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ABSTRACT 

 

Cancer is the second leading cause of death worldwide and 

epidemiological studies suggest the association of diabetes mellitus with an 

enhanced risk for multiple cancers. Metformin (1,1-dimethylbiguanide 

hydrochloride) is the most widely prescribed anti-diabetic drug. However, in 

addition to its anti-diabetic activity metformin exhibits antineoplastic effects by 

inhibiting development of tumors and also by inhibiting tumor growth, survival 

and metastasis.  

Specificity protein (Sp) transcription factors (TFs) belong to the 

Sp/Kruppel-like family of transcription factors (KLFs). Sp1 and other Sp proteins 

are overexpressed in many tumors and regulate the expression of genes 

essential for cancer cell proliferation, growth, angiogenesis, and survival. Based 

on the reported metformin-induced activities in cancer cells and tumors, we 

hypothesize that the anti-neoplastic effect of metformin is due, in part, to 

downregulation of Sp transcription factors in cancer cells. Treatment of 

pancreatic cancer cells with metformin inhibited cell proliferation, induced 

apoptosis and also downregulated Sp1, Sp3 and Sp4 proteins and several pro-

oncogenic Sp-regulated genes. Metformin also decreased microRNA-27a and 

induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 

interaction by metformin was mediated by MAPK phosphatases 1 and 5 (MKP1 

& MKP5).  
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Furthermore, we also demonstrated that treatment with metformin or 

downregulation of Sp TFs by RNA interference (RNAi) inhibited two major pro-

oncogenic pathways in pancreatic cancer cells, namely insulin-like growth factor 

receptor (IGF-1R) mediated mTOR signaling and epidermal growth factor 

(EGFR)-dependent activation of RAS. Knockdown of IGF-1R and EGFR 

inhibited mTOR signaling and RAS activity respectively. Metformin also inhibited 

pancreatic tumor growth and downregulated Sp and Sp regulated genes in 

tumors in an orthotopic model.  

We also investigated the antineoplastic effect of metformin in breast 

cancer cells. The effects of metformin in breast cancer cells were comparable to 

those observed in pancreatic cancer cells. In addition, metformin also decreased 

expression of ErbB2 in breast cancer cells overexpressing this oncogene. 

Treatment with metformin or downregulation of Sp TFs by RNAi decreased 

expression of ErbB2, YY1 and mTOR signaling. Results of this study have 

unraveled an important mechanism of action of metformin in cancer cells which 

will facilitate the design of clinical applications of metformin in various 

combination drug therapies. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW * 

 

History of cancer 

Origin of the word cancer 

Around 400 B.C., Hippocrates, who is considered as “Father of Medicine”, 

first used the term carcinoma, which means “crab” in Greek, to describe tumors. 

The term carcinoma was used because the tumor looked like a crab with a 

central body and tumor extensions, which looked like the claws of a crab [1-3]. 

Later a Roman doctor Celsus (28 BC - 50 AC) translated the Greek word 

"carcinoma" to “cancer", a Latin equivalent. Subsequently, the term "cancer" 

became associated with ulcers that looked malignant with deep penetration, 

whereas the term "carcinoma" became associated with more superficial 

premalignant lesions [2, 4]. Another Roman physician, Galen (130-200AD) used 

the Greek term "oncos" meaning bulk or mass to refer to a growth or a tumor. 

Later, from “oncos” came oncology, which is the branch of medicine that deals 

with cancer [5]. A look back at the history of cancer and various theories 

associated with the disease sheds light on how well cancer was understood in 

the ancient world.  

 

                                                 
* Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I, Expert Opinion on Therapeutic Targets, 
2014; 18 (7): 759-769, copyright © [2014], Informa Healthcare. Part of the content in this chapter 
reproduced with permission of Informa Healthcare. 



 

2 

 

Ancient theories on cancer 

There are different theories of cancer. First, Hippocrates proposed the 

humoral theory, according to which there are 4 humors (body fluids) in human 

body. They are blood, phlegm, yellow bile and black bile. A healthy body will 

have well-balanced humors. Any imbalance in these fluids causes cancer. This 

theory was passed on through Middle Ages for over 1300 years. During this 

period, understanding of human anatomy was limited; since autopsies were 

prohibited for religious reasons [5]. 

Second, lymph theory was proposed by Seventeenth century physicians 

and surgeons, who believed that cancer was caused by lymph (body fluid) and 

accordingly to lymph theory, cancer was formed due to degenerating lymph, 

which causes variation in its density, acidity and alkalinity. The third theory is 

blastema theory, which was proposed in 18th century by a German pathologist, 

Johannes Muller, who, with the aid of a microscope demonstrated that tumors 

are composed of cells and not lymph, thus disproving the lymph theory. Muller 

believed that cancer cells are developed from budding elements (blastema) 

between normal tissues [6] 

Fourth theory of cancer, chronic irritation theory, put forth by Rudolph 

Virchow (1821-1902), suggested that chronic irritation was the cause of cancer. 

However, Thiersch (1822-1895) showed that spread of malignant cells was 

through the process of metastasis and not through body fluids, further 

demonstrating that metastasis occurred due to small fragments of tumor 
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breaking off from the primary tumor and travelling to different sites in the body. 

From the late 1800s until 1920, cancer was thought to be caused by trauma, 

which is the fifth theory of cancer. According to this theory injuries could remove 

group of cells from the normal surrounding tissue and uncontrolled growth of this 

free cells become malignant tumors. Throughout the 17th and 18th century, a 

sixth theory of cancer, called infectious disease theory, suggested that cancer 

was contagious. According to this theory cancer was caused by some infectious 

agents. The first cancer hospital in France was forced to move from the city in 

1779 because people feared cancer would spread throughout the city.  

In sum, these theories and descriptions indicate that cancer is not a new 

disease. Some of the earliest evidence of cancer was seen in prehistoric fossils 

and mummies in ancient Egypt and manuscripts [7]. The earliest known reports 

of cancer are described in seven papyri, discovered and decoded late in the 

19th century [1]. They provided the first direct information of Egyptian medical 

practice. Two of them, known as the "Edwin Smith" and "George Ebers" papyri, 

contained descriptions of cancer that  are believed to date from sources as early 

as 2500 B.C. The Smith papyrus describes surgery, while the Ebers' papyrus 

outlines pharmacological treatments [3, 4]. 

Paleopathological evidence of malignancies in ancient remains 

There are several histological reports of primary and secondary 

malignancies identified in skeletal remains and mummies from different parts of 

the world. A relatively high number of reports of cancer in human remains were 
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from Egypt [8].  More recently histological diagnosis of metastatic carcinoma 

was observed in skeletal remains from the archaeological site Amara West in 

Sudan [9]. Several molecular techniques are being used to investigate the 

modifications in the DNA extracted from bone tissues and mummified soft tissue.  

Hypermethylated promoter sequences of the p14ARF tumor suppressor gene 

were detected in bone material from the skeleton of a Scythian origin, with 

metastatic prostate carcinoma [10].  It is now possible to gather molecular 

information from intact extracellular matrix (ECM) proteins of bone and teeth 

from fossil specimens [11]. Prostate Specific Antigen (PSA) which is a marker 

for prostate cancer was detected in ECM of bone in 2700 year old skeletal 

remains [12]. Similarly a K-RAS mutation at codon 12 was detected in 

mummified fragments of tumors in the pelvis. This mutation represents the most 

frequent mutation of the K-RAS gene in colorectal cancer [13].  The well-

documented archaeological and historical context provides new insights into the 

history of cancer as well as its underlying causes and progression. However, the 

paleopathological report of several studies in Egyptian mummies suggests that 

malignancies were rare in ancient remains whereas cancer is now the second 

cause of death [7, 8]. There are several possible reasons for the increase in 

incidence of cancer in modern society.  Exposure to carcinogenic environmental 

factors due to industrialization and lifestyle habits such as tobacco use and diet 

are some of the major reasons for the increased cancer incidence. 
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Historical perspective of chemical carcinogenesis 

Various epidemiological observations and animal experiments that 

identified cancer causing chemicals marked the history of chemical 

carcinogenesis.  In 1775, Percivall Pott reported an association between the 

exposure of chimney sweeps to soot and a high incidence of squamous cell 

carcinoma of scrotum which was initially called as “chimney sweeper’s 

carcinoma” [14]. Scrotal cancer in chimney sweepers was generally reported at 

young age and it is the first reported occupational cancer [15]. As a validation of 

Pott’s epidemiological observations of scrotal cancer in chimney sweeps, 

Japanese pathologists, Yamagiwa and Ichikawa performed the first experimental 

induction of cancer in rabbits exposed to coal tar [16]. Coal tar is the byproduct 

when coal is carbonized and it is a complex chemical mixture of phenols, 

polycyclic aromatic hydrocarbons and heterocyclic compounds. The 

carcinogenic factors in coal tar are known to be in the higher boiling fractions 

and most of these compounds are carcinogenic in mouse skin [17, 18]. The 

Millers in 1947 discovered that activation of these chemical carcinogens enables 

them to bind to the macromolecules in the cell which in turn lead to the discovery 

of microsomal enzymes (p450) in the liver which activates many drugs and 

carcinogens to their active metabolites [19]. In the early 19th century several 

laboratories studied the mechanism of carcinogenesis in experimental animals 

and reported the concept of co-carcinogenic interactions between two different 

treatments applied sequentially.  Friedewald and Rous described the first 
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treatment as an initiator which initiates the carcinogenic process but rarely leads 

to cancer by itself. The second treatment was called as promoter, because it 

caused progression of previously initiated cells but was not sufficient by itself to 

cause cancer [20]. The mechanistic action of initiators and promoters has been 

widely debated. The environmental issues on carcinogenic agents began to gain 

focus on other areas. Viruses have been associated as a cause of cancer for 

nearly a century and Peyton Rous at the Rockefeller Institute in New York 

described sarcomas in the chicken that were caused by a virus, which was later 

known as Rous sarcoma virus [21]. He was awarded Nobel Prize for his work in 

1968. The carcinogenic action of radiation had been known since the early 20th 

century and studies showed that exposure to ionizing radiation cause myelocytic 

leukemia, thyroid and other cancers [22]. Tobacco was identified as a possible 

carcinogen in 19th century [23] and in 1940s, and epidemiologic studies in 

Britain and America linked the rise in cancer incidence with increased cigarette 

smoking [24]. With the increase in cancer incidence in the United States, the 

fear of rising cancer mortality began to intensify and there was need for 

enhancing public awareness about this deadly disease. In 1943 a New York 

Philanthropist named Mary Lasker, organized a public campaign to increase 

public awareness and increase research capability and federal funding for 

cancer research which marked the beginning of fight against cancer.  
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War on cancer 

As an effort to find cure for cancer and raise public awareness of the 

devastating disease, the US congress launched a war on cancer which began 

with the National Cancer Act of 1971 [25] .  It was signed and declared into a 

United States federal law by then U.S. President Richard Nixon on December 

23, 1971 which increased federal efforts to fight cancer. It created the National 

Cancer Program, which is led by the National Cancer Institute (NCI). As a result 

of federal investment in cancer research early detection and treatment tools 

have been developed and this has led to a decrease in death rates. Approaches 

for treatment and prevention of cancer have advanced due to the improvement 

in the public access to educational and medical resources. However, reports on 

cancer statistics shows that despite significant progress in cancer treatment and 

diagnosis, certain forms of cancer still remain a major cause of death even after 

four decades of launching the war on cancer [26]. 

Cancer statistics 

Cancer remains the second most common cause of death in the United 

States. According to the annual report from American Cancer Society, in 2014, 

there will be an estimated 1,665,540 new cancer cases diagnosed and 585,720 

are expected to die of cancer in the US. Lung, colon, prostate, and breast 

cancers continue to be the most common causes of cancer deaths, accounting 

for almost half of the total cancer deaths among men and women[27]. Among 

women, the 3 most common cancers in 2014 will be cancers of the breast, lung, 
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and colon, which together will account for 50% of all cases [28]. Breast cancer 

alone is expected to account for 29% of all new cancer cases among women 

[28, 29]. In the United States trends in cancer incidence shows that the  

incidence rates are increasing for melanoma of the skin; esophageal 

adenocarcinoma; cancers of the thyroid, liver, kidney, anus, and pancreas [30]. 

In contrast to the above mentioned cancers, there is decrease in overall 

incidence in cancers such as colorectal, lung and prostrate [31]. Moreover there 

has been a steady decline in cancer death rates in the past 2 decades. Uterine 

cancer death rates declined by more than 80% between 1930 and 2010, largely 

due to improved screening techniques. Similarly death rates for breast, prostate, 

and colorectal cancers declined from peak rates by 34%, 45%, and 46%, 

respectively [32, 33]. The 5-year relative survival rate for all cancers diagnosed 

between 2003 and 2009 is 68%, which increased from 49% in 1975-1977 [34]. 

The improvement in survival reflects both progress in diagnosing certain cancers 

at an earlier stage and improvements in screening, treatment and 

chemoprevention.  

Although cancer death rates in the US have declined for two decades, 

rates continue to increase globally, from 7.6 million in 2008 to 8.2 million in 

2012, according to the online database by IARC (International Agency for 

Research on Cancer) - GLOBOCAN 2012 [35]. Worldwide, cancer causes more 

deaths than AIDS, tuberculosis, and malaria combined. The global burden of 

cancer is expected to grow to 21.4 million new cancer cases and 13.2 million 
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cancer deaths by 2030. The incidence of cancer globally has increased in just 

four years from 12.7million in 2008 to 14.1million new cases in 2012 [35]. When 

countries are grouped according to economic development, cancer is the 

leading cause of death in developed countries and the second leading cause of 

death in developing countries [36, 37]. There was sharp rise in breast cancer 

incidence worldwide in 2012; 1.7 million women were diagnosed with breast 

cancer and  is also the most common cause of cancer deaths among women 

(522 000 deaths in 2012) [35]. Breast cancer survival varies widely between 

countries. Breast cancer survival rates in developing countries are generally 

lower than in Europe and North America; with rates as low as 38.8% in Algeria, 

36.6% in Brazil, and 12% in Gambia [38]. 

Breast cancer 

Based on American Cancer Society's estimates on breast cancer,  in the 

United States about 232,670 new cases of invasive breast cancer will be 

diagnosed in women and approximately 40,000 women will die from breast 

cancer in 2014 [2].  Breast cancer ranks second as a cause of cancer death in 

women (after lung cancer). However, breast cancer death rates have been 

declining since 1989, with larger decreases in women younger than 50 [2]. 

These decreases are believed to be the result of earlier detection through 

screening and increased awareness, as well as improvements in treatment. The 

stage at diagnosis is the most important prognostic variable. For example, the 

overall five-year relative survival among US women diagnosed with breast 
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cancer at early stage is 98%, compared to 84% and 23% when the disease is 

spread to regional lymph nodes or distant organs, respectively [36].  

Pancreatic cancer 

Next to breast cancer, pancreatic cancer is the fourth-leading cause of 

cancer deaths in the United States and it has the worst survival rate of all 

cancers. In 2014, an estimated 46,420 new cases of pancreatic cancer will be 

diagnosed in the United States. Pancreatic cancer incidence rates have been 

increased by 1.3% per year and an estimated 39,590 deaths are expected to 

occur in 2014, about the same number in women (19,420) as in men (20,170) 

[2]. From 2006 to 2010, the death rate is increased by 0.4% per year and it 

accounts for about 7% of all cancer deaths. Pancreatic cancer is about 30% 

more common in men than in women. During 2005-2009, the age-adjusted 

incidence rate (per 100,000 persons) of pancreatic cancer was 13.6 for men and 

10.5 for women. [34]. Men are more likely than women to develop pancreatic 

cancer at every age after 35 years.  Pancreatic cancer incidence and death 

rates increase with advancing age, with a steep increase after about age 50.  

Pancreatic cancer incidence and mortality rates vary across different 

racial/ethnic groups. One of the population-based studies in the US reported a 

higher incidence in African Americans than in whites [39]. On the other hand 

trends in pancreatic cancer death rates are high in whites than in blacks [40].  

Racial differences in pancreatic cancer rates are generally explained by risk 

factors, such as cigarette smoking, obesity, and diabetes. A better 
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understanding of the etiology of different types of cancer would help formulate 

more effective measures to reduce the expected increases in cancer burden.  

Etiology or risk factors of cancer 

The probability of developing cancer is dependent, in part, on our lifestyle. 

There are several factors which influence the risk of developing cancer. These 

causal factors may act alone or in combination to initiate or promote the disease. 

Cancer risk factors can be divided into four major groups: 1. environmental risk 

factors which include pollutants, UV radiation, secondhand smoke, pesticides 

and other toxins; 2. behavioral risk factors or life style factors such as smoking, 

drinking alcohol, eating unhealthy foods, being overweight and lack of physical 

activity; 3. hereditary risk factors which relate to specific inherited mutated 

genes; 4. biological risk factors are physical features such as gender, race or 

ethnicity and age.  Most environmental and behavioral risk factors are modifiable 

but biological and hereditary risk factors are not modifiable. Risk factors also 

vary for different types of cancer.  

Breast cancer 

Environmental pollutants and occupational risk factors 

Several studies show that breast cancer risks are associated with 

exposure to the mammary carcinogens like benzene, PAHs (polyaromatic 

hydrocarbons), and certain organic solvents [41-43]. A study reported that 

occupational exposure to gasoline vapors and combustion products which 

contain benzene and PAHs, caused a 5 fold increased risk of male breast 
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cancer [44] and exposure to benzene also increased the risk of premenopausal 

breast cancer among women [45]. Although organochlorine pesticides exhibit 

hormonal activity, a significant association between increased concentrations of  

organochlorines in blood and breast cancer risk have not been observed [46, 

47]. From 1940 through the 1960s, diethylstilbestrol (DES), a synthetic estrogen, 

was given to pregnant women to prevent pregnancy complications and losses. 

Studies on DES showed that women who took DES during pregnancy have a 

modest increase in risk for breast cancer [48].  

Smoking and alcohol 

Smoking is associated with increased risk of breast cancer and the 

association is stronger for women who began smoking at a young age [47]. An 

increase in the number of years of smoking before first birth has been 

associated with a higher risk post- menopausal breast cancer suggesting that 

smoking might play a role in breast cancer initiation [49-53]. Smoking and 

alcohol addiction are closely associated.  Ever since the classification of ethanol 

as a human carcinogen by the International Agency for Research on Cancer 

(IARC) in 2007, epidemiologic studies regarding the relationship between 

alcohol drinking and breast cancer risk have been studied widely.  In the United 

States, a standard drink contains 14 g of alcohol. Results from a meta-analysis 

and large epidemiologic studies indicate that each additional 10 g of alcohol per 

day significantly increases a woman’s risk for breast cancer [54-57]. 
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Diet, physical activity, obesity  

The IARC estimates that 25% of breast cancer cases worldwide are due 

to overweight/obesity and a sedentary lifestyle [50]. The risk of post-menopausal 

breast cancer is about two times higher in obese women [58]. Overweight and 

obesity are strongly related to diabetes; and diabetes is associated with an 

increased risk for postmenopausal, but not premenopausal breast cancer [59, 

60]. Moreover, diabetes is an independent predictor of pancreatic cancer 

mortality [61].  Studies have shown clear evidence of a lower risk for breast 

cancer in women who were classified at the highest levels of physical activity. 

The reduction in risk ranged from 10%-70% for the most active women and, was 

30%-40% lower for women who exercised for 3–4 hours per week at moderate 

to vigorous levels [62-67]. Studies have shown that not being active and poor 

diet has an additive effect on cancer risk. High fat diet also plays role in breast 

cancer etiology. Nurses' Health Study data showed that dietary fat consumed 

during adolescence may be associated with an elevated risk of breast cancer in 

premenopausal women [68]. However women who consumed higher levels of 

fruits and vegetables have a 32% to 50% lower risk of ER− breast cancer 

compared with women who consumed low levels of fruits and vegetables [69].  

Gender, age, and ethnicity 

In addition to being female, breast cancer risk increases with age.  In the 

US during 2006-2010, the median age at diagnosis was 61 which indicates that 

half of the women diagnosed with breast cancer were 61 years and older [47]. 
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The incidence of breast cancer is high in non-Hispanic white women; however, 

breast cancer death rates are higher in African American women.  Based on the 

expression of estrogen receptor, ER+ breast cancer is predominant in African 

American and higher rates of ER- breast cancers are observed in white non-

Hispanic women.  

Endogenous hormone levels and reproductive factors 

Estrogen plays an important role in breast cancer etiology. Breast cancer 

risk for postmenopausal women is positively associated with circulating 

concentrations of estrogens, androgens, prolactin and insulin-like growth factor-I 

[70, 71]. Interindividual variation in estrogen metabolism may also influence the 

risk of breast cancer [72, 73]. Early menarche and late menopause results in 

longer lifetime exposures to reproductive hormones. Women who started 

menstruating early (before age 12) and went through menopause later (after age 

55) have an increased breast cancer risk [74]. Evidence regarding the 

association between reproductive history and risk of breast cancer is primarily 

associated with lifetime exposure to estrogens. Nulliparity was most strongly 

associated with risk of ER positive breast cancer; whereas late age at first birth 

was most strongly associated with risk of ER negative breast cancer. Risk for 

triple-negative breast cancer is not associated with the reproductive history [75]. 

Apparently, breast feeding appeared to be a protective factor but was of small 

magnitude compared with other known risk factors [76]. Overall, epidemiological 

evidence suggests that pregnancy/lactation may offer strong protection against 
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breast cancer [77].   Breast tumors that are ER+ are more strongly associated 

with hormone-related factors than tumors that do not express the estrogen 

receptor (ER− tumors). Classic risk factors, such as late age at first birth and 

number of births, are more consistently associated with risk of ER+ breast 

cancer than with risk of ER− breast cancer [78].  

Family history and genetic predispositions 

Risk ratios for breast cancer increased with increasing numbers of 

affected first-degree relatives.  Based on combined data from 52 epidemiological 

studies, risk of breast cancer is 1.8 times higher for women with one first degree 

relative compared with women without a family history and risk increases by 

nearly 3 fold and 4 fold for women with two relatives and three or more relatives 

respectively. The risk increases further if the diagnosis is at young age [79]. 

Mutations in tumor suppressor genes such as BRCA 1, BRCA 2, PTEN, and 

Tp53 are responsible for the hereditary breast cancer syndromes. Although 

these high - penetrance hereditary breast cancer accounts for only 5% to 10% of 

all breast cancers [80, 81] mutation carriers of BRCA1 and BRCA 2 mutation at 

age 70 years have nearly 57% and 49% risk for developing breast cancer 

respectively [82]. Similarly when compared to general population carriers of 

Tp53 and PTEN mutation also have significantly elevated risk of breast cancer 

[80, 83]. In addition to breast cancer, an increased incidence of other 

malignancies has also been observed in families with BRCA mutations, with a 

strong association with BRCA2 mutations [84, 85]. Carriers of mutations in 
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BRCA1 or BRCA2 have an increased risk of developing pancreatic cancer when 

compared with the general population. The Breast Cancer Linkage Consortium 

study observed a 3.5-fold increased incidence of pancreatic cancer in families 

carrying a BRCA2 mutation compared with the general population [86].  

Pancreatic cancer  

Smoking and alchohol 

Smoking is an established risk factor for pancreatic cancer. The 

international Pancreatic Cancer Cohort Consortium conducted a nested case 

control study which examined the association of smoking intensity, smoking 

duration, and cumulative smoking dose with pancreatic cancer.  When 

compared with never smokers, current smokers had a significantly elevated risk. 

Risk increased significantly with greater intensity or number of cigarettes and 

duration per day [87, 88]. Most notably, risk of pancreatic cancer reaches the 

level of never smoker’s approximately 20 years after quitting [89-91]. Although 

there is strong relationship between smoking and alcohol consumption most 

studies have found only moderate to no significant association between alcohol 

drinking and pancreatic cancer risk [92, 93]. 

