , d = n′, . . . , n, as T i,j,dt := Qi,n′t for t = 1, . . . , n′, d+ 1, . . . , n and

⌊
β
(n′,t−1)
ij

αt

⌋
for

t = n′+1, . . . , d, where β
(n′,n′)
ij := β

(n′)
i −β(n′)

j and β
(n′,t)
ij := β

(n′,t−1)
ij −αt

⌊
β

(n′,t−1)
ij /αt

⌋
,

t = n′ + 1, . . . , n.

Lemma 3. The point (ŷ, v̂, ŝ) ∈ (Z×Zn−1
+ )m×Rm+1

+ satisfies constraint i ∈ {1, . . . ,m}

of Qm,n if any of the following is true

(a). ŷi = P i,d for some d ∈ {1, . . . , n}

(b). ŷi = Qi,d for some d ∈ {1, . . . , n} and v̂i + ŝ ≥ β
(d)
i ,

(c). ŷi = Ri and v̂i + ŝ ≥ αn′ + β
(n′)
i ,

(d). ŷi = S i,d for some d ∈ {2, . . . , n′} and v̂i + ŝ ≥ β
(n′)
i + αd−1 − αd

⌈
β

(d−1)
i /αd

⌉
,

(e). ŷi = T i,j,d for some d ∈ {n′, . . . , n} and j ∈ {1, . . . ,m} and v̂i+ŝ ≥ β
(n′)
j +β

(n′,d)
ij .

Proof. Cases (a) and (b) can be easily proved similar to the proof of Lemma 5 in [96].

Cases (c) and (d) can also be easily proved similar to the proof of Lemma 9 in [96].

For (e), notice that by substituting the point (ŷ, v̂, ŝ) in constraint i of Qm,n, we get
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∑n′

t=1 αt

⌊
β

(t−1)
i /αt

⌋
+
∑d

t=n′+1 αt

⌊
β

(n′,t−1)
ij /αt

⌋
+ v̂i+ ŝ ≥ βi, or v̂i+ ŝ ≥ β

(n′)
j +β

(n′,d)
ij ,

which is true by the assumption of case (e).

Lemma 4. For i ∈ {1, . . . ,m} and n′ ∈ {1, . . . , n},

(a). φn
′
i (P i,d) = 0, d = 1, . . . , n′,

(b). φn
′
i (Qi,d) = 1, d = n′, . . . , n,

(c). φn
′
i (Ri) = 2,

(d). φn
′
i (S i,d) = 1, d = 2, . . . , n′,

(e). φn
′
i (T i,j,d) = 1, d = n′, . . . , n, for j ∈ {1, . . . ,m} such that β

(n′)
i > β

(n′)
j .

Proof. Cases (a), (b) and (e) can be proved similar to Lemma 6 of [96] and cases (c)

and (d) can be proved similar to Lemma 10 of [96].

As before, given a cycle C = (VC , AC) of Gn′ , let F and B be the set of forward

arcs and backward arcs of the cycle C, respectively, i.e. F := {(i, j) ∈ AC : i < j}

and B := {(i, j) ∈ AC : j < i}.

Theorem 7. For n′ ∈ {1, . . . , n}, the n′-step cycle inequality (32) for an elementary

cycle C = (VC , AC) of graph G is facet-defining for conv(Qm,n) if (in addition to the

n′-step MIR conditions (33)) the following conditions hold

(a)
⌊
β

(d−1)
k /αd

⌋
≥ 1, d = 2, . . . , n, for all (k, l) ∈ F ,

(b) β
(n′)
l − β(n′)

k ≥ max
{
αd−1 − αd

⌈
β
(d−1)
k

αd

⌉
, d = 2, . . . , n′

}
for all (k, l) ∈ F ,

(c)
⌊
β

(n′,d−1)
kl /αd

⌋
≥ 1, d = n′ + 1, . . . , n, for all (k, l) ∈ B.
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Proof. Consider the supporting hyperplane of inequality (32) for the cycle C. Note

that this hyperplane can be written as

∑
(i,j)∈F

(
s+ vi +

n∑
t=n′+1

αty
i
t − β(n′)

i +
(
β

(n′)
i − β(n′)

j + αn′
)(

1− φn′i (yi)
))

=
∑

(i,j)∈B

((
β

(n′)
i − β(n′)

j

)
φn
′

i (yi)−
n∑

t=n′+1

αty
i
t − vi

)
(43)

because−∑(i,j)∈F β
(n′)
j +

∑
(i,j)∈B

(
β

(n′)
i − β(n′)

j

)
= −∑(i,j)∈F β

(n′)
i . Let Γ = {(y, v, s) ∈

conv(Qm,n) : (43)} be the face of conv(Qm,n) defined by hyperplane (43).

First, we prove that Γ is a facet of Qm,n under conditions (a) (note that under

conditions (a), 0 /∈ VC because β0 = 0 and does not satisfy conditions (a)). Let

m∑
i=1

n∑
t=1

λity
i
t +

m∑
i=1

ρivi + ρ0s = θ (44)

be a hyperplane passing through Γ. We prove that (44) must be a multiple of (43).

Notice that for each k ∈ {1, . . . ,m}\VC and d ∈ {1, . . . , n}, the unit vector

Ek,d1 = (y1, . . . , ym, v1, . . . , vm, s) ∈ (Z×Zn−1
+ )m×Rm+1

+ , in which ykd = 1 and all other

coordinates are zero, is a direction for both the set Qm,n and the hyperplane defined

by (43), and hence a direction for the face Γ. This implies that λkd = 0 for all k ∈

{1, . . . ,m}\VC and d = 1, . . . , n. By similar reasoning, for each k ∈ {1, . . . ,m}\VC ,

the unit vector Ek2 = (y1, . . . , ym, v1, . . . , vm, s) ∈ (Z×Zn−1
+ )m×Rm+1

+ , in which vk = 1

and all other coordinates are zero, is a direction for the face Γ, implying that ρk = 0,

k ∈ {1, . . . ,m}\VC . These reduce the hyperplane (44) to

∑
i∈VC

n∑
t=1

λity
i
t +

∑
i∈VC

ρivi + ρ0s = θ (45)
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Next, consider the pointA = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ (Z×Zn−1
+ )m×

Rm+1
+ such that, for i = 1, . . . ,m, (yi, vi) = (Qi,n′ , β(n′)

i ) if i ∈ T (F ), and (yi, vi) =

(P i,1, 0) if i /∈ T (F ). Based on Lemma 3(a,b), A ∈ Qm,n and using Lemma 4(a,b), it

can be easily verified that A satisfies (43). So, A ∈ Γ and hence must satisfy (45).

Substituting A into (45) gives

∑
i∈T (F )

(
ρiβ

(n′)
i +

n′∑
t=1

λit

⌊
β

(t−1)
i /αt

⌋)
+
∑
i∈T (B)

λi1 dβi/α1e = θ. (46)

Using (46), hyperplane (45) reduces to

∑
i∈T (F )

(
ρi

(
vi − β(n′)

i

)
+

n′∑
t=1

λit

(
yit −

⌊
β

(t−1)
i /αt

⌋)
+

n∑
t=n′+1

λity
i
t

)

+ ρ0s =
∑
i∈T (B)

(
λi1
(
dβi/α1e − yi1

)
−

n∑
t=2

λity
i
t − ρivi

)
.

(47)

Now, consider the points Bk,d = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ (Z×Zn−1
+ )m×

Rm+1
+ for k ∈ T (F ) and d = n′ + 1, . . . , n such that

(yi, vi) =


(Qi,n′ , β(n′)

i ) if i ∈ T (F )\{k},

(Qi,d, β(d)
i ) if i = k,

(P i,1, 0) if i /∈ T (F ),

for i = 1, . . . ,m. By Lemma 3(a,b), Bk,d ∈ Qm,n, for all k ∈ T (F ) and d = n′ +

1, . . . , n. Using Lemma 4(a,b), one can easily verify that all these points also satisfy

(43). So for all k ∈ T (F ) and d = n′ + 1, . . . , n, Bk,d ∈ Γ, and hence must satisfy

(47). Now if for each k ∈ T (F ), we substitute the points Bk,n′+1, . . . ,Bk,n one after
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the other into (47), (since conditions (a) holds) we get

λkd = αdρk, d = n′ + 1, . . . , n, k ∈ T (F ) (48)

Next, consider the points Ck,d = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ (Z×Zn−1
+ )m×

Rm+1
+ for k ∈ T (B), d = 2, . . . , n′ such that

(yi, vi) =


(Qi,n′ , β(n′)

i ) if i ∈ T (F ),

(P i,d, 0) if i = k,

(P i,1, 0) if i /∈ T (F ) ∪ {k},

for i = 1, . . . ,m. By Lemma 3(a,b), Ck,d ∈ Qm,n, for all k ∈ T (B) and d = 2, . . . , n′.

Using Lemma 4(a,b), one can easily verify that all these points also satisfy (43).

So for all k ∈ T (B) and d = 2, . . . , n′, Ck,d ∈ Γ, and hence must satisfy (47).

For each k ∈ T (B), substituting the points Ck,2, . . . , Ck,n′ one after the other into

(47) gives λkd−1 = λkd

⌈
β

(d−1)
k /αd

⌉
, d = 2, . . . , n′, k ∈ T (B), which implies λkd =

λkn′
∏n′

l=d+1

⌈
β

(l−1)
k /αl

⌉
, d = 1, . . . , n′, k ∈ T (B). This, along with (48), reduces

hyperplane (47) to

∑
i∈T (F )

(
ρi

(
vi +

n∑
t=n′+1

αty
i
t − β(n′)

i

)
+

n′∑
t=1

λit

(
yit −

⌊
β

(t−1)
i /αt

⌋))

+ ρ0s =
∑
i∈T (B)

(
λin′φ

n′

i (yi)−
n∑

t=n′+1

λity
i
t − ρivi

)
.

(49)

Now, consider the point D = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, η) ∈ (Z × Zn−1
+ )m ×

Rm+1
+ , where η = min{β(n)

i : i ∈ T (F )}, such that for i = 1, . . . ,m, (yi, vi) =

(Qi,n′ , β(n′)
i − η) if i ∈ T (F ), and (yi, vi) = (P i,1, 0) if i /∈ T (F ). By Lemma 3(a,b),
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it is clear that D ∈ Qm,n and using Lemma 4(a,b), one can easily verify that it also

satisfies (43). So D ∈ Γ, and hence must satisfy (49). Substituting D into (49) gives

ρ0 =
∑
i∈T (F )

ρi. (50)

Now for i ∈ VC , let N(i) be the node in VC such that (i, N(i)) ∈ AC . For

each (k, l) ∈ AC , since conditions (a) holds, consider the points Fk,l = (y, v, s) =

(y1, . . . , ym, v1, . . . , vm, β
(n′)
l ) ∈ (Z× Zn−1

+ )m × Rm+1
+ such that

(yi, vi) =



(Ri, β
(n′)
i − β(n′)

l + αn′) if i ∈ T (F ), N(i) < l

(Qi,n′ , 0) if i ∈ T (F ), i < l ≤ N(i)

(Qi,n′ , β(n′)
i − β(n′)

l ) if i ∈ T (F ), i ≥ l

(Qi,n′ , 0) if i ∈ T (B), i < l

(Qi,n′ , β(n′)
i − β(n′)

l ) if i ∈ T (B), N(i) < l ≤ i

(P i,1, 0) if i ∈ T (B), N(i) ≥ l

(P i,1, 0) if i /∈ VC ,

for i = 1, . . . ,m. By Lemma 3(a,b,c), it is clear that Fk,l ∈ Qm,n for all (k, l) ∈ AC .
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Using Lemma 4(a,b,c), if we substitute Fk,l into (43), we get

∑
(i,j)∈F ;i,j<l

(
β

(n′)
i − β(n′)

j

)
+

∑
(i,j)∈B;i,j<l

(
β

(n′)
i − β(n′)

j

)
+

∑
(i,j)∈F ;i<l≤j

(
β

(n′)
i − β(n′)

l

)
+

∑
(i,j)∈B;j<l≤i

(
β

(n′)
l − β(n′)

j

)
= −

∑
(i,j)∈F ;i<l≤j

β
(n′)
i +

∑
(i,j)∈B;j<l≤i

β
(n′)
j

+
∑

(i,j)∈F ;i<l≤j

β
(n′)
i −

∑
(i,j)∈B;j<l≤i

β
(n′)
j = 0,

(51)

which is obviously true. Therefore, the points Fk,l, for all (k, l) ∈ AC , also satisfy

(43). Hence, they belong to Γ, and must satisfy (49). Now, note that in the point

Fk,l, (k, l) ∈ F , by definition we have (yk, vk) = (Qk,n′ , 0). For each (k, l) ∈ F , define

another point Fk,l1 = (y, v, s) ∈ (Z×Zn−1
+ )m×Rm+1

+ whose coordinates are all exactly

the same as Fk,l except that (yk, vk) = (Rk, β
(n′)
k − β

(n′)
l + αn′). For precisely the

same reasons stated for Fk,l, the points Fk,l1 , (k, l) ∈ F , must also satisfy (49) (note

that substituting Fk,l1 in (43) gives identity (51) again). Now if for each (k, l) ∈ F ,

we substitute Fk,l and Fk,l1 into (49) and subtract one equality from the other, we

get

λkn′ = ρk

(
β

(n′)
k − β(n′)

l + αn′
)
, for all (k, l) ∈ F. (52)

Next, for each (k, l) ∈ F and d = 2, . . . , n′, since conditions (a) hold, define the point

Fk,l,d2 = (y, v, s) ∈ (Z×Zn−1
+ )m×Rm+1

+ whose coordinates are all exactly the same as

Fk,l except that (yk, vk) = (Sk,d, 0). By Lemma 3(a,b,c,d) and because of conditions

(b), it is clear that Fk,l,d2 ∈ Qm,n for all (k, l) ∈ F and d = 2, . . . , n′. Using Lemma

4(a,b,c,d), one can easily verify that they also satisfy (43) (note that substituting
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Fk,l,d2 in (43) gives identity (51) again), and hence belong to Γ and must satisfy (49).

Now if for each (k, l) ∈ F and d = 2, . . . , n′, we substitute the points Fk,l and Fk,l,d2

into (49) and subtract one equality from the other, we get

λkd−1 = λkd

⌈
β

(d−1)
k /αd

⌉
, d ∈ {2, . . . , n′}, k ∈ T (F ). (53)

This implies

λkd = λkn′

n′∏
p=d+1

⌈
β

(p−1)
k /αp

⌉
, d = 1, . . . , n′, k ∈ T (F ). (54)

Next, note that in the point Fk,l, (k, l) ∈ B, by definition we have (yk, vk) = (Pk,1, 0).

For each (k, l) ∈ B and d = n′, . . . , n, define the point Fk,l,d3 = (y, v, s) ∈ (Z ×

Zn−1
+ )m × Rm+1

+ whose coordinates are all exactly the same as Fk,l except that

(yk, vk) = (T k,l,d, β(n′,d)
kl ). By Lemma 3(a,b,c,e), it is clear that Fk,l,d3 ∈ Qm,n for

all (k, l) ∈ B and d = n′, . . . , n. Using Lemma 4(a,b,c,e), we can easily verify that

they also satisfy (43) (note that substituting Fk,l,d3 in (43) gives identity (51) again),

and hence belong to Γ and must satisfy (49). Now if for each (k, l) ∈ B, we substitute

Fk,l and Fk,l,n′3 into (49) and subtract one equality from the other, we get

λkn′ = ρk

(
β

(n′)
k − β(n′)

l

)
, for all (k, l) ∈ B, (55)

and if we continue to do the same with Fk,l,n′+1
3 , . . . ,Fk,l,n3 one after the other, in

light of condition (c), we get

λkd = αdρk, d = n′ + 1, . . . , n, for all (k, l) ∈ B. (56)
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Based on (50), (52), (54), (55), (56), and using (18), hyperplane (49) reduces to

∑
(i,j)∈F

ρi

(
s+ vi +

n∑
t=n′+1

αty
i
t − β(n′)

i +
(
β

(n′)
i − β(n′)

j + αn′
)(

1− φn′i (yi)
))

=
∑

(i,j)∈B

ρi

((
β

(n′)
i − β(n′)

j

)
φn
′

i (yi)−
n∑

t=n′+1

αty
i
t − vi

)
.

(57)

Now, for i ∈ VC , let P (i) be the node in VC such that (P (i), i) ∈ AC , and define

ia := min{j ∈ VC : i < j} and ib := max{j ∈ VC : j < i}. Also let imax = max{i :

i ∈ VC} and imin = min{i : i ∈ VC}. For l ∈ VC\{imax}, if we substitute the point

FP (l),l and FP (la),la into (57) (note that both points must satisfy (57) as argued

for all points Fk,l) and subtract the two equalities, we get
∑

(i,j)∈F
i<la≤j

ρi

(
β

(n′)
l − β(n′)

la

)
+

∑
(i,j)∈B
j<la≤i

ρi

(
β

(n′)
la
− β(n′)

l

)
= 0. Since β

(n′)
l 6= β

(n′)
la

, we get

∑
(i,j)∈F ;i<la≤j

ρi −
∑

(i,j)∈B;j<la≤i

ρi = 0. (58)

Likewise, for l ∈ VC\{imin}, if we substitute the point FP (lb),lb and FP (l),l into equality

(57) and subtract the two equalities, we get

∑
(i,j)∈F ;i<l≤j

ρi −
∑

(i,j)∈B;j<l≤i

ρi = 0 (59)

because β
(n′)
lb
6= β

(n′)
l . Notice that if l = P (imax), then la = imax, and identity (58)

reduces to

ρP (imax) = ρimax (60)
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Also if for each l ∈ VC\{imin, imax}, we subtract (58) from (59), we get

ρP (l) = ρl, l ∈ VC\{imin, imax}. (61)

Identities (60) and (61) imply that ρP (l) = ρl for all l ∈ VC (because P (i) = imin for

some i ∈ VC\{imin}). Therefore,

ρi = ρj for all i, j ∈ VC (62)

as C is a cycle. This reduces hyperplane (57) to a constant multiple (by (50) this

multiple is ρ0/|F |) of (43), which completes the proof .

Example 1 (continued). Notice that for n′ = 1, each cycle C = (VC , AC) in graph

G1 with a set of backward arcs B = {(i, 6)}, for i ∈ {1, . . . , 5}, satisfy the additional

conditions required for Theorem 7, i.e. (a)
⌊
β

(1)
k /α2

⌋
= 3 ≥ 1, for k ∈ {1, . . . , 5},⌊

β
(1)
6 /α2

⌋
= 2 ≥ 1, (b) this condition is automatically satisfied for n′ = 1, and

(c)
⌊
β

(1,1)
k,6 /α2

⌋
=
⌊(
β

(1)
k − β

(1)
6

)
/α2

⌋
≥ 1, for k = 1, . . . , 5. Therefore, the 1-step

cycle inequality (32) corresponding to a cycle C in G1, where B = {(i, 6)} for i ∈

{1, . . . , 5}, defines facet for conv(Q6,2). In particular, the 1-step cycle inequalities

corresponding to the cycles C1
1 and C1

2 are facet-defining for conv(Q6,2).

