TRACE FISSION PRODUCT RATIOS FOR NUCLEAR FORENSICS

ATTRIBUTION OF WEAPONS-GRADE PLUTONIUM FROM FAST BREEDER

REACTOR BLANKETS

A Thesis

by

JEREMY MICHAEL OSBORN

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee,	S
Committee Members,	I
	I
Head of Department,	Ŋ

Sunil S. Chirayath William S. Charlton Wolfgang Bangerth Yassin A. Hassan

August 2014

Major Subject: Nuclear Engineering

Copyright 2014 Jeremy Michael Osborn

ABSTRACT

A nuclear terrorist attack is one of the most serious threats to the national security of the United States, and in the wake of an attack, attribution of responsibility will be of the utmost importance. Plutonium, a by-product in spent nuclear reactor fuel, can be used in a nuclear weapon when obtained from reactor fuel discharged at a low burnup (1 MWd/kg). Characteristics of plutonium reprocessed from reactor fuel depend on factors such as the reactor type (thermal or fast reactor), fuel burnup, production history and the plutonium separation process used. Detailed understanding of the plutonium isotopic composition and fission product contaminant concentrations in separated plutonium would aid nuclear forensics activities aimed at source attribution in the case of interdicted smuggled plutonium, bolstering nuclear deterrence. The study presented here shows that trace fission product to plutonium ratios are amenable for nuclear forensics attribution. Through computational reactor core physics simulations, results are obtained for weapons-grade plutonium produced in a Fast Breeder Reactor (FBR). These fission product to plutonium ratios for the FBR are further compared with results reported elsewhere for a thermal Pressurized Heavy Water Reactor. This comparison of isotopic ratios results in substantial differences between fast and thermal neutron reactor systems, leading to the determination that a suite of selected isotopic ratios can attribute separated weapons-grade plutonium to a fast or thermal neutron source reactor system.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor and friend, Dr. Sunil Chirayath for all his guidance, support, and assistance throughout the course of this research. Very special thanks go to Dr. William Charlton for his helping hand in the weekly research group meetings. I would also like to thank my committee member, Dr. Wolfgang Bangerth.

I must thank my parents, Sean and Amy Osborn, for all of their endless support.

Finally, I would like to acknowledge the funding support from NSF and DHS joint ARI program (NSF Grant No. ECCS-1140018 and DNDO-2012-DN-077-ARI1057-02) which was utilized to carry out this research work. The views and conclusions expressed in this thesis are not an official position of the funding agencies.

NOMENCLATURE

- CANDU Canada Deuterium Uranium reactor CSR - Control Safety Rod DF - Decontamination Factor DSR – Diverse Safety Rod FBR Fast Breeder Reactor _ HFIR - High Flux Isotope Reactor IAEA - International Atomic Energy Agency ITWG - International Technical Working Group LANL - Los Alamos National Laboratory MCNP - Monte Carlo N-Particle MOX - Mixed Oxide Megawatt-day per kilogram of heavy metal MWd/kg – MWe Megawatt electric — NPT Treaty on the Non-Proliferation of Nuclear Weapons _ ORNL _ Oak Ridge National Laboratory PFBR - Prototype Fast Breeder Reactor PHWR Pressurized Heavy Water Reactor — PuO_2 Plutonium Dioxide —
- PUREX Plutonium Uranium Recovery by Extraction

- PWR Pressurized Water Reactor
- RB Radial Blanket
- RDD Radiological Dispersal Device
- UO₂ Uranium Dioxide

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
NOMENCLATURE	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix
I INTRODUCTION	1
I.A. Background and Motivation I.B. Previous Work	2 7
II THEORY	12
 II.A. Neutron Energy Spectrum II.B. India's Three Stage Nuclear Program II.C. The Indian PFBR II.D. Monte Carlo N-Particle (MCNP) Transport Code II.E. CINDER90 Depletion II.F. ORIGEN & Matrix Exponential Method 	13 15 17 19 21 23
III PFBR CORE MODELING AND FUEL BURNUP SIMULATIONS	25
 III.A. PFBR Model & Simulation III.B. Radial Splitting III.C. Axial Splitting & Super Cell III.D. Model Verification 	25 30 31 34
IV RESULTS AND DISCUSSION	38
IV.A. Plutonium Production IV.B. Development & Selection of Isotopic Ratios IV.C. Stochastic Uncertainty	38 39 47

Page

	IV.D. Isotopic Ratios of the Same Element IV.E. Theoretical Procedures	51
V	CONCLUSIONS AND FUTURE WORK	53
	V.A. Conclusions V.B. Future Work	53
REFE	RENCES	
APPE	ENDIX A	62
APPE	ENDIX B	119

LIST OF FIGURES

FIGURE	Page
1	Plutonium isotopic composition as a function of fuel burnup in a PWR3
2	Neutron energy spectra for that of a fast reactor and thermal reactor 14
3	Cumulative fission yield curves for various isotopes and neutron energies
4	India's three stage nuclear power program16
5	Core map of PFBR
6	Fuel pin arrangement for core and radial blanket sub-assemblies25
7	Variation of k _{eff} as a function of reactor operation27
8	MCNPX-generated neutron energy spectra for the Indian PFBR core 28
9	Core map highlighting the three radial blanket refueling groups29
10	Flux profile as a function of pin height
11	MCNP-generated image of the super cell model
12	Production of ¹³⁷ Cs as a function of burnup in radial blanket regions 35
13	Production of ¹⁴⁸ Nd as a function of burnup in radial blanket regions 35
14	Production of ¹³⁴ Cs as a function of burnup in radial blanket regions 36
15	Production of ²³⁹ Pu as a function of burnup in radial blanket regions 36
16	Plot of the neutron radiative capture cross-section for ¹⁴⁹ Sm47
17	Plot of variance per average mass of ¹³⁷ Cs from nine cycle-1 simulations
18	Image of the HFIR core

LIST OF TABLES

TABLE	Page
Ι	Approximate isotopic composition of various grades of plutonium4
II	PFBR core design parameters18
III	End of life burnup for radial blanket groups
IV	Super cell simulation results for axial splitting
V	Plutonium produced in the PFBR radial blanket regions at the end of the regions' life
VI	Plutonium yield from the PFBR radial blanket regions
VII	Selected isotopes per kg of PUREX processed plutonium from PFBR radial blanket fuel
VIII	Reactor dependency of selected isotope ratios
IX	Linear regression equation and fit between variance and mass for the selected isotopes
X	Stochastic uncertainty associated with MCNPX simulations
XI	Mass ratios for isotopes of the same element
XII	Mass and activity values for every isotope printed in MCNPX output for "three cycles" radial blanket material at End-of-life

I. INTRODUCTION

The Nuclear Forensics and Attribution Act, signed into law by President Barack Obama in 2010, states that a nuclear terrorist attack is one of the most serious threats to the national security of the United States, and that in the wake of an attack, attribution of responsibility would be of the utmost importance.¹ Attribution begins with technical nuclear forensics, the process by which intercepted, illicit nuclear material is analyzed in order to identify the origin and source of the material.² Recognizing a threat illustrates the value of a robust forensics and attribution capability that results in establishing a credible nuclear deterrent.

There are two basic techniques for attributing reactor characteristics from results of analyzed material. These consist of a database method and an inverse analysis method. With the database method the measured results from material analyses are compared to a database of isotopic results to find the closest solution. In an inverse analysis method the data obtained from the measured material is used to develop model parameters for the forward model.³ The forward model being a reactor physics code. Both methods have their disadvantages. For example, a downside of the database method is that the database is never certain to be complete. Therefore, forensic analysis for attribution using a database method requires that data concerning foreign-origin materials be available and studied.⁴ However, it is possible that well validated computational models may be able to substitute data for cases where known material samples are not available.

I.A. Background and Motivation

Plutonium, a byproduct in spent nuclear fuel, is bred in nuclear reactor fuel by the conversion of uranium. The production of ²³⁹Pu is through the neutron capture of ²³⁸U:

$${}^{238}_{92}\text{U} + {}^{1}_{0}\text{n} \xrightarrow{(n,\gamma)} {}^{239}_{92}\text{U} \xrightarrow{\beta^{-}} {}^{239}_{93}\text{Np} \xrightarrow{\beta^{-}} {}^{239}_{94}\text{Pu} , \qquad (1)$$

where the half-lives for the beta decays of ²³⁹U and ²³⁹Np are 23.47 minutes and 2.355 days, respectively.⁵ As the fuel burnup increases, neutron capture reactions in ²³⁹Pu and successive isotopes of plutonium lead to the production of higher mass number plutonium isotopes. Eventually a full composition of plutonium isotopes (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu) exist in the irradiated fuel. Fuel burnup is defined as the thermal energy produced per unit mass of fuel, expressed in Megawatt-day per kilogram of heavy metal (MWd/kg). The isotopic composition of the plutonium is dependent upon the fuel enrichment, the amount of fuel burnup, the nature of the reactor neutron energy spectrum to which the fuel is exposed, and the cooling time after the irradiation has occurred. Thus, the resulting composition of the discharged fuel may be able to provide information on the reactor system which produced the plutonium.

Figure 1. Plutonium isotopic composition as a function of fuel burnup in a PWR.

Fuel burnup is the major contributing factor to the plutonium isotopic composition. Figure 1, taken from reference 6, illustrates the change in plutonium composition as a function of fuel burnup in the case of a typical pressurized water reactor (PWR).⁶ It can be seen from Figure 1 that as the fuel burnup increases, the concentration of ²³⁹Pu, and thus the quality of the plutonium with respect to weapons usability, decreases. For levels of fuel burnup (7 to 45 MWd/kg) commonly achieved in power reactors, the resulting plutonium is reactor-grade rather than weapons-grade.⁶ However, a reactor could, in theory, be designed or misused to discharge fuel at a low burnup (1 to 2 MWd/kg) for the purpose of obtaining weapons-grade plutonium. If a reactor is to discharge uranium fuel subject to a low burnup of around 1 MWd/kg, the plutonium produced will be weapons-grade, irrespective of the reactor type in which the uranium is irradiated. The characteristics of the plutonium composition defining plutonium grade as per reference 6 are listed in Table I.⁶

Table I

Grade	Isotope (%)				
	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
Super-grade	-	98	2	-	-
Weapons-grade	0.12	93.8	5.8	0.25	0.022
Reactor-grade	1.3	60.3	24.3	9.1	5
MOX-grade	1.9	40.4	32.1	17.8	7.8
FBR blanket	-	96	4	-	-

Approximate isotopic composition of various grades of plutonium.

From Table I, FBR (fast breeder reactor) blanket plutonium is estimated to be weapons-grade. This is because during the standard burn cycle of an FBR the blanket material situated at the periphery of the reactor core is exposed to a burnup around 1 MWd/kg, whereas it is unusual for a power reactor to discharge regular uranium fuel at that low of a burnup. Therefore, any country operating an FBR will be generating significant quantities of weapons-grade plutonium in the fuel blankets. Countries including India and China currently have FBR programs where they are actively developing and operating FBRs for research and power production purposes.⁷

India's 500 MWe Prototype Fast Breeder Reactor (PFBR)⁸ is in the advanced stages of its construction, at the time of this writing, and will produce significant quantities of weapons-grade plutonium during normal operation. Previous work has estimated that about 140 kg of weapons-grade plutonium will be produced in the blankets of the PFBR each year.⁹ This capability is significant as India is a non-signatory of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). If India uses the PFBR and other reactors, only to meet civilian energy needs, international safeguards would provide confidence that plutonium is not being diverted from their power reactors. In 2010, the United States and India enacted a nuclear deal based on India's civilian and military nuclear separation plan which would allow access for international safeguards on Indian power reactors in exchange for India's ability to receive full civil nuclear energy cooperation, including fuel supplies for safeguarded nuclear power reactors.¹⁰ In accordance with the Indo-US 123 agreement, civilian power reactors will be placed under permanent International Atomic Energy Agency (IAEA) safeguards. However, India retains the sole right to determine whether nuclear facilities are civilian or military. Thus per the agreement, the PFBR as well as eight of their twenty-two, CANDU derived, Indian Pressurized Heavy Water Reactors (PHWRs) are exempt from IAEA safeguards.¹⁰ Both of these reactor types have the ability to produce weapons-grade plutonium, which can be used for the purpose of weapons production.

Operating in a non-safeguarded manner, the PHWRs are of particular interest because of their unique online refueling capabilities. Light water reactors undergo batch refueling which require a reactor shutdown to be performed, whereas heavy water reactors are frequently refueled while online and in operation. Their use of natural uranium fuel (0.72% ²³⁵U), having a low reactivity, leads to typically refueling one fuel channel (eight fuel bundles ~100 kg U) per day. The PHWRs usually reach an average fuel burnup of about 6.7 MWd/kg.¹¹ However, the online refueling makes the reactors more susceptible to the diversion of material from the core, and this allows the potential for the fuel to be intentionally exposed to a low burnup and then removed from the core for purposes outside civilian energy production.

Due to the prevalent risk of misuse of these two types of reactors and the ability to produce weapons-grade plutonium from both, it is of interest to have detailed characterizations of weapons-grade plutonium produced by FBR and PHWR types. This research develops a suite of fission product to plutonium ratios for separated plutonium produced in the PFBR radial blanket, followed by a comparison of those ratios to material from a PHWR source reported elsewhere.¹² Detailed understanding of the characteristics, such as plutonium composition and fission product contaminant concentrations in separated plutonium would aid nuclear forensics activities which are aimed at source attribution in the case of interdicted smuggled plutonium in a predetonation state as well as to some extent for post-detonation analyses, bolstering nuclear deterrence.

I.B. Previous Work

Multiple studies on technical nuclear forensics research have been published which demonstrate the ability of isotopic data to retain information about the source of the produced special nuclear material. An environmental monitoring system was developed at Los Alamos National Laboratory (LANL) using fissiogenic noble gases, namely xenon and krypton, as a verification technique for reprocessing facilities.¹³ The relative concentrations of stable xenon and krypton isotopes depend on several reactor operating parameters. Measurements of isotopic ratios of these noble fission gases could thus be used to verify operator declarations or determine fuel parameters such as fuel type, burnup, and reactor type. The technique developed uses a high-precision mass spectrometer to measure stable noble gas isotope compositions in samples taken from a reprocessing plant exhaust stack. Selected isotopic ratios were determined and using sophisticated data analysis the ratios were compared to a database of isotopic ratios to infer the fuel parameters. The calculated database of xenon and krypton isotopic ratios was created using a series of reactor analysis codes to model essentially all types of reactors. The isotopic ratios were calculated as a function of burnup for pressurized water reactors, boiling water reactors, CANDUs, graphite moderated reactors, and FBRs. To verify the accuracy of the calculated database, the reactor models were benchmarked to a dozen measurements from literature. Computer modeling showed the ability of the isotopic ratios to distinguish between light-water reactors, heavy-water reactors, and breeder reactors. This system utilizes the fact that noble gases are not chemically bound to the fuel and are thus released during reprocessing.¹³ However, the isotopic ratios and

database developed by this technique are not useful when it comes to analyzing postprocessed materials; which is the focus of this thesis study.

A thesis study was performed by M.R. Scott¹⁴ to create a forensics methodology for attributing spent fuel used in a radiological dispersal device (RDD) to a source reactor. The attributes which were determined included the spent fuel burnup, age from discharge, reactor type, and initial fuel enrichment. The attribution process was theorized to begin by accurately measuring the isotopic composition of the RDD debris with mass spectrometry. The method for finding the correct reactor type is a forward model, in which several reactor types are modeled with coupled MCNP (core physics analysis code) and ORIGEN (fuel burnup simulation code). The isotope measurements will be compared to the library of computationally calculated isotopes for different reactor types. An error will exist between the measured isotopes and computationally calculated isotopes. The reactor types will be ranked based on the lowest error as to which type is most likely to be the source reactor. To find a distinction between reactor types, isotopes with cross sections and yields that change significantly between reactor types were needed. Ratios of the chosen isotopes were plotted versus burnup for each reactor. The results showed that these isotopes could easily differentiate between a fast reactor and thermal reactor.¹⁴ The work, however, was focused on higher burnup levels which are more commonly achieved in power reactors, rather than low burnup weapons-grade plutonium. Isotopes coming from more complex production chains do not have sufficient time to be produced in low burnup material. As a result, the monitors

identified in Scott's study were not suitable for the nuclear forensics analysis of lowburnup fuel reported in the current study.

A previous study was completed by Wallenius et al. in which plutonium isotopics were analyzed and used for the purposes of origin determination of plutonium seized in the illicit trafficking of nuclear material.¹⁵ This study used the reactor fuel burnup simulation code, ORIGEN2, to calculate the plutonium composition for multiple reactors, as well as a thermal ionization mass spectrometer to measure plutonium isotope ratios of five plutonium samples. The sources of the plutonium samples included two from the National Bureau of Standards, two from the former Soviet Union, and one sample from an (ITWG) International Technical Working Group round-robin test. Following the measurements, a source reactor for each sample was then inferred by comparing the measured and computationally calculated isotopic compositions. Their study raises a number of concerns, though, with regards to the isotopics and computer modeling. The isotopic analyses consisted of plutonium and actinides only, with no investigation of contaminant fission products. The isotope generation and depletion code, ORIGEN2, uses a zero-dimensional fuel model giving the composition averaged over the whole reactor core. This could be problematic with an FBR, whose core consists of very different fuel and blanket regions. Additionally, irradiation times were considered to be continuous and no cooling time corrections were made to the material. Burnup levels obtained for the computational models were equivalent to typical burnup for each reactor with the exception of the FBR. Here, the FBR blanket material has a

burnup of 20 MWd/kg, which is relatively high. This burnup level is likely due to the averaging of core and blanket fuel, as a result of ORIGEN2 modeling.

A paper was published by A. Glaser¹⁶ over the isotopic signatures of weaponsgrade plutonium produced in reactor types which have been historically used for plutonium production. The computer code system, MCODE, which links MCNP and ORIGEN2 was used to model three types of reactors: the Hanford-type, NRX-type, and Calder Hall-type reactors. For each of these reactor types, the plutonium composition was obtained and ratios of plutonium isotopes were analyzed. In addition, sample data, from previous publications, of the same plutonium isotopic ratios from more reactor types were included in Glaser's analysis. It was determined that predictive signatures derived from the plutonium isotopic ratios can distinguish weapons-grade plutonium from basic reactor types including fast breeder reactors, light water reactors using lowenriched fuel, and reactors fueled with natural uranium.¹⁶ Analyses of fission products are absent in the study done by Glaser. While a forensics methodology consisting purely of plutonium isotope ratios could be beneficial due to independence from the separation technique, the plutonium isotopics may be assisted by the inclusion of fission product compositions.

From the literature review, it was evident that previous studies have developed plutonium or fission product isotope analysis techniques which attribute nuclear material to a source reactor. Most of the research completed however, has been focused on reactor spent fuel, irradiated typically to an average burnup level, where the composition of plutonium produced is not of weapons-grade. Lacking are the investigations into

isotopic characteristics of fission product contaminants in weapons-grade material as a result of low burnup fuel from reactor misuse or a breeder reactor blanket. Using ratios of fission products to plutonium in separated weapons-grade plutonium, attempted in the present study, for nuclear forensics isotope analysis, is a novel approach for source reactor attribution.

II. THEORY

Technical nuclear forensics capabilities for the attribution of nuclear material to a source reactor are vital to establishing a credible nuclear deterrent. Previous nuclear forensics research has demonstrated the ability for isotopics within the material to retain information on the system which produced the material. With fast breeder reactors becoming more prevalent there is a need to continue research with a focus on FBR systems and weapons-grade plutonium from low burnup fuel. The theory involved with the creation and remaining presence of isotope characteristics in a material which possess information from the source system is discussed throughout this chapter.

A detailed characterization of weapons-grade plutonium will include fission product contaminants in addition to plutonium isotopics. The potential for trace amounts of fission products in separated plutonium is due to the non-ideal chemical process used to separate plutonium from irradiated nuclear fuel. The degree of purification achieved by a separation process can be quantified by decontamination factors (DF), which are the ratios of a stated impurity to desired component in the feed divided by the equivalent ratio in the product.¹⁷

$$DF = \frac{\left[\frac{Impurity}{Desired\ Component}\right]_{Feed}}{\left[\frac{Impurity}{Desired\ Component}\right]_{Product}}$$
(2)

The most commonly employed technique for plutonium separation is the Plutonium Uranium Recovery by EXtraction (PUREX) process.¹⁸ Using the PUREX process, decontamination factors of $10^6 - 10^8$ have been achieved¹⁷ for the reduction of fission products in separated plutonium, however a measurable contaminant concentration will remain. The DF is largely insensitive to mass-dependent fractionation. Thus, different mass isotopes of the same element will be separated together and equally during chemical separation.

II.A. Neutron Energy Spectrum

Similar to the plutonium composition, fission product inventories have a large dependency on parameters such as fuel burnup, the type of fuel, enrichment, the neutron energy spectrum of the reactor, and the fuel cooling time after irradiation. The objective of this research is to analyze plutonium and fission products from an FBR blanket fuel with a burnup of 1 MWd/kg, followed by a comparison to PHWR fuel also with 1 MWd/kg burnup. The fast neutron energy spectrum of a sodium cooled FBR is drastically different from the heavy-water moderated PHWR thermal neutron energy spectrum. For these reactor fuels exposed to equal levels of burnup, the neutron energy spectrum will be the source of variations in fission product inventories. The fuel used in PHWR is natural uranium (0.72 atom percent ²³⁵U), whereas that used in an FBR blanket fuel is depleted uranium (0.25 atom percent ²³⁵U). The energy production in the FBR core is from the seed fuel subassemblies containing mixed oxides (MOX) of PuO₂ and UO₂. A plot of fast and thermal neutron energy spectra can be seen in Figure 2 which was obtained from reference 19.¹⁹

Figure 2. Neutron energy spectra for that of a fast reactor and thermal reactor.