Diet and obesity 

Processed and red meat consumption are positively associated with 

pancreatic cancer risk and this could be due to nitrite which is used to process 

meats since nitrite can induce formation of N-nitroso compounds which are 

potent carcinogens that induce pancreatic cancer in animal models [94]. 
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Epidemiological studies report positive associations between intakes of meat 

cooked at high temperature and pancreatic cancer [95]. In contrast, many case-

control studies suggest that higher consumption of fruits and vegetables is 

associated with a lower risk of pancreatic cancer [96-99].  Obesity is consistently 

linked to increased risk of pancreatic cancer. Meta-analysis of the available 

epidemological data provides evidence that the risk of pancreatic cancer 

increases slightly with increasing body mass index, and that obese individuals 

may have a risk that is 19% higher than those with a normal body mass index 

[100].  

Family history and genetic factors 

Numerous case–control studies have shown that pancreatic cancer 

patients are more likely to have a family history of pancreatic cancer. Findings 

from several reviews and meta-analyses are consistent with nearly a 2-fold 

increase in pancreatic cancer risk associated with the family history of the 

disease [101]. This risk in familial pancreatic cancer   was elevated in individuals 

with one or more first-degree relatives with pancreatic cancer [102]. Having a 

member of the family with a young-onset of pancreatic cancer also confers an 

added risk [103]. Genetic factors account for approximately 5% to 10% of all 

pancreatic cancer cases. There are several gene mutations that are associated 

with an increased risk of pancreatic cancer. There is an increased risk of 

pancreatic cancer for individuals carrying BRCA1 and BRCA2 mutations. 

Patients with Peutz-Jeghers Syndrome - hereditary intestinal polyposis 
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syndrome which is usually caused by STK11 mutations, have 11% to 36% 

chance of developing pancreatic cancer during their lifetime [104, 105]. The risk 

among people with hereditary pancreatitis (inflammation of the pancreas) linked 

to PRSS1 gene mutation is approximately 70 times higher than that observed in 

the normal population [106]. 

Medical conditions: pancreatitis and diabetes 

Pancreatitis and diabetes are potential risk factors for pancreatic cancer. 

Pancreatitis - a disease usually seen in heavy drinkers increases the risk of 

pancreatic cancer [107]. A large cohort study of subjects with chronic 

pancreatitis from six countries showed that the risk of pancreatic cancer is 

increased fourfold [107-109].  Pancreatitis which is caused by chronic 

inflammation in pancreas could be an intermediate stage between normal 

pancreatic function and tumorigenesis. About 25% of patients with pancreatic 

cancer have diabetes mellitus at diagnosis, and roughly another 40% have pre-

diabetes (higher than normal blood glucose levels) [110, 111]. Compared with 

non-diabetic individuals, patients with long-term (≥ 5 years) type-II diabetes have 

a 50% increased risk of pancreatic cancer [34, 112]. It remains uncertain 

whether diabetes is a predisposing risk factor for development of pancreatic 

cancer or a consequence of disease onset. The risk of pancreatic cancer is 

elevated in people with both type I and type II diabetes [113] and the 

understanding the link between diabetes mellitus and pancreatic cancer may be 



 

19 

 

important for development of biomarkers that correlate with early stages of the 

disease.  

Diabetes and cancer: epidemiological evidences and molecular links 

The association between diabetes and cancer has been extensively 

investigated and most studies show that diabetes increases the risk of several 

types of solid and hematologic malignancies such as liver, pancreas, colorectal, 

kidney, bladder, endometrial and breast cancers, and non-Hodgkin’s lymphoma 

[114]. The strongest association is seen in liver and pancreatic cancer.  A meta-

analysis of 13 case control and 7 cohort studies showed that diabetes is 

associated with more than a two-fold increase in risk for hepatocellular 

carcinoma compared to non-diabetic patients [115]. The molecular mechanism 

underlying this association is unclear, but liver inflammation and 

hyperinsulinemia could be possible causal factors.  Since insulin is produced by 

pancreatic β cells and then transported via the portal vein to the liver, both the 

liver and the pancreas are exposed to high concentrations of endogenously 

produced insulin. In a cohort study of nondiabetic men, peripheral 

hyperinsulinemia, indicative of very high portal insulin concentrations, was 

significantly associated with liver cancer [116]. Hepatocellular carcinoma cells 

have an increased expression of insulin receptor substrate-1, which is related to 

the size of the tumor [117] suggesting a possible mechanism to explain 

enhanced hepatic tumor growth in the presence of high insulin concentrations.   
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Several epidemiological studies have explored the association between 

diabetes and pancreatic cancer. A meta-analysis reported a twofold increase in 

risk of pancreatic cancer in patients with long-standing (>5 years) diabetes [118-

121]. A high proportion of patients with pancreatic cancer are diabetics and this 

is often observed in older subjects with new onset of the disease [110, 122]. The 

prevalence of new-onset diabetes mellitus (developing in the 36 months 

preceding the diagnosis of cancer) was markedly higher in patients with 

pancreatic cancer (40.2%) as compared to lung cancer (3.3%), breast cancer 

(4.1%), prostate cancer (5.7%), colorectal cancer (3.3%) and controls (4.1%). 

Individuals with new-onset diabetes are at high risk of developing pancreatic 

cancer with ~1% of patients developing pancreatic cancer within 3 years [123].  

Studies have shown the existence of a bidirectional association between the two 

diseases. The onset of diabetes in pancreatic cancer occurs 2-3 years prior to 

diagnosis of cancer and there is clinical evidence suggesting that pancreatic 

cancer-induced diabetes is a paraneoplastic phenomenon caused by cancer. 

New-onset diabetes mellitus is indeed unique to pancreatic cancer and is 

relatively uncommon in other cancers and non-cancer patients, suggesting that it 

is not merely a risk factor but rather an early sign of pancreatic cancer [124]. 

Epidemiologic reports provide evidence that cancer incidence and mortality is 

moderately increased in diabetic patients but the molecular mechanism linking 

the two chronic diseases are unclear. Diabetes may influence neoplastic 

transformation by several mechanisms, including hyperinsulinemia, 
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hyperglycemia, or chronic inflammation which are growth promoting effects on 

pancreas and cancer cells. 

Hyperinsulinemia and hyperglycemia 

 Chronic hyperinsulinemia, is a possible factor favoring cancer initiation 

and/or progression in diabetic patients. The mitogenic effects of insulin have 

been extensively studied both in vitro and in vivo. Insulin deficient mice 

developed less aggressive tumors and insulin treatment reversed the effect 

[125, 126]. One clinical example is the risk of lung cancer in diabetic patients 

using inhaled insulin. However, short term animal studies have shown that there 

is no significant effect of insulin on bronchial epithelial cell proliferation [127, 

128]. There are various mechanisms that may be responsible for the mitogenic 

effects of insulin and one of these may involve the insulin like growth factor 

receptor-1 (IGF-1R) which is highly expressed in malignant cells and shares 

80% homology to insulin receptor (IR). Insulin like growth factor-1 (IGF-1) can 

stimulate proliferation pathways in epithelial cells through IGF-1R. At the 

molecular level, insulin activates several signaling cascades including the 

AMPactivated protein kinase (AMPK), mammalian target of rapamycin (mTOR) 

which are involved in  cancer cell survival and proliferation through an IGF-1R 

mediated mechanism [129, 130]. Moreover, insulin downregulates IGF-1-binding 

protein (IGF-BP1) expression by transcriptional regulation [131, 132]. Insulin 

binds to IGF-BPs, displacing IGF-1 from these binding proteins which results in 

increased free IGF-1 levels, the biologically active form of the growth factor [130, 
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133]. Increased expression of the two insulin receptor (IR) isoforms is observed 

in cancer cells [134]. IR- A is predominantly expressed in malignant cells and 

activation of IR-A by insulin results in metabolic effects, whereas mitogenic 

responses result from activation of IR-A by IGF-1 [135-137]. By binding to the 

overexpressed IR-A, insulin may enhance cancer progression and facilitate 

growth of tumors. High intake of sugar and refined carbohydrates and elevated 

blood glucose levels are also strongly associated with the risk of cancer [138]. 

Another possible mechanism is associated with oxidative stress caused by 

mitochondrial dysfunction, a well characterized abnormality in diabetes. Chronic 

hyperglycemia associated with diabetes mellitus creates a state of increased 

oxidative stress related to the excess generation of reactive oxygen species 

(ROS) and an impaired antioxidant response [139].  

Oxidative stress and chronic inflammation 

 Chronic hyperglycemia remains the primary cause of the metabolic, 

biochemical and vascular abnormalities in diabetic nephropathy. Excessive 

oxidative stress in the vascular and cellular microenvironment results in 

endothelial cell dysfunction, resulting in increased production of ROS [140]. ROS 

can react with biomolecules to induce mutations possibly in oncogenes or tumor 

suppressor genes and this enhances the carcinogenesis process. High levels of 

ROS can damage DNA by direct oxidation or by interfering with mechanisms of 

DNA repair. DNA repair is a high energy consuming process that requires 

increased mitochondrial activity. Degenerated mitochondria will not only provide 
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low, insufficient energy supply, but also increase ROS production [141]. 

Increased oxidative stress can also cause a permanent pro-inflammatory 

condition and there is evidence implicating the involvement of chronic 

inflammation and oxidative stress in the pathogenesis of diabetes [142]. A 

chronic pro-inflammatory state that lasts for long term can predispose the 

susceptible cell to malignant transformation [143]. Moreover, an additional factor 

correlated with insulin resistance is the pro-inflammatory cytokine, tumor 

necrosis factor a (TNFα) produced by the adipose tissue [144]. Type II diabetes 

patients have significantly higher circulating TNFα concentrations [145, 146]. 

TNFα induces development and progression of many tumors by strongly 

activating nuclear factor-kappa B (NF-kB), which mediates many of the 

tumorigenic effects induced by TNFα [147, 148]. 

De novo lipogenesis 

Insulin resistance is associated with increased de novo lipogenesis and 

deregulation of fatty acid synthase (FAS) activity- an enzyme which catalyzes 

fatty acid production [149]. FAS are increased in insulin resistant / 

hyperinsulinemic patients [150]. Insulin induced an approximately five to three 

fold increase in FAS gene transcription in cultured human adipocytes [151]. FAS 

activity is also increased in cancer cells, where de novo fatty acid synthesis is 

crucial for membrane remodeling during cell migration and proliferation [152]. 

Inhibition of FAS results in cytostatic, cytotoxic, and apoptotic effects in in-vitro 

and retards tumor growth in mouse xenograft models [153]. Circulating FAS can 
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be detected in the serum of cancer patients and can be used as a diagnostic 

marker for several malignancies such as pancreatic and breast cancer [154-156] 

and experimental and epidemiological evidences have established a causal role 

of FAS dysfunction in insulin-related metabolic disorders and cancer. Thus FAS 

activity and fatty acid production could be an important pathway in linking 

obesity and diabetes to the development of cancer.  

These metabolic alterations provide support for growth demands of 

cancer cells by promoting a hostile microenvironment suitable for proliferation. A 

greater understanding of the metabolic reprograming of cancer cells is required 

for development of effective therapeutic strategies that target metabolism.  

Cancer cell metabolism 

One of the main distinguishing features between normal and cancer cells 

is their altered metabolism, a characteristic feature that was recognized decades 

ago by Nobel laureate Otto Heinrich Warburg. He first hypothesized the 

existence of a connection between cellular metabolism and malignancy. 

Compared to normal cells, malignant transformation is associated with an 

increased rate of intracellular glucose import, and a higher rate of glycolysis 

associated with reduced pyruvate oxidation and increased lactic acid production. 

Since the repression of oxidative metabolism occurs even in the presence of 

oxygen, this metabolic phenomenon is known as “aerobic glycolysis”, also 

known as the “Warburg effect” [157]. High rates of gycolysis not only permit 

cancer cells to survive under adverse conditions such as hypoxia, but enable 
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their proliferation, progression, invasion, and metastasis [157, 158]. In 1926, 

another biochemist, Herbert G. Crabtree made an observation on the utilization 

of glucose by tumors. He observed the glucose induced suppression of 

respiration and oxidative phosphorylation of cancer cells which is not usually 

seen in normal cells. This short-term and reversible event of respiratory 

inhibition of cancer cells by glucose is referred to as the “Crabtree effect” [158, 

159]. The long-term metabolic reprogramming of cancer cells (the Warburg 

effect) and the short-term adaptation mechanisms (the Crabtree effect) can be 

considered as the hallmarks of cancer cell energy metabolism.  

Warburg observed that, normal cells produced most of their energy via 

mitochondrial respiration. In contrast, over 50% of cancer cell energy was 

generated in the cytosol via glycolysis, with the remainder from the mitochondrial 

respiratory chain. He found that, even in the presence of sufficient oxygen, 

cancer cells prefer to metabolize glucose by glycolysis which is a less efficient 

pathway for producing ATP. Thus cancer cells adopt a mode of increased 

glucose import to meet their energy demands.  Moreover, increased glucose 

intake by cancer cells is associated with poor prognosis [160]. Cell metabolism 

is shifted toward glycolysis by the increased expression of glycolytic enzymes, 

glucose transporters, and inhibitors of mitochondrial metabolism. As solid tumors 

grow rapidly, cells at the periphery will have access to blood vessels and 

therefore, more likely to have adequate oxygenation. However, as the tumor 

expands, cells towards the interior will be deficient of oxygen or hypoxia due to 
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poor blood supply from rapid growth. To survive this adverse condition cancer 

cells exhibit increased expression of hypoxia-inducible factors (HIFs), which are 

important for new blood vessel formation in tumor [161].   

Hypoxia-inducible factors (HIFs) 

HIFs are basic helix-loop-helix transcription factors and include: HIFα and 

HIFβ [162, 163].  Mitochondria function as oxygen sensors and promote 

adaptive responses when oxygen (O2) availability decreases. Under hypoxic 

conditions mitochondria release ROS into the cytosol and stabilizes HIF1α [164] 

which enters the nucleus to form an active transcription factor complex as a 

heterodimer with HIF1β The heterodimeric complex then binds to hypoxia 

response elements (HREs) to induce expression of several genes, including 

those involved with glucose metabolism, angiogenesis, tumor invasion, and 

survival [165-167].  

HIF1α transcriptionally regulates the glycolytic phenotype of cancer cells 

in several different ways. Important genes induced by the HIF1 complex include 

the glucose transporters (GLUT) which import glucose into the cell [168]. Once 

inside the cell, glucose is phosphorylated to glucose-6-phosphate by hexokinase 

(HK), the initial step of glycolysis [169]. In addition to stimulating glycolysis, HIF1 

decreases mitochondrial respiration by decreasing the flow of pyruvate into the 

TCA cycle [170]. HIF1 indirectly inhibits pyruvate dehydrogenase (PDH), the 

enzyme that catalyzes the irreversible conversion of pyruvate to acetyl CoA. 

Pyruvate dehydrogenase kinase 1 (PDK1) is a protein kinase that 
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phosphorylates and inactivates PDH; and PDK1 is a direct target of HIF1 in 

cancer cells [170, 171].  Pyruvate dehydrogenase kinase (PDK), blocks 

mitochondrial respiration and protect cells in low-oxygen conditions [169, 171-

173]. It is predicted that HIF-1 activity in the hypoxic tumor cells has several 

therapeutic effects. Other molecular mechanisms which are likely to be 

important in metabolic reprograming are the alterations induced by oncogene 

activation and tumor suppressor gene inactivation that directly affect glycolysis. 

Oncogenes and tumor suppressor genes regulate metabolism 
 

Mutations that activate oncogenes or inactivate tumor suppressor genes 

are known to affect metabolism because metabolic enzymes are directly or 

indirectly regulated by these genes. The c-Myc oncogene activates genes 

involved in glycolysis and overexpression of c-Myc upregulates expression of 

genes encoding GLUT1, phosphofructokinase, and enolase [174] and most of 

these genes have c-Myc binding sites [175-179]. Cancer cells produce 

excessive lactic acid aerobically, whereas normal cells undergo anaerobic 

glycolysis only when deprived of oxygen. Lactate dehydrogenase is an enzyme 

involved in anerobic glycolysis and lactate dehydrogenase- A gene (LDH-A), is 

frequently upregulated in human cancers, and its expression is elevated in c-

Myc-transformed cells suggesting that LDH-A is also a direct target of c-Myc 

[180]. In addition to c-Myc other oncogenes such as v-SRC and RAS are also 

involved in altered glycolytic pathways in cancer cells. Cells transformed by the 

oncogenes v-SRC or activated H-RAS exhibit increased expression of HIF-1 and 
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higher rates of aerobic glycolysis. Cells that express v-SRC and activated H-

RAS display increased expression of HIF-1 [181, 182]. Activation of K-RAS 

(G12V) causes mitochondrial dysfunctions, leading to decreased respiration, 

elevated glycolysis, and increased generation of reactive oxygen species [183, 

184]. Thus oncognes like c-Myc, HIF-1 and RAS are key regulators of glycolysis, 

and there is abundant evidence for cross-talk between these regulators. Like 

oncogenes, tumor suppressor genes such as p53 also play role in regulating 

glycolysis by influencing the metabolic balance in cells between glycolysis and 

oxidative phosphorylation. p53 activity favors the production of ATP by oxidative 

phosphorylation through a  p53 effector, TP53-induced glycolysis and apoptosis 

regulator (TIGAR) which negatively regulates glycolysis by decreasing levels of 

fructose-2,6-bisphosphate, a potent stimulator of glycolysis  and an allosteric 

activator of the glycolytic regulatory enzyme PFK1 [185, 186]. Another glycolytic 

enzyme regulated by p53 is phosphoglycerate mutase (PGM) which catalyzes 

the conversion of 3-phosphoglycerate to 2-phosphoglycerate. The activity of 

PGM is high in cancers of the lung, colon, and liver and p53 suppresses the 

expression of PGM. Therefore, loss of p53 in cancer cells will lead to increased 

PGM activity and enhanced glycolysis [187].  Thus, in terms of metabolism, 

activation of oncogene or loss of p53 may provide a significant growth 

advantage to cancer cells.  In addition to aerobic glycolysis, cancer cells have 

altered lipid metabolism and elevated denovo fatty acid biosynthesis which is 

considered as second hallmark of cancer cell metabolism.  
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Lipid metabolism in cancer cells 

Lipogenesis is well established in cancer cells as a result of increased 

expression and activity of a number of lipogenic enzymes, including fatty acid 

synthase (FAS), ATP citrate lyase, acetyl CoA carboxylase a (ACCa). De novo 

fatty acid synthesis is very active during embryogenesis [188] and FAS is highly 

expressed in proliferating cells in the fetus. In adults it is expressed in hormone-

sensitive cells and is regulated by both estradiol and progesterone suggesting 

that active fatty acid synthesis is used for energy utilization and membrane lipids 

[189, 190]. FAS is overexpressed in a variety of cancer cells and tumor-

associated FAS confers growth and survival advantages rather than functioning 

as an anabolic energy-storage pathway [191, 192]. Significantly higher levels of 

serum FAS are observed in cancer patients [193-195]. Although the 

mechanisms responsible for tumor-associated FAS overexpression are not 

completely understood, growth factors (GFs) and GF receptors (GFRs) play a 

major role at the transcriptional level, in FAS overexpression in tumor cells [196-

201]. The effects of growth factor receptors on FAS are complex and involve 

activation and/or cross-talk between multiple signal-transduction pathways. 

(Figure 1).  
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Common signal transduction pathways regulate metabolism and 

proliferation in cancer cells  

Cell proliferation and metabolism are tightly linked cellular processes.  In 

cancer cells common regulatory pathways are activated to coordinate cellular 

response by these two processes. 

 

 

Figure 1: Two main pathways which regulate the expression of tumor associated fatty acid 
synthase (FAS). Cross-talk between PI3K–Akt and mitogen-activated ERK kinase (MEK)– ERK 
cascades amplify the responses of FAS expression through the modulation the transcription 
factor sterol regulatory element-binding protein 1c  (SREBP1c). (Menendez and Lupu, 2007, Nat 
Rev Cancer. 2007 Oct;7(10):763-77). 
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The association of the phosphatidylinositol-3 kinase (PI3K) – Akt 

signaling pathway and overexpression of FAS in cancer cells is well established 

[202-206]. Loss of phosphatase and tensin homolog (PTEN) and subsequent 

activation of Akt correlates with FAS overexpression in prostate and ovarian 

cancer tissues   [202, 203, 206]. Growth factor mediated activation of mitogen-

activated protein kinase (MAPK) and extracellular signal-regulated kinase 

(ERK1/2) signaling cascades also play a significant  role in regulating the 

expression of FAS [199, 200, 205]. Tumor-associated FAS overexpression is 

primarily due to modulation of the expression and/or maturation status of the 

transcription factor - sterol regulatory element binding protein-1c (SREBP1c), an 

important intermediate of lipogenesis associated with availability of nutrients and 

hormones. SREBP1c stimulates FAS transcription by interacting with SREBP 1c 

binding sites on the endogenous FAS promoter [207, 208]. Furthermore, Akt and 

mTOR activation stimulates the synthesis and nuclear accumulation of activated 

SREBP1c [209, 210].  Although intracellular signaling cascades that regulate 

FAS expression in normal and tumor cells seem to share identical downstream 

elements, including PI3K, MAPK and SREBP1c, there are different upstream 

mechanisms controlling induction of FAS [211-213]. FAS expression is 

stimulated by epidermal growth factor receptor (EGFR) or ERBb2 in breast 

cancer cells. FAS is overexpressed in breast cancer cells and a study reported 

that   ERBb2 mediated induction of FAS expression in breast cancer cells is due 

to PI3K–Akt-dependent signaling [198]. SREBP-1c activation is also regulated 



 

32 

 

by a mammalian target of rapamycin (mTOR) signaling and a positive feedback 

regulatory loop exists between PI3K-Akt-mTORC1 signaling and SREBP 

activation, which increases Akt signaling [214].  PI3K–AKT signaling pathway is 

also activated by growth factors, such as epidermal growth factor (EGF), insulin-

like growth factor (IGF) and platelet-derived growth factor (PDGF) [215]. 

Moreover, inhibitors of PI3K (wortmannin) and MAPK (PD98059) pathways, 

downregulate SREBP1c and decrease FAS transcription, ultimately reducing 

neoplastic lipogenesis in cancer cells in culture [212]. FAS overexpression by 

oncogenic stimuli can also be downregulated by deletion of the major SREBP 

binding site from the FAS promoter [216]. In addition to the metabolic 

modulation, the PI3K-Akt-mTORC1 pathway is critical for the proliferative 

responses mediated by the EGFR, IGF-1R, and estrogen receptor [217]. PI3K-

Akt-mTOR signaling pathway mediates cell survival and proliferation by 

activating both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic 

initiation factor 4E-binding protein-1 [218].  Thus there exist a dual role for these 

signaling pathways in the control of both cell proliferation and the metabolic 

responses. Abnormal modulation of this pathway is also linked to obesity and 

diabetes due to the imbalance of several growth factors. Metabolic alterations 

and the signaling pathways which modulate tumorogenic process can be used 

for diagnostic, prognostic, and therapeutic targeting in cancer management.  
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Cancer therapy 

Major treatment options for cancer include surgery, radiotherapy and 

chemotherapy. Treatments are designed based on several key factors, such as 

the type and stage of the cancer, as well as age, health, and lifestyle of the 

patients.  

Pancreatic cancer 

Diagnosis at early disease stage and surgery improves survival among 

patients with pancreatic cancer [219]. Based on the location of the tumor there 

are different types of surgery which include cephalic pancreatoduodenectomy 

(the Whipple procedure), distal pancreatectomy, or total pancreatectomy. 

