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ABSTRACT 

 

Multi-stage hydraulic fracturing in horizontal wells has demonstrated successful results 

for developing unconventional low-permeability oil and gas reservoirs. Despite being 

vastly implemented by different operators across North America, hydraulic fracture 

treatments are still not fully comprehended and have proved to have a more complex 

behavior than initially thought. To fill this knowledge gap and monitor the performance 

of hydraulic fracture treatments, fracture diagnostic tools are deployed in order to obtain 

information that can give a better insight of the reservoir and hydraulic fracture 

conditions. A technique that has demonstrated great potential in the monitoring of 

hydraulic fracture treatments is distributed temperature sensing technology. In situations 

where pressure and/or flow rate data is not reliable or in conflict with the known physics 

of the reservoir, continuous temperature data can be used as an alternative source of 

information since it effectively responds to pressure or flow rate changes when looked at 

a finer scale. Qualitative information such as fracture initiation points, vertical coverage 

and number of created fractures can be identified via distributed temperature sensors 

however; more quantitative results are needed in order to accurately characterize 

hydraulic fractures in shale gas reservoirs.  

 In this study, a stochastic inverse problem is set up with the objective of 

inferring hydraulic fracture characteristics, such as fracture half-length and permeability, 

by assimilating data from downhole temperature sensors. The ensemble Kalman filter is 

implemented to assimilate DTS data and estimate fracture parameters. This inverse 
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method is suitable for applications to non-linear assimilation problems and is, by nature, 

an appropriate approach for monitoring. In this way, the ensemble Kalman filter enables 

a quantitative fracture characterization and automatic history matching. Furthermore, the 

EnKF offers several advantages for this application, including the ensemble formulation 

for uncertainty assessment, convenient gradient-free implementation, and the flexibility 

to incorporate additional monitoring data types. The validity of the method is examined 

using synthetic models, and finally, field data from a horizontal gas well in the 

Marcellus shale. 
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1. INTRODUCTION 

 

1.1 Background 

In the last decade, unconventional hydrocarbon resources have become a predominant 

component of North America’s energy supply. The development and economic viability 

of these unconventional reservoirs, specifically shale formations, relies on the effective 

stimulation of extremely low-permeability rock through a technique known as hydraulic 

fracturing. This technique consists of pumping specially engineered fluids at high 

pressure and rate into the reservoir interval to create complex fracture networks that 

connect a large reservoir surface area to the wellbore (Cipolla et al, 2010). As a result, 

hydraulic fracturing has become an indispensable technology in today’s North American 

onshore development by enabling the development of once thought unattainable 

resources. 

Despite being vastly implemented by different operators across North America, 

hydraulic fracture treatments (HFT) are still not fully comprehended and have proved to 

have a more complex behavior than initially thought. To fill this knowledge gap, fracture 

diagnostic tools are used in order to directly or indirectly measure parameters that can 

provide relevant information to asses a fracture treatment. Conventional diagnostic tools 

can be classified in to three different groups: Direct-Far Field, Direct-Near Wellbore and 

Indirect Mapping tools. A technique with great potential in the area of HFT diagnostics 

is distributed temperature sensing technology (DTS). In situations where pressure and/or 

flow rate data is not reliable or in conflict with the known physics of the reservoir, 
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continuous temperature data can be used as an alternative source of information since it 

effectively responds to pressure or flow rate changes when looked at a finer scale (Duru 

and Horne, 2009). 

Prior to the advent of hydraulic fracturing, DTS had been mostly used for the 

assessment of flow contribution or injection distribution from comingled reservoirs 

(Sierra et al, 2008). Today, DTS is started to be used in a myriad of HFT diagnosis 

applications such as estimating number of generated fractures, pad fluid placement, 

perforation effectiveness, interval isolation and flowback (Sierra et al, 2008). These 

applications are suitable for qualitative assessments however; more quantitative results 

are needed if a more accurate reservoir/HFT characterization is sought.  

In the quest for more quantitative results, a statistical framework is preferred 

rather than a deterministic one. The issue of strong non-linearity between the 

measurements (e.g. temperature along the wellbore) and unknown parameters (e.g. 

fracture half-length) makes the development of analytical reservoir models a very 

challenging task. On the other hand, Bayesian inversion modeling techniques present a 

suitable framework for problems involving large amount of data and severe 

nonlinearities. Today’s computational power and the introduction of better data 

assimilation techniques have facilitated the handling of such problems in petroleum 

science. In recent years, the ensemble Kalman Filter (EnKF)  has shown great potential 

as an alternative to traditional history matching due to its ability to continuously update 

reservoir models (Skjervheim et al, 2005). Commonly  used in atmospheric and 

oceanographic sciences, the EnKF is a sequential Bayesian inversion that results in an 
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ensemble of solutions approximating the posterior probability density function for the 

model input parameters, state variables, and other output data conditioned to measured 

dynamic data (Skjervheim et al, 2005). 

 In this study, the EnKF filter method is used to update hydraulic fracture model 

parameters using a combination of production and continuous DTS data.  A sensitivity 

analysis is performed to determine which parameters affect the reservoir temperature the 

most and assist in the calibration of the forward model. In addition, field data from a 

horizontal gas well from the Marcellus shale is integrated to further improve on the 

reservoir model. The goal is to use EnKF and determine as many hydraulic fracture 

parameters as possible using all the provided data.  

 

1.2 Literature Review 

1.2.1 Unconventional Resources 

Hydrocarbon reservoirs can be classified based on the petrophysical traits that 

characterize them. This is based upon the predominant produced fluid (oil, gas or both) 

or whether they are conventional or unconventional reservoirs. (Belvalkar and Oyewole, 

2010). Formations that require higher technical expertise and are less economical are 

defined as unconventional. When it comes to unconventional gas supplies, these can be 

classified as deep gas, tight gas, shale gas, coalbed methane geopressurized zones and 

Artic and sub-sea hydrates (Belvalkar and Oyewole, 2010). In the United States, shale 

gas constitutes a large portion of the country’s natural gas reserves and has become a 

predominant component of its current energy supply. 
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In the past, gas-containing shale was often overlooked and considered 

uneconomical due to the ultra-low permeability found in these formations. Shale is 

defined as a fine-grained, fissile, detrital sedimentary rock which is formed as a result of 

deposition of clay and silt-sized particles over each other and consolidated over time 

(Belvalkar and Oyewole, 2010).  Often acting as a seal to conventional reservoirs, shales 

can contain significant amount of gas trapped in the pore space as well as adsorbed on 

the organic matter (Belvalkar and Oyewole, 2010). In most cases, shale’s low-

permeability does not allow the gas to flow and hydraulic fracture treatments are 

executed to connect the reservoir to the wellbore via a network of artificially created 

fractures. 

The Marcellus shale is an example of gas-containing shale. Located in the 

Appalachian basin, the Marcellus shale crosses the states of Pennsylvania, New York, 

Ohio and West Virginia. Located at approximately 5000 ft total vertical depth (TVD) 

with at least 50 ft formation thickness, the Marcellus shale is believed to hold up to     

Tcf gas in place with estimates of recoverable gas at 50 Tcf (Belvalkar and Oyewole, 

2010). As is the case in most gas shales, hydrocarbons are stored as free gas in natural 

fractures and intergranular porosity. Furthermore, the Marcellus is a dual porosity 

reservoir with gas flowing faster from natural fractures in comparison to the gas 

produced from desorption, which only occurs in the presence of hydraulic fractures. 

Evidently, the intersection with the reservoir’s natural fractures and the effectiveness of 

the created fracture network is often the difference between success and failure of a well. 
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1.2.2 Fracture Diagnostic Technology 

The assessment of a hydraulic fracture treatment (HFT) is often very complicated given 

that fractures grow thousands of feet below the surface and partly because hydraulic 

fracture behavior is still not fully understood. As a result, fracture geometry from 

fracture models is often inaccurate or at least, difficult to verify. For this reason, 

different tools have been designed with the purpose of collecting data that could lead to 

the proper assessment of fracture parameters.  

The main purpose of fracture diagnostics is to help the producer optimize field 

development and well economics (Cipolla and Wright, 2000). Today, there are three 

main categories of commercially available diagnostic tools: Direct-Far Field, Direct-

Near Wellbore and Indirect. Tiltmeter fracture mapping and microseismic fracture 

mapping are examples of the first group. These are often conducted from offset 

wellbores or from the surface during the deployment of the fracture treatment and 

provide a “big picture” far-field fracture growth (Cipolla and Wright, 2000). Despite 

mapping the total extent of hydraulic fracture growth, these tools do not offer an 

accurate representation of the effective propped fracture length or conductivity. 

Furthermore, the resolution of these is only reliable as longs as it is proximate to the 

testing site.  

The second group of diagnostic tools is often deployed for specific applications 

and can be run inside the treatment wellbore before and/or after the fracture treatment. 