The dissimilarity of the neutron spectra can lead to changes in characteristics of plutonium and fission product concentrations in the fuel. Variations in the fission yield for several fission products, variations in neutron interaction probabilities (cross-sections) for fission product isotopes, and variations in the neutron interaction probabilities for the plutonium isotopes can all lead to characteristic differences in fission product to plutonium ratios, which is the focus of this study. Figure 3 displays the fission product yield curves for the thermal fission of ²³⁵U to represent a PHWR, and for the fast fission of ²³⁸U and ²³⁹Pu which represents an FBR.²⁰ It can be seen from Figure 3 that the fission product yields are, in fact, different between the neutron energy and uranium and plutonium isotopes and thus analysis of fission product inventories, a small

portion of which will be contaminant in the separated plutonium, can assist in attributing plutonium to a source reactor. It should be noted that energy for the fast fission yield in Figure 3 is at a neutron energy of 500 keV. This is a slightly higher energy than the energy of the dominant neutrons in a MOX-fueled FBR, which varies between 100 keV to 400 keV.

Figure 3. Cumulative fission yield curves for various isotopes and neutron energies.

II.B. India's Three Stage Nuclear Program

Dr. Homi J. Bhabha is regarded as the "father" of India's nuclear program. Dr. Bhabha conceived the idea of a three stage nuclear program as a way for India to work around the country's limited amount of uranium while utilizing its vast thorium reserves. The strategy is to develop a Th – U fuel cycle, breeding fissile ²³³U from the fertile ²³²Th. Stage one consists of natural-uranium fueled thermal reactors (PHWRs) used to generate power. The second stage of the program involves a fleet of fast breeder reactors. The stage two fast breeder reactors, beginning with the PFBR, will be fueled with reactor-grade plutonium and depleted uranium from the reprocessed spent fuel of stage one reactors and will breed more plutonium than it consumes. With enough plutonium fuel stockpiled, the FBRs can then switch to a plutonium – thorium breeder cycle capable of producing ²³³U. The third stage will then be a ²³³U – Th breeder cycle, which best utilizes India's resources.²¹ Figure 4 gives a visual representation of India's three stage nuclear power program.

Figure 4. India's three stage nuclear power program.

II.C. The Indian PFBR

The Indian PFBR is the specific fast breeder reactor modeled in this study due to core characteristics being available in open literature.²² However, the objective of this thesis study is to analyze a fast breeder reactor system and the results obtained are applicable to general FBR systems. Design information for the 500-MWe Indian PFBR was obtained from Chirayath et al.²² and essential parameters are listed in Table II. There is an active core, one meter in height, which consists of an inner core and outer core of MOX "driver" fuel. The MOX fuel of the active core has PuO2 enrichments of 20.7% for the inner core and 27.7% for the outer core. This increases the amount of fissile material around the radial periphery of the active core, thus desirably flattening the neutron flux profile across the reactor. Axial blankets of length 0.3 m each sit above and below the active core, all of which are surrounded by 1.6 m tall radial blankets. Both core blankets are comprised of depleted UO₂ "target" fuel, capturing the neutrons leaking from the core. This large amount of ²³⁸U is where the weapons-grade plutonium breeding will take place, due to the low fuel burnup experienced in the blanket regions. The plutonium bred in the axial and radial blankets are likely to have similar characteristics; however, this project is focused on the plutonium produced in the radial blankets only. A core map of the PFBR, in Figure 5, highlights the inner core, control safety rods (CSR), diverse safety rods (DSR), outer core, and radial blanket.

Table II

PFBR core design parameters.

Core parameter	Value	
Reactor power (MWe)	500	
Thermal Efficiency (%)	40	
Maximum linear heat rating (W/cm)	450	
Fuel pin clad O.D./I.D. (cm)	0.66/0.57	
Fuel pellet diameter (cm)	0.555	
Fuel pins per sub-assembly	217	
Fuel pin triangular pitch (cm)	0.825	
Assembly pitch (cm)	13.5	
Radial blanket pin clad O.D./I.D. (cm)	1.433/1.323	
Radial blanket pellet diameter (cm)	1.29	
Pins per radial blanket sub-assembly	61	
Radial blanket pin triangular pitch (cm)	1.553	
Fuel assembly sheath thickness and sub-assembly size (cm)	0.32/13.13	
Active core height	100	
Axial blanket height top + bottom (cm)	30 + 30	
Radial blanket height (cm)	160	
Fuel – Density of fuel (g/cm^3)	PuO ₂ – UO ₂ ^a (11.0)	
Axial/Radial blanket fuel	Depleted UO ₂ ^a	
Fuel clad material	20% CW D9 steel	
	20.7/27.7	
Core Pu enrichments in MOX, inner core and outer core (%)	$[PuO_2 / (PuO_2 +$	
	UO ₂)]	
Plutonium isotope ratios in fuel: ²³⁹ Pu/ ²⁴⁰ Pu/ ²⁴¹ Pu/ ²⁴² Pu (%)	68.8/24.6/5.3/1.3	
Plutonium inventory (t)	1.99	
Primary coolant	Liquid sodium	
Primary inlet/outlet temperature (°C)	397/547	
Fuel average temperature (°C)	1289	
Fuel cycle (effective full power days)	180	

^a Depleted uranium: 235 U (0.25 at.%) and 238 U (99.75 at.%)

Figure 5. Core map of the PFBR.

II.D. Monte Carlo N-Particle (MCNP) Transport Code

MCNPX Version 2.7, a general-purpose Monte Carlo radiation transport code designed to track particle interactions, was utilized for modeling the PFBR core.²³ A user created input deck contains information regarding geometry specifications, material descriptions, selection of neutron interaction cross-section evaluations, location and characteristics of the radiation particle source, type of output information desired, and any variance reduction techniques if applicable.²⁴ The geometry of MCNPX treats an

arbitrary three-dimensional configuration in geometric cells bounded by first-, second-, and fourth-degree surfaces. The cells are defined by the intersections, unions, and complements of the regions bounded by the surface. The variety of flux estimators available, including flux averaged over a volume, flux averaged over a surface, and flux at a point, make MCNPX a versatile and powerful code for radiation transport calculations.²³ MCNP will read variables of the user input file and perform appropriate particle simulations.

The Monte Carlo method is a numerical analysis technique, which uses random sampling procedures to construct the solution of a physical or mathematical problem. A stochastic model is set up, and by sampling from appropriate probability distributions, estimates the required numerical answers to the problem by statistical means.²⁵ Monte Carlo thus duplicates the process of nuclear particle interactions with matter by sampling, via random numbers, probability distributions calculated from transport data.²⁴

A Monte Carlo code must have a supply of truly random numbers, which are uniformly distributed between 0 and 1. Each particle is followed from its birth to its death or escape from the system, with random sampling of probability distributions contained in radiation transport equations to determine the outcome at each step of its life.²⁴ In the life of a particle, events may include distance traveled to the next collision, collision nuclide selection, and nuclear reaction selection for a nuclide. Probabilities representing the physical process, at each event, are calculated based on physics, transport data and the materials involved. A random number is selected at an event and applied to the probability distribution to determine the events outcome. This process is

repeated along the particle's history, or path from birth until death, with a particle's death coming from absorption or leakage from the system. As a large number of histories are tracked, the average particle behavior more accurately simulates the physical process.²⁴

The Monte Carlo method indirectly solves the Boltzmann Transport Equation by simulating individual particles and averaging the behavior of a large number of particles. Monte Carlo is well suited for solving complicated three-dimensional, time-dependent problems²⁴ and thus is ideal for use in this thesis work.

II.E. CINDER90 Depletion

During the operation of a nuclear reactor the material compositions undergo changes, mainly, due to nuclear reactions caused by neutron interactions. The neutron interaction probabilities of the nuclides, along with the neutron flux, dictate the rate of change of the isotopic composition. As the isotopic compositions of the materials change, the nuclear reaction rates of the system are further altered. It is therefore essential to calculate the isotopic changes of the materials in the reactor in order to accurately simulate the reactor's operation.²⁶

MCNPX comes equipped with the depletion/burnup code, CINDER90, built-in to the code package.²³ An advantage of this integration is that only a single input is needed to run both the transport calculations as well as the isotope generation and depletion calculations. MCNPX runs a steady-state calculation to determine 63-group neutron fluxes, which are then energy-integrated with nuclide transport cross-sections resulting in reaction rates. CINDER90 takes the MCNPX-generated data, including reaction rates,

collapses the 63-group cross-sections into a one-group cross-section and performs the depletion calculation to obtain new isotopic compositions for the next time step. This process is repeated for each burnup time step, specified by the user, until the entire core burnup simulation is completed.²⁷

Solving for the time-dependent change in an isotope composition requires accounting for nuclear reactions which causes a production or loss of the nuclide, and may be described by the Bateman equations.²⁶ A simplified form of the Bateman equations for a specified isotope is^{26,27}

$$\frac{dN_i}{dt} = -N_i(t)\beta_i + \overline{Y}_i + \sum N_k(t)\gamma_{k\to i}$$
(3)

where:

 $\frac{dN_i}{dt} = \text{time-dependent change in isotope i,}$ $N_i(t) = \text{the time-dependent atom density of isotope i,}$ $\beta_i = \text{the total transmutation probability of isotope i,}$ $\overline{Y}_i = \text{production of isotope i via an external source, and}$ $\gamma_{k \to i} = \text{the probability of an isotope k transmuting, by decay or absorption, into isotope i.}$

Equation 3 is nonlinear because the transmutation probabilities rely on the timeintegrated flux, which is also reliant upon the time-dependent isotope compositions.²⁷ To make the equation linear, the assumption must be made that the transmutation probabilities remain constant over the time step. This assumption thus requires attention when selecting the number and duration of time steps. A larger number of steps means more computational run time, however a time step of a long duration may not be sufficiently accurate in accounting for composition transmutations. In CINDER90, the set of coupled differential equations is reduced to a set of linear differential equations using the Markov Linear Chain method.²⁶ Linear chains are created for each isotope transmutation path, starting from the initial concentrations:

$$\frac{dN_i}{dt} = -N_i(t)\beta_i + \overline{Y}_i + N_{i-1}(t)\gamma_{i-1}$$
(4)

where γ_{i-1} is the transmutation probability of forming isotope N_i .²⁷ The solution to each linear chain determines a partial isotope composition, which is then summed to obtain the total isotope inventory. Because of the use of these linear chains, the isotopic inventory is only coupled to preceding elements in the sequence, where the parameters are assumed known.²⁶ The general solution to such a linear sequence is as follows:^{26,27}

$$N_{n}(t) = \prod_{k=1}^{n-1} \gamma_{k} \left\{ \overline{Y}_{m} \left[\frac{1}{\prod_{l=1}^{n} \beta_{l}} - \sum_{j=1}^{n} \frac{e^{-\beta_{jt}}}{\prod_{l=1,\neq j}^{n} (\beta_{l} - \beta_{j})} \right] + N_{1}^{0} \sum_{j=1}^{n} \frac{e^{-\beta_{jt}}}{\prod_{l=1,\neq j}^{n} (\beta_{l} - \beta_{j})} \right\}$$
(5)

II.F. ORIGEN & Matrix Exponential Method

Multiple depletion codes exist with a commonly used system being ORIGEN2.2.²⁸ The point-depletion and radioactive-decay code can simulate nuclear fuel cycles and calculate nuclide compositions and characteristics of materials contained in the nuclear fuel.²⁸ Both ORIGEN2.2 and CINDER90 are zero dimensional depletion codes that can be linked to MCNP flux generation, but the two codes solve the depletion equation differently. CINDER90 utilizes the Markov Linear Chain Method whereas ORIGEN2.2 is based on the Matrix Exponential Method. The basic equation ORIGEN solves is the first order differential equation for nuclide decay. The solution method will be a matrix of first order differential equations of size N x N, with N being the number of nuclides. The large sparse matrix requires a large amount of memory in order to store all the necessary computations.²⁶ Thus, to accelerate calculations the number of nuclides followed in the set of equations is limited. ORIGEN2.2 has the ability to track 1700 isotopes, while the CINDER90 library contains 3456 isotopes. Due to the current research work's interest in predicting and analyzing quantities for a vast number of fission product isotopes, CINDER90 was chosen as the ideal isotope generation and depletion code for use.

III. PFBR CORE MODELING AND FUEL BURNUP SIMULATIONS

III.A. PFBR Model & Simulation

In simulating the operation of the PFBR, a detailed pin-by-pin 3D model of the PFBR core was created with MCNPX-2.7. An input deck is attached in Appendix A. As stated previously, the PFBR core is comprised of inner core sub-assemblies, outer core sub-assemblies, and radial blanket (RB) sub-assemblies. The inner and outer core subassemblies are geometrically identical with varying fuel enrichments. Cross-sectional views of the fuel pin arrangements for a core sub-assembly and a radial blanket subassembly, as generated by MCNP, can be seen in Figure 6.

Figure 6. Fuel pin arrangement for core and radial blanket sub-assemblies.

To realistically simulate reactor operations a separate input deck had to be developed for every refueling cycle, which consisted of 180 days full-power operation followed by 60 days of refueling shutdown and decay. The first input deck was built for the fresh PFBR core and two input decks were built, each having material comprised of the predecessor's output, to accurately simulate the refueling and altering of the core as it reached an equilibrium core configuration in the third fuel cycle. When the equilibrium core configuration is reached, the subsequent cycles will continue to have the same core configuration as the equilibrium core. The MCNPX simulations are computer intensive. The run time for each simulation was just above 30 days while running in parallel on a 32 core, 2.7 GHz, 64 GB RAM machine. These computer simulations provided an estimate of the plutonium composition and fission product composition within the discharged PFBR blanket fuel.

MCNPX output data was analyzed to perform checks on the accuracy of the model simulations. The global parameter, neutron multiplication factor (k_{eff}), was obtained for each step and plotted versus time. The values of k_{eff} as a function of time for the first three cycles of operation, shown in Figure 7, were compared with expected values²² and were seen to behave as anticipated. The value for k_{eff} is larger than 1.0 because the lack of control rods in the model. As can be seen in Figure 5 the reactor control rods are not in close proximity to the radial blanket, and therefore the lack of control rods in the model simulations will not have an impact on the radial blanket results. The neutron energy spectrum calculated by MCNPX was used as another check to the model. Figure 8 displays the neutron spectra in the inner core, outer core, and

radial blanket regions. The shape of the neutron spectra are as expected and matched the values for the average neutron flux throughout the PFBR found in Chirayath et al.²² The dominant neutron energy in the inner and outer core can be seen from Figure 8 as between 100 keV to 400 keV. The radial blanket spectrum is slightly softer than the active core, indicative of the small thermalization from the oxygen of the MOX fuel as the neutrons' travel length increases.

Figure 7. Variation of k_{eff} as a function of reactor operation.

Figure 8. MCNPX-generated neutron energy spectra for the Indian PFBR core.

The standard operating scheme of the PFBR will be cycles of 180 days fullpower operation followed by 60 days shutdown and refueling, with one-third of the active core being refueled at the end of each cycle.²² Conversely, the radial blanket subassemblies are refueled with a slightly different pattern, yet still on the basis of fuel burnup. Typical operation of the PFBR will be to discharge the radial blanket subassemblies during the refueling stage in which the burnup is nearest to 1 MWd/kg. Thus the radial blanket is split into three sections. Forty-two blanket subassemblies, which are in close proximity to the core, and therefore exposed to a large neutron flux, are replaced after every cycle of 180 days. Six radial blanket subassemblies are refueled after every two cycles, and seventy-two blanket sub-assemblies that are located farther from the core are irradiated for three cycles before being refueled. Figure 9 displays a core map of the PFBR, highlighting the three radial blanket groups. The radial blanket sub-assemblies which are replaced after a single cycle are shown in red, two cycles in yellow, and the sub-assemblies which are irradiated for three cycles before being replaced are shown in blue. Table III gives the fuel burnup estimated through MCNPX simulations for each radial blanket group at the end of life. It can be seen that the group which is exposed to three irradiation cycles reaches a burnup closest to the target of 1 MWd/kg. Therefore the "three cycles" group of radial blanket sub-assemblies is the material of reference for the analyses and isotope selection described later.

Figure 9. Core map highlighting the three radial blanket refueling groups.

Table III

End of life burnup level for radial blanket groups.

Irradiation Time & No. of RB Assemblies Discharged	Burnup (MWd/kg)
One Cycle (42 RBs)	0.710
Two Cycles (6 RBs)	1.302
Three Cycles (72 RBs)	1.016

III.B. Radial Splitting

As mentioned in the previous chapter, CINDER90 is a zero-dimensional depletion code and therefore has no knowledge of the spatial dependence of the transmutation rates.²⁶ CINDER90 assumes the flux in each burned material is not spatially dependent throughout that material. This averaging of the flux over each material region may affect the isotope concentrations if the spatial dependence of the flux would result in overall transmutation rates significantly different from the average. If necessary, splitting the material region can reduce the magnitude and the effects of the average flux.

The cylindrical fuel pins of the PFBR radial blanket can be split both radially and axially. Radially, transmutation rates may change with the flux and neutron properties as the neutron travels through the fuel. However, the fast neutrons of the PFBR are at high energies. Analytic calculations showed that the mean free path of neutrons at energies common in the PFBR are more than five times larger than the diameter of the radial

blanket fuel pins. Thus, there is no need to radially split the fuel pins due to the fast neutron spectrum.

III.C. Axial Splitting & Super Cell

Figure 10 shows the neutron flux profile as a function of core height for the outer core and the radial blanket groups obtained by running 20E+6 histories (or 20 Megahistories). It is clear that the neutron flux is not constant along the height of the fuel pin, which may affect the final isotopic concentrations from inaccurate burn and production as a result of the difference between the local flux and average flux. To test if, and how many, axial regions are needed, a case should be modeled with increasing axial regions until the resultant data converges. A full-core cycle simulation is too computer intensive, though, to run multiple times. Consequently, a super cell was modeled to accurately represent the full core, while at the same time being small and simple. An MCNPX-generated image of the super cell can be seen in Figure 11.

Figure 10. Flux profile as a function of pin height.

Figure 11. MCNP-generated image of the super cell model.

A super cell was used to determine the appropriate number of axial regions to split the radial blanket pins into. The small and simple super cell model has a short run time and is therefore conducive to several replications. The super cell consists of six outer core fuel pins at the same pitch found in the full core, and a radial blanket fuel pin appropriately placed from the outer core fuel pins and the boundary. The six faces comprising the elongated hexagon have a reflecting boundary condition. This design resulted in a neutron multiplication factor, k_{eff}, for the system of about one. The power of the super cell was set to achieve the same neutron flux as in the full core, and the radial blanket material was burned to the target, 1 MWd/kg.

Simulation of the super cell was repeated four times with 1, 3, 5, and 7 axial regions. For each simulation, the amounts of ¹³⁷Cs and total plutonium were summed up for the entire radial blanket pin. The results from the super cell simulations are shown in Table IV. For the mass of plutonium the relative error was less than 0.1%, and for the masses of ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁸Nd, and ¹⁵⁰Sm the relative errors were all around 2%. This error was deemed insignificant, and a single axial region was used in the subsequent full core simulations. Thus, for simplicity of the model and shorter computational run time, the blanket fuel pins were not split axially.

Table IV

Number of Axial Regions	¹³⁴ Cs mass (g)	¹³⁷ Cs mass (g)	¹⁴⁸ Nd mass (g)	¹⁵⁰ Sm mass (g)	Plutonium mass (g)
1	1.294 E-4	3.827 E-2	1.374 E-2	2.033 E-4	6.726
3	1.336 E-4	3.843 E-2	1.367 E-2	1.906 E-4	6.716
5	1.356 E-4	3.842 E-2	1.366 E-2	1.921 E-4	6.719
7	1.372 E-4	3.848 E-2	1.368 E-2	1.943 E-4	6.716

Super cell simulation results for axial splitting.

III.D. MODEL VERIFICATION

After verifying the neutron energy spectrum and time-dependent multiplication factor (k_{eff}) discussed in section III.A, further model verifications were made. To verify the reactor simulation, the production behaviors of a few select isotopes of interest were analyzed. The isotope mass within each radial blanket (RB) region was plotted as a function of fuel burnup and compared to expected behavior. Mass buildup of ¹³⁷Cs, ¹⁴⁸Nd, ¹³⁴Cs, and ²³⁹Pu are displayed in Figures 12, 13, 14, and 15, respectively.

Figure 12. Production of ¹³⁷Cs as a function of burnup in radial blanket regions.

Figure 13. Production of ¹⁴⁸Nd as a function of burnup in radial blanket regions.

Figure 14. Production of ¹³⁴Cs as a function of burnup in radial blanket regions.

Figure 15. Production of ²³⁹Pu as a function of burnup in radial blanket regions.

For each isotope, the isotope production versus material burnup is plotted for the three radial blanket regions. The difference in the rates of production for the three radial blanket regions is due to the mass of fuel, or number of radial blanket sub-assemblies. Forty-two, six and seventy-two radial blanket sub-assemblies are refueled in one cycle, two cycles and three cycles respectively. For all four isotopes, when normalized by fuel mass in each region, the lines for isotope mass as a function of burnup all fall on top of one another, irrespective of the radial blanket region refueled. Both ¹³⁷Cs and ¹⁴⁸Nd are expected to increase linearly with burnup and are common burnup monitors.²⁹ Both isotopes are direct fission products, and have negligible neutron cross-sections for loss mechanisms.³⁰ During the 60-day shutdown periods no significant decay will occur as the half-life of ¹³⁷Cs is about 30.1 years and ¹⁴⁸Nd is stable. Two production methods exist for ¹³⁴Cs, as a direct fission product and from the neutron capture of the fission product ¹³³Cs. The neutron cross-sections for loss mechanisms of ¹³⁴Cs are insignificant.³⁰ The production of ¹³⁴Cs is, therefore, proportional to the square of the neutron flux.²⁹ With a short half-life of around 2.06 years, an observable amount of ¹³⁴Cs decays away during the 60-day shutdowns. The production of ²³⁹Pu, as seen in equation 1, is nearly linear at low levels of fuel burnup. However, due to the cross-sections for radiative capture and fission the amount of ²³⁹Pu approaches an asymptotic composition.³⁰ Figures 12 through 15 match the expected production behavior of the four selected isotopes, indicating the model is correctly simulating reality.

