
ALGORITHMS AND DATA REPRESENTATIONS FOR EMERGING

NON-VOLATILE MEMORIES

A Dissertation

by

YUE LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Anxiao Jiang
Committee Members, Andreas Klappenecker

Eun Jung Kim
Krishna R. Narayanan

Head of Department, Nancy M. Amato

May 2014

Major Subject: Computer Science

Copyright 2014 Yue Li

ABSTRACT

The evolution of data storage technologies has been extraordinary. Hard disk drives

that fit in current personal computers have the capacity that requires tons of transistors

to achieve in 1970s. Today, we are at the beginning of the era of non-volatile memory

(NVM). NVMs provide excellent performance such as random access, high I/O speed, low

power consumption, and so on. The storage density of NVMs keeps increasing following

Moore’s law. However, higher storage density also brings significant data reliability issues.

When chip geometries scale down, memory cells (e.g. transistors) are aligned much closer

to each other, and noise in the devices will become no longer negligible. Consequently,

data will be more prone to errors and devices will have much shorter longevity.

This dissertation focuses on mitigating the reliability and the endurance issues for two

major NVMs, namely, NAND flash memory and phase-change memory (PCM). Our main

research tools include a set of coding techniques for the communication channels im-

plied by flash memory and PCM. To approach the problems, at bit level we design error

correcting codes tailored for the asymmetric errors in flash and PCM, we propose joint

coding scheme for endurance and reliability, error scrubbing methods for controlling stor-

age channel quality, and study codes that are inherently resisting to typical errors in flash

and PCM; at higher levels, we are interested in analyzing the structures and the meanings

of the stored data, and propose methods that pass such metadata to help further improve

the coding performance at bit level. The highlights of this dissertation include the first

set of write-once memory code constructions which correct a significant number of errors,

a practical framework which corrects errors utilizing the redundancies in texts, the first

report of the performance of polar codes for flash memories, and the emulation of rank

modulation codes in NAND flash chips.

ii

To my parents and my wife Xiheng.

iii

ACKNOWLEDGEMENTS

I would like to thank my wonderful Ph. D. advisor Prof. Anxiao (Andrew) Jiang. I

am truly grateful that Andrew picked me up three years ago. It is my honor to work with

him. Andrew always gives me strong support, and he is always very patient. Without his

constant guidance, I will never be able to accomplish any of the work in this dissertation.

Andrew not only taught me how to be a hard-working researcher, but also taught me how

to be a nice and understanding person in life. As I always say to my friends, being able to

become one of Andrew’s students is like wining a big lottery.

I would like to thank my another wonderful advisor Prof. Jehoshua (Shuki) Bruck for

his endless support, and for having me in his group. Shuki is my academic grandfather. He

always smiles as my grandfather did, and he indeed treats me as a family member. Shuki

and Andrew are the professors that one always dreams to work with. I thank Shuki for

showing me lots of interesting problems, and giving me lots of freedom to explore new

directions. Shuki taught me how to be visionary in research, and how to be a nice person

in life.

I would like to thank Prof. Eitan Yaakobi, Prof. Michael Langberg, and Prof. Jöerg

Kliewer for being friends, teachers and collaborators. Discussions with them are always

enjoyable and fruitful.

I would like to thank Prof. Andreas Klappenecker, Prof. Eun Jung Kim, and Prof.

Krishna R. Narayanan for serving on my committee and providing precious feedback on

my research despite their very busy schedules.

I would like to thank my ex-advisor Dr. Gabriel Dos Reis for making me a practi-

cal researcher. I would like to thank Prof. Jaakko Järvi for his help, understanding and

suggestions.

iv

I am grateful to my undergraduate advisor Prof. Yu Liu for her support. She taught

me to be a positive and responsible person, and made me understand the significance of

having good attitudes on anything that I work on. I would like to thank her for coming to

visit me during my Ph. D. study.

I spent a wonderful summer at LSI. I’m grateful to Dr. Erich F. Haratsch and Dr. Hakim

Alhussien, without whom I could never finish my project and publish the interesting re-

sults. I would like to thank Dr. Sundararajan Sankaranarayanan, Dr. Yu Cai, Dr. Jacob

Chen, and Dr. Yingquan Wu for their suggestions on my research and career. I would like

to thank Meysam Asadi and Dongyi Ye for accompanying me and going lunch with me

during those joyful days.

I had a great working experience at the Department of Mathematics of Texas A&M.

I would like to thank Prof. Ronald DeVore, Prof. Guergana Petrova for continuously sup-

porting me. I’m grateful to Matthew Hielsberg for being friend, mentoring me , and teach-

ing me how to build high quality software. I would like to thank Kristy Delvo-Vela for

making the working environment extremely comfortable. I would like to thank Casey

Rodriguez for working together with me.

I would like to thank Eyal En Gad for being a good friend, a nice academic uncle,

a great research collaborator, and my patient Hebrew teacher. I would like to thank

Dr. Farzad Farnoud (Hassanzadeh) for accompanying me in the lab when we worked

overnight for deadlines. Farzad and I had lots of funny conversations and research dis-

cussions that I will never forget. I also would like to thank my labmates at Texas A&M

Dr. Yue Wang, Qing Li, Xiang Chen, and Rui Niu. Working with them gives me lots of

motivations for my research.

I would like to thank my close friends Youyou Wang, Hao Wang, Qiong Zhao, Lei

Wang, Shi Pu, Xiabing Xu, Xiaojian Wu, Sheng Qiu, Xiaoyong Li, Wen Yuan, Yan Jing,

Wen Li, Lin Sun and Tengteng Zhang for accompanying me at A&M. Those poker nights,

v

dinner parties and trips with you are the most precious memory that makes me smile when

I think of them. I would like to thank my former labmates Dr. Jacob N. Smith, Dr. Yuriy

Solodkyy, Dr. Xiaolong Tang, Cindy (Hsin-Yi) Yeh and Wonseok Kim for being close

friends and always supporting me.

Finally, the ultimate thanks go to my family. I’m grateful to my sweet and lovely wife

Xiheng. Her beautiful smile, endless support, unconditional love and understanding are

the forces that keep my research moving forward. I would like to give my deepest gratitude

to my parents and my grandparents for raising me up and teaching me how to be a good

person in life. Their strong encouragements, and endless love make me be brave to accept

the challenges in my life and career. To them this dissertation is dedicated to.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Basic Concepts of Flash Memory and PCM 2
1.2 Data Reliability Challenges for Flash Memory and PCM 8
1.3 Overview of Research Directions . 10

2. BACKGROUND ON CODING FOR NONVOLATILE MEMORIES 14

2.1 WOM Codes . 14
2.2 Error Correction Codes for Flash Memory and PCM 15
2.3 Rank Modulation Codes . 16

3. BIT-FIXING CODES FOR CORRECTING ASYMMETRIC ERRORS 17

3.1 Bit-fixing Coding Scheme . 18
3.1.1 Numeral Systems for Cell Levels and Errors 18
3.1.2 Bit-fixing Coding Scheme for Binary Representation 19
3.1.3 Bit-fixing Coding Scheme for General Numeral Systems 24
3.1.4 Achievable Rate of Bit-fixing Coding Scheme 25

3.2 Optimal Labeling of Cell-levels . 26
3.3 Coding for Any Number of Cell Levels 30
3.4 Performance Evaluation . 30

4. CONTENT-ASSISTED ERROR CORRECTION FOR FILE RECOVERY . . . 33

4.1 The Models of File Decoding . 34
4.2 The Content-Assisted Decoding Algorithms 37

4.2.1 Creating Dictionaries . 37
4.2.2 Codeword Segmentation . 37
4.2.3 Ambiguity Resolution . 41

vii

4.2.4 Post-processing . 45
4.3 Experiments . 45

4.3.1 Implementation Detail . 45
4.3.2 Evaluation . 46

5. WOM CODES THAT CORRECT SYMMETRIC ERRORS 49

5.1 Basic Model . 49
5.1.1 The Model for Rewriting . 50
5.1.2 Polar Codes . 51

5.2 Code Construction . 52
5.2.1 Basic Code Construction with a Nested Structure 52
5.2.2 Extended Code Construction . 56

5.3 Code Analysis for BSC . 56
5.3.1 Correctness of the Code . 56
5.3.2 The Size of FWOM(α,ε) ∩ FBSC(p) 57
5.3.3 Lower Bound to Sum-rate . 59

5.4 Extensions . 61
5.5 Experimental Results . 62

5.5.1 Finding BSCs Satisfying FBSC(p) ⊆ FWOM(α,ε) 63
5.5.2 Achievable Sum-rates for Nested Code 64
5.5.3 Achievable Sum-rates for General Code 64

6. ERROR CORRECTING TRAJECTORY CODES FOR PARTIAL INFORMA-
TION REWRITING . 66

6.1 Trajectory Codes . 67
6.2 Error Correcting Trajectory Codes . 68

6.2.1 Error Model and WOM Parameters 68
6.2.2 Code Construction . 69
6.2.3 Analysis of the Correctness of the Construction 70
6.2.4 Code Analysis . 71

6.3 A More Generalized Coding Scheme . 74
6.3.1 Code Construction . 74
6.3.2 Analysis of the Correctness of the Code 76
6.3.3 Code Analysis . 77

7. WOM CODES THAT CORRECT WRITE ERRORS 80

7.1 WOM Channel Model . 80
7.2 Polar Coding Notation . 82
7.3 Coding Scheme . 83
7.4 Optimality of the Code Rate . 88

7.4.1 Fraction of Additional Cells is Negligible 88
7.4.2 The Rate of the Main Block . 93

7.5 Probability of Decoding Error . 96
7.6 Discussion . 102

viii

8. POLAR CHANNEL CODES IN MULTI-LEVEL FLASH MEMORIES 103

8.1 The Models of Flash Memories . 105
8.1.1 Reading MLC . 105
8.1.2 A Cascaded Noise Channel Model 106

8.2 Polar Codes for Flash Memories . 108
8.2.1 Shortened Non-systematic Polar Codes 108
8.2.2 Shortened Systematic Polar Codes 110
8.2.3 Polar Codes with Bit-reversal Permutation 112
8.2.4 Performance Evaluation . 113

8.3 Adaptive Decoding for Flash Memories 115

9. MULTI-PHASE SCRUBBING FOR PHASE-CHANGE MEMORIES 120

9.1 Multi-phase Memory Scrubbing . 122
9.2 Code Rate Analysis . 125

9.2.1 Channel Model . 126
9.2.2 Code Rates . 127

9.3 Decoding Error Rate Analysis . 130
9.3.1 Decoding Error Rates without Metadata 130
9.3.2 Decoding Error Rates with Metadata 131

9.4 In-memory Error Detection . 132
9.5 Performance Evaluation . 133

9.5.1 Code Rates . 133
9.5.2 Estimated Decoding Bit Error Rates 134
9.5.3 Simulation Results . 135

10. EMULATING RANK MODULATION CODES IN FLASH MEMORIES . . . 137

10.1 Experimental Platform . 137
10.1.1 Flash Test Board . 137
10.1.2 NAND Flash Chips . 138
10.1.3 Support from Flash Chip Manufacturers 139

10.2 Emulating Rank Modulation . 139
10.3 Preliminary Results . 142

11. SUMMARY AND DIRECTIONS OF FUTURE WORK 146

REFERENCES . 149

ix

LIST OF FIGURES

FIGURE Page

1.1 A floating-gate transistor. 3

1.2 Examples of SLC, MLC and TLC. 3

1.3 The threshold voltage distributions of multi-level cells. 4

1.4 The changes on programming currents during ISPP for different target cell
levels [5]. 5

1.5 The process of two-step programming in multi-level cells. 6

1.6 An example of soft sensing with k = 3. 7

1.7 Different heating methods for operating PCM [8]. 8

3.1 Decoding process of bit-fixing scheme. Here thick solid arrows show how
errors change cell levels to noisy levels. And thin dotted arrows show
how decoding changes the noisy levels back to the original levels. For
i = 0, 1, 2, the thin dotted arrows labeled by i correspond to the decoding
of Ci. 22

3.2 Labeling physical cell states with levels. (a) A straightforward labeling,
where every physical state s ∈ {0, 1, · · · , 15} is labeled by level ` = s.
(b) A Gray-code labeling. (c) A new labeling. 28

3.3 Comparison of achievable rates (number of stored bits per cell). Here q =
16, p = 0.01, and L+ increases from 1 to 6. Above: asymmetric errors,
where L− = 0. Below: bidirectional errors, where L− = 3. 32

4.1 An example on correcting errors in the codeword of a text. 33

4.2 The channel model for data storage. 35

4.3 The work-flow of a channel decoder with content-assisted decoding. . . . 36

4.4 The examples of codeword segmentation. In Figure (c): A number in the
table denotes the index of the first bit of an estimated space; a set of word
means the subcodeword can be flipped to any of the word in the set. The
cross × means a subcodeword can neither be flipped to represent a word
nor to a text with at least two words. 41

x

4.5 Example of the mapping to trellis decoding. The word sets W1 = {w1,1,w1,2},
W2 = {w2,1,w2,2,w3,2}, W3 = {w3,1,w3,2,w3,3} and W4 = {w4,1,w4,2}
respectively corresponds to the subcodewords x1, x2, x3 and x4. 44

5.1 The WOM channel WOM(α, ε). 53

5.2 (a) Nested code for FBSC(p) ⊆ FWOM(α,ε). (b) General code. 53

5.3 Degrading the channel WOM(α, ε∗) to BSC(αε∗). The two channels on
the left and on the right are equivalent. 58

5.4 Degrading channel WOM(α, p
α

) to WOM(α, ε). Here z = αε−p
α−2p

. The
two channels on the left and on the right are equivalent. 58

5.5 The frozen sets for channels BSC(p), WOM(α, ε), WOM(α, p
α

) and
BSC(αε). Here p 6 αε. 59

5.6 Lower bound to achievable sum-rates for different error probability p. . . 62

5.7 Lower bound to achievable sum-rates for different error probability p.
Here each rewriting step writes the same number of bits. 63

5.8 The maximum value of p found for which FBSC(p) ⊆ FWOM(α,ε). 64

5.9 Sum-rates for different t obtained in experimental search using code length
N = 8192, when FBSC(p) ⊆ FWOM(α,ε). 65

6.1 The lower and upper bounds (marked by LB and UB) on the achievable
code rates for different t and D. Here log2 L = 213, C = 8 and p = 10−3. 74

6.2 The bounds to the achievable rates of the two constructions on different t
and C. Here log2 L = 213, p = 10−3, and εi,j = 1

2+t−j 79

7.1 A binary WOM with write errors. 81

7.2 Different polarizations of Un
1 = Xn

1Gn. 84

8.1 An example of soft sensing with k = 3. 105

8.2 The cascaded noise channel of MLCs. 107

8.3 The performance of polar codes and LDPC codes at different PECs. . . . 114

8.4 The performance of polar codes with (a) different block lengths as well as
(b) realistic and genie DSPs. 116

8.5 The theoretical decoding error rates of each subchannel at different PECs.
Each curve denotes one subchannel. 118

xi

8.6 The performance of polar codes constructed at fixed PECs throughout the
lifetime of the flash chips. Soft sensing is used. 119

9.1 Resistance drift within 4-level cells with fixed thresholds for levels. Hori-
zontal axis: the logarithmic resistance. Solid curves: the resistance distri-
butions of the cell levels. Dotted vertical lines: the resistance thresholds. . 120

9.2 An example for illustrating multi-phase scrubbing. 125

9.3 The code rates of the three scrubbing schemes given different s. 134

9.4 The decoding BERs of each scheme with different scrubbing periods. . . 135

9.5 The BERs before every decoding during retention given tm = 3 h. 136

10.1 The flash test board. 138

10.2 The first 4096 cells of a page in a Micron 34nm SLC flash chip with PP
duration = 27 microseconds . 140

10.3 The first 4096 cells of a page in a Micron 34nm SLC flash chip with PP
duration = 27 microseconds . 141

10.4 The average read error probabilities at different PECs without cell-to-cell
interference. 144

10.5 The average read error probabilities at different PECs with cell-to-cell in-
terference. 145

xii

LIST OF TABLES

TABLE Page

4.1 The decoding BERs when the dictionaries are complete 46

4.2 The decoding BERs when the dictionaries are incomplete. 47

6.1 An example of the first construction. 71

6.2 An example of the second construction. 76

9.1 The configurations of PCM cells used for evaluations. 133

10.1 The NAND flash chips used in our experiments. 138

10.2 Error patterns of the two emulation schemes. 143

xiii

1. INTRODUCTION

Data storage technologies have been so widely integrated into our daily life that some-

times we do not even realize their existences. They are operating in small mobile elec-

tronic devices such as cameras, cell phones and tablets, they also live inside large scale

high performance computing facilities such as data centers made of thousands of server

racks. The evolution of storage technologies has been extraordinary. Hard disk drives

(HDDs) in current personal computers can store data that requires tons of transistors to

store forty years ago. Today, we are at the beginning of another evolution of data storage

technologies—the era of nonvolatile memory (NVM). NVMs such as flash memories be-

come ubiquitous because of their excellent performance. Compared to HDD, solid state

drives (SSDs) made of flash memories are implemented purely with circuits, and provide

much higher I/O speed, random access and less power consumption.

The density of NVMs keeps increasing following Moore’s law. Although the area cost

of NVMs has been significantly reduced, the much smaller chip geometry poses signif-

icant reliability challenges to NVMs. The main reason is that the basic storage units in

NVMs (e.g. transistors in flash memories) are aligned much closer to each other, and

more quantization levels are put into each unit to store more data, which greatly amplify

the effects of different noise in the circuits. In fact, a recent study [24] has shown that the

reliability of flash memories decreases exponentially with the storage density. Therefore,

one of the ultimate goals for the data storage community is to study different methods for

improving the reliability of NVMs while still preserving their excellent performance such

as high storage density and speed. This dissertation reports part of our efforts towards

reaching this goal. We will mainly focus on mitigating the reliability issues for two kinds

of major emerging NVMs, namely, flash memory and phase-change memory (PCM). We

1

briefly introduce these two kinds of memories in the next section.

1.1 Basic Concepts of Flash Memory and PCM

Flash Memories was first invented by Fujio Masuoka while he was working at Toshiba

in 1980s. Very recently, flash has become one of the major storage media for both personal

and enterprise computing. There are two kinds of flash memories, namely, NOR flash

and NAND flash. Both of NOR and NAND flash memories use floating-gate transistor

(which will be introduced shortly) as the basic storage unit. The major difference is that

NOR flash provides random access capability at byte and word level, while NAND flash

provides random access only at page level. Therefore, NOR flash is more suitable for code

storage and execution and has wide applications in microprocessors. NAND flash is more

suitable for data storage devices such as mobile devices and solid-state drives. As NOR

flash provides random access at a finer level, compared to NAND flash, NOR flash chips

have larger dimensions, and have lower density and higher price. In this dissertation, we

will be focusing on NAND flash memories. However, the techniques studied here can

be adapted to work for NOR flash due to the similarities between the two kinds of flash

memories.

A flash memory chip is hierarchically organized following the order: plane, block,

page, byte, and cells. For example, a NAND flash chip may have 2 planes, each plane

has 211 blocks, a block contains 256 pages where each page has 4320 bytes, and a byte

contains 8 cells. A cell is the basic storage unit of flash memory, and it is implemented

using floating-gate transistor (FGT) shown in Figure 1.1. A FGT has a control gate

(CG), a channel consisting of a source and a drain, and a floating gate (FG) between the

control gate and the channel. Cells are programmed to store data by injecting charge

from the channel into the FG. To do so, a high voltage is applied on the control gate, and

the electrons moving from source to drain will be pulled into the FG using the Fowler-

2

Control Gate

Floating Gate

Source Drain-- - - -

Figure 1.1: A floating-gate transistor.

Nordheim tunneling. The amount of charge in a floating gate transistor is quantized into

multiple discrete levels to denote different cell states. In general, a cell that is quantized

into q levels stores log2 q bits. Currently, there are three main types of cells that have

been used in commercial flash products, namely, single-level cell (SLC), multi-level cell

(MLC), and triple-level cell (TLC) with densities 1, 2, and 3 bits per cell, respectively.

Figure 1.2 shows the examples of the three kinds of cells with the cell levels being labeled

using gray mapping (i.e. the bits representing two adjacent cell levels are different by

only 1 bit). To read a cell, a small voltage is applied on the CG, and the charge amount

011
010
000
001
101
100
110
111

10
00
01
11

0

1

Figure 1.2: Examples of SLC, MLC and TLC.

of the FG is measured and compared with predetermined reference threshold voltages

to determine the discrete cell level. Both programming and reading can be performed

3

efficiently. To erase a cell, a high voltage in the opposite direction is applied on the control

gate, which pulls the electrons out of the FG. This process causes significant interference

on the neighboring cells, therefore erasing a cell currently requires erasing the whole block

of cells, and the valid data stored in the other cells of the block to be erased need to be

written into other blocks. The endurance of a cell is characterized by the number of times

that the cell can be erased until it starts malfunction, e.g. a cell may get stuck and can no

longer be programmed. Therefore, block erasures not only introduces significant latency,

but also degrade the performance of memory.

We now explain the concepts of cell level distributions, page programming and read-

ing. We will use MLCs for illustration purposes, and the cases for SLC and TLC is either

an instance or a generalization of those of MLC. The threshold voltages of the cells in a

flash memory block follow certain probability distributions. It is shown that such cell level

distributions can be well approximated with Gaussian distribution [12]. Figure 1.3 shows

an example of the distributions for MLC NAND flash memories. Cell levels are labeled

using 2-bit Gray codes. In the following, we refer the left bit as the most significant bit

(MSB) and the right bit as the least significant bit (LSB).

11 01 00 10

Vth,1 Vth,2 Vth,3

N
um

be
r o

f C
el

ls

Vth0

Figure 1.3: The threshold voltage distributions of multi-level cells.

Incremental step pulse programming (ISPP) is used for programming the cells in a

page to the desired level. In this process, a small programming pulse is sent to each cell

4

in each step, injecting a small amount of charge into the cells. Cells are programmed in

parallel, and multiple programming steps are needed to reach the target threshold voltage

of each cell. After each step, the cells are read and their current threshold voltages are

compared with the target threshold voltages. The ISPP stops applying pulses to a cell if

the cell has reached target threshold voltage, and the whole process terminates when each

cell in the page reaches its target threshold voltage. Figure 1.4 shows the examples on how

the currents change during ISPP. The amount of charge injected into a cell is adjusted in

each step, and only a very small amount of charge gets injected into the cell in the last few

steps.

Figure 1.4: The changes on programming currents during ISPP for different target cell
levels [5].

To store two bits in a MLC, a two-step programming method as shown in Figure 1.5

is used where one bit is stored in each step. Let the cell to be programmed be erased (Fig-

ure 1.5(a)). The first step writes LSB (Figure 1.5(b)). If the LSB to be written is 0, the cell

level is raised to the intermediate state x0, otherwise the cell stays. The second step stores

5

MSB (Figure 1.5(c)). The LSB stored in the cell is first read using the reference threshold

voltage between the states 11 and x0. If the cell is at state x0 and the MSB is 1, the cell is

further raised to level 4, if the MSB is 0, the cell will be programmed to level 3. Similarly,

if the current cell state is 11, the cell stays or be raised to level 2 according to the value of

MSB.

N
um

be
r o

f C
el

ls

11 01 00 10

11 x0

LSB = 1 LSB = 0

MSB = 1 MSB = 0 MSB = 0 MSB = 1

(a)

(b)

(c)

Vth

Vth

Vth

Figure 1.5: The process of two-step programming in multi-level cells.

Data are read either through hard or soft sensing. In each approach, MSB and LSB

are read independently. Hard sensing returns the (possibly noisy) value of the bit being

read, while soft sensing outputs the log-likelihood ratio (LLR) of the bit. Specifically,

hard sensing uses one reference threshold voltage between two adjacent distributions as

shown in Figure 1.3. Let the reference threshold voltages be Vth,1, Vth,2, and Vth,3. To

read LSB, the cell threshold voltage Vth is compared with Vth,2, returning 0 if Vth > Vth,2,

and 1 otherwise. To read MSB utilizes both Vth,1 and Vth,3: when Vth,1 < Vth < Vth,3,

output 0, otherwise output 1. Soft sensing use k reference threshold voltages between two

6

adjacent distributions [72]. Figure 1.6 shows an example for k = 3. For i ∈ {1, 2, 3},

j ∈ {1, 2, · · · , k}, let Vth,i,j be the j-th reference threshold voltage of the k reference

threshold voltages between level i and i + 1. The threshold voltage range is thus divided

into 3k+1 bins. During reading, the bin that Vth falls into is determined after sensing with

the reference threshold voltages, according to which the LLRs are computed. The sign of

the LLR represents represents determines the value of the bit that is more likely to be, and

the magnitude measures the level of confidence. We skip the detail of LLR computation

here, and describe them more carefully in Section 8.

11 01 00 10

N
um

be
r o

f C
el

ls

Vth
Vth,1,1 Vth,1,2 Vth,3,2Vth,2,1Vth,1,3 Vth,3,3Vth,2,2 Vth,2,3 Vth,3,1

Figure 1.6: An example of soft sensing with k = 3.

Phase-Change Memories (PCM) has attracted significant attention in recent years [8].

PCM cells are made with chalcogenide materials. One way for configuring the cell states is

through heat from electrical currents. As shown in Figure 1.7, different heating strategies

result in different phases in a chalcogenide material, including the crystalline phase, the

amorphous phase. Phases are distinguished by their resistance, e.g., the resistance of the

amorphous phase has a much higher magnitude than that of the crystalline phase. Data

stored in PCM cells are represented by the corresponding phases. Compared to Flash

memories, PCMs have the potential to achieve faster programming speed. This is because

PCMs do not require block erasure to reset a cell state, and thus reprogramming can be

made fast and cells have longer lifetime.

7

Figure 1.7: Different heating methods for operating PCM [8].

To read data stored in a PCM cell, a voltage is applied on the cell and the current flow-

ing through the cell is measured to compute the cell resistance. Similar to flash memories,

cell resistance in PCM is quantized into discrete levels, and reference threshold resistances

are used for distinguishing the cell levels. The large gap between the resistance of the crys-

talline and the amorphous phases allows multiple intermediate phases to achieve MLCs,

with more levels that provide higher storage density.

1.2 Data Reliability Challenges for Flash Memory and PCM

As the chip geometries of NAND flash and PCM continuously shrink, cells in the same

block are aligned more closely, and data are more prone to errors introduced by various

kinds of noise. Currently both flash memory and PCM are facing important data reliability

challenges. We illustrate the major noise in flash memory and PCM in this section.

For flash memory, the errors are mainly due to program/erase cycling (PEC), over-

shooting during ISPP, cell-to-cell interference, charge leakage [11], and defective cells.

Interestingly, most of the noise introduce asymmetric errors on cell levels as we illustrate

below.

• Program/erase cycling noise is caused by repetitive block erasures. When a block

is erased over and over, the quality of floating gate transistors in the block degrades

8

over time, and cells will have higher probability for not being completely erased

after each block erasure, resulting some electrons stay in between the floating gate

and the channel. These electrons make loose connections between the floating gate

and the channel, and electrons are more easily to be injected into floating gate during

programming. Therefore, program/erase cycling noise causes the means of the cell

threshold voltage distributions shift to larger values. When the reference thresholds

are fixed, asymmetric errors which increase cell levels will be introduced.

• Overshooting happens during ISPP. The programming device in flash is not always

ideal, and too much charge may be injected into FGTs during the iterative program-

ming. Due to the additional charge received, the cell levels after programming may

become higher than the desired cell levels.

• Cell-to-cell interference happens mainly when a cell is being programmed. Due

to the capacitance coupling between the adjacent cells, when a cell is being pro-

grammed, the increase of its cell threshold voltage will also raise the threshold volt-

ages of its neighboring cells, introducing asymmetric errors by increasing the levels

of its neighboring cells.

• Charge leakage occurs when data are stored in cells for a long period of time. During

data retention, the electrons gradually leak away from the FGTs. Charge leakage

introduces asymmetric errors which reduce the cell levels.

• Defective cells happen in imperfect manufactured cells, or cells that are worn out.

Cells that are defective can not be programmed or erased. And their cell levels

always stay at the same values. Defective cells cause programming errors where the

actual cell level after programming may not equal to the desired level.

The noise in PCM is mainly due to the properties of phase-change materials. We

9

describe two major noise here, namely, resistance drift and cell-to-cell interference.

• Resistance drift happens due to the structural relaxations in phase change materi-

als [8] [30]. The resistance of a PCM cell slowly increases over time. Similar to the

program/erase cycling noise in flash memories, resistance drift gradually increases

the means and the variations of the cell resistance distributions. Therefore, resis-

tance drift introduces asymmetric errors which increase the cell levels.

• Cell-to-cell interference happens during cell programming. When a cell is pro-

grammed, the heat accumulated during programming will spread to the neighboring

cells. As phase-change material is very sensitive to temperature. The accumulated

heat indirectly programs the neighboring cells. Such interference may change the

states of those victim cells, resulting in some intermediate states depending on the

current resistance of the victim cells as well as the programming operation.

In summary, the reliability of flash memories and PCM are challenged by various kinds

of noise. The errors caused by each kind of noise are largely asymmetric, and may increase

or decrease cell levels due to different error mechanisms. However, the errors observed by

users are mixtures of different kinds of errors, which show different strength and degree

of symmetry for different usages and workloads.

1.3 Overview of Research Directions

This dissertation focuses on mitigating the reliability problems of flash and PCM men-

tioned above. Our main tools include a set of coding techniques that are suitable for the

channels and the constraints implied by flash memory and PCM such as error correcting

codes, rewriting codes and codes in permutation space (which we give more background

in the next chapter). We approach the problems by the following research directions.

