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ABSTRACT 

 

Oil shales are lamellar, non-porous, impermeable hydrocarbon bearing rocks that 

contain organic matter called kerogen which, when heated at pyrolysis temperature of 

approximately 600-800 
o
F, thermo-chemically decomposes to liberate hydrocarbons. 

They are at the base of the resource triangle because cutting edge technology and higher 

fuel prices are required to economically produce them. 

Technologies for oil shale production include surface and in-situ retorting. This 

study focusses on in-situ oil shale production methodologies. The process of heating oil 

shale to the pyrolysis temperature can be achieved by direct or indirect heating. Direct 

heating geometries include the Shell in-situ conversion process (ICP) using downhole 

electric heaters in vertical holes and the ExxonMobil Electrofrac (EF) approach using 

longitudinal vertical fractures created from horizontal wells and propped with 

electrically conductive material such as calcined coke. Indirect heating approaches 

propose injection and circulation of steam or a non-condensable gas like CO2. These 

include the Chevron CRUSH concept of creating horizontal fractures from vertical wells 

or the Texas A&M University (TAMU) concept using multiple vertical transverse 

fractures penetrated by horizontal wells (MTFH).  

 The objective of this study is to compare energy efficiency of various in-situ 

retorting technologies for different heating schemes and well configurations using the 

commercial adaptive-implicit thermal simulator, STARS of Computer Modelling Group 

Ltd. (CMG). STARS is a three phase multi-component thermal simulator and is based on 
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vapor-liquid distribution ratio of a component, K values to perform phase equilibrium 

calculation instead of using the Equation of state (EOS). Shell has applied CMG –

STARS to model its in-situ upgrading project, but is yet to publish details on the input 

parameters used for modeling. As such, the various thermo-physical parameters like 

thermal conductivity, specific heat capacity, porosity, permeability needed for the 

numerical simulation are obtained by extensive literature survey of various oil shale 

deposits in Green river formation of USA.  

 Using CMG –STARS, we have built and validated simulation model to replicate 

Shell’s in-situ Conversion Process (ICP) in the Mahogany Demonstration Project South 

(MDPS). A sensitivity analysis of direct heating pattern and spacing reproduces previous 

work. Then the validated model is used to evaluate the size and fracture spacing 

sufficient to heat the oil shale in other direct and indirect heating approaches and to 

compare pressurized hot fluid circulation to heating elements on terms of hydrocarbon 

production and energy efficiency while keeping all the model inputs similar for each 

method. This research also enables oil shale well design recommendations for direct and 

indirect heating methodologies considering the depth of the reservoir and, for indirect 

heating, the pressure and temperature for the circulation fluid. 
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NOMENCLATURE 

 

b              Viscosity coefficient 

BHP    Bottom-hole Pressure, psi 

BOE     Barrel of oil equivalent 

Btu    British thermal units 

c    Viscosity coefficient 

cp    Specific heat capacity, Btu/lbm/
0
F 

C    Concentration, lbmol/ft
3
 

Ea    Activation energy, kJ/mol 

Ein    Thermal energy input (heaters, hot fluid circulation), Btu 

Eout    Chemical energy output, Btu 

hf    Fracture height, ft 

k    First order reaction rate constant, sec-1
 

 

K    Vapor-liquid distribution ratio of a component  

K    Permeability, md 

MMBTU   Million metric British thermal units 

MSCF    Thousand standard cubic feet 

STB     Stock tank barrels 

s    Viscosity coefficient 

T     Temperature (
0
F, 

0
C, 

0
K) 

xf    Fracture half length, ft 

R    Rock density, lbm/ft3  
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Greek variables and operators 

α    Thermal diffusivity, ft
2
/day 

    Energy efficiency 

    Thermal conductivity, Btu/ft/Day/
0
F 

µ     Viscosity, (cp, Pa.sec) 

Φ      Porosity 

 

Subscripts 

c     Critical 

hyd     Hydrostatic 

in     Input 

f     Fracture 

out     Output 

R     Rock 

 

Abbreviations 

CAPEX   Capital expenditure 

CF    Critical fluid 

CMG    Computer Modelling Group Ltd. 

CRUSH  Chevron’s technology for the  recovery and  in-situ upgrading of 

oil shale 

Cum    Cumulative 
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CWE    Cold water equivalent 

EF    Electrofrac 

EOS    Equation of state 

GCR    Gas combustion retort 

GFC    Geothermic fuel cell 

GPRS    Stanford’s general purpose research simulator  

HZ    Horizontal heater well 

IC    Lumped components 

ICP    In-situ conversion process 

Inj    Injected 

HZI    Horizontal injector well 

HZP    Horizontal producer well 

KER    Kerogen 

LGR    Local grid refinement 

LPG    Liquified petroleum gas 

MDPO   Mahogany Demonstration Project Original 

MDPS    Mahogany Demonstration Project South 

MTFH   Multistage transverse fractured horizontal 

OB    Overburden 

OPEX    Operational expenditure 

P    Vertical producer well 

Prod    Produced 
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RF    Radio frequencies 

sat    Saturated steam  

sc    Supercritical  

SMR    Small modular reactor  

TAMU   Texas A&M University 

UB    Underburden 

v    Vapor 
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CHAPTER I  

INTRODUCTION AND BACKGROUND 

1.1 Introduction  

Oil shale is a lamellar, non-porous and impermeable sedimentary rock, rich in 

organic matter kerogen that thermo-kinetically decomposes to yield oil, gas and water 

when heated at pyrolysis temperatures of 600-800 
o
F. United States has the largest oil 

shale deposit in the world with an estimated reserve of approximately 3 trillion barrels of 

oil with 1.5 trillion barrels located in the Green River basin in Wyoming (Dyni 2006). 

Oil shale resources dwarf conventional oil reserves and can be a profitable venture, 

given the rising crude prices and an even increasing need of alternative fuel. According 

to Biglarbigi et al. (2007) the key concerns associated with development of oil shale 

resources are resource access, technological enhancements, economics and 

environmental issues. 

The organic matter kerogen falls in Type I or II in Van Krevelen diagram (Das 

1989), is insoluble in organic solvents; and has high molecular weight and polymeric 

nature. The matrix composition is dominated by clay minerals, marls and carbonates. 

There are four major oil shale processes: surface mining with a surface retort, 

underground mining with a surface retort, in-situ retorting and modified in-situ retorting 

(Crawford, P. et al. 2008) . In-situ technology is applicable for deeper and thicker 

deposits which are not as amenable to surface or deep-mining methods. In the recent 

years, there has been a tremendous development in oil shale technologies for recovery of 
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hydrocarbon with emphasis on being economically viable, environmentally responsible 

and socially sustainable. 

1.2 Background  

This section contains the extensive literature review of global and United States oil 

shale resources potential and various surface and in-situ retorting technologies for 

production of hydrocarbons from oil shale. It also discusses the economics for oil shale 

development in US along with composition and chemical kinetics of kerogen 

decomposition, the primary component and the parent hydrocarbon material in oil shale. 

1.2.1 Global and US oil shale resources  

Oil shale resources are extremely large in comparison to conventional oil 

reserves, making it one of the largest known energy resources.  There are nearly 100 

major oil shale deposits worldwide, the major countries with vast oil shale deposits are 

shown in Figure 1. According to US Geological Survey estimates in 2010, the total 

world resource estimate for oil shale is 2.8 trillion barrels and might be more than 2.5 

times this value based on quality of the deposits considered (Biglarbigi et al. 2010).  
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Figure 1: Countries with oil shale deposits (Biglarbigi et al. 2007) 

 

 

 

The worldwide oil shale resource is estimated to be about 10 trillion barrels with 

USA at the top of the pyramid, having nearly 60% of the total resources (Biglarbigi et al. 

2007). The western oil shale resources in the United States are estimated to be 6 trillion 

barrels of oil equivalent and are considered as one of the largest hydrocarbon resources 

on the planet. Of this vast chunk, 2 trillion barrels of oil shale have high rich organic 

matter and is mostly trapped in Green River formation; in the states of Colorado, Utah 

and Wyoming in the western United States. Table 1 shows the top ten countries with oil 

shale resources. 
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Table 1: Top 10 oil shale resources countries (Biglarbigi et al. 2007) 
 

 
 

 

 

Currently four major technologies are used for production of hydrocarbon from 

oil shale i.e. Surface mining/surface retort, Underground mining/surface retort, True in-

situ technology and Modified in-situ technology. The following section focusses on 

different oil shale extraction technologies with a brief review of both surface and in-situ 

retorting technologies. 

1.3 Technologies for oil shale production 

According to a report published by US Department of Energy, atleast 24 

companies are engaged in research & development of the oil shale resources in the 

United States that is summarized in Table 2 (Biglarbigi et al. 2007).  
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Table 2: Companies with different oil shale extraction methodologies                           

(Biglarbigi et al. 2007) 
 

 
 

 

 

Crawford et al. conducted an analysis on various oil shale technologies that can 

be implemented on commercial scale with improved performance (Crawford, P.M. et al. 