IV. RESULTS AND DISCUSSIONS

IV.A. Plutonium Production

The significant quantity (SQ), defined as the approximate amount of nuclear material for which the possibility of manufacturing a nuclear explosive device cannot be excluded, is 8 kg for plutonium.³¹ Estimations for the amount of plutonium produced, as well as isotopic composition, in the PFBR radial blanket were obtained using MCNPX-2.7 burnup simulations. Results from the simulations for the three radial blanket regions are shown in Table V. Model simulations show that the PFBR does, in fact, produce high quality plutonium on a large scale. Based on the concentrations of ²³⁹Pu , ²⁴⁰Pu, and the grade definitions found in Table I, the resulting plutonium is categorized as supergrade. With three radial blanket regions and their various refueling frequencies, a refueling pattern is repeated every six cycles. Table VI shows the pattern and the mass of plutonium discharged at the end of each refueling cycle. Six full refueling cycles equals 1440 days, or almost four years. In this period, 432.9 kg of plutonium will be discharged from the radial blanket regions. On average, standard operation of PFBR will yield over 100 kg per year of super-grade, weapons-usable plutonium, from the radial blankets alone.

Table V

Irradiation Time No. of	Burnup	Total Mass of	Plutonium Isotopes (%)					
(Number of Cycles)	Assem- blies	(MWd/kg)	Plutonium (kg)	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
3	72	1.0157	99.06	0.0052	98.05	1.907	0.0382	0.00028
2	6	1.3023	8.664	0.0074	98.24	1.729	0.0236	0.00016
1	42	0.7096	34.85	0.0047	99.01	0.975	0.0073	0.00003

Plutonium produced in the PFBR radial blanket regions at the end of the regions' life.

Table VI

Plutonium yield from the PFBR radial blanket regions.

Cycle Number	Days	Mass of Plutonium Discharged From One Cycle RB Group	Mass of Plutonium Discharged From Two Cycles RB Group	Mass of Plutonium Discharged From Three Cycles RB Group
1	240	34.8 kg	-	-
2	480	34.8 kg	8.7 kg	-
3	720	34.8 kg	-	99.0 kg
4	960	34.8 kg	8.7 kg	-
5	1200	34.8 kg	-	-
6	1440	34.8 kg	8.7 kg	99.0 kg

IV.B. Development & Selection of Isotopic Ratios

With output data obtained from reactor core physics and fuel burnup simulations, analyses of various isotopes were necessary for determining if isotopic characteristics

exist within the material, which are unique to the PFBR. The ultimate goal being the development of a suite of isotopic ratios capable of attributing the source reactor from which separated weapons-grade plutonium would have been extracted. As mentioned previously, the "three cycles" radial blanket group comes closest to the target fuel burnup of 1 MWd/kg, and is the material of reference for isotopic analysis. The MCNPX output prints mass and radioactivity data for all the isotopes present in the irradiated fuel, which has mass above a threshold limit. The default threshold limit for isotope mass is 1E-10 grams.²³ Table XII, attached in Appendix B, contains mass and activity information for all isotopes existing at the end of the last 60-day decay period, for the three cycles material.

It would be extremely time consuming to measure every isotope present within the material. Therefore, certain characteristics were evaluated in determining which isotopes would be selected for the fission product to plutonium ratio analysis. Selected isotopes are reported in Table VII, as the expected mass and activity of each isotope which would be present in 1 kg of PUREX separated plutonium. One benefit to reporting the selected isotopes as ratios per mass of plutonium is the ability to scale the data to the mass of the interdicted weapons-grade plutonium. Selection was based on (a) the amount of isotope production, at least a few pico-grams per kg of plutonium, (b) the probability of detection (high gamma energy > 100 keV, long half-life > 100 days, high

radioactivity > 1 micro-curie), (c) reactor type dependency in isotope production, and (d) the PUREX plutonium reprocessing decontamination factor (DF) of the isotope. Specific decontamination factors on an elemental basis could not be found in open literature; hence, a DF of 10^6 was applied universally. Although, the same DF is applied to all isotopes, with the exception of plutonium, it is still an important characteristic. Given that the material is separated, fission products will be reduced to trace contaminants in the nearly pure plutonium. For fission products with a small amount of production, the inclusion of a DF from separation results in levels which are undetectable. In Table VII, the isotopes are classified into four groups namely, Prompt Gamma, Delayed Alpha, Other Gamma, and Mass Spectrometry based on the type of detection and how fast results can be obtained. Results can be acquired in a few hours with gamma spectroscopy, whereas it can require on the order of a days and weeks for alpha spectroscopy and mass spectrometry processes, respectively.

Table VII

Candidate Isotope	Expected mass (g) per 1 kg Pu with DF of 10 ⁶	Expected activity (Ci) per 1 kg Pu with DF of 10 ⁶	
Prompt Gamma			
¹³⁷ Cs	3.29E-06	2.87E-04	
¹⁴⁴ Ce	1.12E-06	3.57E-03	
Delayed Alpha			
²³⁹ Pu	9.81E+02	6.08E+01	
²⁴² Pu	2.83E-03	1.12E-05	
Other Gamma			
¹³⁴ Cs	4.12E-08	5.33E-05	
¹²⁵ Sb	3.99E-08	4.19E-05	
¹⁵⁴ Eu	1.41E-08	3.80E-06	
Mass Spectrometry			
⁸⁵ Rb	1.97E-07	Stable Isotope	
⁹⁰ Sr	1.09E-06	1.54E-04	
¹⁴⁸ Nd	1.05E-06	Stable Isotope	
¹⁴⁷ Pm	9.56E-07	8.87E-04	
¹⁵⁰ Sm	6.17E-08	Stable Isotope	

Selected isotopes per kg of PUREX processed plutonium from PFBR radial blanket fuel.

Table VII contains data on the expected mass and expected radioactivity of selected isotopes within a kilogram of separated weapons-grade plutonium produced in the radial blanket of the PFBR. The same data was collected from the fuel of an Indian PHWR discharged at 1 MWD/kg.¹² The ratio of isotope mass per unit plutonium from the PFBR depicts the

isotope ratio's reactor dependency. These values are given in Table VIII. Several important observations can be drawn from Table VII and Table VIII and are discussed in the following paragraphs.

Table VIII

Ratio of expected mass Candidate Isotope PHWR/PFBR Prompt Gamma ¹³⁷Cs 12.86 144 Ce 28.80 Delayed Alpha ²³⁹Pu 0.98 242 Pu 19.77 Other Gamma ^{134}Cs 3.16 ¹²⁵Sb 5.93 ¹⁵⁴Eu 3.72 Mass Spectrometry ⁸⁵Rb 19.00 ⁹⁰Sr 22.29 148 Nd 12.51 ¹⁴⁷Pm 15.48 ¹⁵⁰Sm 107.99

Reactor dependency of selected isotope ratios

The radioactivity concentration of ¹³⁷Cs and ¹⁴⁴Ce isotopes are sufficiently high in 1 kg of plutonium and gamma spectroscopy measurements can be made quickly (prompt measurements) once such material has been interdicted. Both ¹³⁷Cs and ¹³⁴Ce undergo beta radiation decay followed by gamma emissions of 662 keV and 134 keV, respectively. The commonly used burnup monitor, ¹³⁷Cs, is an interesting isotope to note when being used to display a reactor dependency.

We found that selected fission product to plutonium ratios provide more information and result in larger differences between reactors, than just the isotope mass. The radio-isotope ¹³⁷Cs, for example, is an attractive isotope for selection. The individual fission yield is high at around 6%, it has a long half-life of over 30 years, and the gamma radiation is easily measurable. However, ¹³⁷Cs is a direct fission product with a fission yield that is constant regardless of fissile isotope or neutron energy. The amount of ¹³⁷Cs can provide information on the burnup of a material but no information regarding the source reactor. The ratio of ¹³⁷Cs to plutonium, though, is found in this study to result in a significant difference between the PFBR and PHWR. The ratios of fission products to plutonium have the ability to decipher between fast and thermal reactors. This is due, in large part, to the amount of plutonium the PFBR breeds. The PFBR has a larger percentage of ²³⁸U in the depleted uranium fuel in addition to the effect of a fast neutron spectrum. Thus the PFBR radial blanket produces much more plutonium per initial loading of uranium (~1% of 238 U is converted to 239 Pu) than the PHWR.

The radioactivities of ²³⁹Pu and ²⁴²Pu isotopes are sufficiently high in 1 kg of plutonium and alpha spectroscopy measurements can be made. However, sample preparations are needed for performing alpha spectrometry, which makes this method

slower than prompt gamma radiation measurements. Both ²³⁹Pu and ²⁴²Pu undergo alpha decay with energies of 5156 keV and 4901 keV, respectively. These alpha energies are distinct enough to be separately seen in the alpha spectra. A fast or thermal neutron spectrum irradiation of the fuel can likely be determined from an alpha or mass spectrometry measurement of ²³⁹Pu and ²⁴²Pu, alone. The PHWR to PFBR ratio of ²³⁹Pu concentration is 0.98, while the ratio of ²⁴²Pu concentration is 19.15. This indicates that much less ²⁴²Pu is present in the plutonium produced in the fast spectrum. This is a result of the relative differences in neutron interaction cross-sections between absorption and fission at varying neutron energies. Lower concentrations of heavier plutonium isotopes, specifically ²⁴¹Pu and ²⁴²Pu, are present in the PFBR blanket fuel due to fission being more likely than radiative capture at fast neutron energies.

The next set of isotopes ¹³⁴Cs, ¹²⁵Sb, and ¹⁵⁴Eu are again proposed to be measured via gamma spectroscopy. These three isotopes all decay via beta radiation and a subsequent gamma emission, with the gamma energies high enough to be detected easily. The radioactivity concentrations for these gamma emitting isotopes, however, are orders-of-magnitude less than the prompt gamma measurement isotopes, ¹³⁷Cs and ¹⁴⁴Ce. Mass spectrometry is anticipated as the measurement technique for ⁸⁵Rb, ⁹⁰Sr, ¹⁴⁸Nd, ¹⁴⁷Pm, and ¹⁵⁰Sm. The isotopes ⁸⁵Rb, ¹⁴⁸Nd, and ¹⁵⁰Sm are stable and are thus undetectable using radiation measurements. The isotopes ⁹⁰Sr and ¹⁴⁷Pm are pure beta radiation emitters without any gamma energy emissions. Additionally, isotopes having a range in values for both reactor dependency and isotope mass number were considered desirable during selection. Of the isotopes proposed to be measured using mass

spectroscopy, ¹⁵⁰Sm is particularly significant. The PHWR to PFBR ratio of ¹⁵⁰Sm concentration is ~107, meaning plutonium produced in a thermal neutron spectrum will have two orders-of-magnitude more ¹⁵⁰Sm contamination than plutonium produced in a fast spectrum. The source of this large difference is a result of the radiative capture cross-section of the well-known fission product neutron poison, ¹⁴⁹Sm. The second most important neutron absorber in nuclear reactor physics, ¹⁴⁹Sm, has a very large cross-section for absorption of thermal neutrons. A plot obtained from reference 32of the ¹⁴⁹Sm radiative capture cross-section per incident neutron energy is shown in Figure 16.³² The dominant neutron energy of the PFBR is 100 keV to 400 keV, whereas the dominant neutron energy of the PHWR is 0.01 eV to 0.1 eV. When applying these dominant neutron absorption cross-section in the PFBR is less than 1 barn, while the ¹⁴⁹Sm neutron absorption cross-section in the PHWR is around 1E+5 barns (1 barn = 1E-24 cm²).

Figure 16. Plot of the neutron radiative capture cross-section for ¹⁴⁹Sm.

IV.C. Stochastic Uncertainty

The MCNPX code used to simulate core operation is based on the principles of stochastic methods for solving the Boltzmann radiation transport equation. Because of the stochastic nature of the solution method, the burnup simulations were repeated by altering the stochastic procedures to estimate the stochastic uncertainty associated with the predicted values of fission product and plutonium isotope concentrations. The cycle 1 simulation was repeated by changing the random number seed, changing the sampling procedures, and resulting in nine independent simulations. For every burnup time step in fuel cycle 1 (180-days), the average isotope concentration in radial blanket fuel (μ) and one sigma standard deviation (σ) values for each isotope were calculated from the results of the nine independent simulations. The issue came in propagating the random error calculated in cycle 1 to the final isotope concentrations at the end of cycle 3. However, it was found, by plotting the data for the selected isotope mass from the nine cycle-1 simulations (8 burnup time steps data points) that the variance (σ^2) increases roughly linearly with isotope mass. An example plot obtained for ¹³⁷Cs is shown in Figure 17. Similar plots for the other eleven selected isotopes showed the correlation between mass and variance. The regression line equation and fit for the twelve isotope plots are listed in Table IX. It was determined that, using the regression line equation, an estimate of the variance can be extrapolated out to the final isotope mass at the end of cycle 3. The variance was then adjusted for a larger sample size. The nine independent simulations were performed at an earlier time in the research with 9E+5 particle histories, while the final production simulations were run with 2E+7 histories. The larger number of particles increases the precision of the simulations; however, limits on computational time and power made running the nine independent simulations again with 2E+7 histories unviable. The relative random error (σ/μ) was thus obtained for the selected isotopes and is listed in Table X. From Table X it can be observed that the relative random error in predicted isotope concentrations are insignificant and are in the range of 0.019% to 0.054%. This small error indicates that the differences in isotopic compositions seen in the simulations are not due to the Monte Carlo method's random behavior.

Figure 17. Plot of variance per average mass of ¹³⁷Cs from nine cycle-1 simulations.

Table IX

Linear regression equation and fit between variance and mass for the selected isotopes.

Isotope	Regression Line Equation*	Regression Line Fit (R ²)
¹³⁷ Cs	y = 0.0006x	0.9183
¹⁴⁴ Ce	y = 0.0004x	0.8896
²³⁹ Pu	y = 0.0819x	0.9243
²⁴² Pu	y = (5.0E-6)x	1
^{134}Cs	y = (2.0E-5)x	0.9831
¹²⁵ Sb	y = (5.0E-6)x	0.9468
¹⁵⁴ Eu	y = (3.0E-6)x	0.9585
⁸⁵ Rb	y = (3.0E-5)x	0.9178
⁹⁰ Sr	y = (2.0E-4)x	0.8971
¹⁴⁸ Nd	y = (3.0E-4)x	0.9450
¹⁴⁷ Pm	y = (2.0E-4)x	0.9565
¹⁵⁰ Sm	y = (4.0E-5)x	0.9920

*x being the respective mass of the isotope in grams

Table X

Isotope	Relative Random Error (%)
¹³⁷ Cs	0.029
¹⁴⁴ Ce	0.040
²³⁹ Pu	0.019
²⁴² Pu	0.090
^{134}Cs	0.047
¹²⁵ Sb	0.024
¹⁵⁴ Eu	0.031
⁸⁵ Rb	0.026
⁹⁰ Sr	0.029
¹⁴⁸ Nd	0.036
¹⁴⁷ Pm	0.031
¹⁵⁰ Sm	0.054

Stochastic uncertainty associated with MCNPX simulations.

The possibility exists for other sources of error in the model simulations that can affect the isotopic results. Monte Carlo methods have two types of uncertainties; random and systematic. Table X gives the random uncertainty associated with the Monte Carlo method for the twelve selected isotopes. The systematic uncertainty is associated with how close to reality the model is. We assume the systematic uncertainty is small. Uncertainty in the isotopes' neutron interaction cross-sections used in the simulation has the possibility to lead to larger error, however this analysis is beyond the scope of this thesis. IV.D. Isotopic Ratios of the Same Element

Although the isotopes of an element behave very differently in nuclear reactions, they have very similar chemical properties. The fact that the isotopes of an element have similar chemical properties means they will behave similarly during PUREX chemical separation.¹⁸ Therefore, select isotope ratios of the same element may infer details of the reactor system while being independent from the chemical separation process used. Table XI gives ratios of the mass of isotopes of the same element present in weapons-grade plutonium produced in a PFBR and PHWR. The values for the isotope ratios found in PHWR plutonium are then divided by the PFBR values to represent the reactor dependency of the isotope of the same element ratios.

Table XI

Isotope Ratio	Ratio of Isotope Mass from PFBR	Ratio of Isotope Mass from PHWR	Reactor Comparison PHWR / PFBR
¹³⁷ Cs / ¹³⁴ Cs	8.00E+01	3.25E+02	4.07
¹⁴⁴ Ce / ¹⁴² Ce	4.18E-01	8.04E-01	1.92
$^{150}{ m Sm}$ / $^{154}{ m Sm}$	5.04E-01	8.88E+00	17.6
²⁴² Pu / ²³⁹ Pu	2.89E-06	5.83E-05	20.2

Mass ratios for isotopes of the same element.

The 137 Cs / 134 Cs has an observable difference while the ratios of 150 Sm / 154 Sm and 242 Pu / 239 Pu both contain more than an order-of-magnitude difference between the

PFBR and PHWR. These three ratios could be measured by gamma spectroscopy, mass spectrometry, and alpha spectroscopy, respectively. It is therefore possible to deduce information of the producing reactor system from isotope ratios of the same element. The benefit of such ratios being, that there are no longer assumptions involved in determining which chemical separation process was used and applying the appropriate decontamination factors.

IV.E. Theoretical Procedures

In the event of an interdicted sample of weapons-grade plutonium multiple measurements of several sub-samples will be performed in order to obtain information on the material and its source as quickly as possible. Immediately gamma spectroscopy measurements will be started and within a few hours results can be drawn on the gamma emitting isotopes present in the material. Due to sample preparation times it is expected that results will be obtained from alpha spectroscopy and mass spectrometry on the order of a few days and a week, respectively. Measured isotopic results will be scaled based on the size of the sub-sample and compared with the expected mass of the selected isotopes in Table VII. As time progresses, results for more of the isotopes contained in Table VII will become available and the certainty in attributing the sample material to a fast or thermal neutron spectrum reactor type will increase.

V. CONCLUSIONS AND FUTURE WORK

V.A. Conclusions

The goal of this thesis was to develop a nuclear forensics capability for targeting plutonium produced in foreign fuel cycles. Monte Carlo computational radiation transport methods coupled with fuel burnup calculations were used to simulate the isotopic composition of plutonium produced in the radial blankets of the 500-MWe Indian Prototype Fast Breeder Reactor. Detailed investigation of fission product contaminants were analyzed to determine the feasibility of predicting intrinsic characteristics in separated weapons-grade plutonium produced by certain reactors, specifically a fast breeder reactor and thermal heavy water reactor. These two reactor types possess the capability to produce weapons-grade plutonium and will likely be operating in a non-safeguarded manner in some countries.

The radiation transport code, MCNPX-2.7, along with the burnup/depletion code, CINDER90, was used to computationally simulate the operation of the PFBR. The PFBR radial blanket fuel will be discharged with a low burnup of around 1 MWD/kg during normal operation; thus, resulting in the average production of around 100 kg of weapons-grade plutonium per year. The data output by MCNPX-2.7 for the fission product and actinide isotopics of the PFBR radial blankets were analyzed to develop isotopic ratios expected to be present in separated weapons-grade plutonium which was produced in an FBR.

Isotope selection was based on four criteria: the amount of isotope production, the probability of isotope detection, the magnitude of reactor type dependency in the isotope's production, and the PUREX decontamination factor. By using this selection criteria, down-selection of the possible isotopes resulted in a list of twelve isotopic ratios. The twelve selected isotopes include: ⁸⁵Rb, ⁹⁰Sr, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁴⁷Pm, ¹⁴⁸Nd, ¹⁵⁰Sm, ¹⁵⁴Eu, ²³⁹Pu, and ²⁴²Pu. Table VII reports the expected mass and activity of the selected isotopes present in 1 kg of separated plutonium, which was produced in the PFBR radial blanket. In the event of an interdicted sample Table VII gives a scalable database for the amount of an isotope expected to be present in material produced in a fast reactor system to compare versus measurement data.

Evaluation of isotopic ratios between the PFBR and PHWR helped to select isotope ratios which contain information dependent upon the reactor system. Table VIII shows the magnitude of the reactor dependency for the selected isotopes. It is clearly indicated from Table VIII that the suite of selected isotopes can attribute the source of separated weapons-grade plutonium to a fast or thermal neutron reactor system. The significance of some isotopes stand out from Table VIII.

When normalizing to total plutonium the concentration of ¹³⁷Cs is an order-ofmagnitude larger in the thermal neutron system. This is due to the efficiency of the FBR system at breeding plutonium out of uranium. The rate of ¹³⁷Cs production remains constant, while they fast breeder system produces ten times more plutonium per initial uranium loading than the thermal neutron system.

A fast or thermal neutron spectrum irradiation of the fuel can likely be determined from an alpha or mass spectrometry measurement of ²³⁹Pu and ²⁴²Pu, alone. The PHWR to PFBR ratio of ²³⁹Pu concentration is 0.98, while the ratio of ²⁴²Pu concentration is 19.15. Much less ²⁴²Pu is present in the plutonium produced in the fast spectrum as a result of fission being more likely than radiative capture at fast neutron energies.

Of the isotopes proposed to be measured using mass spectroscopy, ¹⁵⁰Sm is the most significant. The PHWR to PFBR ratio of ¹⁵⁰Sm concentration is ~107, meaning plutonium produced in a thermal neutron spectrum will have two orders-of-magnitude more ¹⁵⁰Sm contamination than plutonium produced in a fast spectrum. The source of this drastic ¹⁵⁰Sm difference is the very large thermal neutron absorption cross-section of the fission product poison, ¹⁴⁹Sm.