Now, for n′ = 2, the coefficients of Q6,2 also satisfy the additional conditions

required in Theorem 7, i.e. (a)
⌊
β

(1)
k /α2

⌋
= 3 ≥ 1, for k ∈ {1, . . . , 5},

⌊
β

(1)
6 /α2

⌋
=

2 ≥ 1, (b) β
(2)
l −β

(2)
k ≥ 2 = α1−α2

⌈
β

(1)
k /α2

⌉
for all (k, l) ∈ A2 such that 1 ≤ k < l ≤

6, and there is no condition (c) for n′ = n = 2. Therefore, the 2-step cycle inequality

(32) corresponding to each cycle C = (VC , AC) in graph G2, where VC ⊆ {1, . . . , 6},

defines a facet for conv(Q6,2). In particular, 2-step cycle inequalities corresponding

to the cycles C2
1 and C2

2 are facet-defining for conv(Q6,2).
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Theorem 8. For n′ ∈ {1, . . . , n}, the n′-step cycle inequality (32) for an elementary

cycle C = (VC , AC) of graph G is facet-defining for conv(Qm,n) if (in addition to the

n′-step MIR conditions (33)) the following condition hold

(a) T (F ) = {0},

(b)
⌊
β

(n′,d−1)
kl /αd

⌋
≥ 1, d = n′ + 1, . . . , n, for all (k, l) ∈ B.

Proof. As shown before, the supporting hyperplane of inequality (32) can be written

as (43), which for the C considered in this theorem reduces to

s =
∑

(i,j)∈B

((
β

(n)
i − β(n)

j

)
φi(yi)−

n∑
t=n′+1

αty
i
t − vi

)
(63)

because by condition (a), the cycle C has only one forward arc, which goes out of

node 0, and we have v0 = 0, y0 = 0 and φn
′

0 (y0) := 1 by definition. Let Γ be the face

of Qm,n defined by hyperplane (63). We prove that any generic hyperplane

ρ0s+
m∑
i=1

ρivi +
m∑
i=1

n∑
t=1

λijy
i
j = θ (64)

that passes through Γ is a scalar multiple of (63). By the same reasoning we reduced

hyperplane (44) to (45) in Theorem 7, we can reduce hyperplane (64) to

∑
i∈VC\{0}

n∑
t=1

λity
i
t +

∑
i∈VC\{0}

ρivi + ρ0s = θ. (65)

Now consider the following points (correspondig to the points with the same name in

the proof of Theorem 7): The point A = (y1, . . . , ym, v1, . . . , vm, s) ∈ (Z× Zn−1
+ )m ×

Rm+1
+ such that (yi, vi) = (P i,1, 0), i = 1, . . . ,m, and s = 0; the points Ck,d =

(y1, . . . , ym, v1, . . . , vm, s) ∈ (Z × Zn−1
+ )m × Rm

+ × R+, for k ∈ T (B), d = 2, . . . , n′,
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such that (yk, vk) = (Pk,d, 0) and (yi, vi) = (P i,1, 0) for i ∈ {1, . . . ,m}\(T (F )∪{k}),

and s = 0; the points Fk,l = (y1, . . . , ym, v1, . . . , vm, s) ∈ (Z × Zn−1
+ )m × Rm

+ × R+,

for (k, l) ∈ B, such that

(yi, vi) =


(Qi,n′ , 0) if i ∈ T (B), i ≤ l

(P i,1, 0) if i ∈ T (B), N(i) ≥ l

(P i,1, 0) if i /∈ VC ,

for i = 1, . . . ,m, and s = βl
(n′); and the points Fk,l,d3 ∈ (Z × Zn−1

+ )m × Rm+1
+ , for

(k, l) ∈ B, d = n′, . . . , n, whose coordinates are all exactly the same as Fk,l except

that (yk, vk) = (T k,l,d, β(n′,d)
kl ).

By Lemma 3(a,b,e), all the aforementioned points belong to Qm,n, and by Lemma

4(a,b,e), it is easy to verify that they also satisfy (63). So, they belong to Γ, and

hence must satisfy (65). Therefore, given conditions (b), all these points can be used

in the same fashion the points with similar names were used in the proof of Theorem

7 to reduce the hyperplane (65) to an equality which is ρ0 times the hyperplane (63).

This completes the proof.

Example 1 (continued). Notice that for n′ = 1, each cycle C = (VC , AC) in graph

G1 with AC = {(0, i), (i, 0)} for i ∈ {1, . . . , 6} or AC = {(0, i), (i, 6), (6, 0)} for i ∈

{1, . . . , 5} satisfies the conditions required for Theorem 8, i.e. (a) T (F ) = {0}, and

(b)
⌊
β

(1,1)
k,l /α2

⌋
=
⌊(
β

(1)
k − β

(1)
l

)
/α2

⌋
≥ 1 for all (k, l) ∈

{
(i, j) ∈ AC : β

(1)
i > β

(1)
j

}
.

Therefore, the 1-step cycle inequality (32) corresponding to each cycle C defines

a facet for conv(Q6,2). In particular, 1-step cycle inequality corresponding to the

cycle C1
3 is facet-defining for conv(Q6,2). Moreover, the 2-step cycle inequality (32)

corresponding to each cycle C = (VC , AC) in G2 = (V2, A2), where T (F ) = {0}, also
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defines facet for conv(Q6,2) because there is no condition (b) for n′ = n = 2. In

particular, 2-step cycle inequality corresponding to the cycle C2
3 is facet-defining for

conv(Q6,2).

III.3 Separation Algorithm

Given a point (ŷ, v̂, ŝ) and n′ ∈ {1, . . . , n}, it is possible to solve the exact sep-

aration problem over all the n′-step cycle inequalities for the set Qm,n. The goal

is to find an n′-step cycle inequality (32) that is violated by (ŷ, v̂, ŝ), if any. This

can be done by detecting a negative weight cycle (if any) in the directed graph

Gn′ = (V,A) with weights ψn
′

ij (ŷ, v̂, ŝ) for each arc (i, j) ∈ A. This means that the

most negative cycle in Gn′ (if it exists) corresponds to the n′-step cycle inequality

that is most violated by (ŷ, v̂, ŝ). However, the problem of finding the most negative

cycle in a graph is strongly NP-hard [99]. A method proposed by Cherkassy and

Goldberg [25] (which is a combination of the cycle detection strategy of Tarjan [100]

and the Bellman-Ford-Moore’s labeling algorithm [33]), denoted by BFCT, is one of

the fastest known algorithms to detect a negative cycle. BFCT terminates when it

finds the first negative cycle; however, there may be cycles with smaller weight in the

graph which would lead to stronger inequalities. Therefore, we devised a modified

version of BFCT, denoted by MBFCT. The pseudocode of MBFCT is presented in

Algorithm 1 and it works as follows:

For each node i ∈ V , we maintain distance(i), parent(i), and status(i) ∈

{unreached, labeled, scanned} (refer Lines 2-4 of Algorithm 1). Initially for every

node i ∈ V, distance(i) =∞, parent(i) = null, and status(i) = “unreached.” The al-

gorithm starts by setting status(0) = “labeled” and distance(0) = 0 in Line 5. It also

maintains a set of labeled nodes, denoted by label := {i ∈ V : status(i) = “labeled”},

in a first-in, first-out queue. This means a newly labeled node is added at the tail
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Algorithm 1 Separation Algorithm for n′-step Cycle Inequalities

1: function MBFCT(Gn′ , (ŷ, v̂, ŝ), n
′)

2: for i ∈ V do

3: d(i)←∞; parent(i)← Null; status(i)← “unreached”;

4: end for

5: NC ← ∅, label← {0}; status(0)← “labeled”; d(0)← 0; Count← 0;

6: for i ∈ label and Count ≤ 3|V | do . FIFO selection rule

7: for (i, j) ∈ A do

8: if d(i) + ψn
′

ij (ŷ, v̂, ŝ) < d(j) then

9: d(j)← d(i) + ψn
′

ij (ŷ, v̂, ŝ); status(j)← “labeled”; parent(j)← i;

10: Āp ← {(parent(j), j) : j ∈ V, parent(j) 6= Null};
11: Construct graph Ḡp = (V, Āp)

12: if the subtree of Ḡp rooted at j contains i then

13: NC ← NC ∪ {(j ∼ i− j)}
14: . j ∼ i denotes the path from node j to node i in Ḡp

15: else

16: remove all the nodes of subtree except j from Ḡp

17: and change their status to unreached

18: end if

19: end if

20: end for

21: label← label\{i}; status(i)← “scanned”; Count← Count+ 1;

22: end for

23: return the most negative cycle in NC (if exist)

24: end function

of the queue if they are not already on it. Therefore, at the start we set label = {0}

in Line 5. For each step, we remove the head node i from the queue label such

that status(i) = “labeled,” and scan node i. The scanning of a labeled node i is

performed as follows. For each arc (i, j) ∈ A where distance(i) + ψn
′

ij (ŷ, v̂, ŝ) <

distance(j) (Line 8), we set distance(j) = distance(i) + ψn
′

ij (ŷ, v̂, ŝ), parent(j) = i,
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status(j) = “labeled”, and add j at the tail of the queue label if j /∈ label (Line

9). This is called the labeling operation. Now, let Ḡp = (V, Āp) be a subgraph of

Gn′ such that Āp := {(parent(j), j) : j ∈ V, parent(j) 6= null}. When the labeling

operation is applied to an arc (i, j), the subtree of Ḡp rooted at j is traversed to

find if it contains i (which implies that a negative cycle in Gn′ exists). On the other

hand, if the node i is not in the subtree, all the nodes except j are removed from the

current tree and their status is changed to “unreached.” After scanning, the status

of node i is updated to “scanned.”

Unlike the BFCT [25], MBFCT does not stop after finding the first negative cycle

and continues the search for other negative cycles (if any) until a certain termination

condition is satisfied (see Line 6 in Algorithm 1). Out of all the cycles found by

MBFCT, the one with the most negative weight is used to generate the n′-step cycle

inequality (32) that separates (ŷ, v̂, ŝ) with the largest violation among all generated

cycles. Clearly, if MBFCT does not return any negative cycle, the point cannot be

separated using the n′-step cycle inequalities.

We also note that as presented in [105] for the case of n = 1, for a general

n′ ∈ {1, . . . , n} we can also formulate the separation problem associated with the

n′-step cycle inequalities as follows:

min

{ ∑
(i,j)∈E

ψn
′

ij (ŷ, v̂, ŝ)zij : Mz = 0, z ≥ 0

}
. (66)

where zij is a variable representing the flow along arc (i, j), M is the node-arc

incidence matrix of G, and the goal is to test whether linear program (66) has a

strictly negative solution value.

58



CHAPTER IV

CONTINUOUS MULTI-MIXING SET WITH GENERAL COEFFICIENTS

In this chapter, we relax the n-step MIR conditions imposed on the coefficients

of continuous multi-mixing set (discussed in previous chapter) and consider the con-

tinuous multi-mixing set with general coefficients, denoted by

Y m :=

{
(y, v, s) ∈ Zm×N+ × Rm

+ × R+ :
∑
t∈N

aity
i
t + vi + s ≥ bi, i = 1, . . . ,m

}

where N := {1, . . . , N}, a ∈ Rm×N , and b ∈ Rm (no conditions are imposed on the

coefficients). Note that the mixed integer knapsack set Y 1
0 is a special case of Y m

where N = 1. It is the projection of Y 1 ∩ {v = 0} on (y, s). In Section IV.1, we

generalize n-step cycle inequalities, n ∈ N, for Y m, and discuss how the n-step MIR

inequalities [62] are special cases of the n-step cycle inequalities. We also introduce

a compact extended formulation for Y m and observe that the separation over the

set of all n-step cycle inequalities, n ∈ N, for set Y m can be performed using the

separation algorithm (discussed in Chapter III) with slight modifications. In Section

IV.2, we obtain conditions under which n-step cycle inequalities are facet-defining

for conv(Y m).

IV.1 Valid Inequalities and Extended Formulation

In this section, given n ∈ N, first we develop the n-step cycle inequalities for Y m

as follows: We choose a parameter vector α = (α1, . . . , αn) > 0 and without loss of

generality, we assume b
(n)
i−1 ≤ b

(n)
i , i = 2, . . . ,m, where b

(n)
i is defined as (11). Also

define b0 := 0. Now similar to the graph defined for the cycle inequalities (see Section
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II.2.2), here we define a directed graph Gn = (V,A), where V := {0, 1, . . . ,m} and

A := {(i, j) : i, j ∈ V, b
(n)
i 6= b

(n)
j }. Gn is a complete graph except for the arcs

(i, j) where b
(n)
i = b

(n)
j . Here to each arc (i, j) ∈ A, we associate the linear function

Ψn
ij(y, v, s) defined as

Ψn
ij(y, v, s) :=



s+ vi +
∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t + b

(n)
ij

(
1− Φn

i (yi)
)
− b(n)

j if i < j,

vi +
∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t +
(
b

(n)
i − b(n)

j

) (
1− Φn

i (yi)
)

if i > j,

(67)

where b
(n)
ij := b

(n)
i − b(n)

j + αn for all (i, j) ∈ A, i < j,

I i,ng := {x ∈ R : x(q) < b
(q)
i , q = 1, . . . , g, x(g+1) ≥ b

(g+1)
i },

I i,nn := {x ∈ R : x(q) < b
(q)
i , q = 1, . . . , n},

for g = 0, . . . , n− 1, i = 1, . . . ,m, and the functions Φn
i (yi), i = 1, . . . ,m, in its open

form can be defined as

Φn
i (yi) :=

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n−1∑
g=0

∑
t∈N

ait∈I
i,n
g

(
g∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋

+
n∏

l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
it

αg+1

⌉)
yit −

∑
t∈N

ait∈I
i,n
n

n∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋
yit

(68)

and by definition, v0 := 0, y0 := 0, and Φn
0 (y0) := 1.

We show that each elementary cycle of graph Gn corresponds to a valid inequality

for the set Y m, which we also refer to as the n-step cycle inequality. To do this in

addition to Lemma 1, we need the following lemma:
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Lemma 5. For i ∈ {1, . . . ,m} and n ∈ N, the inequality

s+ vi +
∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t + αn

(
1− Φn

i (yi)
)
≥ b

(n)
i (69)

is valid for Y m if αd

⌈
b

(d−1)
i /αd

⌉
≤ αd−1, d = 2, . . . , n.

Proof. Kianfar and Fathi [62] proved that the following inequality

s+ vi +
∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t + αn

{
n−1∑
g=0

∑
t∈N

ait∈I
i,n
g

(
g∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋

+
n∏

l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
it

αg+1

⌉)
yit +

∑
t∈N

ait∈I
i,n
n

n∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋
yit

}

− αn
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
+ αn ≥ b

(n)
i

(70)

is valid for the relaxation of Y m defined by its i’th constraint, i.e. {(yi, vi, s) ∈ ZN+ ×

R+×R+ :
∑

t∈N aity
i
t +vi+s ≥ bi}, for α := (α1, . . . , αn) satisfying αd

⌈
b

(d−1)
i /αd

⌉
≤

αd−1, d = 2, . . . , n. Therefore, it is also valid for Y m. Note that rearranging the

terms in (70) and using (68) gives (69).

Theorem 9. Given n ∈ N and an elementary cycle C = (VC , AC) of graph Gn, the

n-step cycle inequality

∑
(i,j)∈AC

Ψn
ij(y, v, s) ≥ 0 (71)

is valid for Y m if the parameters (α1, . . . , αn) satisfy

αd

⌈
b

(d−1)
i /αd

⌉
≤ αd−1, d = 2, . . . , n, i ∈ VC . (72)
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Proof. Consider a point (ŷ, v̂, ŝ) ∈ Y m. Based on Lemma 5, inequality (69) is satisfied

by the point (ŷ, v̂, ŝ) for each i ∈ VC\{0} because of (72). But notice that inequality

(69) for this point is the same as inequality (20) if we define σ := ŝ, α := αn, and

ωi := v̂i +
∑

t∈N ,ait∈Ii,nn a
(n)
it ŷ

i
t, κi := 1 − Φi

n(ŷi), γi := b
(n)
i , i ∈ VC\{0}. Also, in

case 0 ∈ VC , if we define ω0, κ0, and γ0 in a similar way, inequality (20) for i = 0

reduces to the valid inequality ŝ ≥ 0 because as we defined before y0 := 0, v0 := 0,

Φn
0 (y0) := 1, and b0 := 0. With these definitions, we have ωi ≥ 0, κi ∈ Z, i ∈ VC and

0 = γ0 ≤ γ1 < γ2 < · · · < γ|VC | < αn. Therefore, according to Lemma 1, inequality

(21) in which σ, α and ωi, κi, γi, i ∈ VC are replaced with the values defined here is

valid. It is easy to see that this inequality is exactly the same as the n-step cycle

inequality (71) for the point (ŷ, v̂, ŝ). This completes the proof.

Special Cases: For each n ∈ N, the n-step cycle inequality (71) written for cycle

C = (VC , AC) such that AC = {(0, i), (i, 0)} gives the n-step MIR inequality (13)

written for constraint i in Y m.

Separation Algorithm. Given a point (ŷ, v̂, ŝ) and n ∈ N, we can also formulate

the separation problem associated with the n-step cycle inequalities (71) as follows:

min

{ ∑
(i,j)∈A

Ψn
ij(ŷ, v̂, ŝ)zij : Mz = 0, z ≥ 0

}
. (73)

where zij is a variable representing the flow along arc (i, j), M is the node-arc

incidence matrix of Gn, and the goal is to test whether linear program (113) has a

strictly negative solution value. Therefore, for the point (ŷ, v̂, ŝ), we find an n-step

cycle inequality (71) that is violated by (ŷ, v̂, ŝ), if any, by detecting a negative weight

cycle (if any) in the directed graph Gn with weights Ψn
ij(ŷ, v̂, ŝ) for each arc (i, j) ∈ A

(refer to Section III.3 for details).
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Example 2. Consider the following continuous multi-mixing set with 5 rows and

general coefficients:

Y 5 = {(y, v, s) ∈ Z6×5
+ × R6

+ :

52y1
1 + 35y1

2 − 125y1
3 + 17y1

4 − 19y1
5 − 57y1

6 + v1 + s ≥ 88,

33y2
1 + 35y2

2 + 84y2
3 + 17y2

4 − 53y2
5 − 125y2

6 + v2 + s ≥ 163,

16y3
1 + 35y3

2 − 3y3
3 + 17y3

4 + 34y3
5 + 48y3

6 + v3 + s ≥ 61,

−21y4
1 + 35y4

2 + 87y4
3 + 17y4

4 + 122y4
5 − 36y4

6 + v4 + s ≥ 135,

56y5
1 + 35y5

2 + 64y5
3 + 17y5

4 + 19y5
5 + 52y5

6 + v5 + s ≥ 86}.