2008). There are four major types of oil shale processes categorized in a Tree diagram as 

shown in Figure 2 and discussed below. In-situ technology is applicable for deeper, 

thicker deposits which are not as amenable to surface or deep-mining methods.  In-situ 

processes heat the resource in natural depositional setting and thus minimize or eliminate 

the need for mining and surface pyrolysis. 

A. Surface mining with surface retorting: In this process, the ore is produced from 

open cast surface mines, crushed, and processed in surface retorts . 
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B. Underground mining with surface retorting: In this process shale ore is mined, 

transported to the surface, crushed, and then heated in surface vessels to produce 

liquids and gases, after which the processed shale is disposed of in the mine and 

other disposal areas.  

C. Modified In-situ:  Modified in-situ approaches have improved the pyrolysis and 

recovery efficiency of in- situ combustion processes by fracturing the resource to 

improve heat transfer and fluid flows through the shale.   

D. True In-situ: In the true in-situ process, heat is applied to the subsurface oil shale 

resource without mining. Recent approaches are focused on applying heat without 

any combustion of the resource as earlier some of the shale was combusted at one 

end of the deposit to generate heat at pyrolysis temperatures to produce liquids and 

gases.  
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Figure 2: Oil shale development technologies 
 

 

 

In the recent years, there has been tremendous advancement in Oil Shale 

technologies. The new variations on the traditional approaches described above have 

resulted in improvements in efficiencies, reductions in energy use, reductions in net 

water use, effective carbon management, higher production yields, and/or increased 

product quality as measured by API gravity and other standard measures.  

Few of the newly developed technologies (esp. in-situ) to recover oil and gas from 

oil shale in a way that is economically viable, environmentally responsible are 

mentioned below (Crawford, P.M. et al. 2008). 

1.3.1 Shell’s in-situ conversion (ICP) process 

Shell’s Mahogany research project has conducted research on in-situ (in-ground) 

conversion process (ICP) as shown in Figure 3 to recover oil and gas from oil shale in 

Colorado. The rock formation is heated slowly over time to 650 to750° F by electric 

heaters, inserted in vertical heater wells, at  a  target  depth  zone  1000  to 2000 feet 
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subsurface converting the kerogen in oil shale into oil and gas.  

This heating technology generates significantly lower carbon emissions than 

traditional surface retorting processes due to the slow and lower temperature of the 

heating process. Shell is currently working on a freeze-wall technology to protect the 

heating zone from groundwater intrusion and to protect contamination of the 

groundwater; the freeze wall is terminated to resume unimpeded groundwater flow as 

the production area is cleaned. 

 

 

 

 
 

Figure 3: Shell's in-situ conversion process (Crawford, P. et al. 2008) 

 

 

 

1.3.2 ExxonMobil’s’ electrofrac™ process 

This technique for in-situ oil shale conversion involves hydraulically fracturing 

the oil shale and filling the fractures with an electrically conductive material, forming a 



 

9 

 

heating element as shown in Figure 4.. Vertical fractures achieve a conductive zone that 

will heat the resources to pyrolysis temperature, producing liquids and gases that can be 

produced by conventional recovery technologies. ExxonMobil screened over thirty 

candidate technologies and concluded that linear heat conduction from planar heat 

sources is the most effective method for converting kerogen into oil and gas. 

 
 

 

 
Figure 4: ElectrofracTM process (Crawford, P. et al. 2008) 

 

 

 

1.3.3 Chevron CRUSH technology 

Chevron proposes an in-situ conversion technology of oil shale known as CRUSH as 

shown in Figure 5. It involves creation of controlled horizontal fractures at shallow 

depth through vertical wells and circulation of hot CO2 gas through the fractured 

formation to convert solid kerogen into oil and gas products.  The circulated CO2 is 

recycled and reheated to be used further for heating the fractured formation. 
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Figure 5: Chevron CRUSH process (Biglarbigi et al. 2007) 

 

 

 

1.3.4 Petroprobe (subsidiary of earth search sciences, Inc.) 

In this technology, air is super-heated in a burner on the surface that moves down 

the borehole; interacts with the organic rich rock and brings hydrocarbons to the surface 

with minimal surface footprint.  Drilling is done into oil shale deposits as deep as 3000 

or more feet and super-heated air is injected through a processing inlet conduit within 

the hole that heats the rock and converts the kerogen to a gaseous state as shown in 

Figure 6. The portable design of surface plant allows it to be dismantled easily and 

moved to the next site.    
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Figure 6: PetroProbe process (Crawford, P. et al. 2008) 

 

 

 

1.3.5 Schlumberger /Raytheon-CF radio-frequency technology 

This in-situ method is based on the application of radio frequencies (RF) to heat 

the buried shale to high temperatures (pyrolysis) and then hydrocarbon is extracted from 

production wells by pumping supercritical fluid (CF) carbon-dioxide into the shale 

formations as shown in Figure 7. One of the advantages of this process is that it can 

yield quick production of oil and gas in terms of months whereas other methods take 

longer time; may years to heat the shale in-situ. Due to lower heating requirements, this 

in-situ process is very much applicable in recovery of tar sands and heavy oil and the 

yield will be in order of 10 -15 barrels of oil equivalent per barrel consumed. 
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Figure 7: RF/Critical fluid oil extraction technology (Crawford, P. et al. 2008) 

 

 

 

1.3.6 Independent Energy Partners (IEP)’s geothermic fuel cell (GFC) 

This technique involves placement of high temperature fuel cells in the oil shale 

formation to convert kerogen to shale oil as shown in Figure 8. The formation is heated 

by GFCs from top to bottom at a uniform rate due to solid to solid conduction which is 

more effective than other non-conductive applications. The increase in formation 

temperature raises the formation pressure of the heated zone by 100-200 psi which is 

enough to fracture the oil shale and thus establishes communication between heating and 

producing wells.  

One of the biggest advantages of this method is that it does not consume large 

amount of external energy and becomes self-fueling due to the gases generated from its 

own heat. It also yields approximately 174 Kwh per barrel recovered instead of 

consuming large amount of electricity When compared to mining and retorting 
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operations, GFCs cause minimal surface impact and waste disposal problems are too 

eliminated.  

 

 

 

 
 

Figure 8: IEP's Geothermic fuels cells process (Crawford, P. et al. 2008) 

 

 

 

1.3.7 TAMU MTFH approach  

 Thoram and Ehlig-Economides 2011 investigated the feasibility of steam 

injection through transverse vertical fractures created from a horizontal well to heat the 

oil shale to pyrolysis temperatures as shown in Figure 9. Their numerical studies 

revealed that injection of super-heated steam through vertical fractures can raise the 

formation temperatures to 550-700 
0
F within a period of two years, after which the 

converted hydrocarbons would be produced from the same fractures. They proposed the 

use of small modular reactor (SMR) to produce super-heated steam at 750
0
F because 
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conventional steam generators cannot produce steam at such high temperature. They 

concluded that rate of thermal front propagation occurs faster at fractures at initial stage 

which gradually moves into the matrix with time. 

Chevron proposes a similar approach CRUSH but with non-condensable gas like 

hot CO2 circulation through a network of horizontal hydraulic fractures created from 

vertical wells (Biglarbigi et al. 2007). But the creation of transverse or horizontal 

fractures are determined by local in-situ stresses and will be a matter of investigation to 

choose between these two indirect heating approaches depending upon the depth of the 

oil shale. 

 

 

 

 
 

Figure 9: Texas A&M MTFH approach 

 

 

 

Three oil shale surface retorting technologies, currently being utilized worldwide 

are mentioned below. 
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1.3.8 Petrobras’ Petrosix gas combustion retort (GCR)  used in Brazil 

This process (PETROSIX) was initiated in 1960s to extract oil from 

pyrobituminous shale. GCR is world’s largest operational surface oil shale pyrolysis 

reactor with a production value of 3870 Bpd of shale oil, 120 tonnes of fuel gas and 45 

tonnes of LPG which are generated from 7800 tonnes of shale that are processed daily. 

The retort is consisting of two sections as shown in Figure 10; upper one is for 

pyrolysis and the lower section for coke cooling. First of all, mined shale is crushed into 

fragments in a crusher and then sent to the retort where it is heated to higher 

temperatures. The organic matter in form of oil and gas is released which is cooled in the 

lower section allowing the oil vapor to condensate to form a product which is 

transported from the retort by the gases. Gases released are further cleaned for light oil 

extraction. The rest of the products are sent to gas treatment unit where liquefied 

petroleum gas (LPG) is produced along with other fuels. 

Some of the attracting features of Petrosix process are:  

 Simplicity of design with high operational factor (about 94%). 

 High thermal efficiency and recovery efficiency. 

 Minimum environmental and health related impacts. 
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Figure 10: Petrosix gas combustion retort (Crawford, P. et al. 2008) 
 

 

 

1.3.9 Fushun retorts used in China 

In China, Fushun Retorts as shown in Figure 11are being used in greater numbers 

to achieve high volumes of shale oil production. In 2005, more than 120 retort units were 

employed; each having a capacity of 100 tonnes of oil shale. The advantage of having 

low capacity retorts is that it allows 20 of them to be grouped together to share a single 

condenser system. 