Radioactive tracer technology, production logging and DTS are examples of direct-near 

wellbore diagnostic techniques. Note that the first two examples are commonly deployed 
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post-completion while DTS is permanently installed during the drilling/completion 

process. Today, the main application of Near-Wellbore Fracture Diagnostic tools is the 

identification of fluid/proppant entry or production from each zone in multi-zone 

completions (Sierra et al, 2008). 

Lastly, indirect-fracture diagnostic methods provide estimates of fracture 

parameters based on indirect measurements such as pressure responses after the propped 

fracture treatment (Cipolla and Wright, 2000). These methods rely on analytical and 

numerical solutions in order to process the collected data and generate an estimate of the 

desired fracture parameters. Consequently, the results obtained from these are not always 

unique and require calibration with direct observations. Nevertheless, a good estimate 

for effective dimensions and conductivity, as well as a diagnostic to identify problems in 

the fracture treatment, is often obtained from these techniques. 

 

1.2.3 Downhole Temperature Technology 

1.2.3.1 Downhole Temperature Sensors (DTS) 

Downhole temperature sensing technology is a direct measurement diagnostic tool 

capable of detecting small temperature variations along a wellbore. Previously used to 

determine fluid placement in acidizing treatments and monitor flow in comingled 

reservoirs, DTS is an emerging technology in the field of fracture diagnostics (Cipolla 

and Wright, 2000). 

The conventional way to monitor fractured wells is through production and 

temperature logs. These are capable of generating a production and temperature profiles 
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during a shut-in period before or after fracturing. Different from conventional 

temperature logs, DTS is permanently installed on the wellbore and enables the 

observation of a dynamic temperature profile along the well without stopping production 

and for extended periods of time. For reservoir characterization and monitoring 

purposes, prolonged and continuous real-time temperature measurements are more 

beneficial than the snapshots a traditional temperature logging tool can provide. 

DTS is able to capture temperature measurements along the well via fiber optic. 

First, a pulsed laser sources sends a pulse of light down the optical fiber and the 

properties of the returning light are then recorded (Sierra et al, 2008). The returning 

light, also known as “backscatter”, includes the absorption and retransmission of light 

energy. The different spectral components that comprise the backscattered light are 

Rayleigh, Brillouin, and Raman bands. The latter ones are able to collect temperature 

information transmitted in the optical fiber since its two components, Stokes and Anti-

Stokes, are influenced by temperature. The relative intensities between these two 

components are a function of temperature at which the backscattering occurred (Sierra et 

al, 2008) . By tracking the arrival time of the reflected and backscattered light, the 

location where the light originated is then determined. This location is referred as a 

sample point. A DTS profile is developed by combining a set of temperature 

measurements or sample points, equally spaced along the fiber length. Fig. 1.1 illustrates 

these concepts.  
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Fig. 1.1—Raman-based distributed temperature sensing concept (Sierra et al, 2008) 

 

 
1.2.3.2 Installation and Deployment  

The installation of DTS varies depending on its application. Flow profiling, fluid 

placement and fracture diagnostic applications share the same DTS analysis techniques 

however, the way in which the data is collected may vary for each case.  A downhole 

cable that houses an optical fiber is required in order to carry out any monitoring 

application using DTS. The difference lies in the deployment and positioning of the 

housing cable in the wellbore. Some installations place the cable directly in the flow path 

while other deployment methods secure the cable to the outside of casing or production 

tubing (Sierra et al, 2008).  When interested in monitoring HFT’s, the best method for 

deployment is probably strapping the housing cable to the outside of the production 

casing. The limitation is that production casing needs to run back to the surface. An 

alternative to this issue is liner lap installations but these have not been successfully 
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tested in the field yet (Sierra et al, 2008).  An additional concern is perforating with the 

cable running across the pay zone. Various completion designs are already being 

implemented in order to avoid perforating the fiber optic-cable. These techniques 

include oriented perforating, sliding sleeves, tubing conveyed perorating (TCP) guns ran 

outside the casing, and hydraulically controlled casing valves (Sierra et al, 2008). Fig. 

1.2 shows a schematic of a DTS cable for both installation configurations.  

 
 

 
In flow path 

 
Behind casing 

Fig. 1.2—Installation of fiber optic cable housing DTS: in flow path (left) and 

behind casing (right). 

 

 
The deployment and installation of DTS is definitely an important factor to consider 

when selecting well monitoring tools. Complications during the installation/completion 

phase tend to deter operators in selecting DTS however, many operators have 

successfully figured out how to best install this tool and use it for a variety of 

applications in fields across the globe(Sierra et al, 2008). The next big challenge is to 

learn how to use DTS data more effectively, surpass the qualitative benchmark and reach 

more quantitative results. Special data assimilation techniques, along with today’s 
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computational power, enable the proper handling of collected measurements and 

estimation of more accurate fracture parameters.  Data assimilation techniques will be 

discussed in the next subsection.  

 

1.2.4 Inverse Theory 

An inverse problem is defined as the determination of plausible values of model 

parameters given inexact (uncertain) data and an assumed theoretical model that relates 

the observed data to the model (Oliver et al, 2008).In this context, a theoretical model is 

an approximation to the true physical relation between physical and/or geometric 

properties of the reservoir and state variables.  In petroleum sciences, a reservoir 

simulator holds these relationships and it is capable of generating reservoir performance 

predictions based on input model parameters. 

In this study, the observed measurements are a combination of production data and 

most importantly temperature data collected via DTS. The goal is to estimate fracture 

parameters using a combination of data sets. The approach to solve the inverse problem 

is founded on a Bayesian viewpoint of probability and assumes that some information on 

model parameters is available. This prior information could be a simple estimate of 

reservoir permeability or in this case a range of possible fracture half-length values. In 

order to have a mathematically manageable inverse problem, the prior information needs 

to be expressed as a prior probability density function (PDF). The objective is to modify 

this PDF using prior information of some model parameters, inexact measurements of 

some observable parameters and the relation between the observed data and model 
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parameters. This modified PDF is referred to as the a posteriori probability density 

function. The construction of the same is in a sense the solution to the inverse problem.  

Many techniques can be used in order to generate the final PDF that would estimate 

the parameters in question. When selecting a particular data assimilation technique, one 

must consider the type of data is being collected and the level of linearity between the 

model and the data. In petroleum engineering, the dynamical relationships for flow and 

temperature in porous media are highly non-linear. These non-linearities complicate 

further the inverse problem and hence eliminate a number of techniques non-suitable to 

handle such complexities.  

In the context of this work, a useful data assimilation techniquewould be one 

capable of sequentially filter and enforce constraints at each integration step, ensuring 

that the resulting estimations are representative of the conditional PDF.The sequential 

EnKF is a suitable technique for applications to such non-linear assimilation problems 

and is, by nature, an appropriate approach for monitoring. 

 

1.2.4.1 Ensemble Kalman Filter (ENKF) 

The Ensemble Kalman filter is an adaptation of the simpler Kalman filter for non-linear 

problems. The Kalman filter is an efficient recursive filter that estimates the state of a 

linear dynamical system from a series of noisy measurements (Aanonsen et al, 2009).  

The Kalman filter is founded on a model equation, where the current  state of the system 

is associated with an uncertainty  expressed by a covariance matrix(Aanonsen et al, 
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2009), and an observation equation that relates the state variable to the measurements 

through a linear relationship. 

The Kalman filter method consists of two sequential steps: (1) forecast and 

(2)analysis. In the forecast stage, the model equation is used to compute a forward step 

with the current estimate of the state as initial condition. In the analysis stage, the 

measured data is assimilated and used to condition the preliminary estimate. The updated 

state of the system is computed by adding the estimate computed in step (1) to the 

product of the Kalman gain and the difference between the observed data and model 

prediction. The Kalman gain is obtained through a series of matrix calculations 

involving the covariance matrix of the states and observed data. The issue often lies in 

this particular step given that the covariance matrix for reservoir flow problems is 

typically very large and computationally expensive for history matching purposes.  

Alternatively, the EnKF overcomes several limitations of the Kalman filter, 

particularly the need to linearize the dynamical equations or the relationship between the 

state variable and the data (Oliver et al, 2008) and the need to compute and update the 

estimate of the covariance matrix. These factors make the EnKF a suitable method for 

very large models.  

Similar to the Kalman filter, the EnKF consists of two sequential stages. The 

EnKF starts with an ensemble of    initial models (usually 40-100 ensembles) which are 

used to generate a forecast forward in time of the dynamical equations of flow in porous 

media (   . The second step is the data assimilation step where the variables describing 

the state of the system ( ) are updated to honor the measurements (Oliver et al, 2008).  
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Fig. 1.3—Flow chart of EnKF’s implementation.  Here   is defined as the model 

states and parameters, while   represents simulated measurement. 