Postoperative (adjuvant) chemotherapy either alone or in combination with 

radiation has been proven to improve progression-free and overall survival [220, 

221]. 5-Fluorouracil (5-FU) is one of the main chemotherapy regimens for 

advanced pancreatic cancer [222]. Other treatment options include gemcitabine 

alone or in combination with a platinum agent, erlotinib (Tarceva), or 

fluoropyrimidine [223]. A multi-center study evaluated the efficacy and survival 

outcomes of pancreatic cancer patient treated with three drug regimen of 

gemcitabine, docetaxel and capecitabine   and found that patients with 

metastatic pancreatic cancer, had   11% partial response and 80% of  patients 

maintained a stable disease with a median overall survival of 25 months [224]. 

Another retrospective study with the same triplet regimen found that the overall 

response rate was 29%, and the median survival was 11.2 months [225]. 
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Radiotherapy is often prescribed before or after systemic chemotherapy. A 

clinical study reported that gemcitabine- based induction chemotherapy followed 

by chemoradiotherapy appears to provide more promising clinical outcomes 

than chemoradiotherapy alone for advanced pancreatic cancer [226]. 

Intraoperative radiation therapy (IORT) delivers a concentrated dose of radiation 

to surgically removed tumor area during surgery which helps to remove 

microscopic tumor cells left behind. A hospital based retrospective study which 

involved 194 pancreatic cancer patients treated with IORT and chemotherapy 

demonstrated beneficial long-term outcomes [227]. New targeted and 

personalized treatments, open avenues for the development of more effective 

strategies which can also reduce the toxicities of current therapies.  

Breast cancer 

Surgical treatment for breast cancer involves breast conserving surgery 

(BCS) or mastectomy [228]. BCS is often followed by radiation therapy because 

it reduces the risk of cancer recurrence by about 50% [229]. Radiation therapy 

may be administered externally or internally. Accelerated breast irradiation (ABI), 

an external beam radiation therapy administered over a period of 3 weeks has 

been reported to be an effective radiation method for treating breast cancer 

[230]. Accelerated partial breast irradiation (APBI) is a form of internal radiation 

therapy which is also known as brachytherapy which uses a radioactive material 

directly in to the region of tumor [231]. However most women diagnosed with 
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late stage breast cancer undergo both radiation and chemotherapy after surgery 

[228]. Systemic therapy which includes chemotherapy, hormone therapy and  

 

 

 

 

 

 

Figure 2: Therapeutic targeting of the hallmarks of cancer.   
(Hanahan and Weinberg, Cell. 2011 Mar 4;144(5):646-74) 
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immunotherapy are additional treatment options for women with metastatic 

breast cancer. The chemotherapeutic regimens are based on several factors 

including size of tumor, number of lymph nodes involved and presence of 

estrogen or progesterone receptors and expression of HER-2 receptor in cancer 

cells. Tamoxifen is a drug which prevents estrogen from binding to breast cancer 

cells and treatment of ER+ breast cancer with tamoxifen reduces breast cancer 

mortality and reduces the risk of breast cancer recurrences [232].  Aromatase 

inhibitors (AI) are another group of drugs which are used to treat early and 

advanced hormone receptor positive breast cancer in post-menopausal women 

[233, 234]. When compared to chemotherapy and radiation, targeted therapies 

tend to be more effective because unlike chemotherapeutic drugs, targeted 

therapies kill cancer cells but spare healthy cells.  

Choosing an antitumor target   

Targeted drugs can be categorized into different groups based on their 

effects on one or more of the hallmark characteristics of cancer cells (Figure:1) 

[235, 236]. Most of the hallmark-targeting cancer drugs interfere with tumor 

growth and progression [235] and many of these highly specific anti- cancer 

drugs are in clinical trials for treating different types of cancers [237]. For 

example, angiogenesis inhibitors such as bevacizumab (Avastin), a ligand-

trapping monoclonal antibody against VEGF, have been approved for treating 

patients with late-stage colon cancer, non-small-cell lung cancer and breast 

cancer [238].  
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Oncogene addiction as a rationale for targeted anticancer therapy 

Despite the various genetic alterations, a tumor cell depends on specific 

oncogenic pathways and gene products for its sustained proliferation and 

survival. This unique state of addiction is specific to cancer cells and is termed 

as oncogene addiction which can be exploited for therapeutic purposes [239, 

240]. One of the earliest examples is the antibody trastuzumab (Herceptin), 

which targets the receptor tyrosine kinase HER-2/NEU in patients with breast 

cancer. Other examples include imatinib, which targets the bcr-abl oncogene in 

chronic myeloid leukemia, and gefitinib and erlotinib, which target the epidermal 

growth factor receptor (EGFR) in non–small cell lung carcinoma (NSCLC), 

pancreatic cancer, and glioblastoma [239-244]. A role for oncogene addiction in 

clinical settings is supported by in vitro studies using tumor cell lines as well as 

in transgenic mouse models [245, 246]. Each of the essential hallmark 

capabilities is regulated by multiple signaling pathways. Consequently, a 

targeted therapeutic agent inhibiting one key pathway in a tumor may not 

completely shut off a hallmark capability, allowing some cancer cells to survive. 

Such adaptation, which can be accomplished by mutation, epigenetic 

reprogramming, or remodeling of the stromal microenvironment, can result in 

tumor relapse [247]. In response to therapy, cancer cells may also reduce their 

dependence on a particular hallmark capability, and become more dependent on 

another representing a different form of acquired drug resistance [248, 249]. For 

example, in certain preclinical models, angiogenesis inhibitors suppressed 
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angiogenesis but tumors may exhibit increased invasiveness and metastasis 

[238, 247, 249, 250]. Apoptosis-inducing drugs can induce cancer cells to 

hyperactivate mitogenic signaling [248]. Since there are different parallel 

signaling pathways supporting a given hallmark, strategies for therapeutically 

targeting these supporting pathways may prevent the development of adaptive 

resistance.   

Non- oncogenic addiction 

In addition, cancer cells may also display an increased dependence on 

certain genes that play major role in tumorigenesis but are not themselves 

classical oncogenes. However, a reduction in the activity of many such genes 

can result in an antitumorigenic response and thus, they represent potential drug 

targets. Solimini et al., 2007 first termed this phenomenon as “non-oncogene 

addiction” (NOA) [251] and, like oncogenes, NOA genes are required for 

maintenance of the tumorigenic state, but do not undergo mutations or 

functionally significant genomic alterations in tumors. Large classes of non-

oncogenes that are essential for cancer cell survival and growth have been 

identified and are attractive drug targets. For example targeting metabolic 

enzymes which are considered as NOA genes can be effective for inhibiting 

tumor cell proliferation [252, 253]. Additional examples for NOA include heat 

shock factor 1 (HSF1) which is a major transcription factor responsible for 

activating the expression of heat shock proteins, including HSP90, in response 

to excess unfolded proteins [254]. Loss of HSF1 markedly reduces 
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tumorigenesis driven by either p53 or RAS mutations [254]. Transcription-factors 

that are highly expressed in a large percentage of cancers can also be 

considered as examples for NOA. One such group of transcription factors which  

are overactive in many human cancers are specificity protein transcription 

factors (Sp)  which regulate many genes involved in tumorigenesis, these 

including genes important for cancer cell-cycle progression, apoptosis, 

angiogenesis and metastasis.   

 
 

 
 
Figure 3: Structural features of Sp proteins. Sp1–Sp6 proteins contain several common domains 
in their C-terminal region, whereas Sp5 and Sp6 exhibit a truncated N-terminal structure. 
Buttonhead (Btd) and Sp boxes are conserved regions in all Sp proteins (Safe and Abdelrahim 
Eur J Cancer. 2005 Nov;41(16):2438-48). 
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Specificity protein transcription factors 

Specificity Protein 1 (Sp1) is one of several zinc finger transcription 

factors that is important for transcription of many cellular and viral genes that 

contain GC boxes in their promoters [255, 256]. Sp proteins are members of the 

Sp1 Kruppel- like factors (KLFs) family and Sp1 was originally identified as 

transcription factor that activates transcription of the simian virus 40 (SV40) early 

promoter [257].  The Sp1 binding sites of both simian virus 40 and a related 

monkey promoter contain multiple copies of the sequence GGGCGG [257-259]. 

The human genome possesses 17 KLF genes (KLF1-KLF17) and nine Sp genes 

(Sp1-Sp9) with diverse functions [260]. Sp1–Sp4 form a subgroup which contain 

several distinct overlapping regions which include activation domains (AD), the 

C-terminal zinc finger DNA-binding region, and an inhibitory domain (ID) in Sp3 

that is involved in the suppressive activity (Fig1). Sp5–Sp8 are structurally 

similar and possess truncated forms of Sp1–Sp4 in which portions of the N-

terminal regions have been deleted [259]. The chromosomal location of Sp1-Sp8 

is adjacent to a HOX gene cluster. The linkage of Sp proteins to a HOX gene 

cluster further emphasized their evolutionary relationships [261]. Sp related 

factors were identified in Drosophila. Drosophila gene buttonhead (Btd) is a gap-

like head segmentation gene which encodes a triple zinc finger protein 

structurally and functionally related to the human Sp TF.  A characteristic feature 

of Sp factors is the presence of the Buttonhead (Btd) box CXCPXC, just N-

terminal to the  zinc fingers [258, 262, 263].The function of the BTD box is 
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unknown, but the fact that it is also present in Drosophila and C. elegans SP 

factors suggests an important physiological role. 

The Sp family of transcription factors (TFs) plays a critical role in 

embryogenesis. Gene knockout studies in mice have provided information on 

some critical functions of these genes. For example, Sp1−/− embryos exhibit 

multiple abnormalities and retarded development and embryolethality on day 11 

of gestation [264]. Sp3−/− mice exhibit growth retardation, defects in late tooth 

formation, and the animals die at birth [265, 266]. Sp4−/− mice either die shortly 

after birth or survive with significant growth retardation. In addition, male (but not 

female) Sp4−/− mice have abnormal reproductive behavior [267]. It is clear from 

these and other Sp/KLF gene knockout studies that this family of transcription 

factors plays critical roles in embryogenesis and tissue development.   

Sp TFs are essential for regulation of multiple aspects of tumor cell 

survival, growth, and angiogenesis [259]. There is evidence that Sp1 is 

upregulated in a wide variety of human tumors, including pancreatic and breast 

tumors, and high Sp1 expression correlates with aggressive biology and poor 

clinical outcome of these tumors [268-275]. 

Role of Sp proteins in tumorigenesis 
 

Genes that regulate growth and cell cycle progression frequently contain 

proximal GC-rich promoter sequences. There is also emerging evidence that Sp 

protein expression may be a critical factor in tumor development, growth and 

metastasis. For example, Wang and coworkers reported that Sp1 is an important 
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regulator of the expression of multiple angiogenic factors such as vascular 

endothelial growth factor (VEGF) in gastric tumors [276]. In addition, several 

studies have shown that VEGF expression in cancer cell lines is regulated 

through Sp protein [268, 277-280]. In pancreatic cancer cells, there was a 

correlation between expression of Sp1 and VEGF proteins and constitutive Sp1 

activation is essential for the differential overexpression of VEGF, which plays 

an important role in the angiogenesis and progression of human pancreatic 

cancer [268]. Deletion mutational analysis of the VEGF promoter showed that 

Sp1 clearly regulated expression of VEGF in pancreatic cancer cells. Research 

in this laboratory also observed that sequential knockdown of Sp1, Sp3 and Sp4 

regulated transactivation in cells transfected with VEGF promoter region [280]. 

In addition to VEGF, analysis of several cell cycle genes showed that 

transfection with iSp3 in Panc-1 and other pancreatic cancer cell lines resulted in 

upregulation of the cyclin-dependent kinase inhibitor p27. Sp1 also plays a role 

in regulating several genes in breast cancer cells associated with cell growth 

and cycle progression (cyclin D1) [281] angiogenesis (VEGF) [279] and anti-

apoptosis (bcl-2) [282] and survivin [283]. In addition to these effects, Sp 

proteins play a major role in regulating the abnormal glycolytic and lipogenic 

activity of cancer cells.  
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Figure 4: Overview of glycolysis and lipogenesis pathways. 
Genes known to be regulated by Sp transcription factors are shown in red. Enzymes known to 
be overexpressed in cancer cells are italicized (Archer MC, Genes Cancer, 2011 Jul;2(7):712-9). 
 

 

Role of Sp transcription factors in cancer cell metabolism 

Glucose transporters and hypoxia inducible factor 
 

The increased glucose uptake in cancer cells correlates with higher 

expression of glucose transporter protein in certain human malignancies [284-

290] and it correlates with higher grade and proliferative index [291-294].  



 

44 

 

Consequently, the expression level of glucose transporters correlates 

reciprocally with the survival of cancer patients [284, 293, 295-301]. The rat 

glucose transporter 1 (GLUT1) and glucose transporter 2 (GLUT2) promoters 

contain Sp1 sites that may be responsible for regulation of transcription rates 

[302] and the expression of the GLUT1 gene is modulated by interaction with 

Sp1. This is consistent with other findings that mutation of the Sp1 binding site 

disrupted not only the basal activity but also the response of the GLUT1 gene to 

hyperosmolarity [303].  Another study demonstrated the binding of Sp1 and Sp3 

to the mouse GLUT 3 gene with Sp-mediated suppression and Sp3-mediated 

activation of GLUT3 transcription in neuroblasts and trophoblasts [304]. An 

additional factor responsible for the upregulation of GLUT1 and GLUT 3 is the 

hypoxia inducible factor (HIF1) [305-307] which is an important regulator of the 

response of tumors to hypoxia. The HIF-1α promoter region have binding sites 

for several transcription factors including Sp1 [308, 309].  HIF-1α is upregulated 

in highly aggressive and metastatic Lewis lung carcinomas and this was 

inhibited by mithramycin A, a Sp1 inhibitor, that blocks Sp1 binding to cis-

elements. Luciferase reporter gene and chromatin immunoprecipitation assays 

indicated that Sp1 was necessary for HIF-1α mRNA overexpression in these 

cells [310]. Moreover, increased HIF-1α transcription was observed in cells 

treated with trichostatin A, which induces Sp1 activation [311].  Other genes 

involved in glycolysis have binding sites for Sp proteins in their promoters, and 
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there is evidence that Sp proteins are involved in the regulation of a number of 

metabolic genes in cancer cells (Fig 2).  

Glycolysis  
 

The major sites of regulation of glycolysis involve reactions catalyzed by 

hexokinase, phosphofructokinase, and pyruvate kinase. The activity of 

hexokinase, the first enzyme of the glycolytic pathway, is markedly elevated  in 

hepatoma cells, which is about  20-fold higher than that of control and 

regenerating rat liver and is essential for maintaining the high glycolytic 

phenotype [312, 313]. Analysis of the HK promoter region identified short GC 

rich and cAMP Response Elements (CRE) regions required for promoter 

activation. Mutational analysis of the transcription start site region of the 

hexokinase type II (HKII) promoter demonstrated that the transcription factors 

Sp1, Sp2, and Sp3 to GC boxes (nuclear factor- Y) NF-Y to CCAAT boxes, and 

cAMP response elements binding protein (CREB) were important for 

transactivation [314]. Transfection studies showed that Sp1, Sp2, Sp3, CREB, 

and NF-Y contribute to HKII overexpression in cancers. The second enzyme 

phosphofructokinase (PFK-1) is the major rate-limiting step of glycolysis. PFK-1 

is known to be highly expressed in human lymphomas and gliomas, [315, 316] 

and PFK-1 activity is higher in metastatic breast cancer than in the primary 

tumors [317]. Analysis of the PFK-1 promoter by deletions and mutations 

indicated that GC-rich Sp protein binding sites were important for activation of 

promoter constructs [318, 319].  Pyruvate kinase (PK) is the final rate-limiting 
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step of glycolysis. There are different isoforms of this enzyme namely (L, R, M1 

and M2) and in contrast to differentiated cells, proliferating tumor cells 

exclusively express PKM2 [253, 320]. Studies in rat thymocytes showed that the 

PKM promoter has 5 Sp binding sites, 3 of which were functional in transfection 

assays and were stimulated by Sp1 and Sp3 [321].  In rat hepatoma cells that 

have high glycolytic activity, glucose treatment increased binding of Sp1 to its 

consensus sequence [322]. A report showed that transient transcription of a 

PKM promoter reporter gene was activated in myocytes grown under hypoxia. 

The PKM promoter does not contain a hypoxia-inducible factor-1 binding site, 

and the hypoxia response was localized to a conserved GC-rich element that 

bound Sp1 and Sp3 [323].  In addition, there are several other enzymes 

including human aldolase A, glucose phosphate isomerase and 

phosphoglecerate kinase that have Sp binding sites in their promoters. The 

human testis-specific lactate dehydrogenase c gene (hLdhc), which is highly 

expressed in human lung, melanoma and breast cancer [324] is regulated by 

Sp1 as well as by a CRE and CpG island methylation in cancer cells [325].  

Lipogenesis 
 

A high rate of de novo lipogenesis in rapidly proliferating cells is 

necessary for membrane biogenesis. The synthesis of long chain fatty acids 

involves the rate-limiting conversion of acetyl–co-enzyme A (CoA) into malonyl-

CoA by the enzyme acetyl-CoA carboxylase (ACC), followed by the FAS-

catalyzed formation of palmitate. ATP citrate lyase (ACL) catalyzes the 
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conversion of citrate to acetyl-CoA, thereby linking glycolysis and lipogenesis 

(Figure 2). Among all the lipogenic enzymes, FAS has been the most intensively 

studied. Overexpression of FAS protein has been reported in many pre-

neoplastic lesions and human epithelial cancers in breast, prostate, ovary, 

esophagus, stomach, lung, oral tongue, oral cavity, thyroid and endometrium, 

and also in mesothelioma, nephroblastoma, retinoblastoma, soft tissue 

sarcomas [326, 327]. Inhibition of FAS suppresses cell proliferation and tumor 

growth in xenograft models of breast and ovarian cancers [192] [328-330]. 

Expression of the FAS gene in lipogenic tissues such as liver and adipose tissue 

in response to the dietary and hormonal signals are regulated by several 

transcription factors such as SREBP-1c, Sp1, and NF-Y that are known to bind 

defined regions within the FAS promoter [331, 332]. Morover, insulin-stimulated 

SREBP-1c expression in rat hepatocytes is mediated by Sp1 [333]. SREBP-1c is 

a relatively weak transcriptional activator but functions efficiently in combination 

with NF-Y and Sp1[331]. In MCF-7 human breast cancer cells transfected with 

Sp1 small interfering RNA (siRNA), expression of FAS was significantly 

suppressed.  Moreover treatment of MCF-7 cells with mithramycin, a compound 

that is known to block GC-rich promoter regions and suppress Sp1 activity 

decreased FAS expression [333, 334]. Sp1 regulates FAS by a dual mechanism 

involving SREBP- 1c and direct binding [272]. It is well documented that Sp1 

mediates gene expression in response to various hormones [335]. MCF-7 cells 

treated with estradiol increased their expression of FAS with increased binding 
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of Sp1 to the promoter, without any increase in the expression of Sp1 [272]. 

Similarly androgens stimulate the expression and activity of FAS in LNCaP cells 

via the androgen receptor (AR) [211].  Since the AR and Sp1 can complex with 

each other, there is a possibility that androgen stimulation of FAS involves Sp1 

[336-338].  Overall, these studies suggest that Sp1 coordinately regulate fatty 

acid synthesis and cancer cell proliferation. 

Sp protein regulates receptor tyrosine kinase expression 
 

Lipogenesis and FAS expression are stimulated by activation of PI3K Akt 

mTOR pathway which is possibly mediated through the transient activation of 

receptor tyrosine kinases (RTKs) such as IGF-1R, EGFR and ERBb2.  The 

insulin-like growth factor 1 receptor (IGF-1R) mediates signal transduction by the 

IGFs and plays a critical role in growth and development. The proximal promoter 

region of the rat IGF-1 receptor gene contains multiple Sp1 consensus-binding 

sites (GC boxes). Progressive 5'-deletions of the promoter that sequentially 

removed GC boxes decreased activation by 15-fold compared to basal promoter 

activity. DNase I footprinting studies with purified Sp1 protein revealed four GC 

boxes in the 5'-flanking region of the promoter and one 

homopurine/homopyrimidine motif (CT element) in the 5'-untranslated region 

that bound Sp1 and mutation of the CT elements decreased Sp1 activation by 

70%. Thus,  Sp1 regulates expression of the IGF-1R promoter by acting both on 

GC boxes in the 5'-flanking region of the promoter and on a CT element in the 

5'-untranslated region [339]. Similar to IGF-1R, the epidermal growth factor 
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receptor (EGFR) also plays a prominent role in cell growth and both receptors 

share some common signal transduction pathways [340, 341]. The promoter 

region of the EGFR gene has several special features. It lacks a characteristic 

TATA box and CAAT box and contains multiple GC rich transcription start sites 

(88%). In A431 cells (epidermoid carcinoma cells) that overexpress the EGF 

receptor there is a DNase I hypersensitive site that is situated close to the 

promoter region [340]. Furthermore, multiple Sp1 binding sites have been 

identified, and Sp1 is known to be necessary for EGFR promoter activity [342-

347]. When bladder cancer cells were transfected with small inhibitory RNAs for 

Sp1, Sp3, and Sp4, the expression of EGFR was significantly downregulated 

[348].  HER2 is a member of the EGFR family which is frequently overexpressed 

in breast cancer cells [349]. In contrast with the EGFR gene promoter, the 

promoter regions of the human ErbB2 receptor promoter region contain TATA 

box or a CAAT and consist of two putative Sp1 binding sequences [348, 350]. 

Knockdown of Sp1, Sp3, Sp4 by RNA interference decreased expression of 

ErbB2 and this response was due to downregulation YY-1, an Sp-regulated 

gene that activates ErbB2 expression [351].   

Modification of Sp proteins 

Several reports indicate that phosphorylation of Sp1 by various kinase 

pathways is important for Sp1-dependent activation of some genes. Regulation 

of VEGF in several prostate cancer cell lines is dependent on PI3-K activity, and 

this is associated with increased phosphorylation of Sp1 and enhanced binding 
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to the proximal GC-rich promoter sequence [352]. Mitogen-activated protein 

kinase (MAPK) - dependent phosphorylation of Sp1 is important for induction of 

VEGF in fibroblasts and Drosophila cells [353] and for induction of integrin gene 

expression in prostate cancer cells [354]. Insulin and glucagon also differentially 

modulate Sp1 in rat hepatoma H4IIE cells. Insulin acts through PI3-K and also 

enhances O-glycosylation of Sp1, whereas glucagon induces phosphorylated 

Sp1 through the cAMP/PKA pathway [355, 356].  

 

 
 

 
 
Figure 5: Mechanism of drug- mediated downregulation of Sp transcription factors 
(Safe et al., 2014 May 3, Expert Opinion on Therapeutic Targets). 
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Mechanisms of Sp downregulation 
 

Several different structural classes of antineoplastic drugs downregulate 

expression of Sp TFs in cancer cell lines which involves multiple pathways (Fig 

3) [357]. Downregulation of Sp proteins by caspases, phosphatases [358, 359] 

and by activation of proteasomes has been reported [359-363] and there is 

evidence that in some cell lines the latter pathway may be dependent on 

sumyolation [364, 365]. Aspirin induces caspase-dependent degradation of Sp1, 

Sp3, Sp4 in colon cancer cell lines and this response can be inhibited in cells 

cotreated with zinc sulfate [363]. This effect of aspirin can be mimicked by zinc 

chelators which presumably destabilize the zinc finger domain of Sp TFs [359]. 