We have N = {1, . . . , 6}, b1 = 88, b2 = 163, b3 = 61, b4 = 135, and b5 = 86.

Assuming (α1, α2) = (35, 17), we have b
(1)
5 = 16 < b

(1)
1 = 18 < b

(1)
2 = 23 < b

(1)
3 =

26 < b
(1)
4 = 30, and b

(2)
1 = 1 < b

(2)
2 = 5 < b

(2)
3 = 9 < b

(2)
4 = 13 < b

(2)
5 = 16.

Note that
⌈
b

(1)
i /α2

⌉
= 2 for i = 1, . . . , 4,

⌈
b

(1)
5 /α2

⌉
= 1, and clearly the conditions

(72), i.e. α1 ≥ α2

⌈
b

(1)
i /α2

⌉
, are satisfied for i = 1, . . . , 5. Note that a13, a15, a16 ∈

I1,2
1 , a11, a12, a14 ∈ I1,2

2 , a21 ∈ I2,2
0 , a23, a25 ∈ I2,2

1 , a22, a24, a26 ∈ I2,2
2 , a33, a35 ∈

I3,2
0 , a31, a36 ∈ I3,2

1 , a32, a34 ∈ I3,2
2 , a46 ∈ I4,2

0 , a41 ∈ I4,2
1 , a42, a43, a44, a45 ∈ I4,2

2 ,

a51, a53, a55, a56 ∈ I5,2
0 , and a52, a54 ∈ I5,2

2 . Observe that for i = 1, . . . , 5, ai2 = α1,

ai4 = α2, ai2, ai4 ∈ I i,22 and a
(2)
i2 = a

(2)
i4 = 0. Therefore, we define Nα = {2, 4}. We

also have a
(2)
ir = 0, for r ∈ N\Nα and i = 1, . . . , 5, where air ∈ I i,22 .

2-step cycle inequalities for Y 5: Setting n = 2, the set of nodes and arcs of the

graph G2 will be V2 = {0, . . . , 5} and A2 = {(i, j) : i, j ∈ V2}. The linear function
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Ψ2
ij(y, v, s) associated with each arc (i, j) ∈ A2 is defined by (67) where n = 2, i.e.

Ψ2
ij(y, v, s) :=



s+ vi +
∑
t∈N

ait∈I
i,2
2

a
(2)
it y

i
t + b

(2)
ij

(
1− Φ2

i (y
i)
)
− b(2)

j if i < j,

vi +
∑
t∈N

ait∈I
i,2
2

a
(2)
it y

i
t +
(
b

(2)
i − b(2)

j

) (
1− Φ2

i (y
i)
)

if i > j,

where b
(2)
ij := b

(2)
i − b(2)

j + α2 for all (i, j) ∈ A, i < j,

Φ2
i (y

i) :=
2∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
∑
t∈N

ait∈I
i,2
0

⌈
b

(1)
i

α2

⌉⌈
ait
α1

⌉
yit −

∑
t∈N

ait∈I
i,2
1

(⌈
b

(1)
i

α2

⌉⌊
ait
α1

⌋
+

⌈
a

(1)
it

α2

⌉)
yit

−
∑

t∈N\Nα
ait∈I

i,2
2

2∑
q=1

2∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋
yit −

⌈
b

(1)
i

α2

⌉
yi2 − yi4,

and v0 := 0, y0 := 0, a0t = 0 for t ∈ N , and Φ2
0(y0) := 1. Based on Theorem 9,

the 2-step cycle inequalities corresponding to the cycles in G2 are valid for Y 5. For

example, the 2-step cycle inequality corresponding to a cycle C = (VC , AC) in G2

where AC = {(1, 3), (3, 5), (5, 4), (4, 2)} is

Ψ2
13 + Ψ2

35 + Ψ2
54 + Ψ2

42 ≥ 0. (74)

Likewise, for a cycle C in G2 with AC = {(1, 4), (4, 2), (2, 5), (5, 1)}, the 2-step cycle

inequality is

Ψ2
14 + Ψ2

42 + Ψ2
25 + Ψ2

51 ≥ 0, (75)

and for a cycle C in G2 with AC = {(0, 5), (5, 4), (4, 1), (1, 0)}, the 2-step cycle

inequality is

Ψ2
05 + Ψ2

54 + Ψ2
41 + Ψ2

10 ≥ 0. (76)
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Theorem 10. The following linear program is a compact extended formulation for

Y m, if conditions (72) hold.

Ψn
ij(y, v, s) ≥ δni − δnj for all (i, j) ∈ A, n ∈ {1, . . . , n} (77)∑n
t=1aity

i
t + vi + s ≥ bi, i = 1, . . . ,m (78)

y ∈ Rmn
+ , v ∈ Rm

+ , s ∈ R+, δ ∈ Rn(m+1). (79)

Proof. Let Y m,δ := {(y, v, s, δ) satisfying (77)-(79)}. Clearly Projy,v,s(Y
m,δ) is de-

fined by the set of all n-step cycle inequalities (71), for n = 1, . . . , n, and bound

constraints s, v ≥ 0. This means all the inequalities which define Projy,v,s(Y
m,δ)

are valid for Y m if the parameters (α1, . . . , αn) satisfy conditions (72) which im-

plies Y m ⊆ Projy,v,s(Y
m,δ) under the same conditions. This proves that Y m,δ is an

extended formulation for Y m.

IV.2 Facet-Defining n-step Cycle Inequalities

In this section, we show that for any n ∈ N, the n-step cycle inequalities (71)

define facets for conv(Y m) under certain conditions. In order to prove this, we first

define Nα := {t1, . . . , tn} ⊆ N such that for t ∈ Nα, ait = ajt(> 0), i, j ∈ VC . Then

we assign parameter αd = aitd for i ∈ VC and d = 1, . . . , n and re-write (68) as
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follows:

Φn
i (yi) :=

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n−1∑
g=0

∑
t∈N\Nα
ait∈I

i,n
g

(
g∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋

+
n∏

l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
it

αg+1

⌉)
yit −

∑
t∈N\Nα
ait∈I

i,n
n

n∑
q=1

n∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
it

αq

⌋
yit

−
n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉
yitd .

(80)

Next, we redefine some points (introduced in Chapter III), introduce some new

points, and provide some properties for them. Note that in the following definitions

we only describe nonzero components for each point.

Definition 14. For i ∈ {1, . . . ,m}, define the points P i,r,Qi,r ∈ ZN+ , r = 1, . . . , n,

as follows:

P i,rtd :=


⌊
b
(d−1)
i

αd

⌋
d = 1, . . . , r − 1,⌈

b
(d−1)
i

αd

⌉
d = r

Qi,rtd :=

{⌊
b
(d−1)
i

αd

⌋
d = 1, . . . , r,

and the point Ri ∈ ZN+ (assuming
⌊
b

(n−1)
i /αn

⌋
≥ 1) as Ri = Qi,n − etn, where etn is

the tnth unit vector in Rn. Also, define the points S i,r ∈ ZN+ , r = 2, . . . , n, (assuming⌊
b

(r−1)
i /αr

⌋
≥ 1, r = 1, . . . , n) as follows:

S i,rtd :=



Qi,ntd d = 1, . . . , r − 2, r + 1, . . . , n⌊
b
(d−1)
i

αd

⌋
− 1 d = r − 1,

2

⌊
b
(d−1)
i

αd

⌋
+ 1 d = r,
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the points T i,g,r,U i,g,r ∈ ZN+ , r ∈ N\Nα where air ∈ I i,ng and g ∈ {0, . . . , n − 1}, as

follows:

T i,g,rt :=


⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , g + 1,

1 t = r,

U i,g,rt :=



⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , g,⌊

b
(d−1)
i

αd

⌋
−
⌈
a
(d−1)
ir

αd

⌉
t = td, d = g + 1,⌈

b
(d−1)
i

αd

⌉
t = td, d = g + 2, . . . , n,

1 t = r,

(note that by definition a
(g)
ir < b

(g)
i and a

(g+1)
ir = a

(g)
ir − αg+1

⌊
a

(g)
ir /αg+1

⌋
≥ b

(g+1)
i =

b
(g)
i −αg+1

⌊
b

(g)
i /αg+1

⌋
> a

(g)
ir −αg+1

⌊
b

(g)
i /αg+1

⌋
which implies

⌊
b

(g)
i /αg+1

⌋
>
⌊
a

(g)
ir /αg+1

⌋
or
⌊
b

(g)
i /αg+1

⌋
≥
⌈
a

(g)
ir /αg+1

⌉
), and the points V i,r,W i,r ∈ ZN+ , r ∈ N\Nα where

air ∈ I i,nn , as follows:

V i,rt :=


⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , n,

1 t = r,
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W i,r
t :=



⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , n− 1,⌈

b
(d−1)
i

αd

⌉
−
⌊
a
(d−1)
ir

αd

⌋
t = td, d = n,

1 t = r.

Lemma 6. The point (ŷ, v̂, ŝ) ∈ Zm×N+ ×Rm+1
+ satisfies constraint i ∈ {1, . . . ,m} of

Y m if any of the following is true

(a). ŷi = P i,r for some r ∈ {1, . . . , n}

(b). ŷi = Qi,r for some r ∈ {1, . . . , n} and v̂i + ŝ ≥ b
(r)
i ,

(c). ŷi = Ri and v̂i + ŝ ≥ αn + b
(n)
i ,

(d). ŷi = S i,r for some r ∈ {2, . . . , n} and v̂i + ŝ ≥ b
(n)
i + αr−1 − αr

⌈
b

(r−1)
i /αr

⌉
,

(e). ŷi = T i,g,r for some r ∈ N\Nα where air ∈ I i,ng and g ∈ {0, . . . , n− 1},

(f). ŷi = U i,g,r for some r ∈ N\Nα where air ∈ I i,ng and g ∈ {0, . . . , n − 1}, and

v̂i + ŝ ≥ b
(n)
i + αg+1 − a(g+1)

ir ,

(g). ŷi = V i,r for some r ∈ N\Nα where air ∈ I i,nn , and v̂i + ŝ ≥ b
(n)
i − a(n)

ir ,

(h). ŷi =W i,r for some r ∈ N\Nα where air ∈ I i,nn .

Proof. Cases (a) and (b) can be easily proved similar to the proof of Lemma 5 in [96].

Cases (c) and (d) can also be easily proved similar to the proof of Lemma 9 in [96].

For (e), notice that by substituting the point (ŷ, v̂, ŝ) in constraint i of Y m, we get∑g+1
d=1 αd

(⌊
b

(d−1)
i /αd

⌋
−
⌊
a

(d−1)
ir /αd

⌋)
+ air + v̂i + ŝ ≥ bi, or v̂i + ŝ ≥ 0, which is true

by the definition of air, i.e. a
(g+1)
ir ≥ b

(g+1)
i . For (f), notice that by substituting the

point (ŷ, v̂, ŝ) in constraint i of Y m, we get
∑g+1

d=1 αd

(⌊
b

(d−1)
i /αd

⌋
−
⌊
a

(d−1)
ir /αd

⌋)
−
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αg+1 +
∑n

d=g+2 αd

⌊
b

(d−1)
i /αd

⌋
+ air + v̂i + ŝ ≥ bi, or v̂i + ŝ ≥ b

(n)
i + αg+1 − a(g+1)

ir ,

which is true by the assumption of (f). For (g), notice that by substituting the

point (ŷ, v̂, ŝ) in constraint i of Y m, we get
∑n

d=1 αd

(⌊
b

(d−1)
i /αd

⌋
−
⌊
a

(d−1)
ir /αd

⌋)
+

air + v̂i + ŝ ≥ bi, or v̂i + ŝ ≥ b
(n)
i − a

(n)
ir , which is true by the assumption of (g).

For (h), notice that by substituting the point (ŷ, v̂, ŝ) in constraint i of Y m, we get∑n
d=1 αd

(⌊
b

(d−1)
i /αd

⌋
−
⌊
a

(d−1)
ir /αd

⌋)
+ αn + air + v̂i + ŝ ≥ bi, or v̂i + ŝ ≥ 0, which

is true because αn + a
(n)
ir ≥ b

(n)
r .

Lemma 7. For i ∈ {1, . . . ,m} and n ∈ N,

(a). Φn
i (P i,r) = 0, r = 1, . . . , n,

(b). Φn
i (Qi,r) = 1, r = 1, . . . , n,

(c). Φn
i (Ri) = 2,

(d). Φn
i (S i,r) = 1, r = 2, . . . , n,

(e). Φn
i (T i,g,r) = 0, for each r ∈ N\Nα where air ∈ I i,ng and g ∈ {0, . . . , n− 1},

(f). Φn
i (U i,g,r) = 1, for each r ∈ N\Nα where air ∈ I i,ng and g ∈ {0, . . . , n− 1},

(g). Φn
i (V i,r) = 1, for each r ∈ N\Nα where air ∈ I i,nn ,

(h). Φn
i (W i,r) = 0, for each r ∈ N\Nα where air ∈ I i,nn .

Proof. Cases (a) and (b) can be proved similar to Lemma 6 of [96] and cases (c)

and (d) can be proved similar to Lemma 10 of [96]. The remaining cases are proved

as follows: For i ∈ {1, . . . ,m}, n ∈ N, and r ∈ N\Nα where air ∈ I i,ng and g ∈
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{0, . . . , n− 1}, we have

Φn
i (T i,g,r) =

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
ir

αd

⌋
−

n∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
ir

αg+1

⌉

−
g+1∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
a

(d−1)
ir

αd

⌋
− 1

)

=
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
(

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=2

⌈
b

(l−1)
i

αl

⌉)
− . . .

−
(

n∏
l=g

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=g+1

⌈
b

(l−1)
i

αl

⌉)
−

n∏
l=g+1

⌈
b

(l−1)
i

αl

⌉
= 0,

Φn
i (U i,g,r) =

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
ir

αd

⌋
−

n∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
ir

αg+1

⌉

−
g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
a

(d−1)
ir

αd

⌋
− 1

)

−
n∏

l=g+2

⌈
b

(l−1)
i

αl

⌉(⌈
b

(g)
i

αg+1

⌉
− 1−

⌈
a

(g)
ir

αg+1

⌉)

−
n∑

d=g+2

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
− 1

)

=
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
(

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=2

⌈
b

(l−1)
i

αl

⌉)
− . . .

−
(

n∏
l=n

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=n+1

⌈
b

(l−1)
i

αl

⌉)
= 1.
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Finally, for i ∈ {1, . . . ,m}, n ∈ N, and r ∈ N\Nα where air ∈ I i,nn , we have

Φn
i (V i,r) =

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
ir

αd

⌋

−
n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
a

(d−1)
ir

αd

⌋
− 1

)

=
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
(

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=2

⌈
b

(l−1)
i

αl

⌉)
− . . .

−
(

n∏
l=n

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=n+1

⌈
b

(l−1)
i

αl

⌉)
= 1,

Φn
i (W i,r) =

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
ir

αd

⌋

−
n−1∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
a

(d−1)
ir

αd

⌋
− 1

)

−
n∏

l=n+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(n−1)
i

αn

⌉
−
⌊
a

(n−1)
ir

αn

⌋)
= 0.

This completes the proof.

As before, given a cycle C = (VC , AC) of Gn, let F and B be the set of forward

arcs and backward arcs of the cycle C, respectively, i.e. F := {(i, j) ∈ AC : i < j}

and B := {(i, j) ∈ AC : j < i}.

Theorem 11. For n ∈ N, the n-step cycle inequality (71) for an elementary cycle

C = (VC , AC) of graph G is facet-defining for conv(Y m) if the following conditions

hold:

(a) For i ∈ VC, αd = aitd where td ∈ Nα for d = 1, . . . , n such that αtd

⌈
b

(d−1)
i /αd

⌉
≤

αtd−1
, d = 2, . . . , n;
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(b)
⌊
b

(d−1)
k /αd

⌋
≥ 1, d = 1, . . . , n, for all (k, l) ∈ F ;

(c) a
(n)
ir = 0, r ∈ N\Nα where air ∈ I i,nn and i ∈ VC;

(d) b
(n)
l − b

(n)
k ≥ max

{
αd−1 − αd

⌈
b
(d−1)
k

αd

⌉
, d = 2, . . . , n

}
for all (k, l) ∈ F ;

(e) b
(n)
l − b

(n)
k ≥ max

{
αg+1 − a(g+1)

kr , r ∈ N\Nα, akr ∈ Ik,ng , g ∈ {0. . . . , n− 1}
}

for

all (k, l) ∈ F .

Proof. Consider the supporting hyperplane of inequality (71) for the cycle C. Note

that this hyperplane can be written as

∑
(i,j)∈F

(
s+ vi +

∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t − b(n)

i +
(
b

(n)
i − b(n)

j + αn

) (
1− Φn

i (yi)
))

=
∑

(i,j)∈B

(b(n)
i − b(n)

j

)
Φn
i (yi)−

∑
t∈N

ait∈I
i,n
n

a
(n)
it y

i
t − vi

 (81)

because −∑(i,j)∈F b
(n)
j +

∑
(i,j)∈B

(
b

(n)
i − b(n)

j

)
= −∑(i,j)∈F b

(n)
i . Note that in the

light of conditions (a), Φn
i (yi), i ∈ VC , in (81) is defined by (80). Let Γ = {(y, v, s) ∈

conv(Y m) : (81)} be the face of conv(Y m) defined by hyperplane (81).

First, we prove that Γ is a facet of Y m under conditions (b) (note that under

conditions (b), 0 /∈ VC because b0 = 0 and does not satisfy conditions (a)). Let

m∑
i=1

n∑
t=1

λity
i
t +

m∑
i=1

ρivi + ρ0s = θ (82)

be a hyperplane passing through Γ. We prove that (82) must be a multiple of (81).