• At bit level, we are interested in

10

– Asymmetric error correcting codes for flash memory and PCM.

– Joint coding schemes for endurance and reliability.

– Error scrubbing methods for tracking and controlling channel quality.

– New data representations that are inherently resisting to typical errors in flash

memory and PCM.

• At higher levels, we are interested in analyzing the structures, the properties, and the

meanings of the data stored in NVMs, and passing such information to the coding

schemes implemented at bit level to help further improve the performance of the

codes.

This dissertation is a collection of our work on mitigating the reliability issues of both

flash memory and PCM. The highlights of this dissertation include the first WOM code

construction which corrects a significant number of errors, a practical framework which

corrects errors utilizing the redundancies in non-uniform text files, the first report of the

performance of polar codes in multi-level flash chips, and the initiation on experimenting

rank modulation in flash memories.

We first discuss related work in Section 2. The main contributions of this dissertation

are organized as follows.

• Section 3 proposes a new coding scheme called bit-fixing codes that correct limited-

magnitude errors for multi-level cell nonvolatile memories. Our codes generalize a

known result and work for arbitrary error distributions.

• Section 4 designs a content-assisted file decoding framework for NVMs. Our frame-

work uses the random access capability of NVMs and the redundancy that inherently

exists in information content.

11

• Section 5 presents a new coding scheme that combines rewriting and error correction

for the write-once memory model. Its construction is based on polar codes, and it

supports any number of rewrites and corrects a substantial number of errors.

• Section 6 considers the partial information rewriting problem for flash memories. In

this problem, the state of information can only be updated to a limited number of

new states, and errors may occur in memory cells between two adjacent updates. We

propose two coding schemes based on the models of trajectory codes. The bounds

on achievable code rates are shown using polar WOM coding.

• Section 7 considers the noisy WOM model where noise is introduced during the

programming. The model can be modeled with an asymmetric channel model with

state information at the encoder. we propose a nesting of asymmetric channel and

source polar codes which achieves the corresponding Gelfand-Pinsker bound with

polynomial complexity. We also identify how the proposed technique can be used

to provide a nested coding solution for other asymmetric side-information based

problems.

• Section 8 reports part of the efforts towards a polar read channel for flash memories.

We address several challenges raised when applying polar codes to commercial flash

memories. We propose efficient schemes for shortening both non-systematic and

systematic polar codes, making polar codewords be easily adapted to flash page of

any length. We demonstrate that the practical performance of shortened polar codes

and LDPC codes are comparable on the same data obtained by characterizing NAND

MLC flash chips. We also prove the feasibility of a practical adaptive decoding

framework.

• Section 9 proposes a multi-phase memory scrubbing framework for tolerating resis-

12

tance drift in PCM. Our scheme refreshes a portion of the cells holding a codeword

after decoding. Compared to the basic scrubbing scheme that refreshes all the cells

at each scrubbing cycle, our scheme provides higher decoding frequency so that

errors are detected much earlier.

• Section 10 discusses the current experimental work on emulating and characterizing

rank modulation codes. Programming and reading schemes are developed to write

rank modulation codewords into existing NAND flash chips under the help of a flash

test board. We present the current status of the projects, preliminary experimental

results, as well as discuss our future directions.

Most, if not all of the results above, have been published in our recent papers [18, 36–

38, 47–49]. We discuss several future directions in Section 11.

13

2. BACKGROUND ON CODING FOR NONVOLATILE MEMORIES

Solutions for mitigating the reliability issues of flash memories and phase-change

memories have been extensively studied in recent literature. In this section, we discuss the

related work and the current progress in three directions: (1) Write-once memory (WOM)

codes for rewriting data, (2) codes and schemes for correcting errors for flash memory and

PCM, and (3) rank modulation codes.

2.1 WOM Codes

Coding for rewriting is an important technology for flash memories. It has the potential

to substantially increase their longevity, speed and power efficiency. The most basic model

for rewriting is a WOM model [61], where a set of binary cells are used to store data,

and the cell levels can only increase when the data are rewritten. For flash memories,

this constraint implies that the rewriting operation will delay the expensive block erasure,

which leads to better preservation of cell quality and higher writing performance.

Since Rivest and Shamir’s seminal work on WOM codes, the capacity region of WOM

codes for noiseless channel were independently derived by Heegard [27], and by Fu and

Han Vinck [23]. Towards approaching the capacity, in recent years lots of works have

appeared in this area [7, 34, 35, 76, 77, 80, 81]. There have been many techniques for the

design of WOM codes. They include linear code, tabular code, codes based on projective

geometry, coset coding, etc. [14,54,61] Codes with substantially higher rates were discov-

ered in recent years [76, 81]. In 2012, WOM codes that achieve capacity were discovered

by Shpilka et al. [66,67,83] and Burshtein et al. [9]. The latter code used a very interesting

construction based on polar coding. It should be noted that polar coding is now also used

to construct rewriting codes for the rank modulation scheme [19].

Compared to the large amount of work on WOM codes, the work on WOM codes that

14

also correct errors has been much more limited. Existing works are mainly on correcting

a few errors (for example, 1, 2, or 3 errors [85, 86]). However, for rewriting to be widely

used in flash memories, it is important to design WOM codes that can correct a substantial

number of errors.

2.2 Error Correction Codes for Flash Memory and PCM

Multi-level cells greatly increase the storage density of nonvolatile memories. At the

same time, cells are aligned more closely on the chip, and more levels need to be pro-

grammed into each cell. Such changes introduce important data reliability issues.

Error correction codes are important tools for solving the reliability issues for emerg-

ing memories such as flash memories and phase-change memories. For instance, BCH

codes [50, 62] have been widely used in commodity flash memories because it has guar-

anteed error correction capability, and its decoder can be implemented efficiently in hard-

ware. Low-density-parity-check (LDPC) codes [50] are also being widely studied and

experimented to work for flash channels because of the great error correction performance

brought by iterative decoding [60]. Recently, LDPC codes utilizing the flash channel

statistics for better soft decoding is studied by Wang and Courtade [72]. Besides binary

representations, error correcting codes for other data representations for flash memories

are studied. For instance, Jiang and Schwartz [40] proposed error correcting codes which

correct single error for the rank modulation scheme [39]. Barg and Mazumdar studied

code constructions which corrects arbitrary errors for rank modulation scheme [6].

On the other hand, it was shown experimentally that errors in flash memories and

phase-change memories tend to be asymmetric [82]. Such asymmetric errors may come

from write disturbance, charge leakage, and resistance drift, and so on. Recently, there

have been many efforts on designing new codes for correcting asymmetric errors. For in-

stance, Ahlswede and Aydinian proposed the codes for correcting asymmetric errors [1],

15

and optimal systematic ECCs for both asymmetric and symmetric errors were proposed

by Elarief and Bose [16], codes for correcting asymmetric errors with limited magnitudes

were studied by Klove and Bose [44]. Later, Cassuto and Schwartz considered asym-

metric limited magnitude error corrections for flash memories to solve the overshooting

problem [13]. This study was further extended by Yaakobi and Siegel to correct errors of

graded magnitude, and nice results were presented [84].

Other solutions for improving the reliability of PCMs against resistance drift have been

studied recently. For instance, adaptive resistance thresholds can be used to read cells more

reliably [78, 88]. Designing new data representation which is robust to asymmetric errors

has also been proved to be useful in practice, such as the modulation codes constructed

from cell resistance ranks [39, 57]. Error logging schemes such as error correction point-

ers [64] are also proposed for tracking corrupted PCM cells to reduce ECCs’ burden.

2.3 Rank Modulation Codes

To overcome the issues of charge leakage and overshooting problems, rank modulation

codes were proposed in [39]. In this scheme, the information is carried by the relative order

of cell threshold voltages rather than by their absolute cell levels. Thus, every group of

cells induces a permutation, which is derived by the ranking of the level of each cell in

the group. As the relative order of cell levels is used in rank modulation codes, the codes

are inherently resistive to retention errors, and can be corrected without block erasure

when overshooting error happens. Shortly after the work in [39], several works explored

codes which correct errors in permutations specifically for the rank modulation scheme;

see e.g. [6,21,41,87,89]. These works include different metrics such as Kendall’s τ , Ulam,

and Hamming distances. Recently, to improve the number of rewrites, the model of rank

modulation was extended such that multiple cells can share the same ranking [17, 19, 42,

63]. Thus, the cells no longer determine a permutation but rather a multipermutation.

16

3. BIT-FIXING CODES FOR CORRECTING ASYMMETRIC ERRORS

It is important to design error-correcting codes (ECCs) that consider the many prop-

erties of MLC memories. Errors often have limited magnitudes and non-symmetric distri-

butions, due to the memories’ unique disturb and noise mechanisms. Such errors include

overshooting errors, charge leakage and cell-to-cell interference. Also, current MLCs are

restricted by q, the number of levels, being a power of 2. Coding schemes that can map

cells to binary codes conveniently for an arbitrary number of levels are worth studying. All

these will be addressed in this chapter. We provide coding schemes that adapt the general

ideas of multi-level codes and multi-stage decoding [31,71] to the channels of flash mem-

ories. The asymmetricity of flash channels allows us to design very efficient multi-stage

decoding algorithms.

There are different approaches to map cell levels to binary codes when q is a power

of 2, including binary representation and Gray codes. Consider n cells; and for i =

1, · · · , n, let `i ∈ {0, 1, · · · , q − 1} be the level of the ith cell. Let m = log2 q. And

let Bm(`i) , (bi,m−1, · · · , bi,1, bi,0) ∈ {0, 1}m be the binary representation of `i, namely,

`i =
∑m−1

j=0 bi,j · 2j . Since the m bits in a cell have different error probabilities, in a ba-

sic binary-representation approach, m ECCs of different rates are used. Specifically, for

j = 0, 1, · · · ,m − 1, we let (b1,j, · · · , bn,j) be a separate ECC. To further reduce error

probabilities, a more common approach is to represent the bits in a cell using Gray codes,

and then apply m ECCs.

In this chapter, we propose an alternative coding scheme named bit-fixing code. Its

main idea is to sequentially correct the bits in the binary representation of errors. And it

can be generalized to more numeral systems. When q = 2m, let εi ∈ {−`i, · · · , 0, · · · , q−
c© 2012 IEEE. Reprinted, with permission, from A. Jiang, Y. Li, and J. Bruck, ”Bit-fixing codes for

multi-level cells,” 2012 IEEE Information Theory Workshop (ITW), September, 2012.

17

1 − `i} denote the additive error in the ith cell’s level `i, and let Bm(εi mod q) ,

(ei,m−1, · · · , ei,0) ∈ {0, 1}m be the binary representation of εi mod q. For j = 0, · · · ,m−

1, let (b1,j, · · · , bn,j) be a binary ECC Cj. The scheme has the nice property that the error

bits (e1,j, · · · , en,j) only affect the code Cj . (Note that this property does not hold for the

binary-representation scheme introduced above.) That enables us to allocate redundancy

appropriately and decode C0, · · · , Cm−1 sequentially.

The bit-fixing coding scheme can be applied to arbitrary error distributions, including

both asymmetric and bidirectional errors. It can be generalized from the binary represen-

tation to many more numeral representations, including k-ary numbers (for any integer

k > 2) and mixed-radix numeral systems such as factoradic systems. It can also be ex-

tended to an arbitrary number of cell levels, which means q can be any integer instead of a

power of 2 and binary codes can still be used. The coding scheme in fact contains the ECC

for asymmetric errors of limited magnitude in [13] as a special case. It is also related to the

codes in [84], but is more specific in its construction and more general in various ways.

It can be applied not only to storage but also to amplitude-modulation communication

systems.

3.1 Bit-fixing Coding Scheme

3.1.1 Numeral Systems for Cell Levels and Errors

Consider n memory cells of q levels. For i = 1, · · · , n, let `i ∈ {0, 1 · · · , q − 1} be

the written level of the ith cell, and let εi ∈ {−`i, · · · , 0, · · · , q − 1 − `i} be the additive

error in the ith cell. Then the noisy cell level – the level we read – of the ith cell is

`′i = `i + εi ∈ {0, 1, · · · , q − 1}.

Given a non-negative integer x, let Bi(x) denote the last i bits in the binary repre-

sentation of x. That is, if Bi(x) = (yi−1, · · · , y1, y0) ∈ {0, 1}i, then (x mod 2i) =∑i−1
j=0 yj · 2j . For example, B3(5) = (1, 0, 1) and B2(5) = (0, 1). Let m = dlog2 qe. Let

18

(bi,m−1, · · · , bi,1, bi,0) , Bm(`i) be the last m bits in the binary representation of the cell

level `i, and let (ei,m−1, · · · , ei,1, ei,0) , Bm(εi mod 2m) be the last m bits in the binary

representation of εi mod 2m. Note that if errors are asymmetric, – say they are upward

errors, namely ∀ i, εi > 0, – then (ei,m−1, · · · , ei,1, ei,0) = Bm(εi).

We can extend the representation of cell levels and errors from binary representation to

more general numeral systems. Let c1, c2, · · · , cm′ be positive integers such that
∏m′

i=1 ci >

q. Then in a mixed-radix numeral system with bases (c1, c2, · · · , cm′), every integer x ∈

{0, 1, · · · , q − 1} has a unique representation R(x) = (ym′−1, · · · , y1, y0) – where for

i = 0, · · · ,m′ − 1, the digit yi ∈ {0, 1, · · · , ci+1 − 1} – that satisfies the condition x =

y0 + y1c1 + y2c1c2 + · · ·+ ym′−1c1c2 · · · cm′−1. Note that the mixed-radix numeral system

contains several common numeral systems as special cases: (1) If c1 = c2 = · · · = cm′ =

2, it becomes the binary representation; (2) More generally, if c1 = c2 = · · · = cm′ = k

for some integer k > 2, it becomes the k-ary representation; (3) If ci = i + 1, it becomes

the factorial number system. As we will see, for the bit-fixing coding scheme, given q, it

is beneficial to choose the bases ci (for i = 1, · · · ,m′) with two properties: First, good

ECCs for alphabet size ci can be designed; Second, the representations of errors (modulo

c1c2 · · · cm′) contain as few non-zero digits as possible.

3.1.2 Bit-fixing Coding Scheme for Binary Representation

We first present the bit-fixing coding scheme for the case where q is a power of 2 and

binary representations are used. It will be extended to general cases later.

Construction1. Encoding of Bit-Fixing Scheme

For j = 0, 1, · · · ,m− 1, let Cj be an (n, kj) binary ECC that can correct tj errors. We

store k0 +k1 + · · ·+km−1 information bits in n cells of q = 2m levels as follows. First, we

partition the information bits into m chunks, where for j = 0, · · · ,m − 1, the jth chunk

has kj information bits: dj = (dj,1, dj,2, · · · , dj,kj). Next, for j = 0, · · · ,m − 1, we use

19

Cj to encode dj into a codeword bj = (b1,j, b2,j, · · · , bn,j). Then, for i = 1, · · · , n, let

`i =
∑m−1

j=0 bi,j · 2j , and we write the ith cell’s level as `i.

After cells are written, additive errors ε1, · · · , εn will appear and change cell levels to

`′1 = `1 + ε1, · · · , `′n = `n + εn.

Construction2. Decoding of Bit-Fixing Scheme

Let `′1, · · · , `′n be the noisy cell levels we read. As the initialization step, for i =

1, · · · , n, let ˆ̀
i = `′i.

For j = 0, 1, · · · ,m− 1, carry out these three steps:

1. For i = 1, · · · , n, let (b̂i,m−1, · · · , b̂i,1, b̂i,0) = Bm(ˆ̀
i) be the binary representation of

the estimated cell level ˆ̀
i.

2. Use code Cj to decode the codeword (b̂1,j, · · · , b̂n,j), and let (ê1,j, · · · , ên,j) be the

discovered error vector. (That is, the recovered codeword is (b̂1,j ⊕ ê1,j, · · · , b̂n,j ⊕

ên,j), where “⊕” is the exclusive-OR operation.)

3. For i = 1, · · · , n, update the estimated cell level ˆ̀
i as follows

ˆ̀
i ←

(
ˆ̀
i − êi,j · 2j mod q

)

.

Now ˆ̀
1, · · · , ˆ̀

n are our recovered cell levels. From them, the information bits can be

readily obtained.

In the above decoding algorithm, m ECCs C0, C1, · · · , Cm−1 are decoded sequentially.

There is a nice mapping: The codeword of each Ci is (b1,i, · · · , bn,i), which are the bits

at position i in the binary representations of cell levels (`1, · · · , `n); and as will be shown

20

later, the binary errors in that codeword are (e1,i, · · · , en,i), which are the bits at position

i in the binary representations of (the modulo q of) the errors (ε1, · · · , εn). However, note

that the error vectors (e1,i, · · · , en,i) cannot be obtained directly from the binary represen-

tations of the noisy cell levels (`′1 = `1 +ε1, · · · , `′n = `n+εn) (except for i = 0). Instead,

they are obtained gradually as more and more ECCs are decoded and the estimations of

cell levels are made closer and closer to their true values.

Example1. Consider n cells of q = 8 levels. Thenm = log2 q = 3. Assume C0, C1, C2 can

correct no less than 3, 1, and 2 errors, respectively. Without loss of generality (WLOG),

suppose that after cells are written, errors appear in cells 1, 2 and 3, respectively. Let

`1 = 3, `2 = 1, `3 = 2 be their original levels, and let ε1 = 1, ε2 = 5, ε3 = −1 be their

errors. Then their noisy levels are `′1 = 4, `′2 = 6, `′3 = 1, respectively. (See Figure 3.1

and the following table for an illustration.)

Cell 1 Cell 2 Cell 3

Original level 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

Error 1: (0,0,1) 5: (1,0,1) -1: (1,1,1)

Noisy level 4: (1,0,0) 6: (1,1,0) 1: (0,0,1)

Level after decoding C0 3: (0,1,1) 5: (1,0,1) 0: (0,0,0)

Level after decoding C1 3: (0,1,1) 5: (1,0,1) 6: (1,1,0)

Level after decoding C2 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

In the decoding process, we first decode C0, where the noisy codeword is (0, 0, 1, · · ·).

(It is because the least-significant bits (LSB) of (Bm(`′1),Bm(`′2),Bm(`′3), · · ·) are (0, 0, 1, · · ·).)

By decoding it, we find its error vector (e1,0, e2,0, e3,0, · · ·) = (1, 1, 1, · · ·). So we change

the cell levels to (4− e1,0 mod 8, 6− e2,0 mod 8, 1− e3,0 mod 8) = (3, 5, 0).

Next, we decode C1, where the noisy codeword is (1, 0, 0, · · ·). (It is because the

middle bits of (Bm(3),Bm(5),Bm(0), · · ·) are (1, 0, 0, · · ·).) By decoding it, we find its

21

error vector (e1,1, e2,1, e3,1, · · ·) = (0, 0, 1, · · ·). So we change the cell levels to (3−e1,1 ·2

mod 8, 5− e2,1 · 2 mod 8, 0− e3,1 · 2 mod 8) = (3, 5, 6).

We then decode C2, where the noisy codeword is (0, 1, 1, · · ·). (It is because the most-

significant bits (MSB) of (Bm(3),Bm(5),Bm(6), · · ·) are (0, 1, 1, · · ·).) By decoding it,

we find its error vector (e1,2, e2,2, e3,2, · · ·) = (0, 1, 1, · · ·). So we change the cell levels to

(3− e1,2 · 22 mod 8, 5− e2,2 · 22 mod 8, 6− e3,2 · 22 mod 8) = (3, 1, 2). They are the

original cell levels, from which we can recover information bits. 2

0

1

2

3

4

5

6

7

Level

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

Binary
Representation

0

Cell 1

0

2

Cell 2

error error

original
level

noisy
level

original
level

noisy
level

original
level

error

noisy
level 0

1

2

Cell 3

Figure 3.1: Decoding process of bit-fixing scheme. Here thick solid arrows show how
errors change cell levels to noisy levels. And thin dotted arrows show how decoding
changes the noisy levels back to the original levels. For i = 0, 1, 2, the thin dotted arrows
labeled by i correspond to the decoding of Ci.

22

We now prove the number of errors of variable magnitudes the bit-fixing coding scheme

can correct. Given a vector v = (vk−1, · · · , v1, v0) ∈ {0, 1}k, define its support as

support(v) , {i|i ∈ {0, 1, · · · , k − 1}, vi = 1}. Given i ∈ {0, 1, · · · ,m − 1}, we

define the cross of i as

crossm(i) , {j|j ∈ {0, 1, · · · , 2m − 1}, i ∈ support(Bm(j))}.

Namely, crossm(i) is the set of integers in {0, 1, · · · , 2m−1}whose binary representations

have 1 in the ith position.

Example2. Let m = 3. Since Bm(j) = (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),

(1, 0, 1), (1, 1, 0), (1, 1, 1) for j = 0, · · · , 7 respectively, we have crossm(0) = {1, 3, 5, 7},

crossm(1) = {2, 3, 6, 7}, crossm(2) = {4, 5, 6, 7}. 2

For i = 0, 1, · · · , q − 1, define γi , |{j|j ∈ {1, · · · , n}, εj ≡ i mod q}|. That is,

there are γi cells with errors of magnitude exactly i (mod q).

Theorem3. The bit-fixing coding scheme can recover all information bits if for j =

0, 1, · · · ,m − 1, the binary error-correcting code Cj can correct
∑

k∈crossm(j) γk binary

errors.

Proof: The decoding algorithm in Construction 2 decodes C0, · · · , Cm−1 sequentially and

updates the cell-level estimation ˆ̀
i (for i = 1, · · · , n) along the way. We prove this claim

by induction: For j = 0, 1, · · · ,m − 1, after Cj is decoded, each ˆ̀
i is updated as `i +∑m−1

k=j+1 ei,k · 2k mod q.

First consider the base case j = 0. The noisy codeword for C0 is (`′1 mod 2, · · · , `′n
mod 2). Since for i = 1, · · · , n, `′i ≡ `i+εi ≡

∑m−1
k=0 bi,k ·2k+

∑m−1
k=0 ei,k ·2k mod q, the

noisy codeword is (b1,0 ⊕ e1,0, · · · , bn,0 ⊕ en,0). The Hamming weight of the error vector

23

(e1,0, · · · , en,0) is
∑

k∈crossm(0) γk, so C0 can correct all those errors. Then ˆ̀
i is updated as

(`′i − ei,0 mod q) = (`i +
∑m−1

k=1 ei,k · 2k mod q).

Now suppose the claim holds for j = 0, 1, · · · , j′ < m − 1. Consider j = j′ + 1.

The noisy codeword for Cj is (b̂1,j, · · · , b̂n,j), where b̂i,j is the (j + 1)th LSB in the binary

representation of ˆ̀
i and equals

(
ˆ̀
i−(ˆ̀

i mod 2j)
2j

mod 2
)

. By induction assumption, ˆ̀
i =

(`i+
∑m−1

k=j ei,k ·2k mod q) = (
∑m−1

k=0 bi,k ·2k+
∑m−1

k=j ei,k ·2k mod q). So b̂i,j = bi,j⊕ei,j .

So the noisy codeword is (b1,j ⊕ e1,j, · · · , bn,j ⊕ en,j), which has
∑

k∈crossm(j) γk errors.

So Cj can correct all those errors. Then ˆ̀
i is updated as ((`i +

∑m−1
k=j ei,k · 2k) − ei,j · 2j

mod q) = (`i +
∑m−1

k=j+1 ei,k · 2k mod q).

So after C0, · · · , Cm−1 are all decoded, each estimated cell level ˆ̀
i equals the original

level `i, from which information bits can be recovered. �

3.1.3 Bit-fixing Coding Scheme for General Numeral Systems

The above bit-fixing coding scheme can be generalized to mixed-radix numeral sys-

tems. Let m and c1, c2, · · · , cm be positive integers, and let q = c1c2 · · · cm. Given

n cells of q levels, for i = 1, · · · , n, we can represent the cell level `i as R(`i) =

(bi,m−1, · · · , bi,1, bi,0) ∈ {0, · · · , cm− 1}× · · · × {0, · · · , c2− 1}× {0, · · · , c1− 1} using

the mixed-radix numeral system with bases (c1, c2, · · · , cm). Similarly, we can represent

the error εi as R(εi mod q) = (ei,m−1, · · · , ei,1, ei,0). We can then encode data in the

same way as Construction 1, except that each Cj (for j = 0, 1, · · · ,m − 1) is an ECC of

alphabet size cj+1. We can decode data in the same way as Construction 2, except that

the “⊕” (exclusive-OR) operation is replaced by the “mod cj+1” operation and after Cj is

decoded (for j = 0, 1, · · · ,m−1), the estimated cell level ˆ̀
i is updated as ˆ̀

i− êi,j
∏j

k=1 ck

mod q.

Given a vector v = (vm−1, · · · , v1, v0) ∈ {0, · · · , cm − 1} × · · · × {0, · · · , c2 − 1} ×

24

{0, · · · , c1 − 1}, define its support as

support(v) , {i|i ∈ {0, 1, · · · ,m− 1}, vi 6= 0}.

Given i ∈ {0, 1, · · · ,m− 1}, we define the cross of i as

cross(i) , {j|j ∈ {0, 1, · · · , q − 1}, i ∈ support(R(j))}.

Theorem4. The bit-fixing coding scheme (for the general mixed-radix numeral system)

can recover all information bits if for j = 0, 1, · · · ,m − 1, the cj+1-ary error-correcting

code Cj can correct
∑

k∈cross(j) γk Hamming errors.

Note that if C0 is an ECC and C1, · · · , Cm−1 contain no redundancy, the scheme here

is reduced to the main code construction (Construction 1) in [?] for asymmetric errors of

maximum magnitude c1 − 1.

3.1.4 Achievable Rate of Bit-fixing Coding Scheme

We now analyze the achievable rates of the bit-fixing coding scheme. For simplicity,

we present the case in which q is a power of 2 and binary representations are used. The

analysis can be extended naturally to more general cases.

Consider a cell of level ` ∈ {0, 1, · · · , q−1}. Let `′ = `+ε ∈ {0, 1 · · · , q−1} denote

the noisy cell level, where ε ∈ {−`, · · · , 0, · · · , q − 1 − `} is the error. We assume the

errors in different cells are i.i.d. Due to the complex mechanisms for errors (e.g., disturbs

and charge leakage, cell-level drifting and different memory manufacturing processes), it

is hard to model errors with a universal model. So in this work, we consider a general

model: “∀ i, j ∈ {0, 1, · · · , q − 1}, let pi,j , Pr{ε ≡ j mod q|` = i} be a known

distribution.” Let Bm(`) = (bm−1, · · · , b1, b0) and Bm(ε mod q) = (em−1, · · · , e1, e0).

Here b0, · · · , bm−1 are m bits that belong to m different codes C0, · · · , Cm−1; and we let

25

them be independent. For i = 0, 1, · · · ,m − 1, let βi , Pr{bi = 0}; let αi,0 , Pr{ei =

1|bi = 0} and αi,1 , Pr{ei = 1|bi = 1} denote the cross-over probabilities in the binary

channel corresponding to bi; and define crossm(i) , {0, 1, · · · , q − 1} − crossm(i).

We can derive the cross-over probabilities:

Pr{ei = 1|bi = 0} =
∑

(dm−1,··· ,d1,d0):B−1
m ((dm−1,··· ,d1,d0))∈crossm(i)

∑
k∈crossm(i) ∏

x∈{0,1,··· ,m−1}−{i}

β1−dx
x (1− βx)dx

 · pB−1
m ((dm−1,··· ,d1,d0)),k,

and

Pr{ei = 1|bi = 1} =
∑

(dm−1,··· ,d1,d0):B−1
m ((dm−1,··· ,d1,d0))∈crossm(i)

∑
k∈crossm(i) ∏

x∈{0,1,··· ,m−1}−{i}

β1−dx
x (1− βx)dx

 · pB−1
m ((dm−1,··· ,d1,d0)),k.

When n → ∞, for i = 0, · · · ,m − 1, the code Ci can achieve rate I(bi; bi ⊕ ei) =

H(βi(1 − αi,0) + (1 − βi)αi,1) − βiH(αi,0) − (1 − βi)H(αi,1), where H is the entropy

function. The bit-fixing scheme can achieve rate maxβ0,β1,··· ,βm−1∈[0,1]

∑m−1
i=0 H(βi(1 −

αi,0) + (1− βi)αi,1)− βiH(αi,0)− (1− βi)H(αi,1) bits per cell.

3.2 Optimal Labeling of Cell-levels

In this section, we present a new technique, labeling of cell levels, for better perfor-

mance. So far, we have not yet differentiated the physical state of a cell from the labeled

level of the cell. We have used ` to denote both, and the greater ` is, the higher the “phys-

ical state” of the cell (e.g., threshold voltage for a flash memory cell) is. However, the

bit-fixing scheme presented earlier works for any labeling of cell levels. And this freedom

26

in labeling enables the further optimization of performance. So in this section, we differ-

entiate the physical state s ∈ {0, 1, · · · , q−1} from the labeled level ` ∈ {0, 1, · · · , q−1}

of a cell.

Let π : {0, 1, · · · , q − 1} → {0, 1, · · · , q − 1} be a permutation function that maps

every physical state s to its corresponding level π(s). Let s ∈ {0, 1, · · · , q− 1} denote the

original physical state of a cell, let δ ∈ {−s, · · · , 0, · · · , q − 1 − s} denote the physical

error in it, and let s′ = s+ δ denote its noisy physical state. Correspondingly, let ` = π(s)

denote its original level, let `′ = π(s′) denote its noisy level, and let ε = `′ − ` denote the

error in the cell level.

The objective of a good labeling is to decrease the number of bit-errors in C0, · · · , Cm−1

caused by physical errors, and maximize the overall code rate. In the following, for sim-

plicity, assume q = 2m and binary representations are used.