Lastly, isotope ratios of the same element were explored. The ratios of $^{137}Cs / ^{134}Cs$, $^{150}Sm / ^{154}Sm$, and $^{242}Pu / ^{239}Pu$ show that such ratios may lead to attribution of a source reactor system, while being independent of the chemical separation process used for plutonium separation.

In conclusion, the computational results indicate a suite of selected isotopic ratios can attribute separated weapons-grade plutonium to a fast or thermal neutron source reactor system.

V.B. Future Work

Experimental data is vital to the verification of the computational results. To accomplish this, samples of depleted UO₂ were irradiated at the Oak Ridge National

Laboratory – High Flux Isotope Reactor (ORNL-HFIR) facility. An image of the HFIR core can be seen in Figure 18.³³ Depleted UO₂ fuel samples were irradiated in a simulated fast neutron spectrum to replicate the PFBR irradiation. The samples were burnt to achieve a burnup between 0.85 - 1.25 MWd/kg. To achieve the fast spectrum, a gadolinium sheath was placed around the fuel samples during irradiation. The high thermal neutron absorption of gadolinium was expected to create a fast neutron spectrum environment with a fast to thermal flux ratio of ≥ 100 .

Figure 18. Image of the HFIR core.

The irradiated samples were received by Texas A&M University for chemical reprocessing. A lab scale PUREX process will be performed to separate the plutonium from fission products and uranium. The PUREX process was chosen for this research because it is the most commonly employed reprocessing technique currently in use at reprocessing facilities worldwide, including India. A challenge involved with using the PUREX process is attempting to accurately simulate this process in a laboratory setting. It is believed though, that reprocessing of weapons-grade plutonium will likely occur in a small batch process.

An MCNPX model of the ORNL-HFIR core will be completed with the fuel samples, sample holder, and gadolinium sheath in the irradiation location. Although the PFBR model is simulating the Indian PFBR, the fuel samples are being irradiated in a replicated fast neutron spectrum at HFIR. Thus, accuracy in the HFIR simulation when compared to the experimental samples will provide confidence in the MCNPX models, indirectly verifying the selected isotopes from the PFBR simulation.

Similar to the depleted UO₂ samples, samples of natural UO₂ will be irradiated at the ORNL-HFIR facility in the future. The natural UO₂ fuel samples will be irradiated in a thermal neutron spectrum to replicate the PHWR irradiation. Again, the burnup of the fuel will be to a level near 1 MWd/kg. The lab scale PUREX process will be repeated, as will an MCNPX model of the ORNL-HFIR core with the natural UO₂ fuel samples in place. The measured isotopic data will then be compared with the computational results in order to verify the PHWR model and simulations.

REFERENCES

- 1. H.R. 730 111th Congress, "Nuclear Forensics and Attribution Act," (2010). <u>http://www.govtrack.us/congress/bills/111/hr730</u>
- 2. K. J. MOODY, I. HUTCHEON, and P. M. GRANT, *Nuclear Forensics Analysis*, Taylor & Francis Group, Boca Raton, Fla (2005).
- M. R. STERNAT, "Development of Technical Nuclear Forensics for Spent Research Reactor Fuel." Doctoral dissertation, Texas A&M University, College Station, TX (2012). <u>http://hdl.handle.net/1969.1/148202</u>.
- 4. Joint Working Group of American Physics Society and the American Association for the Advancement of Science, "Nuclear Forensics: Role, State of the Art, and Program Needs," (2013). <u>http://www.aaas.org/sites/default/files/migrate/uploads/Nuclear_Forensics.pdf</u>
- 5. Knolls Atomic Power Laboratory, "Nuclides and Isotopes, Chart of the Nuclides, 16th edition" Schenectady, NY (2002).
- 6. J. C. MARK, "Explosive Properties of Reactor-Grade Plutonium," *Science and Global Security*, **4**, 111-128 (1993).
- 7. WNA, "Fast Neutron Reactors," (2013). <u>http://www.world-nuclear.org/info/Current-and-Future-Generation/Fast-Neutron-Reactors/#.UbYnaPk3t8E</u>
- 8. S. C. CHETAL, V. BALASUBRAMANIYAN, P. CHELLAPANDI, P. MOHANAKRISHNAN, P. PUTHIYAVINAYAGAM, C.P. PILLAI, S. RAGHUPATHY, T. K. SHANMUGHAM, C. S. PILLAI, "The Design of the Prototype Fast Breeder Reactor," *Nuclear Engineering and Design*, **236**, 852-860 (2006).
- 9. A. GLASER, M. V. RAMANA, "Weapon-Grade Plutonium Production Potential in the Indian Prototype Fast Breeder Reactor," *Science and Global Security*, **15**, 85-105 (2007).
- 10. Council on Foreign Relations, "Implementation of the Indian-United States Joint Statement of July 18, 2005: Indian's Separation Plan," (2005). <u>http://www.cfr.org/india/implementation-india-united-states-joint-statement-july-18-2005-indias-separation-plan/p16861</u>

- 11. S. S. BAJAJ, A. R. GORE, "The Indian PHWR," *Nuclear Engineering and Design*, **236**, 701-722 (2006).
- 12. T. M. COLES, "Computational Nuclear Forensics Analysis of Weapons-Grade Plutonium Separated From Fuel Irradiated in a Thermal Reactor," Master's thesis, Texas A&M University, College Station, TX (2014).
- W. S. CHARLTON, B. L. FEAREY, C.W. NAKHLEH, T. A. PARISH, R. T. PERRY, J. POTHS, J. R. QUAGLIANO, W. D. STANBRO, W. B. WILSON, "Operator Declaration Verification Technique for Spent Fuel at Reprocessing Facilities," *Nuclear Instruments and Methods in Physics Research*, B 168, 98-108 (2000).
- M. R. SCOTT, "Nuclear Forensics: Attributing the Source of Spent Fuel Used in an RDD Event," Master's thesis, Texas A&M University, College Station, TX (2005). http://hdl.handle.net/1969.1/2368.
- 15. M. WALLENIUS, P. PEERANI, L. KOCH, "Origin Determination of Plutonium Material in Nuclear Forensics," *Journal of Radioanalytical and Nuclear Chemistry*, **246**, 317-321 (2000).
- 16. A. GLASER, "Isotopic Signatures of Weapon-Grade Plutonium from Dedicated Natural Uranium-Fueled Production Reactors and Their Relevance for Nuclear Forensics Analysis," *Nuclear Science and Engineering*, **163**, 26-33 (2009).
- 17. P. D. WILSON, *The Nuclear Fuel Cycle: From Ore to Waste*, Oxford University Press, New York, (2001).
- M. BENEDICT, T. H. PIGFORD, and H. W. LEVI, *Nuclear Chemical Engineering*, Second Edition, McGraw-Hill Series in Nuclear Engineering, New York, (1981).
- 19. Department of Energy, "DOE Fundamentals Handbook, Nuclear Physics and Reactor Theory," Vol. 2, 34, DOE-HDBK-1019/1-93, (1993). <u>http://energy.gov/sites/prod/files/2013/06/f2/h1019v1.pdf</u>
- 20. Nuclear Energy Agency, "JANIS 3.4, ENDF/B-VII.1," (2013). http://www.oecd-nea.org/janis/
- 21. P. RODRIGUEZ, S. B. BHOJE, "The FBR Program in India," *Energy*, **23**, 629-636 (1998).

- 22. S. S. CHIRAYATH, G. HOLLENBECK, J. RAGUSA, P. NELSON, "Neutronic and Nonproliferation Characteristics of (PuO₂-UO₂) and (PuO₂-ThO₂) as Fast Reactor Fuels," *Nuclear Engineering and Design*, **239**, 1916-1924, (2009).
- 23. D. B. PELOWITZ, Editor, *MCNPX User's Manual*, Version 2.7.0, LA-CP-11-00438 Los Alamos National Laboratory, Los Alamos, NM (April 2011).
- 24. X-5 Monte Carlo Team, *MCNP A General Monte Carlo N-Particle Transport Code*, Version 5, LANL Report No. LA-UR-03-1987 Los Alamos National Laboratory, Los Alamos, NM (2005).
- 25. L. L. CARTER, E. D. CASHWELL, *Particle-Transport Simulation with the Monte Carlo Method*, Los Alamos National Laboratory, Los Alamos, NM (1975).
- 26. M. FENSIN, "Development of the MCNPX Depletion Capability: A Monte Carlo Linked Depletion Method That Automates the Coupling Between MCNPX and CINDER90 for High Fidelity Burnup Calculations," Doctoral dissertation, University of Florida, Gainesville, FL (2008). http://ufdcimages.uflib.ufl.edu/UF/E0/02/19/46/00001/fensin m.pdf
- 27. J. HENDRICKS, G. MCKINNEY, M. FENSIN, M. JAMES, R. JOHNS, J. DURKEE, J. FINCH, D. PELOWITZ, L. WATERS, M. JOHNSON, F. GALLMEIER, *MCNPX 2.6.0 Extensions*, LA-UR-08-2216 Los Alamos National Laboratory, Los Alamos, NM (April 2008).
- 28. A. G. CROFF, "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials," *Nuclear Technology*, **62**, 335-352 (1983).
- 29. D. REILLY, N. ENSSLIN, H. SMITH, *Passive Nondestructive Assay of Nuclear Materials*, US Department of Commerce, National Technical Information Service, Springfield, VA (1991).
- 30. Korean Atomic Energy Research Institute, "Table of Nuclides," (2013). http://atom.kaeri.re.kr
- 31. IAEA, "Safeguards Glossary 2001 Edition," *International Nuclear Verification Series No.3*, Vienna (2002). <u>http://www-pub.iaea.org/MTCD/publications/PDF/nvs-3-cd/PDF/NVS3_prn.pdf</u>

- 32. V. ZERKIN, "IAEA-Nuclear Data Section," Multi-platform EXFOR-CIDNA-ENDF Project, *NDS, International Atomic Energy Agency*, Vienna (1999-2013).
- 33. Oak Ridge National Laboratory, "Neutron Sciences, Spallation Neutron Source-High Flux Isotope Reactor, Reactor Core Assembly," (2014). <u>http://neutrons.ornl.gov/facilities/HFIR/reactorassembly.shtml</u>

APPENDIX A

17 17 17 6 6 6 6 6 6 6 6 6 17 17 17 12R 17 26R C Universe 701 is FUEL SA CORE INNER 3 0 -401 402 -403 404 -405 406 15 -16 fill=2 u=701 imp:n=1 \$ SA hex can inner 4 0 -201 202 -203 204 -205 206 lat=2 u=2 imp:n=1 fill=-9:9 -9:9 0:0 12 18R 12 8R 11 11 11 11 11 11 11 11 11 12 12 12 7R 11 11 11 11 11 11 11 11 11 11 12 6R 11 11 11 11 11 11 11 11 11 11 11 12 12 5R 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 4R 12 12 3R 12 12 2R 12 12 1R 12 12 12 12 12 1R 12 12 2R 12 12 3R 12 11 11 11 11 11 11 11 11 11 11 11 11 11 12 4R 12 11 11 11 11 11 11 11 11 11 11 11 11 11 12 5R 12 11 11 11 11 11 11 11 11 11 11 11 11 12 6R 12 11 11 11 11 11 11 11 11 11 11 127R 12 11 11 11 11 11 11 11 11 11 12 8R 12 18R 5 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=701 imp:n=1 \$ SA hex can 6 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=701 imp:n=1 \$ SA hex can outer 7 11 0.05969518 -10 -15 u=701 imp:n=1 \$ SA bottom 8 12 0.03004312 -10 16 -18 u=701 imp:n=1 \$ SA top homo plenum 9 15 0.05386495 -10 18 -19 u=701 imp:n=1 \$ Core top SS u=701 imp:n=1 \$ Core top B4C 10 16 0.05761362 -10 19 110 -4 -2 imp:n=1 \$ plenum bot u=11 120 -262-8 u=11 imp:n=1 \$ ax blank hole u=11 imp:n=1 vol=6.49425 \$ ax blanket bot 13 501 -11.65154927 26 -4 2 -8 140-268-9 u=11 imp:n=1 \$ fuel hole u=11 imp:n=1 vol=21.6475 \$ fuel 10.7737803 15 101 -10.64258118 26 -4 8 -9 \$ ax blank hole 160 -269-3 u=11 imp:n=1 u=11 imp:n=1 vol=6.49425 \$ ax blanket top 17 501 -11.65154927 26 -4 9 -3 u=11 imp:n=1 \$ plenum top 18.0 -4 3 190 4 - 5 u=11 imp:n=1 \$ fuel clad gap 5 -6 \$ fuel clad 20 2 -8.00 u=11 imp:n=1 21 3 -0.90304 6 -7 \$ Na out pin u=11 imp:n=1 \$ Na filling tube 22 3 -0.90304 -7 u=12 imp:n=1 C Universe 702 is FUEL SA CORE INNER 23 0 -401 402 -403 404 -405 406 15 -16 fill=3 u=702 imp:n=1 \$ SA hex can inner 24 0 -201 202 -203 204 -205 206 lat=2 u=3 imp:n=1
fill=-9:9 -9:9 0:0 39 18R 39 39 8R 38 38 38 38 38 38 38 38 38 38 39 39 7R 38 38 38 38 38 38 38 38 38 38 38 39 6R 38 38 38 38 38 38 38 38 38 38 38 38 39 39 39 5R 39 4R 39 39 3R 39 39 39 2R 39 1R 39 39 39 39 39 1R 39 39 2R 39 39 3R 39 39 4R 39 39 5R 39 38 38 38 38 38 38 38 38 38 38 38 38 39 6R 39 38 38 38 38 38 38 38 38 38 38 38 39 7R 39 38 38 38 38 38 38 38 38 38 38 39 8R 39 18R 25 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=702 imp:n=1 \$ SA hex can 26 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=702 imp:n=1 \$ SA hex can outer 27 11 0.05969518 -10 -15 u=702 imp:n=1 \$ SA bottom 28 12 0.03004312 -10 16 -18 u=702 imp:n=1 \$ SA top homo plenum 29 15 0.05386495 -10 18 -19 u=702 imp:n=1 \$ Core top SS \$ Core top B4C 30 16 0.05761362 -10 19 u=702 imp:n=1 310 -4 -2 imp:n=1 \$ plenum bot u=38 32 0 imp:n=1 \$ ax blank hole -262-8 u=38 33 502 -11.65154927 26 -4 2 -8 u=38 imp:n=1 vol=6.49425 \$ ax blanket bot u=38 imp:n=1 \$ fuel hole 34.0-268-9 u=38 imp:n=1 vol=21.6475 \$ fuel 10.7737803 35 102 -10.64258118 26 -4 8 -9 36.0 imp:n=1 \$ ax blank hole -269-3 u=38 37 502 -11.65154927 26 -4 9 -3 u=38 imp:n=1 vol=6.49425 \$ ax blanket top \$ plenum top 38.0 -4 3 u=38 imp:n=1 \$ fuel clad gap 39.0 4 - 5 u=38 imp:n=1 40 2 -8.00 \$ fuel clad 5-6 u=38 imp:n=1 41 3 -0.90304 6 -7 \$ Na out pin u=38 imp:n=1 42 3 -0.90304 -7 u=39 imp:n=1 \$ Na filling tube C Universe 703 is FUEL SA CORE INNER 43 0 -401 402 -403 404 -405 406 15 -16 fill=5 u=703 imp:n=1 \$ SA hex can inner -201 202 -203 204 -205 206 lat=2 u=5 44 0 imp:n=1 fill=-9:9 -9:9 0:0 41 18R 41 8R 40 40 40 40 40 40 40 40 40 40 41 41 7R 40 40 40 40 40 40 40 40 40 40 40 41 41 6R 40 40 40 40 40 40 40 40 40 40 40 40 41

41 5R 40 40 40 40 40 40 40 40 40 40 40 40 40 41 41 4R 41 41 3R 41 41 2R 41 41 1R 41 41 41 41 41 1R 41 41 2R 41 41 3R 41 41 4R 41 40 40 40 40 40 40 40 40 40 40 40 40 40 41 5R 40 40 40 40 40 40 40 40 40 40 40 40 41 41 6R 41 40 40 40 40 40 40 40 40 40 40 40 41 7R 41 40 40 40 40 40 40 40 40 40 40 41 8R 41 18R 45 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=703 imp:n=1 \$ SA hex can 46 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=703 imp:n=1 \$ SA hex can outer 47 11 0.05969518 -10 -15 u=703 imp:n=1 \$ SA bottom u=703 imp:n=1 \$ SA top homo plenum 48 12 0.03004312 -10 16 -18 49 15 0.05386495 -10 18 -19 u=703 imp:n=1 \$ Core top SS 50 16 0.05761362 -10 19 u=703 imp:n=1 \$ Core top B4C 510 -4 -2 u=40 imp:n=1 \$ plenum bot 520 -262-8 u=40 imp:n=1 \$ ax blank hole 53 503 -11.65154927 26 -4 2 -8 u=40 imp:n=1 vol=6.49425 \$ ax blanket bot 540 u=40 imp:n=1 \$ fuel hole -268-9 u=40 imp:n=1 vol=21.6475 \$ fuel 10.7737803 55 103 -10.64258118 26 -4 8 -9 560 -269-3 u=40 imp:n=1 \$ ax blank hole u=40 imp:n=1 vol=6.49425 \$ ax blanket top 57 503 -11.65154927 26 -4 9 -3 580 -4 3 u=40 imp:n=1 \$ plenum top 590 4 - 5 u=40 imp:n=1 \$ fuel clad gap 5-6 \$ fuel clad 60 2 -8.00 u=40 imp:n=1 61 3 -0.90304 6 -7 u=40 imp:n=1 \$ Na out pin 62 3 -0.90304 -7 u=41 imp:n=1 \$ Na filling tube C Universe 801 is Fuel SA CORE OUTER \$ SA hex can inner 63 0 -401 402 -403 404 -405 406 15 -16 fill=22 u=801 imp:n=1 640 -201 202 -203 204 -205 206 lat=2 u=22 imp:n=1 fill=-9:9 -9:9 0:0 14 18R 14 8R 13 13 13 13 13 13 13 13 13 13 14 147R 13 13 13 13 13 13 13 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13 13 13 14 14 6R 14 5R 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 4R 14 14 3R 14 14 2R 14 14 1R 14

14 14 14 14 1R 14 14 2R 14 14 3R 14 14 4R 14 14 5R 14 13 13 13 13 13 13 13 13 13 13 13 13 14 6R 14 7R 14 13 13 13 13 13 13 13 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13 14 8R 14 18R 65 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=801 imp:n=1 \$ SA hex can 66 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=801 imp:n=1 \$ SA hex can outer 67 11 0.05969518 -10 -15 u=801 imp:n=1 \$ SA bottom u=801 imp:n=1 68 12 0.03004312 -10 16 -18 \$ SA top homo plenum 69 15 0.05386495 -10 18 -19 u=801 imp:n=1 \$ Core top SS 70 16 0.05761362 -10 19 u=801 imp:n=1 \$ Core top B4C 710 -4 -2 u=13 imp:n=1 \$ plenum bot u=13 imp:n=1 \$ ax blank hole 720 -262-8 u=13 imp:n=1 vol=6.49425 \$ ax blanket bot 73 511 -11.65154927 26 -4 2 -8 740 -268-9 u=13 imp:n=1 \$ fuel hole u=13 imp:n=1 vol=21.6475 \$ fuel 10.80996965 75 401 -10.67464722 26 -4 8 -9 76.0 -269-3 imp:n=1 \$ ax blank hole u=13 77 511 -11.65154927 26 -4 9 -3 u=13 imp:n=1 vol=6.49425 \$ ax blanket top 780 -4 3 u=13 imp:n=1 \$ plenum top \$ fuel clad gap 790 4 - 5 u=13 imp:n=1 5-6 u=13 imp:n=1 \$ fuel clad 80 2 -8.00 81 3 -0.90304 6 -7 u=13 imp:n=1 \$ Na out pin 82 3 -0.90304 -7 u=14 imp:n=1 \$ Na filling tube C Universe 802 is Fuel SA CORE OUTER 83 0 -401 402 -403 404 -405 406 15 -16 fill=26 u=802 imp:n=1 \$ SA hex can inner -201 202 -203 204 -205 206 lat=2 u=26 84 0 imp:n=1 fill=-9:9 -9:9 0:0 43 18R 43 8R 42 42 42 42 42 42 42 42 42 42 42 43 42 42 42 42 42 42 42 42 42 42 42 42 43 43 7R 42 42 42 42 42 42 42 42 42 42 42 42 42 43 6R 43 43 43 5R 43 4R 43 43 3R 43 43 2R 43 43 1R 43 43 43 43 43 1R 43 43 2R 43 43 3R 43 43 4R