 

 
In petroleum reservoir applications, the determination of the current state of the 

system is as important as the determination of model parameter values such as 

permeability and porosity. In a sense, the determination of model variables has more 

relevance since the determination of these variables is sufficient to demine the state of 

the system. In hydraulically fractured reservoirs, operators today are interested not only 

on characterizing the formation but also the induced hydraulic fractures. Information 

collected via DTS is already being used to describe qualitative aspects of HFTs however; 

the implementation of the EnKF in the assimilation of DTS data will enable this 

technology to have more quantitative applications. By determining accurate estimates of 

fracture geometrical parameters, operators are able to verify or correct the models used 

to develop a particular field and thus optimize the productive and economic life of wells. 
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2. NON-ISOTHERMAL RESERVOIR MODELING 

 

2.1 Shale-Gas Reservoir Model 

The complex nature of hydraulic-fracture growth in shale-gas reservoirs, along with the 

implementation of horizontal completions ,has made reservoir numerical simulation the 

preferred method when evaluating and/or predicting well performance(Cipolla et al, 

2010).  

Several semi analytical and analytical solutions for hydraulically fractured 

horizontal wells have been proposed. However, these have difficulties capturing the long 

transient behavior of shale’s matrix blocks caused by their very low permeability(Cipolla 

et al, 2010). Other methods combine these solutions to numerical reservoir simulators 

with the goal of reducing computing time, but again, they lack the ability to model 

transient flow in the matrix blocks. Due to these issues, gridding the entire reservoir 

discretely (fracture network, hydraulic fracture, matrix blocks) though rigorous and 

computationally expensive, is the most accurate way to generate reservoir performance 

predictions. 

In this study, reservoirs were modeled using a commercial reservoir simulator 

ECLIPSE (Bequest, S., 2010). Local grid refining (LGR) is used to represent the 

propped fracture’s width. When modeled, fracture width is in fact orders of magnitude 

larger than the actual propped width. To this end, fracture permeability is calibrated 

accordingly as to preserve fracture conductivity values. In addition, the spacing 

perpendicular to the length of the propped fracture is logarithmic. Previous work by 
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Cipolla et al (2010)showed the effectiveness of using logarithmically spaced LGR rather 

than using very-fine-grid that would enable to represent actual fracture width.Fig. 

2.1shows Cipolla et al (2010)comparison of flowing bottomhole pressure (BHP) 

behavior with this grid design versus a very finely gridded single porosity reference 

model as well as Gringarten’s infinity conductivity type curve solutions.  

 

 

a) Detailed gridding of hydraulic fracture using Local Grid Refinement.  

 

b) Flowing bottomhole pressure comparison between Figure 3-a grid design 
and a very-finely gridded single porosity reference model (left) and 
Gringarten’s infinity conductivity type curve analytical solution.  

 

Fig. 2.1—Comparison between LGR grid and very-finely grid design (Cipolla et al, 

2010). 

 



 

16 

 

In this work, the LGR scheme divided the fracture blocks in 9 local gridblocks in 

the y direction and 7 local gridblocks in the z direction. In the  direction, the number of 

local gridblocks is obtained through a relationship   
  

  
where    is fracture half-length 

and    is the gridblock size in the X direction.  Fig. 2.3 shows an example of the LGR 

design used in this study to model hydraulic fractures.  

In addition to the main hydraulic fractures, a network of secondary fractures is 

created in the vicinity of the induced primary fractures.  This network can be expressed 

as an enhanced permeability area (EPA). The EPA is defined depending on fracture 

spacing and geometry, and it takes permeability values smaller than the primary fracture 

values and higher than the matrix block. A schematic of the reservoir and wellbore 

geometry with its corresponding stimulated reservoir volume is presented in Fig. 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig. 2.2—Schematic of reservoir and wellbore geometry illustrating the different 

permeability zones. 

   𝑘       𝑘    𝑘  
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Fig. 2.3—Example of LGR scheme used to model hydraulic fractures. 

 

 

2.2 Non-Isothermal Reservoir Model 

A commercial reservoir simulator is used in order to simulate a shale gas reservoir’s 

pressure and temperature responses. ECLIPSE(GeoQuest, S., 2010) reservoir simulator 

(E300 along with temperature option) by Schlumberger is used to construct a non-

isothermal forward reservoir model that generates temperature readings as outputs.  The 

model is executed with both, ECLIPSE 100 as a blackoil model and ECLIPSE 300 as a 

compositional model. Accuracy is significantly improved by running the simulation in 

ECLIPSE 300 where bothflow and energy conservation equations are calculated and 

solved simultaneously (coupled pressure and temperature equations). The improved 

accuracy is associated with additional computational time. 

 

2.2.1 Reservoir Flow Model 

The continuity equation for a multi-phase system is defined as follows, 

 (        

  
      (                                  ................................................... (2.1) 

 

Horizontal well 

Hydraulic fracture  



 

18 

 

where   represents all phases present in the reservoir,   porosity,    phase density,   

phase saturation,   Darcy velocity and   represents sink/source terms from injection or 

production wells respectively. Each phase has its own Darcy velocity    and mass flow 

rate   . For a 3D two-phase flow system with gravitational force, the Darcy velocity 

term takes the following form, 

    
 

  
𝑘 (           )                  ............................................................ (2.2) 

In a fluid-porous medium, multiphase flow causes all phases to interact with each 

other. This results in a decrease of the effective permeability, 𝑘  , which is related to the 

absolute permeability,  , as follows, 

   𝑘                         ....................................................................................... (2.3) 

Finally, since phases are considered completely immiscible, the multi-phase flow 

equation in porous medium is defined as, 

 (       )

  
     (

 

  
  (           ))     

                     .................................................................................... (2.4) 

The relationships presented above describe the elemental concepts of fluid flow 

in porous medium. For this study, these relationships are hold by a commercial reservoir 

simulator ECLIPSE (GeoQuest, S., 2010) that solves for reservoir state parameters (e.g. 

pressure, saturation, temperature) in discrete time steps by dividing the reservoir model 

into discrete grid blocks, given some initial and boundary conditions.  

When considering non-isothermal effects, a specialized version of ECLIPSE is 

implemented. ECLIPSE 300 (GeoQuest, S., 2010) enables the modelling of thermal 
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effects in the reservoir by solving both flow and energy conservation equations. Energy 

conservation equations are presented in the next sub-section. 

 

2.2.2 Reservoir Thermal Model 

In this study, DTS data will be assimilated with the objective of characterizing reservoir 

and fracture parameters. For this reason, thermal effects in the reservoir need to be 

considered, despite being disregarded in most petroleum reservoir applications.  

The thermal behavior of a reservoir is accurately explained in the work developed byLi 

et al (2010). These relationships are implemented in ECLIPSE 300 and enable 

temperature modelling by simultaneously solving flow and energy conservation 

equations. 

For a given reservoir volume  , energy is conserved as follows (Lake, 2010): 

{
             
               

    
}   {

           
                 

      
}   {

        
                  

    
} ........................... (2.5) 

The energy accumulation term in the control volume V, without considering kinetic 

energy changes, can be expressed as  

{
       

             
    

}     [  ∑     (     )  (        
  

   
]
 

    

  ........................ (2.6) 

where the subscript   denotes the fluid phase,   is the solid rock,   is the internal energy, 

and    is the depth.  Here  ,     and   have the same definition as in the flow equations. 

Next, the energy transport in the reservoir occurs either by heat convection or 

conduction. These are expressed as follows: 
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{
                

            
}  ∑     (     )  

  

   
 ............................................................ (2.7) 

{
                

           
}  (    

  )  ............................................................................. (2.8) 

where   is the enthalpy of fluid,    
 is the total heat conductivity and A is the surface 

area of the control volume V.  

When an injecting or producing well is present in the reservoir, heat transfer 

between the reservoir and the wellbore occurs. This phenomenon is represented as  ̇ in 

the energy balance equation, and represents the heat transfer term per unit time per unit 

area.  

 ̇      
  

  
        ∑          (      

  

   
 ........................................................... (2.9) 

The first terms in Eq. 2.9represents the heat conduction between wellbore and 

formation, while the second term denotes the heat convection of the same. In the heat 

convection term,      is the heat capacity of the phase       is the reservoir temperature at 

the contact betweenreservoir and wellbore (also known as arriving temperature) while 

   is the wellbore flowingtemperature. Combining all terms and ignoring any energy 

production on the control volume V, the energy balance expression is obtained by 

combining Eq. 2.6 through Eq.2.9 into Eq.2.5: 

 

  
[  ∑     (     )  (        

  

   
  ]    [∑     (     )  

  

   
]     

(   
  ) ...................................................................................................................... (2.10) 

Further expansion of this expression is possible if enthalpy, thermal expansion 

coefficient and internal energy are defined. These terms are expressed as  
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(         .................................................................................... (2.11) 

   
 

 
(
  

  
)
 

 
 

 
(
  

  
)
 

 ..................................................................................... (2.12) 

    
 

 
 ................................................................................................................ (2.13) 

In addition, the internal energy of the formation rock is defined as,  

            ............................................................................................................. (2.14) 

These definitions enable the energy balance equation to be expressed in terms of 

reservoir temperature. Combining Eq.2.10 through Eq.2.14 into Eq.2.10, the following 

expression for energy conservation is obtained:  

  ∑             (           
  

   
  

   

  
  ∑         

   

  

  

   
  ∑                

  

   

    (   
  )  ∑ (      )

  

   
 ∑    

  

   
(      )  ∑      (   

  

   
 .............. (2.15) 

 The terms on the left hand side of the equation are the accumulation term and 

thermal expansion due to pressure change with respect to time respectively. On the right 

side, the first element denotes the change in temperature due to convection, the second 

one represents the change in temperature due to conduction, the third term describes 

viscous dissipation heating, the fourth one denotes the thermal expansion caused by 

pressure change in space, while the fifth one represents the contribution of elevation 

effects. 