Example5. Let q = 16. Three labelings are shown in Figure 3.2, which perform differ-

ently. For example, consider an error δ that changes the physical cell state from s = 5 to

s′ = 4, namely δ = −1. In Figure 3.2 (a) (or (b)), with the straightforward (or Gray-code)

labeling, the level is changed from ` = 5 to `′ = 4 (or from ` = 7 to `′ = 6), and the

error in level is ε = `′ − ` = −1. Since Bm(−1 mod 16) = (1, 1, 1, 1), 4 bit-errors are

caused. In Figure 3.2 (c), however, the same physical error changes the level from ` = 10

to `′ = 2, so ε = `′ − ` = −8. Since Bm(−8 mod 16) = (1, 0, 0, 0), only 1 bit-error is

caused.

Consider physical errors of magnitude one, which are very common for bidirectional

errors. Since q = 16, there are 30 such errors. It can be shown that on average, for such

a physical error, the simple labeling in Figure 3.2 (a) introduces 2.5 bit-errors, the Gray-

code labeling in Figure 3.2 (b) introduces 2.13 bit-errors, and the labeling in Figure 3.2

(c) introduces only 1.37 bit-errors. 2

27

0

2

4

6

8

10

12

14

Physical
state

(0,0,0,1)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

2

4

6

8

10

12

14

1

5

3

7

9

11

13

15

(0,0,0,0)

(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,0,1,1)
(1,1,0,0)
(1,1,0,1)
(1,1,1,0)
(1,1,1,1)

(a)

0

2

4

6

8

10

12

14

Physical
state

(0,0,0,1)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

3

6

5

12

15

10

9

1

7

2

4

13

14

11

8

(0,0,0,0)

(0,0,1,1)
(0,0,1,0)
(0,1,1,0)
(0,1,1,1)
(0,1,0,1)
(0,1,0,0)
(1,1,0,0)
(1,1,0,1)
(1,1,1,1)
(1,1,1,0)
(1,0,1,0)
(1,0,1,1)
(1,0,0,1)
(1,0,0,0)

(b)

0

2

4

6

8

10

12

14

Physical
state

(1,0,0,0)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

4

2

6

1

5

3

7

8

10

12

14

9

13

11

15

(0,0,0,0)

(0,1,0,0)
(1,1,0,0)
(0,0,1,0)
(1,0,1,0)
(0,1,1,0)
(1,1,1,0)
(0,0,0,1)
(1,0,0,1)
(0,1,0,1)
(1,1,0,1)
(0,0,1,1)
(1,0,1,1)
(0,1,1,1)
(1,1,1,1)

(c)

Figure 3.2: Labeling physical cell states with levels. (a) A straightforward labeling, where
every physical state s ∈ {0, 1, · · · , 15} is labeled by level ` = s. (b) A Gray-code labeling.
(c) A new labeling.

In practice, physical errors of smaller magnitudes are usually more likely than larger

ones. Let us focus on physical errors of magnitude one now, which are often the most

probable errors. Given a vector v = (v1, · · · , vk) ∈ {0, 1}k, its Hamming weight is de-

fined as wH(v) , {i|i ∈ {1, · · · , k}, vi = 1} = |support(v)|. A physical error δ changes

the physical cell state from s to s′ = s + δ, and the number of bit-errors it introduces is

W (s, δ) , wH(Bm(ε mod 2m)) = wH(Bm(`′− ` mod 2m)) = wH(Bm(π(s+δ)−π(s)

mod 2m)). Let us call a labeling π Order-one Optimal if it minimizes the total number of

bit-errors introduced by magnitude-one (including +1 and -1) physical errors. That is, it

minimizes Wtotal ,
∑q−2

i=0 W (i, 1) + W (i + 1,−1). In the following, we present such an

optimal labeling.

Construction3. A Method for Cell-Level Labeling

28

Let π(0) = 0. For i = 1, 2, · · · ,m and j = 2i−1, 2i−1 + 1, · · · , 2i − 1, let π(j) =

π(j − 2i−1) + 2m−i. 2

Construction 3 generalizes Figure 3.2 (c). (Actually, it can be further generalized to the

case where for i = 0, 1, · · · ,m and j = 0, 1, · · · , 2m−i−1, {π(j·2i+k)|k ∈ {0, 1, · · · , 2i−

1}} = {k ·2m−i+z | k ∈ {0, 1, · · · , 2i−1}} for some z ∈ {0, 1, · · · , 2m−i−1}.) We now

prove that it is order-one optimal. For any i ∈ {−2m + 1, · · · ,−2,−1, 1, 2, · · · , 2m − 1},

define

χ(i) , max{j|j ∈ {0, 1, · · · ,m− 1}, (i mod 2m) is a multiple of 2j}.

Note that in the binary representation of (i mod 2m), – namely Bm(i mod 2m), – the

χ(i) least significant bits are all 0s, and the (χ(i) + 1)th least significant bit is 1. For

convenience, let us define W (2m − 1, 1) , wH(Bm(π(0) − π(2m − 1) mod 2m)), and

define W (0,−1) , wH(Bm(π(2m − 1)− π(0) mod 2m)).

Lemma6. Given a labeling π : {0, 1, · · · , 2m − 1} → {0, 1, · · · , 2m − 1}, for any i ∈

{0, 1, · · · , 2m− 1}, we have χ(π(i+ 1 mod 2m)− π(i)) = χ(π(i)− π(i+ 1 mod 2m))

and W (i, 1) +W (i+ 1 mod 2m,−1) = m− χ(π(i+ 1 mod 2m)− π(i)) + 1.

Corollary7. For i = 0, 1, · · · , 2m − 1, we have 2 6 W (i, 1) +W (i+ 1 mod 2m,−1) 6

m+ 1.

Lemma8. For j = 2, 3, · · · ,m,

|{i|0 6 i 6 2m − 1,W (i, 1) +W (i+ 1 mod 2m,−1) 6 j}|

6
∑

k=m−1,m−2,··· ,m−j+1 2k = 2m−j+1(2j−1 − 1).

Theorem9. Construction 3 is an order-one optimal labeling.

29

Sketch of proof: For j = 2, 3, · · · ,m+ 1, define

count(j) , |i|0 6 i 6 2m − 1,W (i, 1) +W (i+ 1 mod 2m,−1) = j| .

In Construction 3, count(k) = 2m−k+1 for k = 2, · · · ,m, and count(m + 1) = 2. It

minimizes
∑m+1

j=2 j · count(j)− [W (2m − 1, 1) +W (0,−1))] = Wtotal. 2

3.3 Coding for Any Number of Cell Levels

The bit-fixing scheme can be generalized to any q levels. For simplicity, we show the

case where binary representations are used but q is not a power of 2. The idea is to first

store data in n “virtual cells” of 2m levels – where m = dlog2 qe – in the same way as

before. Let `∗ ∈ {0, 1, · · · , 2m− 1} denote a virtual cell’s level, and let ` ∈ {0, 1, · · · , q−

1} denote the corresponding real cell’s level. Then if `∗ > q, we let ` = `∗ − 2m−1;

otherwise, we let ` = `∗. (This linear folding has the property that if ` 6= `∗, their

binary representations differ only in the MSB.) It can be shown that C0, · · · , Cm−2 can be

decoded the same way as before. And for Cm−1, for its codeword bits, the channel model is

a combination of a partial erasure channel (corresponding to the linear folding) and noise.

And it can be designed and decoded accordingly.

3.4 Performance Evaluation

We have evaluated the performance of the bit-fixing scheme, and compared it to the

commonly used basic binary-representation scheme and the Gray-code based scheme

(which were introduced in Section I). It usually performs better than the former and is

comparable to (and sometimes better than) the latter. In the following, we introduce one

such comparison on achievable rates.

We consider errors of magnitude range [−L−, L+], modeled as follows. Let there

be n → ∞ cells of q = 2m levels, whose errors are i.i.d. Let p ∈ [0, 1] be a pa-

30

rameter, let L+ and L− be non-negative integers (with L+ + L− > 0), and let δ̃ ∈

{−L−, · · · , 0, · · · , L+} be a random variable with this distribution: Pr{δ̃ = 0} = 1− p;

and ∀ i ∈ {−L−, · · · ,−1, 1, · · · , L+}, Pr{δ̃ = i} = p/(L− + L+). For a cell of original

physical state s ∈ {0, 1, · · · , q− 1}, the noise δ̃ is added to it. If δ̃ > 0, the noisy physical

level s′ becomes min{s+ δ̃, q − 1}; otherwise, s′ becomes max{s+ δ̃, 0}. (It is modeled

this way because a cell’s state must be in {0, 1, · · · , q − 1}. And given a labeling π, the

error changes the level from ` = π(s) to `′ = π(s′).)

We consider the practical case where Pr{bi = 0} = 1/2 for i = 0, 1, · · · ,m − 1,

for the reason that in most practical ECCs, codeword bits are (nearly) equally likely to

be 0s and 1s. (This constraint can reduce achievable rates, however.) Some results on

achievable rates are shown in Figure 9.3, with q = 16, p = 0.01, and L+ changing from 1

to 6. Figure 9.3 (a) shows a case for asymmetric errors, where L− = 0 and the bit-fixing

scheme uses the simple labeling ` = s. Figure 9.3 (b) shows a case for bidirectional errors,

where L− = 3 and the bit-fixing scheme uses the labeling in Construction 3. It can be seen

that the bit-fixing coding scheme compares favorably with the basic binary-representation

scheme, and is comparable to the Gray-code based scheme.

31

 3.72

 3.74

 3.76

 3.78

 3.8

 3.82

 3.84

 3.86

 3.88

 3.9

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

 3.74

 3.75

 3.76

 3.77

 3.78

 3.79

 3.8

 3.81

 3.82

 3.83

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

Figure 3.3: Comparison of achievable rates (number of stored bits per cell). Here q = 16,
p = 0.01, and L+ increases from 1 to 6. Above: asymmetric errors, where L− = 0.
Below: bidirectional errors, where L− = 3.

32

4. CONTENT-ASSISTED ERROR CORRECTION FOR FILE RECOVERY

In this chapter, we propose a new method for error correction named content-assisted

decoding. Our method uses the fast random access capability of NVMs and the redun-

dancy that inherently exists in information content. Although it is theoretically possible

to remove the redundancy via data compression, existing source coding algorithms do not

remove all of it for efficient computation. Our method can be combined with existing

storage solutions for text files. With dictionaries storing the statistical properties of words

and phrases of the same language, our decoder first breaks the input noisy codeword into

subcodewords, with each subcodeword corresponding to a set of possible words. The de-

coder then flips the bits in each noisy subcodeword to select a most likely word sequence

as the correction. Consider the example in Figure 4.1. The English text “I am” is stored

Step Codeword Text
Huffman encoding (1, 0, 0, 0, 0, 1, 1, 1) I am

ECC encoding (1, 0, 0, 0, 0, 1, 1, 1,0,1,1,1) I am
Noise received (1, 0, 1, 0, 0, 1, 0, 1,0,0,1,1) IIaa

ECC decoding failure (1, 0, 1, 0, 0, 1, 0, 1,0,0,1,1) IIaa
Content-assisted decoding (1, 0, 0, 0, 0, 1, 1, 1,0,0,1,1) I am

ECC decoding success (1, 0, 0, 0, 0, 1, 1, 1,0,1,1,1) I am

Figure 4.1: An example on correcting errors in the codeword of a text.

using the Huffman coding: {I → (1, 0),t → (0, 0), a → (0, 1),m → (1, 1)}, where

t denotes a space. The information bits are encoded with a (12, 8)-shortened Hamming

c© 2012 IEEE. Reprinted, with permission, from Y. Li, Y. Wang, A. Jiang, and J. Bruck, ”Content-
assisted file decoding for nonvolatile memories,” 2012 Conference Record of the Forty Sixth Asilomar Con-
ference on Signals, Systems and Computers (ASILOMAR), November, 2012.

33

code which corrects single bit errors (the bold bits denote the parity check bits). Assume

that three errors (marked by the underlines) are received by the codeword. The number

of errors exceeds the code’s correction capability, and ECC decoding fails. Our decoder

takes in the noisy codeword, and corrects the errors in the information symbols by look-

ing up a dictionary which contains two words {I, am}. This brings the number of errors

down to one. Therefore, the second trial of ECC decoding succeeds, and all the errors are

corrected. Our approach is suitable for natural languages, and can potentially be extended

to other types of data where the redundancy in information content is not fully removed by

data compression. The scheme takes advantage of the fast random access speed provided

by flash memories for fast dictionary look-up and content verification. For performance

evaluation, we have tested a decoding framework that combines a soft decision decoder of

low-density parity-check (LDPC) codes and our scheme with a set of text file benchmarks.

Experimental results show that our decoder indeed increases the correction capability of

the LDPC decoder.

The rest of the paper is organized as follows. Section 4.1 presents the preliminaries,

and defines the text file decoding problem. Section 4.2 specifies the algorithms of the

content-assisted file decoder. Section 4.3 discusses implementation details and experi-

mental results.

4.1 The Models of File Decoding

We first define a few notations used throughout this chapter. Let x denote a binary

codeword (x1, x2, · · · , xn) ∈ {0, 1}n, and we use x[i : j] to represent the subcodeword

(xi, xi+1, · · · , xj). Let the function length(x) compute the length of a codeword x, and

we use dH(x1,x2) for computing the Hamming distance between two codewords of the

same length. Let A be an alphabet set, and let s ∈ A be a symbol. We denote a space

by t ∈ A. A word w , (s1, · · · , sn) of length n is a finite sequence of symbols without

34

any space. A phrase p , (w1,t,w2) is defined as a combination of two words separated

by a space. Define a text t , (w1,t,w2,t, · · · ,t,wn) as a sequence of words separated

by t. A word dictionary Dw , {[w1 : p1], [w2 : p2], · · · } is a finite set of records

where a record [w : p] has a key w and a value p > 0. The value p is an average

probability that the word w occurs in a text. Similarly, a phrase dictionary Dp , {[p1 :

p1], [p2 : p2], · · · } stores the probabilities that a set of phrases appear in any given text.

The dictionary look-up operations denoted by Dw[w] and Dp[p] return the probabilities

of words and phrases, respectively. We use the notation w . Dw (or p . Dp) to indicate

that there is a record in Dw (or Dp) with key w (or p). Let πs be a bijective mapping

between a symbol and a binary codeword, and let xs = πs(t). In this work, the mapping

πs is used during data compression before ECC encoding, and it encodes each symbol

separately. In the example show in Figure 4.1, πs refers to the Huffman codebook. The

bijective mapping between a word w = (s1, · · · , sn) and its binary codeword is defined

as πw(w) , (πs(s1), · · · , πs(sn)), and the bijective mapping from a text to its binary

representation is defined as πt(t) , (πw(w1),xs, · · · ,xs, πw(wn)) where xs = πs(t).

We use π−1
s , π−1

w and π−1
t to denote the corresponding inverse mappings.

The model of the data storage channel is shown in Figure 7.1. A text t is generated by

Source
Encoder

Channel
Encoder

Channel
Decoder

Source
DecoderSource

Noise

Figure 4.2: The channel model for data storage.

the source. The text is compressed by the source encoder, producing a binary codeword

y = πt(t) ∈ {0, 1}k. The compressed bits are fed to a channel encoder, obtaining an ECC

35

codeword x = ψ(y) ∈ {0, 1}n where n > k. Here we assume a systematic ECC is used.

The codeword is then stored by memory cells, and receives an additive error e ∈ {0, 1}n.

In this work, a binary symmetric channel (BSC) with bit-flipping rate f is assumed. When

the cells are read, the channel outputs a noisy codeword x′ = x⊕e where⊕ is the bit-wise

exclusive-OR over codewords. The noisy codeword is first corrected by a channel decoder,

producing an estimated ECC codeword ŷ = ψ−1(x′). The source decoder decompresses

the corrected codeword, and returns an estimated text t̂ = π−1
t (ŷ) upon success.

This work focuses on designing better channel decoders ψ−1 for correcting bit errors

in text files. We propose a new decoding framework which connects a traditional ECC

decoder with a content-assisted decoder (CAD) as shown in Figure 4.3. A noisy codeword

ECC Decoder

Content-assisted
DecoderChannel Decoder

Y

N

Succeeds or
Reaches Iteration

Limit ?

Figure 4.3: The work-flow of a channel decoder with content-assisted decoding.

is first passed into an ECC decoder. If decoding fails, the decoding output is passed to

CAD. With the statistical information stored in Dw and Dp, the CAD selects a word for

each subcodeword to form a likely text as the correction for the noisy codeword. The

corrected text is fed back to the ECC decoder. The iteration continues until either the ECC

decoder succeeds or an iteration limit is reached. The text file decoding problem for our

CAD is defined as follows.

36

Definition10. Let t be some text generated from the source, and let x′ ∈ {0, 1}n be a noisy

channel output codeword of t. Given two dictionaries Dw and Dp, the text file decoding

problem for the CAD is to find an estimated text t̂ which is the most likely correction for

x′, i.e.

argmax
t̂

Pr{t̂ | x′, Dp, Dw}.

4.2 The Content-Assisted Decoding Algorithms

The CAD approximates the solution to the problem in Definition 10 in the three steps:

(1) estimate space positions in the noisy codeword to divide the codeword into subcode-

words, with each subcodeword representing a set of words in Dw. (2) Resolve ambiguity

by selecting a word for each subcodeword to form a most likely sequence. (3) Perform

post-processing to revert the aggressive bit flips done in (1) and (2). We describe the

algorithm of each step in this section.

4.2.1 Creating Dictionaries

The dictionaries Dw and Dp are used in our decoding algorithms. To create the dictio-

naries, we simply count the frequencies of words and phrases of two words which appear

in a relatively large set of different texts in the same language as the texts generated by

the source. Fast dictionary look-up is achieved by storing the dictionaries in a content-

addressable way thanks to the random access in flash memories, i.e., the probability in

a dictionary record is addressed by the value of the corresponding word or phrase. As

we show later in section 4.3, the completeness of the dictionaries effects the decoding

performance.

4.2.2 Codeword Segmentation

The codeword segmentation function σ takes in a noisy codeword and a word dictio-

nary, then flips the minimum number of bits to make the corrected codeword represent a

37

text, e.g., a sequence of valid words separated by spaces. If σ(x, Dw) = ((x1,x2, · · · ,xk),

(i1, i2, · · · , ik−1)), where the number of records |Dw| is bounded by some constant K, and

ij ∈ N is the index of the first bit of the j-th space in x, the subcodeword x1 = x[1 : i1−1],

xk = x[ik−1 + length(xs) : length(x)], and xj = x[ij−1 + length(xs) : ij − 1] for

j ∈ {2, 3, · · · , k − 1}. The mapping σ is required to satisfy the following proper-

ties: (1) for each subcodeword xj , ∃w . Dw such that length(xj) = length(πw(w)).

(2) dH(x, (x1,xs,x2,xs, · · · ,xs,xk)) is minimized. Intuitively, as the bit-flip rate f is

very small (which is common for NVM channels), the segmentation function is a maxi-

mum likelihood decoder which flips the minimum number of bits of the codeword. Let the

cost function c(i, j) return the minimum number of flips taken to convert the subcodeword

x[i : j] to represent a text. We have the following recurrence:

c(i, j) ,

min{g(i, j), h(i, j)} if i < j

∞ otherwise
,

where

g(i, j) ,minw.Dw dH(πw(w),x[i : j]),

h(i, j) ,mink∈[i+1,j−length(xs)]

c(i, k − 1) + c(k + length(xs), j)+

dH(x[k : k + length(xs)− 1],xs).

The function g(i, j) computes the minimum number of flips taken to turn x[i : j] into the

codeword of a word in Dw. The function h(i, j) computes the minimum flip cost taken to

obtain a codeword representing a text with at least two words.

Example11. Consider the example in Figure 4.1. The input noisy codeword x′ =

38

(1, 0, 1, 0, 0, 1, 0, 1), and the word dictionary Dw = {[I : 0.5], [am : 0.5]}. We have

σ(x′, Dw) = (((1, 0), (0, 1, 0, 1)), (3)). Starting from c(1, 8), we recursively compute

c(i, j) for all i < j. The results are shown in Figure 4.4b. For instance, to compute

c(5, 8), we first compute g(5, 8) = 1 as the subcodeword can be turned to represent the

word “I” with 1 bit-flip. We then compute h(5, 8) = ∞. This is because length(xs) = 2

and the minimum codeword length of a word in Dw is 2, therefore it is impossible to split

the subcodeword (0, 1, 0, 1) by a space. Finally, we have c(5, 8) = min(1,∞) = 1.

Our objective is to compute c(1, n) given an input codeword of length n, and find out

the space positions which help achieve the minimum cost. When c(i, j) is computed recur-

sively starting from c(1, n), some entries will be recomputed unnecessarily. For instance,

in example 11, the entry c(4, 5) needs to be computed when we compute c(1, 7) and c(2, 8).

A good way for speeding up such computation is to use dynamic programming techniques

shown in Algorithm 1, which computes the final result iteratively starting from c(1, 2), an

entry computed in the previous iteration is saved for later iterations. The algorithm treats

c(i, j) as the entries of a two dimensional table. Starting from c(1, 2), the table the algo-

rithm fills each entry diagonally across the table as shown in Figure 4.4a. The correspond-

ing space locations for breaking the subcodeword x[i : j], or the set of words that x[i : j]

can be flipped to represent is recorded using a two dimensional table m. In practice, as f

is close to 0, the average number of errors in the codeword of a word is small. Computing

the set of possible words Sw for a given noisy codeword can be accelerated by passing an

additional Hamming distance limit d to reduce the search space, i.e. instead of searching

the whole Dw as in g(i, j), we search the set {w | w . Dw, dH(πw(w),x[i : j]) < d}

to skip the words which are too far from the noisy codeword in terms of d and Hamming

distance metric. As we are more interested in the space locations than the value of c(i, j),

after the entries of c and m have been filled, Algorithm 2 is used to recursively trace back

39

Algorithm 1 CodewordSegmentation(x, Dw)

n← length(x), l← length(xs)
Let c and m be two n× n tables
Let wordSets and spaces be two empty lists
for t from 1 to n do

for i from 1 to n− t+ 1 do
j ← i+ t− 1
dmin ← minw.Dw dH(πw(w),x[i : j])
Sw ← {w | w . Dw, dH(πw(w),x[i : j]) = dmin}
k′ ← 0
for k from i+ 1 to j − l do
d′ ← c(i, k) + c(k + l, j) + dH(xs,x[k : k + l − 1])
if d′ < dmin then
dmin ← d′

k′ ← k
if k′ = 0 then
m(i, j).words← Sw

else
m(i, j).words← ∅
m(i, j).space← k′

c(i, j)← dmin

TraceBack(1, n, spaces, wordSets,m, l)
return wordSets and spaces

Algorithm 2 TraceBack(i, j, spaces, wordSets,m, l)

if m(i, j).words = ∅ then
k ← m(i, j).space
TraceBack(i, k − 1, spaces,m, l)
spaces. append(k)
TraceBack(k + l, j, spaces,m, l)

else
wordSets. append(m(i, j).words)

40

the solution path recorded in m. The results are the ordered space locations and the sets of

words for the codewords between the spaces. Assume that K is a constant which is much

smaller than N , and that the codeword of each word has limited length bounded by some

constant. The time complexity of our dynamic programming algorithm is O(n). This is

because only O(n) entries need to be computed and each computation takes O(1) time.

The algorithm requires O(n2) space for storing the tables c and m.

Example12. For the example in Figure 4.1, the tables c and m computed by Algorithm 1

are shown in Figure 4.4b and 4.4c. The minimum flipping cost is c(1, 8) = 2, and the

index of the estimated space is m(1, 8).space = 3. With the estimated space, the subcode-

word x[1 : 2] = (1, 0) can be flipped to denote a word in the set {I}, and the subcodeword

x[5 : 8] = (0, 1, 0, 1) can be flipped to denote a word in the set {am}.

ij

1

n-1

n

2

(a) Iterative table filling.

ij

18

2
0

∞
2

3
∞

0

∞
2

∞
1

3
∞

3
∞

2

∞
2

∞
2

∞
0

2
∞

3
∞

1
∞

2
7

(b) Table c.

ij

18

2
{I}

X
{I}

X
{I}

X

X
{I}

3
X

X
{I}

X
4

X

X
{I}

3
X

5
X

X
{I}

7
{am} {am} {am} {am} {am}

(c) Table m.

Figure 4.4: The examples of codeword segmentation. In Figure (c): A number in the table
denotes the index of the first bit of an estimated space; a set of word means the subcode-
word can be flipped to any of the word in the set. The cross × means a subcodeword can
neither be flipped to represent a word nor to a text with at least two words.

4.2.3 Ambiguity Resolution

Given the subcodewords (x1,x2, · · · ,xk) between the estimated spaces, and a list

of word sets (W1,W2, · · · ,Wk) computed from the codeword segmentation algorithm,

41

for i ∈ {1, · · · , k} we select a word wi from Wi to form a most probable text t̂ =

(w1,t,w2,t, · · · ,t,wk). The codeword πt(t̂) is a correction for the input noisy code-

word. Specifically, this step is to compute

argmax(w1,w2,··· ,wk)∈W1×W2···×Wk
Pr{(w1,w2, · · · ,wk) | (x1,x2, · · · ,xk)}

= argmax(w1,w2,··· ,wk)∈W1×W2···×Wk
Pr{(w1,w2, · · · ,wk), (x1,x2, · · · ,xk)}.

Let the function P(wi) compute the maximal joint probability when some word wi is se-

lected from Wi and appended to the previously selected word sequence (w1,w2, · · · ,wi−1).

For i ∈ [2, k], we have

P(wi) ,max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{(w1, · · · ,wi), (x1, · · · ,xi)}.

= max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{w1}Pr{x1 | w1}Pr{w2 | w1}Pr{x2 | w2}

Pr{w3 | (w1,w2)}Pr{x3 | w3} · · ·Pr{wi | (w1,w2, · · · ,wi−1)}Pr{xi | wi}

Assume the words in a text form a one-step Markov chain, i.e., for i > 2, Pr{wi |

(w1,w2, · · · ,wi−1)} = Pr{wi | wi−1}. Therefore, we rewrite the equation above as:

P(wi) = max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{w1}Pr{w2 | w1} · · ·Pr{wi−1 | wi−2}
∏i−1

k=1
Pr{xk | wk}

= max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{(w1, · · · ,wi−1), (x1, · · · ,xi−1)}

= maxwi−1∈Wi−1
Pr{xi | wi}Pr{wi|wi−1}

max(w1,··· ,wi−2)∈W1×···×Wi−2
Pr{(w1, · · · ,wi−1), (x1, · · · ,xi−1)}

= maxwi−1∈Wi−1
Pr{xi | wi}Pr{wi|wi−1}P(wi−1).

(4.1)

42

and P(w1) = Pr{w1}Pr{x1 | w1}. The conditional probability Pr{xk | wk} is computed

from the channel statistics by

Pr{xk | wk} = fdH(πw(wk),xk)(1− f)length(xk)−dH(πw(wk),xk).

The probabilities Pr{w1} = Dw[w1] and Pr{wk | wk−1} = Dp[(wk−1,t,wk)] are looked

up from the dictionaries:

The derived recurrence suggests that the optimization problem can be mapped to the

problem of trellis decoding, which is again solved by dynamic programming. The trellis

for our problem has k time stages. The observed codeword at the i-th stage is xi for

i ∈ {1, · · · , k}. There are |Wi| vertices at stage i with each representing an element w of

Wi and being associated with the conditional probability Pr{w | xi}. The weight of the

directed edge from a vertex at stage i with word wx to a vertex of stage i + 1 with word

wy is the conditional probability Pr{wy | wx}. An example of the mapping is shown

in Figure 4.5. Our target is to compute the sequence which achieves maxwk∈Wk
P(wk),

which leads to the Viterbi path in the corresponding trellis starting from a vertex in stage

1 and ending at a vertex in stage k.

The dynamic programming algorithm for solving our trellis decoding problem is spec-

ified in Algorithm 3, which is adapted from the Viterbi decoding [70]. The final solution

is computed iteratively, starting from P (w1) according to the recurrence. When the last

iteration is finished, we trace back along the Viterbi path recorded in the table s, col-

lecting the selected words to form an estimated text t̂. The complexity of the Viterbi

decoding algorithm is O(n2k) where k = O(N) is the length of the input codeword list,

and n = maxi∈[1,k] |Wi| = O(K) is the cardinality of the biggest input word set. As K

is a constant which is much smaller than N , the Viterbi decoding for our case has time

complexity O(N). The algorithm requires O(nk) = O(N) space for the tables p and s.

43

w1,1

w1,2

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

w4,1

w4,2

Figure 4.5: Example of the mapping to trellis decoding. The word sets W1 =
{w1,1,w1,2}, W2 = {w2,1,w2,2,w3,2}, W3 = {w3,1,w3,2,w3,3} and W4 = {w4,1,w4,2}
respectively corresponds to the subcodewords x1, x2, x3 and x4.

Algorithm 3 Viterbi((W1, · · · ,Wk), (x1, · · · ,xk), f,Dw, Dp)

n← maxl∈[1,k] |Wl|
Let p and s be two n× k tables
pmax ← 0, index← 0
for t from 1 to k do

for i from 1 to |Wt| do
p′ ← fdH(πw(Wt[i]),xt)(1− f)length(xt)−dH(πw(Wt[i]),xt)

if t = 0 then
p(i, t)← p′ ·Dw[Wt[i]]

else
pmax ← 0, index← 0
for j from 1 to |Wt−1| do
p′′ ← p′ ·Dp[(Wt−1[j],t,Wt[i])] · p[j, t− 1]
if p′′ > pmax then
pmax ← p′′

index← j
p(i, t)← pmax

s(i, t)← index
words← [Wk[index]]
for t from k to 2 do
i← s(index, t)
words. appendToFront(Wt−1[i])
index← i

return words

44

4.2.4 Post-processing

If unknown words or phrases occur in the input codeword, additional errors will be

introduced during codeword segmentation and ambiguity resolution. Unknown words

(phrase) refers to new or rare words (phrases) which are not included in Dw (Dp). Upon

encountering an unknown word, the codeword segmentation algorithm tends to split its

codeword into subcodewords representing known words with the space symbol. Such seg-

mentation introduces additional bit errors. We use a simple post-processing step which

undoes the bit-flips issued by such aggressive segmentation. The idea is to use the phrase

dictionary Dp to check whether two adjacent words returned by the Viterbi decoder is

known to Dp. If so, the post-processor simply accepts the segmentation, otherwise the

corresponding bits in the initial noisy codeword are used to replace the codewords for

those unknown phrases. The complexity of this step is O(k) = O(N).