43 43 5R 43 42 42 42 42 42 42 42 42 42 42 42 42 42 43 6R 43 42 42 42 42 42 42 42 42 42 42 42 42 43 7R 43 42 42 42 42 42 42 42 42 42 42 42 43 8R 43 18R 85 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=802 imp:n=1 \$ SA hex can 86 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=802 imp:n=1 \$ SA hex can outer 87 11 0.05969518 -10 -15 u=802 imp:n=1 \$ SA bottom u=802 imp:n=1 88 12 0.03004312 -10 16 -18 \$ SA top homo plenum u=802 imp:n=1 89 15 0.05386495 -10 18 -19 \$ Core top SS 90 16 0.05761362 -10 19 u=802 imp:n=1 \$ Core top B4C 91.0 -4 -2 imp:n=1 \$ plenum bot u=42 92.0 -262-8 u=42 imp:n=1 \$ ax blank hole u=42 imp:n=1 vol=6.49425 \$ ax blanket bot 93 512 -11.65154927 26 -4 2 -8 u=42 imp:n=1 \$ fuel hole 94.0 -268-9 95 402 -10.67464722 26 -4 8 -9 u=42 imp:n=1 vol=21.6475 \$ fuel 10.80996965 imp:n=1 960 -269-3 u=42 \$ ax blank hole u=42 imp:n=1 vol=6.49425 \$ ax blanket top 97 512 -11.65154927 26 -4 9 -3 98.0 -4 3 u=42 imp:n=1 \$ plenum top 99.0 4 - 5 imp:n=1 \$ fuel clad gap u=42 100 2 -8.00 5-6 u=42 imp:n=1 \$ fuel clad 101 3 -0.90304 6 -7 u=42 imp:n=1 \$ Na out pin 102 3 -0.90304 u=43 imp:n=1 \$ Na filling tube -7 C Universe 803 is Fuel SA CORE OUTER 103 0 -401 402 -403 404 -405 406 15 -16 fill=29 u=803 imp:n=1 \$ SA hex can inner -201 202 -203 204 -205 206 lat=2 u=29 104 0 imp:n=1 fill=-9:9 -9:9 0:0 45 18R 45 8R 44 44 44 44 44 44 44 44 44 45 45 7R 44 44 44 44 44 44 44 44 44 44 45 45 45 6R 44 44 44 44 44 44 44 44 44 44 44 44 45 5R 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 4R 45 45 3R 45 45 45 2R 45 1R 45 45 45 45 1R 45 45 45 2R 45 45 3R 45 45 4R 45 44 44 44 44 44 44 44 44 44 44 44 44 44 45 5R 45 44 44 44 44 44 44 44 44 44 44 44 44 45 6R 45 44 44 44 44 44 44 44 44 44 44 45 7R 45 44 44 44 44 44 44 44 44 44 45 8R

45 18R

105 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=803 imp:n=1 \$ SA hex can 106 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16u=803 imp:n=1 \$ SA hex can outer 107 11 0.05969518 -10 -15 u=803 imp:n=1 \$ SA bottom u=803 imp:n=1 108 12 0.03004312 -10 16 -18 \$ SA top homo plenum 109 15 0.05386495 -10 18 -19 u=803 imp:n=1 \$ Core top SS u=803 imp:n=1 \$ Core top B4C 110 16 0.05761362 -10 19 imp:n=1 1110 -4 -2 u=44 \$ plenum bot 1120 -262-8 u=44 imp:n=1 \$ ax blank hole u=44 imp:n=1 vol=6.49425 \$ ax blanket bot 113 513 -11.65154927 26 -4 2 -8 u=44 1140-268-9 imp:n=1 \$ fuel hole u=44 imp:n=1 vol=21.6475 \$ fuel 10.80996965 115 403 -10.67464722 26 -4 8 -9 1160 -269-3 imp:n=1 \$ ax blank hole u=44 117 513 -11.65154927 26 -4 9 -3 u=44 imp:n=1 vol=6.49425 \$ ax blanket top 1180 -4 3 u=44 imp:n=1 \$ plenum top 1190 4 - 5 u=44 imp:n=1 \$ fuel clad gap 5-6 u=44 imp:n=1 \$ fuel clad 120 2 -8.00 121 3 -0.90304 6 -7 u=44 imp:n=1 \$ Na out pin 122 3 -0.90304 -7 \$ Na filling tube u=45 imp:n=1 C Universe 804 is FUEL SA CORE OUTER/INNER *Filled with Core I fuel for the first two cylces and replaced with Core II fuel for the third cycle 123 0 -401 402 -403 404 -405 406 15 -16 fill=30 u=804 imp:n=1 \$ SA hex can inner 124 0 -201 202 -203 204 -205 206 lat=2 u=30 imp:n=1 fill=-9:9 -9:9 0:0 47 18R 47 47 8R 46 46 46 46 46 46 46 46 46 47 7R 47 46 46 46 46 46 46 46 46 46 46 46 47 6R 46 46 46 46 46 46 46 46 46 46 46 46 47 47 5R 46 46 46 46 46 46 46 46 46 46 46 46 46 47 47 4R 47 47 3R 47 47 2R 47 47 1R 47 47 47 47 47 1R 47 47 2R 47 47 3R 47 47 4R 47 46 46 46 46 46 46 46 46 46 46 46 46 46 47 5R 47 46 46 46 46 46 46 46 46 46 46 46 46 47 6R 47 46 46 46 46 46 46 46 46 46 46 46 47 7R 47 46 46 46 46 46 46 46 46 46 47 8R 47 18R 125 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=804 imp:n=1 \$ SA hex can 126 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=804 imp:n=1 \$ SA hex can outer

u=804 imp:n=1 \$ SA bottom 127 11 0.05969518 -10 -15 128 12 0.03004312 -10 16 -18 u=804 imp:n=1 \$ SA top homo plenum 129 15 0.05386495 -10 18 -19 u=804 imp:n=1 \$ Core top SS 130 16 0.05761362 -10 19 u=804 imp:n=1 \$ Core top B4C 1310 -4 -2 imp:n=1 \$ plenum bot u=46 1320 -26 2 -8 u=46 imp:n=1 \$ ax blank hole 133 514 -11.65154927 26 -4 2 -8 u=46 imp:n=1 vol=6.49425 \$ ax blanket bot 1340 -268-9 u=46 imp:n=1 \$ fuel hole 135 404 -10.67464722 26 -4 8 -9 u=46 imp:n=1 vol=21.6475 \$ fuel 10.7737803 -269-3 imp:n=1 \$ ax blank hole 1360 u=46 137 514 -11.65154927 26 -4 9 -3 u=46 imp:n=1 vol=6.49425 \$ ax blanket top 138.0 -4 3 u=46 imp:n=1 \$ plenum top 4 - 5 \$ fuel clad gap 1390 u=46 imp:n=1 \$ fuel clad u=46 imp:n=1 140 2 -8.00 5-6 141 3 -0.90304 6 -7 u=46 imp:n=1 \$ Na out pin 142 3 -0.90304 u=47 imp:n=1 \$ Na filling tube -7 C Universe 4 is Na tube of FA size 143 3 -0.90304 -10 u=4 imp:n=1 \$ NA filling C Universe 900 is Radial Blanket SA 144 0 -401 402 -403 404 -405 406 22 -20 fill=31 u=900 imp:n=1 \$SA hex can inner imp:n=1 145 0 -301 302 -303 304 -305 306 lat=2 u=31 fill=-5:5 -5:5 0:0 16 10R 16 4R 15 15 15 15 15 16 16 3R 15 15 15 15 15 15 16 16 2R 15 15 15 15 15 15 15 16 16 1R 15 15 15 15 15 15 15 15 15 16 16 15 15 15 15 15 15 15 15 15 15 16 16 15 15 15 15 15 15 15 15 15 16 1R 16 2R 16 15 15 15 15 15 15 15 15 16 15 15 15 15 15 15 16 3R 15 15 15 15 15 164R 16 16 10R 146 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 22 -20 u=900 imp:n=1 \$ SA hex can 147 3 -0.90304 (501:-502:503:-504:505:-506) & 22 - 20u=900 imp:n=1 \$ SA hex can out 148 11 0.05969518 -10 -15 u=900 imp:n=1 \$ SA bottom u=900 imp:n=1 149 13 0.06846700 -10 15 -22 **\$ RBPSS** 150 14 0.02912191 -10 20 -18 u=900 imp:n=1 \$ RBPT 151 15 0.05386495 -10 18 -19 u=900 imp:n=1 \$ RBSS top 152 16 0.05761362 -10 19 u=900 imp:n=1 \$ RBB4C top 1530 -11 -2 u=15 imp:n=1 \$ rad blank ple bot u=15 imp:n=1 vol=204.603 \$ rad blanket 154 600 -10.59230329 -11 2 -3 1550 -11 3 u=15 imp:n=1 \$ rad blank ple top u=15 imp:n=1 \$ blank clad gap 1560 11 - 12 157 2 -8.00 12 - 13u=15 imp:n=1 \$ blanket clad u=15 imp:n=1 \$ NA out blanket 158 3 -0.90304 13 - 10

-10 159 3 -0.90304 u=16 imp:n=1 \$ NA filling tube C Universe 901 is Radial Blanket SA 160 0 -401 402 -403 404 -405 406 22 -20 fill=32 u=901 imp:n=1 \$ SA hex can inner 161 0 -301 302 -303 304 -305 306 lat=2 u=32 imp:n=1 fill=-5:5 -5:5 0:0 49 10R 49 4R 48 48 48 48 48 49 49 49 3R 48 48 48 48 48 48 48 49 49 2R 48 48 48 48 48 48 48 48 49 1R 48 48 48 48 48 48 48 48 48 49 49 48 48 48 48 48 48 48 48 48 48 49 49 48 48 48 48 48 48 48 48 48 49 1R 49 48 48 48 48 48 48 48 48 49 2R 49 48 48 48 48 48 48 49 3R 49 48 48 48 48 48 49 4R 49 10R 162 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 22 -20 u=901 imp:n=1 \$ SA hex can 163 3 -0.90304 (501:-502:503:-504:505:-506) & 22 - 20u=901 imp:n=1 \$ SA hex can out 164 11 0.05969518 -10 -15 u=901 imp:n=1 \$ SA bottom 165 13 0.06846700 -10 15 -22 u=901 imp:n=1 **\$ RBPSS** u=901 imp:n=1 166 14 0.02912191 -10 20 -18 \$ RBPT 167 15 0.05386495 -10 18 -19 u=901 imp:n=1 \$ RBSS top \$ RBB4C top u=901 imp:n=1 168 16 0.05761362 -10 19 1690 -11 -2 u=48 imp:n=1 \$ rad blank ple bot 170 601 -10.59230329 -11 2 -3 u=48 imp:n=1 vol=204.603 \$ rad blanket \$ rad blank ple top 1710 -11 3 u=48 imp:n=1 172 0 imp:n=1 \$ blank clad gap 11 - 12 u=48 u=48 imp:n=1 \$ blanket clad 173 2 -8.00 12 - 13 174 3 -0.90304 13 - 10 u=48 imp:n=1 \$ NA out blanket 175 3 -0.90304 -10 u=49 imp:n=1 \$ NA filling tube C Universe 902 is Radial Blanket SA 176 0 -401 402 -403 404 -405 406 22 -20 fill=33 u=902 imp:n=1 \$ SA hex can inner 177 0 -301 302 -303 304 -305 306 lat=2 u=33 imp:n=1 fill=-5:5 -5:5 0:0 51 10R 51 4R 50 50 50 50 50 51 51 51 3R 50 50 50 50 50 50 50 51 2R 50 50 50 50 50 50 50 51 51 1R 50 50 50 50 50 50 50 50 50 51 51 50 50 50 50 50 50 50 50 50 50 51 51 51 1R 50 50 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 51 2R 51 50 50 50 50 50 50 51 3R 51 50 50 50 50 50 51 4R 51 10R 178 2 -8.00 (-501 502 -503 504 -505 506) &

\$ SA hex can (401:-402:403:-404:405:-406) 22 -20 u=902 imp:n=1 179 3 -0.90304 (501:-502:503:-504:505:-506) & 22 - 20u=902 imp:n=1 \$ SA hex can out 180 11 0.05969518 -10 -15 u=902 imp:n=1 \$ SA bottom 181 13 0.06846700 -10 15 -22 u=902 imp:n=1 **\$ RBPSS** 182 14 0.02912191 -10 20 -18 u=902 imp:n=1 \$ RBPT 183 15 0.05386495 -10 18 -19 u=902 imp:n=1 \$ RBSS top 184 16 0.05761362 -10 19 u=902 imp:n=1 \$ RBB4C top 185 0 -11 -2 u=50 imp:n=1 \$ rad blank ple bot 186 602 -10.59230329 -11 2 -3 u=50 imp:n=1 vol=204.603 \$ rad blanket u=50 imp:n=1 \$ rad blank ple top 1870 -11 3 1880 11 - 12 u=50 imp:n=1 \$ blank clad gap u=50 imp:n=1 \$ blanket clad 189 2 -8.00 12 - 13 u=50 imp:n=1 190 3 -0.90304 13 - 10\$ NA out blanket 191 3 -0.90304 -10 u=51 imp:n=1 \$ NA filling tube C Universe 904 is Fuel SA CORE OUTER *All universe 904 will be replaced with 901 at second refueling 192 0 -401 402 -403 404 -405 406 15 -16 fill=34 u=904 imp:n=1 \$ SA hex can inner -201 202 -203 204 -205 206 lat=2 u=34 193 0 imp:n=1 fill=-9:9 -9:9 0:0 53 18R 53 8R 52 52 52 52 52 52 52 52 52 52 53 53 7R 52 52 52 52 52 52 52 52 52 52 52 53 53 52 52 52 52 52 52 52 52 52 52 52 52 53 6R 52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 5R 53 4R 53 53 3R 53 53 2R 53 53 53 1R 53 53 53 53 1R 53 53 2R 53 3R 53 53 53 4R 53 52 52 52 52 52 52 52 52 52 52 52 52 52 53 5R 53 52 52 52 52 52 52 52 52 52 52 52 52 53 6R 53 52 52 52 52 52 52 52 52 52 52 52 53 7R 53 52 52 52 52 52 52 52 52 52 52 53 8R 53 18R 194 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 15 -16 u=904 imp:n=1 \$ SA hex can 195 3 -0.90304 (501:-502:503:-504:505:-506) & 15 - 16 u=904 imp:n=1 \$ SA hex can outer 196 11 0.05969518 -10 -15 u=904 imp:n=1 \$ SA bottom 197 12 0.03004312 -10 16 -18 u=904 imp:n=1 \$ SA top homo plenum 198 15 0.05386495 -10 18 -19 u=904 imp:n=1 \$ Core top SS 199 16 0.05761362 -10 19 u=904 imp:n=1 \$ Core top B4C 200 0 imp:n=1 \$ plenum bot -4 -2 u=52

\$ ax blank hole 201 0 -262-8 u=52 imp:n=1 202 524 -11.65154927 26 -4 2 -8 u=52 imp:n=1 vol=6.49425 \$ ax blanket bot 203 0 -268-9 u=52 imp:n=1 \$ fuel hole 204 604 -10.67464722 26 -4 8 -9 u=52 imp:n=1 vol=21.6475 \$ fuel 10.80996965 205 0 -269-3 imp:n=1 \$ ax blank hole u=52 206 524 -11.65154927 26 -4 9 -3 u=52 imp:n=1 vol=6.49425 \$ ax blanket top 2070-4 3 u=52 imp:n=1 \$ plenum top 208.04 - 5 u=52 imp:n=1 \$ fuel clad gap \$ fuel clad u=52 imp:n=1 209 2 -8.00 5-6 210 3 -0.90304 6 -7 u=52 imp:n=1 \$ Na out pin 211 3 -0.90304 u=53 imp:n=1 \$ Na filling tube -7 C Universe 6 is SS reflector SA 212 11 0.05969518 -10 -15 u=6 imp:n=1 \$ SS Refl Ass bot 213 7 0.09365394 -10 15 -8 u=6 imp:n=1 \$ SS Reflector B4C 214 8 0.06154800 -10 8 -20 u=6 imp:n=1 \$ SS Reflector 215 14 0.02912191 -10 20 -18 u=6 imp:n=1 \$ SS reflector top 216 7 0.09365394 -10 18 u=6 imp:n=1 \$ SS refle B4C top C Universe 17 is B4C Shield SA 217 11 0.05969518 -10 -15 u=17 imp:n=1 \$B4C SHLD bottom u=17 imp:n=1 \$ SHLD Plenum bot 218 17 0.01835245 -10 15 -23 219 7 0.09365394 -10 23 -24 u=17 imp:n=1 \$ B4C Shld I layer 220 17 0.01835245 -10 24 -25 u=17 imp:n=1 \$ SHLD Plenum top u=17 imp:n=1 \$ SHLD SS top 221 18 0.06221962 -10 25 C Universe 18 is CSR/DSR 222 9 0.03393119 -10 -8 u=18 imp:n=1 \$ CSR/DSR bottom 223 10 0.06340921 -10 8 -14 u=18 imp:n=1 \$ CSR/DSR 224 9 0.03393119 -10 14 u=18 imp:n=1 \$ CSR/DSR top C Universe 19 is Diluent SA *All universe 19 will be replaced with 703 at first refueling 225 11 0.05969518 -10 -15 u=19 imp:n=1 \$ SA bottom 226 13 0.06846700 -10 15 -22 u=19 imp:n=1 **\$ RBPSS** 227 20 0.02324489 -10 22 -2 u=19 imp:n=1 \$ RB Plenum bot 228 19 0.05133189 -10 2 -3 u=19 imp:n=1 vol= 43740 \$ Diluent with RBP u=19 imp:n=1 229 20 0.02324489 -10 3 -20 \$ RB Plenum top u=19 imp:n=1 230 14 0.02912191 -10 20 -18 \$ RBPT 231 15 0.05386495 -10 18 -19 u=19 imp:n=1 \$ RBSS top 232 16 0.05761362 -10 19 u=19 imp:n=1 \$ RBB4C top C Universe 23 is pinwise CSR 233 0 -401 402 -403 404 -405 406 36 -37 fill=36 u=23 imp:n=1 \$ SA hex can inner 234 0 -601 602 -603 604 -605 606 lat=2 u=36 imp:n=1 fill=-3:3 -3:3 0:0 21 6R 21 2R 20 20 20 21 21 21 1R 20 20 20 20 21 20 20 20 20 20 20 21 21 20 20 20 20 21 1R 21 20 20 20 21 2R 21 6R 235 2 -8.00 (-501 502 -503 504 -505 506) &

(401:-402:403:-404:405:-406) 36 -37 u=23 imp:n=1 \$ SA hex can 236 3 -0.90304 (501:-502:503:-504:505:-506) & 36-37 u=23 imp:n=1 \$ SA hex can out 237 9 0.03393119 -10 -36 u=23 imp:n=1 \$ CSR Follower bot u=23 imp:n=1 \$ CSR Follower top 238 9 0.03393119 -10 37 239 22 -2.4 -27 -40 u=20 imp:n=1 \$ CSR pin bot 240 21 -2.4 -27 40 -41 u=20 imp:n=1 \$ CSR pin mid u=20 imp:n=1 \$ CSR pin top 241 22 -2.4 -27 41 u=20 imp:n=1 \$ CSR clad gap 242 0 27 - 28 243 2 -8.00 28 - 29u=20 imp:n=1 \$ CSR clad 244 3 -0.90304 29 - 10 u=20 imp:n=1 \$ NA out CSR 245 3 -0.90304 -10 u=21 imp:n=1 \$ NA filling tube C Universe 27 is pinwise DSR 246 0 -401 402 -403 404 -405 406 38 -39 fill=37 u=27 imp:n=1 \$ SA hex can inner 247 0 -601 602 -603 604 -605 606 lat=2 u=37 imp:n=1 fill=-3:3 -3:3 0:0 25 6R 25 25 2R 24 24 24 25 1R 24 24 24 24 25 25 25 24 24 24 24 24 25 24 24 24 24 25 1R 25 24 24 24 25 2R 25 6R 248 2 -8.00 (-501 502 -503 504 -505 506) & (401:-402:403:-404:405:-406) 38 -39 u=27 imp:n=1 \$ SA hex can 249 3 -0.90304 (501:-502:503:-504:505:-506) & 38-39 u=27 imp:n=1 \$ SA hex can out 250 9 0.03393119 -10 -38 u=27 imp:n=1 \$ DSR Follower bot 251 9 0.03393119 -10 39 u=27 imp:n=1 \$ DSR Follower top 252 21 -2.4 u=24 imp:n=1 \$ DSR pin mid -33 253 0 33 - 34u=24 imp:n=1 \$ DSR clad gap 254 2-8.00 34 - 35 u=24 imp:n=1 \$ DSR clad u=24 imp:n=1 \$ NA out DSR 255 3 -0.90304 35 - 10 256 3 -0.90304 -10 u=25 imp:n=1 \$ NA filling tube C Universe 28 is ALSO Diluent SA *Both universe 28 will be replaced with 702 at second refueling u=28 imp:n=1 257 11 0.05969518 -10 -15 \$ SA bottom u=28 imp:n=1 258 13 0.06846700 -10 15 -22 \$ RBPSS u=28 imp:n=1 \$ RB Plenum bot 259 20 0.02324489 -10 22 -2 u=28 imp:n=1 vol= 43740 \$ Diluent with RBP 260 23 0.05133189 -10 2 -3 261 20 0.02324489 -10 3 -20 u=28 imp:n=1 \$ RB Plenum top 262 14 0.02912191 -10 20 -18 u=28 imp:n=1 \$ RBPT u=28 imp:n=1 \$ RBSS top 263 15 0.05386495 -10 18 -19 u=28 imp:n=1 \$ RBB4C top 264 16 0.05761362 -10 19 265 0 1:-17:21 imp:n=0 1 cz 155 \$ core vessel rad 2 \$ blanket bottom pz 0

3	pz	160	\$ blanket top
4	cz	0.2775	\$ fuel pellet rad
5	cz	0.285	\$ fuel clad ID
6	cz	0.33	\$ fuel clad OD
7	cz	5.0	\$ outer pin Na
8	pz	30	\$ bot blank end
9	pz	130	\$ top blank start
10	cz	20	\$ dummy NA
11	cz	0.638	\$ radi blank rad
12	cz	0.6565	\$ blank clad ID
13	cz	0.7165	\$ blank clad OD
14	pz	141	\$ CRF top Start
15	pz	-75	\$ plenum bottom
16	pz	183	\$ plenum top
17	pz	-101	\$ SA bottom
18	pz	191.5	\$ remaining plenum
19	pz	257.0	\$ SA SS top
20	pz	170	\$ Rad blnk ple top
21	pz	267	\$ Core B4C top
22	pz	-60	\$ RB ple bot SS
23	pz	3.9	\$ SHLD plenum bot
24	pz	238.2	\$ B4C shld top
25	pz	248.4	\$ SHPL top
26	cz	0.09	\$ fuel annular rad
27	cz	0.87	\$ CSRB4C pellet OR
28	cz	1.02	\$ CSRB4C clad IR
29	cz	1.12	\$ CSRB4C clad OR
СТ	he	following	three cards are not required any more
C 3	0	pz 50	\$ CSRnatB4C bot
C 3	1	pz 121	\$ CSRnatB4C top
C 3	2	pz 131	\$ DSRB4C top
33	cz	0.89	\$ DSRB4C pellet OR
34	cz	1.00	\$ DSRB4C clad IR
35	cz	1.07	\$ DSRB4C clad OR
C *	***	******	*************************
СТ	he	following	PZ's are for pin wise CSR and DSR inserion and withdrawal
CC	Chai	nge the co	mment card accordingly
C *	***	******	*************************
C 3	6	pz 29.0	\$ CSR DOWN (bottom edge)
C 3	7	pz 140.0	\$ CSR DOWN (top edge)
36	pz	137.5	\$ CSR UP (bottom edge)
37	pz	248.5	\$ CSR UP (top edge)
C 3	8	pz 29.5	\$ DSR DOWN (bottom edge)
C 3	9	pz 130.5	\$ DSR DOWN (top edge)
38	pz	131.5	\$ DSR UP (bottom edge)
39	pz	232.5	\$ DSR UP (top edge)