Notice that for each k ∈ {1, . . . ,m}\VC and d ∈ {1, . . . , n} where akd ≥ 0, the

unit vector Ak,d1 = (y1, . . . , ym, v1, . . . , vm, s) ∈ ZmN+ × Rm+1
+ , in which ykd = 1 and
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all other coordinates are zero, is a direction for both the set Y m and the hyperplane

defined by (81), and hence a direction for the face Γ. This implies that λkd = 0

for all k ∈ {1, . . . ,m}\VC and d ∈ {1, . . . , n} where akd ≥ 0. Furthermore, for

each k ∈ {1, . . . ,m}\VC and d ∈ {1, . . . , n} where akd < 0, the unit vector Ak,d2 =

(y1, . . . , ym, v1, . . . , vm, s) ∈ ZmN+ × Rm+1
+ , in which ykd = 1, ykt1 = d−akd/α1e, and all

other coordinates are zero, is a direction for both the set Y m and the hyperplane

defined by (81), and hence a direction for the face Γ. This implies that λkd = 0 for all

k ∈ {1, . . . ,m}\VC and d ∈ {1, . . . , n} where akd ≥ 0. By similar reasoning, for each

k ∈ {1, . . . ,m}\VC , the unit vector Ak3 = (y1, . . . , ym, v1, . . . , vm, s) ∈ ZmN+ × Rm+1
+ ,

in which vk = 1 and all other coordinates are zero, is a direction for the face Γ,

implying that ρk = 0, k ∈ {1, . . . ,m}\VC . These reduce the hyperplane (82) to

∑
i∈VC

n∑
t=1

λity
i
t +

∑
i∈VC

ρivi + ρ0s = θ (83)

Next, consider the point B = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ ZmN+ ×Rm+1
+

such that

(yi, vi) =


(Qi,n, b(n)

i ) if i ∈ T (F ),

(P i,1, 0) if i /∈ T (F ),

for i = 1, . . . ,m. Based on Lemma 6(a,b), B ∈ Y m and using Lemma 7(a,b), it

can be easily verified that B satisfies (81). So, B ∈ Γ and hence must satisfy (83).

Substituting B into (83) gives

∑
i∈T (F )

(
ρib

(n)
i +

n∑
d=1

λitd

⌊
b

(d−1)
i /αd

⌋)
+
∑
i∈T (B)

λit1 dbi/α1e = θ. (84)
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Using (84), hyperplane (83) reduces to

∑
i∈T (F )

(
ρi

(
vi − b(n)

i

)
+

n∑
d=1

λitd

(
yitd −

⌊
b

(d−1)
i /αd

⌋)
+

∑
t∈N\Nα

λity
i
t

)

+ ρ0s =
∑
i∈T (B)

λit1 (dbi/α1e − yit1
)
−

∑
t∈N\{t1}

λity
i
t − ρivi

 .

(85)

Now, consider the points Ck,d = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ ZmN+ ×

Rm+1
+ for k ∈ T (B), d = 2, . . . , n such that

(yi, vi) =


(Qi,n, b(n)

i ) if i ∈ T (F ),

(P i,d, 0) if i = k,

(P i,1, 0) if i /∈ T (F ) ∪ {k},

for i = 1, . . . ,m. By Lemma 6(a,b), Ck,d ∈ Y m, for all k ∈ T (B) and d = 2, . . . , n.

Using Lemma 7(a,b), one can easily verify that all these points also satisfy (81). So

for all k ∈ T (B) and d = 2, . . . , n, Ck,d ∈ Γ, and hence must satisfy (85). For each

k ∈ T (B), substituting the points Ck,2, . . . , Ck,n one after the other into (85) gives

λktd−1
= λktd

⌈
b

(d−1)
k /αd

⌉
, d = 2, . . . , n, k ∈ T (B),

which implies

λktd = λktn

n∏
l=d+1

⌈
b

(l−1)
k /αl

⌉
, d = 1, . . . , n, k ∈ T (B). (86)

Now, note that in the point Ck,d, k ∈ T (B), d ∈ {2, . . . , n}, by definition we

have (yk, vk) = (Pk,d, 0). For each k ∈ T (B) and r ∈ N\Nα where akr ∈ Ik,ng ,
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g ∈ {0, . . . , n − 1}, we define another point Ck,g,r1 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose

coordinates are exactly the same as Ck,d except that (yk, vk) = (T k,g,r, 0). By

Lemma 6(a,b,e), Ck,g,r1 ∈ Y m, for all k ∈ T (B) and r ∈ N\Nα where akr ∈ Ik,ng ,

g ∈ {0, . . . , n − 1}. Using Lemma 7(a,b,e), one can easily verify that all these

points also satisfy (81). So for all k ∈ T (B) and r ∈ N\Nα where akr ∈ Ik,ng ,

g ∈ {0, . . . , n − 1}, Ck,g,r1 ∈ Γ, and hence must satisfy (85). Now for each k ∈ T (B)

and r ∈ N\Nα where akr ∈ Ik,ng , g ∈ {0, . . . , n − 1}, Ck,g,r1 ∈ Γ, substituting the

point Ck,g,r1 in (85) and using (86) gives

λkr = λktn

(
n∏
l=1

⌈
b

(l−1)
k

αl

⌉
−

g+1∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉(⌈
b

(d−1)
k

αd

⌉
−
⌊
a

(d−1)
kr

αd

⌋
− 1

))

= λktn

(
g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉⌊
a

(d−1)
kr

αd

⌋
+

n∏
l=g+2

⌈
b

(l−1)
k

αl

⌉⌈
a

(g)
kr

αg+1

⌉)
. (87)

The last equality holds because

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
− 1

)
−

n∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
b

(g)
i

αg+1

⌉

=
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
(

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=2

⌈
b

(l−1)
i

αl

⌉)
− . . .−

(
n∏
l=g

⌈
b

(l−1)
i

αl

⌉

−
n∏

l=g+1

⌈
b

(l−1)
i

αl

⌉)
−

n∏
l=g+1

⌈
b

(l−1)
i

αl

⌉
= 0.

Next, for each k ∈ T (B) and r ∈ N\Nα where akr ∈ Ik,nn , we define another

point Ck,r2 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are exactly the same as Ck,d

except that (yk, vk) = (Wk,r, 0). By Lemma 6(a,b,h), Ck,r2 ∈ Y m, for all k ∈ T (B)

and r ∈ N\Nα where akr ∈ Ik,nn . Using Lemma 7(a,b,h) and condition (c), one can

easily verify that all these points also satisfy (81). So for all k ∈ T (B) and r ∈ N\Nα
where akr ∈ Ik,nn , Ck,r2 ∈ Γ, and hence must satisfy (85). Now for each k ∈ T (B) and
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r ∈ N\Nα where akr ∈ Ik,nn , Ck,r2 ∈ Γ, substituting the point Ck,r2 in (85) and using

(86) gives

λkr = λktn

(
n∏
l=1

⌈
b

(l−1)
k

αl

⌉
−

n−1∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉(⌈
b

(d−1)
k

αd

⌉
−
⌊
a

(d−1)
kr

αd

⌋
− 1

)

−
n∏

l=n+1

⌈
b

(l−1)
k

αl

⌉(⌈
b

(n−1)
k

αn

⌉
−
⌊
a

(n−1)
kr

αn

⌋))

= λktn

(
n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉⌊
a

(d−1)
kr

αd

⌋)
. (88)

The last equality holds because

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n−1∑
d=1

n∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
− 1

)
−
⌈
b

(n−1)
i

αn

⌉

=
n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
(

n∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=2

⌈
b

(l−1)
i

αl

⌉)
− . . .

−
(

n∏
l=n−1

⌈
b

(l−1)
i

αl

⌉
−

n∏
l=n

⌈
b

(l−1)
i

αl

⌉)
−

n∏
l=n

⌈
b

(l−1)
i

αl

⌉
= 0.

Based on (86), (87), and (88), hyperplane (85) reduces to

∑
i∈T (F )

ρi (vi − b(n)
i

)
+

n∑
d=1

λitd

(
yitd −

⌊
b

(d−1)
i /αd

⌋)
+

∑
t∈N\Nα

λity
i
t


+ ρ0s =

∑
i∈T (B)

(
λitnΦn

i (yi)− ρivi
)
.

(89)

Now, consider the point D = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, η) ∈ ZmN+ × Rm+1
+ ,
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where η = min{b(n)
i : i ∈ T (F )}, such that

(yi, vi) =


(Qi,n, b(n)

i − η) if i ∈ T (F ),

(P i,1, 0) if i /∈ T (F ),

for i = 1, . . . ,m. By Lemma 6(a,b), it is clear that D ∈ Y m and using Lemma 7(a,b),

one can easily verify that it also satisfies (81). So D ∈ Γ, and hence must satisfy

(89). Substituting D into (89) gives

ρ0 =
∑
i∈T (F )

ρi. (90)

Now for i ∈ VC , let N(i) be the node in VC such that (i, N(i)) ∈ AC . For

each (k, l) ∈ AC , since conditions (a) holds, consider the points Ek,l = (y, v, s) =

(y1, . . . , ym, v1, . . . , vm, b
(n)
l ) ∈ ZmN+ × Rm+1

+ such that

(yi, vi) =



(Ri, b
(n)
i − b(n)

l + αn) if i ∈ T (F ), N(i) < l

(Qi,n, 0) if i ∈ T (F ), i < l ≤ N(i)

(Qi,n, b(n)
i − b(n)

l ) if i ∈ T (F ), i ≥ l

(Qi,n, 0) if i ∈ T (B), i < l

(Qi,n, b(n)
i − b(n)

l ) if i ∈ T (B), N(i) < l ≤ i

(P i,1, 0) if i ∈ T (B), N(i) ≥ l

(P i,1, 0) if i /∈ VC ,

for i = 1, . . . ,m. By Lemma 6(a,b,c), it is clear that Ek,l ∈ Y m for all (k, l) ∈ AC .
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Using Lemma 7(a,b,c), if we substitute Ek,l into (81), we get

∑
(i,j)∈F ;i,j<l

(
b

(n)
i − b(n)

j

)
+

∑
(i,j)∈B;i,j<l

(
b

(n)
i − b(n)

j

)
+

∑
(i,j)∈F ;i<l≤j

(
b

(n)
i − b(n)

l

)
+

∑
(i,j)∈B;j<l≤i

(
b

(n)
l − b

(n)
j

)
= −

∑
(i,j)∈F ;i<l≤j

b
(n)
i +

∑
(i,j)∈B;j<l≤i

b
(n)
j

+
∑

(i,j)∈F ;i<l≤j

b
(n)
i −

∑
(i,j)∈B;j<l≤i

b
(n)
j = 0,

(91)

which is obviously true. Therefore, the points Ek,l, for all (k, l) ∈ AC , also satisfy

(81). Hence, they belong to Γ, and must satisfy (89). Now, note that in the point

Ek,l, (k, l) ∈ F , by definition we have (yk, vk) = (Qk,n, 0). For each (k, l) ∈ F , define

another point Ek,l1 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are all exactly the

same as Fk,l except that (yk, vk) = (Rk, b
(n)
k − b

(n)
l + αn). For precisely the same

reasons stated for Ek,l, the points Ek,l1 , (k, l) ∈ F , must also satisfy (89) (note that

substituting Ek,l1 in (81) gives identity (91) again). Now if for each (k, l) ∈ F , we

substitute Ek,l and Ek,l1 into (89) and subtract one equality from the other, we get

λktn = ρk

(
b

(n)
k − b

(n)
l + αn

)
, for all (k, l) ∈ F. (92)

Next, for each (k, l) ∈ F and d = 2, . . . , n, since conditions (b) hold, define the

point Ek,l,d2 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are all exactly the same as

Ek,l except that (yk, vk) = (Sk,d, 0). By Lemma 6(a,b,c,d) and because of conditions

(d), it is clear that Ek,l,d2 ∈ Y m for all (k, l) ∈ F and d = 2, . . . , n. Using Lemma

7(a,b,c,d), one can easily verify that they also satisfy (81) (note that substituting

Ek,l,d2 in (81) gives identity (91) again), and hence belong to Γ and must satisfy (89).
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Now if for each (k, l) ∈ F and d = 2, . . . , n, we substitute the points Ek,l and Ek,l,d2

into (89) and subtract one equality from the other, we get

λktd−1
= λktd

⌈
b

(d−1)
k /αd

⌉
, d ∈ {2, . . . , n}, k ∈ T (F ).

This implies

λktd = λktn

n∏
p=d+1

⌈
b

(p−1)
k /αp

⌉
, d = 1, . . . , n, k ∈ T (F ). (93)

For each (k, l) ∈ F and r ∈ N\Nα where akr ∈ Ik,nn , since conditions (e) hold,

define the point Ek,l,g,r3 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are all exactly

the same as Ek,l except that (yk, vk) = (Uk,g,r, 0). By Lemma 6(a,b,c,f) and because

of conditions (f), it is clear that Ek,l,g,r3 ∈ Y m for all (k, l) ∈ F and r ∈ N\Nα
where akr ∈ Ik,ng , g ∈ {0, . . . , n − 1}. Using Lemma 7(a,b,c,f), one can easily verify

that they also satisfy (81) (note that substituting Ek,l,g,r3 in (81) gives identity (91)

again), and hence belong to Γ and must satisfy (89). Now if for each (k, l) ∈ F and

r ∈ N\Nα where akr ∈ Ik,ng , g ∈ {0, . . . , n − 1}, we substitute the points Ek,l and

Ek,l,g,r3 into (89), subtract one equality from the other, and use equalities (93), we get

λkr = λktn

(
g∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉⌊
a

(d−1)
kr

αd

⌋
+

n∏
l=g+2

⌈
b

(l−1)
k

αl

⌉⌈
a

(g)
kr

αg+1

⌉)
. (94)

Also, for each (k, l) ∈ F and r ∈ N\Nα where akr ∈ Ik,nn , define the point Ek,l,r4 =

(y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are all exactly the same as Ek,l except

that (yk, vk) = (Vk,r, 0). By Lemma 6(a,b,c,g) and because b
(n)
l > b

(n)
k , it is clear

that Ek,l,g,r4 ∈ Y m for all (k, l) ∈ F and r ∈ N\Nα where akr ∈ Ik,nn . Using Lemma

7(a,b,c,g), one can easily verify that they also satisfy (81) (note that substituting
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Ek,l,r4 in (81) gives identity (91) again), and hence belong to Γ and must satisfy (89).

Now if for each (k, l) ∈ F and r ∈ N\Nα where akr ∈ Ik,nn , we substitute the points

Ek,l and Ek,l,r4 into (89), subtract one equality from the other, and use equalities (93),

we get

λkr = λktn

(
n∑
d=1

n∏
l=d+1

⌈
b

(l−1)
k

αl

⌉⌊
a

(d−1)
kr

αd

⌋)
. (95)

Next, note that in the point Ek,l, (k, l) ∈ B, by definition we have (yk, vk) = (Pk,1, 0).

For each (k, l) ∈ B, define the point Ek,l5 = (y, v, s) ∈ ZmN+ ×Rm+1
+ whose coordinates

are all exactly the same as Ek,l except that (yk, vk) = (Qk,n, b(n)
k − b

(n)
l ). By Lemma

6(a,b,c), it is clear that Ek,l5 ∈ Y m for all (k, l) ∈ B. Using Lemma 7(a,b,c), we

can easily verify that they also satisfy (81) (note that substituting Ek,l5 in (81) gives

identity (91) again), and hence belong to Γ and must satisfy (89). Now if for each

(k, l) ∈ B, we substitute Ek,l and Ek,l5 into (89) and subtract one equality from the

other, we get

λktn = ρk

(
b

(n)
k − b

(n)
l

)
, for all (k, l) ∈ B. (96)

Based on (90), (92), (93), (94), (95), (96), and assumption (c), hyperplane (49)

reduces to

∑
(i,j)∈F

ρi

(
s+ vi +

∑
t∈N\Nα
ait∈Inn

a
(n)
it y

i
t − b(n)

i +
(
b

(n)
i − b(n)

j + αn

) (
1− Φn

i (yi)
))

=
∑

(i,j)∈B

ρi

(b(n)
i − b(n)

j

)
Φn
i (yi)−

∑
t∈N\Nα
ait∈Inn

a
(n)
it y

i
t − vi

 .

(97)

Now, for i ∈ VC , let P (i) be the node in VC such that (P (i), i) ∈ AC , and define ia :=
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min{j ∈ VC : i < j} and ib := max{j ∈ VC : j < i}. Also let imax = max{i : i ∈ VC}

and imin = min{i : i ∈ VC}. For l ∈ VC\{imax}, if we substitute the point EP (l),l and

EP (la),la into (97) (note that both points must satisfy (97) as argued for all points Ek,l)

and subtract the two equalities, we get
∑

(i,j)∈F
i<la≤j

ρi

(
b

(n)
l − b

(n)
la

)
+
∑

(i,j)∈B
j<la≤i

ρi

(
b

(n)
la
− b(n)

l

)
=

0. Since b
(n)
l 6= b

(n)
la

, we get

∑
(i,j)∈F ;i<la≤j

ρi −
∑

(i,j)∈B;j<la≤i

ρi = 0. (98)

Likewise, for l ∈ VC\{imin}, if we substitute the point EP (lb),lb and EP (l),l into equality

(97) and subtract the two equalities, we get

∑
(i,j)∈F ;i<l≤j

ρi −
∑

(i,j)∈B;j<l≤i

ρi = 0 (99)

because b
(n)
lb
6= b

(n)
l . Notice that if l = P (imax), then la = imax, and identity (98)

reduces to

ρP (imax) = ρimax (100)

Also if for each l ∈ VC\{imin, imax}, we subtract (98) from (99), we get

ρP (l) = ρl, l ∈ VC\{imin, imax}. (101)

Identities (100) and (101) imply that ρP (l) = ρl for all l ∈ VC (because P (i) = imin

for some i ∈ VC\{imin}). Therefore,

ρi = ρj for all i, j ∈ VC (102)

as C is a cycle. This reduces hyperplane (97) to a constant multiple (by (90) this
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multiple is ρ0/|F |) of (81), which completes the proof .

Example 2 (continued). Notice that for n = 2, the coefficients of Y 5 also satisfy the

additional conditions required in Theorem 11, i.e. (b)
⌊
b

(0)
k /α1

⌋
≥ 1,

⌊
b

(1)
k /α2

⌋
= 1,

for k ∈ T (F ) ⊆ {1, . . . , 4}, (c) a
(2)
kr = 0 for k = 1, . . . , 5 and r ∈ N such that

akr ∈ Ik,22 , (d) b
(2)
l − b

(2)
k ≥ 1 = α1 − α2

⌈
b

(1)
k /α2

⌉
for all (k, l) ∈ A2 such that

1 ≤ k < l ≤ 5, and (e) b
(2)
l − b

(2)
k ≥ 3 = max

{
α1 − a

(1)
kr , r ∈ N\Nα, akr ∈ Ik,20 }

and b
(2)
l − b

(2)
k ≥ max

{
α2 − a(2)

kr , r ∈ N\Nα, akr ∈ Ik,21 } for all (k, l) ∈ A2 such that

1 ≤ k < l ≤ 5. Therefore, the 2-step cycle inequality (71) corresponding to each cycle

C = (VC , AC) in graph G2, where VC ⊆ {1, . . . , 5}, defines a facet for conv(Y 5). In

particular, 2-step cycle inequalities (74) and (75) are facet-defining for conv(Y 5).