4.3 Experiments

4.3.1 Implementation Detail

Our implementation supports the use of basic punctuation in the input text files, in-

cluding ‘,’, ‘.’, ‘?’ and ‘!’. This is done by adding another function in the definition

of c(i, j) when i < j. The function measures the number of flips taken to turn a sub-

codeword to represent a word followed by a punctuation. During ambiguity resolution,

overflow may occur in the multiplications of probabilities when N is large. We thus use

a logarithmic version of Eq.(4.1). Using additions instead of multiplications of floating

point numbers significantly delays the overflow. A smoothing technique is used for com-

puting Pr{wi | wi−1}. The probability Pr{wi} will be used if the phrase (wi−1,t,wi) is

unknown to Dp. The reason is that returning 0 for unknown phrases suddenly makes the

whole joint probability be 0 in Eq.(4.1) and cancels the path.

45

4.3.2 Evaluation

We evaluated decoding performance of the channel decoder combining the LDPC sum-

product decoder and the CAD. We compared the bit error rates (BER) of the combined

channel decoder with those of the scheme using the LDPC sum-product decoding alone.

The test inputs include 2 self-collected paragraphs and 8 paragraphs randomly extracted

from the Canterbury Corpus, the Calgary Corpus, the Large Corpus [59], and the large

text compression benchmark [53] (see Table 4.1). The dictionaries are built using the

books randomly extracted from Project Gutenberg [25]. The functions πs and π−1
s are im-

plemented with Huffman coding. A (3584, 3141)-random LDPC code is used as the ECC.

The iteration limit of the sum-product decoder is 32. The iteration threshold for the LDPC-

CAD exchange is 3. The bit-flip rate of the BSC is 0.012, which makes the sum-product

decoder fail to converge with high probability. The decoding BERs for complete and

Table 4.1: The decoding BERs when the dictionaries are complete

Name Category From ECC only Combined
email Email discussion Calgary 8.6× 10−3 1.9× 10−6

lcet Lecture notes Canterbury 8.4× 10−3 0.0
alice Novel Canterbury 8.3× 10−3 2.6× 10−6

confintro Call for paper Self-made 8.7× 10−3 0.0
bible The bible Large 8.3× 10−3 3.2× 10−6

asyoulike Shakespeare play Canterbury 8.9× 10−3 3.8× 10−6

plrabn Poetry Canterbury 8.6× 10−3 0.0
news Web news Self-made 8.6× 10−3 8.4× 10−6

enwiki Wikipedia texts Large text 8.3× 10−3 0.0
world192 The world fact book Large 8.3× 10−3 4.9× 10−5

incomplete dictionaries are shown in Table 4.1 and Table 4.2, respectively. The BERs for

each benchmark are averaged from 1000 experiments. In Table 4.1, the combined channel

46

decoder significantly outperforms the traditional decoder thanks to the completeness of the

dictionaries. The performance for the benchmark world192 is not as good as others. This

is because world192 has much more punctuation but fewer words than other benchmarks

do, and more errors occur in the punctuations which the CAD is not good at correcting.

In Table 4.2, to see the effectiveness of the post-processor, we also show the performance

of the combined decoder without the post-processor. The completeness of the dictionar-

Table 4.2: The decoding BERs when the dictionaries are incomplete.

Name ECC only Combined After PP UW% UP%
email 8.6× 10−3 1.2× 10−3 6.0× 10−4 0 14
lcet 8.4× 10−3 9.3× 10−4 1.2× 10−3 0 24
alice 8.3× 10−3 7.6× 10−5 0.0 0 2

confintro 8.7× 10−3 5.1× 10−5 3.5× 10−3 0.9 41
bible 8.3× 10−3 7.5× 10−4 1.1× 10−3 0.7 29

asyoulike 8.9× 10−3 4.1× 10−4 9.6× 10−4 0.8 15
plrabn 8.6× 10−3 7.2× 10−3 5.0× 10−3 2 33
news 8.6× 10−3 1.2× 10−3 2.1× 10−3 2 29
enwiki 8.3× 10−3 1.6× 10−2 4.0× 10−3 11 34
world192 8.3× 10−3 2.6× 10−2 9.2× 10−3 25 31

ies determines the decoding performance. For instance, the benchmarks world192 and

enwiki have considerable number of words and phrases which are unknown to our dic-

tionaries. The combined decoder without post-processing introduces additional errors by

aggressively breaking the codewords of the unknown words into subcodewords separated

with spaces. In such cases, the post-processor is able to recognize and revert most of the

over-aggressive bit-flips. This greatly reduces the number of additional errors introduced

due to the “ignorance” of the CAD. For the benchmark confintro, the performance of

the decoder without post-processing is much better than that of the decoder using post-

47

processing. This is because confintro has only a few unknown words but many tech-

nical phrases which are unknown to Dp. The unknown phrases makes the post-processor

tend to revert reasonable corrections done in the previous steps.

48

5. WOM CODES THAT CORRECT SYMMETRIC ERRORS

In this chapter, we present a new scheme that combines rewriting with error correction.

It supports any number of rewrites and can correct a substantial number of errors. The

code construction uses polar coding. Our analytical technique is based on the frozen sets

corresponding to the WOM channel and the error channel, respectively, including their

common degrading and common upgrading channels. We present lower bounds to the

sum-rate achieved by our code. The actual sum-rates are further computed for various

parameters. The analysis focuses on the binary symmetric channel (BSC). An interesting

observation is that in practice, for relatively small error probabilities, the frozen set for

BSC is often contained in the frozen set for the WOM channel, which enables our code to

have a nested structure. The code can be further extended to multi-level cells (MLC) and

more general noise models.

5.1 Basic Model

Let there be N = 2m cells that are used to store data. Every cell has two levels: 0 and

1. It can change only from level 0 to level 1, but not vice versa. That is called a WOM

cell [61].

A sequence of t messages M1,M2, · · · ,Mt will be written into the WOM cells, and

when Mi is written, we do not need to remember the value of the previous messages. (Let

Mj denote the number of bits in the message Mj , and let Mj ∈ {0, 1}Mj .) For simplicity,

we assume the cells are all at level 0 before the first write happens.

After cells are programmed, noise will appear in the cell levels. For now, we consider

noise to be a BSC with error probability p, denoted by BSC(p). These errors are hard

c© 2013 IEEE. Reprinted, with permission, from A. Jiang, Y. Li, E. En Gad, M. Langberg, and J.
Bruck, ”Joint rewriting and error correction in write-once memories,” 2013 IEEE International Symposium
on Information Theory (ISIT), July, 2013.

49

errors, namely, they physically change the cell levels from 0 to 1 or from 1 to 0. For

flash memories, such errors can be caused by read/write disturbs, interference and charge

leakage, and are quite common.

5.1.1 The Model for Rewriting

A code for rewriting and error correction has t encoding functions E1,E2, · · · ,Et

and t decoding functions D1,D2, · · · ,Dt. For i = 1, 2, · · · , N and j = 1, 2, · · · , t, let

si,j ∈ {0, 1} and s′i,j ∈ {0, 1} denote the level of the i-th cell right before and after the

j-th write, respectively. We require s′i,j > si,j . Let ci,j ∈ {0, 1} denote the level of the i-th

cell at any time after the j-th write and before the (j + 1)-th write, when reading of the

message Mj can happen. The error ci,j ⊕ s′i,j ∈ {0, 1} is the error in the i-th cell caused

by the noise channel BSC(p). (Here ⊕ is an XOR function.) For j = 1, 2, · · · , t, the

encoding function

Ej : {0, 1}N × {0, 1}Mj → {0, 1}N

changes the cell levels from sj = (s1,j, s2,j, · · · , sN,j) to s′j = (s′1,j, s
′
2,j, · · · , s′N,j) given

the initial cell state sj and the message to store Mj . (Namely, Ej(sj,Mj) = s′j .) When the

reading of Mj happens, the decoding function

Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj = (c1,j, c2,j, · · · , cN,j). (Namely,

Dj(cj) = Mj .)

For j = 1, · · · , t, Rj =
Mj

N
is called the rate of the j-th write. Rsum =

∑t
j=1 Rj is

called the sum-rate of the code. When there is no noise, the maximum sum-rate of WOM

code is known to be log2(t+ 1); however, for noisy WOM, the maximum sum-rate is still

largely unknown [27].

50

5.1.2 Polar Codes

We give a short introduction to polar codes due to its relevance to our code con-

struction. A polar code is a linear block error correcting code proposed by Arıkan [2].

It is the first known code with an explicit construction that provably achieves the chan-

nel capacity of symmetric binary-input discrete memoryless channels (B-DMC). The en-

coder of a polar code transforms N input bits u = (u1, u2, · · · , uN) to N codeword bits

x = (x1, x2, · · · , xN) through a linear transformation. (In [2], x = uG⊗m2 where

G2 =

 1 0

1 1

 ,

and G⊗m2 is the m-th Kronecker product of G2.) The N codeword bits (x1, x2, · · · , xN)

are transmitted through N independent copies of a B-DMC. For decoding, N transformed

binary input channels {W (1)
N , · · · ,W (N)

N } can be synthesized for u1, u2, · · · , uN , respec-

tively. The channels are polarized such that for large N , the fraction of indices i for which

I(W
(i)
N) is nearly 1 approaches the capacity of the B-DMC [2], while the values of I(W

(i)
N)

for the remaining indices i are nearly 0. The latter set of indices are called the frozen set.

For error correction, the ui’s with i in the frozen set take fixed values, and the other ui’s

are used as information bits. A successive cancellation (SC) decoding algorithm achieves

diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source coding [45], which has various

applications. In particular, in [9], the idea was used to build capacity achieving WOM

codes.

Our code analysis uses the concept of upgrading and degrading channels, defined based

on frozen sets. As in [69], a channel W ′ : X → Z is called ”degraded with respect to a

channel W : X → Y ” if an equivalent channel of W ′ can be constructed by concatenating

51

W with an additional channel Q : Y → Z, where the inputs of Q are linked with the

outputs of W . That is,

W ′(z|x) =
∑
y∈Y

W (y|x)Q(z|y)

We denote it by W ′ � W . Equivalently, the channel W is called “an upgrade with respect

to W ′”, denoted by W � W ′.

5.2 Code Construction

In this section, we introduce our code construction that combines rewriting with error

correction.

5.2.1 Basic Code Construction with a Nested Structure

5.2.1.1 Basic Concepts

First, let us consider a single rewrite step (namely, one of the t writes). Let s =

(s1, s2, · · · , sN) ∈ {0, 1}N and s′ = (s′1, s
′
2, · · · , s′N) ∈ {0, 1}N denote the cell levels

right before and after this rewrite, respectively. Let g = (g1, g2, · · · , gn) be a pseudo-

random bit sequence with i.i.d. bits that are uniformly distributed. The value of g is

known to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N , let vi = si ⊕ gi ∈ {0, 1} and v′i = s′i ⊕ gi ∈ {0, 1} be the

value of the i-th cell before and after the rewrite, respectively. As in [9], we build the

WOM channel in Figure 5.1 for this rewrite, denoted by WOM(α, ε). Here α ∈ [0, 1]

and ε ∈ [0, 1
2
] are given parameters, with α = 1 −∑N

i=1
si
N

representing the fraction of

cells at level 0 before the rewrite, and ε =
∑N
i=1 s

′
i−si

N−
∑N
i=1 si

representing the fraction of cells that

are changed from level 0 to level 1 by the rewrite. Let FWOM(α,ε) ⊆ {1, 2, · · · , N} be the

frozen set of the polar code corresponding to this channel WOM(α, ε). It is known that

limN→∞
|FWOM(α,ε)|

N
= αH(ε). [9]

For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N} be the frozen set of the

52

0

1

(1, 0)

(1, 1)

(0, 0)

(0, 1)

1� ↵

1� ↵

↵(1� ✏)

↵(1� ✏)

↵✏

↵✏
v0 (s, v)

Figure 5.1: The WOM channel WOM(α, ε).

polar code corresponding to the channel BSC(p). It is known that limN→∞
|FBSC(p)|
|N | =

H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,ε). It is as illustrated in Figure 5.2a.

In this case, the code has a nice nested structure: for any message M ∈ {0, 1}M, the set

of cell values VM ⊆ {0, 1}N that represent the message M is a linear subspace of a linear

error correcting code (ECC) for the noise channelBSC(p), and {VM |M ∈ {0, 1}M} form

a partition of the ECC. Later we will extend the code to general cases.

FWOM(↵,✏)

FBSC(p)

stored message all 0s

{1, 2, · · · , N}

(a)

{1, 2, · · · , N}
FWOM(↵,✏)

FBSC(p)

stored message all 0s

stored in additional cells

(b)

Figure 5.2: (a) Nested code for FBSC(p) ⊆ FWOM(α,ε). (b) General code.

53

5.2.1.2 The Encoder

Let E : {0, 1}N × {0, 1}M → {0, 1}N be the encoder for this rewrite. Namely, given

the current cell state s and the message to write M ∈ {0, 1}M, the encoder needs to find

a new cell state s′ = E(s,M) that represents M and is above s (that is, cell levels only

increase).

The encoding process is similar to [9], but with some difference in how to assign bits

to FWOM(α,ε). For convenience of presentation, here we assume the polar code to be the

original code designed by Arıkan [2]; however, note that it can be generalized to other

polar codes as well. We present the encoding function in Algorithm 4. Here y and u are

two vectors of length N ; uFWOM(α,ε)−FBSC(p)
, {ui|i ∈ FWOM(α,ε) − FBSC(p)} are all the

bits ui in the frozen set FWOM(α,ε) but not FBSC(p); uFBSC(p)
, {ui|i ∈ FBSC(p)} are all the

bits ui in FBSC(p); and G⊗m2 is the m-th Kronecker product of G2.

Algorithm 4 The encoding function s′ = E(s,M)

y← ((s1, v1), (s2, v2), · · · , (sN , vN)) .
Let uFWOM(α,ε)−FBSC(p)

←M .
Let uFBSC(p)

← (0, 0, · · · , 0).
for i from 1 to N do

if i /∈ FWOM(α,ε) then

L
(i)
N (y, (u1, u2, · · · , ui−1))← W

(i)
N (y,(u1,u2,··· ,ui−1)|ui=0)

W
(i)
N (y,(u1,u2,··· ,ui−1)|ui=1)

.

(Comment: Here W
(i)
N (y, (u1, u2, · · · , ui−1)|ui = 0) and

W
(i)
N (y, (u1, u2, · · · , ui−1)|ui = 1) can be computed recursively using for-

mulae (22), (23) in [2]).

Let ui ←

0 with probability L
(i)
N

1+L
(i)
N

1 with probability 1

1+L
(i)
N

.

Let v′ ← uG⊗m2 .
Let s′ ← v′ ⊕ g.

54

5.2.1.3 The Decoder

We now present the decoder D : {0, 1}N → {0, 1}M. Let c = (c1, c2, · · · , cN) ∈

{0, 1}N be the noisy cell levels after the message is written. Given c, the decoder should

recover the message as D(c) = M .

Our decoder works essentially the same way as a polar error correcting code. We

present it as Algorithm 5.

Algorithm 5 The decoding function M̂ = D(c)

View c ⊕ g as a noisy codeword, which is the output of a binary symmetric channel
BSC(p). Decode c ⊕ g using the decoding algorithm of the polar error-correcting
code [2], where the bits in the frozen set FBSC(p) are set to 0s. Let v̂ = (v̂1, v̂2, · · · , v̂N)
be the recovered codeword.
Let M̂ ←

(
v̂(G⊗m2)−1

)
FWOM(α,ε)−FBSC(p)

, which denotes the elements of the vector

v̂(G⊗m2)−1 whose indices are in the set FWOM(α,ε) − FBSC(p).

By [2], it is easy to see that both the encoding and the decoding algorithms have time

complexity O(N logN).

5.2.1.4 Nested Code for t Writes

In the above, we have presented the encoder and the decoder for one rewrite. It can be

naturally applied to a t-write error correcting WOM code as follows. For j = 1, 2, · · · , t,

for the j-th write, replace α, ε, s, s′, v, v′, M ,M, E, D, c, M̂ , v̂ by αj−1, εj , sj , s′j , vj ,

v′j , Mj ,Mj , Ej , Dj , cj , M̂j , v̂j , respectively, and apply the above encoder and decoder.

Note that when N → ∞, the values of α1, α2, · · · , αt−1 can be computed using

ε1, ε2, · · · , εt−1: for BSC(p), αj = αj−1(1− εj)(1−p)+(1−αj−1(1− εj))p. Optimizing

the code means to choose optimal values for ε1, ε2, · · · , εt that maximize the sum-rate.

55

5.2.2 Extended Code Construction

We have introduced the code for the case FBSC(p) ⊆ FWOM(α,ε). Our experiments show

that for relatively small p and typical values of (α0, ε1), (α1, ε2), · · · , (αt−1, εt), the above

condition holds. We now consider the general case where FBSC(p) is not necessarily a

subset of FWOM(α,ε).

We first revise the encoder in Algorithm 4 as follows. After all the steps in the algo-

rithm, we store the bits in uFBSC(p)−FWOM(α,ε)
using Nadditional,j cells (for the j-th write).

(It is illustrated in Figure 5.2b.) In this work, for simplicity, we assume the bits in

uFBSC(p)−FWOM(α,ε)
are stored using just an error correcting code designed for the noise

channel BSC(p). (It will not be hard to see that we can also store it using an error-

correcting WOM code, such as the one presented above, for higher rates. However, we

skip the details for simplicity.) Therefore, we can have limN→∞
Nadditional,j

|FBSC(p)−FWOM(αj−1,εj)
| =

1
1−H(p)

. And the sum-rate becomes Rsum =
∑t
j=1Mj

N+
∑t
j=1Nadditional,j

.

We revise the decoder in Algorithm 5. First recover the bits in uFBSC(p)−FWOM(α,ε)
using

the decoding algorithm of the ECC for the Nadditional,j additional cells. Then carry out

all the steps in Algorithm 5, except that the bits in FBSC(p) − FWOM(α,ε) are known to the

decoder as the above recovered values instead of 0s.

5.3 Code Analysis for BSC

In this section, we prove the correctness of the above code construction, and analyze

its performance.

5.3.1 Correctness of the Code

We first prove the correctness of our code. First, the encoder in Algorithm 4 works

similarly to the WOM code encoder in [9], with an exception that the bits in FWOM(α,ε) are

not all occupied by the message M ; instead, the bits in its subset FWOM(α,ε) ∩ FBSC(p) are

56

set to be constant values: all 0s. Therefore, it successfully rewrites data in the same way

as the code in [9]. Next, the decoder in Algorithm 5 recovers the cell values from noise in

the same way as the standard polar ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical noise acts on the cell levels

s = (s1, s2, · · · , sN), the error correcting code we use in our construction is actually for

the cell values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕ gN). However, the

pseudo-random dither g has independent and uniformly distributed elements; so when the

noise channel for s is BSC(p), the corresponding noise channel for v is also BSC(p).

5.3.2 The Size of FWOM(α,ε) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,ε), the code has a very interesting nested struc-

ture. In general, it is also interesting to understand how large the intersection FWOM(α,ε) ∩

FBSC(p) can be. For convenience of presentation, we consider one rewrite as in Sec-

tion 5.2.1, where the parameters are α and ε (instead of αj−1, εj).

Lemma13. When H(p) 6 αH(ε), limN→∞
|FBSC(p)|

N
6 limN→∞

|FWOM(α,ε)|
N

.

Proof: limN→∞
|FBSC(p)|

N
= H(p) 6 αH(ε) = limN→∞

|FWOM(α,ε)|
N

. �

Lemma14. When p 6 αε,

FWOM(α, p
α

) ⊆
(
FBSC(p) ∩ FWOM(α,ε)

)
,

(
FWOM(α,ε) ∪ FBSC(p)

)
⊆ FBSC(αε).

Proof: (1) In Figure 5.3, by setting ε∗ = p
α

, we see that BSC(p) � WOM(α, p
α

).

Therefore FWOM(α, p
α

) ⊆ FBSC(p).

(2) In Figure 5.4, we can see thatWOM(α, ε) � WOM(α, p
α

). Therefore, FWOM(α, p
α

) ⊆

FWOM(α,ε).

57

0

1

1� ↵

1� ↵

1

1

1

1

↵(1� ✏⇤)

↵(1� ✏⇤)

↵✏⇤

↵✏⇤

↵✏⇤

↵✏⇤

Figure 5.3: Degrading the channel WOM(α, ε∗) to BSC(αε∗). The two channels on the
left and on the right are equivalent.

0

1

1� ↵ 1� ↵

1� ↵1� ↵

1

1

↵(1� p

↵
)

↵(1� p

↵
)

p

p

↵(1� ✏)

↵(1� ✏)

↵✏

↵✏

1� z

1� z

z

z

Figure 5.4: Degrading channel WOM(α, p
α

) to WOM(α, ε). Here z = αε−p
α−2p

. The two
channels on the left and on the right are equivalent.

(3) In Figure 5.3, by setting ε∗ = ε, we see that BSC(αε) � WOM(α, ε). Therefore

FWOM(α,ε) ⊆ FBSC(αε).

(4) Since p 6 αε, clearly BSC(αε) � BSC(p). Therefore FBSC(p) ⊆ FBSC(αε). �

We illustrate the meaning of Lemma 14 in Figure 5.5.

Lemma15. When p 6 αε, limN→∞
|FWOM(α,ε)∩FBSC(p)|

N
> limN→∞

|FWOM(α,
p
α)|

N
= αH(p

α
).

Lemma16. When p 6 αε, limN→∞
|FWOM(α,ε)∩FBSC(p)|

N
> limN→∞

|FWOM(α,ε)|+|FBSC(p)|−|FBSC(αε)|
N

=

αH(ε) + H(p)− H(αε).

58

{1, 2, · · · , N}

FWOM(↵,✏)

FBSC(↵✏)

FBSC(p)

FWOM(↵, p
↵)

Figure 5.5: The frozen sets for channels BSC(p), WOM(α, ε), WOM(α, p
α

) and
BSC(αε). Here p 6 αε.

Proof: |FWOM(α,ε) ∩ FBSC(p)| = |FWOM(α,ε)| + |FBSC(p)| − |FWOM(α,ε) ∪ FBSC(p)| >

|FWOM(α,ε)|+ |FBSC(p)| − |FBSC(αε)| (by Lemma 14). �

5.3.3 Lower Bound to Sum-rate

We now analyze the sum-rate of our general code construction as N → ∞. Let xj ,
|FWOM(αj−1,εj)

∩FBSC(p)|
|FBSC(p)|

6 1. For j = 1, 2, · · · , t, the number of bits written in the j-th

rewrite is

Mj =|FWOM(αj−1,εj)| − |FWOM(αj−1,εj) ∩ FBSC(p)|

=Nαj−1 H(εj)− xj|FBSC(p)|

=N(αj−1 H(εj)− xj H(p))

and the number of additional cells we use to store the bits in FBSC(p) − FWOM(αj−1,εj) is

Nadditional,j =
N H(p)(1− xj)

1− H(p)

59

Therefore, the sum-rate is Rsum ,
∑t
j=1Mj

N+
∑t
j=1Nadditional,j

=

∑t
j=1 αj−1 H(εj)− H(p)

∑t
j=1 xj

1 + H(p)
1−H(p)

∑t
j=1(1− xj)

=
(1− H(p))

∑t
j=1 αj−1 H(εj)− H(p)(1− H(p))

∑t
j=1 xj

(1− H(p) + H(p)t)− H(p)
∑t

j=1 xj

=(1− H(p)) ·
1

H(p)

∑t
j=1 αj−1 H(εj)−

∑t
j=1 xj

1−H(p)+H(p)t
H(p)

−∑t
j=1 xj

.

Let γj , max

{
αj−1 H(p

αj−1
)

H(p)
,
αj−1 H(εj)+H(p)−H(αj−1εj)

H(p)

}
.

Lemma17. Let 0 < p 6 αj−1εj . Then xj > γj .

Proof: By Lemma 15, we have

xj =
|FWOM(αj−1,εj) ∩ FBSC(p)|

|FBSC(p)|

>
|FWOM(αj−1,

p
αj−1

)|
|FBSC(p)|

=
αj−1 H(p

αj−1
)

H(p)
.

By Lemma 16, we also have

xj =
|FWOM(αj−1,εj) ∩ FBSC(p)|

|FBSC(p)|

>
|FWOM(αj−1,εj)|+ |FBSC(p)| − |FBSC(αj−1εj)|

|FBSC(p)|

=
αj−1 H(εj) + H(p)− H(αj−1εj)

H(p)
.

�

Theorem18 Let 0 < p 6 αj−1εj for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(εj) > 1 − H(p) +

60

H(p)t, then the sum-rate Rsum is lower bounded by

(1− H(p))

∑t
j=1 (αj−1 H(εj)− H(p)γj)

1− H(p) + H(p)t− H(p)
∑t

j=1 γj
.

If
∑t

j=1 αj−1 H(εj) < 1−H(p) + H(p)t, and H(p) 6 αj−1 H(εj) for j = 1, 2, · · · , t, then

Rsum is lower bounded by

(
t∑

j=1

αj−1 H(εj)

)
− H(p)t.

Proof: If
∑t

j=1 αj−1 H(εj) > 1 − H(p) + H(p)t, the sum-rate is minimized when xj

(j = 1, 2, · · · , t) takes the minimum value, and we have xj > γj . Otherwise, the sum-rate

is minimized when xj takes the maximum value 1. �

We show some numerical results of the lower bound to sum-rate Rsum in Figure 5.6,

where we let εi = 1
2+t−i . The curve for p = 0 is the optimal sum-rate for noiseless

WOM code. The other four curves are the lower bounds for noisy WOM with p = 0.001,

p = 0.005, p = 0.010 and p = 0.016, respectively, given by Theorem 18. Note that it

is possible to further increase the lower bound values by optimizing εi. We also show in

Figure 5.7 the lower bound to sum-rate when each step writes the same number of bits.

5.4 Extensions

We now consider more general noise models. For simplicity, we discuss it for an

erasure channel. But it can be easily extended to other noise models. Let the noise be

a BEC with erasure probability p, denoted by BEC(p). After a rewrite, noise appears

in some cell levels (both level 0 and level 1) and changes them to erasures. An erasure

represents a noisy cell level between 0 and 1. We handle erasures this way: before a

rewrite, we first increase all the erased cell levels to 1, and then perform rewriting as

before.

61

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

L
o
w

e
r

B
o
u
n
d
 t
o
 A

ch
ie

va
b
le

 S
u
m

-r
a
te

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Figure 5.6: Lower bound to achievable sum-rates for different error probability p.

Note that although the noise for cell levels is BEC(p), when rewriting happens, the

equivalent noise channel for the cell value v = s⊕ g is a BSC(p
2
), because all the erased

cell levels have been pushed to level 1, and dither has a uniform distribution. Therefore,

the code construction and its performance analysis can be carried out the same way as

before, except that we replace p by p
2
.

The code can also be extended to multi-level cells (MLC), by using q-ary polar codes.

We skip the details for simplicity.

5.5 Experimental Results

In this section, we study the achievable rates of our error correcting WOM code, using

polar codes of finite lengths. In the following, we assume the noise channel is BSC(p),

and search for good parameters ε1, ε2, · · · , εt that achieve high sum-rate for rewriting. We

also study when the code can have a nested structure, which simplifies the code construc-

tion.

62

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 2 3 4 5 6 7 8 9 10

L
o
w

e
r

B
o
u
n
d
 t
o
 A

ch
ie

va
b
le

 S
u
m

-r
a
te

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Figure 5.7: Lower bound to achievable sum-rates for different error probability p. Here
each rewriting step writes the same number of bits.

5.5.1 Finding BSCs Satisfying FBSC(p) ⊆ FWOM(α,ε)

The first question we endeavor to answer is when BSC(p) satisfies the condition

FBSC(p) ⊆ FWOM(α,ε), which leads to an elegant nested code structure. We search for

the answer experimentally. Let N = 8192. Let the polar codes be constructed using the

method in [69]. To obtain the frozen sets, we let |FWOM(α,ε)| = N(αH(ε) −∆R), where

∆R = 0.025 is a rate loss we considered for the polar code of the WOM channel [9]; and

let FBSC(p) be chosen with the target block error rate 10−5.

The results are shown in Figure 5.8. The four curves correspond to α = 0.4, 0.6, 0.8,

and 1.0, respectively. The x-axis is ε, and the y-axis is the maximum value of p we found

that satisfies FBSC(p) ⊆ FWOM(α,ε). Clearly, the maximum value of p increases with both α

and ε. And it has nontrivial values (namely, it is comparable to or higher than the typical

error probabilities in memories).

63

10-4

10-3

10-2

10-1

100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
a
xi

m
u
m

 E
rr

o
r

P
ro

b
a
b
ili

ty
 p

ε

α = 1.0
α = 0.8
α = 0.6
α = 0.4

Figure 5.8: The maximum value of p found for which FBSC(p) ⊆ FWOM(α,ε).