Disadvantages of Fushun Retorts: 

 Low calorific value of gas due to introduction of nitrogen in pyrolysis. 

 Low oil yields due to less efficient pyrolysis because of introduction of 

oxygen in the upper chamber. 

 To increase production rate, construction of additional batteries of Fushun 

retorts is required which is quite expensive. 



 

17 

 

 
 

Figure 11: Fushun vertical retort (Crawford, P. et al. 2008) 

 

 

 

1.3.10 Kiviter and Galoter retorts used in Estonia 

The Galoter retorts are horizontal fluidized bed retorts with processing capacity 

of 3000 tonnes oil shale per day. The Kiviter retorts are lump shale, gas combustion 

processors and vertical in design with a medium scale production capacity of 1000 

tonnes oil shale per day which is one-third the capacity of the Galoter retorts. If 

compared to Petrosix process, the production capacity of Galoter retort as shown in 

Figure 12 is almost half of the former. The main features of the Galoter retort are its 

higher thermal efficiency, higher yield, better quality of produced gases and reduced 

energy inputs as compared to Kiviter retort; shown in Figure 13. But on the other 

hand, the process involved in Galoter retort is more complex and requires high 

operating time as compared to Kiviter retort. 
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Figure 12: Galoter lateral retort (Crawford, P. et al. 2008) 

 

 

 

 
 

Figure 13: Kiviter vertical retort (Crawford, P. et al. 2008) 
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There is significant research going in order to improve Oil Shale technologies. 

Building on the experiences gained from earlier methodologies, new approaches are 

being developed to deal with past challenges related to energy use, thermal efficiency, 

oil yield, and emission related issues and prevention ground water contamination. The 

new technologies to be developed will assure better yield, improved operability and 

reliability and at the same time will keep capital investments and operating costs 

competitive with conventional hydrocarbon production. 

The following section outlines the economical viability of different oil shale 

extraction methodologies. Figure 14 shows minimum economic price for oil shale 

technology and breakdown price for generic surface project. It can be seen that capital 

and operating costs are the largest components. The taxes and transfer payments 

comprising of royalty and severance payments account for one third of the price 

requirement. 

1.4 Economics of oil shale development in USA 

United States have more than 1.8 trillion barrels of oil trapped in the oil shale in 

Federal lands of western region comprising of Colarado, Utah and Wyoming states. 

Nearly 800 billion of trapped oil can be recovered which is atleast three times the proven 

reserves of Saudi Arabia (Biglarbigi et al. 2008). With oil prices staying well above 60 

$/bbl along with advancing extraction technologies in recent years have made the 

development of oil shale a profitable venture. This in turn will lead to increase in 

domestic oil production, creation of employment, increased contribution to GDP, 

reduced imports and increase in the direct federal and state revenues.  
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The economic validity of the project depends mainly on two parameters. 

 Operating costs and investments: These depend upon the type of technology 

employed and the quality of the resource. The production capacity can vary from 

10000 to100000 barrels per day for surface retort to as much as 300000 barrels per 

day for full scale in-situ projects.For operating costs, the model estimates in the 

range of of $12 to $20 per barrel whereas the capital costs fall in the range of 

$40,000 to $55,000 per barrel of daily (stream day) capacity.  

 Minimum Economic Price: It is defined as the world crude oil price needed to yield 

a 15% rate of return on the project which covers for the capital and technical risks 

involved in the project. It varies for the type of technology applied as shown in Table 

3 below. 

 

 

 

Table 3: Minimum economic price for oil shale technology 
 

Technology Average Minimum Economic Price 

($/bbl) 

Surface Mining 47 

Underground Mining 57 

True In-Situ 38 

Modified In-situ 62 
 

 



 

21 

 

 
 

Figure 14: Minimum economic price for oil shale technology 

 (Biglarbigi et al. 2008) 

 

 

 

Oil shale is a fine grained sedimentary rock consisting of solid and insoluble organic 

matter Kerogen, inorganic mineral matrix mainly composed of clay, quartz, pyrite and 

feldspar with minor amount of uranium, iron, vanadium and nickel and pores that are 

either moisture or air filled (Eseme et al. 2007) as shown in Figure 15. The following 

section describes different types of kerogen and kinetics of kerogen decomposition that 

occurs when subjected to pyrolysis temperature in the range of 600 – 800 
0
F; expediting 

the process of conversion of kerogen to oil and gas that would have otherwise taken 

million of years under natural conditions of  high temperature and pressure.  
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Figure 15: Composition of oil shale (Eseme et al. 2007) 

 

 

 

1.5 Kerogen types 

Petroleum (oil and gas) is generated from organic matter in sedimentary rocks 

through a series of complex, predominantly first-order thermo-chemical reactions under 

the influence of temperature, pressure and time. Organic matter mainly comprises of 

lipids, proteins, carbohydrates and lignin-humic compounds and goes under diagenetic 

processes to form soluble bitumen and insoluble kerogen in organic solvents (Dow 

1977). Kerogen has a high molecular weight and is complex mixture of organic material 

constituting carbon, hydrogen and oxygen with traces of nitrogen and sulfur. 

Kerogen is classified into three groups based on Van Krevelen diagram (Das 1989) as 

shown in Figure 16. 

 Type I Kerogen (Sapropelic): They are derived from lacustrine algae and are 

formed in anoxic lakes from lipids and proteins with few cyclic or aromatic 
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structures. They have the highest oil yield with high hydrogen to carbon ratio (>) 1.5 

and low oxygen to carbon ratio (<) 0.1. The western oil shale deposits (tertiary 

Eocene age) of Green River formation in Colorado, Utah and Wyoming are 

prominent examples of Type I Kerogen. 

 Type II Kerogen (Planktonic): They are formed from lipids in a marine 

depositional environment under reducing conditions and have higher aromaticity and 

sulfur content. They yield lesser amount of oil than Type I Kerogen with hydrogen to 

carbon ratio lesser than 1.25 and oxygen to carbon ratio of 0.1- 0.2. Devonian oil 

shales in eastern part of the United States are the primary examples of Type II 

Kerogen. 

 Type III Kerogen (Humic): They are composed of terrestrial organic matter, 

mainly cellulose and lignin and have broader ring and aromatic structure. They yield 

mostly gas and least amount of oil on pyrolysis with hydrogen to carbon ratio lesser 

than 1 and oxygen to carbon ratio of 0.03- 0.02. Humic coal is an example of Type 

III Kerogen. 
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Figure 16: Van Krevlen diagram for kerogen types (Das 1989) 

 

 

 

1.6 Kinetics of kerogen decomposition 

Decomposition of kerogen to bitumen and hydrocarbon on application of heat 

takes place through series of complex chemical reactions, predominantly first order 

kinetic reactions and can be simplified into two step mechanism as shown below 

(Campbell et al. 1978). 

 

 

Where k & k’ are reaction rate constants, k > k’ at T < 300 
0
C 

Two different mechanisms, low temperature and high temperature kerogen 

conversion are proposed for production of hydrocarbon from oil shales (Hill and Dougan 

1967). In the lower temperature range of 500 – 700 
0
F,   kerogen decomposes to 

k k’ 

Kerogen Bitumen Oil 
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bitumen, which then finally decomposes to form oil, gas and carbonaceous residue with 

a pour point in the range of -20 
0
C and an API gravity of about 40

0
. When heated at 

higher temperatures (> 800 
0
F), bitumen produces a stabilized polymer product that 

thermally decomposes to yield different type of oil, gas and residue with pour point of 

80 
0
F and API gravity of  20

0
. Low temperature oil shale conversion results in liquids 

with lesser aromatic and polar compounds and also has insignificant nitrogen content 

because of low polymerization of nitrogen containing compounds (Wen and Kobylinski 

1983). Almost 95% of the kerogen in oil shale deposits of Green River formation is 

decomposed to bitumen by two parallel competing first order kinetic reactions, one at 

higher temperature (> 350 
0
C) with an activation energy of 45.7 kcal/mol and another at 

lower temperature (< 350 
0
C) with an activation energy of  20.8 kcal/mol (Leavitt et al. 

1987). 
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CHAPTER II  

SHELL IN-SITU CONVERSION PROCESS (ICP) 

 

This chapter describes Shell’s Mahogany Demonstration Project South (MDPS) 

pilot field project along with the input parameters for simulation and the results. Shell 

followed up its Mahogany Demonstration Project Original (MDPO) with the south field 

pilot project MDPS to overcome the limitations of the former in terms of effective 

heating and hydrocarbon recovery.  Sixteen vertical heater wells were drilled in three 

concentric rings with two producer wells at the centre as shown in Figure 17. Six heaters 

are each placed at the two outer rings with a spacing of 19.5 ft and 14 ft, respectively, 

whereas the inner-most ring has four heaters with a spacing of 10 ft. There are two 

producer wells, 5 ft apart in the central part. The formation depth was 400 ft with the 

targeted heated interval of 110 ft approximately (Fowler and Vinegar 2009).  The top of 

the heated interval was at 280 ft depth.  