 In the next subsection, synthetic reservoirs will be modeled using ECLIPSE300 

to study the thermal behavior of shale gas formations when hydraulically fractured. The 
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findings of this preliminary assessment will contribute to the calibration of the model 

that will be used to history match field data.  

 

2.3 Synthetic Models 

Based on the aforementioned modeling techniques, synthetic examples are simulated in 

order to study the temperature behavior of ultra-tight gas reservoirs with induced 

multiple transverse fractures. Two base cases are used in order to study the effect of 

different fracture parameters on the reservoir’s temperature response. The first case is a 

horizontal well with homogenous fractures while the second one has  heterogeneous 

fractures. The first part of this exercise sets both cases to produce under constant rate. 

Next, the effect of the fracture network around primary hydraulic fracture (represented 

by an EPA) is studied under both production conditions. 

Note that this study does not consider wellbore temperature due to the lack of a 

wellbore thermal model. The arriving temperature,   , is the closest parameter to the 

wellbore temperature,   , since it is in fact the temperature at the wellbore-reservoir 

contact(Yoshida et al, 2013). In this study, the temperature of gridblocks containing a 

wellbore section will serve as the arriving temperature. 

 

2.3.1 Input Parameters 

The ultimate goal of this work is to history match production field data from a horizontal 

gas well in the Marcellus shale. For this reason, the parameters used in these synthetic 
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cases attempt to resemble properties commonly found in this formation. Reservoir 

geometrical properties, along with fluid/thermal and rock properties are specified next.  

2.3.1.1 Reservoir Geometrical Properties 

A “box-shaped” rectangular shape is assumed for the reservoir(Table 2.1). Reservoir 

parameters are selected based on values commonly found in petroleum literature 

describing the Marcellus shale. Reservoir length and depth are determined based on 

relevant literature (Soeder, 1988) as well as field data.  

 
Table 2.1 Reservoir geometrical properties. 

Parameter Description Value [ unit ] 

- Reservoir Shape Rectangular 

L Reservoir Length 3500 [ft] 

h Reservoir Thickness 90 [ft] 

w Reservoir Width 600 [ft] 
 
 

 

2.3.1.2 Fluid Properties 

Initial reservoir pressure and temperature (Table 2.2) need to be specified in order to 

determine fluid properties. These will change accordingly as the well starts producing 

and the reservoir starts depleting. The geothermal temperature gradient is approximated 

from real DTS data presented in Section 6. Fluid properties of gas are summarized in 

Fig. 2.4. 
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Table 2.2 Pressure and temperature data. 

Parameter Description Value [ unit ] 

     Initial reservoir pressure 6000 [psi] 

      
 Initial reservoir temperature 115 [F] 

   Geothermal temperature gradient  0.02 [F/ft] 
 

 

 

2.3.1.3 Rock Properties  

Petrophysical and thermal properties of the rock (Table 2.3) are also obtained from 

relevant petroleum literature on the Marcellus shale (Soeder, 1988). 

 
 

Table 2.3 Rock properties. 

Parameter Description Value [ unit ] 

   Matrix Density 148 [       ] 

  Matrix Porosity 8.0[%] 

𝑘  Thermal Conductivity  24 [Btu/ft/day/°R] 

   
 Rock Heat Capacity 30 [ BTU/lbm F] 

 



 

25 

 

 
a) Gas formation volume factor 

 

 
b) Gas viscosity 

Fig. 2.4—Gas properties: formation volume factor and viscosity. 
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2.3.2 Forward Model 

The number of hydraulic fractures for both case studies is five. In addition to fracture 

parameters, the effect of the area around the primary fractures is also studied.  

Rock and fracture properties used for the homogenous case are summarized in Table 2.4 

As specified before, for the first case study all fractures share the same properties. For 

the heterogeneous case, the parameters vary by a factor of  0.5, 1.5, 1, 2 and 0.25 at each 

fracture respectively. Fig. 2.5 shows a schematic of the reservoir geometry as well as a 

cross section of the horizontal well with its corresponding fractures and SRV.  

 

 
Table 2.4 Rock and hydraulic fracture parameters 

Parameter Description Value [ unit ] 

𝑘       Matrix permeability      [md] 

𝑘    EPA permeability       [md] 

𝑘  Fracture permeability     [md] 

        Matrix porosity     [ %] 

     EPA porosity       [ %] 

   Fracture porosity      [ %] 

   Fracture half length    [ft] 

   Fracture height   [ft] 
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Homogenous fractures 

 

 

 

 

 

Heterogeneous fractures 

 

Fig. 2.5—Schematic of reservoir-fracture configuration for homogenous (top) and 

heterogeneous case (bottom). 

 

 
 
2.4 Results 

2.4.1 Homogenous Hydraulic Fractures 

A horizontal well with five identical transverse hydraulic fractures is simulated using the 

parameters specified in Table 2.4. This well is under production for 30 days at a rate of 

   Mscf/day. Fig. 2.6 through Fig. 2.7 show the resulting arriving temperature, pressure 

and inflow distribution along the wellbore after 30 days. 

     

     

   𝑘       𝑘    𝑘  
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The reservoir temperature at the well level is shown in Fig. 2.6. The lowest 

temperature reading is identified at the gridblock where the fracture is located making 

the fracture location very noticeable. This substantial drop in temperature is caused by 

pressure variations in the reservoir, making the temperature of the incoming reservoir 

fluid a lot cooler than the original reservoir temperature. 

 

 

 

Fig. 2.6—Pressure distribution (Homogenous fracture case, constant rate). 
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Fig. 2.6—Temperature distribution (Homogenous fracture case, constant rate). 
 

 

Fig. 2.7—Gas inflow rate. (Homogenous fracture case, constant rate). 
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Fig. 2.8—Pressure and temperature distribution (Homogenous fracture case, 

constant rate, t= 30 days) 
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2.4.1.1 Heterogeneous Hydraulic Fractures 

Next, different parameter values are assigned to each hydraulic fracture in the reservoir 

model. For each fracture, original parameters are varied by a factor of 0.5, 1.5, 1, 2 and 

0.25 respectively.  In this way, a horizontal well with five different fractures is simulated 

in order to assess the effect of fracture heterogeneity in both pressure and temperature 

distribution.  

As in the homogenous case, the cooling effect at the fracture location is very 

noticeable however; the increase/decrease of parameters’ values causes the temperature 

difference to vary as well. Fig. 2.9 through Fig. 2.11 shows the resulting arriving 

temperature, pressure and inflow distribution along the wellbore. 

According to Fig. 2.11, the distribution of gas inflow rate corresponds to the level of 

heterogeneity of the fractures. Fractures with higher fracture properties have a greater 

gas inflow. In addition, points of higher inflow rate also correspond to points of greater 

temperature drop. 

From these results, it is observed that when pressure change is similar across 

fractures, the inflow gas rate is in fact the determinant factor in the temperature 

behavior. From  Eq.2.15, it is observed that the convection and viscous dissipation terms 

depend on gas flow rate. Based on Fig. 2.10 and Fig. 2.11 the cooling effect caused by 

convective heat transfer becomes predominant when pressure behavior across fractures 

is similar yet differences in gas inflow rate exist.  
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Fig. 2.9—Pressure distribution (Heterogeneous fractures case, constant rate). 
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 Fig. 2.10—Temperature distribution (Heterogeneous fractures case, constant rate). 

 

 
Fig. 2.11—Gas inflow rate distribution (Heterogeneous fractures case, constant rate). 
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Fig. 2.12—Pressure and temperature distribution (Heterogeneous fracture case, 

constant rate, t= 30 days). 

 

 

2.5 Effect of Fracture Networks 

The stimulated area around the primary fractures can be represented through a network 

of secondary fractures. In this study, such network is modeled as an area with an 
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enhanced permeability. This network plays an important role on the pressure and 

temperature distribution around the primary hydraulic fractures.  

Two cases are analyzed, one with a complete fracture network and one with a 

reduced network. In both cases, hydraulic fractures are homogeneous. Fig. 2.14 shows a 

schematic of the two case studies. In addition, both case studies are set to flow under 

constant rate and constant BHP.  

 
 

 

 

 

 

 

 

Complete fracture network 
 

 

 

 

 

Reduced fracture network 

 

 

 
Fig. 2.13—Schematic of hydraulic fractures with complete (top) and reduced 

fractured network (bottom). 