5.5.2 Achievable Sum-rates for Nested Code

We search for the achievable sum-rates of codes with a nested structure, namely, when

the condition FBSC(p) ⊆ FWOM(αj−1,εj) is satisfied for all j = 1, 2, · · · , t. Given p, we

search for ε1, ε2, · · · , εt that maximize the sum-rate Rsum.

We show the results for t-write error-correcting WOM codes—for t = 2, 3, 4, 5—in

Figure 5.9. (In the experiments, we let N = 8192, ∆R = 0.025, and the target block

error rate be 10−5.) The x-axis is p, and the y-axis is the maximum sum-rate found in

our algorithmic search. We see that the achievable sum-rate increases with the number of

rewrites t.

5.5.3 Achievable Sum-rates for General Code

We now search for the achievable sum-rates of the general code, when FBSC(p) is not

necessarily a subset of FWOM(αj−1,εj). When p is given, the general code can search a larger

solution space for ε1, ε2, · · · , εt than the nested-code case, and therefore achieve higher

64

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

M
a
xi

m
u
m

 S
u
m

-r
a
te

 R
su

m

BSC’s Error Probability p

t = 2
t = 3
t = 4
t = 5

Figure 5.9: Sum-rates for different t obtained in experimental search using code length
N = 8192, when FBSC(p) ⊆ FWOM(α,ε).

sum-rates. However, for relatively small p (e.g. p < 0.016), the gain in rate obtained in

the experiments is quite small. This means the nested code is already performing well for

this parameter range. For simplicity, we skip the details.

Note that the lower bound to sum-rate Rsum in Figure 5.6 is actually higher than the

rates we have found through experiments by now. This is because the lower bound is for

N →∞, while the codes in our experiments are still short so far and consider the rate loss

∆R. Better rates can be expected as we increase the code length and further improve our

search algorithm due to the results indicated by the lower bound.

65

6. ERROR CORRECTING TRAJECTORY CODES FOR PARTIAL INFORMATION

REWRITING

In this chapter, we further generalize the results of the previous chapter to support the

partial information rewriting model of trajectory codes [35], where the current information

can be changed to a limited number of new states during each update.

Definition19. (Partial Rewriting) Let G(V,E) be a directed general rewriting graph that

is strongly connected. Let each vertex v ∈ V denote a message M ∈ {0, 1}log2 |V | and let

π : {0, 1}log2 |V | → V be a one-to-one mapping defined by π(M) , v. Let each edge

e ∈ E denote the change between the messages allowed by each update. Let D be the

maximum out degree of each vertex, where D > 1. Partial rewriting stores a sequence of

N messages (M0, · · · ,MN−1) such that

(a) π(Mj) ∈ V for j ∈ {0, 1, · · · , N − 1}.

(b) (π(Mj)→ π(Mj+1)) ∈ E for j ∈ {0, 1, · · · , N − 2}.

The model of partial rewriting can be found in many practical storage applications such as

file editing, log-based file systems and file synchronization systems. In such applications,

data tend to be frequently updated while each update only makes small changes on the data.

Partial rewriting increases the number of block erasures in flash memories and degrades

memory performance. Note that a noiseless channel is assumed in the study of trajectory

code for partial rewriting [35].

The contributions of this work are general coding schemes for partial rewriting with

noise, where errors from a binary symmetric channel may occur in cells between two

adjacent updates. We propose two specific constructions based on trajectory codes. We

show the bounds on achievable code rates based on our previous work on polar EC-WOM

66

codes presented in Chapter 5. Our work generalize the existing rewriting codes in multiple

ways.

6.1 Trajectory Codes

This section revisits the trajectory codes [35], which the codes of this chapter are

mainly based on. Trajectory codes are rewriting codes that are asymptotically optimal

for noiseless partial rewriting [35]. Given the rewriting graph G(V,E), let L = |V |, di-

vide a group of n binary cells into C subgroups. For i ∈ {0, 1, · · · , C − 1}, let the i-th

subgroup have ni cells and be referred to as register ri, namely, n =
∑C−1

i=0 ni. A register

stores a t-write WOM code. Let sj = (s1,j, s1,j, · · · , sn,j) and s′j = (s′1,j, s
′
1,j, · · · , s′n,j)

be the cell states immediately before and after storing Mj . A trajectory code has Ct en-

coders E0,E1, · · · ,ECt−1 and decoders D0,D1, · · · ,DCt−1, supportingN = Ctmessage

updates. For j ∈ {0, 1, · · · , Ct− 1}, the encoder

Ej : {0, 1}n × {0, 1}log2 L × G(V,E)→ {0, 1}n

computes the new cell states from the message, the current state and G(V,E) (namely,

Ej(sj,Mj,G(V,E)) = s′j) and the decoder

Dj : {0, 1}n × G(V,E)→ {0, 1}log2 L

reads the message Mj from the current cell state at any time between the j-th and the

(j + 1)-th updates. (Namely, Dj(s
′
j,G(V,E)) = Mj.)

The Ct updates are performed using a differential scheme: the first message M0 is

stored in r0. To write message M1, we compute the label ∆1 ∈ {0, 1}log2D of the edge

π(M0) → π(M1) in G(V,E), and store in r1. (Instead of labeling edges globally, each

outgoing edge of a vertex is given a local label that costs log2D bits, where D is the

67

maximum out degree.) The next C−2 updates can be written in the same way. After

rC−1 is used, an update cycle is completed, and the register r0 will be rewritten with the

new logL-bit message for the next update. The iteration continues until the last update is

finished. The construction implies the constraint that for all j, and for all i such that the

i-th cell belongs to rjmodC , we have s′i,j > si,j . The code rate of trajectory codes is

R ,
Ct log2 L

n
bits/cell. (6.1)

6.2 Error Correcting Trajectory Codes

We study the coding problem for joint partial rewriting and error correction, where

the partial rewriting model is extended by allowing cell states to be changed by noise

between two adjacent updates. In flash memories, the noise is from various sources such

as interference and charge leakage [11].

6.2.1 Error Model and WOM Parameters

Before we present the code construction, we first introduce the related model and pa-

rameters. Let the noise channel for the errors received by a register between two adjacent

updates (e.g. the time period after storing M3 and before storing M4) be a binary symmet-

ric channel BSC(p) with p ∈ (0, 1
2
). We assume that errors start occurring in a register

after the register is written for the first time. The assumption is motivated by practical

flash memories, where the major errors for rewriting is introduced by cell-to-cell interfer-

ence that happens mainly when cells are being programmed [11]. Following the model

of trajectory codes, the noise channel that a register goes through at the time immediately

before its next WOM rewrite is BSC(p∗C), where p∗C is the overall error probability of C

cascaded BSC(p) computed using p∗i , 1−(1−2p)i

2
.

In WOM, it is common to use some parameters to control the amount of information

68

that is written in each write. For j ∈ [t], let the parameter αi,j−1 be the fraction of cells

that are at state 0 immediately before the j-th write of the register ri’s WOM code. We

have αi,0 = 1. Let the parameter εi,j 6 1
2

be the fraction of cells at state 0 that will be

raised to 1 by the j-th rewrite. We have εi,t = 1
2
. The parameters of the WOM codes used

in our setting of partial rewriting also depends on the error probability p. When ni →∞,

the values of αi,1, αi,2, · · · , αi,t−1 are computed by αi,j = [αi,j−1(1 − εi,j)] ∗ p∗C , where

a ∗ b , a(1− b) + (1− a)b, and the parameters εi,1, εi,2, · · · , εi,t are specified by users.

6.2.2 Code Construction

Our first construction is a natural extension of trajectory codes, where each register

independently corrects the errors in it. The recovered messages are used by the next up-

date. We formally present the construction by defining the encoder and the decoder in the

following.

Construction4. For i ∈ {0, 1, · · · , C − 1}, let register ri use a t-write EC-WOM code,

correcting the errors from BSC(p∗(C−i)). Let l = jmodC, and let sj be the states of the n

cells right before the j-th update, and let s′j denote the cell states at any time between the

j-th and the (j+ 1)-th update. (Therefore, sj is the value of s′j−1 at a particular moment.)

For j = 0, 1, · · · , Ct− 1, we have

Encoder Ej(sj,Mj,G(V,E)) = s′j

If l = 0, rewrite r0 with Mj . Otherwise, do;

(1) Recover message M̂j−1 = Dj−1(sj,G(V,E)).

(2) Compute the label ∆j s.t. (π(M̂j−1)
∆j−→ π(Mj)) ∈ E. (Here π is specified in

Definition 1.)

(3) Store the label ∆j in register rl using rewriting (i.e. using the EC-WOM code for rl).

69

Decoder Dj(s
′
j,G(V,E)) = M̂j

(1) Decode r0 and obtain the estimated message M̂j−l. Let v̂j−l = π(M̂j−l).

(2) For k from 1 to l, decode rk and obtain the estimated edge label ∆̂j−l+k. (Note that in

the rewriting graph G(V,E), the edge from message Mj−l+k−1 to message Mj−l+k−1

has the label ∆j−l+k).

(3) Compute M̂j . Start from the vertex v̂j−l, traverse G(V,E) along the path marked by

∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j , which leads to v̂j . Output M̂j = π−1(v̂j).

Example20. We now show a simple example for n = 6 cells. (In practice, the code usually

has thousands of cells.) Let the cells be divided into C = 2 registers with n0 = 4, n1 = 2,

and let t = 2, L = 4 and D = 2. Assume that between two adjacent updates, an error

occurs in each register. Let the WOM codes of r0 and r1 correct 2 and 1 errors, respectively.

Let the rewriting graph G whose vertex and edge sets be defined as V = {v0, v1, v2, v3},

E=

{
v0

(0)

�
(0)

v1, v1

(1)

�
(0)

v2, v2

(1)

�
(0)

v3, v3

(1)

�
(1)

v0

}
, where the vertex vi representing the symbol

i and having two outgoing edges locally labeled with (0) and (1). Let the sequence of

messages be (0, 3, 2, 1), which corresponds to the path v0
(1)→ v3

(0)→ v2
(0)→ v1 in the graph.

Assume that the changes on the states of r0 and r1 during the updates are the ones shown

in the table below. Here j− and j+ denote the moments immediately before and after the

j-th update, respectively. A bit marked with underlines indicates an error. Note that at the

moment j = 2, although performing the update does not require recovery of the messages

written at moments j = 0 and j = 1, those messages can still be recovered until the

moment j = 2− if needed.

6.2.3 Analysis of the Correctness of the Construction

To see the correctness of the coding scheme, we use induction. (Here we assume the

number of cells goes to infinity.) Let us assume that the first j messages have been stored

70

Table 6.1: An example of the first construction.

j r0 r1 Comments
0− (0, 0, 0, 0) (0, 0) Initialization
0+ (0, 1, 0, 0) (0, 0) Wrote data “0” in r0

1− (0, 1, 1, 0) (0, 0) An error occurs in r0

1+ (0, 1, 1, 0) (1, 0) Decoded r0, wrote “(1)” in r1

2− (0, 0, 1, 0) (0, 0) Errors occur in r0 and r1

2+ (1, 0, 1, 0) (0, 0) Rewrote r0 to store “2”
3− (1, 0, 0, 0) (0, 1) Errors occur in r0 and r1.
3+ (1, 0, 0, 0) (0, 1) Decoded r0, wrote “(0)” in r1

successfully, and we show that Mj−1 can be recovered reliably at any time between the

(j − 1)-th and the j-th update, and the j-th message can be stored successfully. Let the

index of the register be written as l = jmodC. If l = 0, we are at the first write of

a new cycle, and do not need to recover Mj−1 to store Mj; if l > 0, we perform the

update by storing the difference ∆j between Mj−1 and Mj in rl. To do so, we first recover

the value of Mj−1 by decoding the registers r0, r1, · · · , rl−1 which have respectively

received errors from the channels BSC(p∗l), BSC(p∗(l−1)), · · · , BSC(p) at the time of the

decoding. As their WOM codes respectively correct errors from BSC(p∗C), BSC(p∗(C−1)),

· · · , BSC(p∗(C−l+1)) which are degraded versions of their current noise channels, these

registers can be decoded, outputting the messages written by the last l updates (which

include M̂j−l stored in r0, and the labels ∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j−1 from r1, · · · , rl−1).

Given G(V,E) we can determine the value of M̂j−1, and further compute the label ∆j of

the edge from π(Mj−1) to π(Mj). By storing the label ∆j into rl, the j-th update succeeds.

6.2.4 Code Analysis

We analyze the code performance for Construction 4. Let L = |V |. For j ∈ [t], let

Ri,j > 0 be the achievable instantaneous rate of the j-th write of the EC-WOM code in

71

ri. As each register uses a constant-rate WOM code (here register r0 stores log2 L bits per

write, and the other registers each stores log2D bits per write), for i ∈ [C − 1] we have

n0 =
log2 L

minj∈[t] R0,j

, ni =
log2D

minj∈[t] Ri,j

. (6.2)

Substituting Eq. (6.2) in Eq. (6.1) gives the rate of the code

R =
t · C

1
minj∈[t]R0,j

+ log2D
log2 L

∑C−1
i=1

1
minj∈[t]Ri,j

.

Note that the EC-WOM in Construction 4 is general. To be specific, we can use the

polar EC-WOM code in Chapter 5 for each register, and derived the bounds on R. We first

revisit some results in Chapter 5 that are needed to derive the bounds to the instantaneous

rates for the polar EC-WOM code.

Let the WOM channel used for performing the j-th write/encoding of the polar EC-

WOM be WOM(αj−1, εj) with the parameters αj−1 and εj , and let the channel of noise

in cell states between two adjacent writes be BSC(pe). Let FWOM(αj−1,εj) ⊆ [N] be the

frozen set of the polar code constructed for WOM(αj−1, εj), and let FBSC(pe) ⊆ [N] be the

frozen set of the code constructed for BSC(pe). When N →∞, let xj , |FWOM(αj−1,εj) ∩

FBSC(pe)|/|FBSC(pe)| 6 1. For j ∈ [t], the number of bits written in the j-th rewrite is

Mj = |FWOM(αj−1,εj)| − |FWOM(αj−1,εj) ∩ FBSC(pe)| = Nαj−1 H(εj) − xj|FBSC(pe)| =

N(αj−1 H(εj) − xj H(pe)) and the number of additional cells we use to store the bits in

FBSC(p)−FWOM(αj−1,εj) isNadditional,j =
N H(pe)(1−xj)

1−H(pe)
. Therefore, we get the instantaneous

rate for the j-th write

Rj ,
Mj

N +
∑t

k=1 Nadditional,j

=
αj−1 H(εj)− H(pe)xj

1 + H(pe)
1−H(pe)

∑t
k=1(1− xk)

.

72

Lemma21. Let 0 < pe 6 αj−1εj . Then Rj ∈ [R−j , R
+
j], where

R−j =
αj−1 H(εj)− H(pe)

1 + H(pe)
1−H(pe)

∑t
k=1(1− γk)

, (6.3)

R+
j = αj−1 H(εj)− H(pe)γj. (6.4)

The results above can be directly applied to the codes in Construction 4. For i ∈ {0, 1, · · · , C−

1}, let 0 < p∗(C−i) 6 αi,j−1εi,j , then Ri,j ∈ [R−i,j, R
+
i,j] where R−i,j and R+

i,j are computed

with the right hand sides of Eq. (6.3) and (6.4) by replacing αj−1, εj and pe with αi,j−1, εj

and p∗(C−i).

Theorem22. For i ∈ {0, 1, · · · , C− 1}, j ∈ [t], let 0 < p∗(C−i) 6 αi,j−1εi,j . Then

R ∈ {R−, R+} where

R− =
t · C

1
minj∈[t]R

−
0,j

+ log2D
log2 L

∑C−1
i=1

1
minj∈[t]R

−
i,j

.

and the upper bound R+ can be computed by replacing R−0,j and R−i,j in the above equation

with R+
0,j and R+

i,j , respectively.

Figure 6.1 shows some numerical results for the bounds of our code, where for all i, j

we let εi,j = 1/(2 + t − j). To see its good performance, we compare the bounds of our

scheme to those of the basic scheme, which is simply a Ct-write polar EC-WOM code

correcting errors from BSC(p). In each rewrite, the basic scheme stores each updated

message using rewriting. The results suggest our code performs significantly better than

the basic scheme. (Note that the WOM codes considered in this work are constant rate

codes. Given such codes, the bounds in Figure 6.1 decreases when t becomes sufficiently

large due to the drop in the instantaneous rates.)

73

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14

Bo
un

d
on

 A
ch

ie
va

bl
e

C
od

e
R

at
e

(b
its

/c
el

l)

t

Basic LB
Basic UB

LB D = 213

UB D = 213
LB D = 21024

UB D = 21024

Figure 6.1: The lower and upper bounds (marked by LB and UB) on the achievable code
rates for different t and D. Here log2 L = 213, C = 8 and p = 10−3.

6.3 A More Generalized Coding Scheme

We now discuss a more generalized coding scheme. In this scheme, the trajectory

codes not only use registers to store the changes in the messages, but can also store part of

the errors found in previous registers. When the error probability of the channel is small,

only a small number of additional cells are needed to store such error information. We

focus on a specific construction in the following.

6.3.1 Code Construction

Let the error-free cell states of register ri (immediately after it is written) be c0
i ∈

{0, 1}ni . Let the cell states immediately before each of the next C updates of messages

be c1
i , c

2
i , · · · , cCi . According to the error model in Section 6.2, the error vector cki ⊕ ck+1

i

74

contains the errors introduced by BSC(p). When ni → ∞, the vector cki ⊕ ck+1
i can be

compressed into ni H(p) bits using lossless source coding. The encoder and the decoder

for the j-th update in the new construction are defined below.

Construction5. For i ∈ {0, 1, · · · , C−1}, let register ri use a t-write EC-WOM code,

correcting the errors from BSC(p). For j = 0, 1, · · · , Ct− 1, we have

Encoder Ej(sj,Mj,G(V,E)) = s′j

If l = 0, rewrite r0 with Mj . Otherwise, do;

(1) Recover message M̂j−1 = Dj−1(sj,G(V,E)).

(2) Compute the label ∆j s.t. (π(M̂j−1)
∆j−→ π(Mj)) ∈ E.

(3) Rewrite register rj to store ∆j and the compressed version of the error vectors c0
l−1 ⊕

c1
l−1, c1

l−2 ⊕ c2
l−2, · · · , cl−1

0 ⊕ cl0.

Decoder Dj(s
′
j,G(V,E)) = M̂j

(1) For k from 0 to l, let the state of register rl−k be ck+1
l−k . Using it and the error vectors

obtained previously from decoding rl−k+1, rl−k+2, · · · , rl, we get ck+1
l−k ⊕

∑k−1
x=0(cxl−k⊕

cx+1
l−k) = c0

l−k ⊕ (ckl−k ⊕ ck+1
l−k). (Note that when k = 0, the above equals c1

l .) Decode

the right hand side of the above equation, and obtain the recorded error vectors about

the first (l−k) registers—cl−k0 ⊕cl+1−k
0 , cl−k−1

1 ⊕cl−k1 , · · · , c0
l−k⊕c1

l−k—the estimated

message M̂j−l (when k = l) or the estimated edge label ∆̂j−k (when k < l).

(2) We now compute M̂j; we traverse the graph G(V,E) along the path marked by the

labels ∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j , which leads to vertex v̂j . Output M̂j = π−1(v̂j).

75

Example23. Let n = 10, t > 1, C = 3, L = 4 and D = 2. Assume n0 = 3, n1 = 3,

n2 = 4, and that the WOM code of each register corrects 1 error. Assume that between

two adjacent updates, an error occurs in each register. We assume the same rewriting

graph as in Example 20, and let (0, 3, 2) be the first three messages to be stored. We only

illustrate the update for the message “2” due to space limitation. Assume the changes

in the cell states during the updates are as in the table below. At time 2−, errors occur

in r0 and r1. To perform the update, we first decode r1, and obtain the label “(1)” and

the decompressed error vector c0
0 ⊕ c1

0 = (0, 0, 1) for r0. Given the error vector and the

current state c2
0, compute c2

0 ⊕ (c0
0 ⊕ c1

0) = (0, 0, 0) where the middle bit still contains

error. Decoding c2
0⊕ (c0

0⊕c1
0) gives the message “0”. Given the new message “2′′ and the

recovered label “(1)” and the message “0′′ in r0, the label “(0)” is determined and stored

by writing “(0)” in r2, which completes the update.

Table 6.2: An example of the second construction.

j r0 r1 r2

0− (0, 0, 0) (0, 0, 0) (0, 0, 0, 0)
0+ (0, 1, 0) (0, 0, 0) (0, 0, 0, 0)
1− (0, 1, 1) (0, 0, 0) (0, 0, 0, 0)
1+ (0, 1, 1) (1, 0, 0) (0, 0, 0, 0)
2− (0, 0, 1) (1, 1, 0) (0, 0, 0, 0)
2+ (0, 0, 1) (1, 1, 0) (1, 0, 1, 0)

6.3.2 Analysis of the Correctness of the Code

The correctness of Construction 5 can be shown by induction. (We again assume the

number of cells in each register goes to infinity.) Assume the first j messages have been

stored successfully, and we elaborate on the j-th update with l > 0. To perform the

76

update, we need to recover the message Mj−1 so that the label of the edge from Mj−1 to

Mj can be computed and stored in rl. We first decode rl−1 with state c1
l−1 which received

the errors from BSC(p). Since each register tolerates errors from BSC(p), rl−1 can be

decoded to obtain the edge label ∆j−1 (that specifies the edge connecting Mj−2 to Mj−1)

as well as the error vectors c0
l−2 ⊕ c1

l−2, c1
l−3 ⊕ c2

l−3, · · · , cl−2
0 ⊕ cl−1

0 with each error

vector being for one of the first l − 1 registers. Next, we decode rl−2 with state c2
l−2.

To do so, we first use the error vector obtained previously on rl−2 to correct part of the

errors by computing c2
l−2 ⊕ (c0

l−2 ⊕ c1
l−2). The remaining errors can be equivalently seen

as coming from BSC(p), and are thus correctable. Decoding them gives the edge label

∆j−2 as well as the error vectors regarding the previous registers. We continue the joint

decoding in the same fashion towards r0. Thanks to the error vectors from the previous

decoding, each register needs to correct errors from BSC(p) (instead of BSC(p∗(C−i)) for

i = 0, 1, · · · , C−1). After r0 is decoded, we obtain the message Mj−l and the labels

∆j−l+1,∆j−l+2, · · · ,∆l−1. By traversing G(V,E) along the path marked by the labels, we

recover M̂j−1. The label ∆j is then determined and written into rl.

6.3.3 Code Analysis

We analyze the code performance of Construction 5. The analysis is different from

Construction 4 mainly for two reasons. The EC-WOM code of each register for the codes

of this section corrects the errors from BSC(p) while each WOM code tolerates differ-

ent amount of noise in the previous construction. Moreover, since each register (besides

r0) stores both error vectors as well as an edge label, the value of ni also depends on

n0, n1, · · · , ni−1.

We first derive ni for each ri. As r0 is used in the same way as the previous codes, and

ri stores i error vectors and one edge label in each write, we have n0 = log2 L/minj∈[t] R0,j

and ni = (log2D+H(p)
∑i−1

k=0 nk)/minj∈[t] Ri,j for i ∈ [C−1]. Here the term H(p)
∑i−1

k=0 nk

77

is the length of the compressed error vectors c0
i−1 ⊕ c1

i−1, c1
i−2 ⊕ c2

i−2, · · · , ci−1
0 ⊕ ci0. In

practice, each register can choose to use the WOM code with the same parameters to sim-

plify the implementation. In such cases, (n1, n2, · · · , nC−1) form a geometric sequence.

Proposition24. For i ∈ {1, 2, · · · , C−1}, let minj∈[t] Ri,j be some constant A. Then we

have ni = (n0 H(p) + log2D)(A+ H(p))i−1/Ai.

Therefore, the rate of the code in this section can be computed using Eq. (1). To derive

the bounds for Construction 5, we apply the same techniques used in Section 6.2. Assume

each WOM code in is a polar EC-WOM code which corrects errors from BSC(p). By

applying Lemma 21, we show the bounds to the instantaneous ratesRi,j in the next lemma.

Lemma25. For i ∈ {0, 1, · · · , C−1} and j ∈ [t], let 0 < p 6 αi,j−1εi,j . Then we have

Ri,j ∈ [R−i,j, R
+
i,j], where R−i,j = [αi,j−1 H(εi,j) − H(p)]/

[
1 + H(p)

1−H(p)

∑t
j=1(1 − γi,j)

]
and

R+
i,j = αi,j−1 H(εi,j)− H(p)γi,j .

Theorem26. For all i and j, let 0 < p 6 αi,j−1εi,j . Then we have R ∈ [R−, R+], where

R− = Ct log2 L/
[

log2 L

minj∈[t]R
−
0,j

+
∑

i∈[C−1]

log2D+H(p)
∑i−1
k=0 nk

minj∈[t]R
−
i,j

]
, and R+ can be computed by

replacing R−(0, j) and R−(i, j) in R− above with R+(0, j) and R+(i, j), respectively.

Figure 6.2 shows the numerical results that compare the bounds of Construction 4

and Construction 5 on parameters that are common for flash memories (e.g. message

length > 1000 bits). The bounds for the codes in this section are tighter than those of the

previous construction. When t is sufficiently large, all bounds will decrease due to the

decrease of the minimum instantaneous rates. However, the bounds of the codes in this

section decrease more slowly. This is because in the first construction, the WOM code of

ri needs to tolerate the errors from BSC(p∗(C−i)). Its error rates become much higher than

what the codes in this section needs to tolerate (which is BSC(p)) when C becomes large.

78

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

Bo
un

d
on

 A
ch

ie
va

bl
e

C
od

e
R

at
e

(b
its

/c
el

l)

t

Cons. 1 LB C=15
Cons. 1 UB C=15
Cons. 2 LB C=15
Cons. 2 UB C=15

Cons. 1 LB C=5
Cons. 1 UB C=5
Cons. 2 LB C=5
Cons. 2 UB C=5

Figure 6.2: The bounds to the achievable rates of the two constructions on different t and
C. Here log2 L = 213, p = 10−3, and εi,j = 1

2+t−j .

Therefore, the minimum instantaneous rates of the WOM codes in the previous scheme

decrease faster when t increases than those of the codes in this section do.

79

7. WOM CODES THAT CORRECT WRITE ERRORS

An extension of the concept of polarization [2] to asymmetric settings was proposed

in [28] in the context of channel and lossy source coding. In this chapter we apply this

extension to the problem of noisy WOM coding, an asymmetric channel coding problem

with state information at the encoder.

The main contribution of this work is the derivation of a new nested polar coding

scheme for the noisy (asymmetric) WOM channel with an asymptotically-optimal rate

and polynomial complexity. We extend the result of [10] to the noisy WOM case, where

in contrast to [10], the amount of required shared randomness is significantly reduced,

which increases the practical applicability of the scheme. In particular, if the cell states

are assumed to be i.i.d., the requirement for shared randomness is removed completely.

The encoding and decoding complexity of the proposed scheme is given as O(n log n)

under a decoding error probability of 2−Ω(n1/2−δ) for a block length n and any δ > 0. As a

byproduct, we identify how the proposed technique can be used to provide a nested coding

solution for other asymmetric side-information based problems.

7.1 WOM Channel Model

A WOM is composed of a block of n cells, where each cell has a state from some

finite alphabet. In this work we assume that the alphabet is {0, 1}. The main property of

the WOM is that a cell at state 0 can change its state to 1, but once the cell state is 1, it

cannot be changed anymore. The state of the cells is known to a user that wishes to store

information on the memory. If some of the cells are in state 1, a code is required for the

reliable storage of information, since not every sequence of n bits can be stored directly.

We study a stochastic i.i.d. WOM model. Let S be a Bernoulli random variable that

corresponds to the state of a cell. Since the cells are i.i.d., we define the distribution of a

80

cell state by

P (S = 1) = β, (7.1)

for some β ∈ [0, 1]. Although the standard model of WOM used for flash memories does

not consider independently distributed cell states, the i.i.d. model can be applied to flash

memories using a method described in [10].

The focus of this work is on memories with write errors, where the corresponding

bit channel is shown in Figure 7.1. Here X and Y are Bernoulli random variables that

correspond to the input and output of a single bit in the memory. If the cell state S is 1,

the output Y will be 1 as well, regardless of the value of input X , corresponding to a stuck

bit. Otherwise, if the cell state S is 0, we assume that the memory exhibits a symmetric

writing error with crossover probability α. This behavior is summarized by

PY |XS(1|x, s) =

α if (x, s) = (0, 0)

1− α if (x, s) = (1, 0)

1 if s = 1.

(7.2)

0 0

1 − α

1 − α

α

α
X X YY

S = 0 S = 1

1 1

0

11

Figure 7.1: A binary WOM with write errors.

Finally, in our model of study, we limit the number of cells that the encoder attempts to

change from 0 to 1 in the memory. This limitation lends itself naturally to the application

81

of WOM to settings in which multiple writes are considered. We express this limitation

by a parameter ε that bounds the expectation of the input X given that S = 0 as follows

E(X|S = 0) 6 ε. (7.3)

The capacity of the WOM model is given in the following theorem.

Theorem27. [27, Theorem 4] The capacity of the memory described by (7.1), (7.2), and

(7.3) is C = (1− β)[h(ε ∗ α)− h(α)], where ε ∗ α ≡ ε(1− α) + (1− ε)α.

The nested polar coding scheme of this work achieves the capacity of Theorem 27. The

presentation of the scheme requires some notation from polar coding.

7.2 Polar Coding Notation

For a positive integer n, let [n] ≡ {1, 2, . . . , n}. Let Xn
1 = (X1, X2, . . . , Xn), Y n

1 =

(Y1, Y2, . . . , Yn) and Sn1 = (S1, S2, . . . , Sn) be i.i.d. copies of X , Y and S, respectively.