This chapter summarized some of the current surface and in-situ oil shale heating 

technologies along with economics of hydrocarbon extraction from oil shale. It also 

provides an overview of chemical kinetics for oil shale conversion at lower and higher 

temperatures which are detailed in the following chapter. The next chapter outlines one 

of the direct heating methods i.e. Shell ICP which is based on heating the formations 

with downhole electrical heaters from vertical wells. A validated simulation model is 

built for Shell’s one of the field projects with thorough kinetic reactions and sensitivity 

analyses on the effect of heater temperature, heater spacing and number of heaters on 
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hydrocarbon production are performed and their implications on energy efficiency are 

determined. 

  

 

 

 

 
Figure 17: Shell ICP (a) Top view of heaters (b) Side view of heaters 

 

2.1 Simulation model description 

 Kinetic reactions involved in thermal decomposition of kerogen and the generated 

components are adapted from Wellington et al. (2005)  and Fan et al. (2010) 

respectively. Pyrolysis experiments on Green River oil shale yield several oil and gas 

species as investigated by Braun and Burnham (1990). Fan et al. (2010) applied lumping 

procedures on these species to determine the properties and pseudo components listed in 

Table 4. The pseudo species IC37, IC13, IC2 represent heavy oil, light oil and 

hydrocarbon gas respectively and their chemical properties are listed in Table 5. The 

API gravity of light oil and heavy oil is taken as 45 and 10 respectively as reported by 

Wellington et al. (2005). Stone’s model has been used for the three phase relative 

permeability calculations. The gas phase viscosity is obtained using the built-in 
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correlations in STARS and the oil phase viscosity  is calculated using the equation 1 as 

given by Miadonye et al. (1994)  and is reported in Table 6. 
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Where µ is in Pa.s, T is in 
0
K 

b, c & s are parameters calculated for the oil under study 

For simulations presented in this study, b = 4.1228; s = 3.5640; c = -3.002 

Data for reservoir parameters are obtained from the work done by (Fan et al. 

2010)  who modelled Shell’s in-situ upgrading project using Stanford’s general purpose 

research simulator (GPRS) which is a thermal/compositional simulator based on EOS 

and is coupled with chemical kinetics and are reported in Table 7. 

Due to thermal-kinetic reactions, as kerogen decomposes; both porosity and 

permeability will increase in the heated interval but here we are not modeling evolution 

of any of these parameters and rather assigning averaged values. The effective porosity 

(Φ) for the heated interval is taken as 0.05 though half of the pore space created due to 

kerogen decomposition will end up to be filled with solid prechar. The permeability for 

the heated interval is assigned a value of 300 md as reported in the work of Fan et al. 

(2010) that is in accordance with the value calculated using Carman-Kozeny equation 

provided in Wellington et al. (2005).. The overburden (OB) and underburden (UB) have 

very less or no kerogen and thus have been assigned very low porosity and permeability 
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values as we assume that their matrix remain unaffected during heating of the target 

interval.  

 

 

Table 4: Kinetic reactions for Shell ICP model 
 

  

 

 

Table 5: Properties of chemical components of oil shale 
 

Component 
Molecular Weight 

(lb/lbmol) 

Critical Pressure  

(psia) 

Critical Temperature 

(
0
F) 

Kerogen 15.15 
  

Prechar 12.72 
  

IC37 317.96 213.21 1135.13 

IC13 169.52 348.82 827.65 

IC2 26.89 668.48 60.07 

CO2 44.01 1069.8 87.89 

H2O 18.02 3206.2 705.2 

 

 

 

 

 

 

 

Reactions 
Frequency 

Factor (A) 

Ea 

(kJ/mol) 

KER (s)--> 0.02691 H2O + 0.009588 IC37 + 0.0178 IC13 + 

0.04475 IC2 + 0.01049 H2 + 0.00541 CO2 + 0.5827 

PRECHAR 

3.74E+12 161.6 

IC37 (g)--> 1.853 IC13 + 0.045 IC2 + 2.4515 PRECHAR 6.25E+16 206.034 

IC37 (o)--> 0.2063 IC13 + 2.365 IC2 + 17.497 PRECHAR 2.65E+20 206.034 

IC13 (g)--> 5.73 IC2 9.85E+16 219.328 

IC13 (o)--> 0.573 IC2 + 10.904 PRECHAR 3.82E+20 219.328 
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Table 6: Oil phase viscosity at different temperatures 
 

Temperature (
0
F) Viscosity  (cp) 

70 38204.91 

100 5819.37 

150 595.29 

200 124.36 

250 41.12 

300 18.44 

350 10.19 

400 6.52 

500 3.54 

600 2.43 

700 1.9 

800 1.61 

  

 

 

Table 7: Input parameters for simulation model Shell ICP 
 

Parameters value Parameters  value  

Grid (Cartesian) 49*49*15 Porosity (OB/UB) 0.0001 

Grid Dimensions 
Δx= Δy= 5 

ft; Δz= 10 ft 
Permeability (OB/UB) 

Kx=Ky=Kz=1E-04 

md 

Overburden thickness 80 ft Porosity (heated interval) 0.05 

Heated interval 110 ft 
Permeability (heated 

interval) 
kx=ky=kz=300 md 

Underburden 

thickness 
80 ft Thermal conductivity 15 Btu/ft /Day/

0
F 

Initial temperature 107 
0
F Heater temperature 800 

0
F 

Initial pressure 120 psi Producer BHP 30 psi 

Initial kerogen 
3.8 

lbmol/ft
3
 

Rock volumetric heat 

capacity 
25 Btu/ft

3
/
0
F 

Rock compressibility 3E-06 psi
-1
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 We have built the simulation model with a Cartesian grid system. The overall 

model is 245 ft in both length and width and 270 ft in depth. The initial pore space is 

assumed to be saturated with free carbon dioxide and solid kerogen. Dyni (2006) 

reported that commercially feasible oil shale deposits have more than 10% organic 

matter by weight. As Green River oil shale is highly rich in organic matter kerogen, we 

assume it to be in the range of 30-40% by weight. The oil shale density is around 2.5 

g/cc, and Wellington et al. (2005) reported that the molecular weight of kerogen is 

approximately 15.153 lb/lbmol. The recommended parameters above correspond to 

initial kerogen concentration (C) in the range of 3.1-3.8 lbmol/ft
3
. Thermal conductivity 

() of Green River oil shale varies over a wide range of temperature and kerogen content 

and is reported in between 6.3-25 Btu/ft/Day/
0
F (Prats and O'Brien 1975). We have 

assumed constant values for rock density (R) and specific heat (cP) though the former 

decreases with the increase in temperature whereas the latter one increases with the 

increase in kerogen content and temperature (Wang et al. 1979). In a way, the product of 

both these is assumed to be constant so that thermal diffusivity (α) which is a critical 

parameter for diffusion of heat into the formation is only governed by variation in 

thermal conductivity as it is defined as the ratio of thermal conductivity over the product 

of specific heat and density. Therefore, initial kerogen content and thermal conductivity 

have been used as the tuning parameters for a model match.  

 



 

32 

 

2.2 Simulation outputs 

         Sixteen vertical heater wells are heated to a constant temperature of 800 
0
F in the 

heated interval. The final input for kerogen concentration and thermal conductivity are 

chosen as 3.8 lbmol/ft
3
 and 15 Btu/ft/Day/

0
F  respectively to arrive at a closer match to 

Shell’s reported field results. The model predicts cumulative hydrocarbon production of 

1885 STB of oil and 2540 MSCF of gas with total of 2350 barrel of oil equivalent (BOE) 

in 500 days assuming 1 BOE is equal to 5.478 MSCF of gas and is shown in Figure 18. 

The reported field value for Shell MDPS hydrocarbon production is 1860 barrel of oil 

(Fowler and Vinegar 2009). 

        Thus, results of our simulation model are in conformance to the reported field 

values justifying the validity of input parameters for an excellent match. However, 

rigorous tuning of other properties as well as employing their dependence on 

temperature and organic matter content would provide more accurate results and can be 

a great scope for future work. The production profile for the Shell ICP validated 

simulation model is shown in Figure 18 and Figure 19. It can be observed from Figure 

19 that initial rate of hydrocarbon recovery is very higher due to thermal decomposition 

of kerogen in the vicinity of the heaters as the pyrolysis temperature window is achieved 

very soon. Gradually with increasing time, as the thermal front propagates into the 

formation, the rates go down due to depletion of kerogen into oil and gas products.  
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Figure 18: Shell ICP cumulative oil and gas production 

 

 

 

 
 

Figure 19: Shell ICP oil and gas production rates 

 

 

 

 Figure 20 shows the temperature profile in the formation when heaters are operated 

for 500 days at 800 
0
F. At the end of 500 days, almost laterally 85 ft of formation attains 

the pyrolysis window of 500-700 
0
F where kerogen decomposition takes place. Figure 

21 shows the kerogen decomposition map in the heated interval over the duration of 500 
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days of heating as the formation approaches pyrolysis temperature. 