Another subset of compounds induce repression of Sp1, Sp3, Sp4 gene 

expression through induction of two transcriptional repressors, ZBTB10 and 

ZBTB4 which competitively bind and displace Sp TFs from GC-rich sites to 

decrease transactivation. Induction of ZBTB10 and ZBTB4 is due to 

downregulation of microRNA-27a (miR-27a) and miR-20a/miR-17 respectively 

and has been linked to drug -induced ROS or phosphatases, in addition binding 

to the cannabinoid receptors can also result in repression of Sp TFs [366-376]. 

There is also evidence for other pathways and these include activation of 

proteases [377], crosslinking with transglutaminase 2 [378, 379] and other post-

translational modifications [362]. The mechanism of drug-induced 

downregulation of Sp1, Sp3 and Sp4 are both drug and cell-context dependent 
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and the same compound can act through multiple pathways in cancer cells 

derived from different tumors [348, 351, 364, 372, 373, 380]. 

Drug mediated dowregulation of Sp transcription factors 
 

Several different strategies are possible for blocking or degrading Sp TFs 

in cancer cells and these include specific interruption of DNA binding of Sp TFs 

to GC rich elements of target genes or downregulating the expression of Sp TF 

through transcriptional or translational (Proteasomal/ Caspase/Phosphatase 

induced) modifications. Mechanism-based targeted therapies can be exploited 

for drug development to treat human cancers. 

Inhibition of DNA binding- Sp decoys, mithramycin and anthracyclin 

Double stranded GC-rich oligonucleotides that bind Sp TFs decrease Sp-

regulated transactivation [381-384].  Introduction of these decoys into lung 

cancer cells inhibits expression of putative Sp1-regulated genes such as VEGF 

and TGFβ expression in lung cancer cells [383] and inhibited cell proliferation 

and migration [382, 384, 385]. Mithramycin, hedamycin, WP31 and related 

anthracyclines generally inhibit transactivation from GC-rich promoters by 

binding DNA, thereby inhibiting Sp-dependent transactivation from these sites 

[283, 386-391]. There are multiple studies on the effects of these compounds as 

inhibitors of genes that have GC-rich promoters; however there is also evidence 

that drugs such as mithramycin also decrease expression of Sp1 proteins [391]. 

Mithramycin and anthracyclines are in clinical trials and their inhibition of Sp TFs 

and pro-oncogenic Sp regulated genes may contribute to their efficacy as 
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anticancer agents. Research in this laboratory has focused on identifying drugs 

that target critical pathways required for cancer growth, proliferation, survival, 

angiogenesis and metastasis by downregulation of Sp1, Sp3 and Sp4 protein 

expression. 

COX-2 inhibitors 

 In pancreatic cancer cells, it was shown that Sp1 regulates VEGF 

expression [392] and a report by Wei and coworkers showed that the 

cyclooxygenase-2 (COX2) inhibitors decreased VEGF expression in pancreatic 

cancer cells and this was primarily correlated with decreased phospho-Sp1 and 

decreased binding to GC-rich sites [393]. Consistent with in vitro experiments, in 

vivo experiments using an orthotopic pancreatic cancer animal model also 

showed that celecoxib – a COX2 inhibitor significantly suppressed tumor 

angiogenesis, growth, and metastasis which correlated with suppression of Sp1 

activity [393].  

Non-steroidal anti-inflammatory drugs 

Initial studies in this laboratory focused on the COX-2 inhibitors celecoxib, 

NS-398 and nimesulfide which inhibited colon cancer cell growth and this was 

accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and VEGF [394]. 

The COX-2 inhibitors increased ubiquitination of Sp1, Sp3 and Sp4 and induced 

proteasome-dependent degradation of these proteins and similar results were 

observed in pancreatic cancer cells. Subsequent studies in pancreatic cancer 

cells showed that similar to the COX-2 inhibitors, tolfenamic acid and structurally 
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related NSAIDs also induced proteasome-dependent degradation of Sp1, Sp3 

and Sp4 [395] and similar results have been observed for tolfenamic acid in 

many different cancer cell lines [366, 367, 395-403]. A nitro-NSAID, GT-094 also 

decreased expression of Sp1, Sp3 and Sp4 in colon cancer cells [371] and 

similar results were observed for aspirin suggesting that the antineoplastic 

effects of aspirin are due, in part to downregulation of Sp TFs [363, 404].  

Natural products and their synthetic analogs 

  Betulinic acid (BA) is a natural product derived from birch bark that 

exhibits a broad range of antineoplastic activities [405]. Research in this 

laboratory used prostate cancer cells as a model and showed that BA 

downregulated expression of Sp1, Sp3 and Sp4 through proteasome-dependent 

degradation [372, 380]. Subsequent studies on BA have observed similar 

responses in multiple cancer cells lines [348, 351, 364, 372, 373]. It has been 

reported that other triterpenoids such as celastrol and the synthetic compound 

methyl 2-cyano-3,11-dioxo-18β-olean-1,13-dien-30-oate (CDODA-Me) and 

methyl 2-cyano-3,12-dioxo-oleana-1,9-dien-20-oate (CDDO-Me, Bartoxolone) 

derived from glycyrrhetinic and oleanolic acids respectively also downregulate 

Sp1, Sp3 and Sp4 in multiple cancer cell lines [368, 370, 374, 406, 407]. 

Curcumin is a constituent of turmeric spice (Curcuma longa) and has been 

widely used as a traditional medicine and for treatment of multiple diseases such 

as cancer. Curcumin also downregulates Sp1, Sp3 and Sp4 and pro-oncogenic 

Sp-regulated genes in many different cancer cell lines indicating that this 
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pathway also contributes to the anticancer and anti-inflammatory activities of 

curcumin [369, 375, 376, 408, 409]. Several different classes of naturally-derived 

compounds with antineoplastic activity decrease expression of Sp-regulated 

genes in cancer cell lines. An increasing number of studies showing that 

nutraceuticals and their active constituents downregulate Sp TFs (primarily Sp1 

investigated) and these include methyl jasmonate, honokiol, isorhapontigenin, 

quercetin, dibenzylideneacetone and resveratrol [410-417]. The synthetic 

cannabinoid WIN 55,212-2 also decreases Sp1, Sp3 and Sp4 expression in 

colon cancer cells [358]. Drugs such as arsenic trioxide and other ROS-inducing 

agents also decrease expression of Sp1, Sp3, Sp4 and Sp-regulated genes and 

this may be an important component of the anticancer activity of other ROS-

inducing anticancer drugs [418]. The results for aspirin are significant since this 

compound is both a chemopreventive and chemotherapeutic agent for multiple 

cancers. Like aspirin, the anti-diabetic drug metformin has emerged as an agent 

that exhibits both chemopreventive and chemotherapeutic activity against 

several cancers including pancreatic cancer and breast cancer [419]. 

Metformin 

Brief history of metformin 

 
The history of biguanide class of anti-diabetic drugs can be traced from 

the use of Galega officinalis (goat’s-rue or French lilac) a plant used in folk 

medicine for several centuries [420]. Guanidine, the active component of galega, 

was used to synthesize several antidiabetic compounds in the 1920s, and 
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metformin and phenformin the two main biguanides, were introduced in the late 

1950s [421]. French diabetologist Jean Sterne studied the antihyperglycemic 

properties of galegine, an alkaloid isolated from Galega officinalis, which is 

related in structure to metformin [422]. Sterne was the first to try metformin on 

humans for the treatment of diabetes and he coined the name "Glucophage" 

(glucose eater) for the drug [422, 423]. Metformin was approved in Canada in 

1972, but did not receive approval by the U.S. Food and Drug Administration 

(FDA) for treatment of type 2 diabetes until 1994. Glucophage was the first 

branded formulation of metformin produced under license by Bristol-Myers 

Squibb and marketed in the United States, in 1995 [424]. While phenformin and 

buformin were withdrawn from the market in the 1970s due to toxicity related to 

lactic acidosis, metformin (N’N’dimethylbiguanide) remains one of the most 

commonly prescribed drugs, with nearly 120 million prescriptions filled yearly 

worldwide [422, 425-427]. Metformin is safe and well tolerated and in addition to 

its efficacy in lowering glucose levels metformin has the clinical advantage of not 

inducing any risk of hypoglycemia [420, 421]. 

Mechanism of action 

The glucose lowering effect of metformin is mainly a consequence of 

reduced hepatic glucose production, increased insulin sensitivity, and glucose 

uptake by muscles and adipocytes resulting in decreased insulinemia [428-430].  

Metformin regulates expression of glucose transporters 1 and 4 in several 

tissues including skeletal muscle and adipocytes, thereby improving glucose 
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uptake [430-437]. At the cellular level metformin activates adenosine 

monophosphate kinase (AMPK) which is activated by increased intracellular 

levels of AMP and is considered as an energy sensor involved in regulating 

cellular metabolism [438, 439]. Metformin indirectly activates AMPK by 

disrupting complex I of the mitochondrial respiratory chain, which leads to 

decreased ATP synthesis and a rise in the cellular AMP: ATP ratio [440]. AMP 

allosterically activates AMPK and facilitates phosphorylation of its catalytic 

subunit by the upstream kinase liver kinase B1 (LKB1) - tumor suppressor gene 

[441]. Activated AMPK phosphorylates a number of downstream targets leading 

to production of ATP, such as fatty acid b-oxidation and glycolysis, and 

suppression of many pathways such as gluconeogenesis, protein and fatty acid 

synthesis and cholesterol biosynthesis [428, 429, 442, 443]. Some of these 

effects are achieved by AMPK-mediated transcriptional regulation of genes 

involved in gluconeogenesis in the liver and those encoding glucose transporters 

in the muscle [441, 442]. Consequently, metformin lowers fasting blood glucose 

in diabetics. Apart from the glucose transporters, a number of reports suggested 

that many organic cation transporters (OCT) are also involved in the 

pharmacokinetics and pharmacological effects of metformin [444, 445]. In 

vitro studies have revealed that metformin is a substrate of human OCT1, OCT2, 

multidrug and toxin extrusion 1 (MATE1), and MATE2 [446-449].  In humans, the 

plasma concentration and pharmacological activity of metformin were affected in 

individuals with genetic polymorphisms in OCT1 [450, 451]. Genetic variants 
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of OCT2 also affect the pharmacokinetics of metformin via altered renal 

excretion [452, 453].  

Oncologic applications of metformin: epidemiological evidence 

Several retrospective studies showed that there is increased cancer 

mortality in diabetes compared to nondiabetics; however diabetics on metformin 

had a lower cancer burden compared to diabetics on other treatments [454, 

455]. Evans et al. were the first to show that metformin treatment is associated 

with a reduced risk of all cancers [456]. A study which involved 10,309 diabetic 

patients, compared the incidence of cancer during treatment with insulin, 

metformin, or sulfonylureas (which increase insulin secretion), for a period of 5 

years. They found that patients treated with metformin had a significantly lower 

rate of cancer-related mortality compared with patients exposed to sulfonylureas 

or insulin [457].  Moreover the rate of pathologic complete response, defined as 

(absence of tumor in the removed tissue at time of surgery) in response to 

neoadjuvant chemotherapy in breast cancer, was higher among diabetic patients 

receiving metformin when compared to the non-metformin group [458].  

Mechanism of action of metformin as anticancer agent 

The anticancer activities of metformin are associated with both AMPK 

dependent and AMPK-independent pathways. Knockdown of AMPK rescues 

cells from metformin-induced growth inhibition [459, 460]. Similarly, compound 

C, a specific inhibitor of AMPK, partially reverses the antiproliferative effect of 

metformin in ovarian cancer cells [461]. Metformin treatment increased 
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phosphorylation/activation of AMPK, whereas no increase in phosphorylation 

was observed in MDA-MB-231 cells that do not express LKB1 gene [462]. 

Metfromin regulates the AMPK/mTOR pathway, which plays a major role in 

protein synthesis and cell proliferation [460].  However, mTOR is negatively 

regulated by AMPK, resulting in inhibition of cell growth. AMPK-dependent and 

independent suppression of mTOR pathway is possibly the most potent 

antineoplastic effects of metformin [463]. mTOR is a key regulator of cellular 

growth and integrate signals  from various hormonal signaling pathways 

including IGF-1R [464-466]. Metformin can inhibit IGF-1 signaling which 

transmits signal from IGF1R to PI3K pathway which in turn regulates mTOR 

[467-470]. AMPK functions to inhibit IGF-1-stimulated PI3K pathway activation 

[467]. This effect of AMPK could account for part of its inhibitory effect on cell 

proliferation [463, 471]. Apart from AMPK-dependent signaling, the anticancer 

activity of metformin can be independent of AMPK activation by inhibiting Rag 

GTPase-mediated activation of mTOR [472, 473]. The insulin lowering effects of 

metformin play major role in its anticancer activity since insulin has mitogenic 

and prosurvival effects and tumor cells often expresses IR and IGF-1R, which 

promote tumor growth [474-476].  

Metformin affects cancer cell metabolism 

Recent studies show that metformin specifically targets metabolic 

abnormalities in cancer cells [477]. Rapidly dividing tumor cells exhibit altered 

metabolism and metformin targets multiple pathways that play important role in 
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cancer cell metabolism [157, 478]. One of the key regulators of metabolic 

reprogramming in cancer cells is HIF-1α, a transcription factor promoting 

expression of glycolytic enzymes which plays major role in glycolysis [477]. 

HIF1α protein expression is dependent on mTOR in certain cellular contexts 

[479, 480] and pretreatment of prostate cancer cell lines with the mTOR 

inhibitor, rapamycin, inhibited accumulation of HIF-1α. Transfection of these 

cells with wild-type mTOR enhanced HIF-1α activation. Moreover HIF1α is 

regulated by S6 kinase which is a downstream effector of the mTOR pathway 

[481]. This link between HIF1α and mTOR could be one of the mechanisms by 

which metformin affects cancer cell metabolism.  

 Metformin decreases oxygen consumption and mitochondrial membrane 

potential in intact hepatocytes by inhibiting the respiratory chain complex I [440]. 

However, the mechanism by which metformin inhibits complex I is unknown. 

Inhibition of the PI3K pathway by specific inhibitors such as wortmannin or 

LY294002 and of the MAP kinase pathway by PD98059 did not affect the 

metformin-induced inhibition of respiration [440].  In addition to HIF 1 α, 

metformin also affects the mRNA levels of c-Myc which also plays a role in 

cancer cell metabolism [482]. Metfromin-induced downregulation of cMyc is 

through induction of microRNA- mir-33a [483]. An additional anti-neoplastic 

mechanism of metformin could be through its induced expression of DICER, an 

enzyme that is involved in microRNA synthesis since downregulation of DICER 

enhances epithelial to mesenchymal transition and breast cancer metastasis 
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[484]. Low expression of DICER in tumors predicts poor survival of breast, lung 

and ovarian cancer patients [485, 486]. The sequential modulation of DICER, 

microRNA-33a and c-Myc levels may partially explain the anticancer metabolic 

effects of metformin [483]. In addition to the glycolytic pathway, metformin also 

interferes with fatty acid metabolism by inhibiting fatty acid synthase (FAS) [487, 

488]. A high energy diet and insulin upregulate FAS expression [487] and 

metformin, reverses the stimulative effect of the high-energy diet on FAS 

expression in tumor tissue and due to decreased expression of mature SREBP-

1 which is a downstream effector of mTOR pathway [487]. 

Metformin in breast cancer 

Clinical and epidemiological evidence has linked hyperinsulinemia, insulin 

resistance and diabetes to breast cancer [60, 489]. Breast cancer incidence and 

death rates generally increase with age and according to the American Cancer 

Society, in 2013, 79% of new breast cancer cases and 88% of breast cancer 

deaths occur in women 50 years of age and older [490]. Approximately 15-20% 

of patients with breast cancer have diabetes [491] and two major risk factors for 

type 2 diabetes—old age and obesity—are also risk factors for breast cancer 

[490, 491]. Comparative cohort and case-control studies suggest that type 2 

diabetes may result in 10–20% excess risk of breast cancer [60, 489]. There is 

also increasing evidence that insulin, at physiologic concentrations, may play a 

clinically important role in breast cancer and may increase breast cancer 

recurrence and death [489, 492]. Breast cancers are usually classified according 
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to their expression of estrogen receptors (ER), progesterone receptors (PR), or 

human epidermal growth factor receptor 2 (HER2) [493-496]. Most of the current 

successful therapies for breast cancer, which include antiestrogen therapies, 

aromatase inhibitors, or Trastuzumab, target these receptors [497].  Triple-

negative breast cancers (TNBCs) which represent about 15% of breast cancer 

cases [498, 499] do not express any of these receptors and are thus more 

difficult to treat with existing therapies. In addition, TNBCs are more likely to 

metastasize which results in poorer prognosis [500] and prototypical TNBC cells 

such as MDA-MB-231 cells are highly aggressive and invasive in mouse models 

and are resistant to several anti-cancer agents [501].  

Several population-based studies and preclinical reports have revealed 

that treatment with the antidiabetic drug metformin is significantly associated 

with decreased breast cancer risk [456]. The effects of metformin in breast 

cancer could be due to several factors and these include decreasing levels of 

circulating glucose, and hyperinsulinemia which are factors associated with poor 

breast cancer prognosis. 

Effect of metformin in in vitro breast cancer models 

Based on the hormone receptor status of breast cancer cells, metformin 

treatment resulted in significant growth inhibition in estrogen receptor (ER)-

positive cell lines, but only partially inhibited growth of ER-negative celllines 

[502]. In contrast, another study reported that metformin inhibited cell 

proliferation (with partial S phase arrest), colony formation and induced 
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apoptosis in a dose- and time-dependent manner in TNBC breast cancer cell 

lines [503]. However the inhibitory effects of metformin in TNBC breast cancer 

cells were dependent on hyperglycemic growth conditions. Metformin did not 

inhibit the growth of MDA-MB- 231 cells cultured in hyperglycemic conditions but 

significantly inhibited growth when cells were cultured in decreased glucose 

levels. In addition, metformin treatment of MDA-MB-231 cells cultured in normal 

glucose conditions activated AMPK, and AMPK-dependent inhibition of multiple 

signaling pathways that control protein synthesis and cell proliferation and this 

was not observed in cells growing in hyperglycemic conditions [504]. Metformin 

decreased IGF-1R expression in both the HER2 positive (SKBR-3) and triple 

negative breast cancer cells (MDA-MB-468) more significantly at low glucose 

concentration (5 mmol/L) compared with higher glucose concentration (10 

mmol/L). In addition, significant changes in metformin-mediated gene expression 

related to apoptosis, cellular and metabolic processes and cell proliferation were 

observed in cells grown at low glucose levels compared to cells grown under 

high-glucose conditions [505]. This suggests that the anti-proliferative effects of 

metformin in diabetic breast cancer patients are enhanced by normal glucose 

levels [504, 505].  

Metformin decreased HER2 expression in HER2 – overexpressing breast 

cancer celllines [506]. HER2 regulates the Akt/mTOR/4E-BP1 pathway in in vitro 

and in vivo models of breast cancer [507] and phosphorylated Akt, mTOR, and 

4E-BP1 were positively associated with HER2 overexpression. Activation of 
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mTOR dependent protein translation is often detected in breast cancer 

specimens and this correlates with malignant progression and adverse 

prognosis. In addition, p-4EBP1 which is a downstream effector of mTOR is a 

negative prognostic factor and correlates with an increased grade of malignancy 

in breast tumors [508]. In MCF-7 breast cancer cells, which also overexpress 

HER2, metformin inhibited growth and this was associated with activation of 

AMPK and inhibition of mTOR and S6 kinase activation leading to decreased 

protein synthesis and inhibition of cell growth [459, 460, 506, 509].  

Despite therapeutic advances, including the development of the HER2-

specific monoclonal antibody - trastuzumab, patients with HER2 overexpressing 

tumors can develop resistance to trastuzumab and other HER2-targeted 

therapies and this may be due to  resistance of breast cancer stem cells in 

HER2- positive tumor [510, 511]. These tumor-initiating cells express the highest 

levels of HER2 [510] and metformin interacts synergistically with the anti-HER2 

monoclonal antibody trastuzumab to suppress self-renewal and proliferation of 

cancer stem/progenitor cells in HER2-positive breast cancer cells [512]. In  a 

trastuzumab resistant breast cancer model, metformin disrupted the  

HER2/IGFR complex and significantly  inhibited   proliferation and clonogenicity 

in the  resistant cells [513]. In preclinical studies, hyperactivation of the PI3K 

pathway has been linked to resistance to several targeted therapies including 

treatment with trastuzumab (Herceptin) and anastrazole [514-517].  A 

mamosphere based study reported that the combination of metformin and a 
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well-defined chemotherapeutic agent, doxorubicin, kills both breast cancer stem 

cells and non-stem cancer cells in culture [518]. Furthermore, this combinatorial 

therapy reduces tumor mass and prevents relapse much more effectively than 

either drug alone in a xenograft mouse model [518].  

Effect of metformin in in vivo breast cancer models 

Treatment of female transgenic HER-2/neu mice with metformin 

prolonged the mean life span by 8%, decreased the incidence and size of 

mammary adenocarcinomas in mice and increased the mean latency of the 

tumors in mice [519]. Similarly treatment of nude mice bearing tumor xenografts 

of the triple negative MDA-MB-231 cells, with metformin, significantly decreased 

tumor growth compared to controls [503]. Metformin pre-treatment, before 

injection of MDA-MB-231 cells, resulted in a significant decrease in tumor 

outgrowth and incidence [503]. Metformin also works in combination with a 

variety of chemotherapeutic agents [520, 521]. In mouse xenografts, injection of 

metformin and the chemotherapeutic drug doxorubicin near the tumor is more 

effective than either drug alone in blocking tumor growth and preventing relapse. 

These observations suggest that metformin can be used as a component of 

combinatorial therapies in a variety of clinical settings and this can decrease 

doses of cytotoxic chemotherapeutic agents administered to cancer patients 

[520]. This pre-clinical data showing the anti-neoplastic activity of metformin in 

all breast cancer subtypes as well as in drug resistant models provide a rationale 

for future clinical applications of metformin for breast cancer therapy. 
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Metformin in breast cancer clinical trials 
 

Preclinical studies suggest that metformin can be clinically useful in the 

prevention, preoperative, or adjuvant therapy for breast cancer. Metformin is 

being investigated using different approaches in clinical settings. Window trials 

help to evaluate prospective effects of compounds and several on-going window 

trials world-wide investigating the effects of metformin in breast cancer which 

have reported mixed results [522-528]. Tumor proliferation, as measured by ki-

67, is commonly evaluated in presurgical trials, since decreased ki-67 predicts 

breast cancer outcome [529-531]. Two metformin presurgical trials, observed a 

decrease in the ki-67 marker [532]. The first randomized clinical trial using 

metformin in breast cancer was reported in 2011 and used the preoperative 

window trial [527]. This trial randomized patients to receive metformin for 2 

weeks or watchful waiting for 2 weeks between diagnostic biopsy and definitive 

surgery.  The trial demonstrated a significant decrease in Ki-67, and other 

factors including the phosphoinositide 3-kinase (PI3K) pathway; serum insulin 

levels were also decreased in patients on metformin but not in controls [533, 

534].  Another clinical study which represents biomarker evidence for anti-

proliferative effects of metformin by pathway analysis, reported the 

downregulation of mTOR and AMPK pathways. In addition metformin treatment 

decreased expression of p53, BRCA1 and cell cycle pathway genes. Mean 

serum insulin remained unchanged in patients receiving metformin but were 

increased in control patients [527]. Moreover, long-term use of metformin in 
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diabetics is correlated with a lower breast cancer tumor stage [535]. Breast 

cancer patients with diabetes receiving metformin and neoadjuvant 

chemotherapy have a higher pathologic complete responses rate than observed 

in diabetics not receiving metformin [536, 537]. Overall, these prospective and 

preoperative window trials [527, 532-534] demonstrate that metformin is safe for 

treating women with primary breast cancer.  