     

     

   𝑘       𝑘    𝑘  
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2.5.1 Network Effect Under Constant Rate Production  

Reducing the fracture network has noticeable effects on the pressure and temperature 

distribution. Fig. 2.15 through Fig. 2.16 show pressure, temperature and inflow gas rate 

of the full fracture network and reduced fracture network case. Both cases are bounded 

to a              production rate for 30 days. In addition, both configurations are 

plotted on the same scale in order to highlight differences in the absence of a fracture 

network. 

 Fig. 2.14 shows the pressure response for both cases. The pressure behavior 

between the two cases is substantially different. The reservoir with a reduced fracture 

network experiences a greater pressure drop. With less stimulated area, the well has 

difficulty reaching the established production rate and thus more pressure drawdown is 

required. The additional pressure drops translates into a greater gas expansion cooling 

effect and subsequently into a higher temperature drop (see Fig. 2.15). Finally, Fig. 2.16 

shows the corresponding gas inflow distribution at each perforation.  

Having to produce              for 30 days, each fracture is supposed to 

produce approximately            ; however, the reduced fracture network case is not 

able to maintain this production level for 30 days straight. A lower gas rate has an effect 

in the cooling caused by convective heat transfer.  In this case, however, the gas 

expansion cooling effect (caused by the high pressure drop) is the predominant heat 

transfer mechanism and the temperature drop is not heavily affected by the reduction in 

flow rate.  
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Complete Fracture Network

 

Reduced Fracture Network 
 
Fig. 2.14—Pressure distribution of hydraulically fractured reservoir with 

complete and reduced fracture network. (Homogenous fractures, constant rate 

production). 
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Complete Fracture Network 

 
Reduced Fracture Network 

 

Fig. 2.15—Temperature distribution of hydraulically fractured reservoir with complete 
and reduced fracture network. (Homogenous fractures, constant rate production). 
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Complete Fracture Network 

 
Reduced Fracture Network 

 

Fig. 2.16—Gas inflow rate of hydraulically fractured reservoir with complete and 

reduced fracture network. (Homogenous fractures, constant rate production). 
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2.5.2 Network Effect Under Constant BHP Production 

Next, the constant production condition is changed to a constant BHP of 1000 psi. In the 

previous case, since the well was bounded to meet a specific rate, the contribution of the 

EPA was necessary in order to meet the established rate, and so the EPA was reduced 

rather than eliminated. For the constant BHP case, the EPA is completely eliminated in 

order to make any differences in pressure or temperature more noticeable. Fig. 2.17 

through Fig. 2.19show the pressure, temperature and inflow gas distribution of both 

fracture configurations.  

The differences in pressure, temperature and flow rate are very noticeable 

between the two cases. When an EPA is present, opposite to the constant rate case, the 

reservoir experiences a greater temperature drop corresponding to a greater pressure 

drop and gas inflow. This is reflected in the difference in temperature drop shown in Fig. 

2.18. 

 Without an EPA, the reservoir produces a very small amount of gas given that is 

harder to produce directly from the matrix blocks. As a results, the reservoir pressure 

changes abruptly only at the vicinity of the fracture, leaving the rest of reservoir almost 

unchanged.  
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With fracture network 

 

 
Without fracture network 

 

Fig. 2.17—Pressure distribution of hydraulically fractured reservoir with and 

without fracture network. (Homogenous fractures, constant BHP production). 
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With fracture network 

 

 
Without fracture network 

 

Fig. 2.18—Temperature distribution of hydraulically fractured reservoir with and 

without fracture network. (Homogenous fractures, constant BHP production). 
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With fracture network 

 

 
Without fracture network 

 

Fig. 2.19—Gas inflow rate of hydraulically fractured reservoir with and without 

fracture network. (Homogenous fractures, constant BHP production). 
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2.6 Discussion 

From the results obtained in the previous synthetic cases, two predominant cooling 

mechanisms are identified: gas expansion and convective cooling effects. The gas 

expansion cooling effect is caused by the so called Joule-Thompson effect, JTE. This 

phenomenon describes the effect of a fluid subjected to a change in the pressure 

environment and the temperature change associated with this environment change 

(Reyes et al, 2011).  Tight-gas wells produce with high drawdown pressure drop and the 

JTE can be noticed clearly, thus making gas wells excellent candidates to implement 

DTS technology. The second cooling mechanism is associated with the inflow rate 

through the fluid velocity terms specified in Eq. 2.13. Convective cooling effects depend 

on the velocity of the fluid and the heat capacity of the fluid phase.   

A relevant conclusion from this assessment is the importance of accurately 

modelling the area around the primary hydraulic fracture. It was observed how the 

extension and the permeability of this area influenced the pressure response in the 

vicinity of the fracture. Under constant rate, the JTE proves to be the main cooling 

mechanism. A reduced EPA requires a high pressure drawdown to meet the established 

rate, which at points is not met since the BHP reaches its lower limit.  A reduction in gas 

inflow is not sufficient however to diminish the cooling effect associated with the 

pressure variation. Under constant BHP, the presence of an EPA allows the drainage of 

additional reservoir volume, reducing the reservoir pressure significantly. In addition to 

the change in reservoir pressure, a higher inflow rate is experienced and more cooling is 

felt at the fracture location in comparison to the case with a reduced EPA.  
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After identifying the main heat transfer mechanisms, the next step is to determine 

which parameters affect these phenomena the most and quantify their effect on the 

thermal behavior of the reservoir. This is achieved through a sensitivity analysis which is 

carried out in the next section.  
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3. SENSITIVITY STUDY 

 

3.1 Introduction 

The previous chapter showed the effect of different model parameters on the reservoir’s 

pressure and temperature response. In this section, a sensitivity analysis is performed in 

order to quantify and compare the effect each parameter has on the dynamics of the 

reservoir. The goal is to identify which parameters are more influential and use these 

results in the eventual implementation of the EnKF.  

The parameters to be studied are fracture permeability, fracture porosity, fracture 

half-length, fracture height, EPA permeability, EPA porosity, reservoir permeability and 

reservoir porosity. A horizontal well with a single fracture will be modeled along with 

different EPA and fracture permeability configurations bounded to both constant 

production and constant BHP.  

As described in Section 3, the main heat transfer mechanisms responsible for 

cooling effects are thermal expansion caused by pressure change along with convective 

heat transfer related to the inflow rate. Similarly, the inflow rate is also responsible for 

heating effects caused by viscous dissipation. The system is indeed a complex one and 

so the estimation of the sensitivity is complicated in an analytical sense. Due to the 

complexity of the system, both temperature drop and gas inflow rate are monitored in an 

attempt to better understand the reservoir’s thermal behavior.  
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3.2 Procedure 

A horizontal well with a single hydraulic fracture serves as the forward model. 

Furthermore, two reservoir fracture configurations will be used as base cases. One has a 

highly permeable EPA with a low permeability hydraulic fracture while the other one 

has a low permeable EPA with a highly permeable hydraulic fracture. In addition, the 

cases will be bounded to both a constant production rate of             and a constant 

bottomhole pressure of      psi.Fracture and reservoir parameters are varied by a factor 

of ± 45% and ±75 %. Five simulations will be run in total, including the base case which 

will be used as reference for comparison. Fig 3.1 shows a schematic of how the 

sensitivity analysis is done for one parameter. The same procedure is carried out for all 

parameters specified in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Run base simulation 

            
Change value of target parameter 

Run simulation with modified parameter 

Analyze sensitivity of target parameter. 

Fig. 3.1—Flow chart of sensitivity analysis. 
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Table 3.1 Parameters of base cases for sensitivity analysis. 

Parameter Description Units 
Base Case 1 

Low 𝑘    - High 𝑘  
Base Case 1 

Low 𝑘    - High 𝑘  

𝑘       Matrix 
permeability [md]           

𝑘    EPA 
permeability [md]            

𝑘  Fracture 
permeability [md]        

        Matrix 
porosity [%]           

     EPA 
porosity [%]             

     Fracture 
porosity [%]           

   Fracture half 
length [ft]         

   Fracture 
height [ft]       
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3.3 Sensitivity Analysis Results 

3.3.1 Constant Rate – Case I: Low Permeability EPA/ High Permeability Fracture  

 

 

 
Fig. 3.2—Temperature drop sensitivity (Constant rate, low permeability EPA/ 

high permeability fracture). 
 

 
Fig. 3.3—Gas inflow rate sensitivity (Constant rate, low permeability EPA/ 

high permeability fracture). 
 



 

50 

 

3.3.2 Constant Rate – Case II: High Permeability EPA/Low Permeability Fracture 

 

 

 
Fig. 3.4—Temperature drop sensitivity (Constant rate, high permeability EPA/ 

low permeability fracture). 