 
 

Figure 20: Temperature profile (
0
F) 

 

 

 
 

 Figure 21: Kerogen decomposition map, lb/ft
3  
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2.3 Sensitivity runs  

Various simulation runs revealed sensitivity to the effect of heater temperature, 

number of heaters and heater spacing on cumulative hydrocarbon production and 

production rates. These sensitivity runs can serve to optimize a field scale in-situ project 

and surface production facilities. We have used Cartesian grid system of 11*11*9 grids 

along x, y and z directions with local grid refinement (LGR) for thegrid blocks having 

heater wells. The various heater patterns are shown in Figure 22. We have taken a base 

case of heaters arranged in hexagon pattern with 20 ft spacing and operating at 800 
0
F. 

The area under the pattern is approximately 1375 ft
2 

and all the parameters for 

simulation are the same as that of the validated model for Shell ICP for MDPS project. 

Because the patterns are repeated, heat losses are only considered for overburden (OB) 

and underburden (UB), and there is no peripheral heat loss.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1 Effect of temperature 

Three heater operating temperatures of 600 
0
F, 700 

0
F and 800 

0
F  are 

  

    

Heater 

Producer 

          (a) Hexagon                      (b) Square                     (c) Triangle 

Figure 22: Heater patterns 
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considered. Since the kerogen decomposition is thermo-kinetically controlled 

mechanism, the higher the heater temperature; the more rapidly the formation 

approaches the pyrolysis temperature that results in faster recovery of hydrocarbons. 

However if simulation is run for a longer time, the cumulative oil and gas production 

curves approach asymptotical converging behaviour. Therefore, it can be inferred that 

downhole heaters operating at higher temperatures, accelerate the hydrocarbon 

production rates and expedite the initial cash flow to recover the cost of the project. In 

general, higher heating temperature result in greater gas production and lower liquid 

recovery but total barrel of oil equivalent (BOE) remains almost same and is equal to 

660 BOE. Figure 23 and Figure 24 show the effect of heater temperature on the 

hydrocarbon production profile. It can be observed that peak production rates are greater 

for heaters operating at higher temperatures and also occur earlier in the operation 

period. 

 

 

 

 
 

Figure 23: Effect of temperature on cumulative oil and gas production     
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Figure 24: Effect of temperature on oil and gas production rates     

 

 

 

Figure 25 shows the temperature profile of the heated formation when heaters are 

operated at the temperatures of 600 
0
F, 700 

0
F and 800 

0
F for 100, 200, 300 and 400 days 

respectively. It is vivid, higher the operating temperature of heater, faster the formation 

temperature rises and reaches the pyrolysis window. 
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Figure 25: Formation temperature profile for hexagonal pattern at heater         

temperature = 600
0
F, 700

0
F, 800

0
F 

 

 

 

2.3.2 Effect of number of heaters 

              To analyze the sensitivity to the number of heaters, we have considered two 

additional cases of square and triangular heater patterns operating at 800 
0
F. The area 

under these patterns are the same as that of the hexagonal base case with heater spacing 

of approximately 33 ft and 50 ft for square and triangular patterns respectively. Since the 

number of heaters is reduced, the rate of heat diffusion into the formation is decreased 

that results in slower conversion rates of kerogen. The peak production times occur late 

for lesser number of heaters as the temperature is raised slowly to pyrolysis window. 

Also, the peak production rates are always lower than that of the hexagonal base case 

pattern. However, when operated for longer time, the cumulative hydrocarbon recovery 
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is equal to that of the hexagonal pattern. Since fewer heaters imply less energy 

consumption and, more importantly few wells to drill, depending upon the techno-

economic considerations; optimization principles can be applied in these cases. Figure 

26 and Figure 27 show the effect of the heating pattern on production as explained 

above. 

 

 

 
 

Figure 26: Effect of number of heaters on cumulative oil and gas production 

 

 

 
 

Figure 27: Effect of number of heaters on oil and gas production rates 
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Figure 28 shows the temperature profile of the heated formation when heaters are 

operated in triangular, square and hexagonal arrangement at temperature of 800 
0
F for 

100, 200, 300 and 400  days respectively. It can be observed that higher the number of 

heaters, accelerated diffusion of heat occurs into the formation that rises the formation 

temperature rapidly for faster recovery of hydrocarbons as explained above.  

 

 

 

 
 

Figure 28: Formation temperature profile for number of heaters (triangular, square       

and hexagonal) at 800
0
F 

 

 

 

2.3.3 Effect of heater spacing  

Two additional heater spacings of 15 ft and 10 ft are used for hexagonal heater 

pattern. In both cases, the simulation area decreases keeping other parameters same. 
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However, we have assumed a reference area of 1 acre and upscaled the cumulative 

production for all the heater spacings. It can be inferred that as the heater spacing 

increases, the time to attain peak production rates also increases. Because of the larger 

area while keeping number of heaters constant, operating at 800
0
F, it requires more time 

to heat the formation to higher temperatures, hence delaying peak production rates. 

Nonetheless, the cumulative hydrocarbon recovery remains almost same if they are 

operated for longer interval of time. The peak production is always higher for the smaller 

spacing since more heat is injected into the formation and increases the rate of recovery. 

Figure 29 and Figure 30 show the effect of heater spacing on hydrocarbon production 

profile. 

 

 

 

 
 

Figure 29: Effect of heater spacing on cumulative oil and gas production     
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Figure 30: Effect of heater spacing on oil and gas production rates 

 

 

 

Figure 31 shows the temperature profile of the heated formation for hexagonal 

arrangement of electric heaters operated with spacing of 10 ft, 15 ft and 20 ft at 

temperature of 800
0
F for 100, 200, 300 and 400 days respectively. Lesser spacing results 

in rapid rise in formation temperature as compared to larger spacing as the number of 

operating heaters is kept constant. This would result in faster recovery of hydrocarbons 

as thermo-kinetic reactions for kerogen decomposition start earlier.  
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Figure 31: Formation temperature profile of hexagonal pattern for heater                

spacing  (10, 15 and 20 ft) at 800
0
F 

 

 

 

2.4 Shell ICP energy efficiency comparison for various cases  

We have compared the results of sensitivity analysis on the basis of energy 

efficiency () as it is the key parameter for designing an effective in-situ upgrading 

process. Energy efficiency is defined as the ratio of total chemical energy content of 

recovered hydrocarbons with each barrel of oil equivalent yield 5.6*10
6
 Btu and the total 

thermal energy input to attain it as given by equation 2. However, we have not accounted 

for the external energy input required for the electricity generation required to operate 

the heaters.  The maximum efficiency is obtained when the cumulative oil production 

reaches the final value after which it becomes constant with time. At this time the 

heaters could be turned off as all of the kerogen has been converted to oil and gas 
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products, but the simulations actually kept the heaters on throughout. With continued 

heating, the efficiency actually drops, but this is not what we would expect the operator 

to do in practice. The maximum efficiency occurs when approximately 90% of the 

converted oil has been produced.  

 

 

 

 

Figure 32 shows the energy efficiency comparison for the various heating 

patterns. The maximum efficiency of approximately 140% is obtained in case of 

hexagonal heater pattern operating at 800 
0
F with 10 ft spacing. The lowest efficiency is 

that of the triangular heater pattern operating at 800 
0
F which is attributed to the fact that 

longer heating period would be required to convert a same volume of organic matter to 

hydrocarbons as compared to other cases that would result in increased overburden and 

underburden heat losses. It can be inferred that for a given spacing (e.g., 20 ft), the 

energy efficiency is almost similar for every case but the slope is always steeper for the 

highest temperature which indicates rapid hydrocarbon recovery. Also for a given heater 

temperature (e.g., 800 
0
F), highest energy efficiency is achieved for reduced heater 

spacing as it not only takes lesser time for formation to reach pyrolysis temperature but 

also reduced heat losses. 
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Figure 32: Energy ratio comparison for various sensitivity runs 

 

 

 

This chapter concluded one of the Shell’s field projects for application of directly 

heating the formation by downhole electrical heaters from vertical wells along with the 

effect of heater temperature, heater spacing and number of heaters on hydrocarbon 

production and their implications on energy efficiency. Maximum energy efficiency is 

achieved for hexagonal heating pattern at 800 
0
F with lowest spacing accompanied with 

rapid hydrocarbon production. The next chapter discusses another direct heating 

approach, ExxonMobil Electrofrac process in which vertical longitudinal fractures are 

created from horizontal wells in the deeper oil shale deposits to extract hydrocarbons. A 

sensitivity analyses on the effect of heater temperature and fracture length on 

hydrocarbon production are performed and their implications on energy efficiency are 

determined. 
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CHAPTER III 

EXXONMOBIL ELECTROFRAC (EF) PROCESS 

 

 This chapter describes simulation results of ExxonMobil’s Electrofrac process, 

another approach of indirect heating using longitudinal vertical fractures created from 

horizontal wells and propped with electrically conductive material such as calcined coke 

which is a highly electrically conductive material and acts as a heating element 

(Symington et al. 2006). The in-situ conversion of organic matter is achieved by 

hydraulically fracturing the oil shale and filling it with calcined petroleum coke that has 

very high thermal conductivity in the range of 1000 to 2000 Btu/ft/Day/
0
F. This method 

can be aptly employed for Piceance basin oil shale as indicated by laboratory 

experiments and numerical modeling studies. 