Metformin in pancreatic cancer 

Pancreatic cancer patients often have a high prevalence (80%) of 

concurrent diabetes or impaired glucose tolerance (IGT) [538]. Diabetes in 

pancreatic cancer is characterized by peripheral insulin resistance [539] which is 

also associated with altered PI3K activity [540]. Various antidiabetic drugs can 

directly affect key factors mediating the association between diabetes and 

pancreatic cancer, and some of these medications impact pancreatic cancer 

development, progression and outcome [425]. Epidemiological studies 

conducted in diabetes cohorts or in cancer patients showed that metformin use 

was associated with reduced risk of cancer [541]. A hospital-based, case-control 

study reported that diabetics taking metformin had 62 to 80% decreased risk for 

pancreatic cancer, compared to diabetics using other agents [542]. Those on 

insulin or insulin secretagogues were more likely to develop solid cancers than 

those on metformin, and drug combinations with metformin abolished most of 

this excess risk. Specifically, metformin use was associated with lower risk of 

cancer of the colon and pancreas [543] and data from several retrospective 
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clinical studies suggest that metformin use was associated with better clinical 

outcomes in diabetic patients with cancer [536, 544]. Metformin use was an 

independent predictor of improved outcome in a retrospective study of 302 

diabetic patients with pancreatic cancers [545]. In an animal model, 

administration of metformin treatment completely prevented the development of 

carcinogen and diet induced pancreatic tumors [546]. The anti-neoplastic activity 

of metformin in a mouse xenograft model of pancreatic cancer has been 

associated with crosstalk between insulin receptor and G protein coupled 

receptor [547]. Several in vitro studies report that metformin affects different 

signaling pathways including inhibition of IGF-1R-mediated activation of mTOR 

in pancreatic cancer cells [425, 426, 547]. Metformin disrupts the crosstalk 

between insulin receptor and GPCR signaling systems in PANC-1 and 

MIAPaCa-2 pancreatic cancer cells through AMPK. Furthermore, administration 

of metformin inhibits the growth of PANC-1 and MIAPaCa-2 tumor xenografts in 

vivo [548]. The Hedgehog (Hh) signaling pathway is implicated as an early and 

late mediator of pancreatic cancer tumorigenesis [549] and overexpression of 

Sonic hedgehog (Shh), a ligand of the Hh signaling pathway, is a central 

mechanism underlying aberrant activation of this pathway. Activated Hh 

signaling maintains the stem cell population and promotes epithelial-to-

mesenchymal transition [550, 551]. Furthermore, Shh promotes neo-

vascularization in pancreatic cancers, acting as a paracrine signal [552] and 

hedgehog  protein and mRNA expression were suppressed by metformin in 
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BxPC3 cells [553].The remarkable success of metformin as an anticancer drug 

is undoubtedly due to its effects on multiple pathways and the studies reported 

in this thesis attempts to identify important underlying mechanisms of action of 

this drug which will facilitate future clinical applications of metformin for 

pancreatic cancer chemotherapy. 
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CHAPTER II 

METFORMIN INHIBITS PANCREATIC CANCER CELL AND TUMOR 

GROWTH AND DOWNREGULATES SP TRANSCRIPTION FACTORS * 

 

Introduction 

Metformin or N,N'-dimethyl biguanide is an oral hypoglycemic drug with a 

remarkable record of safety that has been prescribed worldwide for treatment of 

Type II diabetes, and metformin also protects against many other diseases [439, 

554, 555].  Metformin directly inhibits mitochondrial oxidative phosphorylation 

and decreases hepatic ATP pools required for gluconeogenesis [473, 556].  

Metformin also increases AMP and activates the AMP-activated protein kinase 

pathway which is important for maintaining cellular energy homeostasis under 

various stress conditions [557, 558].  There is also evidence that metformin-

induced mitochondrial effects and activation of the tumor suppressor gene liver 

kinase B1 (LKB1) may also play a role in the antidiabetic effects of metformin 

[430, 456]. 

The potential role of metformin as a cancer chemopreventive and 

chemotherapeutic agent became apparent in studies showing that diabetics 

using metformin exhibited decreased cancer rates compared to diabetics not 

using this drug [426, 454, 456, 536, 542, 559-563].  

                                                 
* Nair V, Pathi S, Jutooru I, Sreevalsan S, Basha R, Abdelrahim M, Samudio I, Safe S, Metformin 
inhibits pancreatic cancer cell and tumor   growth and downregulates Sp transcription factors, 
Carcinogenesis, 2013, 34, 12, 2870-2879, by permission of Oxford University Press. 



 

71 

 

Studies with cancer cells and in vivo models have confirmed the anticancer 

activity of metformin [564-566] and some of these reports have demonstrated 

inhibition of mTOR signaling.  For example, treatment of ovarian cancer cells 

with metformin induced a time- and dose-dependent increase in phosphorylation 

of AMPK and this was accompanied by decreased phosphorylation of the mTOR 

downstream kinases p70S6K and S6K [461]. 

Although inhibition of mTOR undoubtedly contributes to the anticancer 

activity of metformin, several reports show that metformin also affects 

responses/genes that may be independent of mTOR signaling.  For example, 

metformin decreased cyclin D1 and E2F1 and induced p27 in LNCaP prostate 

cancer cells, decreased bcl-2 protein expression in ovarian cancer cells, and 

enhanced polyADPribose polymerase (PARP) cleavage in breast cancer cells 

[564-566].  Metformin also inhibited NFB signaling and downregulated p65 

(NFB) in endometrial and breast cancer cell lines [567, 568].  Knockdown of 

specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in pancreatic and 

other cancer cell lines by RNA interference (RNAi) decreased expression of 

many of the same genes downregulated by metformin including bcl-2, cyclin D1 

and p65 (NFB) [366, 369, 371, 380, 392, 394, 395, 406, 408, 569-571].  

Moreover, Sp silencing also inhibited cancer cell growth and induced apoptosis 

and cleaved PARP, and similar results were observed for other anticancer 

agents such as curcumin and methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oic 

acid (CDDO-Me) which also downregulate Sp, Sp3 and Sp4 in pancreatic 
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cancer cells [369, 392, 406, 408, 570].  Based on these data, we hypothesized 

that the anticancer activity of metformin may also be due, in part, to 

downregulation of specificity protein (Sp) transcription factors which are 

overexpressed in pancreatic and other cancer cell lines[366, 369, 371, 380, 392, 

394, 395, 406, 408, 569-571].  Results of this study show that metformin induced 

downregulation of Sp1, Sp3 and Sp4 through proteasome-dependent and -

independent pathways in pancreatic cancer cells and tumors, and we also 

observed downregulation of several Sp-regulated genes.  Thus, the anticancer 

activity of metformin in pancreatic cancers is also due, in part, to downregulation 

of Sp transcription factors.   

Materials and methods 

Cell lines, antibodies, plasmids, and reagents 

Human pancreatic cancer cell lines Panc1 cells were purchased from 

American Type Culture Collection (Manassas, VA).  Cells were purchased more 

than 6 months ago and were not further tested or authenticated by the authors.  

Panc28 and L3.6pL pancreatic cancer cell lines were provided by The University 

of Texas M.D. Anderson Cancer Center and maintained as described [369, 395, 

406].  Sp1 antibody was purchased from Millipore (Temecula, CA); Sp3, Sp4, 

VEGF, survivin, bcl2, cyclin D1 and ubiquitin antibody (P4D1) were purchased 

from Santa Cruz Biotech (Santa Cruz, CA).  Fatty acid synthase (FAS) and 

ZBTB10 antibody was purchased from Cell Signalling (Danvers, MA) and Bethyl 

(Montgomery, TX), respectively.  MirVanaTM microRNA extraction kit, the reverse 



 

73 

 

transcription (RT) and real-time PCR amplification kits were purchased from 

Applied Biosciences (Foster City, CA).  ZBTB10 expression vector and empty 

vector (pCMV6-XL4) were purchased from Origene (Rockville, MD).  Metformin 

was purchased from Calbiochem (Darmstadt, Germany).  The mitogen-activated 

protein kinase phosphatase-5 (MKP-5) and MKP-1 expression plasmids were 

kindly provided by Dr. Donna Peehl (Stanford University, Stanford, CA) and Dr. 

Stephen M. Keyse (University of Dundee, Dundee, Scotland), respectively. 

Cell proliferation assay and annexin V staining.   

Panc28, Panc1 and L3.6pL pancreatic cancer cells (7.5 x 104 per well) 

were plated in 12-well plates and allowed to attach for 24 hr and growth 

inhibition (cell counting) by metformin was determined as described [369, 406].  

Apoptosis was analyzed by apoptotic and necrotic assay kit which contained 

FITC-Annexin-V, ethidium homodimer III, and Hoechst 3342.  All three 

pancreatic cancer cell lines (1 × 105) were seeded in 2-chambered cover glass 

slides and left to attach overnight.  The cells were treated with metformin for 18 - 

24 hr.  Apoptosis, necrotic and healthy cell detection kit was used according 

manufacturer’s protocol.  

Western blot analyses and immunoprecipitation 

All three pancreatic cancer cells (3 × 105) per well were seeded in 

DMEM/Ham's F-12 medium in six-well plates.  After 24 hr, cells were treated 

with different concentrations of metformin and/or GSH, gliotoxin for 36 hr.  Cell 

lysates were obtained as described [369, 406] and quantitated with Bradford 
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reagent.  For immunoprecipitation of ubiquitinated Sp proteins, Panc28 

pancreatic cancer cells were treated with metformin with or without gliotoxin.  

Whole-cell extracts for each treatment group were obtained using 2X STT lysis 

buffer [1 M TRIS (pH 7.5), 5 M NaCl, 0.5% Triton)] with the addition of protease 

inhibitor cocktail (1:1000).  Immunoprecipitation was carried out as previously 

reported [394].  Western blot analysis was determined as described [369, 406], 

and Immobilon western chemiluminescence substrates (Millipore, Billerica, MA) 

were used to develop images captured on a Kodak 4000 MM Pro image station. 

siRNA interference assay   

Panc28, Panc1 and L3.6pL pancreatic cancer cells were seeded (1 × 105 

per well) in six-well plates in DMEM/Ham's F-12 medium supplemented with 

2.5% charcoal-stripped FBS without antibiotic and left to attach for 24 hr.  

Knockdown of Sp1, Sp3 and Sp4 along with iLamin as control was carried out 

using Lipofectamine 2000 reagent according to the manufacturer's instructions.  

Small inhibitory RNAs were prepared by Sigma-Aldrich (St.  Louis, MO). 

Quantitative real-time PCR and luciferase assay 

Total RNA was isolated from Panc1 cells using the RNeasy Protect Mini 

kit (Qiagen, Valencia, CA) according to the manufacturer's protocol.  RNA was 

eluted with 40 l of RNase-free water and stored at -80C.  RNA was reverse 

transcribed using Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA) 

according to the manufacturer's protocol.  cDNA was prepared using a 

combination of oligodeoxythymidylic acid (Applied Biosystems, Foster City, CA), 
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dNTP mix and Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA).  

Each PCR was carried out in triplicate in a 20 l volume using SYBR Green 

Master mix (Invitrogen) for 15 min at 95C for initial denaturing, followed by 40 

cycles of 95C for 30 sec and 60C for 1 min in the 7500 fast real time PCR 

system (Applied Biosystems).  Values for each gene were normalized to 

expression levels of TATA-binding protein (TBP).  Primers were purchased from 

Integrated DNA Technologies.  The following primers were used: 

 1.  TBP (F):  5'-TGCACAGGAGCCAAGAGTGAA-3' 

 2.  TBP (R):  5'-CACATCACAGCTCCCCACCA-3' 

 3.  ZBTB10 (F):  5'-GCTGGATAGTAGTTATGTTGC-3' 

 4.  ZBTB10 (R):  5'-CTGAGTGGTTTGATGGACAGA-3' 

MirVanaTM miRNA extraction kit was used for the extraction of miRNA 

according to manufacturer’s protocol.  Quantification of miRNA (RNU6B and 

miRNA-27a) was determined with a Taqman miRNA kit (Applied Biosystems) 

according to the manufacturer’s protocol with real-time PCR.  U6 small nuclear 

RNA was used as a control to determine relative miRNA expression.  For 

luciferase assays, cells were transfected with various amounts of plasmids [i.e., 

miR-27a (400 ng) and -gal (40 ng)] and luciferase activity (normalized to -gal) 

was determined as described [369, 406].   

Orthotopic nude mice study and immunohistochemical staining 

Male athymic nude mice (NCI-nu) were housed and maintained under 

specific pathogen-free conditions in approved facilities.  L3.6pL cells were 
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harvested from subconfluent cultures by a brief exposure to 0.25% trypsin and 

0.02% EDTA and used to produce tumors.  Trypsinization was stopped with 

medium containing 10% fetal bovine serum, and the cells were washed once in 

serum-free medium and resuspended in HBSS.  Only suspensions consisting of 

single cells with >90% viability were used for the injections.  Injection of cells into 

the pancreas was done as described previously [406].  The remaining mice were 

divided into two groups (at least four animals per group) and treated (orally) with 

vehicle (control) or 250 mg/kg metformin daily.  Mice were sacrificed when 

moribund (4-5 weeks after injection), and body weights were recorded.  Primary 

tumors in the pancreas were excised, measured, and weighed.  For 

immunohistochemistry, tumor tissue specimens were fixed in 10% 

formaldehyde, embedded in paraffin and sectioned into 3 - 5 mm thick slices, 

and immunostaining was carried out essentially as described [395, 406].   

Results 

Treatment of Panc28, Panc1 and L3.6pL cells with 5-20 mM metformin 

for 48 or 72 hr significantly inhibited growth and IC50 values were 26, 30, and 18 

mM (48 hr) and 19, 24 and 14 mM (72 hr), respectively, in the three cell lines 

(Fig. 6A).  Significant growth inhibition was observed at  5 mM metformin and 

this was comparable to concentrations used in previous studies [564-566].  

However, in subsequent studies, we used higher concentrations at shorter time 

points to determine the primary pathways affected by metformin in pancreatic 

cancer cells.  Moreover, these experiments were carried out at higher cell  
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Figure 6 Metformin inhibits pancreatic cancer cell growth and induces apoptosis. 
 (A)  Panc28, Panc1 and L3.6pL cells were treated with DMSO and 5-20 M metformin for
48 and 72 hr, and cells were counted as outlined in the Materials and Methods.  Panc28
(B), Panc1 (C) and L3.6pL (D) cells were treated with 20 mM metformin for 18, 18 and 24
hr, respectively, and Annexin V staining was determined as outlined in the Materials and
Methods.  Results (A – D) are given as means  SE for 3 replicate determinations for
each treatment, and significant (p < 0.05) decrease in growth or induction of apoptosis is
indicated (*). 
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densities, and  Figure 12A shows that 20 mM metformin inhibited cell growth by 

only 20-25% and minimal toxicity was observed.  The effects of metformin on 

induction of apoptosis was investigated using Annexin V staining as an endpoint,  

and treatment with 20 mM metformin for 18 - 24 hr significantly enhanced 

Annexin V staining in Panc28, Panc1 and L3.6pL cells (Figs. 6B-6D), 

demonstrating that metformin inhibits growth and induces apoptosis in 

pancreatic cancer cells.  Previous studies show that metformin decreased bcl-2  

 

 
 
Figure 7: Metformin decreases expression of anti-apoptotic and Sp proteins. 
(A) Panc28, Panc1 and L3.6pL cells were treated with DMSO, 10 or 20 mM metformin for 36 hr, 
and whole cell lysates were analyzed by western blots as outlined in the Materials and Methods.  
Panc28 (B), Panc1 (C) and L3.6pL (C) cells were treated with DMSO, 10, 15 or 20 mM 
metformin for 36 hr, and whole cell lysates were analyzed by western blots as outlined in the 
Materials and Methods.   
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Figure 7. Continued 

 

 

and induced PARP cleavage in cancer cells [565, 566], and Figure 7A confirms 

that treatment of Panc28, Panc1 and L3.6pL not only decreased bcl-2 and 

induced PARP cleavage but also decreased expression of the antiapoptotic 

survivin protein.  Knockdown of Sp transcription factors by RNAi or agents that 

downregulate Sp1, Sp3 and Sp4 in pancreatic cancer cells induced apoptosis 

and decreased cell growth and migration and expression of Sp-regulated genes 

such as bcl-2, survivin, cyclin D1, VEGF, VEGFR1 and FAS [272, 369, 395, 406, 

571].  Figures 7B - 7D show that metformin also decreased expression of Sp1,  
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Figure 8: Mechanisms of metformin-induced downregulation of Sp proteins. 
 (A) Panc28, L3.6pL and Panc1 cells were treated with DMSO, 15 mM metformin, 5 mM 
glutathione (GSH), or their combination for 36 hr, and whole cell lysates were analyzed by 
western blots.  (B) The cell lines were treated with 15 mM metformin, 3 M gliotoxin, or their 
combinations for 36 hr, and whole cell lysates were analyzed by western blots.  (C) Panc28 cells 
were treated as described in (B) for 24 hr.  Whole cell lysates were immunoprecipitated with IgG 
and antibodies against Sp1, Sp3 and Sp4, and the immunoprecipitate was analyzed for 
ubiquitinated proteins by western blots.  (D) Panc28 cells were treated with DMSO, 15 mM 
metformin and 0.35 ng/ml LMB alone or in combination, and cytosolic and nuclear extracts were 
isolated and analyzed by western blots as described in the Materials and Methods. 
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Figure 8. Continued. 
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Sp3 and Sp4 and Sp-regulated cyclin D1, VEGF1, VEGFR1 and FAS proteins in 

Panc28, Panc1 and L3.6pL cells; cyclin D1 was also downregulated in Panc1 

and L3.6pL but not Panc28 cells where regulation of cyclin D1 was Sp-

independent.  The effects of metformin on cell growth inhibition, induction of 

apoptosis, and downregulation of Sp proteins and Sp-regulated genes are 

comparable to responses observed after Sp knockdown by RNAi in these cell 

lines and demonstrate that this pathway plays a role in the anticancer activity of 

metformin [369, 392, 406, 408, 571]. 

The mechanisms of drug-induced downregulation of Sp1, Sp3 and Sp4 in 

pancreatic cancer cells are drug-dependent and include activation of 

proteasomes and induction of ROS [369, 392, 395, 406].  Treatment of Panc28, 

L3.6pL and Panc1 cells with 15 mM metformin for 36 hr decreased expression of 

Sp1, Sp3 and Sp4 proteins and cotreatment with the antioxidants GSH and/or 

DTT did not attenuate the metformin-induced effects in these cell lines (Fig. 8A).  

In contrast, metformin-induced downregulation of Sp1, Sp3 and Sp4 in Panc28 

and L3.6pL cells was attenuated after cotreatment with the proteasome inhibitor 

gliotoxin (Fig. 8B), whereas gliotoxin did not block Sp-degradation in Panc1 

cells.  Using Panc28 cells as a model, we observed that after treatment with 

metformin alone or metformin plus gliotoxin for 24 hr, cell lysates 

immunoprecipitated with antibodies against Sp1, Sp3 or Sp4 and exhibited 

increased formation of multiple bands after staining with ubiquitin antibodies 

(Fig. 8C).  These results were similar to that previously observed for the non-
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steroidal antiinflammatory drug (NSAID) tolfenamic acid in pancreatic cancer 

cells [395].  A recent report showed sumoylation of Sp1 increased proteasome-

dependent degradation by inducing nuclear to cytosolic export of Sp1 [572] and 

therefore, we investigated the effects of metformin on degradation of Sp1, Sp3 

and Sp4 in the absence or presence on Leptomycin B (LMB), an inhibitor of 

nuclear export (Fig. 8D).  In untreated cells, Sp1, Sp3 and Sp4 were exclusively 

found in nuclear extracts, and treatment with metformin alone or in combination 

with LMB resulted in downregulation of Sp1, Sp3 and Sp4, demonstrating that 

the degradation process was nuclear and not dependent on export of Sp1, Sp3 

and Sp4 to the cytosol. 

Like metformin, the triterpenoid anticancer agent CDDO-Me also 

decreased Sp1, Sp3, Sp4 and Sp-regulated genes in Panc1 cells due to 

downregulation of miR-27a and induction of the transcriptional repressor 

ZBTB10 which is regulated by miR-27a [406].  Metformin also significantly 

decreased miR-27a levels in Panc1 cells (Fig. 9A) and decreased luciferase 

activity in cells transfected with a construct containing the +36 to -603 region of 

the miR-27a promoter (Fig. 9B).  Metformin-mediated downregulation of miR-

27a was accompanied by increased expression of ZBTB10 mRNA levels (Fig. 

9C), and there was a time-dependent induction of ZBTB10 protein 6 - 24 hr after 

treatment followed by decreased expression after 24 - 36 hr.   
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Figure 9: Metformin disrupts mir-27a:ZBTB10 in Panc1 cells.  
(A) Panc1 cells were treated with 10 or 20 mM metformin for 36 hr, and miR-27a expression was 
determined by real time PCR as outlined in the Materials and Methods.  Significant (p < 0.05) is 
indicated (*).  (B) Panc1 cells were transfected with the miR-27a-luc construct, treated with 10 or 
2 mM metformin for 36 hr, and luciferase activity determined as outlined in the Materials and 
Methods.  Significant (p < 0.05) inhibition is indicated (*).  (C) Panc1 cells were treated with 10 or 
20 mM metformin for 36 hr (mRNA) or different times and analyzed for RNA or protein by real 
time PCR or western blots, respectively, as outlined in the Materials and Methods.  Significant (p 
< 0.05) inhibition is indicated (*).  (D) Panc1 cells were transfected with wild-type and mutant 
ZBTB10(3'-UTR)-luc, treated with 10 or 20 mM metformin, and luciferase activity determined as 
outline in the Materials and Methods.  Significant (p < 0.05) inhibition is indicated (*).  
Quantitated results in (A) – (D) are means � SE for 3 replicate determinations for each treatment 
group.   
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Figure 9: Continued 

 

 

Similar time- dependent induction of ZBTB10 has also been observed for other 

compounds (data not shown).  Metformin also increased luciferase activity in 

Panc1 cells transfected with a 3'-UTR (ZBTB10)-luc construct containing a miR-

27a binding site, whereas induction was not observed using the 3'-UTR 

(ZBTB10)-luc construct with mutations in the miR-27a binding sequence (Fig. 

9D).  These results were consistent with those previously observed with CDDO-

Me in Panc 1 cells [406]; however, in contrast to CDDO-Me, metformin-induced 

repression of Sp transcription factors was ROS-independent (Fig. 8A).   