С C following pairs are CSR down & up >>> how the pin axial profile change С * C 40 pz 49.0 \$ CSR DOWN (bottom nat B4C pin top) \$ CSR DOWN (mid enrich B4C pin top) C 41 pz 120.0 40 pz 157.5 \$ CSR UP (bottom nat B4C pin top) \$ CSR UP (mid enrich B4C pin top) 41 pz 228.5 С 101 px 6.75 \$ hexside FA \$ hexside FA 102 px -6.75 103 p 1 1.7320508076 0 13.5 \$ hexside FA 104 p 1 1.7320508076 0 -13.5 \$ hexside FA 105 p -1 1.73205080760 13.5 \$ hexside FA 106 p -1 1.7320508076 0 -13.5 \$ hexside FA 201 py 0.4125 \$ hexside pin 202 py -0.4125 \$ hexside pin 203 p 1.7320508076 1 0 0.825 \$ hexside pin 204 p 1.7320508076 10-0.825 \$ hexside pin 205 p 1.7320508076 -1 0 0.825 \$ hexside pin 206 p 1.7320508076 -1 0 -0.825 \$ hexside pin \$ hexside pin 301 py 0.8 302 py -0.8 \$ hexside pin 303 p 1.7320508076 1 0 1.6 \$ hexside pin 304 p 1.7320508076 10-1.6 \$ hexside pin 305 p 1.7320508076 -1 0 1.6 \$ hexside pin 306 p 1.7320508076 -1 0 -1.6 \$ hexside pin 401 px 6.26 \$ hexside FA 402 px -6.26 \$ hexside FA \$ hexside FA 403 p 1 1.7320508076 0 12.52 404 p 1 1.7320508076 0 -12.52 \$ hexside FA 405 p -1 1.73205080760 12.52 \$ hexside FA 406 p -1 1.7320508076 0 -12.52 \$ hexside FA 501 px 6.58 \$ hexside FA \$ hexside FA 502 px -6.58 \$ hexside FA 503 p 1 1.7320508076 0 13.16 504 p 1 1.7320508076 0 -13.16 \$ hexside FA 505 p -1 1.7320508076 0 13.16 \$ hexside FA 506 p -1 1.7320508076 0 -13.16 \$ hexside FA \$ hexside pin 601 py 1.2 602 py -1.2 \$ hexside pin 603 p 1.7320508076 1 0 2.4 \$ hexside pin 604 p 1.7320508076 10-2.4 \$ hexside pin

\$ hexside pin 605 p 1.7320508076 -1 0 2.4 606 p 1.7320508076 -1 0 -2.4 kcode 4000 1 100 5100 ksrc 0.15 0 80 burn time= 0.3, 0.6, 0.6, 8.5, 20, 30, 60, 60, 60 pfrac= 1, 1, 1, 1, 1, 1, 1, 1, 0 power = 1250mat= 101, 102, 103, 401, & 402, 403, 404, 501, 502, & 503, 511, 512, 513, 514, & 600, 601, 602 matvol= 126832.919, 126832.919, 145622.981, 150320.496, 103345.341, 140925.465, 56370.186, 76099.751, 76099.751, 87373.788, 90192.298, 62007.205, 84555.279, 33822.112, 898614.753, 524191.939, 74884.563 bopt = 1.0 - 24 1.0c Material 101 is from the output of BOC-2 m101 4009 -0.00003159 6012 -0.8175 6013 -24.96 6014 -0.0006309 7015 -0.04534 8016 -159900 8017 -0.004517 30066 -0.0001049 30067 -0.0004304 30068 -0.0009347 30070 -0.007126 31069 -0.005577 31071 -0.03342 32072 -0.08508 32073 -0.1241 32074 -0.3187 32076 -1.16 33075 -0.482 34076 -0.02092 34077 -2.485 34078 -4.935 34079 -12.21 34080 -19.9 34082 -50.01 35079 -0.0001455 35081 -29.36 36080 -0.0008921 36082 -1.096 36083 -73.37 36084 -133.5

36085	-30.18
36086	207.8
30080	-207.8
37085	-111.3
37086	-0.03891
27007	275
5/08/	-215
38086	-2.642
38087	-0.01824
200007	252
38088	-353
38089	-38.52
38090	-554 9
20000	0.0001707
39088	-0.0001/9/
39089	-432.8
39090	-0 1442
20001	70.20
39091	-72.38
40090	-10.56
/0001	-613.5
40071	-015.5
40092	-833.4
40093	-1034
40004	1168
40094	-1108
40095	-153.9
40096	-1382
11001	0.000213
41094	-0.009213
41095	-122.6
42094	-0.01517
12005	-985 3
42000	-705.5
42096	-25.9
42097	-1430
42098	-1610
12020	1010
42100	-1888
43098	-0.0122
43099	-1623
44000	0.0576
44099	-0.0570
44100	-86.91
44101	-1822
44102	2080
44102	-2080
44103	-103.6
44104	-1945
1/106	-820.4
45100	1016
45103	-1816
45106	-0.0007615
46102	-0.0004506
46102	-0.000+300
46104	-79.29
46105	-1477
46106	-6261
46107	020.1
40107	-922.9
46108	
	-709.2
46110	-709.2 -212 7
46110	-709.2 -212.7

47111	-0.01269
48108	-0.002961
48110	-17.26
48111	-111.2
48112	-64.66
48113	-39.43
48114	-30.94
48116	-20.59
49113	-0.02731
49115	-22.53
50114	-0.001446
50115	-1.208
50116	-1.534
50117	-22.41
50118	-20.71
50119	-19.02
50120	-20.15
50122	-24.46
50123	-1.835
50124	-40.21
50125	-0.01417
50126	-87.59
51121	-19.44
51123	-24.71
51124	-0.1165
51125	-44.91
51126	-0.005904
52122	-0.7428
52123	-0.009007
52124	-0.5654
52125	-8.103
52126	-3.692
52127	-0.02
52128	-292.6
52129	-0.003141
52130	-885
53127	-142
53129	-478.2
53131	-0.2622
54126	-0.0004783
54128	-7.092
54129	-0.09537
54130	-15.9
54131	-1400
54132	-2053
54133	-0.02409
54134	-2921
54136	-2752

55133	-2547
55137	88.85
55134	-00.05
55155	-2841
55136	-0.3224
55137	-2569
56132	-0.0003224
56134	-17.02
56135	-0.1233
56136	-94.86
56137	-46.79
56138	-2482
56140	-4.156
57138	-0.04268
57130	2310
57140	-2310
59120	-0.0298
58139	-0.01831
58140	-2220
58141	-72.8
58142	-1979
58144	-868.2
59141	-2002
59143	-4.936
60142	-21.63
60143	-1750
60144	-788 2
60145	-1262
60145	-1202
60140	-1100
00147	-0.8388
60148	-/48.8
60150	-452.3
61146	-0.01936
61147	-645.4
61148	-0.02346
62146	-0.003767
62147	-126.1
62148	-72.93
62149	-483.4
62150	-98
62150	-271 /
62151	2/1.4
62152	-347
02154	-120.5
63151	-1.5
63152	-0.1168
63153	-165.5
63154	-32.03
63155	-85.22
63156	-0.3436
64152	-0.07784

64153 -0.002549
64154 -1.436
64155 -8.758
64156 -76.57
64157 -45.86
64158 -35.09
64160 -7.71
65159 -15.49
65160 -0.5375
66160 -1.832
66161 -3.999
66162 -3.368
66163 -1.4
66164 -0.9046
67165 -0.3717
68166 -0.2748
68167 -0.1152
68168 -0.0503
68170 -0.004627
69169 -0.008066
69171 -0.000838
70172 -0.0005614
92234 -0.6786
92235.17c -1481
92236 -190.1
92237 -0.01447
92238.17c -886100
93236 -0.005099
93237 -210.7
94237 -0.002023
94238 - 81.20 $94229.17_{2} - 140800$
94239.17C -149800
94240 -03880 94241 -11640
04241 - 11040 04242 - 3882
94242 - 5682
95241 -644.8
95247 -617
95243 -250 3
96242 -37.27
96243 -1.001
96244 -33.72
96245 -1.376
96246 -0.03487
96247 -0.0006421
m102 92235.17c -0.0017256 \$ -0.00173
92238.17c -0.6973080 \$ -0.69759
94239.17c -0.1254001 \$ -0.12521

94240.60c -0.0450321 \$ -0.04496 94241.60c -0.0096691 \$ -0.00965 94242.60c -0.0024919 \$ -0.00249 8016.60c -0.1183732 \$ -0.11837 changed wt as per Pu buildup table core I c Material 103 is from the output of BOC-2 m103 6012 -0.4705 6013 -17.15 6014 -0.0001622 7015 -0.0261 8016 -183400 8017 -0.002514 31069 -0.003248 31071 -0.01946 32072 -0.04913 32073 -0.0726 32074 -0.1835 32076 -0.6714 33075 -0.2841 34076 -0.006115 34077 -1.462 34078 -2.843 34079 -7.172 34080 -11.42 34082 -28.93 35081 -17.42 36080 -0.0004195 36082 -0.3703 36083 -42.96 36084 -76.95 36085 -17.91 36086 -120.2 37085 -64.74 37086 -0.02051 37087 -159.3 38086 -0.7509 38087 -0.003562 38088 -204 38089 -44.12 38090 -323.9 39089 -228.6 39090 -0.08415 39091 -81.19 40090 -3.302 40091 -317 40092 -481.1 40093 -599.8 40094 -672

40095 -169.5

40096	-799.3
41004	0.0030/0
41004	-0.003747
41095	-130.4
42094	-0.001929
12005	-138 7
42095	-4.30.7
42096	-5.093
42097	-840.1
42098	-922
42100	1004
42100	-1094
43099	-961.4
44099	-0.03272
44100	20.07
44100	-20.97
44101	-1084
44102	-1172
44103	-1193
44104	-117.5
44104	-1129
44106	-582.3
45103	-1015
46104	15 25
46104	-15.35
46105	-880.9
46106	-220.1
46107	551 9
40107	-331.8
46108	-386.4
46110	-123.1
47109	-194.8
47111	-1)4.0
4/111	-0.01463
48108	-0.0008603
48110	-4.526
10110	65 1
40111	-03.1
48112	-35.79
48113	-23.09
/811/	_17.5
40114	-17.5
48116	-11.93
49113	-0.01128
49115	-13.48
50114	0.00025
50114	-0.00023
50115	-0.7017
50116	-0.3819
50117	-13
50117	11 00
50118	-11.88
50119	-11.06
50120	-11.54
50122	_1/ 12
50122	-14.12
50123	-1./
50124	-23.21
50125	-0.01682
50125	50.40
50126	-30.49
51121	-11.41

51123	-13.8
51123	-13.0
51124	-0.03230
51125	-28.95
51126	-0.003924
52122	-0.2144
52123	-0.001395
52124	-0.1516
52125	-2.703
52126	-1.318
52128	-168.9
52130	-511
53127	-84 31
53127	283.7
52121	-203.7
55151	-0.3105
54128	-1.86/
54129	-0.01193
54130	-4.599
54131	-818.4
54132	-1177
54133	-0.02844
54134	-1687
54136	-1589
55133	-1505
55137	-1505
55125	1652
55155	-1055
55136	-0.2242
55137	-1495
56134	-2.984
56135	-0.008789
56136	-37.38
56137	-15.33
56138	-1432
56140	-4.927
57138	-0.01712
57139	-1335
57140	-0 7465
58130	-0.005921
59140	1077
50140	-12//
58141	-85.85
58142	-1143
58144	-649.5
59141	-1123
59143	-5.844
60142	-4.642
60143	-1033
60144	-294.1
60145	-743.7
60146	-655.9

60147	-1.007
60148	-435
60150	-262.9
61147	-436.5
61148	-0.01241
62147	-44.06
62148	-19 29
62140	-302.7
62150	-302.7 -28.84
62150	176.8
62151	-1/0.0
62152	-101.4
62154	-70.10
03131	-0.5214
63152	-0.01/35
63153	-104.1
63154	-10.3
63155	-50.88
63156	-0.3583
64152	-0.01049
64154	-0.2757
64155	-3.074
64156	-41.68
64157	-26.9
64158	-18.71
64160	-4.47
65159	-9.396
65160	-0.2386
66160	-0.4596
66161	-2.377
66162	-1.788
66163	-0.8033
66164	-0.4914
67165	-0.2218
68166	-0.1533
68167	-0.06641
68168	-0.02498
68170	-0.002684
92234	-0.311
92235 1	7c -2146
92235.1	-120 5
92230	-120.5
02237	7_{c} 104000
92220.1	-0.001618
03727	131.8
93231 04927	-131.0
74237 04229	-0.003003
74238 04220 1	-23.98
94239.1	/c -182500
94240	-72850

94241 -14000 94242 -4138 94244 -0.01015 95241 -422.8 95242 -1.977 95243 -146.1 96242 -12.44 96243 -0.1717 96244 -9.73 96245 -0.2011 96246 -0.002377 m2 26000.55c -0.66598 6000.66c -0.00052 24000.50c -0.13800 28000.50c -0.15200 42000.66c -0.01460 14000.60c -0.00920 25055.60c -0.01740 **\$ SS** 22000.62c -0.00230 m3 11023.62c 1.0 \$ Na c Material 401 is from the output of BOC-2 m401 4009 -0.00002569 6012 -0.7768 6013 -23.77 6014 -0.000397 7015 -0.04309 8016 -190000 8017 -0.003203 30067 -0.0004042 30068 -0.0008995 30070 -0.007165 31069 -0.005611 31071 -0.03433 32072 -0.08688 32073 -0.1284 32074 -0.3244 32076 -1.182 33075 -0.499 34076 -0.01275 34077 -2.564 34078 -4.98 34079 -12.55 34080 -20.11 34082 -50.36 35079 -0.0001509 35081 -30.44 36080 -0.0008473 36082 -0.7548

36083	-73.97
36084	-131.2
36085	-30.3
36086	-206.6
37085	-112.4
37086	-0.02327
37087	-274
38086	-1.605
38087	-0.008727
38088	-350
38089	-37.83
38090	-551.7
39089	-429.1
39090	-0.1434
39091	-71.7
40090	-10.41
40091	-613.7
40092	-831.1
40093	-1039
40094	-1162
40095	-153.8
40096	-1390
41094	-0.007922
41095	-122.7
42094	-0.01226
42095	-1004
42096	-16.09
42097	-1459
42098	-1616
42100	-1914
43098	-0.01003
43099	-1670
44099	-0.05891
44100	-53.45
44101	-1888
44102	-2067
44103	-103.7
44104	-1980
44106	-838.3
45103	-1876
45106	-0.0007781
46102	-0.0003736
46104	-49.16
46105	-1548
46106	-596.4
46107	-971.7
46108	-698.9
46110	-219.8

47109	-348.6
47111	-0.01282
48108	-0.002469
48110	-10.44
48111	-116
48112	-64.54
48113	-40.9
48114	-31.2
48116	-20.99
49113	-0.02333
49115	-23.63
50114	-0.000796
50115	-1.239
50116	-0.9763
50117	-22.9
50118	-20.96
50119	-19.34
50120	-20.41
50122	-24.93
50123	-1.882
50124	-40.97
50125	-0.01426
50126	-89.47
51121	-20.07
51123	-25.4
51124	-0.07513
51125	-46.66
51126	-0.004034
52122	-0.4713
52123	-0.003715
52124	-0.3797
52125	-8.476
52126	-2.705
52127	-0.02036
52128	-298.1
52129	-0.003121
52130	-890.3
53127	-147.9
53129	-490.9
53131	-0.2607
54126	-0.0003969
54128	-4.334
54129	-0.03612
54130	-10.14
54131	-1424
54132	-2050
54133	-0.02385
54134	-2933

54136	-2766
55133	-2606
55134	-53.8
55135	-2880
55136	-0.2228
55137	-2588
56132	-0.0002632
56134	-10.27
56135	-0.05015
56136	-72.16
56137	-47.22
56138	-2495
56140	-4.111
57138	-0.03814
57139	-2330
57140	-0.623
58139	-0.01458
58140	-2221
58141	-72.82
58142	-1989
58144	-872
59141	-2033
59143	-4.943
60142	-12.29
60143	-1795
60144	-774.8
60145	-1289
60146	-1141
60147	-0.8553
60148	-753.5
60150	-457.8
61146	-0.01658
61147	-689.2
61148	-0.01525
62146	-0.003195
62147	-136.8
62148	-45.3
62149	-516.7
62150	-59.6
62151	-301.8
62152	-323
02154	-122.7
03131	-1.303
62152	-0.00001
62153	-1/0.2
62154	-21.03
03133 63156	-03.0
05150	-0.5152

64152 -0.05399
64153 -0.001033
64154 -0.9366
64155 -9.341
64156 -74.86
64157 -47.32
64158 -33.65
64160 -7.955
65159 -16.38
65160 -0.3432
66160 -1.177
66161 -4.191
66162 -3.239
66163 -1.42
00104 - 0.8815
6/165 -0.3921
08100 -0.274 68167 0.1177
69169 0.04594
68170 0.004722
69169 -0.004722
69171 -0.0008108
70172 -0.0005267
92234 -0.6528
92235.17c -1913
92236 -144
92237 -0.01247
92238.17c -981600
93236 -0.003954
93237 -194
94237 -0.003088
94238 -74.82
94239.17c -234600
94240 -100300
94241 -18450
94242 -5821
94244 -0.01142
95241 -1100
95242 -7.212
95243 -245.9
96242 -37.83
96243 -0.6003
96244 -19.93
96245 -0.506
96246 -0.007651
m402 92235.1/c -0.0015/32 \$ -0.00157
92238.1/c -0.635/256 \$ -0.63568
94239.1/c -0.16/82/3 \$ -0.16/86

94240.60c -0.0602681 \$ -0.06028 94241.60c -0.0129404 \$ -0.01294 94242.60c -0.0033350 \$ -0.00334 8016.60c -0.1183303 \$ -0.11833 changed wt as per Pu buildup table core II c Material 403 is from the output of BOC-2 m403 6012 -0.3893 6013 -14.14 6014 -0.00009539 7015 -0.0216 8016 -178000 8017 -0.001603 31069 -0.002885 31071 -0.01769 32072 -0.04461 32073 -0.06625 32074 -0.1662 32076 -0.6066 33075 -0.2586 34076 -0.003682 34077 -1.326 34078 -2.547 34079 -6.484 34080 -10.26 34082 -25.79 35081 -15.81 36080 -0.0003684 36082 -0.2562 36083 -38.11 36084 -66.97 36085 -15.91 36086 -105.6 37085 -57.56 37086 -0.01209 37087 -140.2 38086 -0.449 38087 -0.002313 38088 -179 38089 -38.65 38090 -284.6 39089 -200.3 39090 -0.07395 39091 -71.65 40090 -2.883 40091 -279.4 40092 -424.8 40093 -532.5 40094 -593.2

40095 -151.2

10000	711
40096	-/11
41094	-0.003199
41095	-1164
42004	0.001497
42094	-0.001487
42095	-392.2
42096	-3.128
12007	7543
42000	-754.5
42098	-822.4
42100	-981
43099	-866.1
44000	0.02043
44077	-0.02945
44100	-12.41
44101	-981.8
44102	-1043
44102	107.4
44105	-107.4
44104	-1017
44106	-528.5
45103	-918 7
46104	0.111
46104	-9.111
46105	-811.4
46106	-189.4
46107	-507 4
46107	-307.4
46108	-346.1
46110	-112.7
47109	-179.3
47111	-0.01338
10100	0.0006807
40100	-0.0000807
48110	-2.615
48111	-59.91
48112	-32.25
48113	-21 13
10110	15.9
40114	-13.8
48116	-10.//
49113	-0.009386
49115	-12.35
50115	-0.6372
50116	0.0272
50110	-0.2355
50117	-11.//
50118	-10.69
50119	-9.956
50120	-10.4
50120	-10.4
50122	-12.//
50123	-1.553
50124	-21
50125	-0.01519
50125	15 81
50120	-43.04
51121	-10.37
51123	-12.5

51124	-0.03393
51121	-26 41
51126	-0.002688
52122	-0.1324
52122	0.0006023
52125	-0.0000923
52124	-0.102
52125	-2.407
52120	-0.9772
52128	-152.8
52130	-455.9
53127	-/6.95
53129	-255.2
53131	-0.2765
54128	-1.101
54129	-0.004769
54130	-2.888
54131	-733.4
54132	-1045
54133	-0.02523
54134	-1501
54136	-1415
55133	-1350
55134	-15.2
55135	-1480
55136	-0.1605
55137	-1336
56134	-1.726
56135	-0.004795
56136	-28.79
56137	-13.69
56138	-1276
56140	-4 358
57138	-4.330
57130	-0.01452
57140	0.6604
58130	-0.0004
58170	1122
50140	-1155
50141	-/0./0
50142	-1010
50144	-5/8.8
59141	-1005
59143	-5.234
60142	-2.5/6
60143	-926.8
60144	-257.2
60145	-665.8
60146	-576.9
60147	-0.8997