 

 

Figure 33:ExxonMobil EF simulation model developed using CMG 
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3.1 Simulation model description 

We have used Cartesian grid system of 11*11*9 grids along x, y and z directions 

with local grid refinement (LGR) for the grid bloacks containing the propped fracture as 

represented in Figure 33. The horizontal well (HZ) is drilled through the middle layer of 

oil shale deposit with a longitudinal fracture length (2xf) and height (hf) of 55 ft and 110 

ft respectively and spacing of 25 ft. Both overburden and underburden thickness are 

taken as 80 ft each. The simulation area is same as that Shell ICP case of hexagonal 

heater pattern with 20 ft spacing. The propped fracture conductivity and thermal 

conductivity of value 2000 md-ft and 1600 Btu/ft/Day/
0
F are assumed respectively for 

the fractured plane containing the electrically conductive material. The formation depth 

is 1970 ft with the targeted heated interval of 110 ft approximately. The top of the heated 

interval is at 1780 ft depth. The horizontal well is being heated to a constant wellbore 

temperature of 800 
0
F in the heated interval. Here we must note that in reality, vertical 

fractures cannot be created at shallow depth and the ExxonMobil approach is intended 

for formation depth sufficiently great to achieve vertical fractures. For heating and flow 

sensitivity, the total cumulative recovery and production rates are compared with that of 

Shell ICP case of hexagonal heater pattern operating at 600 
0
F and 20 ft spacing and are 

shown in Figure 34 and Figure 35. 
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Figure 34: Comparison of Shell ICP and ExxonMobil EF: cumulative oil and gas 

production 

 
 

 

 
 

Figure 35: Comparison of Shell ICP and ExxonMobil EF: oil and                                 

gas production rates 

 
 

 

  It can be inferred from Figure 34 that though the ultimate recovery remains the 

same, the rate of recovery from Electrofrac process is higher than that of Shell ICP 

methodology. The peak oil production rate observed is 10 STB /Day as compared to 4 

STB /Day of Shell ICP as shown in Figure 35. The maximum rate of gas production is 9 

0

150

300

450

600

0

150

300

450

600

0 200 400 600 800 1000

C
u

m
u

la
ti

ve
 G

a
s,

 M
SC

F 

C
u

m
u

la
ti

ve
 O

il,
 S

TB
 

Time, Day 
Shell ICP-Cum Oil-Hexagon-600F EF-Cum Oil-600F

Shell ICP-Cum Gas-Hexagon-600F EF-Cum Gas-600F

0

3

6

9

12

0

3

6

9

12

0 200 400 600 800 1000

G
a

s 
R

at
e,

 M
SC

F/
D

ay
 

O
il 

R
at

e,
 S

TB
/D

ay
 

Time, Day 

Shell ICP-Oil Rate-Hexagon-600F EF-Oil Rate-600F

Shell ICP-Gas Rate-Hexagon-600F EF-Gas Rate-600F



 

49 

 

MSCF /Day as compared to 3 MSCF /Day of Shell ICP. These results are in 

conformance with the fact that linear conduction from planar fracture is more effective 

than the radial heat conduction from a wellbore.   

3.2 Sensitivity runs  

In this section, sensitivity analyses on the effect of heater temperature and 

longitudinal fracture length created from horizontal well on hydrocarbon production are 

performed. 

3.2.1 Effect of temperature 

 We investigated the effect of temperature on production profile for the Electrofrac 

method when operated at temperatures of 600 
0
F, 700 

0
F and 800 

0
F. When heated for 

longer time at these temperatures, the ultimate recovery attains similar values as shown 

in Figure 36 but the peak production rates are greater for the higher temperatures as 

represented in Figure 37. Similar to Shell ICP method, higher heating temperature 

results in greater gas production and lower liquid recovery with total barrel of oil 

equivalent (BOE) remains almost same and is equal to 660 BOE. It is because, at higher 

temperatures, heavier components thermo-kinetically decompose to yield gaseous 

products and char. 
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Figure 36: Effect of Temperature on ExxonMobil EF process: cumulative oil               

and gas production 

 

 

 

 
 

Figure 37: Effect of Temperature on ExxonMobil EF process: oil and                           

gas production rates 

 

 

 

Figure 38 shows the temperature profile of the heated formation when heaters are 

operated at the temperatures of  600 
0
F, 700 

0
F and 800 

0
F for 50, 100, 150 and 200 days 

respectively and can be explained in the same manner as that of Shell ICP. 
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Figure 38: Formation temperature profile for heater temperature = 600
0
F, 700

0
F,      

800
0
F 

 

 

 

3.2.2 Effect of fracture length 

 We also investigated the effect of fracture length on production profile for two 

additional fracture lengths of 35 ft and 45 ft when operated at temperature of 600 
0
F. As 

shown in Figure 39, when heated for longer time, the ultimate recovery attains similar 

values but the peak production rates are higher and occur earlier for greater fracture 

lengths as shown in Figure 40. The observed peak oil and gas production rates are 11 

STB /Day and 10 MSCF/ Day respectively for fracture length of 55 ft as compared to 10 

STB /Day and 9 MSCF/ Day respectively  for fracture length of 35 ft. This is due to the 

reason that greater the fracture length, bigger is the conduit through which the formation 
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is being heated that expedites the conversion of kerogen into hydrocarbon. 

 

 

 

 
 

Figure 39: Effect of heater spacing on cumulative oil and gas production 

 

 

 

 
 

Figure 40: Effect of heater spacing on oil and gas production rates 

 

 

 

Figure 41 shows the temperature profile of the heated formation for different 

fracture lengths at the heater temperature of 600 
0
F for 50, 100, 150 and 200 days 
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respectively. Greater the fracture length, sooner the formation temperature reaches the 

pyrolysis window. 

 

 

 

 
 

Figure 41: Formation temperature profile for fracture lengths = 35 ft, 45 ft, 55 ft 

 

 

 

3.3 ExxonMobil electrofrac energy efficiency comparison for various cases  

 The energy efficiency of the Electrofrac method for 90% hydrocarbon recovery 

operated at different temperatures is shown in Figure 42. The largest efficiency obtained 

is approximately 140% at 600 
0
F. Since fracture acts as an efficient planar heat source, 

operating electrofrac process at lower temperatures curtails the need of higher energy 

input which in turn minimizes the overburden heat losses. This process is applicable 

with both vertical and horizontal fractures and can be a better option for deeper 
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formations to avoid additional thermal losses incurred in case of downhole electric 

heaters. However, Shell ICP process can be applied in shallower formations as in-situ 

stresses may not favor the propagation of vertical fractures.  

 

 

 

 
 

Figure 42: ExxonMobil EF energy ratio comparison for temperatures = 600
0
F,       

700
0
F, 800

0
F 

 

 

 

 Figure 43 shows energy efficiency values for different fracture lengths of 35, 

45 and 55 ft respectively at 800 
0
F. The peak value is 140% for fracture length of 55 ft 

for 90% of hydrocarbon recovery and is almost similar for other fracture lengths. It is 

because all these fracture lengths are considered in the same simulation box model, 

however if the hydrocarbon production is normalized based on the simulated area only 

containing the fracture length; lowest fracture length will have the highest efficiency, 

expedited hydrocarbon recovery with higher peak production rates similar to that of 

Shell ICP cases for different spacing of heater wells for hexagonal arrangement. 
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Figure 43: ExxonMobil EF energy ratio comparison of for fracture lengths = 35 ft,       

45 ft, 55 ft 

 

 

 

This chapter described ExxonMobil Electrofrac (EF) technology for oil shale heating. 

Along with Shell ICP process, both these methodologies are based on direct heating of 

the formation from wellbore; either with downhole electrical heaters from vertical wells 

or electrically conducting material placed in the propped longitudinal fracture 

respectively. In case of ExxonMobil Electrofrac process, maximum energy efficiency is 

achieved at 600 
0
F. The following chapter illustrates application of one of the indirect 

heating approaches i.e. Texas A&M University (TAMU) steam injection through 

multistage transverse fractured horizontal wells (MTFH) for heating oil shale deposits. A 

comparative study has been also conducted between direct heating approaches and 

TAMU MTFH for both steam and CO2 injection on oil and gas production performances 

accompanied with the effect of type of hot fluid on energy efficiency.   
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CHAPTER IV  

TAMU APPROACH (MULTISTAGE TRANSVERSE FRACTURED 

HORIZONTAL WELLS) 

 

 This chapter illustrates the concept of heating oil shale using hot fluid circulation 

like super-heated steam  as investigated by Thoram and Ehlig-Economides (2011) or 

CO2 injection through transverse vertical fractures created from a horizontal well to heat 

the oil shale to pyrolysis temperatures. The transverse vertical fracture created from a 

horizontal well is intersected by two other parallelydrilled horizontal wells, injector and 

producer respectively for super heated steam circulation. All the horizontal wells are 

placed in the middle of the targeted oil shale formation within which the vertical fracture 

is contained. Chevron proposes a similar approach (Chevron CRUSH) but non-

condensable gas like hot CO2 circulation through a network of horizontal hydraulic 

fractures created from vertical wells (Biglarbigi et al. 2007).  