 

 
Fig. 3.5—Gas inflow rate sensitivity (Constant rate, high permeability EPA/ low 

permeability fracture). 
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3.3.3 Constant BHP – Case III: Low Permeability EPA/High Permeability Fracture 

 

 

 
Fig. 3.6—Temperature drop sensitivity (Constant rate, low permeability EPA/ high 

permeability fracture). 

 

 
Fig. 3.7—Gas inflow rate sensitivity (Constant BHP, low permeability EPA/ high 

permeability fracture). 
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3.3.4 Constant BHP – Case IV: High Permeability EPA/Low Permeability Fracture 

 

 

 
Fig. 3.8—Temperature drop sensitivity (Constant rate, high permeability EPA/ low 

permeability fracture). 

 

 
Fig. 3.9—Gas inflow rate sensitivity (Constant BHP, low permeability EPA/ high 

permeability fracture). 
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3.4 Discussion 

Under the constant rate condition, the increase of EPA porosity, matrix porosity and 

fracture porosity causes the increase of temperature drop difference. The opposite occurs 

when these three parameters are decreased.  Porosity terms control the pore volume of 

the reservoir and change the pressure behavior of the reservoir. Note that due to the 

constant rate condition, an increase in flow rate is not observed.  With higher pore 

volume, an increase in temperature drop is observed.  

Furthermore, when the remaining parameters are increased, less pressure 

drawdown is necessary to meet the established rate. As result, the cooling effect caused 

by gas expansion is reduced. Regarding fracture half-length and fracture height, reducing 

these terms decreases the stimulated reservoir volume which increases the pressure 

drawdown. Despite experiencing a reduction of gas inflow when reducing these terms, 

the temperature drop increases which means that thermal expansion effects (caused by 

pressure drop variations) are predominant. However, if the flow rate is significantly 

reduced, as a result of a drastic reduction of fracture half-length and/or height, gas 

inflow becomes relevant and convective cooling effects become predominant.   

Furthermore, changes in fracture permeability do not have a major impact on the 

temperature distribution in Case I or Case II. Fracture permeability, however, is slightly 

more sensitive in Case II. A different response is observed when the EPA’s permeability 

is changed. Note that in the EPA, a significant pressure drop occurs; therefore the 

cooling effect caused by gas expansion is highly influenced by the pressure response in 

this area. Similarly, the pressure drop depends on the EPA’s permeability. When 
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maintaining a constant inflow rate, decreasing the permeability of the EPA leads to an 

additional pressure reduction that translates into additional cooling. Further reduction of 

the EPA’s permeability leads to a similar reduction in pressure drop but the inflow rate 

starts to affect the temperature behavior. At this point, convective effects become 

predominant and with a lower inflow rate less temperature drop is observed.    

Similar results are observed in Case II. In this case, fracture half-length, fracture 

height, EPA permeability and fracture permeability are more influential in the 

temperature response than the porosity terms. As also observed in the previous case, the 

temperature continues to be more sensitive to permeability in the EPA than the one in 

the fracture.  In addition, no reduction in flow rate is observed when the parameters are 

decreased. In a way, this facilitates the analysis since only gas expansion effects are 

relevant.  

In the constant BHP cases, the increase of all parameters corresponds to the 

increase of temperature drop, which also corresponds to the increase of gas inflow. 

In Case 3 and Case 4, when fracture half-length is increased a similar increase in 

inflow rate is observed. Despite this, temperature drop at the fracture location is not 

significantly higher. The opposite is observed when porosity terms are increased.  Less 

inflow rate is observed when compared to fracture half-length variations, yet the 

temperature drop is higher for the porosity cases.  Once again, gas expansion effects are 

predominant due to the increase of pressure differential. 

In the end, the sensitivity of reservoir temperature to fracture parameters was 

demonstrated. Highly sensitive fracture parameters are fracture half-length and EPA 
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permeability. Fracture permeability’s sensitivity changes depending on the hydraulic 

fracture-network configuration. These results serve as a guideline for the set-up of the 

inverse problem, where sensitive variables serve as the objective parameter. In the next 

section, it will be explained how to setup the inverse model problem using the EnKF as 

the data assimilation technique.   
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4. INVERSE MODELING WITH ENSEMBLE KALMAN FILTER 

 

4.1 ENKF Implementation 

In this section, the goal is to integrate DTS data as observations for the inverse problem 

to estimate hydraulic fracture geometry and conductivity. The EnKF is the chosen 

technique to assimilate the temperature data collected by DTS.   

The EnKF has been successfully applied in different fields such as hydrology, 

meteorology, oceanography, groundwater and oil reservoir model calibration (Evensen, 

2007, 2009; Aanonsen et al., 2009; Naevdal et al., 2005). Like the original Kalman filter, 

the EnKF consists of two sequential steps: forecast and analysis. 

In the forecast stage, the reservoir model equation is used to compute a forward 

step with the current estimate of the state as initial condition. An ensemble of reservoir 

parameters,   , is generated for an unknown reservoir parameter, for instance fracture 

half-length. A  Monte Carlo simulation is then executed, running the reservoir simulator 

for all    values and generating    sets of simulated data. In the analysis stage, the 

simulated DTS data is compared with the observed DTS data. This comparison follows 

the EnKF analysis equation and the ensemble of reservoir parameters (e.g. fracture half-

length) is updated. In this way, state and observation predictions for the ensemble of 

model realizations is obtained,  

      
 

   (        
 

          
 

)                         ............................................... (4.1) 

where    represents conditioning on observations up to time  ;      is a vector of known 

(nonrandom) time-dependent boundary conditions and controls (such as injection rate); 
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and     
  is a vector of random variables that accounts for modeling errors. The function 

  (       represents the state propagation equation from time     to time  . In this 

application,Eq.4.1 represents the solution of the coupled mass and energy balance 

equations (non-isothermal reservoir simulation results using ECLIPSE E300) that 

describes the time evolution of pressure, saturation and temperature distributions for 

each individual realization   of the ensemble reservoir model parameter 

To make the initial ensemble of reservoir parameters (e.g. fracture half-length), a 

uniform probability density function (PDF) is used. The augmented state vector for this 

case is of the form, 

   [ 
 

  ]                                           ........................................................... (4.2) 

where    is the reservoir parameter realization and    is the observation obtained from 

running the simulation using  . When estimating a single parameter, the reservoir 

parameter realization    is a scalar. On the other hand, when executing a joint 

estimation (e.g. fracture half-length and fracture permeability) the realization    is a 

    vector. 

The corresponding simulated DTS data is depicted by  . Its dimension 

corresponds to the number of sample points indicated in the forward model. For 

instance, if the reservoir model has 100 grid blocks along the horizontal well from which 

temperature values are recorded and reported as DTS data, then the dimension of     

is      . In the case of estimating a single parameter the dimension of the state vector 

   would be      . 



 

58 

 

At time steps when DTS data is available, the EnKF analysis equation is applied 

to update the reservoir parameter realizations. After each update, a confirmation step is 

used to derive the future state predictions from the initial time step using the updated 

parameters. We repeat the sequence of prediction and update steps until all DTS 

measurements are integrated. The EnKF analysis equation can be expressed as 

  
 

   
 
  (      

 
)          

   (   
       

   .............................................. (4.3) 

where   is the Kalman gain matrix and the subscripts   and   denote updated and 

forecast quantities while the superscript   indicates ensemble calculated statistics. The 

notations   
  and    represent the states sample covariance and observation covariance 

matrices respectively.  

For the case of estimating a single parameter, the measurement 

matrix                          , where        and         are zero and identity 

matrices of the specified dimensions, respectively, acts as a selection operator that 

extracts the predicted DTS measurement components from the augmented state vector. 

The notation    is used to represent the  th realization of the perturbed DTS 

observations. To perturb the DTS observations, an uncorrelated realization from a 

Gaussian random noise, with a specified observation covariance matrix   , is added to 

the value of the observed quantities. The perturbed observations are made as follows: 

                                    
   (           .............................................. (4.4) 

where   is the true observed DTS data. The states sample covariance   
  can be 

computed from the ensemble of state vectors 



 

59 

 

  
  

 

    
∑ (  

 
  ̅ 

 
)(  

 
  ̅ 

 
)
   

            ̅ 
 
 

 

  
∑   

   
    ......................................... (4.5) 

where  ̅ 
  is used to denote the ensemble mean of the forecast states, meaning the 

reservoir model property from the previous step and the corresponding DTS response 

forecasts. Finally, the EnKF update equation uses the Kalman gain matrix to linearly 

combine the predicted and observed DTS data for each realization. 

 

4.2 Synthetic Examples 

In these examples, the EnKF algorithm is implemented with      . To speed up the 

inversion procedure, specifically the Monte Carlo simulation in the forecast step, the 

EnKF is executed using MATLAB’s parallel computing toolbox (MATLAB, 2011). 

First, fracture half-length and fracture permeability will be estimated individually. Next, 

joint estimation of (1) fracture half-length and fracture permeability and (2) fracture 

half-length and EPA permeability will be executed. 