Drugs such as curcumin and thiazolidinediones that downregulate Sp 

proteins [369, 573] also induce the dual specificity phosphatases MKP-5 and 

MKP-1 [574, 575], and recent studies show that MKP-1 overexpression 

decreases Sp1 in breast cancer cells [576].  Therefore, we initially investigated  
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Figure 10 Role of phosphatases in metformin-induced repression of Sp proteins. 
 (A) SOV inhibits metformin-induced responses.  Panc1 cells were treated with 15 mM metformin 
alone or in combination with 20 M SOV.  Sp proteins and RNA levels were determined by 
western blots and real time PCR, respectively, as outlined in the Materials and Methods.  (B) 
Metformin induces MKP-1 and MKP-5.  Panc1 cells were treated with 15 mM metformin, and 
mRNA and protein levels were determined as outlined in (A).  (C) MKP-1 and MKP-5 disrupt 
miR-27a:ZBTB10.  Panc1 cells were transfected with MKP-1 or MKP-5 expression plasmids or 
treated with metformin in the presence or absence of transfected siCtl or siMKP-1 or siMKP-5, 
and RNA or protein levels were determined as outlined in (A).  (D) MKP-1 and MKP-5 
expression downregulates Sp proteins.  MKP-1 or MKP-5 was overexpressed in Panc1 cells and 
whole cell lysates were analyzed by western blots as outlined in the Materials and Methods.  
Significant (p < 0.05) induction (A, B) or inhibition (A, C) is indicated (*). 
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Figure 10. Continued 
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the role of metformin-induced phosphatase activity on Sp downregulation using 

the phosphatase inhibitor sodium orthovanadate (SOV).  Results in Figure 10A 

show that 15 M SOV significantly inhibited metformin-induced downregulation 

of Sp1, Sp3 and Sp4 and also blocked downregulation of miR-27a and induction 

of ZBTB10 in Panc1 cells cotreated with metformin plus SOV.  Interestingly, 

SOV alone increased miR-27a levels but did not affect ZBTB10 expression.  We 

also showed that metformin induced MKP-1 and MKP-5 mRNA and protein 

expression in Panc1 cells (Fig. 10B).  Moreover, overexpression of MKP-1 or 

MKP-5 decreased miR-27a and increased ZBTB10 protein expression and 

knockdown of MKP-1 (siMKP-1) or MKP-5 (siMKP-5) attenuated induction of 

ZBTB10 by metformin (Fig. 10C).  Overexpression of MKP-1 or MKP-5 

decreased expression of Sp1, Sp3 and Sp4 proteins (Fig. 10D), thus confirming 

a critical role for these metformin-induced phosphatases in downregulating Sp 

proteins through modulation of miR-27a:ZBTB10.  We also examined the 

possible role of LKB-AMPK in mediating activation of MKP-1/MKP-5; however, 

metformin induced both phosphatases in the presence or absence of the 

AMPK inhibitor compound C (Fig. 12B). 

The in vivo anticancer activity of metformin was investigated in an 

orthotopic model of pancreatic cancer in which L3.6pL cells are injected directly 

into the pancreas of athymic nude mice [395].  Previous in vivo xenograft studies  

with Panc1 cells reported that 250 mg/kg/d inhibited tumor growth [548] and, 

therefore, we used this dose in this study with the highly aggressive L3.6pL  
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Figure 11: Metformin inhibits pancreatic (L.36pL) tumor growth and downregulates Sp proteins 
invivo. (A) Mice bearing L3.6pL cells in the pancreas were treated with corn oil (control) or 250 
mg/kg/d metformin.  At the end of the treatment (28 d), pancreatic tumor volumes and weights 
were determined as outlined in the Materials and Methods.  (B) Lysates from a portion of each 
tumor were analyzed by western blots and quantitated (relative to -actin; control values set at 
100%) as outlined in the Materials and Methods.  Significant (p < 0.05) decreases in protein in 
tumors from metformin-treated mice compared to controls are indicated (*).  (C) Immunostaining 
of tumors from control and metformin-treated mice for FAS expression was carried out as 
outlined in the Materials and Methods.  H&E staining of tumors from control and treated mice did 
not exhibit any striking morphological differences. 
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cells.  Metformin (250 mg/kg) was administered daily for 28 days after injection 

of the cancer cells, and treatment with metformin significantly decreased tumor 

volume and weight compared to control animals (Fig. 11A) and this was not 

accompanied by changes in body weight or evidence for toxicity (data not 

shown).  Analysis of tumor lysates from control and metformin-treated mice 

showed some variability in expression of Sp1, Sp3 and Sp4 proteins; however, 

there was a significant decrease in protein levels in tumors from mice treated 

with metformin (Fig. 11B).  Moreover, immunohistochemical analysis (Fig. 11C) 

confirmed decreased staining of FAS in tumors from the metformin-treated 

animals.  Results of the in vivo and in vitro studies demonstrate that metformin-

induced downregulation of Sp transcription factors also contributes to the in the 

anticancer activity of this antidiabetic drug; however, this does not exclude other 

pathways including mTOR inhibition or decreased mitogen expression.   

Discussion 

Pancreatic cancer is the fourth major cause of cancer deaths and it is 

estimated that in the United States over 43,920 new cases of pancreatic cancer 

will be diagnosed and there will be 37,390 deaths from this disease in 2012 

[577].  Risk factors for pancreatic cancer include obesity and diabetes and both 

of these conditions are interrelated since obesity is also a risk factor for Type II 

diabetes.  It was reported that diabetic patients using metformin had a 

significantly lower risk for pancreatic cancer than patients using other 

antidiabetic drugs [542].  Results reported for metformin in this study were  
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Figure 12: Inhibition of L3.6pL cell proliferation by metformin. 
 A) Cells (150,000/well) were seeded in 12-well plates and treated with metformin. After 24 or 48 
hr, cells were counted as described in the Materials and Methods.  Significant (p < 0.05) growth 
inhibition is indicated (*).  B) Inhibition of AMPK.  Panc1 cells were treated with DMSO or 20 
mM metformin in the presence or absence of 5 mM compound C for 24 hr.  Whole cell lysates 
were analyzed by western blots as outlined in the Materials and Methods. 

 

 

comparable to those observed for the NSAID tolfenamic acid and the 

experimental anticancer agent CDDO-Me in pancreatic cancer cell lines [395, 

406].  Both of these compounds downregulate Sp1, Sp3 and Sp4 transcription 

factors which are overexpressed in pancreatic cancer cells and also 

downregulated several Sp-regulated genes associated with cell proliferation 

(cyclin D1), metabolism (FAS), apoptosis (bcl-2 and survivin), and angiogenesis 

(VEGF and VEGFR1) [395, 406, 571].  The growth inhibitory and apoptotic 

responses induced by tolfenamic acid and CDDO-Me in pancreatic cancer cells 

are also observed after knockdown of Sp1, Sp3 and Sp4 (individually and 

combined) by RNAi [369, 392, 406, 408, 570], confirming that drug-induced 
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downregulation of Sp transcription factors contributes to their anticancer activity.  

Results summarized in Figures 6 and 7 demonstrate that metformin inhibited 

pancreatic cancer cell growth, induced apoptosis, and downregulated Sp 

transcription factors and Sp-regulated genes.  Similar results were also 

observed in vivo (Fig. 11), suggesting that the anticancer activity of metformin 

was also due, in part, to downregulation of Sp transcription factors.   

Tolfenamic acid induces proteasome-dependent degradation of Sp1, Sp3 

and Sp4 in Panc1 cells, whereas the effects of CDDO-Me are due to induction of 

ROS and ROS-dependent induction of the Sp repressor ZBTB10 through 

downregulation of miR-27a [395, 406].  Metformin activated the proteasome 

pathway in Panc28 and L3.6pL cells (Fig. 8) and these effects were comparable 

to those observed for tolfenamic acid in pancreatic cancer cells [395].  Moreover, 

tolfenamic acid and metformin inhibited pancreatic tumor growth and 

downregulated Sp1, Sp3 and Sp4 protein expression in an orthotopic model for 

pancreatic cancer in which L3.6pL cells were injected directly into the pancreas 

(Fig. 11).  Metformin-mediated activation of the proteasome pathway in Panc28 

cells was accompanied by enhanced ubiquitination of Sp1, Sp3 and to a lesser 

extent Sp4 (Fig. 8B) and, based on results of cotreatment with leptomycin B 

(Fig. 8C), the action of the proteasomes was nuclear, whereas, in HeLa cells, 

sumoylation of nuclear Sp1 and subsequent nuclear export are key factors in 

proteasome (cytosolic)-dependent degradation of this transcription factor [572].  
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The mechanisms of activation of nuclear proteasomes by metformin are 

currently being investigated.   

Previous studies in pancreatic and other cancer cell lines [406] have 

identified a transcriptional pathway for Sp downregulation that involves drug-

induced ROS and ROS-dependent downregulation of miR-27a and induction of 

ZBTB10 which is a transcriptional repressor that competitively binds GC-rich 

sequences to inactivate gene expression [366, 406].  Although both CDDO-Me 

and metformin decreased miR-27a, induced ZBTB10, and decreased expression 

of Sp-transcription factors, the effects of metformin in Panc1 cells were not 

reversed after cotreatment with antioxidants, indicating a proteasome and ROS-

independent mode of action for Sp downregulation by metformin in this cell line.   

Previous reports showed that compounds, such as curcumin and 

rosiglitazone that induced MKP-5 and MKP-1, respectively, in prostate and 

glioma cells [574, 575], also downregulated Sp1 and other Sp proteins in cancer 

cell lines [369, 408, 573, 575].  Moreover, a recent study also showed that 

overexpression of MKP-1 in breast cancer cells decreased Sp1 protein [576].  

Based on these reports, we showed that metformin induced MKP-1 and MKP-5 

expression in Panc1 cells (Fig. 10B), and the role of induced phosphatases in 

mediating metformin-induced downregulation of Sp proteins was confirmed by 

showing the inhibitory effects of SOV (Fig. 10A) and by demonstrating that MKP-

1 and MKP-5 overexpression also downregulates Sp1, Sp3 and Sp4 (Fig. 10D).  

Induction of phosphatases also plays a critical role in metformin-mediated 
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disruption of miR-27a:ZBTB10 (Fig. 10A) and the subsequent downregulation of 

Sp proteins, and the mechanism of MKP-1- and MKP-5 induction by metformin 

and the role of phosphatases in downregulation of miR-27a is currently being 

investigated.   

Results of this study demonstrate that metformin downregulates Sp 

transcription factors and pro-oncogenic Sp-regulated genes including FAS in 

pancreatic cancer cells and tumors and this is consistent with previous studies 

showing that metformin downregulates several Sp-regulated genes [564-567].  

Although mTOR and Sp transcription factors regulate some common genes, 

mTOR activation did not affect Sp1, Sp3 or Sp4 expression and silencing Sp 

transcription factors did not alter mTOR expression (data not shown); however, 

other interactions between mTOR and Sp proteins are currently being 

investigated in pancreatic cancer cells.  Since silencing of Sp1, Sp3 and Sp4 in 

pancreatic cancer cells results in growth inhibition and induction of apoptosis 

[369, 392, 406, 571], the anticancer activity of metformin which also 

downregulates Sp proteins is due, in part, to downregulation of these 

transcription factors.  Results of this study will facilitate development of clinical 

applications of metformin alone or in combined therapies since several Sp-

regulated genes (FAS, survivin) are associated with radiation and drug-

resistance.  
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CHAPTER III 

MECHANISM OF METFORMIN-DEPENDENT INHIBITION OF MTOR AND 

RAS ACTIVITY IN PANCREATIC CANCER 

 

Introduction 

The anti-diabetic drug metformin has been successfully used for 

treatment of type II diabetes and there is increasing evidence that metformin is 

an anticancer agent that exhibits both chemopreventive and chemotherapeutic 

activities [425, 426, 578, 579]. It has been shown that cancer rates in diabetics 

using metformin are lower than in patients using other insulin sensitizing agents 

[426, 456, 536, 545, 559-561, 580, 581]. In one report, the overall survival of 

type II diabetic patients with colorectal cancer was 76.9 months for individuals 

treated with metformin compared to 56.9 months for those receiving other 

diabetic medications and this represented a 30% improvement in overall survival 

[580]. A comparable study in pancreatic cancer patients showed that diabetics 

using metformin had a 32% lower risk of death and longer overall survival than 

diabetics using other drugs [545]. This latter paper recommended using 

metformin as a supplemental therapy for treatment of pancreatic cancer patients 

[545]. 

 The potential clinical applications for metformin in cancer chemotherapy 

also stems from reports on the anticancer activities of this drug in cancer cells in 

culture and in in vivo models [425, 426, 461, 467, 548, 564-568, 578, 579, 582-
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589]. Metformin inhibits growth and induces apoptosis and other antineoplastic 

responses in multiple cancer cell lines and this is accompanied by modulation of 

different pathways and genes. Several studies demonstrate that metformin 

activates AMPK which results in the inhibition of the mTOR signaling pathway 

and downstream effects [461, 467, 567, 583-589] and this compliments one of 

the proposed mechanisms of action of metformin as an antidiabetic drug [430, 

590]. Studies in this laboratory reported a novel mechanism of action for 

metformin in pancreatic cancer cells.  This involved downregulation of specificity 

protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-

regulated genes such as bcl2, fatty acid synthase (FAS), survivin, vascular 

endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1) [591]. The 

anticancer activities of metformin are also similar to that observed after 

knockdown of Sp1 or all three Sp proteins by RNA interference in cancer cells 

and this includes growth inhibition, induction of apoptosis, reversal of EMT and 

decreased migration/ invasion [358, 369, 392, 406, 571]. Metformin also inhibits 

NFB, decreases cyclin D1 and ErbB2 in cancer cell lines [564-567], and these 

gene products are also decreased after Sp1, Sp3 and Sp4 silencing by RNAi or 

by other drugs that downregulate Sp proteins [358, 369, 392, 406, 571]. 

However, the relationship between metformin-induced downregulation of Sp1, 

Sp3 and Sp4 and modulation of mTOR signaling has not been reported, except 

that mTOR protein expression is unaffected by silencing of Sp transcription 

factor in pancreatic cancer cells [591]. 
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 Results of this study demonstrate novel findings indicating that metformin-

induced antineoplastic activities are primarily due to downregulation of Sp1, Sp3 

and Sp4 transcription factors (TFs) in pancreatic cancer cells. Firstly, treatment 

with metformin or silencing Sp transcription factors downregulated insulin-like 

growth factor-1 receptor (IGF-1R) which in turn inhibited activation of mTOR. 

Secondly, treatment with metformin or silencing Sp transcription factors by RNA 

interference (RNAi) decreased epidermal growth factor receptor (EGFR) 

expression resulting in inhibition of RAS activity which is regulated by EGFR in 

pancreatic cancer cells [592, 593]. Thus, metformin-dependent inhibition of both 

mTOR signaling and RAS activity is due to downregulation of Sp transcription 

factors in pancreatic cancer.   

Materials and methods 

Cell lines, antibodies, and reagents 

Human Panc1 pancreatic cancer cells were purchased from American 

Type Culture Collection (Manassas, VA). Panc28 and L3.6pL pancreatic cancer 

cells were provided by The University of Texas M.D. Anderson Cancer Center. 

All three cell lines were maintained in DMEM/F-12 (Sigma, St. Louis, MO) 

supplemented with 0.22% sodium bicarbonate, 0.022% bovine serum albumin, 

5% fetal bovine serum, and 10 ml/l of 100X antibiotic, antimycotic solution 

(Sigma) at 37C in the presence of 5% CO2. Sp1 antibody was purchased from 

Millipore (Temecula, CA); Sp3 and Sp4 antibodies were purchased from Santa 

Cruz Biotech (Santa Cruz, CA). Fatty acid synthase (FAS), RAS, p-mTOR, 
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mTOR, p4EBP, 4EBP, S6 ribosomal protein and phospho S6 ribosomal protein 

were purchased from (Cell Signalling Technology, Danvers, MA). Metformin was 

purchased from Calbiochem (EMD Millipore, Billerica, MA). Chemiluminescence 

reagents (Immobilon Western) for western blot imaging were purchased from 

Millipore (Billerica, MA). Active RAS detection assay kit was purchased from 

(Cell Signaling Technology, MA). Nuclear and cytoplasmic extraction kit was 

purchased from (Thermo Scientific, Pittsburgh, PA). 

Cell proliferation assay 

Panc28 and L3.6pL pancreatic cancer cells (3 x 104 per well) were 

seeded in 12-well plates with 2.5% charcoal-stripped FBS and allowed to attach 

for 24 hr and treated with different concentrations of NVP-BEZ235, a Dual 

PI3K/mTOR Inhibitor. Cells were then trypsinized and counted after 24 and 48 hr 

using a Coulter Z1 cell counter. Each experiment was determined in triplicate, 

and results are expressed as mean  SE for each set of experiments.  

Nuclear and cytoplasmic extraction and western blot   

Panc28 and L3.6pL cells (3 x 105) per well were seeded in DMEM/ Ham's 

F-12 medium in six-well plates. After 24 hr, cells were treated with different 

concentrations of metformin. Nuclear and cytoplasmic contents were extracted 

using Nuclear and Cytoplasmic Extraction kit (Thermo Scientific, Pittsburgh, PA) 

according to manufacturer’s protocol. Cells were lysed using high-salt lysis 

buffer containing 50 mmol/l N-2-hydroxyethylpiperazine-NꞋ-2-ethanesulfonic 

acid, 0.5 mol/l sodium chloride, 1.5 mmol/l magnesium chloride, 1 mmol/l 
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ethyleneglycol-bis(aminoethylether)-tetraacetic acid, 10% (vol/vol) glycerol, 1% 

Triton X-100 and protease inhibitor cocktail, 1:1000 (Sigma). Lysates were 

collected and vortexed every 15 min for 1 hr, centrifuged at 20,000 x g for 10 

min at 4C and quantified with Bradford reagent. Western blot analysis was 

carried out by separating the proteins by sodium dodecyl sulphate-

polyacrylamide gel (SDS-PAGE) at 120V for 4 hr. Proteins were then transferred 

onto polyvinylidene difluoride (PVDF) membranes (Biorad, Hercules, CA) by wet 

electroblotting, and membranes were blocked with 5% milk in TBST buffer 

containing 1.576 g/l Tris, 8.776 g/l sodium chloride and 0.5 ml/l Tween 20. The 

PVDF membranes were then probed with primary antibodies, followed by 

incubation with horseradish peroxidase-conjugated secondary antibodies. 

Immobilon western chemiluminescence substrates (Millipore, Billerica, MA) were 

used to develop the membrane and images were captured on a Kodak 4000 MM 

Pro image station. 

siRNA interference assay 

Panc28, Panc1 and L3.6pL pancreatic cancer cells were seeded (1 × 105 

per well) in six-well plates in DMEM/Ham's F-12 medium supplemented with 

2.5% charcoal-stripped FBS without antibiotic and left to attach for 24 hr. 

Knockdown of Sp1, Sp3 and Sp4 along with iLamin as control was carried out 

using Lipofectamine 2000 reagent according to the manufacturer's instructions 

and as previously described [369]. Small inhibitory RNAs were prepared by 

(Sigma-Aldrich, St. Louis, MO). 
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Active RAS detection assay  

Pancreatic cancer cells (Panc28 and L3.6pL) (3 x 105) per well were 

seeded in Dulbecco’s modified Eagle’s medium/Ham’s F-12 medium in six-well 

plates. After 24 hr, cells were treated with or without metformin (15 mM) for 36 

hr. Cells were harvested under non-denaturing conditions and rinsed with ice 

cold PBS. Cells were lysed using lysis buffer. Affinity precipitation of active RAS 

was performed using active RAS detection assay kit according to manufacturer’s 

protocol. Cell lysates (500 g) were treated with GTP or GDP to activate or 

inactivate RAS which act as a positive and negative control, respectively. The 

lysates were then incubated with GST-Raf1-RBD fusion protein in glutathione 

resin. The eluted samples were electrophoresed and immunoblotted using RAS 

mouse monoclonal antibody.  

Orthotopic nude mice study and immunohistochemical staining  

Male athymic nude mice (NCI-nu) (at least 4 per treatment group) were 

injected with suspensions of L3.6pL cells consisting of single cells with >90% 

viability directly into the pancreas as previously described [571, 591]. Mice were 

treated (orally) with vehicle (control) or 250 mg/kg metformin daily and sacrificed 

4 - 5 weeks after injection and body weights were recorded. Primary tumors in 

the pancreas were excised, measured and weighed. For immunohistochemistry, 

tumor tissue specimens were fixed in 10% formaldehyde embedded in paraffin 

and sectioned into 3 - 5 mm thick slices. In this study, we used slides generated 

from orthotopic tumor model [591].  Slides were deparaffinized with xylene, 
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dehydrated with alcohol, and rinsed with distilled water. After antigen retrieval, 

sections were incubated with following primary antibodies: anti-p-mTOR 

antibody (1:500, Cell signaling, 2971), anti-IGF-1R antibody (1:100, Cell 

signaling, 3027), overnight at 4C. Slides were then incubated with horseradish 

peroxidase-conjugated secondary antibody (30 min) and large volume HRP 

polymer (45 min) for sections incubated with p-mTOR and IGF-1R primary 

antibody, respectively. The substrate DAB was added followed by hematoxylin 

counter-staining. After dehydration, the slides were soaked in xylene for 3 - 5 

min. Immunostaining of IGF-1 receptor was carried out using Lab vision 

autostainer (Thermo Scientific, Pittsburgh, PA). Sections from normal pancreas 

were used as positive control. The negative control sections were incubated with 

antibody dilution buffer without primary antibody.  

Results  

Metformin and Sp downregulation inhibit mTOR signaling 

 Figure 13A shows that NVP-BE235, an mTOR and PI3 kinase inhibitor, 

also decreases proliferation of Panc28 and L3.6pL cells, and similar results were 

observed after treatment with 15 mM metformin. Treatment of Panc28 and 

L3.6pL cells with 50 nM  NVP-BE235 decreased activation (phosphorylation) of 

both mTOR and AKT and 5 - 20 mM metformin also inhibited phosphorylation of 

mTOR and AKT (Fig. 13B), demonstrating that like NVP-BE235, metformin  

blocks mTOR signaling in pancreatic cancer cells. Similar results were observed 

in Panc1 cells; however, in this cell line metformin also decreased total mTOR  
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Figure 13: Effects of metformin and PI3 kinase inhibitor on mTOR signaling.  
 (A) Inhibition of Panc28 and L3.6pL cell proliferation. Cells were treated with 50 and 100 nM of 
NVP-BE235 (PI3 kinase inhibitor) or 15 mM metformin and effect on cell growth were 
determined after 24 and 48 hr as described in the Materials and Methods. (B) NVP-BE235- and 
metformin-mediated downregulation of phosphorylated mTOR and AKT. Panc28 and L3.6pL 
cells were treated with 50 nM NVP-BE235 or metformin (5, 10 and 20 mM) for 36 hr and cell 
lysates were analyzed by western blot analysis. (C) Metformin decreased expression of p-mTOR 
and p-AKT expression in pancreatic tumors.  Immunostaining of phospho-mTOR in normal 
pancreas (panels a and b), orthotopic pancreatic tumor tissue (panels c and d) and tumor tissue 
treated with metformin (panels e and f). (D) Lysates from tumors of 4 mice were analyzed by 
western blot analysis and quantified (relative to -actin; control values set at 100%) as outlined 
in the Materials and Methods. Significant (P < 0.05) decrease in protein expression in tumors 
from metformin treated mice compared with controls is indicated (*).  
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Figure 13. Continued. 

 

 

and Akt protein levels (Fig. 19A). Immunostaining of pancreatic tumors and 

normal pancreatic tissue from an orthotopic mouse model using L3.6pL cells 

[591] also showed that the enhanced staining of phospho-mTOR in tumors was 

decreased in pancreatic tumors from mice treated with metformin (Fig. 13C). 

Moreover, western blot analysis showed that phospho-AKT and phospho-mTOR 

decreased in tumors from mice treated with metformin compared to vehicle 

treated mice (Fig. 13D). The lack of a significant decrease in phospho-mTOR 

was due to a single animal outlier. 

 Knockdown of Sp transcription factors by RNAi did not decrease 

expression of mTOR protein in pancreatic cancer cells [591]; however, there is  
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Figure 14: Effects of metformin and Sp knockdown on mTOR signaling. 
 (A-D) Knockdown of Sp proteins or treatment with metformin decreased 
activation/phosphorylation of mTOR and AKT. Panc28 and L3.6pL cells were transfected with 
siRNA against Sp1, Sp3, and Sp4 or treatment with metformin (5, 10, 20 mM) and whole cell 
lysates were analyzed by western blot analysis. iLamin was used as control oligonucleotide. 
Results (A, B) were quantified and are given as mean ± SE for three replicate determinations for 
each treatment group and a significant (p< 0.05) decrease in expression of phospho-mTOR and 
phospho AKT are indicated (*). 
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Figure 14. Continued.  