4.1 Simulation model description 

 Our simulation model for MTFH technology consists of modeling one fracture unit 

with cartesian gridding of 11*11*9 grids along x, y and z directions along with local 

logarithmic grid refinement (LGR) for the grid blocks containing fracture as represented 

in Figure 44. Fracture length (2xf) and height (hf) are 37 ft and 110 ft respectively with 

spacing of 35 ft and propped fracture conductivity is taken as 2000 md-ft. Both 

overburden and underburden thickness are taken as 80 ft each. The formation depth is 

1970 ft with the targeted heated interval of 110 ft approximately. The top of the heated 
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interval is at 1780 ft depth. The simulation input parameters are same as mentioned in 

case of ExxonMobil Electrofrac process. The grid area is same as that Shell ICP case of 

hexagonal heater pattern with 20 ft heater spacing at 600 
0
F. 

 Super-heated steam is injected at the rate of 200 STB /Day cold water equivalent 

(CWE) at 600 
0
F and 300 psi through transverse fracture created from horizontal injector 

well (HZ-I). In contrast to the model by Thoram and Ehlig-Economides (2011) model 

which only considered the time to heat the formation to the target temperature, in this 

case the pressure in the production well is low enough to flowback the converted 

hydrocarbons through a horizontal producer well (HZ-P) during steam injection.  

 

 

 

 

Figure 44: TAMU MTFH simulation model developed using CMG 

 

 

As shown in Figure 45 and Figure 46, the total cumulative recovery and production rates 
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are compared with that of Shell ICP case of hexagonal heater pattern operating at 600 
0
F 

and 20 ft spacing. The ultimate hydrocarbon recovery for both the Shell ICP and TAMU 

MTFH methodologies are similar though the former technique provides accelerated 

production. The peak oil and gas production rates are higher and appear earlier in case of 

Shell ICP at approximately 130 days which means radial conduction is working faster to 

linear conduction here. This is because in case of Shell ICP, all the heat being generated 

through downhole electric heaters, is imparted into the formation whereas in case of 

super heated steam injection, some of the heat is recovered through producer well due to 

hot fluid circulation i.e. steam. 

 

 

 

 
 

Figure 45: Comparison of Shell ICP and TAMU MTFH STEAM: cumulative               

oil and gas production 
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Figure 46: Comparison of Shell ICP and TAMU MTFH STEAM: oil and                     

gas production rates 

 
 

 

           We have also compared the production profile of TAMU MTFH for steam and 

CO2 injection to ExxonMobil Electrofrac process for operating temperature of 600 

0
F.Hot CO2 gas is injected at the rate of 720 MSCF /Day at 600 

0
F and 300 psi through 

transverse fracture created from horizontal injector well (INJ-1). One thing to take into 

consideration is that both ExxonMobil Electrofrac and TAMU MTFH technologies 

require creation of transverse vertical fractures which can be achieved at deep 

formations. From Figure 47, it can be seen that ultimate hydrocarbon recovery is similar 

whereas from Figure 48, it can be seen that peak oil and gas rates are always higher and 

achieved earlier in time for eletrofrac method as compared to super-heated steam or CO2 

circulation. This is because in case of ExxonMobil Electrofrac, all the heat is imparted 

into the formation whereas in case of hot fluid circulation whether super heated steam or 

CO2, some of the heat is recovered at the surface through producer well though in all the 

cases fracture is acting as the linear conducting source. For super-heated steam or CO2 
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injecton, total hydrocarbon recovery remains the same but the peak oil and gas rates are 

approximately 1.5 STB/ Day and 1.5 MSCF/ Day respectively for super-heated steam 

injection which is almost thrice that of the rates obtained with CO2 circulation. 

 

 

 

  
 

Figure 47: Comparison of EF and TAMU MTFH STEAM & CO2: cumulative              

oil and gas production 
 

 

 

 
 

Figure 48: Comparison of EF and TAMU MTFH STEAM & CO2: oil and                    

gas production rates 
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Figure 49 shows the temperature profile of the heated formation excluding 

overburden and underburden for TAMU  MTFH super-heated steam and CO2 vapor 

circulation being injected temperature of 600 
0
F and 300 psi for 100, 1000, 2000 and 

3000 days respectively. One important thing to notice is that the formation temperature 

rises uniformly for CO2 injection, as the injection well is placed in the middle layer as 

compared to super-heated steam as gravity override occurs for latter. It is observed that 

for steam injection, formation temperature increases rapidly as compared to that of CO2 

injection as unit mass of steam contains almost four times the enthalpy that of 

carbondioxide. In this case, to attain similar temperature profile and also to ensure that 

cumulative hydrocarbon recovery reaches the same value; CO2 is being injected at a rate 

five times of that of steam injection. 

 

 

 

 
 

Figure 49: Formation temperature profile for TAMU MTFH STEAM & CO2 injection 
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4.2 TAMU MTFH energy efficiency comparison 

We have also compared the relative energy efficiency of TAMU MTFH process 

for steam and CO2 injection at 600 
0
F and 300 psi to that of ExxonMobil Electrofrac 

process when heaters are operated at 600 
0
F.  In case of TAMU  MTFH methodology, 

energy efficiency is defined as the ratio of total chemical energy content of recovered 

hydrocarbons with each barrel of oil equivalent yield 5.6*10
6
 btu and the net heat 

injected into formation from hot fluid circulation e.g. super-heated steam or CO2 g, given 

by equation 3.  

The maximum efficiency is obtained when the cumulative oil production 

becomes constant with time. At this time the heaters could be turned off as all of the 

kerogen has been converted to oil and gas products, but the simulations actually kept the 

heaters and hot fluid injection on throughout. With continued heating, the efficiency 

actually drops, but this is not what we would expect the operator to do in practice. The 

maximum efficiency occurs when approximately 90% of the converted oil has been 

produced.  

 

 

 

  

 From Figure 50, it is obvious that Electrofrac process has the highest efficieny of 

almost 140% whereas TAMU MTFH proposed technology has 150% efficiency for both 

steam and CO2 injection respectively. The slope of the graph indicates that highest 
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efficiency is achieved much earlier for Electrofrac process, almost at 150 days as 

compared to 500 and 700 days for TAMU MTFH steam and CO2 injection processes. 

This ensures faster hydrocarbon recovery and expedited cash flow in case of the former 

heating method. The slightly lower efficiency of TAMU MTFH process can be 

understood as partial diffusion of heat from circulating hot fluid to the formation 

whereas in case of ExxonMobil Electrofrac process, total generated heat is directly 

injected into the formation. However, the choice of fluid circulation, CO2 vapor or 

super-heated steam; is incumbent on the commercial availability of natural CO2 source 

or an aquifer respectively in a close proximity to the oil shale deposits. The techno-

economical feasibility of hot fluid circulation project should be evaluated on the basis of 

required rates of CO2 and steam injection for similar hydrocarbon recovery from oil 

shales if both the sources are available or absent. 

 

 

 

 
 

Figure 50: Electrofrac and TAMU MTFH Steam & CO2 injection energy ratio 

comparison at temperature = 600
0
F 
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This chapter summated one of the indirect heating techniques, TAMU MTFH 

approach for heating oil shale with steam or CO2 circulation through multiple transverse 

fractures created from horizontal well. Both ExxonMobil Electrofrac and TAMU MTFH 

technologies conduct heat into formation through planar source ie.e fractures and hence 

work on the basis of linear conduction which has lesser heat losses than radial 

conduction. ExxonMobil Electrofrac process has higher efficiency and expedited 

hydrocarbon recovery at 600 
0
F as total generated heat is directly injected into the 

formation whereas in case of TAMU MTFH approach, partial diffusion of heat from 

circulating hot fluid to the formation is taking place. For similar hydrocarbon recovery, 

CO2 has to be circulated at higher rates as compared to super-heated steam as it contains 

lesser enthalpy. The next chapter describes another indirect heating approach, Chevron 

CRUSH based on application of heat from circulation of hot fluid, CO2 gas or steam 

through horizontal fractures originated from vertical wells in shallow oil shale deposits. 

A comparative study is done with Shell ICP methodology, a direct heating approach for 

oil and gas production performances accompanied with the effect of type of hot fluid on 

energy efficiency.   