Theorem 12. For n ∈ N, the n-step cycle inequality (71) for an elementary cycle

C = (VC , AC) of graph G is facet-defining for conv(Y m) if the following conditions

hold:

(a) T (F ) = {0};

(b) For i ∈ T (B), αd = aitd where td ∈ Nα for d = 1, . . . , n such that

αtd

⌈
b

(d−1)
i /αd

⌉
≤ αtd−1

, d = 2, . . . , n;

(c) For i ∈ T (B), a
(n)
ir = 0, r ∈ N\Nα where air ∈ I i,nn .

Proof. As shown before, the supporting hyperplane of inequality (71) can be written

as (81), which for the C considered in this theorem reduces to

s =
∑

(i,j)∈B

(b(n)
i − b(n)

j

)
Φi(yi)−

∑
t∈N\Nα
ait∈I

i,n
n

a
(n)
it y

i
t − vi

 (103)
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because by condition (a), the cycle C has only one forward arc, which goes out of

node 0, and we have v0 = 0, y0 = 0 and Φn
0 (y0) := 1 by definition. Let Γ be the face

of Y m defined by hyperplane (103). We prove that any generic hyperplane

ρ0s+
m∑
i=1

ρivi +
m∑
i=1

n∑
t=1

λijy
i
j = θ (104)

that passes through Γ is a scalar multiple of (103). By the same reasoning we reduced

hyperplane (82) to (83) in Theorem 11, we can reduce hyperplane (104) to

∑
i∈VC\{0}

n∑
t=1

λity
i
t +

∑
i∈VC\{0}

ρivi + ρ0s = θ. (105)

Now consider the following points (correspondig to the points with the same name

in the proof of Theorem 11): The point B = (y1, . . . , ym, v1, . . . , vm, s) ∈ ZmN+ ×

Rm+1
+ such that (yi, vi) = (P i,1, 0), i = 1, . . . ,m, and s = 0; the points Ck,d =

(y1, . . . , ym, v1, . . . , vm, s) ∈ ZmN+ × Rm
+ × R+, for k ∈ T (B), d = 2, . . . , n, such that

(yk, vk) = (Pk,d, 0) and (yi, vi) = (P i,1, 0) for i ∈ {1, . . . ,m}\(T (F ) ∪ {k}), and

s = 0; the points Ck,g,r1 = (y, v, s) ∈ ZmN+ × Rm+1
+ , for k ∈ T (B) and r ∈ N\Nα

where akr ∈ Ik,ng , g ∈ {0, . . . , n − 1}, whose coordinates are exactly the same as

Ck,d except that (yk, vk) = (T k,g,r, 0); the points Ck,r2 = (y, v, s) ∈ ZmN+ × Rm+1
+ , for

k ∈ T (B) and r ∈ N\Nα where akr ∈ Ik,nn , whose coordinates are exactly the same

as Ck,d except that (yk, vk) = (Wk,r, 0); the points Ek,l = (y1, . . . , ym, v1, . . . , vm, s) ∈

ZmN+ × Rm
+ × R+, for (k, l) ∈ B, such that

(yi, vi) =


(Qi,n, 0) if i ∈ T (B), i ≤ l

(P i,1, 0) if i ∈ T (B), N(i) ≥ l

(P i,1, 0) if i /∈ VC ,

83



for i = 1, . . . ,m, and s = bl
(n); and the points Ek,l5 ∈ ZmN+ × Rm+1

+ , for (k, l) ∈ B,

whose coordinates are all exactly the same as Ek,l except that (yk, vk) = (Qk,n, b(n)
k −

b
(n)
l ).

By Lemma 6(a,b,e,h), all the aforementioned points belong to Y m, and by Lemma

7(a,b,e,h), it is easy to verify that they also satisfy (103). So, they belong to Γ, and

hence must satisfy (105). Therefore, given conditions (c), all these points can be used

in the same fashion the points with similar names were used in the proof of Theorem

11 to reduce the hyperplane (105) to an equality which is ρ0 times the hyperplane

(103). This completes the proof.

Example 2 (continued). Moreover, the 2-step cycle inequality (71) corresponding

to each cycle C = (VC , AC) in G2 = (V2, A2), where T (F ) = {0}, also defines facet

for conv(Y 5) because condition (c) holds for n = 2, i.e. a
(2)
kr = 0 for k = 1, . . . , 5 and

r ∈ N such that akr ∈ Ik,22 . In particular, 2-step cycle inequality (36) is facet-defining

for conv(Y 5).
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CHAPTER V

CONTINUOUS MULTI-MIXING SET WITH GENERAL COEFFICIENTS AND

BOUNDED INTEGER VARIABLES

In this chapter, we unify the concepts of continuous multi-mixing and n-step

mingling by incorporating upper bounds on the integer variables of the continuous

multi-mixing set (where no conditions are imposed on the coefficients) and by devel-

oping new families of valid inequalities for this set (which we refer to as the mingled

n-step cycle inequalities, n ∈ N). We denote this new generalization of continuous

multi-mixing set by

Zm :=

{
(y, v, s) ∈ Zm×N+ × Rm

+ × R+ :∑
t∈T

aty
i
t +
∑
k∈K

aky
i
k + vi + s ≥ bi, y

i ≤ ui, i = 1, . . . ,m

}

where (T,K) is a partitioning of N := {1, . . . , N} with at > 0 for t ∈ T , ak < 0 for

k ∈ K, and ui ∈ ZN+ for i ∈ {1, . . . ,m}. Observe that the mixed integer knapsack

set with bounded integer variables Z1
0 (studied in [6, 7, 10, 74]) is a special case of

Zm where n = 1. It is the projection of Z1 ∩ {v = 0} on (y, s). In Section V.1, we

assume that bi ≥ 0, i = 1, . . . ,m, and for each n ∈ N, we develop a new class of

valid inequalities for Zm which we refer to as mingled n-step cycle inequalities. We

observe how the n-step mingling [6, 7], n-step MIR inequalities [62], and n-step cycle

inequalities (introduced in Chapter IV) are special cases of the mingled n-step cycle

inequalities. We also introduce a compact extended formulation for Zm and an exact

separation algorithm to separate over the set of all mingled n-step cycle inequalities

for a given n ∈ N. In Section V.2, we obtain conditions under which a special case
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of mingled n-step cycle inequalities (which we refer to as the mingled n-step mixing

inequalities) are facet-defining for conv(Zm).

V.1 Valid Inequalities and Extended Formulation

In this section, for each n ∈ N, we develop a new class of valid inequalities for Zm.

First, for each i ∈ {1, . . . ,m}, we introduce the following notations (assuming bi ≥ 0):

Let T+
i := {1, . . . , n+

i } ⊆ {t ∈ T : at > bi} and K̄i := {k ∈ K : ak +
∑

t∈T+
i
atu

i
t < 0}.

We index T+
i in non-increasing order of at’s. For k ∈ K \ K̄i, we define a set Tik, an

integer lik, and the numbers ūitk such that ūitk ≤ uit for t ∈ Tk as follows:

Tik := {1, . . . , q(i, k)}, where q(i, k) := min
{
q ∈ T+

i : ak +

q∑
t=1

atu
i
t ≥ 0

}
;

lik := min
{
l ∈ Z+ : ak +

q(i,k)−1∑
t=1

atu
i
t + aq(i,k)l ≥ 0

}
; and

ūitk :=


uit, if t < q(i, k),

lik, if t = q(i, k).

Now for i ∈ {1, . . . ,m} and k ∈ K̄i, let Tik := T+
i , q(i, k) := n+

i , lik := ui
n+
i

, and

ūitk := uit for t ∈ Tik. We also define Kit := {k ∈ K : k ∈ Tik} (as a result, for

t ∈ T \ T+
i , Kit = ∅),

τik := min
{
bi, ak +

∑
t∈Tik

atū
i
tk

}
for i ∈ {1, . . . ,m}, k ∈ K (106)

(therefore, 0 ≤ τik ≤ bi for k ∈ K \ K̄ and τik < 0 for k ∈ K̄).

Next, we choose a parameter vector α = (α1, . . . , αn−1) > 0 and without loss of

generality, we assume b
(n−1)
i−1 ≤ b

(n−1)
i , i = 2, . . . ,m, where b

(n−1)
i is defined as (11).
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Also define b0 := 0 and for g = 0, . . . , n− 2, i = 1, . . . ,m,

I i,n−1
g := {x ∈ R : x(q) < b

(q)
i , q = 1, . . . , g, x(g+1) ≥ b

(g+1)
i },

I i,n−1
n−1 := {x ∈ R : x(q) < b

(q)
i , q = 1, . . . , n− 1}.

Now similar to the graph defined for the cycle inequalities (see Section II.2.2), here

we define a directed graph Ḡn = (V,A), where V := {0, 1, . . . ,m} and A := {(i, j) :

i, j ∈ V, b
(n−1)
i 6= b

(n−1)
j }. Ḡn is a complete graph except for the arcs (i, j) where

b
(n−1)
i = b

(n−1)
j . Here to each arc (i, j) ∈ A, we associate the linear function πnij(y, v, s)

defined as (note that some of the notations used in this chapter have already been

introduced in Subsection II.2.4)

πnij(y, v, s) :=



s+ vi +
∑

t∈T\T+
i

at∈I
i,n−1
n−1

a
(n−1)
t yit +

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik + b

(n−1)
ij

(
1− ξni (y

i)
)
− b

(n−1)
j if i < j,

vi +
∑

t∈T\T+
i

at∈I
i,n−1
n−1

a
(n−1)
t yit +

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik +

(
b
(n−1)
i − b

(n−1)
j

)(
1− ξni (y

i)
)

if i > j,
(107)

where b
(n−1)
ij := b

(n−1)
i − b

(n−1)
j + αn−1 for all (i, j) ∈ A, i < j, and the functions
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ξni (yi), i = 1, . . . ,m, in its open form can be defined as

ξni (yi) :=

n−1∏
l=1

⌈
b
(l−1)
i

αl

⌉
−
∑
t∈T+

i

n−1∏
l=1

⌈
b
(l−1)
i

αl

⌉(
yit −

∑
k∈Kt

ūitky
i
k

)

−
n−2∑
g=0

∑
t∈T\T+

i

at∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b
(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
+

n−1∏
l=g+2

⌈
b
(l−1)
i

αl

⌉⌈
a

(g)
t

αg+1

⌉)
yit

−
n−2∑
g=0

∑
k∈K

τik∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b
(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
+

n−1∏
l=g+2

⌈
b
(l−1)
i

αl

⌉⌈
τ

(g)
ik

αg+1

⌉)
yik

−
∑

t∈T\T+
i

at∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b
(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
yit −

∑
k∈K

τk∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b
(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
yik

(108)

and by definition, v0 := 0, y0 := 0, and ξn0 (y0) := 1.

We show that each elementary cycle of graph Ḡn corresponds to a valid inequality

for the set Zm, which we also refer to as the mingled n-step cycle inequality. To do

this in addition to Lemma 1, we need the following lemma:

Lemma 8. For i ∈ {1, . . . ,m} and n ∈ N, the inequality

s+ vi +
∑

t∈T\T+
i

at∈I
i,n−1
n−1

a
(n−1)
t yit +

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik + αn−1

(
1− ξni (yi)

)
≥ b

(n−1)
i (109)

is valid for Zm if αd

⌈
b

(d−1)
i /αd

⌉
≤ αd−1, d = 2, . . . , n− 1.

Proof. Atamtürk and Kianfar [7] proved that the following inequality
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s+ vi + αn−1

[
1−

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
+
∑
t∈T+

i

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉(
yit −

∑
k∈Kt

ūitky
i
k

)

+
n−2∑
g=0

∑
t∈T\T+

i

at∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
t

αg+1

⌉)
yit

+
n−2∑
g=0

∑
k∈K

τik∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
τ

(g)
ik

αg+1

⌉)
yik

]

+ αn−1

∑
t∈T\T+

i

at∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
yit +

∑
t∈T\T+

i

at∈I
i,n−1
n−1

a
(n−1)
t yit

+ αn−1

∑
k∈K

τik∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
yik +

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik ≥ b

(n−1)
i

(110)

is valid for a relaxation of Zm defined by its i’th constraint, i.e. {(yi, vi, s) ∈ ZN+ ×

R+ × R+ :
∑

t∈T aty
i
t +

∑
k∈K aky

i
k + vi + s ≥ bi, y

i ≤ u}, for α := (α1, . . . , αn−1)

satisfying αd

⌈
b

(d−1)
i /αd

⌉
≤ αd−1, d = 2, . . . , n− 1. Therefore, it is also valid for Zm.

Note that rearranging the terms in (110) and using (108) gives (109).

Theorem 13. Given n ∈ N and an elementary cycle C = (VC , AC) of graph Ḡn, the

mingled n-step cycle inequality

∑
(i,j)∈AC

πnij(y, v, s) ≥ 0 (111)

is valid for Zm if the parameters (α1, . . . , αn−1) satisfy

αd

⌈
b

(d−1)
i /αd

⌉
≤ αd−1, d = 2, . . . , n− 1, i ∈ VC . (112)

Proof. Consider a point (ŷ, v̂, ŝ) ∈ Zm. Based on Lemma 8, inequality (109) is

satisfied by the point (ŷ, v̂, ŝ) for each i ∈ VC\{0} because of (112). But notice that
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inequality (109) for this point is the same as inequality (20) if we define σ := ŝ,

α := αn−1, and

ωi := v̂i +
∑

t∈T\T+
i

at∈I
i,n−1
n−1

a
(n−1)
t ŷit +

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik ŷik,

κi := 1 − ξni (ŷi), γi := b
(n−1)
i , i ∈ VC\{0}. Also, in case 0 ∈ VC , if we define ω0,

κ0, and γ0 in a similar way, inequality (20) for i = 0 reduces to the valid inequality

ŝ ≥ 0 because as we defined before y0 := 0, v0 := 0, ξn0 (y0) := 1, and b0 := 0. With

these definitions, we have ωi ≥ 0, κi ∈ Z, i ∈ VC and 0 = γ0 ≤ γ1 < γ2 < · · · <

γ|VC | < αn−1. Therefore, according to Lemma 1, inequality (21) in which σ, α and

ωi, κi, γi, i ∈ VC are replaced with the values defined here is valid. It is easy to see

that this inequality is exactly the same as the mingled n-step cycle inequality (111)

for the point (ŷ, v̂, ŝ). This completes the proof.

Special Cases: The following are few special cases of the mingled n-step cycle

inequalities:

• The mingled n-step cycle inequality (111) written for cycle C = (VC , AC) such

that AC = {(0, i), (i, 0)} gives the n-step mingling inequality (14) written for

constraint i in Zm;

• The mingled n-step cycle inequality (111) reduces to (n−1)-step cycle inequal-

ities (71) in case T+
i = ∅ for all i ∈ VC ;

• For K̄ = ∅ and αn−1 = αn−2, the mingled n-step cycle inequality (111) becomes

mingled (n− 1)-step cycle inequalities.

Separation Algorithm. Given a point (ŷ, v̂, ŝ) and n ∈ N, we can also formulate

the separation problem associated with the mingled n-step cycle inequalities (111)
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as follows:

min

{ ∑
(i,j)∈A

πnij(ŷ, v̂, ŝ)zij : Mz = 0, z ≥ 0

}
. (113)

where zij is a variable representing the flow along arc (i, j), M is the node-arc

incidence matrix of Ḡn, and the goal is to test whether linear program (113) has

a strictly negative solution value. Therefore, for the point (ŷ, v̂, ŝ), we can find a

mingled n-step cycle inequality (111) that is violated by (ŷ, v̂, ŝ), if any, by detecting

a negative weight cycle (if any) in the directed graph Ḡn with weights πnij(ŷ, v̂, ŝ) for

each arc (i, j) ∈ A (refer to Section III.3 for details).

Example 3. Consider the following continuous multi-mixing set with general coeffi-

cients, bounded integer variables, and 4 rows:

Z4 ={(y, v, s) ∈ Z9×4
+ × R5

+ : yi1 ≤ 1, yi2 ≤ 1, yi3 ≤ 1, yi4 ≤ 2, yi6 ≤ 2, i = 1, . . . , 4,

37y1
1 + 33y1

2 + 31y1
3 + 15y1

4 + 5y1
5 + 6y1

6 − 64y1
7 − 81y1

8 − 106y1
9 + v1 + s ≥ 16,

37y2
1 + 33y2

2 + 31y2
3 + 15y2

4 + 5y2
5 + 6y2

6 − 64y2
7 − 81y2

8 − 106y2
9 + v2 + s ≥ 29,

37y3
1 + 33y3

2 + 31y3
3 + 15y3

4 + 5y3
5 + 6y3

6 − 64y3
7 − 81y3

8 − 106y3
9 + v3 + s ≥ 24,

37y4
1 + 33y4

2 + 31y4
3 + 15y4

4 + 5y4
5 + 6y4

6 − 64y4
7 − 81y4

8 − 106y4
9 + v4 + s ≥ 25}.

We have N = {1, . . . , 6}, T = {1, . . . , 6}, K = {7, 8, 9}, for i = 1, . . . , 4, upper bound

array ui = {1, 1, 1, 2, ui5, 2, ui7, ui8, ui9} where ui5, u
i
7, u

i
8, u

i
9 ∈ Z+, b1 = 16, b2 = 29,

b3 = 24, and b4 = 25. For T+
i = {t ∈ T : at > bi} = {1, 2, 3}, i = 1, . . . , 4, we

have K̄i = {9}, Ti7 = {1, 2}, Ti8 = Ti9 = {1, 2, 3}, and so Ki1 = Ki2 = {7, 8, 9} and

Ki3 = {8, 9} for all i = 1, . . . , 4. Also, τi7 = 6, τi8 = 20, τi9 = −5 for i = 1, . . . , 4.

Assuming (α1, α2) = (15, 6), we have b
(1)
1 = 1 < b

(1)
3 = 9 < b

(1)
4 = 10 < b

(1)
2 = 14, and
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b
(2)
1 = 1 < b

(2)
2 = 2 < b

(2)
3 = 3 < b

(2)
4 = 4. Note that

⌈
b

(1)
1 /α2

⌉
= 1,

⌈
b

(1)
i /α2

⌉
= 2

for i = 2, 3, 4, and clearly the conditions (112), i.e. α1 ≥ α2

⌈
b

(1)
i /α2

⌉
, are satisfied

for i = 1, . . . , 4. Note that a4, a6 ∈ I i,22 , i = 1, . . . , 4, a5, τ17, τ18, τ19 ∈ I1,2
0 , a5, τi8 ∈

I i,21 , i = 2, 3, 4, τi7 ∈ I i,22 , i = 2, 3, 4, τ29 ∈ I2,2
1 , and τi9 ∈ I i,20 , i = 3, 4. Observe that

a2 = α1, a4 = α2, and a
(2)
2 = a

(2)
4 = 0. Therefore, we define Tα = {2, 4}. We also

have τ
(2)
ir = 0, where τir ∈ I i,22 , for r ∈ K and i = 1, . . . , 4.