60148	-3867
60150	-234 9
61147	-398.9
611/18	-0.007476
62147	40.38
62147	-40.38
62140	-11.52
62149	-270.1
62150	-10.09
62151	-105
62152	-133.9
62154	-03.10
62152	-0.4970
03132 62152	-0.0111
03133	-95.08
63154	-0.1/1
03155	-40.17
63156	-0.3119
64152	-0.006463
64154	-0.1648
64155	-2.822
64156	-37.07
64157	-24.46
64158	-16.5
64160	-4.085
65159	-8.656
65160	-0.1454
66160	-0.2801
00101	-2.197
66162	-1.582
00103	-0.7273
66164	-0.4377
6/165	-0.2049
08100	-0.13/9
0810/	-0.0605
08108 69170	-0.02152
00170	-0.002418
92234	-0.2320
92233.1	76 -2041
92230	-/0./
92237	-0.01288
92230.1	0.001106
93230	-0.001100
73231 04727	-102.3
74231 04729	-0.003332
74230 04220 1	-22.20
74237.1 04240	02660
9424U 04941	-92000
74241	-10230

94242 -5240 94244 -0.005569 95241 -564.1 95242 -1.86 95243 -126.6 96242 -10.97 96243 -0.09684 96244 -5.545 96245 -0.0766 96246 -0.0005938 m404 92235.17c -0.0015732 \$ -0.00157 92238.17c -0.6357256 \$ -0.63568 94239.17c -0.1678273 \$ -0.16786 94240.60c -0.0602681 \$ -0.06028 94241.60c -0.0129404 \$ -0.01294 94242.60c -0.0033350 \$ -0.00334 8016.60c -0.1183303 \$ -0.11833 core II fuel c Material 501 is from the output of BOC-2 m501 6012 -0.05483 6013 -1.764 7015 -0.003023 8016 -105100 8017 -0.001511 30070 -0.0002267 31069 -0.000106 31071 -0.000658 32072 -0.001626 32073 -0.00262 32074 -0.006223 32076 -0.03216 33075 -0.01076 34076 -0.0001749 34077 -0.06928 34078 -0.145 34079 -0.3302 34080 -0.5305 34082 -1.54 35081 -0.8165 36082 -0.01566 36083 -2.546 36084 -5.218 36085 -1.024 36086 -7.979 37085 -3.869 37086 -0.0006188 37087 -10.41 38086 -0.03627 38087 -0.0001231

38088	-13.71
38089	-1 914
20000	1.71 + 0.154
38090	-21.54
39089	-16.55
39090	-0.005596
39091	-3.41
40000	0.3540
40090	-0.3349
40091	-22.35
40092	-29.2
40093	-34.3
40094	-35.41
40095	-6 114
40006	-0.11+
40090	-42.4
41095	-4.729
42095	-28.01
42096	-0.3558
42097	-41 77
42000	45.12
42098	-43.15
42100	-52.25
43099	-46.65
44099	-0.001612
44100	-0 9355
1/100	10 20
44101	-49.29
44102	-51.98
44103	-3.68
44104	-44.19
44106	-17.64
45103	-45.19
46104	-0.8033
46105	34 33
40105	-34.33
46106	-9.223
46107	-17.45
46108	-10.37
46110	-3.085
47109	-4.886
47111	-0.0003279
19110	0.00612
40110	-0.09012
48111	-1.66/
48112	-0.9956
48113	-0.6928
48114	-0.5739
48116	-0 445
49113	-0.0002025
40115	0.4629
49113	-0.4038
50115	-0.02431
50116	-0.01452
50117	-0.4741
50118	-0.4616

50119	-0.4452
50120	-0.4378
50122	-0.5247
50123	-0.04483
50124	-0.8403
50125	-0.0004897
50126	-1.657
51121	-0.4252
51123	-0.5385
51124	-0.00126
51125	-0.9753
52122	-0.00666
52124	-0.005407
52125	-0.1323
52126	-0.0368
52127	-0.0006337
52128	-6.143
52130	-23.2
53127	-3.102
53129	-12.41
53131	-0.0109
54128	-0.06582
54129	-0.0002805
54130	-0.1581
54131	-38
54131 54132	-38 -57.8
54131 54132 54133	-38 -57.8 -0.001039
54131 54132 54133 54134	-38 -57.8 -0.001039 -84.37
54131 54132 54133 54134 54136	-38 -57.8 -0.001039 -84.37 -76.06
54131 54132 54133 54134 54136 55133	-38 -57.8 -0.001039 -84.37 -76.06 -73.48
54131 54132 54133 54134 54136 55133 55134	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364
54131 54132 54133 54134 54136 55133 55134 55135	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27
54131 54132 54133 54134 54136 55133 55134 55135 55136	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56140	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56140 57138	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56138 56140 57138	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782 -64.84
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56130 57138 57139 57140	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782 -64.84 -0.02615
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56136 56137 56138 56140 57138 57140 58140	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782 -64.84 -0.02615 -63.09
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56140 57138 57139 57140 58140	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782 -64.84 -0.02615 -63.09 -2.957
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56136 56137 56138 56130 57138 57139 57140 58141 58142	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.1726 -0.0002782 -64.84 -0.02615 -63.09 -2.957 -56.4
54131 54132 54133 54134 54136 55133 55134 55135 55136 55137 56134 56135 56136 56137 56138 56136 56137 56138 56130 57138 57139 57140 58140 58141 58142	-38 -57.8 -0.001039 -84.37 -76.06 -73.48 -1.364 -78.27 -0.006852 -70.73 -0.2376 -0.0006542 -1.481 -1.068 -69.74 -0.0002782 -64.84 -0.02615 -63.09 -2.957 -56.4 -28.72 -56.4

59143	-0.2081
60142	-0.3297
60143	-51.57
60144	-21.07
60145	-38.99
60146	-35.76
60147	-0.03647
60148	-22.02
60150	-12.84
61147	-20.91
61148	-0.0004962
62147	-3.43
62148	-1.298
62149	-14.7
62150	-1.812
62151	-7.858
62152	-7.409
62154	-2.719
63151	-0.0342
63152	-0.001616
63153	-4.468
63154	-0.4465
63155	-1.74
63156	-0.009662
64152	-0.0008996
64154	-0.01781
64155	-0.1523
64156	-1.412
64157	-0.8458
64158	-0.5598
64160	-0.1117
65159	-0.2795
66160	-0.004323
66161	-0.01109
66162	-0.03307
66163	-0.04374
66164	-0.0190
67165	-0.01198
68166	-0.003434
68167	-0.001853
68168	-0.001033
69169	-0.000174
92234	-0.0448
92235 1	7c -1589
92236	-86.08
92237	-0.001586
92238.1	7c -762600

93237 -21.93 94238 -1.569 94239.17c -14900 94240 -460.6 94241 -12.41 94242 -0.1468 95241 -0.2471 95242 -0.0003901 95243 -0.001527 96242 -0.002198 \$ axial blanket m502 92235.17c -0.00218 92238.17c -0.87932 \$ axial blanket 8016.60c -0.11850 c Material 503 is from the output of BOC-2 m503 6012 -0.03146 6013 -1.203 7015 -0.001738 8016 -120600 8017 -0.0008497 31071 -0.0002149 32072 -0.0005094 32073 -0.0009352 32074 -0.002091 32076 -0.01362 33075 -0.004096 34077 -0.02926 34078 -0.06328 34079 -0.137 34080 -0.2201 34082 -0.6819 35081 -0.3474 36082 -0.00381 36083 -1.179 36084 -2.506 36085 -0.4749 36086 -3.819 37085 -1.781 37086 -0.0002544 37087 -4.964 38086 -0.008543 38088 -6.561 38089 -1.562 38090 -10.4 39089 -7.314 39090 -0.002703 39091 -2.685 40090 -0.09952 40091 -9.589

40092	-13.61
40093	-15.77
40094	-15.75
40095	-4.346
40096	-19.05
41095	-3.25
42095	-9.807
42096	-0.05691
42097	-18.37
42098	-19.55
42100	-22.56
43099	-20.37
44099	-0.0006873
44100	-0.1803
44101	-20.99
44102	-21.57
44103	-2.47
44104	-17.5
44106	-7.399
45103	-17.85
46104	-0.1201
46105	-13.85
46106	-2.317
46107	-6.221
46108	-3.271
46110	-0.9511
47109	-1.521
47111	-0.0001755
48110	-0.01372
48111	-0.508
48112	-0.323
48113	-0.2384
48114	-0.2028
48116	-0.1752
49115	-0.1723
50115	-0.008889
50116	-0.002444
50117	-0.18
50118	-0.1834
50119	-0.1812
50120	-0.1738
50122	-0.2034
50123	-0.01888
50124	-0.3103
50125	-0.0002929
50126	-0.5673
51121	-0.1672
51123	-0.2095
51104	0.0004205
-------	------------
51124	-0.0004293
51125	-0.3636
52122	-0.001424
52124	-0.001205
52125	-0.02931
52126	-0.008259
52128	-2 235
52120	-9 651
53127	-1.1/3
52120	5 109
52129	-3.106
53131	-0.00809
54128	-0.0108
54130	-0.03369
54131	-16.23
54132	-24.91
54133	-0.0007959
54134	-37.09
54136	-32.82
55133	-32.25
55134	-0 3188
55135	-33.7
55136	0.002027
55130	-0.003037
55157	-30.57
56134	-0.03503
56136	-0.3588
56137	-0.278
56138	-30.32
56140	-0.131
57139	-28.34
57140	-0.01985
58140	-27.61
58141	-2.194
58142	-24 64
58144	-15.7
50141	-13.7
50142	-24.33
J9145	-0.1397
60142	-0.05801
60143	-23.21
60144	-6.557
60145	-17.73
60146	-16.13
60147	-0.02822
60148	-9.855
60150	-5.679
61147	-10.37
61148	-0.0001972
62147	-0.9791
62147	0.2864
02140	-0.2004

62149 -6.845 62150 -0.4442 62151 -3.537 62152 -2.858 62154 -1.099 63151 -0.009924 63152 -0.0001782 63153 -1.91 63154 -0.1052 63155 -0.6934 63156 -0.005789 64154 -0.002712 64155 -0.03872 64156 -0.4945 64157 -0.3008 64158 -0.1836 64160 -0.03465 65159 -0.09427 65160 -0.001038 66160 -0.001765 66161 -0.01674 66162 -0.01248 66163 -0.005221 66164 -0.00321 67165 -0.001501 68166 -0.001135 68167 -0.000562 68168 -0.0002193 92234 -0.02438 92235.17c -2016 92236 -51.32 92237 -0.001617 92238.17c -885500 93237 -12.33 94238 -0.4195 94239.17c -8822 94240 -138.7 94241 -2.072 94242 -0.01142 \$ axial blanket c Material 511 is from the output of BOC-2 m511 6012 -0.04317 6013 -1.413 7015 -0.002378 8016 -124500 8017 -0.001112 30070 -0.0001265 31071 -0.0003623 32072 -0.0008583

32073	-0.001531
22074	0.002467
52074	-0.003407
32076	-0.02021
33075	-0.006206
3/077	0.04346
34077	-0.04340
34078	-0.09231
34079	-0.2064
34080	-0 3334
24000	1 000
34082	-1.009
35081	-0.5231
36082	-0.00682
36083	1 712
30003	-1.712
36084	-3.583
36085	-0.679
36086	-5 519
27005	2.509
37085	-2.598
37086	-0.0002605
37087	-7.163
38086	0.01581
20000	-0.01381
38088	-9.385
38089	-1.237
38090	-14 84
20020	11.01
39089	-11.4
39090	-0.003856
39091	-2.222
10000	-0.252
40001	15.54
40091	-15.54
40092	-19.77
40093	-23.04
40004	22.25
40094	-23.33
40095	-3./96
40096	-28.24
41095	-2.954
42005	19.01
42095	-10.91
42096	-0.1592
42097	-27.46
42098	-29 46
12000	24.07
42100	-34.07
43099	-30.42
44099	-0.001054
44100	-0.4009
44101	-0.4007
44101	-31.85
44102	-33.11
44103	-2.18
1/10/	27 32
44104	-21.52
44106	-10.28
45103	-29.08
46104	-0 3461

46105	-21.4
46106	-5 46
46107	10.1
46107	-10.1
46108	-5.633
46110	-1 662
47100	-1.002
4/109	-2.649
47111	-0.0001684
48110	-0.03394
40110	-0.03374
48111	-0.8925
48112	-0.5488
/8113	-0 3958
40113	-0.3730
48114	-0.3324
48116	-0.2737
49115	-0 2772
T)115	-0.2772
50115	-0.01436
50116	-0.005709
50117	-0.2856
50117	-0.2050
50118	-0.2866
50119	-0.2718
50120	-0 2713
50120	0.2113
50122	-0.319
50123	-0.0226
50124	-0 4861
50125	0.0002471
50125	-0.0002471
50126	-0.8998
51121	-0.2615
51123	-0.3312
51125	-0.3312
51124	-0.0005251
51125	-0.543
52122	-0.002731
52124	0.002/25
32124	-0.002423
52125	-0.07698
52126	-0.01543
52127	0.0003431
52127	-0.0003431
52128	-3.518
52130	-14.6
53127	-1 764
52120	7 206
55129	-7.380
53131	-0.006332
54128	-0.02342
5/130	-0.06321
54101	-0.00321
54131	-24.03
54132	-36.66
54133	-0.000613
5/12/	54 25
34134	-34.23
54136	-49.02
55133	-47.42
5513/	-0.58/17
55154	-0.30+7

		10.00
55	135	-49.88
551	136	-0.002993
55	137	-45.02
561	13/	0.1041
501	134	-0.1041
36	135	-0.0001982
56	136	-0.6642
561	137	-0.7033
561	138	-44.57
561	140	-0.105
571	130	-42.04
571	140	0.0150
571	140	-0.0139
581	140	-41.34
58	141	-1./96
581	142	-36.25
581	144	-18.79
591	141	-37.53
591	143	-0.1275
601	142	-0 1407
601	1/2	34 55
601	143	-34.33
601	144	-14.27
60.	145	-26.17
601	146	-23.71
601	147	-0.02253
601	148	-14.55
601	150	-8.487
611	1/17	-1/ 23
6 11	1/0	0.0002246
$\frac{011}{2}$	140	-0.0002240
621	14/	-2.472
62.	148	-0.5931
621	149	-10.25
621	150	-0.8325
621	151	-5.227
621	152	-4.485
621	154	-1 699
621	151	0.02463
031 (21	151	-0.02405
63	152	-0.0007274
63	153	-2.899
631	154	-0.1953
631	155	-1.053
631	156	-0.005114
64	152	-0.0004248
641	154	-0.008001
6/1	155	_0.00867
641	155	-0.0700/
04	130	-0.8022
64]	157	-0.47/6
641	158	-0.296
641	160	-0.05989
651	159	-0.1502

65160 -0.001494 66160 -0.004155 66161 -0.029 66162 -0.02113 66163 -0.009649 66164 -0.005828 67165 -0.002783 68166 -0.002047 68167 -0.0009631 68168 -0.0002622 92234 -0.0353 92235.17c -2027 92236 -66.29 92237 -0.001143 92238.17c -911400 93237 -17.08 94238 -0.7946 94239.17c -11420 94240 -220.9 94241 -4.099 94242 -0.0293 95241 -0.08086 96242 -0.0004389 \$ axial blanket m512 92235.17c -0.00218 92238.17c -0.87932 \$ axial blanket 8016.60c -0.11850 c Material 513 is from the output of BOC-2 m513 6012 -0.02186 6013 -0.8553 7015 -0.001204 8016 -116700 8017 -0.0005618 31071 -0.0001197 32072 -0.0002706 32073 -0.0005514 32074 -0.00118 32076 -0.008378 33075 -0.00233 34077 -0.01797 34078 -0.03919 34079 -0.08403 34080 -0.1363 34082 -0.4328 35081 -0.2174 36082 -0.001711 36083 -0.7581 36084 -1.629 36085 -0.3031

36086	-2.501
37085	-1 144
37086	-0.000113
37087	-3 238
38086	-0.003832
38088	-4 255
38089	-0 9934
38090	-6 788
39089	-4.755
39090	-0.001764
39091	-1.729
40090	-0.06547
40091	-6.296
40092	-8.803
40093	-10.14
40094	-10.05
40095	-2 717
40096	-12.25
41095	-2 046
42095	-6 334
42096	-0.02588
42097	-11 73
42098	-12.45
42100	-14 35
43099	-12.89
44099	-0.0004353
44100	-0.07985
44101	-13 26
44102	-13 56
44103	-1 502
44104	-10.77
44106	-4 397
45103	-11 28
46104	-0.05486
46105	-8 5
46106	-1 372
46107	-3.62
46108	-1.82
46110	-0.5206
47109	-0.8384
48110	-0.004928
48111	-0.2757
48112	-0.182
48113	-0.138
48114	-0.1191
48116	-0.107
49115	-0.1031
50115	-0.005289

50116	0.001061
50110	-0.001001
50117	-0.1087
50118	-0 1133
50110	0.1100
50119	-0.1108
50120	-0.1072
50120	0.1225
30122	-0.1255
50123	-0.009475
50124	-0.18
50124	-0.10
50125	-0.0001455
50126	-0.3092
51121	0 1023
51121	-0.1023
51123	-0.1283
51124	-0.0001991
51125	0 2034
51125	-0.2034
52122	-0.0006203
52124	-0.0005866
52125	0.01690
32123	-0.01089
52126	-0.003641
52128	-1 285
52120	5.006
52150	-5.990
53127	-0.6479
53129	-2.957
52121	0.004705
55151	-0.004705
54128	-0.004641
54130	-0.01428
54121	10.02
54151	-10.05
54132	-15.43
54133	-0 0004686
54124	0216
54154	-23.10
54136	-20.64
55133	-20.14
55133	0.1.4.1.1
55154	-0.1411
55135	-20.95
55136	-0.001362
55127	10.01
55157	-19.01
56134	-0.01561
56136	-0.1639
56127	0.1747
30137	-0.1/4/
56138	-18.88
56140	-0.07999
57120	17.00
5/159	-1/.00
57140	-0.01212
58140	-17.59
581/1	1 3//
50141	-1.344
58142	-15.4
58144	-10.08
501/1	15 /6
J7141	-13.40
59143	-0.097/67

60142	-0.02586	
60143	-14.83	
60144	-4.226	
60145	-11.43	
60146	-10.33	
60147	-0.01746	
60148	-6.289	
60150	-3.639	
61147	-6.758	
62147	-0.6499	
62148	-0.1324	
62149	-4.564	
62150	-0.2084	
62151	-2.257	
62152	-1.742	
62154	-0.6694	
63151	-0.006515	
63153	-1.208	
63154	-0.04745	
63155	-0.4218	
63156	-0.003146	
64154	-0.001232	
64155	-0.02419	
64156	-0.2853	
64157	-0 1703	
64158	-0.09889	
64160	-0.01882	
65159	-0.0504	
65160	-0.0003943	
66160	-0.0006834	
66161	-0.0000034	
66162	-0.008707	
66163	-0.003778	
66164	-0.002554	
67165	0.001303	
68166	-0.0007049	
68167	0.0003033	
02234	-0.0002928	
92234	-0.01744	
02235.1	34 54	
92230	0.001100	
022201	-0.001109	h
92230.1	8 731)
<i>73231</i> 04220	-0.731	
74230 04220 1	-0.2001	
94239.	62 05	
94240	-03.93	
94241	-0./165	φ 111 1
94242	-0.002649	\$ ax1al blanket

m514 92235.17c -0.00218 92238.17c -0.87932 \$ axial blanket 8016.60c -0.11850 m524 92235.17c -0.00218 92238.17c -0.87932 \$ axial blanket 8016.60c -0.11850 c Material 600 is from the output of BOC-2 m600 6012 -0.1795 6013 -5.883 7015 -0.009862 8016 -1128000 8017 -0.00706 31071 -0.001016 32072 -0.003617 32073 -0.006839 32074 -0.01542 32076 -0.1051 33075 -0.03016 34077 -0.2186 34078 -0.452 34079 -0.9642 34080 -1.597 34082 -4.602 35081 -2.454 36082 -0.02443 36083 -7.842 36084 -16.27 36085 -3.168 36086 -25.57 37085 -12.18 37087 -33.24 38086 -0.05052 38088 -43.79 38089 -5.617 38090 -69.22 39089 -52.99 39090 -0.01798 39091 -10.06 40090 -1.187 40091 -71.96 40092 -90.26 40093 -104.4 40094 -105.6 40095 -16.74 40096 -125.9 41095 -13.05 42095 -85.8

42096 -0.538

42097	-122.8
42098	-130.2
42100	-150.1
43099	-135.3
44099	-0.00469
<i>11</i> 0 <i>77</i>	$-0.00+0^{-1}$
44100	-1.247
44101	-139.4
44102	-142.3
44105	-9.145
44104	-114./
44106	-42.1
45103	-124.4
46104	-1.062
46105	-90.07
46106	-22.04
46107	-41.42
46108	-22.57
46110	-6.759
47109	-10.74
48110	-0.1014
48111	-3.645
48112	-2.262
48113	-1.657
48114	-1.401
48116	-1.179
49115	-1.187
50115	-0.06122
50116	-0.01947
50117	-1 231
50117	1 232
50110	-1.252
50120	-1.102
50120	-1.173
50122	-1.378
50125	-0.09213
50124	-2.093
50126	-3.805
51121	-1.134
51123	-1.436
51124	-0.001674
51125	-2.304
52122	-0.00853
52124	-0.008023
52125	-0.334
52126	-0.05403
52127	-0.00145
52128	-15.26
52130	-62.69
53127	-7.717