For integers i < j, letXj
i represent the subvector (Xi, Xi+1, . . . , Xj) and for a setA ⊂ [n]

let XA represent the subvector {Xi}i∈A.

Let n be a power of 2. Define a matrix Gn = G⊗ log2 n where G =

 1 0

1 1

 and ⊗

denotes the Kronecker power. A subset of the rows of Gn serves as a generator matrix in

channel polar coding schemes. Let Un
1 be the product Un

1 = Xn
1G
−1
n = Xn

1Gn. A subset

of the coordinates of the vector Un
1 will contain the message to be stored in the memory.

Our analysis uses the Bhattacharyya parameters. For a conditional distribution PY |X ,

where X is a Bernoulli random variable, the Bhattacharyya parameter is defined by

ZB(PY |X) ,
∑
y

√
PY |X(y|0)PY |X(y|1).

82

The Bhattacharyya parameter serves as an upper bound on the decoding error probability

in polar codes for symmetric settings. Similarly, define the conditional Bhattacharyya

parameter as

Z(X|Y) , 2
∑
y

√
PX,Y (0, y)PX,Y (1, y).

The conditional Bhattacharyya parameter serves as a decoding error probability bound in

polar codes for asymmetric settings. Note that the Bhattacharyya parameter and the con-

ditional Bhattacharyya parameter are equal if X is distributed uniformly. The conditional

Bhattacharyya parameter Z(X|Y) is related to the conditional entropyH(X|Y) according

to the following proposition.

Proposition28. ([3, Proposition 2])

(Z(X|Y))2 6 H(X|Y), (7.4)

H(X|Y) 6 log2(1 + Z(X|Y)) 6 Z(X|Y). (7.5)

We now turn to describe the proposed coding scheme.

7.3 Coding Scheme

We start by presenting a rough overview of our coding technique followed by a for-

mal presentation. The achievability of Theorem 27 is shown by random coding. The

distribution by which the random codes are drawn in this achievability proof is called the

capacity-achieving distribution, and it is used in our scheme. We denote this distribution

by PX|S . According to the proof of [27, Theorem 4], we have

PX|S(1|0) = ε, PX|S(1|1) =
ε(1− α)

ε ∗ α . (7.6)

Our construction is based on a combination of two methods: asymmetric polar cod-

83

: almost random

given ()

: almost deterministic

given ()

: almost random

given

: almost deterministic

given

: almost random

given ()

: almost deterministic

given ()

Figure 7.2: Different polarizations of Un
1 = Xn

1Gn.

ing [28] and nested polar coding [45]. In nested polar coding for Gelfand-Pinsker-type

problems, the encoder first compresses the state using a lossy source code, and then trans-

mits the compressed state together with the source message using a channel code. To

achieve capacity, both the lossy source coding and the channel coding follow the capacity-

achieving conditional distribution of Equation (7.6).

Let sn1 , u
n
1 , x

n
1 and yn1 be the realizations of the random variables Sn1 , U

n
1 , X

n
1 and Y n

1 ,

respectively. In a channel polar coding scheme, a vector un1 is used for representing the

source message and a frozen vector. The channel input is the codeword xn1 = un1Gn.

The coding scheme is polarizes the conditional entropies H(Ui|U i−1
1 , Y n

1) for the differ-

ent coordinates i of the vector Un
1 . In a nested polar coding scheme, the vector Un

1 is

also polarized with respect to the conditional entropies H(Ui|U i−1
1 , Sn1). In our case the

conditional entropiesH(Ui|U i−1
1 , Sn1) are defined according to the capacity-achieving con-

ditional distribution of Equation (7.6). In addition, in asymmetric polar coding, the vector

Un
1 is also polarized with respect to the conditional entropies H(Ui|U i−1

1). We take ad-

vantage of these three different polarizations of the vector Un
1 in our coding scheme. It is

useful to define the polarized sets according to the conditional Bhattacharyya parameter,

84

as follows:

A ≡ {i : Z(Ui|U i−1
1 , Y n

1) 6 2−n
1/2−δ},

B ≡ {i : Z(Ui|U i−1
1 , Sn1) > 1− 2−n

1/2−δ},

C ≡ {i : Z(Ui|U i−1
1) 6 2−n

1/2−δ},

D ≡ {i : Z(Ui|U i−1
1) > 1− 2−n

1/2−δ},

for some small δ > 0. The sets A,B,C and D refer to sets of coordinated of the vector

un1 . Also define the sets Ac, Bc, Cc and Dc to be the complements of A,B,C and D with

respect to [n]. Intuitively, set A contains the coordinates of un1 that can be decoded reliably

given yn1 . Set B contains the coordinates that have small relation to sn1 . Set C is composed

of the coordinates that do not contain much information about xn1 , and set D is composed

of the coordinates that contain almost all the information about xn1 . Note that those sets are

not disjoint. An illustration of the relation between those sets is presented in Figure 7.2.

The proposed coding scheme takes advantage of the polarized sets as follows. First,

the encoder performs a lossy compression of the state sn1 by the method of [28]. The

compression is performed according to an information set IS , defined to be the set of

coordinates that are not in the union B ∪ C. The complement of the information set with

respect to [n] is denoted as IcS = B ∪ C. Each bit ui for i ∈ IS is set randomly to a value

u with probability PUi|U i−1
1 ,Sn1

(u|ui−1
1 , sn1). The coordinates in the set B are distributed

almost uniformly given (U i−1
1 , Sn1), and therefore they do not affect the joint distribution

(Xn
1 , S

n
1). For that reason we can place the source message in those coordinates. Since we

also need the message to be decoded reliably given Y n
1 , we restrict it to the coordinates in

the set A, which are almost deterministic given (U i−1
1 , Y n

1). Taking both restrictions into

account, we set the coordinated of un1 in the intersection A ∩ B to be equal to the source

message.

85

The rest of the coordinates of un1 are set by the encoder according to a set of Boolean

functions, as in [28]. Since this set of functions describes the code, it is known to both

the encoder and the decoder. For a positive integer i, a Boolean function is denoted by

λi : {0, 1}i−1 → {0, 1}. Remember that the coordinates in the set IS are determined

according to the state sn1 , and that the coordinates in A ∩ B are determined by the infor-

mation message. The rest of the coordinates of un1 will be determined according to a set of

Boolean functions λIcS\(A∩B) = {λi}IcS\(A∩B). The encoder sets a bit ui according to the

function λi(ui−1
1).

Finally, remember that the set A contains the reliable coordinates of un1 given yn1 .

Therefore, the decoder can guess the coordinates in A, and will estimate the rest of the

coordinates according to λIcS\A. A coordinate i in IcS can be decoded this way, since if

i ∈ A, ui can be estimated reliably, and if i ∈ IcS \ A, then ui can be recovered by λi.

However, a coordinate i ∈ IS can be decoded reliably only if i ∈ A, since we do not use

Boolean functions for the set IS . Therefore, a reliable decoding requires IS to be a subset

of A. While we do not know if this fact always holds, we can show that the set difference

IS \A is very small. Therefore, our strategy is to store the vector uIS\A in additional cells.

Since we show that the fraction |IS \ A|/n approaches zero for large n, this strategy will

not affect the asymptotic rate of the scheme or the expected weight of the codewords.

The additional cells should be coded as well to ensure their reliability. In this work

we assume that the additional cells are protected by an asymmetric channel polar code,

without utilizing the state information at the encoder. We do not discuss the details of

the coding of the additional cells. However, we note that since the block length of the

additional cells is much smaller than the main block length, the probability of decoding

error at the additional cells is higher. In particular, the probability of decoding error at the

additional cells is 2−Ω(n1/2−δ) for any δ′ > δ, while the decoding error probability in the

main block of cells isO(2−n
1/2−δ

), as in standard polar codes. We now describe the coding

86

scheme formally.

Construction6.

Encoding

Input: a message mk
1 ∈ {0, 1}k and a state sn1 ∈ {0, 1}n.

Output: a codeword xn1 ∈ {0, 1}n.

1. Let uA∩B = mk
1. Then for i from 1 to n, if i ∈ IS , set

ui =

 0 with probability PUi|U i−1
1 ,Sn1

(0|ui−1
1 , sn1)

1 with probability PUi|U i−1
1 ,Sn1

(1|ui−1
1 , sn1),

and if i ∈ IcS \ (A ∩B), set ui = λi(u
i−1
1).

2. The vector uIS\A is stored in additional cells. Finally, store the codeword xn1 =

un1Gn.

Decoding

Input: a noisy vector yn1 .

Output: a message estimation m̂k
1.

Estimate un1 by ûn1 (yn1 , λIcS\A) as follows:

1. Recover the vector uIS\A from the additional cells, and assigns ûIS\A = uIS\A.

2. For i from 1 to n, set

ûi =

 arg maxu PUi|U i−1
1 ,Y n1

(u|ûi−1
1 , yn1) if i ∈ A

λi(û
i−1
1) if i ∈ IcS \ A.

3. Return the estimated message m̂k
1 = ûA∩B.

87

Let n′ be the number of additional cells needed to store the vector uIS\A. The main

theorem of this work addresses the properties of Construction 6.

Theorem29. Let the message mk
1 be distributed uniformly. Then for any constant δ′ >

δ > 0 there exists a set of Boolean functions λIS\(A∩B) for which Construction 6 satisfies

the following:

1. The rate of the scheme is asymptotically optimal. Formally, limn→∞ k/(n+n′) = C.

2. The decoding error probability is 2−Ω(n1/2−δ′).

3. With the same success probability, for any ε′ > ε > 0,

| {i : si = 0 and xi = 1} |
| {i : si = 0} | 6 ε′. (7.7)

4. The encoding and decoding complexities are O(n log n).

The complexity claim (claim 2 of Theorem 29) is explained in [28, Section III.B]. In

Section 7.4 we prove claim 1 of Theorem 29, and in Section 7.5 we prove claims 2 and 3.

7.4 Optimality of the Code Rate

To prove claim 1 of Theorem 29, we combine two separate claims. First, we show in

Subsection 7.4.1 that the fraction of additional cells is negligible, and next, in Subsection

7.4.2, we show that the rate of the main block is asymptotically optimal. Together the two

results prove claim 1 of Theorem 29.

7.4.1 Fraction of Additional Cells is Negligible

The vector uIS\A is stored on n′ additional cells. To ensure a reliable storage, a polar

coding scheme requires only a linear amount of redundancy in |IS \ A|. Therefore, to

show that the additional cells do not affect the rate and codeword weight of the scheme,

88

it is enough to show that limn→∞ |IS \ A|/n = 0. To show this, we use an idea from the

proof of [45, Theorem 15]. Consider the set

ĪS ={i : Z(Ui|U i−1
1 , Sn1) 6 2−n

1/2−δ

and Z(Ui|U i−1
1) > 1− 2−n

1/2−δ}.

By the definition of the sets above, ĪS ⊆ IS . Therefore, by the distributivity of intersection

over union, we have

|IS \ A| = |Ac ∩ IS| = |Ac ∩ IS \ ĪS|+ |Ac ∩ ĪS|.

To show that limn→∞ |Ac∩IS|/n = 0, we start by showing that ĪS ⊆ A, which implies

that |Ac ∩ ĪS| = 0, and therefore that

|Ac ∩ IS| = |Ac ∩ (IS \ ĪS)| 6 |IS \ ĪS|.

From [28, Theorem 1], we have

lim
n→∞

|IS \ ĪS|/n = 0.

Therefore, showing that ĪS ⊆ A proves that limn→∞ |Ac ∩ IS|/n = 0. To show that

ĪS ⊆ A, it is enough to show that Z(Ui|U i−1
1 , Y n

1) 6 Z(Ui|U i−1
1 , Sn1) for all i ∈ [n], by

definitions of the sets ĪS and A. To show that Z(Ui|U i−1
1 , Y n

1) 6 Z(Ui|U i−1
1 , Sn1) for all

i ∈ [n], we use a sequence of reductions. First, we use the following theorem:

Theorem30. [28, Theorem 2] Let Y be the alphabet of Y and let Ỹ = {0, 1} × Y and

89

Ỹ = (X̃ ⊕X, Y) where (X, Y) is independent of X̃ . Let Ũn
1 ≡ X̃n

1Gn and define

W̄
(n)
Y,i (ũi−1

1 , ỹn1 |ũi) = PŨ i−1
1 ,Ỹ n1 |Ũi

(ũi−1
1 , ỹn1 |ũi).

Then Z(Ui|U i−1
1 , Y n

1) = ZB(W̄
(n)
Y,i).

Theorem 30 implies thatZ(Ui|U i−1
1 , Y n

1) 6 Z(Ui|U i−1
1 , Sn1) if and only ifZB(W̄

(n)
Y,i) 6

ZB(W̄
(n)
S,i) for all i ∈ [n]. To show the latter relation, we use the notion of stochastically

degraded channels. A discrete memory-less channels (DMC) channel W1 : {0, 1} →

Y1 is stochastically degraded with respect to a DMC channel W2 : {0, 1} → Y2, de-

noted as W1 � W2, if there exists a DMC W : Y2 → Y1 such that W1(y1|x) =∑
y2∈Y2 W2(y2|x)W (y1|y2). We use the following result on the Bhattacharyya parame-

ters of stochastically degraded channels:

Lemma31. [45, Lemma 21] (Degradation of W (n)
i) Let W : {0, 1} → Y1 W

′ : {0, 1} →

Y2 be two discrete memory-less channels (DMC) and let W � W ′. Then for all i, W (n)
i �

W ′(n)
i and ZB(W

(n)
i) > ZB(W ′(n)

i).

Lemma 31 reduces the proof of ZB(W̄
(n)
Y,i) 6 ZB(W̄

(n)
S,i) for all i ∈ [n] to showing

that PS̃|X̃ � PỸ |X̃ . The last degradation relation is proven in the following lemma, which

completes the proof that limn→∞ |IS \ A|/n = 0.

Lemma32.

PS̃|X̃ � PỸ |X̃ .

Proof: We need to show that there exists a DMC W : {0, 1}2 → {0, 1}2 such that

PS̃|X̃(s̃|x̃) =
∑

ỹ∈{0,1}2
PỸ |X̃(ỹ|x̃)W (s̃|ỹ). (7.8)

90

To define such channel W , we first claim that

PY |X,S(1|x, 0)PX|S(x|0) = (ε ∗ α)PX|S(x|1). (7.9)

Equation (7.9) follows directly from Equation (7.6) since

PY |X,S(1|0, 0)PX|S(0|0)

PX|S(0|1)
=
α(1− ε)
α(1−ε)
ε∗α

= ε ∗ α,

PY |X,S(1|1, 0)PX|S(1|0)

PX|S(1|1)
=

(1− α)ε
(1−α)ε
ε∗α

= ε ∗ α.

Next, we claim that PX,S(x,1)

PX,Y (x,1)
= β

(ε∗α)(1−β)+β
for any x ∈ {0, 1}, and therefore that

PX,S(x,1)

PX,Y (x,1)
∈ [0, 1]. This follows from

PX,S(x, 1)

PX,Y (x, 1)

(a)
=

PX|S(x|1)PS(1)

PY,X|S(1, x|0)PS(0) + PY,X|S(1, x|1)PS(1)

(b)
=PX|S(x|1)β/[PY |X,S(1|x, 0)PX|S(x|0)(1− β)

+ PY |X,S(1|x, 1)PX|S(x|1)β]

(c)
=

PX|S(x|1)β

(ε ∗ α)PX|S(x|1)(1− β) + PX|S(x|1)β

=
β

(ε ∗ α)(1− β) + β
,

where (a) follows from the law of total probability, (b) follows from the definition of

conditional probability, and (c) follows from Equations (7.2) and (7.9).

Denote the first coordinate of the random variable Ỹ by Ỹ1 ≡ X̃ ⊕ X , and the first

coordinate of ỹ by y1. The same notation is used also for S̃ and s̃. Since PX,S(x,1)

PX,Y (x,1)
is not a

91

function of x and is in [0, 1], we can define W as following:

W (s̃|ỹ) ,

1 if s̃1 = ỹ1 and (s, y) = (0, 0)

1− PX,S(x,1)

PX,Y (x,1)
if s̃1 = ỹ1 and (s, y) = (0, 1)

PX,S(x,1)

PX,Y (x,1)
if s̃1 = ỹ1 and (s, y) = (1, 1)

0 otherwise.

We show next that Eq. (7.8) holds for W defined above:

∑
ỹ∈{0,1}2

PỸ |X̃(ỹ|x̃)W (s̃|ỹ) =
∑

ỹ∈{0,1}2
PỸ1,Y |X̃(ỹ1, y|x̃)W (s̃|ỹ)

(d)
=

∑
ỹ∈{0,1}2

PX,Y |X̃(ỹ1 ⊕ x̃, y|x̃)W (s̃|ỹ)

(e)
=

∑
ỹ∈{0,1}2

PX,Y (ỹ1 ⊕ x̃, y)W (s̃|ỹ)

=
[
PX,Y (s̃1 ⊕ x̃, 0)W (s̃1, 0|s̃1, 0) + PX,Y (s̃1 ⊕ x̃, 1)W (s̃1, 0|s̃1, 1)

]
1(s = 0)

+ PX,Y (s̃1 ⊕ x̃, 1)W (s̃1, 1|s̃1, 1)1(s = 1)

=

[
PX,Y (s̃1 ⊕ x̃, 0) + PX,Y (s̃1 ⊕ x̃, 1)

(
1− PX,S(s̃1 ⊕ x̃, 1)

PX,Y (s̃1 ⊕ x̃, 1)

)]
· 1(s = 0)

+ PX,Y (s̃1 ⊕ x̃, 1)
PX,S(s̃1 ⊕ x̃, 1)

PX,Y (s̃1 ⊕ x̃, 1)
1(s = 1)

=[PX,Y (s̃1 ⊕ x̃, 0) + PX,Y (s̃1 ⊕ x̃, 1)

− PX,S(s̃1 ⊕ x̃, 1)]1(s = 0) + PX,S(s̃1 ⊕ x̃, 1)1(s = 1)

(f)
=[PX(s̃1 ⊕ x̃)− PX,S(s̃1 ⊕ x̃, 1)]1(s = 0) + PX,S(s̃1 ⊕ x̃, 1)1(s = 1)

(g)
=PX,S(s̃1 ⊕ x̃, 0)1(s = 0) + PX,S(s̃1 ⊕ x̃, 1)1(s = 1) = PX,S(s̃1 ⊕ x̃, s)
(h)
=PX,S|X̃(s̃1 ⊕ x̃, s|x̃)

=PS̃1,S|X̃(s̃1, s|x̃) = PS̃|X̃(s̃|x̃),

92

where (d) follows from the fact that Ỹ1 = X̃ ⊕ X , (e) follows from the independence of

(X, Y) and X̃ , (f) and (g) follow from the law of total probability, and (h) follows from

the independence of (X,S) and X̃ . So the channel W satisfies Equation (7.8) and thus the

lemma holds. �

We note that besides Lemma 32, the rest of the proof of Theorem 29 holds for any

binary-input Gelfand-Pinsker problem. Therefore, to apply Construction 6 to other binary-

input Gelfand-Pinsker problems, only an appropriate analogue of Lemma 32 needs to be

proven. This also extends to Wyner-Ziv problems which are dual to the Gelfand-Pinsker

problems.

7.4.2 The Rate of the Main Block

We need to show that limn→∞ k/n = (1 − β)[H(α ∗ ε) − H(α)]. By [28, Equations

(38) and (39)], we have limn→∞ |B|/n = H(X|S), and limn→∞ |Ac|/n = H(X|Y). So

we get

lim
n→∞

k/n = lim
n→∞

|A ∩B|/n > lim
n→∞

(|B| − |Ac|)/n

=H(X|S)−H(X|Y).

Heegard showed indirectly in [27] that H(X|S)−H(X|Y) = (1− β)[H(α ∗ ε)−H(α)].

This is enough to complete the proof of claim 1 in Theorem 29. However, we see value in

seeing this relation directly, and therefore we provide a direct proof of this relation below.

93

Proof: We need to show that H(X|S)−H(X|Y) = (1− β)[H(α ∗ ε)−H(α)]. Given

the distributions PS and PX|S , the conditional entropy H(X|S) is

H(X|S) =
∑

s∈{0,1}

PS(s)H(X|S = s)

=PS(0)H(X|S = 0) + PS(1)H(X|S = 1)

=(1− β)H(ε) + βH

(
ε(1− α)

ε ∗ α

)

To compute the conditional entropy H(X|Y), we first compute the probability distri-

bution of the memory output Y as follows:

PY (0) =
∑

x∈{0,1}

PY |XS(0|x, 0)PX|S(x|0)PS(0)

=(1− β)((1− α)(1− ε) + αε)

=(1− β)(α ∗ (1− ε)),

PY (1) =1− PY (0)

=(1− β)(α ∗ ε) + β.

94

The conditional distribution PX|Y is given by

PX|Y (1|0) =
∑

s∈{0,1}

PXS|Y (1, s|0)

=
∑

s∈{0,1}

PY |XS(0|1, s)PXS(1, s)

PY (0)

=
∑

s∈{0,1}

PY |XS(0|1, s)PX|S(1|s)PS(s)

PY (0)

=
αε

α ∗ (1− ε) ,

PX|Y (1|1) =
∑

s∈{0,1}

PXS|Y (1, s|1)

=
∑

s∈{0,1}

PY |XS(1|1, s)PXS(1, s)

PY (1)

=
∑

s∈{0,1}

PY |XS(1|1, s)PX|S(1|s)PS(s)

PY (1)

=
(1− α)ε(1− β) + ε(1−α)

ε∗α β

(1− β)(α ∗ ε) + β

=
ε(1− α)

ε ∗ α .

Therefore we have

H(X|Y) =
∑

y∈{0,1}

PY (y)H(X|Y = y)

=(1− β)(α ∗ (1− ε))H
(

αε

α ∗ (1− ε)

)
+ (β + (1− β)(α ∗ ε))H

(
ε(1− α)

ε ∗ α

)
,

95

and then

H(X|S)−H(X|Y)

=(1− β)

[
H(ε)− (α ∗ (1− ε))H

(
αε

α ∗ (1− ε)

)
− (α ∗ ε)H

(
ε(1− α)

ε ∗ α

)]
=(1− β)

[
H(ε) + αε log2

αε

α ∗ (1− ε) + (1− α)(1− ε) log2

(1− α)(1− ε)
α ∗ (1− ε)

+ α(1− ε) log2

α(1− ε)
α ∗ ε + ε(1− α) log2

ε(1− α)

α ∗ ε

]
=(1− β)[H(α ∗ ε) +H(ε) + αε log2(αε) + (1− α)(1− ε) log2(1− α)(1− ε)

+ α(1− ε) log2 α(1− ε) + ε(1− α) log2 ε(1− α)]

=(1− β) [H(α ∗ ε) +H(ε)−H(α)−H(ε)]

=(1− β) [H(α ∗ ε)−H(α)] .

�

7.5 Probability of Decoding Error

In this section we show that the probability of decoding error is 2−O(n1/2−δ′) for any

δ′ > δ > 0, and therefore this probability can be made arbitrarily small. This will complete

the proof of Theorem 29.

Let Ei be the set of pairs of vectors (un1 , y
n
1) such that ûn1 is a result of decoding yn1

and we have ûi−1
1 = ui−1

1 and ûi 6= ui. The block decoding error event is given by

E ≡ ∪i∈A∩BEi. Under decoding given in (2) with an arbitrary tie-breaking rule, every

(un1 , y
n
1) ∈ Ei satisfies

PUi|U i−1
1 ,Y n1

(ui|ui−1
1 , yn1) 6 PUi|U i−1

1 ,Y n1
(ui ⊕ 1|ui−1

1 , yn1). (7.10)

Consider the block decoding error probability Pe(λIcS \ (A ∩ B) for a set λIcS\(A∩B).

96

For a state sequence sn1 and the encoding rule (1), each vector un1 appears with probability

2−k

(∏
i∈IS

PUi|U i1−1,Sn1
(ui|ui−1

1 , sn1)

)
· 1
[
∩i∈IcS\(A∩B)

{
λi(u

i−1
1) = ui

}]
.

By the definition of conditional probability and the law of total probability, the probability

of error Pe(λIcS\(A∩B)) is given by

Pe(λIcS\(A∩B)) =
∑

un1 ,s
n
1 ,y

n
1

2−k

(∏
i∈IS

PUi|U i1−1,Sn1
(ui|ui−1

1 , sn1)

)

· 1
[
∩i∈IcS\(A∩B)

{
λi(u

i−1
1) = ui

}]
PSn1 (sn1) · PY n1 |Un1 ,Sn1 (yn1 |un1 , sn1)1[(un1 , y

n
1) ∈ E].

Now assume that the Boolean functions are drawn from the distribution

P
(
∩i∈IcS\(A∩B)

{
λi(u

i−1
1) = ui

})
=

∏
i∈IcS\(A∩B)

PUi|U i−1
1

(1|ui−1
1). (7.11)

We will now calculate the expectation of the decoding error probability over the random

set Boolean function. We will show that this expectation is small, and this will imply

that there exist at least one set of functions with small probability of decoding error. The

expectation is obtained as

EλIc
S
\(A∩B)

[Pe(λIcS\(A∩B))] =
∑

un1 ,s
n
1 ,y

n
1

1[(un1 , y
n
1) ∈ E]PSn1 (sn1)2−k(∏

i∈IS

PUi|U i−1
1 ,Sn1

(ui|ui−1
1 , sn1)

)

·

 ∏
i∈IcS\(A∩B)

PUi|U i−1
1

(ui|ui−1
1)

 · PY n1 |Un1 ,Sn1 (yn1 |un1 , sn1).

97

Define the joint distribution

QSn1 ,U
n
1 ,Y

n
1
≡2−k

(∏
i∈IS

PUi|U i−1
1 ,Sn1

(ui|ui−1
1 , sn1)

)
·

 ∏
i∈IcS\(A∩B)

PUi|U i−1
1

(ui|ui−1
1)

PSn1 (sn1)

· PY n1 |Un1 ,Sn1 (yn1 |un1 , sn1).

Then we have

EΛIc
S
\(A∩B [Pe(ΛIcS\(A∩B)] = QUn1 ,Y

n
1

(E) 6‖QUn1 ,Y
n
1
− PUn1 ,Y n1 ‖+ PUn1 ,Y n1 (E)

6‖QUn1 ,Y
n
1
− PUn1 ,Y n1 ‖+

∑
i∈A

PUn1 ,Y n1 (Ei),

where the first inequality follows from the triangular inequality. Each term in the summa-

tion is bounded by

PUn1 ,Y n1 (Ei) 6
∑
ui1,y

n
1

P (ui−1
1 , yn1)P (ui|ui−1

1 , yn1)1[P (ui|ui−1
1 , yn1) 6 P (ui ⊕ 1|ui−1

1 , yn1)]

6
∑
ui1,y

n
1

P (ui−1
1 , yn1)P (ui|ui−1

1 , yn1)

√
P (ui ⊕ 1|ui−1

1 , yn1)

P (ui|ui−1
1 , yn1)

= Z(Ui|U i−1
1 , Y n

1)

6 2−n
1/2−δ

,

where the last inequality follows from the fact that i is in the set A and therefore also in

the set A.

To prove that EλIc
S
\(A∩B [Pe(λIcS\(A∩B)] 6 2−n

1/2−δ , we are left with showing that

98

‖PUn1 ,Y n1 −QUn1 ,Y
n
1
‖ 6 2−n

1/2−δ . Notice that

2‖PUn1 ,Y n1 −QUn1 ,Y
n
1
‖ =

∑
un1 ,y

n
1

|P (un1 , y
n
1)−Q(un1 , y

n
1)|

=
∑
un1 ,y

n
1

∣∣∣∣∣∣
∑
sn1

[P (sn1 , u
n
1 , y

n
1)−Q(sn1 , u

n
1 , y

n
1)]

∣∣∣∣∣∣
6

∑
sn1 ,u

n
1 ,y

n
1

|P (sn1 , u
n
1 , y

n
1)−Q(sn1 , u

n
1 , y

n
1)|

=2‖PSn1 ,Un1 ,Y n1 −QSn1 ,U
n
1 ,Y

n
1
‖,

where the inequality follows from the triangular inequality. The following lemma com-

pletes the proof of Claim 2.

Lemma33.