 

 

evidence from RNAi studies that Sp TFs regulate activation of kinases such as 

AKT [348] and, therefore, we further investigated the effects of Sp silencing on 

inhibition of mTOR and downstream kinases. Figure 14A shows that in Panc28 

cells transfected with oligonucleotides targeting Sp1 (iSp1), Sp3 (iSp3) and Sp4 

(iSp4), there was specific knockdown of the individual Sp proteins as previously 

described [369] and this was accompanied by decreased expression of 

phospho-mTOR and AKT but not total mTOR and AKT proteins. A similar  
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Figure 15 Effects of metformin and Sp knockdown on lipogenic gene products 
 Knockdown of Sp proteins or metformin downregulated expression of phospho- SREBP-1c and 
FAS. (A, B) Panc28 and L3.6pL cells were treated with 5, 10 and 20 mM metformin and 
expression of phospho-SREBP-1c was analyzed in whole cell lysates and cytosolic and nuclear 
extracts. (C, D) Cells were transfected with iLamin, iSp1, iSp3, iSp4 or cocktail of (iSp1, iSp3 
and iSp4) and expression of pSREBP-1c and Fas were analyzed by western blot analysis. 
Results (D) were quantitated and shown as mean  SE for three replicate determinations. A 
significant (p< 0.05) decrease in FAS protein expression is indicated (*). 
 

 

approach was used for L3.6pL cells (Fig. 14B) and silencing of Sp1, Sp3 and 

Sp4 also decreased phosphorylated mTOR and AKT indicating that all three Sp 

transcription factors regulated activation of both kinases. A comparison of the 

effects of metformin with Sp silencing showed that both treatments decreased 

activation (phosphorylation) of mTOR-regulated S6RP and 4EBP gene products 

in Panc28 (Fig. 14C) and L3.6pL cells (Fig. 14D). 

 



 

107 

 

 

Figure 15. Continued 

 

These results suggest that metformin-induced downregulation of Sp1, 

Sp3 and Sp4 plays a role in inhibiting activation of the mTOR pathway. 
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Figure 16: Effects of metformin and IGF-1R knockdown on mTOR signaling. 
(A) Metformin downregulated IGF-1R expression. Panc28 and L3.6pL cells were treated with 5, 
10 and 20 mM metformin and expression of IGF-1R was analyzed by western blot analysis. (B, 
C) RNA interference with iIGF-1R decreased mTOR signaling and cell proliferation.  Panc28 and 
L3.6pL cells were transfected with siRNA against lamin or IGF-1R and cell lysates were 
analyzed by western blot analysis (B, C). (D) Knockdown of Sp proteins decreased expression of 
IGF-1R. Cells were transfected with iLamin, iSp1, iSp3, iSp4 or cocktail of (iSp1, iSp3 and iSp4) 
and expression of IGF-1R were analyzed by western blot analysis.  (E) Effects on cell 
proliferation were determined after 48 hr as described in Materials and Methods. Results are 
expressed as the mean  SE for at least three separate determinations and significant (p< 0.05) 
decrease in IGF-1R protein expression (D) and growth inhibition (E) are indicated (*). 
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Figure 16. Continued 

 

Metformin and Sp downregulation inhibit lipogenic genes 

mTOR activation is also important for lipogenesis and enhances cleavage 

of sterol regulatory element binding protein 1(SREBP-1) to give the cleaved 

(active) transcription factor SREBP-1c which in turn regulates expression of fatty 

acid synthase (FAS) [594-596]. Treatment of Panc28 cells with metformin 

decreases SREBP-1c expression in both nuclear and cytosolic fractions (Fig. 

15A) and similar results were observed in L3.6pL cells (Fig. 15B). It has been 

previously reported that both SREBP-1c and FAS are Sp1-regulated genes in 

breast and colon cancer cells [272] and silencing of Sp1, Sp3, Sp4 or all 3 

proteins combined (iSp1/3/4) in Panc28 and L3.6pL decreased expression of 

phosphorylated SREBP-1c, whereas total SREBP-1c expression was only 
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slightly decreased by some but not all of the treatments (Fig. 15C). This 

suggests that in pancreatic cancer cells, SREBP-1c is not directly regulated by 

Sp transcription factors and the observed decrease in phospho- SREBP-1c is 

due to inactivation of mTOR by Sp silencing (Figs. 14A and 14B). FAS protein 

expression is also decreased by metformin in pancreatic and other cancer cell 

lines [272, 591] and we observed that silencing of Sp transcription factors in 

Panc28 and L3.6pL (Fig. 15D) cells also decreased FAS expression. Thus, the 

decreased expression of FAS by metformin is due to both direct effects from the 

loss of Sp proteins and also by decreased activation of SREBP due to inhibition 

of by mTOR.  

Metformin inhibits activation of mTOR through downregulation of IGF-1R 

 IGF-1R and other growth factor receptors are upstream activators of 

mTOR in pancreatic cancer cells [467, 586, 597] and IGF-1R is essential for 

proliferation of pancreatic cancer cells [597].  It has been reported that IGF-1R 

expression is regulated by Sp1 in some cancer cell lines [339, 348, 592]. Figure 

16A shows that metformin decreases IGF-1R expression in Panc28 and L3.6pL 

cells and the role of IGF-1R in regulating the mTOR pathway was investigated 

by silencing of IGF-1R by RNAi in Panc28 and L3.6pL cells. Downregulation of 

IGF-1R in these cells resulted in decreased phosphorylation of mTOR and AKT 

(Fig. 16B) and this was accompanied by decreased phosphorylation of S6RP 

and SREBP-1c and decreased expression of FAS protein (Fig. 16C). These 

results confirm the important role of IGF-1R in regulating mTOR and are  
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Figure 17: Effects of metformin and Sp knockdown on EGFR expression and RAS activation. 
 (A) RNA interference with siEGFR, decreased cell proliferation. Cells were transfected with 
siRNA against lamin or EGFR and cells were counted after 48 hr as described in the Materials 
and Methods. (B)  Metformin decreased EGFR expression. Panc28 and L3.6pL cells were 
treated with 5, 10 and 20 mM metformin and expression of EGFR was analyzed by western blot 
analysis. (C) Knockdown of Sp proteins decreased expression of EGFR. Cells were transfected 
with iLamin, iSp1, iSp3, iSp4 or cocktail of (iSp1, iSp3 and iSp4) and expression of EGFR were 
analyzed by western blot analysis. (D, E) Metformin or knockdown of Sp proteins and EGFR 
decreased levels of active Ras (Ras GTP). Panc28 and L3.6pL cells were treated with or without 
metformin or transfected with small inhibitory RNA for lamin or Sp (cocktail of iSp1, iSp3, iSp4) 
(D) or (iEGFR) (E). Levels of RasGTP were determined using active Ras detection assay. GTP 
or GDP act as positive and negative controls, respectively. Activated Ras was quantified and 
normalized to total Ras levels. Results are expressed as the mean  SE for at least three 
separate determinations and significant (p< 0.05) growth inhibition (A), decrease in EGFR 
expression (C) and decreased Ras activity (D) are indicated (*).   
 

 

 

 



 

112 

 

 

 

Figure 17. Continued 
 

 

consistent with inhibition of mTOR by metformin through downregulation of IGF-

1R.  Transfection with iSp1, iSp3, iSp4 or iSp1/3/4 oligonucleotides also 

decreased IGF-1R expression in pancreatic cancer cells, confirming that IGF-1R 

is an Sp-regulated gene that is downregulated by metformin (Fig. 16D). The 

overall contribution of IGF-1R to cell proliferation was confirmed by knockdown 

of IGF-1R by RNAi which significantly decreased Panc28 and L3.6pL cell growth 

(Fig. 16E). Thus, inhibition of mTOR activation by metformin in pancreatic  
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Figure 18: Role of phosphatases in metformin mediated downregulation of mTOR signaling. 
 (A, B) Phosphatase inhibitor reversed metformin-mediated downregulation of mTOR signaling. 
Panc28 and L3.6pL cells were pretreated with phosphatase inhibitor, sodium orthovanadate 
(SOV) (20 M) for 45 min followed by treatment with 15 mM of metformin for 36 hr and whole 
cell lysates were analyzed by western blots. (C) Proposed mechanism of action of metformin in 
pancreatic cancer.  
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cancer cells is due to metformin-induced downregulation of Sp1, Sp3, Sp4 and 

the Sp-regulated IGF-1R gene.  

 Immunostaining and western blot analysis of pancreatic tissue from  

orthotopic mouse model using L3.6pL cells [591] showed intense IGF-1R 

expression in tumor tissue sections from control animals (Fig. 20A, panels a, b 

and c). On the other hand, IGF-1R expression was reduced in the metformin-

treated groups (Fig. 20A, panels d and e). However, the immunoreactivity was 

only minimally changed in tissues from one of the metformin-treated animals 

(Fig. 20A, panel f) and similar results were observed in western blots (Fig. 20B). 

In normal pancreas, IGF-1R expression was moderate in ductal cells and acinar 

cells were devoid of IGF-1R staining. 

Metformin and Sp downregulation target EGFR- RAS signaling 

 The EGFR is essential for K-RAS signaling and subsequent Ras-

dependent pancreatic cancer cell growth [592, 593]. Like IGF-1R, knockdown of 

EGFR by RNAi also decreased proliferation of L3.6pL and Panc28 cells (Fig. 

17A) and this is consistent with the role of the EGFR-RAS pathway in pancreatic 

cancer cell proliferation [592, 593]. It has previously been reported that 

metformin decreases EGFR expression in pancreatic cancer cells [598] and 

similar results were observed in Panc28 and L3.6pL cells treated with metformin 

(Fig. 17B). The importance of metformin-mediated downregulation of Sp 

transcription factors in decreasing EGFR was confirmed by RNAi where 

knockdown of Sp1 or all three Sp proteins (iSp1/3/4) significantly decreased  
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Figure 19: Effect of metformin on Panc1 cells and role of phosphatases on regulating Sp 
downregulation.  (A) Panc1 cells were treated with metformin (5 and 10 mM) for 36 hr and cell 
lysates were analyzed by western blot analysis. (B) Panc28 and L3.6pL cells were pretreated 
with phosphatase inhibitor, sodium orthovanadate (SOV) (20 M) for 45 min followed by 
treatment with 15 mM of metformin for 36 hr and whole cell lysates were analyzed by western 
blots. 
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EGFR protein levels in Panc28 and L3.6pL cells (Fig. 17C).  Downregulation of 

EGFR by Sp knockdown was not observed in cells transfected with iSp4 and 

silencing Sp3 decreased EGFR only in L3.6pL cells, showing that Sp1 is the 

major regulator of EGFR expression and this has been reported in other cancer 

cell lines [340, 348].  

 The effects of metformin and Sp silencing on RAS activity was 

determined using an active RAS detection assay and treatment of Panc28 and 

L3.6pL cells with metformin or transfection of these cells with iSp1/3/4 

(combined) decreased active RAS GTP levels (Fig. 17D) and similar results 

were observed after silencing EGFR (iEGFR) by RNAi in Panc28 and L3.6pL 

cells (Fig. 17E). Thus, metformin-induced downregulation of Sp1, Sp3, Sp4 and 

Sp-regulated IGF-1R and EGFR genes resulted in inhibition of both the mTOR 

and RAS pathways in pancreatic cancer cells and metformin also decreased 

IGF-1R and EGFR expression in pancreatic tumors from an orthotopic mouse 

model (Fig. 20B). 

 Previous studies showed that metformin-induced downregulation of Sp 

transcription factors in pancreatic cancer cells was dependent on induction of 

mitogen-activated protein kinase phosphatase 1 (MKP1) and MKP5 and this 

response was blocked by the phosphatase inhibitor sodium orthovanadate 

(SOV) [591] (Fig. 19B). Results in Figure 18A show that SOV also blocks 

metformin-mediated inhibition of mTOR and Akt phosphorylation and also 

phosphorylation of 4EBP and S6RP (Fig. 18B) in Panc28 and L3.6pL cells.  
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Figure 20: Immunostaining of IGF-1R. (A) Orthotopic pancreatic tumor tissue (panels a, b and c) 
and orthotopic tumor tissue treated with metformin (panels d, e and f) was probed for IGF-1R by 
immunohistochemistry analysis as described in Materials and Methods. (B) Lysates from tumors 
of mice were analyzed by western blot analysis and quantified (relative to -actin; control values 
set at 100%) as outlined in the Materials and Methods.  
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These results confirm that an important underlying mechanism of action 

of metformin in pancreatic cancer cells was due to downregulation of Sp 

transcription factors, and the Sp-regulated IGF-1R and EGFR genes which 

results in the inhibition of mTOR and RAS pathways as illustrated in Figure 18C. 

Discussion 

 Pancreatic cancer is a highly aggressive disease which is not readily 

detected in its early stages and the 1- and 5-year overall survival rates are 26 

and 6%, respectively [599]. Improvements in pancreatic cancer patient survival 

will depend on development of reliable biomarkers for early stage disease and 

on improved therapies for treating patients with early and late stage disease. 

Pancreatic tumors are complex and heterogeneous and typically express 

activated pro-oncogenic factors including RAS and receptor tyrosine kinases 

and mutations of tumor suppressor genes. Recent studies report that diabetic 

cancer patients on metformin exhibit improved outcomes compared to patients 

taking other antidiabetic drugs [545] and this has spurred interest in possible 

clinical applications of metformin for cancer therapy. One of the hallmarks of 

metformin action is associated with inhibition of the mTOR signaling in both 

cancer and non-cancer tissues and cells [461, 467, 567, 583-589]. For example, 

metformin inhibited constitutive and induced activation of mTOR in several 

pancreatic cancer cell lines and the inhibitory effects were higher in cells grown 

in normal 5 mM glucose compared to cells cultured in 25 mM glucose [467, 587, 

588]. It has also been reported that metformin suppress the IGF-1R and mTOR 
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signaling in pancreatic cancer cells and this contributes to the antineoplastic 

activity of this agent [467].  

 Studies in this laboratory recently reported that metformin decreased 

expression of Sp1, Sp3 and Sp4 transcription factors in pancreatic cancer cells 

and this was accompanied by decreased expression of several pro- oncogenic 

Sp-regulated growth promoting (cyclin D1) prosurvival (bcl2 and survivin) and 

angiogenic (VEGF and VEGFR1) gene products [591]. The effects of metformin 

on Sp transcription factors and Sp-regulated genes coupled with results of 

several RNAi studies (Sp knockdown) in pancreatic and other cancer cell lines 

suggest that the antineoplastic activity of metformin is due, in part, to 

downregulation of Sp transcription factors which are highly expressed in 

pancreatic cancer cells. Moreover, high Sp1 expression in pancreatic tumors is a 

prognostic factor for decreased pancreatic cancer patient survival [600]. It has 

also been reported that knockdown of Sp1, Sp3 and Sp4 also decreased 

expression of receptor tyrosine kinases and phosphorylation of other kinases 

such as Akt [348] and in this study we initially investigated the role of metformin-

induced downregulation of Sp transcription factors on the mTOR pathway.    

Metformin inhibited phosphorylation of mTOR and Akt in Panc28 and 

L3.6pL cells (Fig. 13B) and this was accompanied by decreased activation of 

downstream kinases (S6RP and 4EBP) (Fig. 14C and 14D) and decreased 

formation of the cleaved (and activated) form of SREBP (Figs. 15A-15B). These 

results confirm that metformin inhibits mTOR signaling as previously observed in 
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other studies [594-596]. However, knockdown of Sp1, Sp3 and Sp4 also 

decreased activation of mTOR and mTOR-regulated kinases/genes, suggesting 

that inhibition of mTOR by metformin is due, in part, to Sp downregulation. We 

previously observed that metformin-induced downregulation of Sp1, Sp3 and 

Sp4 was phosphatase-dependent in Panc1 cells [591] and similar results were 

observed in colon cancer cell lines that were treated with a synthetic 

cannabinoid (WIN 55,2212-2) that also decreases expression of Sp transcription 

factors [358]. Moreover the effects of both metformin and WIN 55,212-2 on 

expression of Sp1, Sp3, and Sp4 were inhibited in cells cotreated with the 

phosphatase inhibitor SOV and similar results were observed in Panc28 and 

L3.6pL cells treated with SOV (Fig. 19B). SOV also reversed the inhibitory 

effects of metformin on mTOR signaling (Figs. 18A and 18B), further confirming 

a role for metformin-dependent downregulation of Sp TFs as an important 

pathway for mTOR inhibition. 

 Rescue experiments of metformin-induced Sp downregulation and Sp-

dependent genes/responses by overexpression of Sp1 and other Sp 

transcription factors are problematic since Sp1 induces apoptosis [601], even 

though it regulates survival genes (survivin) and responses. Therefore, we 

further investigated selected Sp-regulated genes (and their knockdown) that 

significantly contribute to pancreatic cancer growth and survival. Receptor 

tyrosine kinases play a particularly important role in the pancreatic cancer/tumor 

phenotype since IGF-1R is an upstream activator of mTOR [467, 586-588] and 
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the EGFR is required for RAS activation [592, 593]. Both the IGF-1R and EGFR 

contain GC-rich promoters and are regulated by Sp1 in some cancer cell lines 

[339, 340, 348]. Knockdown of Sp TFs (alone or combined) by RNAi in Panc28 

and L3.6pL cells clearly demonstrates that both receptors are Sp-regulated 

genes in pancreatic cancer cells (Figs. 16D and 17C). Thus, metformin induced 

downregulation of the Sp-regulated genes IGF-1R and EGFR in L3.6pL and 

Panc28 cells (Figs. 16A and 17B) is critical for inhibition of mTOR and RAS 

activity, respectively, and the role of these receptors in regulating these 

pathways was also confirmed by RNAi (Figs. 16 and 17).  

 The antineoplastic activities of metformin in cancer cell lines includes the 

inhibition of several pathways and genes that are important for cancer cell 

proliferation, survival, migration and invasion [461, 467, 548, 564-568, 582-589].  

A recent study [591] reported that metformin downregulates Sp1, Sp3 and Sp4 

and several pro-oncogenic Sp-regulated genes such as bcl2, FAS, survivin, 

VEGF and VEGFR1 in pancreatic cancer cells [591].  In this paper, we now 

demonstrate that inhibition of mTOR signaling and RAS activation by metformin 

is also due to decreased expression of the Sp-regulated upstream RTKs IGF-1R 

and EGFR, respectively.  Thus, Sp transcription factors are not only important as 

prognostic factors for pancreatic cancer patients but also regulate multiple pro-

oncogenic pathways/genes in pancreatic cancer cells.  These results suggest 

that drugs such as metformin and other agents [348, 358, 369, 392, 406, 571, 
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591] that target Sp1, Sp3 and Sp4 represent a class of new mechanism-based 

drugs that can be used in combination therapies for treating this deadly disease. 
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CHAPTER IV 

METFORMIN INHIBITS BREAST CANCER CELL PROLIFERATION AND 

DOWNREGULATES SP TRANSCRIPTION FACTORS 

 

Introduction 

Clinical and epidemiological evidence has linked hyperinsulinemia, insulin 

resistance and diabetes to breast cancer and approximately 15-20% of patients 

with breast cancer have diabetes. The two major risk factors for type 2 diabetes; 

old age and obesity, are also risk factors for breast cancer [36, 60, 489, 491]. 

Several epidemiological studies have demonstrated that among diabetic patients 

with breast cancer, there was a decreased incidence of cancer-related mortality 

in patients taking metformin when compared to patients on other anti-diabetic 

drugs [456, 522, 602-605]. Moreover, among diabetic breast cancer patients 

taking neoadjuvant therapy for early stage breast cancer, pathological complete 

response rates were significantly increased in patients taking metformin [536]. 

The short term use of metformin in pre-surgical trials has resulted in promising 

signs of efficacy suggesting that applications of metformin in drug combinations 

may be a potential clinical approach for treating breast cancer [525, 527, 528, 

530-533, 536]. The experimental laboratory and animal model studies on 

metformin compliment the epidemiological findings and show that this anti-

diabetic drug is a highly effective anti-cancer agent (reviewed in [477, 606, 607]) 

Mechanistic studies have identified several genes and pathways that are 
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modulated by metformin and this include inhibition of mTOR signaling, 

decreased expression of cell cycle genes, decreased activation of kinases such 

as Akt and downregulation of ErbB2 [426, 459, 460, 502-504, 506, 509, 512, 

513, 566, 608]. Some of the differences observed for metformin-induced 

responses in breast cancer cells may be due, in part, to cell context; Moreover, 

possible underlying mechanisms of action of metformin in breast cancer cells 

are not well-defined. Studies in this laboratory have demonstrated that specificity 

protein (Sp) transcription factors, Sp1, Sp3, Sp4 are over expressed in multiple 

cancer cell lines and tumors including breast cancer cells [392] [348, 351, 363, 

367-371, 373-375, 380, 395, 399, 406-408, 571, 609-612]. Knockdown of Sp-

proteins inhibits cancer cell growth, survival and angiogenesis [369, 406, 408] 

and this is correlated with decreased expression of growth-promoting receptor 

tyrosine kinases and cyclin D1, survival genes (bcl2 and survivin), vascular 

endothelial growth factor (VEGF) and its receptor [348, 369, 380, 406, 408]. 

Several anti-neoplastic agents including reactive oxygen species (ROS)-

inducing drugs, non-steroidal anti-inflammatory drugs (NSAIDS) and other 

natural products and their synthetic derivatives decrease expression of Sp1, 

Sp3, and Sp4 in cancer cells and tumors [351, 363, 371, 373-375, 380, 406, 

612]. Moreover, recent studies with metformin in pancreatic cancer cells and 

tumors show that metformin also decreases expression of Sp proteins and pro-

oncogenic Sp-regulated genes [591]. In this study, we have investigated the 

effects of metformin on Sp1, Sp3, Sp4, and Sp-regulated genes in breast cancer 
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cells and the role of this response in mediating the anti-neoplastic activity of 

metformin. The results clearly showed that metformin downregulates expression 

of Sp1, Sp3, Sp4 and Sp-regulated genes (survivin, VEGF, and cyclin D1). 

Moreover, both metformin and knockdown of Sp1, Sp3, and Sp4 by RNA 

interference (RNAi) inhibit mTOR signaling in MDA-MB-231, SKBR3 and BT474, 

breast cancer cells and these results complement our studies in pancreatic 

cancer cells (Chapter III) showing that Sp TFs play a role in mTOR activation 

and drugs such as metformin that targets these TFs represent a novel class of 

mTOR inhibitors.  

Materials and methods 

Cell lines, antibodies, and reagents 

 Human breast cancer cell lines MDA-MB-231, BT474 and SKBR3 cells 

were purchased from American Type Culture Collection (Manassas, VA). All 

three cell lines were maintained in DMEM/F-12 (Sigma,St. Louis, MO) 

supplemented with 0.22% sodium bicarbonate, 0.022% bovine serum albumin, 

10% fetal bovine serum, and 10 ml/l of 100X antibiotic, antimycotic solution 

(Sigma) at 37˚C in the presence of 5% CO2. Sp1 antibody was purchased from 

Millipore (Temecula, CA), Sp3 and Sp4 antibodies were purchased from Santa 

Cruz Biotech (Santa Cruz, CA).  pmTOR, mTOR, p4EBP, 4EBP, S6 ribosomal 

protein and phospho S6 ribosomal protein was purchased from (Cell Signalling 

Technology, Danvers MA).  Metformin was purchased from Calbiochem (EMD 
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Millipore, Billerica, MA). Chemiluminescence reagents (Immobilon Western) for 

western blot imaging were purchased from Millipore (Billerica, MA). 