 

 

 

 

 

 



 

65 

 

CHAPTER V  

CHEVRON CRUSH TECHNOLOGY 

 

Chevron CRUSH process would be implemented in oil shale rich Mahogany 

zone in Piceance basin, Colorado for 200 feet thick formation. It proposes drilling 

vertical wells into the target formation with horizontal fractures created from them to 

circulate hot CO2 gas for heating and if necessary, explosives would be used to further 

rubblize the formation. Drilling of wells would be carried out in five spot pattern 

consisting of four injection wells with spacing of 100 – 300 ft and one centered 

production well. The implementation of this technology will take place through a series 

of seven different phases initiating with core studies to thermal decomposition of 

kerogen to oil and gas. 

5.1 Simulation model description 

 Our simulation model for Chevron CRUSH technology consists of Cartesian 

gridding with 11*11*9 grids along x, y and z directions. Heated interval of 110 ft 

consisting of two horizontal fractures 35 ft apart with fracture conductivity of 2000 md-

ft is represented in Figure 51. We have modelled production performance of a five spot 

pattern with four injection wells and one centered production well for both CO2 and 

steam injection. The formation depth is 470 ft and the top of the heated interval is at 200 

ft depth. Both overburden and underburden thickness are 80 ft each. The simulation 

input parameters are same as in case of TAMU MTFH process.  

 We have compared the production profile of Chevron CRUSH methodology for 
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steam and CO2 injection to Shell ICP case of hexagonal heater pattern operating at 600 

0
F and 20 ft spacing as both these methods can be implemented at shallow depth. Hot 

CO2 gas and super-heated steam are injected at the rate of 360 MSCF/ Day and 100 

STB/ Day cold water equivalent (CWE)  at 600 
0
F and 300 psi respectively through the 

horizontal fractures created from vertical wells (I-1, 2, 3, and 4). The simulation area is 

kept similar to other heating methodologies at 1369 ft
2
.  

 

 

 

 

Figure 51: Chevron CRUSH simulation model developed using CMG 

   

 

 

 From Figure 52, it is inferred that ultimate hydrocarbon recovery is similar whereas 

from Figure 53, it can be seen that peak oil and gas rates are always higher and achieved 

earlier in time for Shell ICP as compared to super-heated steam or CO2 circulation for 



 

67 

 

chevron CRUSH. This is because in case of Shell ICP, all the heat is imparted into the 

formation whereas in case of hot fluid circulation whether super heated steam or CO2, 

some of the heat is recovered at the surface through producer well. For super-heated 

steam injection, peak oil and gas rates are approximately 2 STB/Day and 2 MSCF/Day 

respectively and is twice of that of the CO2 injecton; though the cumulative hydrocarbon 

recovery remains the same for both hot fluid injections. Peak production rates always 

occur earlier for steam injection as compared to CO2 circulation for Chevron CRUSH 

method. 

 

 

 

 
 

Figure 52: Comparison of Shell ICP and Chevron CRUSH STEAM & CO2:     

cumulative oil and gas production 
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Figure 53: Comparison of Shell ICP and Chevron CRUSH STEAM & CO2:                  

oil and gas production rates 

 

 

 

Figure 54 shows the temperature profile of the heated formation for Chevron 

CRUSH super-heated steam and CO2 vapor circulation being injected temperature of 

600 
0
F and 300 psi for 200, 400, 600 and 800 days respectively. It is observed that for 

steam injection, formation temperature increases rapidly as compared to that of CO2 

injection as unit mass of steam contains almost four times the enthalpy that of 

carbondioxide. Similar to TAMU MTFH methodology, formation temperature rises 

uniformly for CO2 injection but slower as compared to super-heated steam where gravity 

override occurs leading to higher heating of the layers above the horizontal fractures. As 

the injection is continued for long time, the targeted formation will attain the window of 

pyrolysis temperature all throughout. 
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Figure 54: Formation temperature profile for Chevron CRUSH STEAM and              

CO2 injection 

 

 

 

5.2 Chevron CRUSH energy efficiency comparison 

We have compared the relative energy efficiency of Chevron CRUSH process for 

steam and CO2 injection at 600 
0
F and 300 psi to that of Shell ICP case of hexagonal 

heater pattern operating at 600 
0
F and 20 ft spacing. The maximum efficiency occurs 

when approximately 90% of the converted oil has been produced after which the 

injection of hot fluid heaters could be discontinued as all of the kerogen has been 

converted to oil and gas products. With continued injection, the efficiency actually 

drops, that is not expected to be practiced.  From Figure 55, it is inferred that Chevron 

CRUSH technology has the highest efficieny of almost 140% and 120% for both steam 

and CO2 injection respectively as compared to 120% of Shell ICP process. Nonetheless, 
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the highest efficiency for Shell ICP is achieved earlier in time as compared to that of 

Chevron CRUSH that ensures faster hydrocarbon recovery and expedited cash flow. The 

higher efficiency of Chevron CRUSH process can be attributed to heat conduction from 

fractures that act as an efficient planar heat source, curtailing the need of radial heating 

from downhole electric heaters that result in excessive peripheral heat losses. When 

compared to Shell ICP process, Chevron CRUSH technolgy serves as a more energy 

efficient in-situ upgrading process for oil shale conversion.  

 

 

 

 
 

Figure 55: Shell ICP and Chevron CRUSH STEAM & CO2 injection energy              

ratio comparison at temperature = 600
0
F 
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radial conduction. Similar to TAMU MTFH, for equal hydrocarbon recovery, CO2 has to 

be circulated at higher rates as compared to super-heated steam because of lesser heat 

content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

 

CHAPTER VI  

DISCUSSION AND CONCLUSIONS 

 

This chapter sums up all the in-situ methods elaborated in this thesis along with 

conclusions and recommendations.  

6.1 Discussion 

This section categorizes all the heating methods discussed so far on the basis of 

depth of application. As some of these in-situ techniques require creation of vertical or 

horizontal fractures in the formation, a detailed stress studies on core samples from the 

formation is required to analyse the propagation of type of fracture in the subsurface. 

Also, TAMU MTFH and Chevron CRUSH methods are based on heating of oil shale by 

hot fluid circulation i.e. steam or carbondioxide respectively; generation of type of fluid 

is dependent on pressure and temperature.  

The terms mentioned in Figure 56 are explained below. 

 Stress line: A hypothetical critical depth of 1300 ft is calculated using the parameters 

mentioned in (Economides et al. 2012), greater than which will facilitate creation of 

transverse vertical fractures  in the formation as the vertical stress will be greater 

than the minimum horizontal stress. 

 Steam quality: At 600 
0
F, super-heated steam can be generated to critical pressure of 

pc,H2O = 1542 psi which when assumed as hydrostatic pressure, phyd and is converted 

to depth; approximately equals to 3600 ft. Greater than 3600 ft or pc,H2O , only 

saturated steam can be circulated in the formation at 600 
0
F which has a lower 
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enthalpy. Similarly, for CO2 vapor circulation, critical pressure is pc,CO2 = 1100 psi 

above which carbondioxide is generated in supercritical (sc) state. 

 

 

 

 

Figure 56: Depth of application of in-situ techniques @ 600 
0
F 

 

 

 

It is observed that Shell ICP and Chevron CRUSH heating methodologies can be 

applied at shallow formation depth though the former can be applied in deeper 

formations but that could lead to excessive peripheral heat losses because of radial 

conduction. TAMU MTFH and Electrofrac (EF) processes can be implemented for 

deeper oil shale deposits that would promote creation of vertical transverse fractures for 

heating the formation. Since TAMU MTFH proposes circulation of steam through 
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transverse vertical fractures, super-heated or saturated; choice of steam type is dependent 

on the depth of formation and the required pressure for a given temperature. 

6.2 Conclusions 

 This study compared various approaches for heating and converting kerogen in oil 

shale to producible hydrocarbons. Both direct and indirect heating methods were studied. 

Direct heating methods included Shell ICP and ExxonMobil EF. The indirect heating 

methods included the TAMU MTFH steam injection method and the Chevron CRUSH 

technology. 

 For all direct heating geometries, accelerated production occurs at the maximum 

temperature of 800 
0
F. 

 For direct heating approaches, highest energy efficiency occurred with the 

ExxonMobil Electrofrac process at 600 
0
F. 

 For heating approaches operating at shallow formation depth, highest efficiency is 

obtained with Chevron CRUSH method for super-heated steam circulation at 600 
0
F. 

 For heating approaches operating at deeper formation depth, highest efficiency is 

obtained with ExxonMobil Electrofrac at 600 
0
F. 

 When operating on the same formation bulk volume, all of the heating geometries 

ultimately produce about the same cumulative hydrocarbon recovery, but closer 

spacing or increased heating rate will accelerate the production.  

 Of the indirect heating approaches, greater efficiency is achieved for steam injection 

as compared to CO2 vapor. 
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6.3 Recommendations 

 Following are the recommendations for making the simulation models more 

realistic:  

 Better understanding of the petrophysics of oil shale.  

 Accountance of pre-existing fracture system. 

 Use of temperature dependent thermo-physical parameters instead of constant 

values. 

 Modeling of reservoir parameters like porosity and permeability evolution during 

heating oil shale.  

 Rigorous fine scale geological modeling for reservoir flow simulation. 

 Economic analysis for each of the method based on capital expenditure (CAPEX) 

and operational expenditure (OPEX). 
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