‖PSn1 ,Un1 ,Y n1 −QSn1 ,U
n
1 ,Y

n
1
‖ 6 2−n

1/2−δ
. (7.12)

99

Proof: Let D(·‖·) denote the relative entropy. Then

2‖PSn1 ,Un1 ,Y n1 −QSn1 ,U
n
1 ,Y

n
1
‖

=
∑

sn1 ,u
n
1 ,y

n
1

|P (sn1 , u
n
1 , y

n
1)−Q(sn1 , u

n
1 , y

n
1)|

(a)
=

∑
sn1 ,u

n
1 ,y

n
1

|P (un1 |sn1)−Q(un1 |sn1)|P (sn1)P (yn1 |un1 , sn1)

(b)
=

∑
sn1 ,u

n
1 ,y

n
1

∣∣∣∣∣
n∏
i=1

P (ui|ui−1
1 , sn1)−

n∏
i=1

Q(ui|ui−1
1 , sn1)

∣∣∣∣∣P (sn1)P (yn1 |un1 , sn1)

(c)
=

∑
sn1 ,u

n
1 ,y

n
1

∣∣∣∣∣∑
i

[P (ui|ui−1
1 , sn1)−Q(ui|ui−1

1 , sn1)]

∣∣∣∣∣P (sn1)

·
i−1∏
j=1

P (uj|uj−1
1 , sn1)

n∏
j=i+1

Q(uj|uj−1
1 , sn1)P (yn1 |un1 , sn1)

(d)
6
∑
i∈IcS

∑
sn1 ,u

n
1 ,y

n
1

∣∣P (ui|ui−1
1 , sn1)−Q(ui|ui−1

1 , sn1)
∣∣P (sn1)

·
i−1∏
j=1

P (uj|uj−1
1 , sn1)

n∏
j=i+1

Q(uj|uj−1
1 , sn1)P (yn1 |un1 , sn1)

=
∑
i∈IcS

∑
sn1 ,u

i
1

∣∣[P (ui|ui−1
1 , sn1)−Q(ui|ui−1

1 , sn1)]
∣∣ i−1∏
j=1

P (uj|uj−1
1 , sn1)P (sn1)

(e)
=
∑
i∈IcS

∑
sn1 ,u

i−1
1

P (ui−1
1 , sn1)2‖PUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1
−QUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1
‖

(f)
6
∑
i∈IcS

∑
sn1 ,u

i−1
1

P (ui−1
1 , sn1)

√
2 ln 2

√
D(PUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1
‖QUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1

)

(g)
6
∑
i∈IcS

√
(2 ln 2)

∑
sn1 ,u

i−1
1

P (ui−1
1 , sn1)D(PUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1
‖QUi|U i−1

1 =ui−1
1 ,Si−1

1 =si−1
1

)

=
∑
i∈IcS

√
(2 ln 2)D(PUi‖QUi|U i−1

1 , Si−1
1)

(h)
=
∑
i∈A∩B

√
(2 ln 2)[1−H(Ui|U i−1

1 , Sn1)]

+
∑

i∈IcS\(A∩B)

√
(2 ln 2)[H(Ui|U i−1

1)−H(Ui|U i−1
1 , Sn1)], (7.13)

100

where

(a) follows from the fact that P (sn1) = Q(sn1) and P (yn1 |un1 , sn1) = Q(yn1 |un1 , sn1),

(b) follows from the chain rule,

(c) follows from the telescoping expansion

Bn
1 − An1 =

n∑
i=1

Ai−1
1 Bn

i −
n∑
i=1

Ai1B
n
i+1

=
n∑
i=1

(Bi − Ai)Ai−1
1 Bn

i+1,

where Akj and Bk
j denote the products

∏k
i=j Ai and

∏k
i=j Bi, respectively,

(d) follows from the triangular inequality and the fact that P (ui|ui1 − 1, sn1) = Q(ui|ui1 −

1, sn1) for all i ∈ IS ,

(e) follows from the chain rule again,

(f) follows from Pinsker’s inequality (see, e.g., [15, Lemma 11.6.1]),

(g) follows from Jensen’s inequality and

(h) follows from the facts that Q(ui|ui−1
1) = 1/2 for i ∈ A ∩ B and Q(ui|ui−1

1) =

P (ui|ui−1
1) for i ∈ IcS \ (A ∩B).

Now if i ∈ A ∩B, we have

1−H(Ui|U i−1
1 , Sn1) 6 1− [Z(Ui|U i−1

1 , Sn1)]2

6 2−2n1/2−δ
, (7.14)

101

where the first inequality follows from Proposition 28 and the second inequality follows

from the fact the i is in B. In addition, if i ∈ ∩IcS \ (A ∩B), it follows that

H(Ui|U i−1
1)−H(Ui|U i−1

1 , Sn1) 6Z(Ui|U i−1
1)− (Z(Ui|U i−1

1 , Sn1))2

6min
{
Z(Ui|U i−1

1), 1− (Z(Ui|U i−1
1 , Sn1))2

}
62 · 2−n1/2−δ

, (7.15)

where the last inequality follows from the fact that i is in IcS . This completes the proof of

the lemma. �

The proof of claim 3 follows by using Lemma 33 and an argument similar to the proofs

of Theorem 1 and Lemma 2 in [10].

7.6 Discussion

We presented a capacity-achieving coding scheme for the write-once memory with

errors in non-stuck cells. The coding scheme can used directly for a memory in which the

stuck cells are caused by manufacturing faults of memory wear. For a theoretical model

of WOM, the i.i.d. assumption on the stuck cell does not hold, since the memory state is

determined by previous writing rounds. This issue can be solved by sharing randomness

between the encoder and decoder, as in modifications M3 and M4 in [10, Section IV].

102

8. POLAR CHANNEL CODES IN MULTI-LEVEL FLASH MEMORIES

The urgency for improving the reliability of flash memories calls for continuously

searching for optimal signal detection algorithms as well as optimal channel coding schemes.

This chapter focuses on the latter, and studies the practical approaches to polar coding for

multi-level flash memories.

Polar codes were first proposed by Arıkan [2] is the first class of capacity-achieving

codes with explicit construction. Their universality [26], effective code construction [55]

[69] and decoding algorithms [29] [68], as well as implementations [46] [56] make them

a potential candidate for optimal channel coding schemes. However, the practical perfor-

mance of polar codes in flash memories is still unknown, and applying polar codes to flash

channels presents many important challenges. For instance, polar codes require the code

length to be an integer power of two which does not fit in flash pages of different sizes.

To conduct rigorous experimental analysis, the decoding performance of polar codes need

to be compared with that of other ECCs on the same random input and output data sets

from flash characterization platforms. Such testing data are not assumed to be the code-

words of any ECC. Moreover, the construction of polar codes uses the channel statistics,

and one concern is that new polar codes need to be frequently constructed for optimized

performance when flash memory endures and the channel gradually degrades, which is

prohibitively expensive in practice. Motivated by these challenges, we report part of the

efforts towards realizing polar channel decoders for flash memories.

To make polar codewords fit different page sizes of flash memories, length-adapted

codes are needed. Punctured polar codes have been studied recently [20] [65]. Puncturing

removes the selected codeword symbols before transmission. The location of the removed

symbols are known both to the encoder and the decoder. After the codeword is received,

103

the punctured locations are filled with erasures. Puncturing has low implementation com-

plexity, but degrades decoding performance due to the additional erasures introduced. This

work explores an alternative approach for length-adapted polar codes through shortening.

Shortening has been widely used for existing codes such as BCH codes and low density

parity check (LDPC) codes in flash memories. We propose the schemes for shortening

both non-systematic [2] and systematic polar codes [4]. Shortening obtains a shorter code-

word by assigning selected codeword symbols of the longer codeword to predetermined

values made known both to the encoder and the decoder. The selected symbols are re-

moved before transmission and inserted back before decoding. Since the symbols inserted

are always correct, shortening does not introduce additional noise.

Rate-compatible polar codes can be implemented by adjusting the size of frozen sets

without constructions of new codes [20] thanks to the property that reliability orders of

the subchannels of polar codes is preserved for degrading and upgrading channels [45]

[52]. We show that this property guarantees the feasibility of a practical adaptive polar

decoding framework for flash channels. The decoder adaptively switches to use lower

code rates as flash memory endures, and the code of each rate is used for a continuous

range of channel parameters (it is not affordable in practice to immediately switch the rate

of a code once channel condition slightly changes). We prove that repeatedly polar code

construction is not necessary for such adaptive decoders. With the codes constructed for

practical flash channels, we observed the order preservation of subchannel reliability, and

our extensive experiments further demonstrate that the decoding performance by using one

code closely approaches the optimized performance by constructing codes for different

channel parameters.

104

8.1 The Models of Flash Memories

This section discusses the models of flash memories. We focus on the channels con-

sisted of MLCs, and model the noise for such channels.

8.1.1 Reading MLC

Data are read either through hard or soft sensing. In each approach, MSB and LSB

are read independently. Hard sensing returns (possibly noisy) the value of the bit being

read, while soft sensing outputs the log-likelihood ratio (LLR) of the bit. Specifically,

hard sensing uses one reference threshold voltage between two adjacent distributions as

shown in Figure 1.3. Let the reference threshold voltages be Vth,1, Vth,2, and Vth,3. To

read LSB, the cell threshold voltage Vth is compared with Vth,2, returning 0 if Vth > Vth,2,

and 1 otherwise. To read MSB utilizes both Vth,1 and Vth,3: when Vth,1 < Vth < Vth,3,

output 0, otherwise output 1. Soft sensing use k reference threshold voltages between two

adjacent distributions [73]. Figure 8.1 shows an example for k = 3. For i ∈ {1, 2, 3},

11 01 00 10

N
um

be
r o

f C
el

ls

Vth
Vth,1,1 Vth,1,2 Vth,3,2Vth,2,1Vth,1,3 Vth,3,3Vth,2,2 Vth,2,3 Vth,3,1

Figure 8.1: An example of soft sensing with k = 3.

j ∈ {1, 2, · · · , k}, let Vth,i,j be the j-th reference threshold voltage of the k reference

threshold voltages between level i and i + 1. The threshold voltage range is thus divided

into 3k+1 bins. During reading, the bin that Vth falls into is determined after sensing with

105

the reference threshold voltages, according to which the LLRs are computed. Assume Vth

belongs to the bin of the interval [Vth,i, Vth,i+1], the LLRs of the LSB and the MSB are

given below

Llsb , ln
P(V ∈ [Vth,i, Vth,i+1) | LSB = 1)

P(V ∈ [Vth,i, Vth,i+1) | LSB = 0)

= ln

∑
l∈{3,4} P(V ∈ [Vth,i, Vth,i+1) | l)∑
l∈{1,2} P(V ∈ [Vth,i, Vth,i+1) | l)

= ln
Q(

Vth,i−µ3
σ3

)−Q(
Vth,i+1−µ3

σ3
) +Q(

Vth,i−µ4
σ4

)−Q(
Vth,i+1−µ4

σ4
)

Q(
Vth,i−µ1

σ1
)−Q(

Vth,i+1−µ1
σ1

) +Q(
Vth,i−µ2

σ2
)−Q(

Vth,i+1−µ2
σ2

)

Lmsb , ln
P(V ∈ [Vth,i, Vth,i+1) | MSB = 1)

P(V ∈ [Vth,i, Vth,i+1) | MSB = 0)

= ln

∑
l∈{1,4} P(V ∈ [Vth,i, Vth,i+1) | l)∑
l∈{2,3} P(V ∈ [Vth,i, Vth,i+1) | l)

= ln
Q(

Vth,i−µ1
σ1

)−Q(
Vth,i+1−µ1

σ1
) +Q(

Vth,i−µ4
σ4

)−Q(
Vth,i+1−µ4

σ4
)

Q(
Vth,i−µ2

σ2
)−Q(

Vth,i+1−µ2
σ2

) +Q(
Vth,i−µ3

σ3
)−Q(

Vth,i+1−µ3
σ3

)

where the function Q(·) is the Q-function of a Gaussian distribution. The sign of the LLR

represents represents determines the value of the bit that is more likely to be, and the

magnitude measures the level of confidence.

8.1.2 A Cascaded Noise Channel Model

We model the noise introduced during writing and reading MLCs with a cascaded

noise channel. A cascaded channel consists of more than one subchannels where two

adjacent subchannels are connected such that the output of the first subchannel are the

input of the second subchannel. Cascaded noise channel is studied for LDPC codes where

the channel is motivated by the errors introduced during writing and reading for magnetic

recording channels [33]. In this work, the cascaded noise channel for each bit in a MLC

has two binary symmetric channels (BSCs) with cross-over probabilities pr and pw shown

106

in Figure 8.2. We refer the first BSC as write channel and the second BSC as read channel

which we describe below.

0

1

0

1

prpw

pw pr

Figure 8.2: The cascaded noise channel of MLCs.

The write channel is motivated by the errors introduced during programming such as

misprogram errors and stuck cells. During two step programming, the value of LSB is read

from cell when MSB is programmed. The LSB can be misread when the cell threshold

voltage after first step falls into the unreliable region where the distribution of the erased

state and the intermediate state overlaps. Given the incorrect value of LSB, and the value

of the MSB to be programmed, the cell will be misprogrammed to a undesired state. Stuck

cells mostly happen when the program-erase cycles approach the endurance of the cells. A

stuck cell stay at some level and can not be changed during the programming. Therefore,

when the MSB or the LSB to be written to a stuck cell does not equal to the bits represented

by the stuck level, error will occur. Since the error patterns in write channel for MSB and

LSB include 0 → 1 and 1 → 0, it is a reasonable approximation to use BSCs as the

first-order approximation to the write channel.

The read channel is implied by the cell level distributions of MLCs. When the thresh-

old voltage of a cell is at the region where two distributions overlaps, the cell will be mis-

read with high probability. The cross-over probabilities of the read channel are computed

according to different sensing methods using the Q functions of the threshold distributions

and the reference threshold voltages. Due to space limit, we skip the computations here.

107

In practice, the standard deviation of each threshold voltage distribution is close to each

other. For the rest of the chapter, we assume all the threshold voltage distributions share

the same standard deviation σ, and the read channel is a binary symmetric channel.

Corollary34. Let the frozen sets of the polar codes achieving the capacities of the write

channel Ww, the read channel Wr and the cascaded channel Wc be Fw, Fr and Fc, respec-

tively. Then Fw ⊆ Fc and Fr ⊆ Fc.

Proof: The transition probability of the cascaded channel pc , (1−pw)pr+pw(1−pr) =

pr+pw−2pwpr. Since pw, pr 6 1
2
, pw 6 pc and pr 6 pc, we haveWc � Ww, andWc � Wr.

According to Lemma ??, Fw ⊆ Fc and Fr ⊆ Fc. �

The corollary states that the polar code constructed using the channel statistics of the

cascaded channel corrects the errors introduced by the write channel and the read channel.

8.2 Polar Codes for Flash Memories

This section proposes the schemes for shortening non-systematic and systematic polar

codes for flash memories with different page sizes. The performance of shortened po-

lar codes is further evaluated using random input and output data obtained from a flash

characterization platform.

8.2.1 Shortened Non-systematic Polar Codes

Polar codes require the code length be 2m where m is an integer. Without length-

adaptation a codeword does not directly fit in flash memories of typical page sizes. For

instance, a common page size for multi-level flash memories is 71488 bits. A page is

typically split into 4 ECC codewords with length 17872 bits, or 8 codewords with length

8936 bits. None of these lengths is an integer power of two. We study the approaches to

shortened polar codes defined below:

Definition35. An (N,K,K ′)-shortened polar code (SPC) is a polar code of lengthN−K ′

108

obtained from an (N,K)-polar code with block length N = 2m and information bit length

K by assigning K ′ predetermined input symbols to known values before encoding, and

removing K ′ predetermined codeword symbols after encoding.

Let us define the notations used later in this section. Consider an (N,K) binary polar

code with N = 2m. Let the non-frozen set of the code be A , {a1, a2, · · · , aK} ⊆

{1, 2, · · · , N}, and let the frozen set Ā , {b1, b2, · · · , bN−K} be the complement. We also

assume that a1 < a2 < · · · < aK and b1 < b2 < · · · < bN−K . Denote the input bits to the

encoder by u , (u1, u2, · · · , uN) = (uA,uĀ) to represent u, where uA , (ui : i ∈ A)

contains the message bits and uĀ , (ui : i ∈ Ā) contains the frozen bits. The codeword

x , (x1, x2, · · · , xN) computed by encoding is written to cells. The reading process

outputs a (possibly noisy) codeword y , (y1, y2, · · · , yN), and decoder computes the

estimated codeword x̂ , (x̂1, x̂2, · · · , x̂N).

We first study the shortening of non-systematic polar codes (NSPCs) whose encoding

of an (N,K)-NSPC follows the linear transformation x , uG. Our scheme uses the

following property of the generator matrix G:

Remark36. The generator matrix G is a lower triangular matrix with ones on the diago-

nal.

Lemma37. (uN−K′+1, uN−K′+2, · · · , uN) are all 0s iff (xN−K′+1, xN−K′+2, · · · , xN) are

all 0s.

Proof: According to Remark 36, the matrix G is invertible. Therefore, there is a one-to-

one mapping between the (uN−K′+1, · · · , uN) and (xN−K′+1, · · · , xN), and when (uN−K′+1,

· · · , uN) are all 0s, (xN−K′+1, · · · , xN) will be 0s. �

The above lemma suggests we obtain an (N,K,K ′)-SPC from an (N,K)-NSPC by

setting the last K ′ input bits to 0s, then removing the last K ′ codeword symbols after

109

encoding. Among the K ′ input bits, there are K ′′ non-frozen bits and K ′−K ′′ frozen bits

where K ′′ = |{i|i ∈ A and N −K ′ + 1 6 i 6 N}|.

Theorem38. An (N,K,K ′)-SPC obtained through the encoding above has rate K−K′′
N−K′ ∈

[K−K
′

N−K′ ,
K
N

].

The encoding and the decoding algorithms are given below.

Encoding

1. For j ∈ {aN−K−K′+K′′+1, aN−K−K′+K′′+2, · · · , aN−K}, let uj = 0. For j ∈ Ā −

{aN−K−K′+K′′+1, · · · , aN−K}, let uj be any predetermined frozen bit (e.g. 0), com-

pleting the frozen bits uĀ.

2. For j ∈ {bK−K′′+1, bK−K′′+2, · · · , bK}, let uj = 0. Store K − K ′′ message bits in

(ub1 , ub2 , · · · , ubK−K′′), completing the message bits uA.

3. Compute x = uG, and transmit the shortened codeword (x1, x2, · · · , xN−K′).

Decoding

1. After receiving a noisy shortened codeword (y1, y2, · · · , yN−K′), let the codeword

y = (y1, y2, · · · , yN−K′ , 0, · · · , 0) with K ′ 0s in the end.

2. Correct y. The decoder treats the added bits (yN−K′+1, yN−K′+2, · · · , yN) as if they

went through a perfect channel and have unit probability of being 0.

8.2.2 Shortened Systematic Polar Codes

In practice, flash memories prefer to use systematic codes due to its lower latency for

reading information bits. Systematic polar codes (SYPCs) have been proposed recently by

Arıkan [4]. In the following, we briefly review the construction, and propose the shorten-

ing scheme for SYPCs.

110

Definition39. [4] Let the sets B ⊆ {1, 2, · · · , N}, and B̄ be the complement. Therefore,

u = (xB,xB̄). Let GAB be a submatrix of G such that for each element Gi,j , the indices

i ∈ A, j ∈ B. For any given non-systematic polar encoder with parameter (A,uĀ), a

systematic polar encoder (B,uĀ) exists if there is a one-to-one mapping from uA to xB

following

xB =uAGAB + uĀGĀB,

xB̄ =uAGAB̄ + uĀGĀB̄.

(8.1)

Lemma40. [4] A systematic polar encoder defined in Eq. (8.1) exists if B = A.

Proof: If B = A, the matrix GAB = GAA is a lower-triangular invertible matrix with

ones on the diagonal. Therefore, an one-to-one mapping between uA and xA always

exists, and uA = (xA + uĀGĀA)G−1
AA. �

To shorten SYPCs, we need the following theorem:

Theorem41. Let B = A, and let uĀ be all 0s. There is a one-to-one mapping between

(uaK−K′+1
, uaK−K′+2

, · · · , uaK) and (xaK−K′+1
, xaK−K′+2

, · · · , xaK).

Proof: The matrix GAA is a K ×K lower-triangular matrix with ones on the diagonal.

Let GCC be a submatrix of GAA where C = {aK−K′+1, · · · , aK}. We have

(xaK−K′+1
, · · · , xaK) = (uaK−K′+1

, · · · , uaK) ·GCC.

Since GCC is a K ′ × K ′ lower-triangular matrix with ones on the diagonal, it is also

invertible. This completes the proof. �

The theorem states that it is feasible to obtain an (N,K,K ′)-SPC from an (N,K)-

SYPC by letting frozen bits be all 0s, and setting the last K ′ bits of uA to predetermined

values before encoding. The last K ′ bits of xA are removed after encoding.

111

Theorem42. An (N,K,K ′)-SYPC obtained through the encoding above has rate K−K′
N−K′ .

An instance of the encoding and the decoding algorithms for shortened SYPCs is given

below, where we assign (uaK−K′+1
, · · · , uaK) to all 0s.

Encoding

1. Let uĀ be all 0s.

2. Store K − K ′ message bits in (ua1 , ua2 , · · · , uaK−K′), and let (uaK−K′+1
, · · · , uaK)

be all 0s.

3. Compute x = (xA,xĀ) using systematic encoding specified in Eq. (8.1), and trans-

mit the shortened codeword ((xa1 , xa2 , · · · , xaK−K′),xĀ).

Decoding

1. After receiving a noisy shortened polar codeword ((ya1 , ya2 , · · · , yaK−K′),yĀ), com-

pute yA = (ya1 , ya2 , · · · , yaK−K′ , 0, · · · , 0) with K ′ 0s appended at the end. We

obtain the unshortened codeword y = (yA,yĀ).

2. Correct y with a polar decoder with frozen bits uĀ (all 0s), treating the bits (yaK−K′+1
, · · · , yaK)

as if they went through a perfect channel and have unit probability of being 0.

8.2.3 Polar Codes with Bit-reversal Permutation

For the polar codes proposed in [2], codeword symbols are permuted by multiplying

the generator matrix G with the bit-reversal permutation matrix BN . To adapt the shorten-

ing methods for the permuted codes simply requires modifying the locations of the sym-

bols that are removed after encoding (and are inserted back before decoding): For permit-

ted non-systematic polar codes, the K ′ indices of the bits that are removed are the images

112

of the indices (N −K ′+ 1, N −K ′+ 2, · · · , N) under bit-reversal permutations; for per-

muted SYPCs, the K ′ indices are the images of the indices {aK−K′+1, aK−K′+2, · · · , aK}

under bit-reversal permutations.

8.2.4 Performance Evaluation

We evaluated the decoding performance of shortened polar codes with the data from

the characterizations of MLC flash chips using 2Y -nm technology from some vendor. The

characterization process sequentially program each page in a block with random input bits,

reads the stored (and possibly noisy) data, and erase the block for the next write. Such an

iteration is referred as a program/erase cycle (PEC). Raw bit error rates increase as PEC

grows, and the endurance of a cell is measured by the maximum PECs the cell can carry to

reliably store data. Starting with a new chip, we continue program-erase cycling the chip,

recording the raw input and output data at multiple PECs during the lifetime of the block.

As data written to the block are pseudo-random and are not ECC codewords, coset coding

technique is needed to view such random sequences as the codewords of the ECC being

evaluated. Fortunately, this is always feasible for polar codes as stated below:

Lemma43. Given an (N,K)-polar code with frozen set Ā, ∀x ∈ {0, 1}N , there is a

unique uA ∈ {0, 1}K and a unique uĀ ∈ {0, 1}N−K such that x = (uA,uĀ) ·G.

Corollary44. Given an (N,K,K ′)-SPC obtained from an (N,K)-NSPC with frozen

set Ā, let K ′′ = |{i|i ∈ A and N − K ′ + 1 6 i 6 N}|, ∀x′ ∈ {0, 1}N−K′ , there is a

unique u′A ∈ {0, 1}K−K
′ and a unique u′Ā ∈ {0, 1}N−K−K

′+K′′ , such that (x′, 0, · · · , 0︸ ︷︷ ︸
K′

) =

((u′A, 0, · · · , 0︸ ︷︷ ︸
K′′

)A, (u
′
Ā, 0, · · · , 0︸ ︷︷ ︸

K′−K′′

)Ā) ·G.

Figure 8.3 shows the average uncorrectable bit error rates (UBERs) of shortened po-

lar codes at different PECs with both hard sensing (Figure 8.3(a)) and soft sensing (Fig-

ure 8.3(b)). We directly use the list decoding algorithm by Tal and Vardy [68] specified in

113

-8

-7

-6

-5

-4

-3

 0 2000 4000 6000 8000 10000

E
xp

o
n

e
n

t
o

f
U

n
co

rr
e

ct
a

b
le

 B
it

E
rr

o
r

R
a

te

P/E Cycle

Polar-0.95
Polar-0.94
Polar-0.93

LDPC-0.95
LDPC-0.94
LDPC-0.93

(a) Hard Decoding

-8

-7

-6

-5

-4

-3

 0 2000 4000 6000 8000 10000

E
xp

o
n

e
n

t
o

f
U

n
co

rr
e

ct
a

b
le

 B
it

E
rr

o
r

R
a

te
P/E Cycle

Polar-0.95
Polar-0.94
Polar-0.93

LDPC-0.95
LDPC-0.94
LDPC-0.94

(b) Soft Decoding

Figure 8.3: The performance of polar codes and LDPC codes at different PECs.

probability domain with list size 32. The input noisy codeword bits are determined by the

signs of the LLRs, and the transition probability p of the BSC that the decoder assumes a

codeword bit goes through is approximated from the LLR L of the bit by:

p =
e−|L|

1 + e−|L|
.

We compares with the equivalent LDPC codes using min-sum decoding [50]. Three

rates (0.93, 0.94 and 0.95) of interest to flash memories are used. We assume each page

stores 8 length-7943 polar codewords shortened from a length-213 polar code. The code

is constructed using the degrading merge algorithm [69] for the BSC with the cross-over

probability measured at the current PEC. The PECs when decoding failures first occur

are of special interest to flash memories. The results suggest both codes have similar

performance in flash memories, and soft sensing significantly improves the endurance of

114

MLCs (the vendor-specified endurance is 3 × 103 PECs). With hard sensing polar codes

with rate 0.93 have 103-PEC gain comparing to LDPC codes, while LDPC codes have

103-PEC gain with soft sensing at rate 0.95.

We further evaluate the code performance with larger block lengths and on errors

which are more symmetric. Figure 8.4a compares the soft and hard decoding performance

between polar codes of code lengths 213 and 214. Although the longer codes give lower

UBERs, the codes at the same rates fail to decode at the same PECs. The errors pro-

duced by reading with the current realistic soft sensing are not fully symmetric (to achieve

low implementation complexity), which hurts the performance of linear block codes. Fig-

ure 8.4b compares the soft decoding performance of polar codes under the current realistic

soft sensing with that of using a genie soft sensing. The latter reads at all possible sens-

ing reference threshold voltage settings and performs brute force search for the reference

threshold voltages which maximize the degree of symmetry of the errors. The results

show that lower BER can be achieved by making errors more symmetric. The rate-0.94

code using the genie DSP has 1000-PEC gain over the code using the current soft sensing

method.

Note that the performance of polar codes shown in this section is optimized at each

PEC—new polar codes are constructed with newly measured channel parameters for dif-

ferent PECs. However, switching codes at each different PEC is prohibitively expensive

in practice. In the next section, we show that reconstructions of new codes are not needed

to achieve such optimized performance.

8.3 Adaptive Decoding for Flash Memories

The channels of flash memories gradually degrade as PEC grows. Specifically, let the

flash channel W(α) be parameterized by PEC α ∈ N, W(α) � W(α′) for any α, α′ such

that α 6 α′. To maintain error rates at the same low level, adaptive decoder is used in

115

-7

-6

-5

-4

-3

 0 2000 4000 6000 8000 10000

E
xp

o
n

e
n

t
o

f
U

n
co

rr
e

ct
a

b
le

 B
it

E
rr

o
r

R
a

te

P/E Cycle

Soft-2k
Hard-2k
Soft-1k

Hard-1k

(a)

-4

-3

-2

-1

0

 0 2000 4000 6000 8000 10000

E
xp

o
n

e
n

t
o

f
B

lo
ck

 E
rr

o
r

R
a

te
P/E Cycle

Genie-0.94
Genie-0.95
Genie-0.93

Asymmetric-0.94
Asymmetric-0.95
Asymmetric-0.93

(b)

Figure 8.4: The performance of polar codes with (a) different block lengths as well as (b)
realistic and genie DSPs.

practice where lower code rates are used when the channel becomes more noisy.

Definition45. Let R1 > R2 > · · · > Rk−1 be k − 1 code rates of some channel code C,

and let α1 < α2 < · · · < αk be k selected PECs. For i ∈ {1, 2, · · · , k − 1}, an adaptive

decoder of C is the decoder which

1. changes the rate of C to Ri at αi.

2. uses rate Ri consistently for any α ∈ [αi, αi+1).

In this section, we show that polar codes is an excellent candidate for effective adaptive

decoding in flash memories in the sense that the construction of new codes is not necessary

through the lifetime of flash chips, and changing code rate only requires freezing additional

input bits. The proof relies on the following lemma, which restates Corollary 1 from [20].

116

Lemma46. Let FW be the frozen set of the capacity-achieving polar codes for W . For

any two channels Wi and Wj such that Wi � Wj , the capacity achieving polar code for

Wj can be obtained from the polar code for Wi by freezing additional input bits whose

indices are in the set FWi
− FWj

.

Consider an ideal adaptive polar decoder in Definition 45 with infinite code length,

Ri being the capacity of W (αi), and αi+1 = αi + 1 for i ∈ {1, 2, · · · , k − 1}. The

lemma above states that the ideal adaptive decoder can be realized by simply making ad-

ditional input bits frozen when changing the rates at different PECs. In practice, adap-

tive decoders use finite block lengths, and it is prohibitively expensive to switch to a

new code rate at each PEC. Therefore, we further consider a practical adaptive polar

decoder with code rate Ri being smaller than the capacity of W (αi), and αi+1 > αi +

1 for i ∈ {1, 2, · · · , k − 1}. Let W (1)(α),W (2)(α), · · · ,W (N)(α) be the N subchan-

nels of the polar code for W (α). Let σW (α) = (x1, x2, · · · , xN) be the length-N per-

mutation induced by the polarization order of the subchannels such that the sequence

Pe(W
(x1)(α)), Pe(W

(x2)(α)), · · · , Pe(W (xN)(α)) is in ascending order where Pe(·) com-

putes the theoretical decoding error rate of a channel.

Theorem47. For any α, α′ such that α 6 α′, and rate-R and rate-R′ codes are used at α

and α′, respectively (R > R′), the polar code for W (α′) can be obtained from the polar

code for W (α′) by further freezing the input bits in FW (α′) − FW (α) if

σW (α) = σW (α′). (8.2)

Proof: If (8.2) holds, FW (α) = {x1, · · · , xdN(1−R)e} and FW (α′) = {x1, · · · , xdN(1−R′)e}.