Mingled 3-step cycle inequalities for Z4: Setting n = 2, the set of nodes and

arcs of the graph Ḡ2 will be V2 = {0, . . . , 4} and A2 = {(i, j) : i, j ∈ V2}. The linear

function π2
ij(y, v, s) associated with each arc (i, j) ∈ A2 is defined by (107) where

n = 2. Based on Theorem 13, the mingled 3-step cycle inequalities corresponding to

the cycles in G2 are valid for Z4. For example, the mingled 3-step cycle inequality

corresponding to a cycle C = (VC , AC) in G2 where AC = {(0, 4), (4, 3), (3, 1), (1, 0)}

is

π2
04 + π2

43 + π2
31 + π2

10 ≥ 0. (114)

Theorem 14. The following linear program is a compact extended formulation for

Zm, if conditions (112) hold.

πnij(y, v, s) ≥ δni − δnj for all (i, j) ∈ A, n ∈ {1, . . . , N} (115)∑
t∈Taty

i
t +
∑

k∈K aky
i
k + vi + s ≥ bi, i = 1, . . . ,m (116)

yit ≤ ut, t ∈ N , i = 1, . . . ,m (117)

y ∈ Rmn
+ , v ∈ Rm

+ , s ∈ R+, δ ∈ RN(m+1). (118)

Proof. Let Zm,δ := {(y, v, s, δ) satisfying (115)-(118)}. Clearly Projy,v,s(Z
m,δ) is de-

fined by the set of all mingled n-step cycle inequalities (111), for n = 1, . . . , N , and

bound constraints s, v ≥ 0. This means all the inequalities which define Projy,v,s(Z
m,δ)
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are valid for Zm if the parameters (α1, . . . , αn−1) satisfy conditions (112) which im-

plies Zm ⊆ Projy,v,s(Z
m,δ) under the same conditions. This proves that Zm,δ is an

extended formulation for Zm.

V.2 Facet-Defining Mingled n-step Cycle Inequalities

In this section, we introduce a special case of the mingled n-step cycle inequalities

which we refer to as the mingled n-step mixing inequalities. The mingled n-step cycle

inequality (111) written for cycle C = (VC , AC) such that AC = {(0, i1), (i1, i2), . . . ,

(iq−1, iq), (iq, 0)} with only one forward arc (0, i1), followed by backward arcs (i1, i2),

. . . , (iq, 0) gives the mingled n-step mixing inequalities, i.e.

s ≥
∑

(i,j)∈B

(b(n−1)
i − b(n−1)

j

)
Φn
i (yi)−

∑
t∈T\(T+

i
∪Tα)

at∈I
i,n−1
n−1

a
(n−1)
t yit −

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik − vi

 (119)

where B = {(i1, i2), . . . , (iq−1, iq), (iq, 0)}. We show that for any n ∈ N, the mingled

n-step mixing inequalities define facets for conv(Zm) under certain conditions. In

order to prove this, we first define Tα := {t1, . . . , tn−1} ⊆ T\
(
∪i∈VCT+

i

)
, assign

αd = atd for d = 1, . . . , n− 1, and re-write (108) as follows:
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ξni (yi) :=
n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
−
∑
t∈T+

i

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉(
yit −

∑
k∈Kt

ūitky
i
k

)

−
n−2∑
g=0

∑
t∈T\(T+

i
∪Tα)

at∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
t

αg+1

⌉)
yit

−
n−2∑
g=0

∑
k∈K

τik∈I
i,n−1
g

(
g∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
τ

(g)
ik

αg+1

⌉)
yik

−
∑

t∈T\(T+
i
∪Tα)

at∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(q−1)
t

αq

⌋
yit

−
∑
k∈K

τik∈I
i,n−1
n−1

n−1∑
q=1

n−1∏
l=q+1

⌈
b

(l−1)
i

αl

⌉⌊
τ

(q−1)
ik

αq

⌋
yik −

n−1∑
d=1
td∈Tα

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉
yitd . (120)

Next, we redefine some points (introduced in Chapters III and IV), introduce some

new points, and provide some properties for them. Note that in the following defi-

nitions we only describe nonzero components for each point.

Definition 15. For i ∈ {1, . . . ,m}, define the points P i,r,Qi,r ∈ ZN+ , r = 1, . . . , n−1,

as follows:

P i,rtd :=


⌊
b
(d−1)
i

αd

⌋
d = 1, . . . , r − 1,⌈

b
(d−1)
i

αd

⌉
d = r

Qi,rtd :=

{⌊
b
(d−1)
i

αd

⌋
d = 1, . . . , r,

the points R1,i,g,r ∈ ZN+ , r ∈ T\(T+
i ∪ Tα) where ar ∈ I i,n−1

g and g ∈ {0, . . . , n− 2},
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as follows:

R1,i,g,r
t :=


⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
r

αd

⌉
t = td, d = 1, . . . , g + 1,

1 t = r,

and the points R2,i,g,r ∈ ZN+ , r ∈ K where τir ∈ I i,n−1
g and g ∈ {0, . . . , n − 2}, as

follows:

R2,i,g,r
t :=



⌈
b
(d−1)
i

αd

⌉
−
⌈
τ
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , g + 1,

1 t = r,

ūitr for all t ∈ Tir.

Furthermore, we introduce the points S1,i,r ∈ ZN+ , r ∈ T\(T+
i ∪Tα) where ar ∈ I i,n−1

n−1 ,

as follows:

S1,i,r
t :=



⌈
b
(d−1)
i

αd

⌉
−
⌈
a
(d−1)
r

αd

⌉
t = td, d = 1, . . . , n− 2,⌈

b
(d−1)
i

αd

⌉
−
⌊
a
(d−1)
r

αd

⌋
t = td, d = n− 1,

1 t = r.
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and the points S2,i,r ∈ ZN+ , r ∈ K where τir ∈ I i,n−1
n−1 , as follows:

S2,i,r
t :=



⌈
b
(d−1)
i

αd

⌉
−
⌈
τ
(d−1)
ir

αd

⌉
t = td, d = 1, . . . , n− 2,⌈

b
(d−1)
i

αd

⌉
−
⌊
τ
(d−1)
ir

αd

⌋
t = td, d = n− 1,

1 t = r,

ūitr for all t ∈ Tir.

Lemma 9. For i ∈ {1, . . . ,m}, assuming uit1 ≥
⌈
bi
α1

⌉
−
⌈

min{τik:k∈K̄i}
α1

⌉
and uitd ≥⌈

b
(d−1)
i

αd

⌉
, d = 2, . . . , n− 1, the point (ŷ, v̂, ŝ) ∈ Zm×N+ ×Rm+1

+ satisfies constraint i of

Zm if any of the following is true

(a). ŷi = P i,r for some r ∈ {1, . . . , n− 1}

(b). ŷi = Qi,r for some r ∈ {1, . . . , n− 1} and v̂i + ŝ ≥ b
(r−1)
i ,

(c). ŷi = R1,i,g,r for some r ∈ T\(T+
i ∪Tα) where ar ∈ I i,n−1

g and g ∈ {0, . . . , n− 2},

(d). ŷi = R2,i,g,r for some r ∈ K where τir ∈ I i,n−1
g and g ∈ {0, . . . , n− 2},

(e). ŷi = S1,i,r for some r ∈ T\(T+
i ∪ Tα) where ar ∈ I i,n−1

n−1 ,

(f). ŷi = S2,i,r for some r ∈ K where τir ∈ I i,n−1
n−1 .

Proof. Cases (a) and (b) can be easily proved similar to the proof of Lemma 5 in

[96]. Cases (c)-(f) can be easily proved similar to the proof of Lemma 6 in previous

chapter.

Lemma 10. For i ∈ {1, . . . ,m} and n ∈ N,

(a). ξni (P i,r) = 0, r = 1, . . . , n− 1,
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(b). ξni (Qi,r) = 1, r = 1, . . . , n− 1,

(c). ξni (R1,i,g,r) = 0, for each r ∈ T\(T+
i ∪ Tα) where ar ∈ I i,n−1

g , g ∈ {0, . . . , n− 2},

(d). ξni (R2,i,g,r) = 0, for each r ∈ K where τir ∈ I i,n−1
g and g ∈ {0, . . . , n− 2},

(e). ξni (S1,i,r) = 0, for each r ∈ T\(T+
i ∪ Tα) where ar ∈ I i,n−1

n−1 ,

(f). ξni (S2,i,r) = 0, for each r ∈ K where τir ∈ I i,n−1
n−1 .

Proof. Cases (a) and (b) can be proved similar to Lemma 6 of [96]. The remaining

cases, i.e. Cases (c)-(f), can be proved similar to Lemma 7 in previous chapter.

Theorem 15. For n ∈ N, the mingled n-step cycle inequality (111) for an elementary

cycle C = (VC , AC) of graph Ḡn is facet-defining for conv(Zm) if (in addition to

T (F ) = {0}) the following conditions hold:

(a) αd = atd where td ∈ T\
(
∪i∈VCT+

i

)
for d = 1, . . . , n− 1;

(b) T+
i = {t ∈ T : at ≥ α1 dbi/α1e} and αtd

⌈
b

(d−1)
i /αd

⌉
≤ αtd−1

for d = 2, . . . , n−

1, i ∈ T (B);

(c) uit1 ≥
⌈
bi
α1

⌉
−
⌈

min{τik:k∈K̄i}
α1

⌉
and uitd ≥

⌈
b
(d−1)
i

αd

⌉
, d = 2, . . . , n− 1 for i ∈ T (B);

(d) a
(n−1)
r = 0, r ∈ T\(T+

i ∪ Tα) where ar ∈ I i,n−1
n−1 , i ∈ T (B);

(e) τ
(n−1)
ir = 0, r ∈ K where τir ∈ I i,n−1

n−1 , i ∈ T (B);

Proof. Consider the supporting hyperplane of inequality (111) for the cycle C with

T (F ) = {0}. Note that this hyperplane can be written as

s ≥
∑

(i,j)∈B

(b(n−1)
i − b(n−1)

j

)
ξni (yi)−

∑
t∈T\(T+

i
∪Tα)

at∈I
i,n−1
n−1

a
(n−1)
t yit −

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik − vi

 (121)
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because the cycle C has only one forward arc, which goes out of node 0, and we have

v0 = 0, y0 = 0, ξn0 (y0) := 1, and B is the set of backward arcs of the cycle C i.e.

B := {(i, j) ∈ AC : j < i} by definition. Let Γ = {(y, v, s) ∈ conv(Zm) : (121)} be

the face of conv(Zm) defined by hyperplane (121) and

m∑
i=1

n∑
t=1

λity
i
t +

m∑
i=1

ρivi + ρ0s = θ (122)

be a hyperplane passing through Γ. We prove that (122) must be a multiple of (121).

Now, consider the pointA = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ ZmN+ ×Rm+1
+ such

that

(yi, vi) =


(P i,1, 0) if i ∈ T (B),

(0, bi) if i /∈ T (B),

Based on Lemma 9(a), A ∈ Zm and using Lemma 10(a), it can be easily verified

that A satisfies (121). So, A ∈ Γ and hence must satisfy (122). Substituting A into

(122) gives ∑
i∈T (B)

λit1 dbi/α1e+
m∑
i=1

i/∈T (B)

ρibi = θ. (123)

Using (123), hyperplane (122) reduces to

ρ0s =
∑
i∈T (B)

λit1 (dbi/α1e − yit1
)
−

∑
t∈N\{t1}

λity
i
t − ρivi


+

m∑
i=1

i/∈T (B)

(
ρi(bi − vi)−

∑
t∈N

λity
i
t

)
.

(124)

Next, for p = 1, . . . ,m and r ∈ T+
p , consider the points Ap,r1 = (y, v, s) = (y1, . . . , ym,

v1, . . . , vm, 0) ∈ ZmN+ ×Rm+1
+ such that (yi, vi) = (P i,1, 0) for all i ∈ {1, . . . ,m}\(T (B)∪
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{p}), (yi, vi) = (0, bi) for i ∈ T (B)\{p}, and

ypt =


1 if t = r,

0 if t 6= r,

for t ∈ N , and vp = 0. Based on Lemma 9(a) and the definition of T+
p (i.e. ar > bp

for r ∈ T+
p ), Ap,r1 ∈ Zm and using Lemma 10(a), it can be easily verified that Ap,r1

satisfies (121). So, Ap,r1 ∈ Γ and hence must satisfy (124). Substituting Ap,r1 into

(124) gives

λpr = λpt1 dbp/α1e for p = 1, . . . ,m. (125)

Notice that for each p ∈ {1, . . . ,m}\T (B), the unit vector Bp1 = (y1, . . . , ym, v1,

. . . , vm, s) ∈ ZmN+ × Rm+1
+ , in which vp = 1 and all other coordinates are zero, is

a direction for both the set Zm and the hyperplane defined by (121), and hence a

direction for the face Γ. This implies that

ρp = 0 for all p ∈ {1, . . . ,m}\T (B). (126)

For each p ∈ {1, . . . ,m}\T (B) and d ∈ N , consider the point Bp,d2 = (y, v, s) ∈

ZmN+ × Rm+1
+ whose coordinates are exactly same as A except that ypd = 1 and

vp = min{0, 1 − ad}. Based on Lemma 9(a), Bp,d2 ∈ Zm and using Lemma 10(a), it

can be easily verified that Bp,d2 satisfies (121). So, Bp,d2 ∈ Γ and hence must satisfy

(124). Substituting Bp,d2 into (124) and using (126) gives

λpd = 0 for p ∈ {1, . . . ,m}\T (B), d ∈ N . (127)
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These reduce the hyperplane (124) to

ρ0s =
∑
i∈T (B)

λit1 (dbi/α1e − yit1
)
−

∑
t∈N\{t1}

λity
i
t − ρivi

 . (128)

Now, consider the points Cp,d = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, 0) ∈ ZmN+ ×

Rm+1
+ for k ∈ T (B), d = 2, . . . , n− 1 such that

(yi, vi) =


(P i,d, 0) if i = p,

(P i,1, 0) if i 6= p,

for i = 1, . . . ,m. By Lemma 9(a), Cp,d ∈ Zm, for all p ∈ T (B) and d = 2, . . . , n− 1.

Using Lemma 10(a), one can easily verify that all these points also satisfy (121). So

for all p ∈ T (B) and d = 2, . . . , n − 1, Cp,d ∈ Γ, and hence must satisfy (128). For

each p ∈ T (B), substituting the points Cp,2, . . . , Cp,n−1 one after the other into (128)

gives

λptd−1
= λptd

⌈
b(d−1)
p /αd

⌉
, d = 2, . . . , n− 1, p ∈ T (B),

which implies

λptd = λptn−1

n−1∏
l=d+1

⌈
b(l−1)
p /αl

⌉
, d = 1, . . . , n− 2, p ∈ T (B). (129)

Also, using (125) and (129), we get

λpr = λptn−1

n−1∏
l=1

⌈
b(l−1)
p /αl

⌉
for all r ∈ T+

p , p ∈ T (B). (130)

Note that in the point Cp,d, p ∈ T (B), d ∈ {2, . . . , n − 1}, by definition we have
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(yp, vp) = (Pp,d, 0). For each p ∈ T (B) and r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,n−1

g ,

g ∈ {0, . . . , n − 2}, we define another point Cp,g,r1 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose

coordinates are exactly the same as Cp,d except that (yp, vp) = (R1,p,g,r, 0). By

Lemma 9(a,c), Cp,g,r1 ∈ Zm, for all p ∈ T (B) and r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,ng ,

g ∈ {0, . . . , n− 2}. Using Lemma 10(a,c), one can easily verify that all these points

also satisfy (121). So for all p ∈ T (B) and r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,ng ,

g ∈ {0, . . . , n− 2}, Cp,g,r1 ∈ Γ, and hence must satisfy (128). Now for each p ∈ T (B)

and r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,ng , g ∈ {0, . . . , n− 2}, Cp,g,r1 ∈ Γ, substituting the

point Cp,g,r1 in (128) and using (129) gives

λpr = λptn−1

(
n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

g+1∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
a

(d−1)
r

αd

⌋
− 1

))

= λptn−1

(
g∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
r

αd

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
a

(g)
r

αg+1

⌉)
. (131)

Next, for each p ∈ T (B) and r ∈ T\(T+
p ∪Tα) where ar ∈ Ip,n−1

n−1 , we define another

point Cp,r2 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are exactly the same as Cp,d

except that (yp, vp) = (S1,p,r, 0). By Lemma 9(a,e), Cp,r2 ∈ Zm, for all p ∈ T (B) and

r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,n−1

n−1 . Using Lemma 10(a,e) and condition (d), one

can easily verify that all these points also satisfy (121). So for all p ∈ T (B) and

r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,n−1

n−1 , Cp,r2 ∈ Γ, and hence must satisfy (128). Now for

each p ∈ T (B) and r ∈ T\(T+
p ∪ Tα) where ar ∈ Ip,n−1

n−1 , Cp,r2 ∈ Γ, substituting the

point Cp,r2 in (128) and using (129) gives

λpr = λptn−1

(
n−1∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
r

αd

⌋)
. (132)

For each p ∈ T (B) and r ∈ K where τpr ∈ Ip,n−1
g , g ∈ {0, . . . , n − 2}, we define
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another point Cp,g,r3 = (y, v, s) ∈ ZmN+ × Rm+1
+ whose coordinates are exactly the

same as Cp,d except that (yp, vp) = (R2,p,g,r, 0). By Lemma 9(a,d), Cp,g,r3 ∈ Zm, for all

p ∈ T (B) and r ∈ K where opr ∈ Ip,n−1
g , g ∈ {0, . . . , n− 2}. Using Lemma 10(a,d),

one can easily verify that all these points also satisfy (121). So for all p ∈ T (B) and

r ∈ K where τpr ∈ Ip,n−1
g , g ∈ {0, . . . , n − 2}, Cp,g,r3 ∈ Γ, and hence must satisfy

(128). Now for each p ∈ T (B) and r ∈ K where τpr ∈ Ip,n−1
g , g ∈ {0, . . . , n − 2},

Cp,g,r3 ∈ Γ, substituting the point Cp,g,r3 in (128) and using (129) and (130) gives

λpr = λptn−1

(
n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
−

g+1∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉(⌈
b

(d−1)
i

αd

⌉
−
⌊
τ

(d−1)
pr

αd

⌋
− 1

)