 

4.2.1 Forward Model 

For these examples, the true values of the estimated parameters are predefined. In this 

way, the accuracy of the resulting estimations can be evaluated at the end of the 

assimilation stage.  The parameters used in the forward model are detailed on Table 4.1. 

Highlighted in red are the true values of the objective parameters. 

For this exercise, the synthetic reservoirs are set to produce only dry gas. Fluid 

properties are the same used in Section 2 (see Fig. 2.4). In addition, flowing conditions, 



 

60 

 

constant rate and constant BHP, are studied to see the response of the EnKF under both 

production conditions.   

 

 
Table 4.1 Forward model parameters used in EnKF estimation 

Parameter Description Value [ unit ] 

        Number of stages 10 

𝑘       Matrix permeability      [md] 

𝑘    EPA permeability      [md] 

𝑘  Fracture permeability     [md] 

        Matrix porosity     [ %] 

     EPA porosity       [ %] 

   Fracture porosity      [ %] 

   Fracture half length    [ft] 

   Fracture height   [ft] 
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4.2.2 Results  

Results of all of these tests are shown in Fig. 4.1 through Fig. 4.20. 

4.2.2.1 Constant BHP 

 
 
 

 
Fig. 4.1—Individual estimation of fracture half-length using EnKF (constant BHP, 

t=30 days). True value marked in red. 

 



 

62 

 

 

Fig. 4.2—Fracture half-length ensemble evolution by integration steps. (Constant 

BHP, t=30 days). 

 

 

 
Fig. 4.3—Individual estimation of fracture permeability using EnKF (constant 

BHP, t=30 days). True value marked in red. 
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Fig. 4.4—Fracture permeability ensemble evolution by integration steps. (Constant 

BHP, t=30 days). 
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Fracture half-length 

 
 

Fracture permeability 

 

Fig. 4.5—Joint estimation of fracture half-length (top) and fracture permeability 

(bottom) (constant BHP, t=30 days). True values marked in red. 
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Fig. 4.6—Fracture half-length ensemble evolution by integration steps. (Constant 

BHP, t=30 days, joint estimation ). 

 

 

Fig. 4.7—Fracture permeability ensemble evolution by integration steps. (Constant 

BHP, t=30 days, joint estimation). 
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Fracture half-length. 

 

EPA permeability. 

Fig. 4.8—Joint estimation of fracture half-length (top) and EPA permeability 

(bottom) (constant BHP, t=30 days). True values marked in red. 
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Fig. 4.9—Fracture half-length ensemble evolution by integration steps. (Constant 

BHP, t=30 days, joint estimation). 

 

 

Fig. 4.10—EPA permeability ensemble evolution by integration steps. (Constant 

BHP, t=30 days, joint estimation). 
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4.2.2.2 Constant Rate  

 
 

 

Fig. 4.11—Individual estimation of fracture half-length using EnKF (constant rate, 

t=30 days). True value marked in red. 

 

 

Fig. 4.12—Fracture half-length ensemble evolution by integration steps. (Constant 

rate, t=30 days). 
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Fig. 4.13—Individual estimation of fracture permeability using EnKF (constant 

rate, t=30 days). True value marked in red. 

 

 

Fig. 4.14—Fracture permeability ensemble evolution by integration steps. 

(Constant rate, t=30 days). 
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Fracture half-length. 

 

 
Fracture permeability. 

 
Fig. 4.15—Joint estimation of fracture half-length (top) and fracture permeability 

(bottom) (constant rate, t=30 days). True values marked in red. 
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Fig. 4.16—Fracture half-length ensemble evolution by integration steps. (Constant 

rate, t=30 days, joint estimation). 

 

 

Fig. 4.17—Fracture permeability ensemble evolution by integration steps. 

(Constant rate, t=30 days, joint estimation). 
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Fracture half-length. 

 

 
EPA permeability 

 

Fig. 4.18—Joint estimation of fracture half-length (top) and EPA permeability 

(bottom) (constant rate, t=30 days). True values marked in red. 
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Fig. 4.19—Fracture half-length ensemble evolution by integration steps. (Constant 

rate, t=30 days, joint estimation). 

 

 
Fig. 4.20—EPA permeability ensemble evolution by integration steps. (Constant 

rate, t=30 days, joint estimation). 
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4.3 Discussion 

Given the synthetic nature of the previous models, the effectiveness of the estimations is 

easily verified by comparing the results with the true values of the objective parameters. 

Fig. 4.1through Fig. 4.20 show the results of all individual and joint estimations under 

different production conditions. The estimation’s evolution after each integration step is 

also plotted (e.g. Fig. 4.12 ) in order to illustrate the convergence of all ensembles to the 

true value. Increasing the number of ensembles (from 40 to 100) had a significant 

improvement in the evolution of EnKF even though higher computational time was 

associated with it.  

Note that individual estimations are in essence idealistic, since in real scenarios 

there is always more than one unknown parameter. For individual estimations of fracture 

and EPA permeability, the problem tends to be over determined and a solution is reached 

very fast. This should not be confused with EnKF collapse, where the number of 

ensemble members is significantly reduced after the first assimilation step (Baker, 2007).  

Joint estimations, on the other hand, provide a more realistic touch to this 

exercise since it attempts to estimate two parameters simultaneously. For all cases, the 

spread of the ensemble distribution is significantly reduced very early in the process, 

given the sensitivity of the system to the objective fracture parameters. The histograms 

show how the ensemble estimation evolves at each integration step, converging to the 

true value as time progresses. For fracture half-length and EPA permeability joint 

estimation (see Figure 5.4 and Fig 5.8), the EnKF is stopped after 10 days (15 days 
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under constant BHP) given that an acceptable solution is reached. All other estimations 

reach acceptable results after 30 days.  

After seeing encouraging results in the implementation of the EnKF on synthetic 

models, observations are replaced with field data and the forward model is calibrated 

accordingly. Field data interpretation and the history match results are presented in the 

next section.  
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5. MARCELLUS SHALE FIELD CASE 

 

After seeing favorable results on synthetic cases, the proposed method is tested using 

real DTS data provided by an oil and gas operator in the Marcellus shale. First, all 

provided data is interpreted to then set up the inverse problem is that will estimate 

fracture half-length and fracture permeability. The true values of these parameters are 

unknown so the accuracy of the resulting estimations is hard to verify. Nevertheless, 

acceptable ranges will be established based on data obtained from literature and other 

field examples.  

 

5.1 Field Data 

First, a wellbore diagram (WBD) is constructed based on the directional drilling report. 

Fig. 5.1 is a vertical displacement (TVD) vs. total measured displacement (TMD) plot 

showing the well’s “curve” and lateral section. Fig. 5.2 shows only the lateral section as 

to illustrate the elevation differences in this part of the well.  

Next, the location of all fracture stages is marked on the WBD. For Well A, there 

are 14 stages with four clusters per stage. For modelling purposes, only 14 model 

fractures are considered as to illustrate the combined effect of all clusters present in a 

stage rather than the contribution of each cluster.  
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Fig. 5.1—WBD with vertical, curve and lateral section. Location of fracture stages 

are marked along wellbore. 

 

 

Fig. 5.2—WBD with lateral section only. Location of fracture stages are marked 

along wellbore. 
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5.1.1 Production Data  

Two pieces of information are needed for the execution of the EnKF: production and 

DTS data. Both data sets need to have been recorded at the same time period in order to 

integrate them in the optimization problem. 

The data provided for this study corresponds to a time of very early production. 

Production data specifying gas and water inflow rate are specified in Fig. 5.3 and Fig. 

5.4. Gas inflow data stars from 7/13/2011-8:00 to 7/14/2011-1:15. After that time, the 

well was shut-in. On 7/13/2011-19:00, maintenance service was performed and no data 

was recorded. On the other hand, DTS data is available from 7/13/2011-21:00 to 

7/14/2011-7:00. The time disparity between production and DTS data reduces the time 

of study. As a result, the time interval is shortened to a period of four hours, between 

7/13/2011-21:00 and 7/14/2011-1:15. 

Next, the flowing conditions are established. Based on casing pressure readings 

shown in Fig. 5.5, it is assumed that the horizontal well was producing under constant 

bottomhole pressure. Furthermore, information from a production logging report 

corroborates this assumption and so the wellbore pressure is set to 700 psi.  
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Fig. 5.3—Gas inflow rate. 

 

 

Fig. 5.4—Water inflow rate. 
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Fig. 5.5—Casing pressure. 

 

 

5.1.2 DTS Field Data 

The next piece of information is DTS data. The fiber optic cable of the DTS system 

extends from the well’s toe all the way back to surface facilities. For the purposes of this 

study, only DTS data along the wellbore is needed.  The vertical section of the well is 

identified by spotting the geothermal gradient’s linear behavior (see Fig. 5.6). In this 

way, DTS data is correlated to the WBD. Fig. 5.7 is a snapshot of a temperature profile 

with the wellbore trajectory superimposed on the secondary axis.   