521	120	22 77
331	129	-32.77
53	131	-0.02695
541	128	-0.0767
541	130	-0.1989
541	131	-105.2
541	132	-158.8
541	122	-130.0
541	133	-0.002390
54	134	-238.9
541	136	-214.6
551	133	-210.2
551	134	-1.852
551	135	-218.6
55	136	-0.01031
551	137	-197.9
561	13/	0 2228
501	124	-0.3328
301	130	-2.355
56.	137	-3.125
561	138	-197.6
561	140	-0.4558
571	139	-186.9
571	140	-0.06907
581	140	-183.4
581	141	-7 812
581	1/12	-161.3
501	1 1 1	-101.5 83.04
501	144	-03.94
591	141	-107.4
591	143	-0.559
60	142	-0.4383
601	143	-155.7
601	144	-64.24
601	145	-116.9
601	146	-104.2
601	147	-0.09751
601	148	-63.7
601	150	-36.55
61	147	-63 47
621	1/17	_11 19
621	1/0	-11.17
621	140	-1.955
021	149	-45.22
62	150	-2.72
621	151	-22.79
621	152	-18.55
621	154	-7.037
631	151	-0.1104
631	152	-0.00233
63	153	-12.45
63	154	-0.605
631	155	-4 37
55		

63156 -0.02028 64154 -0.02499 64155 -0.4171 64156 -3.253 64157 -1.951 64158 -1.182 64160 -0.2422 65159 -0.6105 65160 -0.004164 66160 -0.0111 66161 -0.1167 66162 -0.08222 66163 -0.03804 66164 -0.0228 67165 -0.01102 68166 -0.008048 68167 -0.002752 92234 -0.1497 92235.17c -19110 92236 -426 92237 -0.005009 92238.17c -8296000 93237 -73.39 94238 -2.342 94239.17c -68130 94240 -933.8 94241 -14.46 94242 -0.07244 95241 -0.3203 \$ radial blanket m601 92235.17c -0.00218 92238.17c -0.87932 8016.60c -0.11850 \$ radial blanket m602 92235.17c -0.00218 92238.17c -0.87932 8016.60c -0.11850 \$ radial blanket m604 92235.17c -0.0015732 \$ -0.00157 92238.17c -0.6357256 \$ -0.63568 94239.17c -0.1678273 \$ -0.16786 94240.60c -0.0602681 \$ -0.06028 94241.60c -0.0129404 \$ -0.01294 94242.60c -0.0033350 \$ -0.00334 8016.60c -0.1183303 \$ -0.11833 core II fuel m7 26054.62c 0.49285e-03 26056.62c 0.77367e-02 26057.62c 0.17867e-03 26058.62c 0.23778e-04 24050.62c 0.83368e-04 24052.62c 0.16077e-02

24053.62c 0.18230e-03 24054.62c 0.45377e-04 28058.62c 0.12397e-02 28060.62c 0.47752e-03 28061.62c 0.20759e-04 28062.62c 0.66175e-04 28064.62c 0.16862e-04 42000.66c 0.16722e-03 6012.50c 0.15150e-01 11023.62c 0.55700e-02 1001.62c 0.95384e-20 14000.60c 0.15859e-03 25055.62c 0.25943e-03 5010.66c 0.11915e-01 5011.66c 0.48262e-01 m8 26054.62c 0.25312e-02 26056.62c 0.39734e-01 26057.62c 0.91763e-03 26058.62c 0.12212e-03 24050.62c 0.54017e-04 24052.62c 0.10417e-02 24053.62c 0.11812e-03 24054.62c 0.29402e-04 28058.62c 0.52485e-02 28060.62c 0.20217e-02 28061.62c 0.87891e-04 28062.62c 0.28017e-03 28064.62c 0.71392e-04 42000.66c 0.96251e-03 6012.50c 0.83109e-04 11023.62c 0.64104e-02 1001.62c 0.95384e-20 14000.60c 0.65748e-03 25055.62c 0.11766e-02 m9 26054.62c 0.54798e-03 26056.62c 0.86021e-02 26057.62c 0.19866e-03 26058.62c 0.26438e-04 24050.62c 0.92692e-04 24052.62c 0.17875e-02 24053.62c 0.20268e-03 24054.62c 0.50453e-04 28058.62c 0.13783e-02 28060.62c 0.53091e-03 28061.62c 0.23080e-04 28062.62c 0.73574e-04 28064.62c 0.18748e-04 42000.66c 0.18592e-03

\$ B4C Shld & SS bot

\$ SS Reflector

6012.50c 0.28365e-04 11023.62c 0.19719e-01 1001.62c 0.95384e-20 14000.60c 0.17636e-03 25055.62c 0.28844e-03 m10 26054.62c 0.62343e-03 26056.62c 0.97865e-02 26057.62c 0.22601e-03 26058.62c 0.30078e-04 24050.62c 0.10546e-03 24052.62c 0.20336e-02 24053.62c 0.23060e-03 24054.62c 0.57401e-04 28058.62c 0.15682e-02 28060.62c 0.60405e-03 28061.62c 0.26260e-04 28062.62c 0.83709e-04 28064.62c 0.21330e-04 42000.66c 0.21153e-03 5010.66c 0.15779e-01 5011.66c 0.12131e-01 6012.50c 0.69823e-02 11023.62c 0.12380e-01 1001.62c 0.95384e-20 14000.60c 0.20061e-03 25055.62c 0.32817e-03 m11 26054.62c 0.19242e-02 26056.62c 0.30205e-01 26057.62c 0.69757e-03 26058.62c 0.92834e-04 24050.62c 0.32548e-03 24052.62c 0.62765e-02 24053.62c 0.71170e-03 24054.62c 0.17716e-03 28058.62c 0.48398e-02 28060.62c 0.18643e-02 28061.62c 0.81046e-04 28062.62c 0.25835e-03 28064.62c 0.65832e-04 42000.66c 0.65284e-03 6012.50c 0.99601e-04 11023.62c 0.97907e-02 1001.62c 0.95384e-20 14000.60c 0.61914e-03 25055.62c 0.10128e-02 m12 26054.62c 0.78387e-03 26056.62c 0.12305e-01 26057.62c 0.28418e-03

\$ CSR/DSR follower

\$ CSR/DSR homo

\$ SA bottom

26058.62c 0.37819e-04 24050.62c 0.13260e-03 24052.62c 0.25571e-02 24053.62c 0.28995e-03 24054.62c 0.72175e-04 28058.62c 0.19717e-02 28060.62c 0.75950e-03 28061.62c 0.33018e-04 28062.62c 0.10525e-03 28064.62c 0.26820e-04 42000.66c 0.26597e-03 6012.50c 0.40578e-04 11023.62c 0.97126e-02 1001.62c 0.99184e-20 14000.60c 0.25224e-03 25055.62c 0.41263e-03 m13 26054.62c 0.23927e-02 26056.62c 0.37560e-01 26057.62c 0.86743e-03 26058.62c 0.11544e-03 24050.62c 0.40474e-03 24052.62c 0.78049e-02 24053.62c 0.88502e-03 24054.62c 0.22030e-03 28058.62c 0.60183e-02 28060.62c 0.23182e-02 28061.62c 0.10078e-03 28062.62c 0.32126e-03 28064.62c 0.81863e-04 42000.66c 0.81182e-03 6012.50c 0.12386e-03 11023.62c 0.64104e-02 1001.62c 0.95384e-20 14000.60c 0.76992e-03 25055.62c 0.12595e-02 m14 26054.62c 0.29254e-03 26056.62c 0.45923e-02 26057.62c 0.10606e-03 26058.62c 0.14114e-04 24050.62c 0.49438e-04 24052.62c 0.95424e-03 24053.62c 0.10820e-03 24054.62c 0.26934e-04 28058.62c 0.73597e-03 28060.62c 0.28349e-03 28061.62c 0.12324e-04 28062.62c 0.39286e-04 28064.62c 0.10011e-04

\$ Core Plenum homog

\$ RBPBSS

42000.66c 0.91980e-04 6012.50c 0.10890e-04 11023.62c 0.21539e-01 14000.60c 0.94113e-04 25055.62c 0.15398e-03 m15 6012.50c 0.83867e-04 14000.60c 0.52075e-03 25055.62c 0.85201e-03 26054.62c 0.16187e-02 26056.62c 0.25410e-01 26057.62c 0.58684e-03 26058.62c 0.78097e-04 24050.62c 0.27381e-03 24052.62c 0.52802e-02 24053.62c 0.59873e-03 24054.62c 0.14904e-03 28058.62c 0.40722e-02 28060.62c 0.15686e-02 28061.62c 0.68192e-04 28062.62c 0.21738e-03 28064.62c 0.55391e-04 42000.66c 0.54889e-03 11023.62c 0.11882e-01 5010.66c 0.47121e-02 m16 5011.66c 0.19329e-01 6012.50c 0.60415e-02 14000.60c 0.19450e-03 25055.62c 0.31822e-03 42000.66c 0.20501e-03 11023.62c 0.11882e-01 26054.62c 0.60458e-03 26056.62c 0.94907e-02 26057.62c 0.21918e-03 26058.62c 0.29169e-04 24050.62c 0.10227e-03 24052.62c 0.19721e-02 24053.62c 0.22362e-03 24054.62c 0.55664e-04 28058.62c 0.15209e-02 28060.62c 0.58586e-03 28061.62c 0.25469e-04 28062.62c 0.81189e-04 28064.62c 0.20688e-04 m17 26054.62c 0.49285e-03 26056.62c 0.77367e-02 26057.62c 0.17867e-03 26058.62c 0.23778e-04 24050.62c 0.83368e-04

\$ RBPT/RFTSS1

\$ Core-SS

\$ Core B4C

24052.62c 0.16077e-02 24053.62c 0.18230e-03 24054.62c 0.45377e-04 28058.62c 0.12397e-02 28060.62c 0.47752e-03 28061.62c 0.20759e-04 28062.62c 0.66175e-04 28064.62c 0.16862e-04 42000.66c 0.16722e-03 6012.50c 0.25512e-04 11023.62c 0.55700e-02 1001.62c 0.95384e-20 14000.60c 0.15859e-03 **\$ SHPLenum** 25055.62c 0.25943e-03 m18 26054.62c 0.20590e-02 26056.62c 0.32322e-01 26057.62c 0.74646e-03 26058.62c 0.99340e-04 24050.62c 0.34829e-03 24052.62c 0.67164e-02 24053.62c 0.76158e-03 24054.62c 0.18957e-03 28058.62c 0.51790e-02 28060.62c 0.19949e-02 28061.62c 0.86726e-04 28062.62c 0.27646e-03 28064.62c 0.70445e-04 42000.66c 0.69860e-03 6012.50c 0.10658e-03 11023.62c 0.88178e-02 1001.62c 0.95384e-20 14000.60c 0.66254e-03 25055.62c 0.10838e-02 m19 92235.17c 0.187309e-04 92238.17c 0.747364e-02 26000.55c 0.132470e-01 24000.50c 0.301425e-02 28000.50c 0.286071e-02 8016.60c 0.149847e-01 6012.50c 0.400788e-04 11023.62c 0.903609e-02 14000.60c 0.249138e-03 25055.62c 0.407556e-03 m20 26054.62c 0.63886e-03 26056.62c 0.10029e-01 26057.62c 0.23161e-03 26058.62c 0.30823e-04 24050.62c 0.10807e-03

\$ SHLD SS top

\$ diluent homog

24052.62c 0.20840e-02 24053.62c 0.23631e-03 24054.62c 0.58822e-04 28058.62c 0.16070e-02 28060.62c 0.61899e-03 28061.62c 0.26910e-04 28062.62c 0.85781e-04 28064.62c 0.21858e-04 42000.66c 0.21676e-03 6012.50c 0.33070e-04 11023.62c 0.66755e-02 1001.62c 0.95384e-20 14000.60c 0.20557e-03 25055.62c 0.33629e-03 m21 5010.66c 0.52 5011.66c 0.28 6012.50c 0.20 m22 5010.66c 0.1592 5011.66c 0.6408 6012.50c 0.2000 m23 92235.17c 0.187309e-04 92238.17c 0.747364e-02 26000.55c 0.132470e-01 24000.50c 0.301425e-02 28000.50c 0.286071e-02 8016.60c 0.149847e-01 6012.50c 0.400788e-04 11023.62c 0.903609e-02 14000.60c 0.249138e-03 25055.62c 0.407556e-03

\$ Blanket plenum \$ pinwise CSRmid/DSR \$ pinwise CSRtop/bot

\$ diluent homog

APPENDIX B

Table XII

Mass and activity values for every isotope printed in MCNPX output for "three cycles"

Isotope	ZAID	Mass (g)	Activity (Ci)
C-12	6012	2.677E-01	0.00E+00
C-13	6013	8.193E+00	0.00E+00
N-15	7015	1.471E-02	0.00E+00
O-16	8016	1.128E+06	0.00E+00
O-17	8017	1.018E-02	0.00E+00
Ga-71	31071	2.362E-03	0.00E+00
Ge-72	32072	6.952E-03	0.00E+00
Ge-73	32073	1.224E-02	0.00E+00
Ge-74	32074	2.832E-02	0.00E + 00
Ge-76	32076	1.711E-01	0.00E+00
As-75	33075	5.204E-02	0.00E+00
Se-77	34077	3.582E-01	0.00E+00
Se-78	34078	7.336E-01	0.00E+00
Se-79	34079	1.611E+00	2.21E-01
Se-80	34080	2.653E+00	0.00E+00
Se-82	34082	7.495E+00	2.35E-16
Br-81	35081	4.051E+00	0.00E+00
Kr-82	36082	5.439E-02	0.00E+00
Kr-83	36083	1.253E+01	0.00E+00
Kr-84	36084	2.560E+01	0.00E+00
Kr-85	36085	4.984E+00	1.96E+03
Kr-86	36086	4.020E+01	0.00E+00
Rb-85	37085	1.951E+01	0.00E+00
Rb-86	37086	1.250E-03	1.02E+02
Rb-87	37087	5.234E+01	4.49E-06
Sr-86	38086	1.154E-01	0.00E+00
Sr-88	38088	6.880E+01	0.00E+00
Sr-89	38089	5.857E+00	1.70E+05
Sr-90	38090	1.078E+02	1.52E+04

radial blanket material at End-of-Life.

Y-89	39089	8.610E+01	0.00E+00
Y-90	39090	2.802E-02	1.52E+04
Y-91	39091	1.062E+01	2.61E+05
Zr-90	40090	2.693E+00	0.00E+00
Zr-91	40091	1.186E+02	0.00E+00
Zr-92	40092	1.438E+02	0.00E+00
Zr-93	40093	1.676E+02	4.22E-01
Zr-94	40094	1.718E+02	0.00E+00
Zr-95	40095	1.858E+01	3.99E+05
Zr-96	40096	2.044E+02	0.00E+00
Nb-95	41095	1.461E+01	5.75E+05
Mo-95	42095	1.545E+02	0.00E+00
Mo-96	42096	1.403E+00	0.00E+00
Mo-97	42097	2.012E+02	0.00E+00
Mo-98	42098	2.150E+02	0.00E+00
Mo-100	42100	2.484E+02	0.00E+00
Tc-99	43099	2.228E+02	3.82E+00
Ru-99	44099	7.932E-03	0.00E+00
Ru-100	44100	3.072E+00	0.00E+00
Ru-101	44101	2.325E+02	0.00E+00
Ru-102	44102	2.403E+02	0.00E+00
Ru-103	44103	1.056E+01	3.41E+05
Ru-104	44104	1.987E+02	0.00E+00
Ru-106	44106	6.540E+01	2.17E+05
Rh-103	45103	2.154E+02	0.00E+00
Pd-104	46104	2.846E+00	0.00E+00
Pd-105	46105	1.547E+02	0.00E+00
Pd-106	46106	5.074E+01	0.00E+00
Pd-107	46107	7.576E+01	3.90E-02
Pd-108	46108	4.352E+01	0.00E+00
Pd-110	46110	1.315E+01	0.00E+00
Ag-109	47109	2.083E+01	0.00E+00
Cd-110	48110	2.974E-01	0.00E+00
Cd-111	48111	7.119E+00	0.00E+00
Cd-112	48112	4.285E+00	0.00E+00
Cd-113	48113	3.057E+00	1.04E-12
Cd-114	48114	2.547E+00	0.00E+00
Cd-116	48116	2.039E+00	0.00E+00
In-115	49115	2.109E+00	1.49E-11
Sn-115	50115	1.095E-01	0.00E+00

Sn-116	50116	5 039E-02	0.00E+00
Sn-117	50117	2.162E+00	0.00E+00
Sn-118	50118	2.122E+00	0.00E+00
Sn-119	50119	1.990E+00	0.00E+00
Sn-120	50120	2.021E+00	0.00E+00
Sn-122	50122	2.398E+00	0.00E+00
Sn-123	50123	1.351E-01	1.11E+03
Sn-124	50124	3.728E+00	0.00E+00
Sn-126	50126	7.052E+00	2.00E-01
Sb-121	51121	1.961E+00	0.00E+00
Sb-123	51123	2.516E+00	0.00E+00
Sb-124	51124	2.798E-03	4.90E+01
Sb-125	51125	3.957E+00	4.15E+03
Te-122	52122	2.044E-02	0.00E+00
Te-124	52124	1.910E-02	0.00E+00
Te-125	52125	8.395E-01	0.00E+00
Te-126	52126	1.227E-01	0.00E+00
Te-127	52127	1.795E-03	4.74E+03
Te-128	52128	2.732E+01	0.00E+00
Te-130	52130	1.058E+02	0.00E+00
I-127	53127	1.376E+01	0.00E+00
I-129	53129	5.575E+01	9.85E-03
I-131	53131	3.006E-02	3.73E+03
Xe-128	54128	1.996E-01	0.00E+00
Xe-130	54130	4.756E-01	0.00E+00
Xe-131	54131	1.752E+02	0.00E+00
Xe-132	54132	2.643E+02	0.00E+00
Xe-133	54133	2.857E-03	5.35E+02
Xe-134	54134	3.925E+02	0.00E+00
Xe-136	54136	3.556E+02	0.00E+00
Cs-133	55133	3.461E+02	0.00E+00
Cs-134	55134	4.081E+00	5.28E+03
Cs-135	55135	3.628E+02	4.18E-01
Cs-136	55136	1.493E-02	1.09E+03
Cs-137	55137	3.262E+02	2.84E+04
Ba-134	56134	1.058E+00	0.00E+00
Ba-135	56135	1.703E-03	0.00E+00
Ba-136	56136	5.194E+00	0.00E+00
Ba-137	56137	7.382E+00	0.00E+00
Ba-138	56138	3.258E+02	0.00E+00

Ba-140	56140	4.995E-01	3.66E+04
La-139	57139	3.072E+02	0.00E+00
La-140	57140	7.569E-02	4.21E+04
Ce-140	58140	3.013E+02	0.00E+00
Ce-141	58141	8.612E+00	2.46E+05
Ce-142	58142	2.652E+02	1.34E-11
Ce-144	58144	1.109E+02	3.53E+05
Pr-141	59141	2.785E+02	0.00E+00
Pr-143	59143	6.100E-01	4.11E+04
Nd-142	60142	1.112E+00	0.00E+00
Nd-143	60143	2.538E+02	0.00E+00
Nd-144	60144	1.298E+02	1.54E-10
Nd-145	60145	1.889E+02	7.77E-12
Nd-146	60146	1.690E+02	0.00E+00
Nd-147	60147	1.059E-01	8.57E+03
Nd-148	60148	1.039E+02	0.00E+00
Nd-150	60150	6.006E+01	0.00E+00
Pm-147	61147	9.474E+01	8.79E+04
Sm-147	62147	2.487E+01	5.71E-07
Sm-148	62148	4.560E+00	1.39E-12
Sm-149	62149	7.240E+01	8.69E-11
Sm-150	62150	6.114E+00	0.00E+00
Sm-151	62151	3.723E+01	9.80E+02
Sm-152	62152	3.245E+01	0.00E+00
Sm-154	62154	1.213E+01	0.00E+00
Eu-151	63151	2.528E-01	0.00E+00
Eu-152	63152	8.457E-03	1.49E+00
Eu-153	63153	2.085E+01	0.00E+00
Eu-154	63154	1.393E+00	3.77E+02
Eu-155	63155	7.393E+00	3.65E+03
Eu-156	63156	2.506E-02	1.38E+03
Gd-152	64152	3.707E-03	8.08E-14
Gd-154	64154	8.140E-02	0.00E+00
Gd-155	64155	1.002E+00	0.00E+00
Gd-156	64156	5.989E+00	0.00E+00
Gd-157	64157	3.581E+00	0.00E+00
Gd-158	64158	2.253E+00	0.00E+00
Gd-160	64160	4.714E-01	0.00E+00
Tb-159	65159	1.154E+00	0.00E+00
Tb-160	65160	8.485E-03	9.58E+01

Dy-160	66160	3.405E-02	0.00E+00
Dy-161	66161	2.311E-01	0.00E+00
Dy-162	66162	1.687E-01	0.00E+00
Dy-163	66163	7.950E-02	0.00E+00
Dy-164	66164	4.767E-02	0.00E+00
Ho-165	67165	2.264E-02	0.00E+00
Er-166	68166	1.663E-02	0.00E+00
Er-167	68167	6.552E-03	0.00E+00
U-234	92234	2.326E-01	1.45E-03
U-235	92235	1.842E+04	3.98E-02
U-236	92236	6.022E+02	3.90E-02
U-237	92237	4.863E-03	3.97E+02
U-238	92238	8.263E+06	2.78E+00
Np-237	93237	1.096E+02	7.73E-02
Pu-238	94238	5.128E+00	8.78E+01
Pu-239	94239	9.713E+04	6.03E+03
Pu-240	94240	1.889E+03	4.29E+02
Pu-241	94241	3.788E+01	3.91E+03
Pu-242	94242	2.804E-01	1.11E-03
Am-241	95241	1.199E+00	4.11E+00
Cm-242	96242	8.033E-03	2.66E+01