−
∑
t∈T+

i

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
ūptr

)

= λptn−1

(
g∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
a

(d−1)
r

αd

⌋
+

n−1∏
l=g+2

⌈
b

(l−1)
i

αl

⌉⌈
τ

(g)
pr

αg+1

⌉

−
∑
t∈T+

i

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
ūptr

)
. (133)

Next, for each p ∈ T (B) and r ∈ K where τpr ∈ Ip,n−1
n−1 , we define another point

Cp,r4 = (y, v, s) ∈ ZmN+ ×Rm+1
+ whose coordinates are exactly the same as Cp,d except

that (yp, vp) = (S2,p,r, 0). By Lemma 9(a,f), Cp,r4 ∈ Zm, for all p ∈ T (B) and r ∈ K

where τpr ∈ Ip,n−1
n−1 . Using Lemma 10(a,f) and condition (e), one can easily verify that

all these points also satisfy (121). So for all p ∈ T (B) and r ∈ K where τpr ∈ Ip,n−1
n−1 ,

Cp,r4 ∈ Γ, and hence must satisfy (128). Now for each p ∈ T (B) and r ∈ K where

τpr ∈ Ip,n−1
n−1 , Cp,r4 ∈ Γ, substituting the point Cp,r4 in (128) and using (129) and (130)

gives

λpr = λptn−1

(
n−1∑
d=1

n−1∏
l=d+1

⌈
b

(l−1)
i

αl

⌉⌊
τ

(d−1)
pr

αd

⌋
−
∑
t∈T+

i

n−1∏
l=1

⌈
b

(l−1)
i

αl

⌉
ūptr

)
. (134)
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Based on (129), (130), (131), (132), (133), and (134), hyperplane (128) reduces to

ρ0s =
∑
i∈T (B)

(
λitn−1

ξni (yi)− ρivi
)
. (135)

Now for i ∈ VC , let N(i) be the node in VC such that (i, N(i)) ∈ AC . For each

(p, q) ∈ B, consider the points Dp,q = (y, v, s) = (y1, . . . , ym, v1, . . . , vm, b
(n−1)
q ) ∈

ZmN+ × Rm+1
+ such that

(yi, vi) =



(Qi,n−1, 0) if i ∈ T (B), i < q

(Qi,n−1, b
(n−1)
i − b(n−1)

q ) if i ∈ T (B), N(i) < q ≤ i

(P i,1, 0) if i ∈ T (B), N(i) ≥ q

(P i,1, 0) if i /∈ VC ,

for i = 1, . . . ,m. By Lemma 9(a,b), it is clear that Dp,q ∈ Zm for all (p, q) ∈ B. Using

Lemma 10(a,b), it is easy to show that points Dp,q, for all (p, q) ∈ B, also satisfy

(121). Hence, they belong to Γ, and must satisfy (135). Now, note that in the point

Dp,q, (p, q) ∈ B, by definition we have (yp, vp) = (Qp,n−1, b
(n−1)
p − b(n−1)

q ). For each

(p, q) ∈ B, define another point Dp,q1 = (y, v, s) ∈ ZmN+ ×Rm+1
+ whose coordinates are

all exactly the same as Dp,q except that (yp, vp) = (Qp,n−1, 0). For precisely the same

reasons stated for Dp,q, the points Dp,q1 , (p, q) ∈ B, must also satisfy (135). Now if

for each (p, q) ∈ B, we substitute Dp,q and Dp,q1 into (135) and subtract one equality

from the other, we get

λptn−1
= ρp

(
b(n−1)
p − b(n−1)

q

)
, for all (p, q) ∈ B. (136)
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Based on (136), and assumptions (c), (d), hyperplane (135) reduces to

ρ0s =
∑

(i,j)∈B

ρi

(b(n)
i − b

(n)
j

)
ξni (yi)−

∑
t∈T\(T+

i
∪Tα)

at∈I
i,n−1
n−1

a
(n−1)
t yit −

∑
k∈K

τik∈I
i,n−1
n−1

τ
(n−1)
ik yik − vi

 . (137)

Assuming B := {(i1, i2), . . . , (iq, 0)} where i1 > i2 > . . . > iq, we substitute points Diq,01 ,

. . . ,Di1,i21 one after another in (137) and get

ρi = ρ0 for all i ∈ T (B). (138)

This reduces hyperplane (137) to a constant multiple of (121), which completes the proof.

Example 3 (continued). Notice that for n = 2, the coefficients of Z4 also satisfy the

additional conditions required in Theorem 15, i.e. (c) ui4 = ui6 = 2 for i = 1, . . . , 4,

(d) a
(2)
r = 0 for r ∈ T\T+

k , k = 1, . . . , 4, where ar ∈ Ik,22 , (e) a
(2)
r = 0 for r ∈ T\T+

k ,

k = 1, . . . , 4, where ar ∈ Ik,22 . Therefore, the mingled 3-step cycle inequality (111)

corresponding to each cycle C = (VC , AC) in graph Ḡ2, where T (F ) = {0}, defines

a facet for conv(Z4). In particular, mingled 3-step cycle inequalities (114) is facet-

defining for conv(Z4).
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CHAPTER VI

CUTS FOR MMLS, MMFL, AND MMND PROBLEMS

In this chapter, we introduce new classes of multi-row cuts for MIPs involving

“multi-modularity capacity constraints”. More specifically, in Sections VI.1, VI.2,

VI.3, we utilize the facets of continuous multi-mixing set (discussed in Chapter III)

to develop valid inequalities for multi-module capacitated lot-sizing (MMLS) prob-

lem with(out) backlogging (MML-(W)B), multi-module capacitated facility location

(MMFL), and multi-module capacitated network design (MMND) problems, respec-

tively, which subsume various well-known classes of inequalities earlier developed for

these problems. Furthermore, in Section VI.4, we computationally evaluate the ef-

fectiveness of the developed cuts (applied using our separation algorithm) in solving

the MML-(W)B problem.

VI.1 Cuts for Multi-Module Capacitated Lot-Sizing Problem

In this section, we use n-step cycle inequalities to develop cutting planes for

MML-(W)B problem. We define MML-B as follows. Let P := {1, . . . ,m} be the

set of time periods and {α1, . . . , αn} be the set of sizes of the n available capacity

modules. The setup cost per module of size αt, t = 1, . . . , n in period p is denoted

by f tp. Given the demand, the production per unit cost, the inventory per unit cost,

and the per unit shortage (backlog) cost in period p, denoted by dp, cp, hp, and bp,

respectively, the MML-B problem can be formulated as:

*Some parts of this chapter are reprinted with permission from “n-step cycle inequalities: facets
for continuous n-mixing set and strong cuts for multi-module capacitated lot-sizing problem” by
Manish Bansal and Kiavash Kianfar, 2014. Integer Programming and Combinatorial Optimization
Conference, Lecture Notes in Computer Science, 8494, 102-113, Copyright 2014 by Springer.
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min
∑
p∈P

cpxp +
∑
p∈P

hpsp +
∑
p∈P

bprp +
∑
p∈P

n∑
t=1

f tpz
t
p (139)

sp−1 − rp−1 + xp = dp + sp − rp, p ∈ P (140)

xp ≤
n∑
t=1

αtz
t
p, p ∈ P (141)

(z, x, r, s) ∈ Zm×n+ × Rm
+ × Rm+1

+ × Rm+1
+ (142)

where xp is the production in period p, sp and rp are the inventory and backlog,

respectively, at the end of period p, s0 = rm = 0, and ztp is the number of capacity

modules of size αt, t = 1, . . . , n, used in period p. Let XMML−B denote the set

of feasible solutions to constraints (140)-(142). Note that every valid inequality for

XMML−B also gives a valid inequality for the set of feasible solutions to the MML-WB

problem which is the projection of XMML−B ∩ {r = 0} on (z, x, s).

In order to generate valid inequalities for XMML−B, we consider periods k, . . . , l,

for any k, l ∈ P where k < l. Let S ⊆ {k, . . . , l} such that k ∈ S. For i ∈ S, let

Si := S ∩ {k, . . . , i}, mi = min{p : p ∈ S\Si} with mi = l + 1 if S\Si = ∅, and

bi =
∑mi−1

p=k dp. Now, by adding equalities (140) from period k to period mi − 1, we

get

sk−1 + rmi−1 +

mi−1∑
p=k

xp = bi + smi−1 + rk−1. (143)

Note that Si ⊆ {k, . . . ,mi − 1} by definition. If we relax xp, p ∈ Si, in (143) to its

upper bound based on (141) and drop rk−1, smi−1(≥ 0), we get the following valid

inequality:

sk−1 + rmi−1 +
∑

p∈{k,...,mi−1}\Si

xp +
n∑
t=1

αt
∑
p∈Si

ztp ≥ bi. (144)

Setting
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s := sk−1, vi := rmi−1 +
∑

p∈{k,...,mi−1}\Si

xp, and yit :=
∑
p∈Si

ztp, (145)

inequality (144) becomes

s+ vi +
n∑
t=1

αty
i
t ≥ bi, (146)

which is of the same form as the defining inequalities of continuous multi-mixing set

(notice that s, vi ∈ R+, y
i
t ∈ Z+, t = 1, . . . , n). Therefore we can form a set of base

inequalities consisting of inequalities (144) for all i ∈ S such that the n-step MIR

conditions, i.e. αt

⌈
b

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n, hold. We construct a directed

graph for these base inequalities in the same fashion as we did for the continuous

multi-mixing set Qm,n in Chapter III. The n-step cycle inequalities corresponding

to each elementary cycle C in this graph is valid for XMML−B. We refer to these

inequalities as the n-step (k, l, S, C) cycle inequalities. The same procedure also

provides a new class of valid inequalities for MML-WB which subsume the valid

inequalities generated using the mixed n-step MIR inequalities [96] for MML-WB.

Note that a procedure similar to what was presented above for n can also be

used to develop n′-step (k, l, S, C) cycle inequalities for MML-(W)B problem for any

n′ ∈ {1, . . . , n} in general.

VI.2 Cuts for Multi-Module Capacitated Facility Location Problem

In this section, we use n-step cycle inequalities to develop cutting planes for

MMFL problem. We define MMFL (first introduced in [96]) as follows. Let P :=

{1, . . . ,m} be a set of potential facilities, P ′ := {1, . . . ,m′} be a set of clients, and

{α1, . . . , αn} be the set of sizes of the n available capacity modules. The setup cost

per module of size αt, t = 1, . . . , n at facility p is denoted by f tp. Given the demand

of client p′ and the distribution cost per unit between facility p and client p′, denoted

by dp′ and cpp′ , respectively, the MMFL problem can be formulated as:
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min
∑
p∈P

∑
p′∈P ′

cpp′xpp′ +
∑
p∈P

n∑
t=1

f tpz
t
p (147)

∑
p∈P

xpp′ = dp′ , p
′ ∈ P ′ (148)

∑
p′∈P ′

xpp′ ≤
n∑
t=1

αtz
t
p, p ∈ P (149)

(z, x) ∈ Zm×n+ × Rm×m′
+ (150)

where xpp′ is the portion of demand of client p′ satisfied by facility p, and ztp is the

number of capacity modules of size αt, t = 1, . . . , n, used at facility p. Let XMMFL

denote the set of feasible solutions to constraints (148)-(150).

In order to generate valid inequalities for XMMFL, we consider facilities k, . . . , l,

for any k, l ∈ P where k < l. Let S ⊆ {k, . . . , l} such that k ∈ S. For i ∈ S, let

Si := S ∩ {k, . . . , i}, S ′i ⊆ P ′, and bi =
∑

p′∈S′i
dp′ . Now, by adding equalities (148)

for clients p′ ∈ S ′i, we get ∑
p∈P

∑
p′∈S′i

xpp′ = bi. (151)

If we relax
∑

p′∈S′i
xpp′ , p ∈ Si, in (151) to its upper bound based on (149), we get

the following valid inequality:

∑
p∈P\Si

∑
p′∈S′i

xpp′ +
n∑
t=1

αt
∑
p∈Si

ztp ≥ bi. (152)

Assuming S ′i ⊂ S ′i+1, for all i and setting

s :=
∑
p∈P\S

∑
p′∈S′1

xpp′ , vi :=
∑

p∈P\Si

∑
p′∈S′i

xpp′ −
∑
p∈P\S

∑
p′∈S′1

xpp′ , and yit :=
∑
p∈Si

ztp, (153)

inequality (152) becomes of the same form as the defining inequalities of continuous
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multi-mixing set (notice that s, vi ∈ R+, y
i
t ∈ Z+, t = 1, . . . , n because {(p, p′) :

p ∈ P/S, p′ ∈ S ′1} ⊆ {(p, p′) : p ∈ P/Si, p
′ ∈ S ′i} for all i ∈ S). Therefore we

can form a set of base inequalities consisting of inequalities (152) for all i ∈ S such

that the n-step MIR conditions, i.e. αt

⌈
b

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n, hold. We

construct a directed graph for these base inequalities in the same fashion as we did for

the continuous multi-mixing set Qm,n in Chapter III. The n-step cycle inequalities

corresponding to each elementary cycle C in this graph is valid for XMMFL. These

inequalities subsume the valid inequalities generated using the mixed n-step MIR

inequalities [96] for MMFL. Note that a procedure similar to what was presented

above for n can also be used to develop a new family of valid inequalities for MMFL

problem for any n′ ∈ {1, . . . , n} in general.

VI.3 Cuts for Multi-Module Capacitated Network Design Problem

We next develop a new class of valid inequalities for multi-module capacitated

network design (MMND) problem by utilizing the n-step cycle inequalities for Qm,n.

The MMND is the problem of finding the optimal flow and combination of capacity

modularities over the arcs of a (directed) graph to satisfy the net demand at each

node, where there are costs associated with the flow and the installed arc capacity

modules. Interestingly, the MMLS and MMFL problems can be viewed as special

cases of the MMND problem. We define it as follows. Let G = (V,A) be a (directed)

graph where V := {1, . . . ,m} and {α1, . . . , αn} be the set of sizes of the n available

capacity modules. The setup cost per module of size αt, t = 1, . . . , n and flow cost

at arc (p, p′) ∈ A are denoted by f tpp′ and cpp′ , respectively. Given the net demand

dp (negative demand is supply) at each node p ∈ V , the MMND problem can be

formulated as:
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min
∑

(p,p′)∈A

(
cpp′xpp′ +

n∑
t=1

f tpp′z
t
pp′

)
(154)

∑
(p,p′)∈A

xp′p −
∑

(p,p′)∈A

xpp′ = dp, p ∈ V (155)

xpp′ ≤
n∑
t=1

αtz
t
pp′ , (p, p

′) ∈ A (156)

(z, x) ∈ Zn|A|+ × R|A|+ (157)

where xpp′ corresponds to the flow on the directed arc (p, p′), and ztpp′ is the number

of capacity modules of size αt, t = 1, . . . , n, used at arc (p, p′). Let XMMND denote

the set of feasible solutions to constraints (155)-(157).

In order to generate valid inequalities for XMMND, we consider nodes k, . . . , l,

for any k, l ∈ P where k < l. Let S ⊆ {k, . . . , l} such that k ∈ S. For i ∈ S, let

Si = S∩{k, . . . , i}, bi =
∑

p∈V \Si dp, a(Si) := {(p, p′), (p′, p) ∈ A : p ∈ Si, p′ ∈ V \Si},

Ai ⊆ a(Si), and A′i = {(p, p′) ∈ a(S)\Ai : p ∈ Si, p
′ ∈ V \Si}. Now, by adding

equalities (155) for nodes p ∈ V \Si and relaxing xpp′ , (p, p
′) ∈ Ai, to its upper bound

based on (156), we get the following valid inequality:

∑
(p,p′)∈A′i

xpp′ +
n∑
t=1

αt
∑

(p,p′)∈Ai

ztpp′ ≥ bi. (158)

Assuming A′i ⊂ A′i+1, for all i and setting

s :=
∑

(p,p′)∈A′k

xpp′ , vi :=
∑

(p,p′)∈A′i\A′k

xpp′ , and yit :=
∑

(p,p′)∈Ai

ztpp′ , (159)

inequality (158) becomes of the same form as the defining inequalities of continuous

multi-mixing set (notice that s, vi ∈ R+, y
i
t ∈ Z+, t = 1, . . . , n). Therefore we can

form a set of base inequalities consisting of inequalities (152) for all i ∈ S such that

110



the n-step MIR conditions, i.e. αt

⌈
b

(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n, hold. Hence, a

procedure similar to what was presented above for MML-B (Section VI.1) and MMFL

(Section VI.2) can also be used to develop a new family of valid inequalities for

MMND problem for any n′ ∈ {1, . . . , n} in general. Interestingly, the cuts developed

in [19, 70, 72] for two-modularity ND with divisible capacities (2MND-DC) and in

[9] for MMND can be derived just using 1-step MIR procedure. Furthermore, two-

modularity cut-set inequalities for 3MND-DC [70] and the partition inequalities for

the single-arc MMND-DC [89] can be derived using the 2-step MIR [36, 62] and the

n-step MIR, respectively. Our inequalities derived in this section for MMND subsume

all these existing valid inequalities developed for this problem and its special cases.

VI.4 Computational Results

In this section, we computationally evaluate the effectiveness of the n′-step cy-

cle inequalities, n′ ∈ {1, . . . , n}, for the MML-(W)B problem using our separation

algorithm (discussed in Section III.3). We chose n = 2 for our experiments in this

paper and refer to the MML-WB and MML-B problem with two capacity modules

(n = 2) as 2ML-WB and 2ML-B, respectively. We created random 2ML-WB and

2ML-B instances with 60 time periods, i.e. P = {1, . . . , 60}, and varying cost and

capacity characteristics. The demand dp, production cost cp, and holding cost hp

in each period were drawn from integer uniform[10 , 190 ], integer uniform[81 , 119 ],

and real uniform[1 , 19 ], respectively. For each instance of 2ML-B, the backlog cost

bp in each period equals hp plus a real number drawn from uniform[1 , 10 ]. We used

three sets of capacity modules α = (α1, α2): (70, 34), (100, 35), and (180, 80), de-

noted by Ma, Mb, and Mc respectively, and four sets of setup costs (f 1
p , f

2
p ), p ∈ P :

(1000, 600), (5000, 2600), (10500, 6600), and (13000, 10600), denoted by FI , FII ,

FIII , and FIV respectively. This leads to 12 instance categories where the first set
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of setup costs (i.e. FI) leads to easy instances and the remaining three lead to hard

instances. Note that some of the instance generation ideas we used here are inspired

by the ideas used in [96] for 2ML-WB.