A quick glance at Fig. 5.11 reveals the sharp temperature drop experienced at the 

location of the induced hydraulic fractures. Matching the hydraulic fracture location with 

the correct temperature data point affects the evolution of the EnKF estimation in the 
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data assimilation stage. For this reason, the appropriate selection of observation points is 

critical for the successful execution of the EnKF.  

 

 

 

Fig. 5.6—Geothermal gradient of Well A. Vertical section of Well A is determined 

by identifying linear behavior of wellbore temperature. 
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Fig. 5.7—Plot of wellbore trajectory (horizontal section only) on DTS profile. Sharp 

drops in temperature occur at the location of the hydraulic fractures. 
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5.2 Forward Model 

A reservoir forward model responsible for generating pressure and temperature 

responses is set up next. Reservoir parameters are described in Table 5.1while fluid 

properties are specified in Fig. 5.8 through Fig. 5.9. Results from data interpretation of 

production and DTS data (e.g. WBD, flowing condition, fracture location) are 

considered when calibrating the forward model. 

At this point, it is important to recall that the closest parameter to the wellbore 

temperature,   , is the temperature at the wellbore-reservoir contact, also known as the 

arriving temperature,   . These are equal to each other only at the fracture nearest to the 

well’s toe given that mixing effects inside the wellbore are not considered at this 

location. As a result, the history match is narrowed down to data corresponding to Stage 

No.1only, which will be the only stage opened to flow. Production data corresponding to 

Stage No.1 specifies that this stage is responsible for 3.5% of the total surface flow. Fig. 

5.10 and Fig. 5.11 show visual representations of the horizontal well in the rectangular-

shaped reservoir used in this forward model.  
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Table 5.1 Forward model parameters used in EnKF estimation. 

Parameter Description Value [ unit ] 

        Number of stages 14 

𝑘       Matrix permeability      [md] 

𝑘    EPA permeability      [md] 

𝑘  Fracture permeability   𝑘     

        Matrix porosity     [ %] 

     EPA porosity       [ %] 

   Fracture porosity      [ %] 

   Fracture half length   𝑘     

   Fracture height 90 ft 
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Fig. 5.8 —Gas formation volume factor. 

 

 

Fig. 5.9—Gas viscosity. 
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Fig. 5.10—Model of horizontal well with induced hydraulic fractures. 

 

 
Fig. 5.11—Rectangular shaped reservoir with horizontal well and induced 

hydraulic fractures. 
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5.3 Inverse Model 

For this implementation of the EnKF, the parameter used as observation is not the well’s 

temperature profile (as was the case on all synthetic examples) but rather the temperature 

difference at the fracture location. Fig. 5.12 illustrates this concept. By doing this, 

inaccuracies in the determination of initial conditions and geothermail gradient are 

avoided.  

For this case, a joint estimationof fracture half-length and fracture permeability is 

preferred as to show the capabilites of the EnKF when handling more than one objective 

parameter and also to maximize computational time. As mentioned before, true values of 

model parameters are unknown so its hard to verify the accuracy of the estimations. 

Neverthless, a range of validity is established based on relevant literature information 

and other field examples.  Results are presented in the next section (Fig. 5.13 to Fig. 

5.18). 
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Fig. 5.12—Difference between temperature at gas inflow location and temperature 

at end of Stage 1.   servesas observation in the execution of the EnKF. 

 

  

Stage 1 
Stage 2 

115.5

116

116.5

117

117.5

118

118.54580

4600

4620

4640

4660

4680

4700

7600 7650 7700 7750 7800

T
em

p
er

a
tu

re
 ,

ºF
 

T
V

D
 ,
ft

 
TMD,ft 

Wellbore Trajectory

Temp @ 7/14 7:00 AM

Δ𝑇 



 

89 

 

5.4 ENKF Results 

 

 

 

Fig. 5.13—Estimation of fracture half-length after 17 integration steps (4 hours). 
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Fig. 5.14—Estimation of fracture permeability after 17 integration steps (4 hours). 
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Fig. 5.15—Fracture half-length ensemble evolution by integration steps. (Field 

case). 

 

 

Fig. 5.16—Fracture permeability ensemble evolution by integration steps. (Field 

case). 
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Fig. 5.17—Temperature difference of EnKF forecasts (red) and field data (black). 
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Fig. 5.18— Production performance of EnKF forecasts (red) and field data (black). 
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5.5 Discussion 

The range of validity needs to be defined in order to test the accuracy of the estimations 

presented in the previous subsection. Fracture half-length values can be inferred from 

well spacing plans operators use in the Marcellus shale. Field studies and relevant 

literature specify that well spacing in the Marcellus shale is between 500 ft-1000 ft, as 

shown in Fig. 5.19 (Edwards et al, 2011). This means that fracture half-length values 

range between 250 ft and 500 ft.  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

For the type of proppant mesh used in Well A ( 80-100, 30-50 mesh) fracture 

conductivity values (at closure stress levels of 3,000-3,500 psi)  range between 100 md-

Fig. 5.19—Well spacing of horizontal wells in the Marcellus shale. 
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ft  to 1000 md-ft according to different laboratory studies (Zhang et al, 2013). When 

setting up the inverse problem, fracture width is assumed to be known and is defined in 

the construction of the LGR scheme. With a gridblock size of 10 ft in the X direction, 

the fracture width has a value of 0.33 ft. Fracture permeability values are calibrated in 

such way that fracture conductivity values are preserved. In this way, the fracture 

permeability range of validity is between 300 and 3000 md. 

Estimations of fracture half-length and permeability are shown in Fig. 5.13 and 

Fig. 5.14, Fig. 5.15 and Fig. 5.16 show the evolution of fracture half-length and 

permeability ensemble evolution at each integration step.  For both fracture parameters, 

the solution does not converge to a single value but rather to a set of values. In synthetic 

cases, despite converging to a single value, the final solution was in essence still a PDF 

where the true value had the highest frequency (e.g. 100). For the field case, given that 

the estimation has undergone a short period of assimilation time, a high spread of the 

estimations is observed. This spread is expected to decrease if more integration steps 

were to be executed.  

History matching the forecast of the resulting estimations to the true DTS and 

production data is another way to test the accuracy of the EnKF results.  Fig. 5.17 and 

Fig. 5.18 show the temperature and production forecast of all ensembles at each 

integration step. Indeed, as time progresses and data are assimilated, the forecast of the 

ensembles approaches the true field observation.   

In the end, both parameter estimations fell within the previously established 

limits; however, the fracture half-length’s final estimation has less spread than  fracture 
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permeability. Additional monitoring time may change this situation and allow the 

permeability to reduce its spread and further approach the true value. History matching 

results also showed positive signs, as the simulated forecasts from the final ensembles 

approached the field data points. Once again, additional time may reduce the difference 

between the observed and the simulated forecast. 
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6. CONCLUSIONS 

 

In this study, it was successfully demonstrated how to implement the EnKF in the 

characterization of HFT using DTS data. Different case studies along with a sensitivity 

analysis were set up in order to analyze the reservoir’s thermal response to different 

fracture parameters. It was shown that the reservoir’s temperature response is sensitive 

to fracture half-length, fracture permeability and EPA permeability. 

Synthetic examples showed encouraging results in implementing the EnKF for 

individual and joint estimation of fracture parameters after only 30 days of production. 

Due to the computational expense of the EnKF forecast step (e.g. Monte Carlo 

simulation), higher computation capabilities are required for faster results. In addition, 

prolonged times are needed to allow the EnKF to evolve and converge to more accurate 

final estimations. This may represent an issue for real-time monitoring applications. As a 

result, the EnKF may not be suitable for real-time characterization of HFT.    

Next, the implementation of the EnKF on field data showed accepted results as 

the estimations fell under a range of values that agreed with information from other field 

examples and relevant literature. For the field case, the conductivity induced by the 

network of fractures (e.g. EPA) was not estimated. Reservoir temperature is very 

sensitive to this parameter since it is closely linked to the pressure variations felt around 

the primary fractures. Because of this, a more robust model capable of accurately 

capturing this effect is strongly suggested.  
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In addition, prior knowledge of fracture parameter values is necessary for a more 

rigorous examination of the EnKF’s performance. Integration of seismic information is 

suggested for fracture half-length estimations either as an observation in the EnKF or to 

test the accuracy of the resulting estimation.  Furthermore, a thermal wellbore model is 

needed in order to optimally use field DTS data. In this way, the simulated parameter 

would be the same, thus reducing modelling errors. 

In the end, the implementation of the EnKF has a myriad of applications in 

petroleum sciences, particularly in fracture diagnostic tools. The flexibility of the EnKF 

at integrating additional data sources is one of the main advantages of this technique in 

addition to its gradient free implementation. This study has successfully shown its 

flexibility at executing it and its effectiveness at accurately estimating fracture 

parameters using a combination of production and temperature data. The EnKF therefore 

represents a successful alternative to surpass DTS qualitative applications by performing 

a more accurate reservoir and HFT characterization, along with automatic history 

matching.  
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