Cell proliferation assay  

MDA-MB-231, BT474 and SKBR3 breast cancer cells (10 x 104 per well) 

were seeded in 12-well plates with 2.5% charcoal-stripped FBS and allowed to 

attach for 24 h and treated with different concentrations of NVP-BEZ235, a dual 

PI3K/mTOR inhibitor and or metformin. Cells were then trypsinized and counted 

after 24 and 48 hours using a coulter Z1 cell counter. Each experiment was 

determined in triplicate, and results were expressed as mean ± SE for each set 

of experiments.  

Annexin V staining  

Apoptosis was analyzed by apoptotic and necrotic assay kit, which 

contained fluorescein isothiocyanate–annexin-V, ethidium homodimer III and 

Hoechst 3342. All three breast cancer cell lines (1 × 105 per well) were seeded in 

two-chambered cover glass slides and left to attach overnight. The cells were 

treated with metformin (10mM) for 18–24 h. Apoptosis, necrotic and healthy cell 

detection kit was used according to manufacturer‘s protocol.  

Small interfering RNA interference assay and western blot analysis  

BT474 and SKBR3 breast cancer cells were seeded (1 × 105 per well) in 

six-well plates in DMEM/Ham's F-12 medium supplemented with 2.5% charcoal-

stripped FBS without antibiotic and left to attach for 24 hr. Knockdown of Sp1, 

Sp3 and Sp4 along with ilamin as control was carried out using Lipofectamine 
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2000 reagent according to the manufacturer's instructions and as described  

previously [369]. Small inhibitory RNAs were prepared by (Sigma-Aldrich, St. 

Louis MO). Cells  were lysed using high-salt lysis buffer containing 50 mmol/l N-

2-hydroxyethylpiperazine-NꞋ-2-ethanesulfonic acid, 0.5 mol/l sodium chloride, 

1.5 mmol/l magnesium chloride, 1 mmol/l ethyleneglycol-bis(aminoethylether)-

tetraacetic acid, 10% (vol/vol) glycerol, 1% Triton X-100 and protease inhibitor 

cocktail, 1:1000 (Sigma). Lysates were collected and vortexed every 15 min for 

1 hour, centrifuged at 20,000 X g for 10 min at 4oC and quantified with Bradford 

reagent. Western blot analysis was carried out by separating the proteins by 

sodium dodecyl sulphate-polyacrylamide gel (SDS- PAGE) at 120V for 4 hours. 

Proteins were then transferred onto polyvinylidene difluoride (PVDF) 

membranes (Biorad, Hercules, CA) by wet electroblotting and  membranes were 

blocked with 5% milk in TBST buffer containing 1.576 g/l Tris, 8.776 g/l sodium 

chloride and 0.5 ml/l Tween 20. The PVDF membranes were then probed with 

primary antibodies, followed by incubation with horseradish peroxidase-

conjugated secondary antibodies. Immobilon western chemiluminescence 

substrates (Millipore, Billerica, MA) were used to develop the membrane and 

images were captured on a Kodak 4000 MM Pro image station.  
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Results  

The effects of metformin were initially investigated in triple-negative MDA-

MB-231 cells and two cell lines that overexpress the ErbB2 oncogene, SKBR3 

and BT474 cells. Cells were treated with 5, 10, and 15 mM metformin for 24 and 

48 hr and significant growth inhibition with time-dependent trends observed in 

SKBR3 and BT474 after treatment for 24 and 48 hrs (Fig. 21A). In contrast,  

 

 
 
 

 

 

 

 

Figure 21 Metformin inhibits breast cancer cell growth and induces apoptosis. 
 (A)  MDA-MB-231, SKBR3 and BT474 cells were treated with DMSO and 5-20 M metformin for
24 -72 hr, and cells were counted as outlined in the Materials and Methods.  MDA-MB-231 (B),
SKBR3 (C) and BT474 (D) cells were treated with 10 -15 mM metformin for 24 hr, and Annexin V
staining was determined as outlined in the Materials and Methods.  Results (A – D) are given as
means  SE for 3 replicate determinations for each treatment, and significant (p < 0.05) decrease in
growth or induction of apoptosis is indicated (*). 
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Figure 21: Continued 
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metformin treatment only slightly decreased growth of MDA-MB-231 cells during 

24-48 hr. However, significant growth inhibition was observed after 72 hr. The 

slow rate of growth inhibition was previously reported for this cell line [502]. 

Treatment of MDA-MB-23, BT474, and SKBR3 cells with 10-15 mM metformin 

for 24 hr significantly increased Annexin V staining in all three cell lines 

demonstrating induction of apoptosis (Fig.21B to 21D) 

  

 

 

Figure 22: Metformin decreases expression of anti-apoptotic and Sp proteins. 
(A), SKBR3 (B) and BT474 (C) cells were treated with or without 1 - 10 mM metformin for 36 hr, 
and whole cell lysates were analyzed by western blots as outlined in the Materials and Methods. 
(D)  MDA-MB-231 and SKBR3 cells were treated with 10 mM metformin alone or in combination 
with 5 M and 2.5 M of SOV respectively and whole cell lysates were analyzed by western blot 
analysis.  
 

 

 



 

131 

 

 

 

Figure 22: Continued 

 

 

Metformin decreased expression of Sp1, Sp3, and Sp4 in pancreatic 

cancer cells [591] and results in figure 22A show that treatment of MDA-MB-231 

cells with 0-10 mM metformin for 36 hr caused a dose-dependent decrease in 

expression of Sp1, Sp3, and Sp4 proteins. In addition, we also observed that 

metformin induced PARP cleavage, a marker of apoptosis and expression of 

survivin, VEGF and cyclin D1 which have previously been identified as Sp-

regulated genes [591]. We also observed that 5-10 mM metformin also 

decreased expression of Sp1, Sp3, Sp4, and Sp-regulated gene products in the 

ErbB2-overexpressing SKBR3 and BT474 cell lines (Figures 22B and 22C). 

Previous studies in pancreatic cancer cells showed that metformin-induced 

downregulation of Sp proteins was phosphatase dependent and inhibited by the  



 

132 

 

 

 

Figure 23: Effects of Sp knockdown on cell proliferation and Sp-regulated genes. 
 (A) SKBR3 and BT474 cells were transfected with siRNA against Sp1, Sp3, and Sp4 and whole 
cell lysates were analyzed by western blot analysis. iLamin was used as control oligonucleotide. 
(B) SKBR3 and BT474 cells were transfected with iLamin (control), small inhibitory RNAs iSp (combined 
iSp1, iSp3 and iSp4) and after 72 h cells were counted as outlined in the Materials and Methods. (C)  Cells 
were transfected with the appropriate oligonucleotide and after 72 h, whole cell lysates were obtained and 
expression of survivin, cyclin D1 and VEGF were analyzed in whole cell lysates by western blot analysis. 
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Figure 23: Continued 
 

 

phosphatase inhibitor, sodium orthovanadate (SOV) [591]. Co-treatment of 

MDA-MB-231 and SKBR3 cells with metformin plus SOV resulted in the 

inhibition of metformin-induced downregulation of Sp1, Sp3, Sp4 proteins 

(Figure 22D) confirming that induction of phosphatases was critical for 

decreasing Sp protein expression as previously observed in pancreatic cancer 

cells [591]. SOV and phosphatase inhibitors were toxic to BT474 cells and this 

was not further investigated in this cell line.  
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Figure 24: Effects of metformin and Sp knockdown on ErbB2 and YY1. 
 (A, B) SKBR3 and BT474 cells were transfected with siRNA against Sp1, Sp3, and Sp4 or 
treatment with metformin (0, 5, 10 mM) and whole cell lysates were analyzed by western blot 
analysis. iLamin was used as control oligonucleotide. 
 

 
 

 Metformin is an effective inhibitor of ErbB2-overexpressing cancer cells 

and tumor initiating cells and our studies focused on the role of metformin-

induced downregulation of Sp proteins in mediating the anti-neoplastic effects of 

this compound. Figure 23A shows that transfection of SKBR3 and BT474 cells 
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with small inhibitory RNAs targeting Sp1 (iSp1), Sp3 (iSp3), Sp4 (iSp4), and 

their combination (iSp1/3/4) effectively decreased expression of their 

corresponding proteins in both cell lines. However, in SKBR3 cells, transfected 

with iSp1, we observed not only downregulation of Sp1, but also Sp3 (lower 

molecular weight band) and Sp4 and this autoregulation has previously been 

observed in same cell lines since the Sp3 and Sp4 promoters are GC-rich and 

these genes can be regulated by other Sp proteins such as Sp1 [613] . Results 

in Figure 23B show that knockdown of Sp proteins (Sp1/3/4 combined) in 

SKBR3 and BT474 cells decreased cell proliferation and knockdown of 

individual Sp proteins decreased expression of Sp-regulated genes (survivin, 

cyclin D1, and VEGF; Fig. 23C) and similar results were observed in these cells 

after treatment with metformin (Fig. 22A to 22C). Sp1, Sp3, and Sp4 

differentially regulated Sp-regulated genes and this was also dependent on cell 

context. For example, results of RNAi studies show that survivin was primarily 

regulated by Sp1 and Sp3 in SKBR3 cells and Sp3 and Sp4 in BT474 Cells; 

cyclin D1 and VEGF were regulated by Sp1, Sp3, Sp4 in SKBR3 cells but 

primarily Sp3 and Sp4 in BT474 cells.  

 ErbB2 overexpression is a major driver for the proliferation and survival 

BT474 and SKBR3 cells and results in Figure 24A show that treatment of these 

cells with metformin decreased levels of both ErbB2 and YY1 proteins, and it 

has previously been reported that YY1 is an upstream regulator of ErbB2 in 

breast cancer cells overexpressing this oncogene [351]. Results in Figure 24B  
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show that knockdown of Sp proteins by RNAi also decreases both ErbB2 and 

YY1 in SKBR3 and BT474 cells and this parallels results observed for metformin 

(Fig. 24A) and is consistent with a previous report showing that YY1 is a Sp-

regulated gene in ErbB2 overexpressing breast cancer cells [351]. Interestingly 

both YY1 and ErbB2 are primarily regulated by Sp1 in SKBR3 cells whereas 

Sp1, Sp3, Sp4 contribute to YY1 and ErbB2 expression in BT474 cells.  

 

 
 

 
 
Figure 25: Effects of PI3 kinase inhibitor and metformin on mTOR signaling. 
 (A) MDA-MB-231, SKBR3 and BT474 cells were treated with 50 and 100 nM of NVP-BE235 
(PI3 kinase inhibitor) and effect on cell growth were determined after 24 and 48 hr as described 
in the Materials and Methods. Results are given as means  SE for 3 replicate determinations for 
each treatment, and significant (p < 0.05) decrease in growth or induction of apoptosis is 
indicated (*). (B-D) MDA-MB-231, SKBR3 and BT474 cells were treated with (1 -10 mM) of 
metformin and whole cell lysates were analyzed by western blot analysis.  
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Figure 25: Continued 
 

 

The effects of metformin as an inhibitor of mTOR signaling has been 

reported in breast and other cancer cell lines [507, 614] and Figure 25A shows 

that NVP-BE235, a PI3K inhibitor also significantly blocks proliferation of MDA-

MB-231, SKBR3, and BT474 cells. This demonstrates a possible role for mTOR 

in the growth of these breast cancer cell lines and Figure 25B shows that 

treatment with metformin also decreases phosphorylation of mTOR in MDA-MB- 
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231 cells and this was accompanied by decreased phosphorylation (activation) 

of downstream effectors S6RP and 4EBP. Similar results were observed in 

SKBR3 and BT474 cells after treatment with metformin (Fig. 25C and 25D) 

confirming that metformin inhibited mTOR in these breast cancer cell lines.  

  

 

 
Figure 26: Effects of metformin and Sp knockdown on AMPK-alpha and mTOR signaling. 
 (A, B) MDA-MB-231, SKBR3 and BT474 cells are treated with metformin (1, 5, 10 mM) and 
whole cell lysates were analyzed by western blot analysis. SKBR3 and BT474 cells were 
transfected with siRNA against Sp1, Sp3, and Sp4 and whole cell lysates were analyzed by 
western blot analysis. iLamin was used as control oligonucleotide. 
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Figure 26: Continued 
 
 

Activation of mTOR in cancer cells is due to multiple factors including 

upstream receptor tyrosine-kinases which activate phosphorylation of Akt and 

also downregulation of the LKB-AMPKα pathway results in mTOR inhibition. 

Figure 26A shows that treatment of breast cancer cells with metformin 

decreases AKT phosphorylation and this consistent with the observed decrease 

in mTOR activation by metformin (Fig. 25B to 25D). The effects of metformin on 

activation of AMPKα were cell context-dependent and observed only in the 

ErbB2 overexpressing SKBR3 and BT474 cells whereas metformin decreased 
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activation of AMPKα in MDA-MB-231 cells (Fig. 26B). Knockdown of Sp1, Sp3, 

Sp4 in SKBR3 and BT474 cells decreased mTOR and Akt activation and this is 

consistent with Sp regulation of receptor tyrosine kinases such as ErbB2 and the 

connection between metformin-mediated downregulation of Sp proteins and 

ErbB2 and mTOR inhibition is currently being investigated.  

Discussion 

The anti-neoplastic effects of metformin have been observed in several 

breast cancer cell lines and in in-vivo animal models confirming the tumor and 

cell growth inhibitory effects of this compound. However, mechanistic studies 

designed to determine the key metformin-mediated regulation of gene/pathways 

that result in tumor growth and cell inhibition have identified several possible 

pathways that could contribute to the effects of metformin. Most studies show 

that metformin inhibits proliferation and cell cycle progression and decreases 

survival of breast cancer cell lines and this is accompanied by induction of PARP 

cleavage (marker of apoptosis) and decreased expression of receptor tyrosine 

kinases (ErbB2/EGFR) [426, 459, 460, 502-504, 506, 509, 512, 513, 566, 608]. 

In addition, studies primarily in ER-positive breast cancer cell lines showed that 

metformin induced mitochondrial enlargement, nuclear translocation of 

apoptosis-inducing factor (AIF) and PARP cleavage [566]. Mitochondrial 

enlargement was prevented by inhibiting PARP activity and this also inhibited 

PARP-dependent cell death. However, a second metformin-induced caspase-

dependent apoptosis was also observed and this was independent of 
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mitochondrial enlargement [566]. The mitochondrial enlargement induced by 

metformin were not observed in MDA-MB-231 cells and in other cell lines these 

effects were observed at longer time points (2-4 days after treatment) 

suggesting that some of these mitochondrial alterations may be secondary. One 

of the most consistent observations in breast and other cancer cell lines is that 

metformin inhibits the mTOR pathway. However, even this inhibitory effect 

seems to involve multiple inhibitory pathways [477]. Research in this laboratory 

has focused on development of mechanism-based anti-neoplastic agents that 

target Sp transcription factors Sp1, Sp3, Sp4 that are overexpressed in multiple 

cancer cells and tumors [348, 351, 363, 367-371, 373-375, 380, 392, 395, 399, 

406-408, 571, 609-612]. 

 The functional importance of Sp1, Sp3, and Sp4 has been confirmed by 

RNA interference (RNAi) showing that knockdown (singly or combined) 

decreases cell proliferation, survival, angiogenesis, and inflammation [369, 406, 

408]. These results are consistent with identification (by RNAi) of several 

prooncogenic Sp-regulated genes important for cell growth (cyclin D1, EGFR, c-

MET), survival (bcl-2, survivin), angiogenesis [VEGF, VEGF receptors 

(VEGFR)], and inflammation (p65-NFκB) [348, 369, 380, 406, 408]. Thus, Sp 

transcription factors clearly contribute to the transformed cell phenotype and 

represent an example of non-oncogene addiction by cancer cells [252]. Many of 

the compounds that we have investigated resemble metformin in that their anti-

neoplastic activities and genes that are targeted can be explained by Sp 
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transcription factors and Sp-regulated genes. For example, studies with 

curcumin, nitro-NSAID GT-O94, tolfenamic acid, betulinic acid (BA), celastrol, 

arsenic trioxide, and several synthetic triterpenoids show that these compounds 

decrease expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes in 

cancer cells and tumors through either transcriptional repression or protein 

degradation pathways. ROS and phosphatase-inducing anti-cancer agents 

decrease expression of miR-27a or miR-20a/miR-17-5p which results in 

activation of Sp-repressors ZBTB10 and ZBTB4 respectively, which in turn, bind 

and inactivate genes with GC-rich promoters (e.g. Sp1, Sp3, Sp4, and Sp-

regulated genes) [366, 371, 375, 380, 406, 569]. In breast cancer cells, BA 

targets the cannabinoid receptor which in turn disrupts miR-ZBTB interactions 

whereas in colon cancer cells, BA-mediated induction of ROS is the 

predominant pathway [351, 380]. Other drugs such as tolfenamic acid activate 

proteasome-dependent degradation of Sp TFs [395] and this pathway may also 

be phosphatase dependent.  

Our initial studies with metformin in pancreatic cancer cells showed that 

an important underlying mechanism of action involved phosphatase-dependent 

decreased expression of Sp1, Sp3, Sp4 and Sp regulated genes. Results of this 

study in breast cancer cells also show that metformin targets Sp TFs and a 

comparison of the effects of metformin and transfection of iSp oligonucleaotides 

(iSp1, iSp3, iSp4 or iSp1/3/4) shows a remarkable similarity. For example, 

metformin and Sp knockdown decrease cell proliferation (Fig. 21A and 23B), 
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decreased growth promoting, survival, and angiogenic genes (cyclin D1, 

survivin, and VEGF) (Fig. 22A-C and 23C) and inhibited mTOR (Fig. 25B-D and 

26C). Interestingly, knockdown of Sp TFs by RNAi decreases Akt 

phosphorylation (Fig. 26C) and this has previously been observed for metformin 

and other compounds [348, 395, 591] and in pancreatic cancer cells, this is due 

to decreased expression of Sp-regulated receptor tyrosine kinases (IGF-1R and 

EGFR) [395, 591]. In this study, metformin and Sp knockdown decreased YY1 

and ErbB2 in cells overexpressing this oncogene and this has been observed 

previously after treatment of these cells with betulinic acid which also decreased 

expression of YY1and Sp-regulated genes which is required for ErbB2 

expression [351]. My current studies are focused on demonstrating that 

metformin-mediated downregulation of receptor tyrosine kinases Such as ErbB2 

in breast cancer cells are necessary for mTOR inhibition as previously observed 

in pancreatic cancer cells [591]. 

Results of this study demonstrate that metformin decreases expression of 

Sp1, Sp3, Sp4 and Sp-regulated genes in breast cancer cells and this 

represents an important underlying mechanism of action for this drug. These 

results will facilitate future clinical applications of metformin which can use the 

mechanistic information as a guide for designing more effective drug 

combinations that include metformin, for breast cancer therapies.   
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CHAPTER V 

SUMMARY 

 

Metformin is a widely used antidiabetic drug, and epidemiological studies 

indicate that metformin exhibits both chemopreventive and chemotherapeutic 

activities. The antineoplastic effects of metformin include inhibition of 

angiogenesis through decreased levels of vascular endothelial growth factor 

(VEGF) and blocking cell cycle progression through decreased expression of 

cyclin D1. These metformin-induced responses and genes are similar to those 

observed after knockdown of specificity protein (Sp) transcription factors Sp1, 

Sp3 and Sp4 by RNA interference, and hence we hypothesized that the 

mechanism of action of metformin in pancreatic cancer cells was due, in part, to 

downregulation of Sp transcription factors. 

 Metformin inhibits growth and induces apoptosis in pancreatic cancer 

cells as indicated by Annexin V staining. Treatment of Panc1, L3.6pL and 

Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and 

Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, 

survivin, cyclin D1, vascular endothelial growth factor.  When Panc28 and 

L3.6pL cells were pretreated with the proteasome inhibitor - gliotoxin, there was 

a reversal of Sp downregulation. Enhanced Sp protein ubiquitination was 

observed when metformin treated cell lysates were immunoprecipitated with Sp 

antibody and immunobloted with Ubiquitin (Ub) antibody. Sp degradation was 
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unaffected when cells were pretreated with leptomycin B - a nuclear export 

inhibitor, indicating the nuclear degradation of Sp proteins. Similarly metformin 

mediated downregulation of Sp proteins were reversed by pretreatment with the 

phosphatase inhibitor – sodium orthovanadate (SOV). In Panc1 cells, metformin-

mediated downregulation of Sp proteins was due to, downregulation of miR-27a 

and induction of the transcriptional repressor ZBTB10 which is regulated by miR-

27a. Metformin induced MAPK phosphatases MKP-1 and MKP-5 expression in 

Panc1 cells and overexpression of MKP-1 and MKP-5 downregulated Sp1, Sp3 

and Sp4.  Induction of phosphatases also plays a critical role in metformin-

mediated disruption of miR-27a:ZBTB10. 

Metformin also inhibits de novo lipogenesis which is one of the metabolic 

hallmarks of cancer. Treatment of pancreatic cancer cells with metformin or 

silencing Sp transcription factors downregulated levels of insulin-like growth 

factor-1 receptor (IGF-1R) which in turn inhibited mTOR signaling and this was 

accompanied by decreased expression of sterol regulatory binding protein 

(SREBP) and fatty acid synthase (FAS) which play a major role in lipid 

metabolism. Thus metformin blocks lipogenesis in pancreatic cancer cells 

through downregulation of Sp transcription factors and Sp regulated IGF-1R, 

resulting in inhibition of mTOR signaling and fatty acid synthase. 
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Figure 27: Mechanisms of metformin-mediated downregulation of Sp1, Sp3, Sp4 and Sp-
regulated genes and signaling pathways. 
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Epidermal growth factor receptor (EGFR) is another Sp regulated tyrosine 

kinase receptor and is essential for oncogenic K-RAS signaling and subsequent 

RAS-dependent pancreatic cancer cell growth. Metformin or transfection of cells 

with siRNA for Sp proteins decreased active RAS GTP levels and similar results 

were observed after silencing EGFR (iEGFR) by RNAi in pancreatic cancer 

cells. Thus treatment with metformin or downregulation of Sp TFs by RNA 

interference (RNAi) inhibits two major pro-oncogenic pathways in pancreatic 

cancer cells, namely IGF-1R mediated mTOR signaling and EGFR-dependent 

activation of RAS. Metformin also inhibited pancreatic tumor growth and 

downregulated Sp1, Sp3 and Sp4 and Sp regulated genes in tumors in an 

orthotopic model where L3.6pL cells were injected directly into the pancreas.  

The effects of metformin were also investigated in breast cancer cells and 

we observed that metformin is a highly effective inhibitor of ErbB2-

overexpressing breast cancer cells. Metformin activated AMPKα in ErbB2 

overexpressing SKBR3 and BT474 breast cancer cells resulting in inhibition of 

mTOR signaling in these cells. Metformin treatment or knockdown of Sp proteins 

by RNAi decreased both ErbB2 and YY1, an upstream regulator of ErbB2 in 

breast cancer cells overexpressing this oncogene. This was accompanied by 

decreased activation of Akt and mTOR proteins, suggesting that metformin 

decreases expression of upstream targets such as receptor tyrosine kinases and 

this result in inhibition of Akt and mTOR. 
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In conclusion, my studies show that the mechanisms of action of 

metformin as an anticancer agent is primarily due to downregulation of Sp 

transcription factors – Sp1, Sp3 and Sp4 and prooncogenic Sp regulated genes. 

The results provide a basis for development of drug combination therapies which 

include metformin for treatment of pancreatic cancer, a devastating disease for 

which treatment options are limited and relatively ineffective. 
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