For each 2ML-(W)B instance, we first solved the problem (defined in Section

VI.1), for n = 2, without adding any of our own cuts using CPLEX 11.0 with its

default settings (2ML-(W)B-DEF). In a separate run, for each n′ ∈ {1, 2}, we used

our cut generation algorithm, denoted by CutGen(n′), to add n′-step (k, l, S, C) cycle

inequalities to the problem at the root node. The pseudocode of CutGen is presented

in Algorithm 2. This algorithm calls our separation algorithm in Line 14 for several

choices of (k, l, S) (see Lines 3-11) to generate n′-step (k, l, S, C) cycle inequalities

(Lines 12-14) that are violated by the LP relaxation optimal solution, which is up-

dated after adding each cut (see Lines 15-19). Note that each choice of (k, l, S)

provides one set of base inequalities (144) (where n = 2) and we solve an exact sep-

aration problem over the set of all 2-step (k, l, S, C) cycle inequalities corresponding

to the base inequalities which satisfy the n-step MIR conditions (discussed in Section

VI.1). We then removed the inactive cuts and used CPLEX 11.0 with its default set-

tings to solve the problem (2ML-(W)B-1CUTS for n′ = 1, and 2ML-(W)B-2CUTS

for n′ = 2). We implemented our codes in Microsoft Visual C++ 2010 and all the

experiments were run on a PC which has two Intel Xeon E5620 2.40GHz processors

and 12 GB of RAM.

The results of our computational experiments are shown in Tables 1 and 2.

Each row of these tables reports the average results for 10 instances of the cor-

responding instance category. Note that an instance category corresponding to

a set of setup costs (say FI) and a set of capacity module (say Ma) is denoted

by I-a. We report the percentage of the integrality gap closed by our cuts, i.e.

G% = 100 × (zcut − zlp)/(zmip − zlp), where zlp, zcut, and zmip are the opti-
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Algorithm 2 Generating n′-step (k, l, S, C) Cycle Inequalities for MML-(W)B

1: function CutGen(n′)
2: (ẑ, x̂, r̂, ŝ)← optimal solution of the LP relaxation . r̂ = 0 for 2ML-WB

instance

3: for k = 1 to m do
4: for l = k + 1 to m do
5: for SS = 1 to 3 do
6: if SS = 1 then S = {k, . . . , l}
7: else if SS = 2 then
8: S = {k} ∪ {p ∈ {k + 1, . . . , l} : ẑ1

p > 0 or ẑ2
p > 0}

9: else if SS = 3 then
10: S = {k} ∪ {p ∈ {k + 1, . . . , l} : ẑ1

p /∈ Z or ẑ2
p /∈ Z}

11: end if
12: Each choice of (k, l, S) provides directed graph G
13: Obtain (ŷ, v̂, ŝ) from (ẑ, x̂, r̂, ŝ) . see Section VI.1

14: C := MBFCT (G, (ŷ, v̂, ŝ), n′)
15: if n′-step (k, l, S, C) cycle inequality is violated by (ẑ, x̂, r̂, ŝ) then
16: Add the n′-step (k, l, S, C) cycle inequality as a cut
17: Re-optimize the LP relaxation
18: (ẑ, x̂, r̂, ŝ)← optimal solution of the LP relaxation
19: end if
20: end for
21: end for
22: end for
23: end function

mal objective values of the LP relaxation without our cuts, LP relaxation with our

cuts, and MIP, respectively. We also report the number of branch-and-bound nodes

(Nodes), and the time (in seconds) to solve 2ML-(W)B-DEF (TDef ), 2ML-(W)B-

1CUTS (T 1
Opt), and 2ML-(W)B-2CUTS (T 2

Opt) to optimality. Note that T 1
Opt and

T 2
Opt exclude the cut generation time. For each n′ ∈ {1, 2}, the number of active

n′-step (k, l, S, C) cycle cuts added at the root node (Cuts), the time (in seconds)

to generate n′-step (k, l, S, C) cycle cuts (denoted by T 1
Cut for n′ = 1 and T 2

Cut for

n′ = 2), and the total time (including the cut generation time) to solve 2ML-(W)B-

1CUTS and 2ML-(W)B-2CUTS, denoted by T 1 = T 1
Cut + T 1

Opt and T 2 = T 2
Cut + T 2

Opt
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respectively, are also reported.

Table 2: Results of computational experiments on 2ML-WB instances

Inst. 2ML-WB-DEF 2ML-WB-1CUTS 2ML-WB-2CUTS

TDef Node Cut T 1
Cut T 1

Opt T 1 Node G% Cut T 2
Cut T 2

Opt T 2 Node G%

I-a 0.46 811 102 2.0 6.10 8.10 24289 54 114 3.3 0.27 3.6 314 90

I-b 0.73 1296 114 14 0.66 14.7 1099 77 93 8.6 0.23 8.8 212 90

I-c 0.31 347 90 14 0.23 14.2 304 56 123 12 0.07 12.1 32 91

II-a 1128 6.0×106 104 2.1 1636 1638 6.8×106 42 76 3.3 48.4 51.7 123665 86

II-b 152 356302 82 14 56 70 167450 75 70 9.0 6.42 15.4 14003 81

II-c 700 1.3×106 112 15 719 734 1.1×106 50 98 12 4.87 16.9 11027 87

III-a 1699 1.0×107 64 2.4 1417 1419 5.8×106 63 60 3.2 194 197 616257 81

III-b 2448 8.4×106 68 15 993 1008 1.3×106 75 56 9.1 16.0 25.1 43513 80

III-c 313 663551 76 15 325 340 1.0×106 70 76 12 20.0 32.0 38633 86

IV-a 1852 1.1×107 64 2.7 434 437 2.1×106 76 57 3.0 3.87 6.9 11343 88

IV-b 1972 7.1×106 67 14 400 414 605580 82 58 7.7 36.1 43.8 95252 84

IV-c 266 319360 72 16 16 32 40533 77 62 12 2.47 14.5 4234 87

In Table 2, comparing the time to optimize the 2ML-WB problem before and

after adding the 2-step (k, l, S, C) cycle cuts (i.e. T 2
Opt vs. TDef ), we see significant

improvement obtained by adding these cuts in both easy instances (on average 3

times) and hard instances (on average 112 times). There is also a substantial re-

duction in the number of branch-and-bound nodes (on average 6.5 times for easy

instances and 174 times for hard instances). The percentage of integrality gap closed

by the 2-step (k, l, S, C) cycle cuts is between 80.32% and 91.15% (the average is

85.90%). These results show the strength of 2-step (k, l, S, C) cycle inequalities. In-

terestingly, in these instances adding 2-step (k, l, S, C) cycle inequalities over 1-step
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(k, l, S, C) cycle inequalities has improved the closed integrality gap by 19.48% (in

average), the number of nodes by 43 times (in average), and the solution time (i.e.

T 2
Opt vs. T 1

Opt) by 36 times (in average).

Table 3: Results of computational experiments on 2ML-B instances

Inst 2ML-B-DEF 2ML-B-1CUTS 2ML-B-2CUTS

TDef Node Cut T 1
Cut T 1

Opt T 1 Node G% Cut T 2
Cut T 2

Opt T 2 Node G%

I-a 0.34 582 105 1.9 3.35 5.25 11150 58 109 4.0 0.18 4.2 197 91

I-b 0.31 691 113 2.1 0.25 2.4 446 80 91 2.9 0.10 3.0 116 88

I-c 0.13 277 98 2.0 0.10 2.1 169 55 125 3.7 0.03 3.7 23 93

II-a 1133 5.2×106 113 2.2 2085 2087 8.4×106 50 86 4.9 135 140 274503 83

II-b 7.8 31909 93 2.4 10.8 13.2 29551 83 81 3.7 6.1 9.8 12065 83

II-c 28.6 117942 121 2.2 96.4 98.6 300361 57 101 4.6 3.8 8.4 6986 87

III-a 854 4.6×106 72 2.5 244 246 1.1×106 78 80 5.7 28.0 33.7 81743 83

III-b 122 660454 79 2.8 5.5 8.3 12906 91 79 4.2 3.9 8.1 4601 87

III-c 28.2 130383 88 2.5 56 59 146378 79 86 6.2 13.4 19.6 31979 84

IV-a 1211 6.8×106 104 2.9 323 326 753257 80 93 4.2 38 42 82211 83

IV-b 527 3.0×106 138 3.3 335 338 1.1×106 94 84 3.2 198 201 921530 88

IV-c 37 213644 89 2.8 8.8 11.6 21719 85 88 5.8 4.4 10.2 7151 86

Moreover, going to Table 3 we observe that in all the instance categories of 2ML-B,

adding the 2-step (k, l, S, C) cycle cuts cuts to 2ML-B-DEF has reduced the solution

time (on average 3 times for easy instances and 13.8 times for hard instances) and

the number of branch-and-bound node (on average 6.9 times for easy instances and

39.9 times for hard instances). The percentage of integrality gap closed by these

cuts is between 82.94% and 92.52% (the average is 86.75%) for 2ML-B instances.

Notice that in these instances adding 2-step (k, l, S, C) cycle inequalities over 1-step

115



(k, l, S, C) inequalities has improved the closed gap by 16% (in average), the number

of nodes by 14 times (in average), and the solution time (i.e. T 2
Opt vs. T 1

Opt) by 7.7

times (in average).

Also, observe that for the hard instances in Tables 1 and 2, the cut generation

time for 2-step (k, l, S, C) cycle cuts (T 2
Cut) in negligible compared to TDef . This

combined with the highly improved optimization time after adding these cuts has

resulted in a total solution time (T 2
Total) which is on average 58 times and 9.9 times

smaller than the total time to solve 2ML-WB-DEF and 2ML-B-DEF, respectively,

(TDef ). The collection of these observations show that the 2-step (k, l, S, C) cycle

inequalities are very effective in solving the 2ML-WB and 2ML-B problems.
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CHAPTER VII

CONCLUSION AND FUTURE RESEARCH

VII.1 Conclusion

In this dissertation, we developed facet-defining valid inequalities for the follow-

ing new generalizations of the well-studied continuous mixing set: 1) Continuous

multi-mixing set with the so-called n-step MIR conditions on the coefficients, (2)

Continuous multi-mixing set with general coefficients, and (3) Continuous multi-

mixing set with general coefficients and bounded integer variables. This resulted in

new cut-generating procedures for the mixed integer programs and generalizations

of MIR, mixed MIR, continuous mixing, n-step MIR, mixed n-step MIR, mingling,

and n-step mingling. We provided a knowledge base for developing new families of

cutting planes for MIP problems involving “multi-modularity capacity constraints”

(MMCCs), in particular multi-module capacitated lot-sizing (MMLS), multi-module

capacitated facility location (MMFL), and multi-module capacitated network design

(MMND). These cutting planes generalize various well-known families of cuts for

MMLS, MMFL, and MMND problems, and significantly improve the efficiency of

algorithms for solving them.

In the first step, we unified the concepts of the continuous mixing and the n-step

MIR by developing a class of valid inequalities (n-step cycle inequalities) for continu-

ous multi-mixing set (a generalization of the continuous mixing set and the n-mixing

set) where the coefficients satisfy the so-called “n-step MIR conditions.” We pro-

vided the facet-defining properties of the n′-step cycle inequalities, n′ ∈ {1, . . . , n},

for the continuous multi-mixing set, and showed that the 1-step cycle inequalities
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[105], n-step MIR inequalities [62], and mixed n-step MIR inequalities [96] form spe-

cial cases of the n-step cycle inequalities. Note that the n-step MIR conditions are

automatically satisfied if the parameters α1, . . . , αn are divisible. We also presented

a compact extended formulation for the continuous multi-mixing set and an exact

separation algorithm to separate over the set of all n-step cycle inequalities.

In the next step, we extended the results of the first step to the case where no

conditions are imposed on the coefficients of the continuous multi-mixing set. We

relaxed the n-step MIR conditions and considered the continuous multi-mixing set

with general coefficients. This lead to an extended formulation and generalization

of the n-step cycle inequalities. We identified the conditions under which they are

facet-defining.

In the third step, we unified the concepts of continuous multi-mixing and n-step

mingling by incorporating upper bounds on the integer variables of the continuous

multi-mixing set with general coefficients. For each n ∈ N, we developed new families

of valid inequalities for this set, referred to as the mingled n-step cycle inequalities.

We derived the facet-defining conditions of these inequalities and provide an exact

separation algorithm to separate over a set of all mingled n-step cycle inequalities

for a given n ∈ N. Note that these inequalities generalize n-step cycle inequalities

[16, 15] and n-step mingling inequalities [7] (which subsume continuous cover and

reverse continuous cover inequalities of Marchand and Wolsey [73] as well as the

continuous integer knapsack cover and pack inequalities of Atamtürk [10, 11] derived

earlier by superadditive lifting techniques).

Finally, we utilized the results of first step to develop new families of valid inequal-

ities for MIPs involving MMCCs. In particular, we focused on the multi-modularity

generalizations of three following high-impact classes of capacitated MIPs: lot-sizing,

facility location, and network design problems. We showed that the n-step cy-
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cle inequalities can be used to generate cuts for the MMLS with(out) backlog-

ging (MML-(W)B), MMFL, and MMND problems which subsume valid inequali-

ties introduced in [51, 87, 96] for LS problems, [2, 51, 96] for FL problems, and

[9, 19, 51, 52, 61, 70, 72, 89] for ND problems, respectively. We also computationally

evaluate the effectiveness of the n-step cycle inequalities (applied using our separa-

tion algorithm) for the MML-(W)B problem. Our computational results show that

our cuts are very effective in solving the MML instances with(out) backlogging, re-

sulting in substantial reduction in the integrality gap, number of nodes, and total

solution time.

VII.2 Future Plans

The methodological developments in this dissertation creates pathways to several

new research problems. Some research directions originating from the results in this

dissertation are as follows:

(i). Multi-Module Capacitated Lot-Sizing Problem. On the first path, in

the light of the computational results in this dissertation, we intend to inves-

tigate the facet-defining properties of the valid inequalities (developed using 2-

step cycle inequalities) for two-module capacitated lot-sizing problem with(out)

backlogging. Furthermore, we are examining the computational complexity of

MML-(W)B. If the number of modularities (n) is part of the input data, these

problems are clearly NP-hard (mixed integer knapsack problem can be reduced

to single-period versions of these problems). However, the complexity for a fixed

n is an open question, which we are already investigating. In addition, we are

exploring the solution structure for these problems to develop strong extended

formulations and optimization algorithms for them.
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(ii). Superincreasing Continuous Multi-Mixing Set. On the second path, we

intend to develop facets for continuous multi-mixing set with bounded integer

variables where coefficients of integer variables and their upper bounds together

form a superincreasing sequence of tuples. We also plan to describe the con-

vex hull of this set. If successful, this research will generalize the results for

superincreasing (0/1) knapsack polyhedron.

(iii). (New) Facets for New/Existing Base Sets. In this task, we intend to

investigate the polyhedral structure and develop facet-defining valid inequalities

for new base sets which we will later use to develop cuts for general and special

structure MIPs. We also plan to investigate the possibility of developing new

families of facets for continuous multi-mixing set and its generalizations.

(iv). Separation Algorithms. In applying the cuts (developed using the facets of

(new) base sets) while solving MIPs with MMCCs, the separation problem must

be solved many times. As a result, developing efficient separation methods to

use these cuts is crucial. We will pursue the following directions in this regard:

We will study developing exact separation algorithms for such cuts if that is

achievable within reasonable effort. However if the effort proves to be prohibitive

due to the complexity of the separation problem, we will develop intelligent and

fast separation heuristics. In order to develop the fastest and most effective

separation methods, we will theoretically and computationally investigate how

the choices of constraint selection strategy and other input parameters to the

separation algorithm affect the cut generation time and the amount by which

the LP relaxation solution violates the generated cut.

(v). Computational Research. On this path, we plan to investigate the very im-

portant issue of using the above mentioned valid inequalities in practice. What
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we need are intelligent methods to evaluate these valid inequalities and use them

most effectively in general algorithms for solving MIP like branch-and-cut. We

plan to perform theoretical and experimental research in this area to address

questions like how to find the strongest cuts among infinite possibilities, which

constraints to use for this purpose, and in what order to use cuts in the branch-

and-cut tree in different problem contexts.
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[59] M. Jünger, G. Reinelt, and S. Thienel. Practical problem solving with cutting

plane algorithms in combinatorial optimization. In W. Cook, L. Lovsz, and

P. Seymour, editors, Combinatorial Optimization. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, pages 111–152. AMS, 1995.

[60] S. Karabuk and S. D. Wu. Coordinating strategic capacity planning in the

semiconductor industry. Operations Research, 51(6):839–849, 2003.

[61] K. Kianfar. On n-step MIR and partition inequalities for integer knap-

sack and single-node capacitated flow sets. Discrete Applied Mathematics,

160(1011):1567–1582, 2012.

[62] K. Kianfar and Y. Fathi. Generalized mixed integer rounding inequalities:

facets for infinite group polyhedra. Mathematical Programming, 120(2):313–

346, 2009.

[63] K. Kianfar and Y. Fathi. Generating facets for finite master cyclic group

polyhedra using n-step mixed integer rounding functions. European Journal of

Operational Research, 207:105–109, 2010.

[64] KIT-Germany. Modular battery concept for short-distance traffic. Science

Daily, Sept. 2, 2013.

[65] D. Klingman, P. H. Randolph, and S. W. Fuller. A cotton ginning problem.

Operations Research, 24(4):700–717, 1976.

[66] H. W. Kuhn and W. J. Baumol. An approximative algorithm for the fixed-

charges transportation problem. Naval Research Logistics Quarterly, 9(1):1–15,

1962.

128



[67] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-

gramming problems. Econometrica, 28:497–520, 1960.

[68] J. M. Y. Leung and T. L. Magnanti. Valid inequalities and facets of the

capacitated plant location problem. Mathematical Programming, 44(1-3):271–

291, 1989.

[69] G. L. Liu, J. Zhao, and W. Wang. Quantitative modeling of the capacitated

multi-level production-inventory problem in petroleum industry. Advanced Ma-

terials Research, 314-316:2008–2011, 2011.

[70] T. L. Magnanti and P. Mirchandani. Shortest paths, single origin-destination

network design, and associated polyhedra. Networks, 23(2):103–121, 1993.

[71] T. L. Magnanti, P. Mirchandani, and R. Vachani. The convex hull of two

core capacitated network design problems. Mathematical Programming, 60(1-

3):233–250, 1993.

[72] T. L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solving

the two-facility capacitated network loading problem. Operations Research,

43(1):142–157, 1995.

[73] H. Marchand and L. A. Wolsey. The 0-1 knapsack problem with a single

continuous variable. Mathematical Programming, 85:15–33, 1999.

[74] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to

solve MIPs. Operations Research, 49(3):363–371, 2001.

[75] A. Martin. General mixed integer programming: Computational issues for

Branch-and-Cut algorithms. In D. Naddef and M. Jünger, editors, Computa-
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