Therefore, to obtain code for W (α′) only needs to frozen the additional input bits with

indices in {xdN(1−R)e+1, xdN(1−R)e+2, · · · , xdN(1−R′)e} which is FW (α′) − FW (α). �

117

The condition (8.2) is motivated by our experimental observations. Figure 8.5 shows

the theoretical decoding error rates for each subchannel at different PECs for the polar

codes used in Section 8.2-E. The figure suggests the error rates almost increase with PEC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

D
e
co

d
in

g
 E

rr
o
r

R
a
te

PEC

Figure 8.5: The theoretical decoding error rates of each subchannel at different PECs.
Each curve denotes one subchannel.

(due to process variation, the rates do not increase monotonically between 0− 103 PECs),

and that the order of polarization be well preserved. Assume (8.2) holds for any α, α′ ∈

[α1, αk]. The next two corollaries state that the constructions of new codes can be avoided

for practical adaptive decoders corresponding to 1) and 2) of Definition 45, respectively.

Corollary48. For i ∈ {1, 2, · · · , k − 1}, when the decoder changes the code rate Ri

previously used at αi+1 − 1 to Ri+1 at αi+1, it only needs to further make the input bits in

Fwαi+1
− Fwαi+1−1 frozen.

118

-3

-2

-1

0

 0 2000 4000 6000 8000 10000

E
xp

o
n
e
n
t
o
f
B

lo
ck

 E
rr

o
r

R
a
te

P/E Cycle

PEC=3000
PEC=6000

PEC=10000
PEC=13000

(a) Average BERs of upper-odd pages

-8

-7

-6

-5

-4

-3

 0 2000 4000 6000 8000 10000

E
xp

o
n
e
n
t
o
f
U

n
co

rr
e
ct

a
b
le

 B
it

E
rr

o
r

R
a
te

P/E Cycle

Optimized-0.95
Optimized-0.94
Optimized-0.93

Fixed Codes-0.95
Fixed Codes-0.94
Fixed Codes-0.93

(b) Average UBERs over all pages

Figure 8.6: The performance of polar codes constructed at fixed PECs throughout the
lifetime of the flash chips. Soft sensing is used.

Corollary49. For i ∈ {1, 2, · · · , k − 1}, given any two PECs α, α′ ∈ [αi, αi+1), with the

same code rate Ri the polar codes for W (α) and W (α′) are equivalent.

Corollary 49 states that no construction of new code is necessary for the PECs covered

by the same code rate. Figure 8.6a shows the block error rates of four polar codes of rate-

0.94 for the upper-odd pages constructed at PECs 3 × 103, 6 × 103, 104, and 1.3 × 104,

respectively. Each code is tested through the whole lifetime of the flash chips. The results

suggest the codes yield very similar decoding performance due to the polarization order

preservation shown in Figure 8.5. Figure 8.6b compares the average UBERs of the codes

constructed at 6000 PECs with the optimized performance yield by codes constructed at

different PECs. The performance of the scheme without construction of new code closely

approaches the optimized performance.

119

9. MULTI-PHASE SCRUBBING FOR PHASE-CHANGE MEMORIES

PCMs face important challenges on its reliability. One fundamental problem is caused

by resistance drift: cell resistance drifts over time due to the structural relaxations in phase

change materials. According to [8] [30], the resistance of a PCM cell increases with time

t following:

lgRt = lgRt0 + v(lg t− lg t0), (9.1)

where Rt and Rt0 are the cell resistance at time t and t0, respectively. The variable v

is a drift parameter that varies from cell to cell, and increases with the initial resistance

Rt0 . A common model assumes that lgRt0 and v follows some probability distributions.

Resistance drift shifts and broadens cell level distributions, introducing errors to data. An

example of resistance drift is shown in Figure 9.1. (Note that the scheme presented in this

paper is not restricted by the resistance drift model in Eq. 9.1. For other models such as

the stochastic model presented in [22], similar results and analysis can be adapted.)

(a) Initial cell level distributions (b) Distributions after drift

Figure 9.1: Resistance drift within 4-level cells with fixed thresholds for levels. Horizontal
axis: the logarithmic resistance. Solid curves: the resistance distributions of the cell levels.
Dotted vertical lines: the resistance thresholds.

To prevent error accumulation caused by resistance drift, this paper studies an approach

120

which can use the existing solutions and dynamically refresh PCM cell levels, namely

memory scrubbing. Let the allowed memory operations be cell programming and reading.

In each read, resistance is only measured once. It is not feasible to read the resistance of a

cell multiple times in order to solve the values of Rt0 and v. This is because the memory

system can not afford the space and delay cost by storing the analog resistance value for

each cell. Therefore, we assume that the analog cell resistance measured during one read

will be unavailable for the next read. The measured resistance is quantized into cell levels,

or used for computing the input probabilities for soft decoding. The problem we consider

in this paper is as follows.

Definition50. Let a sequence of n MLCs with q levels be initially programmed to store N

bits at time t0. Let cell resistance drifts following the model in Eq. (9.1). Design a scheme

to allow the initially stored N bits be recovered at any given time t > t0.

Memory scrubbing has been widely used in dynamic random-access memories and

flash memories. In a basic scheme, data are encoded with ECC, codewords are periodically

decoded and written back to the cells. To prevent error accumulation, higher decoding

frequency is needed for high rate ECCs. However, since the decoding frequency equals

the scrubbing frequency in the basic scheme, increasing decoding frequency also brings

more additional writes to the memory cells. The latter causes delay and degrades cell

qualities.

In this paper, a new multi-phase memory scrubbing scheme is proposed for PCMs.

Compared to the basic scheme, our scheme can increase decoding frequency without rais-

ing scrubbing frequency, and errors can be detected much earlier. In this scheme, cells

storing an ECC codeword is partitioned into a few segments. The scrubbing proceeds in

several phases. In each phase, one segment of cells is refreshed after decoding. The errors

found during each decoding can also be saved as metadata to further improve the next

121

decoding.

The rest of this paper is organized as follows. We construct the multi-phase scrubbing

scheme in Section 9.1. We derive the achievable rates of the scheme in Section 9.2, and

estimate its decoding error rates in Section 9.3. We discuss a further extension based on

in-memory error detection in Section 9.4. The performance of our scheme is evaluated in

Section 9.5.

9.1 Multi-phase Memory Scrubbing

In this section, We describe the multi-phase scrubbing scheme. Let q = 2m be the total

number of levels in each cell, where m ∈ N. An ECC with block length N is used for en-

coding K information bits x = (x0, x1, · · · , xK−1) ∈ {0, 1}K with the encoding function

φ : {0, 1}K → {0, 1}N . Assume that m|N . Let the codeword b = (b0, b1, · · · , bN−1) ∈

{0, 1}N = φ(x) be stored using n PCM cells denoted by (C0, C1, · · · , Cn−1). Assume

m|N , then n = N
m

. For i = 0, 1, · · · , n − 1, the cell Ci is programmed to cell level

li , π−1(bm·i, · · · , bm·(i+1)−1). Here π : {0, 1}m → {0, 1, · · · , q − 1} is some binary-

to-q-ary mapping, and let π−1 : {0, 1, · · · , q − 1} → {0, 1}m be the inverse of π. Let

[T−1,t, T0,t, · · · , Tq−1,t] be the thresholds used for quantizing cell resistance at time t, i.e.,

for i ∈ {0, 1, · · · , q − 1} a cell is at level i if and only if its logarithmic resistance lgRt

satisfies Ti−1,t < lgRt < Ti,t.

Construction7. Multi-phase scrubbing.

Divide n cells equally into s segments denoted by [S0, S1, . . . , Ss−1] such that for j ∈

{0, 1, · · · , s− 1} segment Sj contains cells
(
Cj·dn

s
e, · · · , Cmin{(j+1)·dn

s
e−1,n−1}

)
.

For i = 0, 1, 2, · · · , at time i · tm , do the following:

1. Read the cells, obtaining the codeword b′ = (b′0, b
′
1, · · · , b′N−1) ∈ {0, 1}N−1 from

the cells with the resistance thresholds [T−1,i·tm , T0,i·tm , · · · , Tq−1,i·tm].

122

2. Decode b′. Let (b̂0, b̂1, · · · , b̂N−1) = φ−1(b′). Upon decoding failure, stop and

report the failure.

3. Let j = i mod s, refresh Sj by programming cells (Cj·dn
s
e, · · · , Cmin{(j+1)·dn

s
e−1,n−1})

to the levels (l̂j·dn
s
e, · · · , l̂min{(j+1)·dn

s
e−1,n−1}) where l̂y , π−1((b̂m·y, · · · , b̂m·(y+1)−1))

for y = j · dn
s
e, · · · ,min{(j + 1) · dn

s
e − 1, n− 1}.

Remark51. The multi-phase scheme has scrubbing frequency 1
s·tm and decoding fre-

quency 1
tm

.

Remark52. Let g(i, j) , (s− (j − i) mod s)·tm if i 6= j, and g(i, j) , s·tm otherwise.

At the moment when we are about to decode b′ to refresh Si, the cells in Sj have drifted

for time g(i, j).

In Construction 7, the errors found in the cell segments which are not being scrubbed

are immediately forgotten. We propose an extension to store such error information as

metadata. As metadata are also effected by channel noise, and shall not occupy too much

storage space, metadata need to be compressed and protected with ECC.

In the following, we assume that segment Si is being scrubbed, and that the noisy code-

word b′ corresponds to a sequence of cell levels l′ = (l′0, l
′
1, · · · , l′n−1) ∈ {0, 1, · · · , q −

1}n. Let the estimated codeword (b̂0, b̂1, · · · , b̂N−1) = φ−1(b′) given by ECC decoder

correspond to the estimated cell levels (l̂0, l̂1, · · · , l̂n−1) ∈ {0, 1, · · · , q − 1}n. Let ψ(·) be

the encoding function of some source code, and let φmeta(·) be the encoding function of

some ECC for protecting the metadata.

Construction8. Generating metadata.

Let l̃ , (l̃0, l̃1, · · · , l̃dn
s
e−1) ∈ {0, 1, · · · , q}dns e be a sequence of (q + 1)-ary symbols.

Let z = (i + 1) mod s be the index of the segment to be scrubbed in the next, and let

123

A ,
{
j | z · dn

s
e 6 j 6 min{(z + 1) · dn

s
e − 1, n− 1}, l̂j 6= l′j

}
be the set of indices of

the erroneous cells in segment Sz.

• For j ∈ A, let l̃j−z·dn
s
e = l̂j .

• For j ∈
{
z · dn

s
e, · · · ,min{(z + 1) · dn

s
e − 1, n− 1}

}
− A, let l̃j−z·dn

s
e = q.

Store the codeword m = φm(ψ(̃l)) using additional cells.

Remark53. The cells for storing metadata are reprogrammed every time tm.

When scrubbing a segment, metadata are read first and used to correct the codeword.

The codeword is then passed to ECC decoder.

Construction9. Error correction using metadata.

If metadata are used, do the following before decoding b′ (step 2 of Construction 1):

1. Read from metadata, obtaining a noisy codeword m′.

2. Compute the estimated sequence

ˆ̃l = ψ−1(φ−1
m (m′)) = (ˆ̃l0,

ˆ̃l1, · · · , ˆ̃ldn
s
e−1) ∈ {0, 1, · · · , q}dns e.

Upon decoding failure, skip the rest of the steps.

3. Correct the part of b′ stored in segment Si. For j ∈ {0, 1, · · · , dn
s
e − 1}, if ˆ̃lj 6= q,

let (b′m(i·dn
s
e+j), · · · , b′m(i·dn

s
e+j+1)−1) = π(ˆ̃lj).

Example54. Let N = 12, K = 8, q = 4, s = 3. Therefore, n = 6 and segment S0

has cells (C0, C1), S1 has cells (C2, C3), and S2 has cells (C4, C5). For simplicity, we

assume metadata are noiseless and only show the values of l̃. As shown in Figure 9.2,

let the initial cell states correspond to a binary (12, 8)-shortened Hamming codeword that

124

2 0 1 3 1 3

2 0 2 3 1 3

2 0 1 3 3 3

2 0 1 3 1 3

Initial States

l̃
Scrub S0

Scrub S1

Scrub S2

(1, 4)

(4, 4)

(1, 4)

· · ·

· · ·
Figure 9.2: An example for illustrating multi-phase scrubbing.

corrects 1 error. Suppose that at some moment when we scrub S0, ECC decoding finds

that cell C2 is erroneous (marked by underline), the correct level 1 of C2 is then recorded

in l̃0. As C3 has no error, l̃1 = q = 4. Next, we scrub S1, assume C4 becomes faulty (in

addition to C2). Before decoding the noisy codeword, we first correct the bits stored by C2

using the metadata. We then use decoding to recover the level of C4, updating l̃0 = 1. We

then scrub S2. Suppose that only C4 is faulty, l̃0 is used to correct the bits of C4. Since the

decoding finds no error, the values of l̃0 and l̃1 are set to 4.

The multi-phase scrubbing can use any existing ECCs. Since the resistance thresholds

in our scheme is parametrized by time t, our scheme naturally supports the use of dynamic

resistance thresholds [78] [88]. Besides the error logging mechanism proposed in Con-

structions 8 and 9, our scheme can be adapted to work with more advanced error logging

schemes such as [64] for better performance.

9.2 Code Rate Analysis

In this section, we analyze the achievable rates of the multi-phase scrubbing scheme

using metadata when n→∞.

125

9.2.1 Channel Model

We first define the channel model. To simplify the analysis, we assume s|n. For

i ∈ {0, 1, · · · , q − 1}, we use lgRi,t to denote the logarithmic resistance of a cell at time

t which is initially programmed to cell level i at time t0. Let the initial logarithmic cell

resistance lgRi,t0 and the drift exponent v each follow a Gaussian distribution

lgRi,t0 ∼ N (µlgRi,t0
, σ2

lgRi,t0
), v ∼ N (µv, σ

2
v).

Then the logarithmic resistance lgRi,t ∼ N (µlgRi,t , σ
2
lgRi,t

) where

µlgRi,t = µlgRi,t0
+ µv(lg t− lg t0),

σ2
lgRi,t

= σ2
lgRi,t0

+ σ2
v(lg t− lg t0)2.

We use Pr{lt = j | lt0 = i} , Pr{Tj−1,t < lgRi,t 6 Tj,t} to denote the probability that a

cell with initial level i at time t0 drifts to level j at time t, and we have

Pr{lt = j | lt0 = i} =

∫ Tj,t

Tj−1,t

f(x) dx,

where function f(·) is the probability density function of the Gaussian distribution

N (µlgRi,t , σ
2
lgRi,t

).

Assume each bit in a codeword is i.i.d.. For i ∈ {0, 1, · · · ,m − 1}, let βi be the

probability that the i-th bit stored in a cell is 1. The probability that a cell is initially

126

programmed to level j ∈ {0, 1, · · · , q − 1} to be

Pr{lt0 = j} ,Pr{(b0, b1, · · · , bm−1) = π(j)}

=
∏

x∈{0,1,··· ,m−1}
βbxx (1− βx)1−bx .

9.2.2 Code Rates

We now compute the achievable rates. Assume we are at the moment when segment

Sa is about to be scrubbed. Given a vector v = (v0, v1, · · · , vk−1) ∈ {0, 1}k, define its

support as support(v) , {i | i ∈ {0, 1, · · · , k − 1}, vi = 1}. We define the cross of i as

cross(i) , {j|j ∈ {0, 1, · · · , q − 1}, i ∈ support(π(j))}

which computes the set of cell levels whose corresponding binary representation has 1 in

the i-th bit.

Example55. Let m = 3, and let π follow the basic binary mapping, i.e., 0 → (0, 0, 0),

1 → (0, 0, 1), 2 → (0, 1, 0), · · · , 7 → (1, 1, 1). Then cross(0) = {1, 3, 5, 7}, cross(1) =

{2, 3, 6, 7}, and cross(2) = {4, 5, 6, 7}.

Let bi,j be the i-th bit stored in a cell of segment Sj , and let ei,j denote the bit error

received by bi,j . For j ∈ {0, 1, · · · , s− 1} − {a}, the cross-over probabilities for bi,j are

Pr{ei,j = 1 | bi,j = 0} =
∑

k∈cross(i)

∑
k′∈cross(i)

Pr{lt0 = k | bi,j = 0}Pr{lg(a,j) = k′ | lt0 = k},

Pr{ei,j = 1 | bi,j = 1} =
∑

k∈cross(i)

∑
k′∈cross(i)

Pr{lt0 = k | bi,j = 1}Pr{lg(a,j) = k′ | lt0 = k}.

127

The bits stored in Sa is corrected with metadata first before decoding, for j = a the cross-

over probabilities are

Pr{ei,a = 1 | bi,a = 0} =
∑

k∈cross(i)

∑
k′∈cross(i)

Pr{lt0 = k | bi,a = 0}Pr{lstm = k′, l(s−1)tm = k | lt0 = k},

Pr{ei,a = 1 | bi,a = 1} =
∑

k∈cross(i)

∑
k′∈cross(i)

Pr{lt0 = k | bi,a = 1}Pr{lstm = k′, l(s−1)tm = k | lt0 = k}.

Here Pr{ls·tm = j, l(s−1)·tm = i | lt0 = i} is the probability that the level of a cell is correct

at time (s− 1) · tm and turns faulty at time s · tm, and for s = 1, the probability becomes

Pr{ltm = j | lt0 = i}. The rate Ri,j of the i-th bit of a cell in segment Sj is

Ri,j =I(X;Y)

=H((1− βi) Pr{ei,j = 0 | bi,j = 0}+ βi Pr{ei,j = 1 | bi,j = 1})

−(1− βi)H(Pr{ei,j = 1 | bi,j = 0})− βiH(Pr{ei,j = 1 | bi,j = 1}).

where H(·) is the binary entropy function.

Lemma56. The ECC for the information bits has rate

1

s

s−1∑
j=0

m−1∑
i=0

Ri,j bits/cell.

When generating metadata, the (q+1)-ary sequence l̃ are first compressed. The achiev-

able compression rate follows Shannon’s lossless source coding theorem. Let pi be the

probability that a symbol i ∈ {0, 1, · · · , q} appears in l̃. As metadata store error informa-

tion for the next segment to be scrubbed, and the symbol i ∈ {0, 1, · · · , q − 1} appears

if and only if a cell in the next segment is initially at level i and becomes erroneous be-

128

fore the decoding of the current scrubbing iteration, we have for i ∈ {0, 1, · · · , q − 1},

pi = Pr{lt0 = i}∑q−1
j=0,j 6=i Pr{l(s−1)·tm = j | lt0 = i}, and pq = 1−∑q−1

j=0 pi.

Lemma57. The sequence l̃ is compressed to n
s

∑q
i=0 pi log2

1
pi

bits.

Since we assume that the compression is optimal, each bit in the source codeword

has equivalent probability of being 0 and 1. The source codeword representing l̃ needs to

be encoded with ECC. Let bmeta,i be the i-th bit of a cell used for storing metadata. Let

emeta,i be the error received by bmeta,i. As metadata experiences the same channel noise

as the information bits do, the cross-over probabilities Pr{emeta,i = 1 | bmeta,i = 0} and

Pr{emeta,i = 1 | bmeta,i = 1} can be derived accordingly. The rate of the i-th bit of a cell

for storing metadata is

Rmeta,i =I(X;Y)

= H(
1

2
Pr{emeta,i = 0 | bmeta,i = 0}

+
1

2
Pr{emeta,i = 1 | bmeta,i = 1})

− 1

2
H(Pr{emeta,i = 1 | bmeta,i = 0})

− 1

2
H(Pr{emeta,i = 1 | bmeta,i = 1}).

Lemma58. The ECC for protecting the metadata has rate

m−1∑
i=0

Rmeta,i bits/cell.

Lemma59. The total number of additional PCM cells used for storing metadata is

n
∑q

i=0 pi log2
1
pi

s
∑m−1

i=0 Rmeta,i

.

129

Theorem60. The achievable rate of the multi-phase scrubbing scheme using metadata is

max
β0,β1,··· ,βm−1∈[0,1]

∑s−1
j=0

∑m−1
i=0 Ri,j ·

∑m−1
i=0 Rmeta,i

s
∑m−1

i=0 Rmeta,i +
∑q

i=0 pi log2
1
pi

bits/cell.

9.3 Decoding Error Rate Analysis

In practice, the performance of memory scrubbing depends on the specific ECCs used

in the scheme. In this section, we analyze the decoding error rates that can be achieved by

our scheme using ECCs with finite block lengths and known correction capabilities.

The expected number of errors in a cell E(i, t) is a function of the initial level i and the

time t elapsed since the initial level was programmed:

E(i, t) =

q−1∑
j=0,j 6=i

h(π(i), π(j)) Pr(lt = j|lt0 = i),

where h(·, ·) computes the Hamming distance between two binary strings. The expected

bit error rate (BER) for a cell programmed time t ago is estimated as:

B(t) =
1

qm

q−1∑
i=0

E(i, t).

9.3.1 Decoding Error Rates without Metadata

Let an (N,K, d, c)-ECC which has block length N , information bit length K, mini-

mum distance d, and corrects up to c errors be used for encoding the information bits. A

block error occurs when e > c. Cells belonging to different codeword segments drift for

different amount of time before decoding. The average BER B immediately before each

decoding is given by 1
s

∑s
i=1 B(i · tm). The decoding block error rate of the multi-phase

130

scheme is:

Bmulti =
N∑

i=c+1

(
N

i

)
B
i
(1−B)n−i.

9.3.2 Decoding Error Rates with Metadata

Let the information bits be encoded with an (N1, K1, d1, c1)-ECC C1, and the metadata

be encoded with an (N2, K2, d2, c2)-ECC C2. Let e1 and e2 respectively be the number of

errors in the codewords of C1 and C2 before decoding. A block error occurs when: (1)

e2 6 c2 and e1 > c1 + ∆: after correcting ∆ errors in the current segment with metadata,

the number of errors left in the codeword of C1 still exceeds C1’s correction capability.

Here the ∆ errors are found when the cells in the current segment has drifted for time

(s− 1) · tm, and we have ∆ = N1

s
·B((s− 1) · tm). (2) e2 > c2 and e1 > c1: metadata are

not used due to the decoding failure of C2. The number of errors in the codeword of C1

exceeds the correction capability. The decoding error rate is calculated from the two cases

above:

Bmeta = P(e2 > c2) P(e1 > c1) + P(e2 6 c2) P(e1 > c1 + ∆),

where the probabilities above are computed as:

P(e2 > c2) =

N2∑
i=c2+1

(
N2

i

)
B(tm)i(1− B(tm))N2−i,

P(e1 > c1) =

N1∑
i=c1+1

(
N1

i

)
B
i
(1−B)N1−i,

P(e1 > c1 + ∆) =

n1∑
i=c1+∆+1

(
N1

i

)
B
i
(1−B)N1−i.

131

9.4 In-memory Error Detection

During memory scrubbing, an ECC codeword needs to be read from cells into the pro-

cessor of memory controller. The latter decodes the codeword to correct errors. To prevent

error accumulation, one way is to use an ECC which corrects a small number of errors,

and decode the codeword in a high frequency. However, high decoding frequency brings

a large number of memory reads which introduces significant delay. Another option is

to use ECC which can correct many errors to reduce decoding frequency. However, this

approach introduces more parity check bits, and decoding becomes more expensive. To

obtain high decoding frequency without introducing much delay in memory controller,

we extend memory scrubbing by adding an in-memory circuit which detects a few er-

rors. Since the error detection is done in circuit, detection can operate at a much higher

frequency than memory scrubbing does. Once a few errors are detected by the circuit,

memory scrubbing scheme is triggered to correct all the errors and refresh the cell levels.

In rare cases where many errors occur at the same time, in-memory error detection fails,

and we will wait for memory scrubbing cycles to correct all the errors.

One way to construct the in-memory error detection circuit is studied in [79]. A cir-

cuit can be built to detect up to t errors by checking a set of parity check equations. The

selected parity check equations form a subset of all the parity checks given by the parity

check matrix of the ECC for encoding the data. The construction uses existing ECC there-

fore no additional redundancy is added. However, the problem for picking the smallest

parity check set for detecting t errors can be reduced to a variation of the standard set cover

problem. Due to the NP-hardness of the problem, the construction uses a greedy approx-

imation algorithm [43] whose complexity grows exponentially with t. A more efficient

construction method is currently being studied and will be included in our future work.

The other way to construct the circuit is to use concatenated error correction codes. Dif-

132

ferent from the construction in [79], this approach has efficient construction algorithms,

but introduces additional redundancy. For instance, information bits can be encoded by

cyclic redundancy check (CRC) [58] first, then encoded by a full-strength ECC such as

BCH codes or LDPC codes. CRCs have various error detection capabilities depending on

the number of check bits they use, and have very efficient circuit implementation.

9.5 Performance Evaluation

In this section, we evaluate the performance of the multi-phase scrubbing scheme. We

compare the performance of three schemes: (1) multi-phase scheme with metadata. (2)

Multi-phase scheme without metadata. (3) A basic memory scheme, which periodically

decodes the codewords, and then refreshes all the cells.

We always assume that all the schemes have the same scrubbing frequency, namely the

scrubbing frequency and the decoding frequency of the basic scheme is 1
s·tm . Let q = 4,

and let cells have the configurations in Table 9.1. Cell levels are determined using fixed

resistance thresholds. The threshold between two adjacent levels is set to the middle of the

means of their initial logarithmic resistance.

Table 9.1: The configurations of PCM cells used for evaluations.

Level i Bits π(i) µlgRi,t0
σlgRi,t0

µv σv
0 00 3.00 0.13 0.005 0.020
1 01 4.00 0.13 0.080 0.032
2 10 5.00 0.13 0.090 0.036
3 11 6.00 0.13 0.100 0.040

9.5.1 Code Rates

We first show some numerical results of the achievable code rates of the three schemes

in Figure 9.3 (The achievable rates of the multi-phase scheme without metadata and the ba-

133

sic scheme can be computed correspondingly). We assume that βi = 1
2

for i ∈ {0, 1, · · · ,m−

1}. Higher rates can be achieved for smaller scrubbing period. This is because smaller

scrubbing period gives better channel quality. The multi-phase schemes (with or without

metadata) achieve higher rates than the basic scheme does. By using metadata increases

the rate of the multi-phase scheme further. The performance of multi-phase schemes de-

grades nicely when the number of segments changes from 16 to 8.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 20 40 60 80 100 120

A
ch

ie
va

b
le

 C
o
d
e
 R

a
te

 (
b
its

/c
e
ll)

Scrubbing Period (hour)

Metadata, s = 8
Metadata, s = 16

No Metadata, s = 8
No Metadata, s = 16

Basic

Figure 9.3: The code rates of the three scrubbing schemes given different s.

9.5.2 Estimated Decoding Bit Error Rates

We evaluate the decoding bit error rates of the multi-phase schemes with or without

metadata as well as the basic schemes. Assume that the information bits are encoded with

a (4095, 2081, 341, 170)-BCH code. Let q = 4, s = 4. Assume a decoded codeword is

still close to the original codeword when error occurs, the decoding BER of each scheme

is estimated by d
n
· B, where B = Bmulti for our scheme without metadata, B = Bmeta

for our scheme using metadata, and B =
∑N

i=c+1

(
N
i

)
B(s · tm)i(1 − B(s · tm))N−i. For

the extended multi-phase scheme, we compute the upper bound of the decoding BER

134

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
it

E
rr

o
r

R
a
te

Scrubbing Period (hour)

Basic
Multiphase

Multiphase+Metadata

Figure 9.4: The decoding BERs of each scheme with different scrubbing periods.

by assuming the decoding of the metadata always succeeds. The upper bound can be

achieved when tm is small. Each scheme is evaluated using five scrubbing time periods

(in hour units): 0.25 h, 0.5 h, 1 h, 2 h and 4 h. Figure 9.4 shows the BERs for each scheme

evaluated at different scrubbing periods. The multi-phase scheme outperforms the basic

scheme when the scrubbing period is less than 2 h. When the scrubbing period is larger

than 2 h, errors exceed the correction capabilities of all the schemes. The BERs of the

three schemes are very similar.

9.5.3 Simulation Results

We conducted simulations to evaluate the experimental performance of our schemes.

For each scheme, we measured the average BER immediately before each scrubbing to

compare the capability of each scheme on preventing error accumulation. The informa-

tion bits are encoded using a rate-0.94 LDPC code with block length 4376 constructed

following [51]. The decoder uses the sum-product algorithm with iteration threshold 32.

The soft information is computed using the method in [78]. The metadata were com-

pressed using Huffman coding and were encoded with a rate-0.87 LDPC code. For LDPC

soft decoding. Assume s = 4. The simulated data retention period 512 days, and let

135

No Scrubbing

Basic
Multi-phase

Multi-phase with metadata

Data Retention Period (hour)

0.06
0.08

0.10
0.12
0.14

0.16

0.18

0.20
0.22

0.24
0.26

0 2000 8000 10000 12000

B
it

E
rr

or
 R

at
e

4000 6000

Figure 9.5: The BERs before every decoding during retention given tm = 3 h.

tm = 3 h. The BERs before scrubbings are shown in Figure 9.5. Without using scrubbing,

the raw bit error rate grows quickly in the early stage of the whole retention period. The

multi-phase scheme without using metadata keeps BER much lower than the basic scheme

does. By using metadata further lowers the BERs.

136

10. EMULATING RANK MODULATION CODES IN FLASH MEMORIES

The theoretical study of rank modulation codes as well as their potential benefits were

well established in the literature. The main advantage of rank modulation is that charge

leakage is tolerated well with permutations. Since charge leakage behaves similarly in

spatially close cells, the order of the cell levels is not likely to change. In comparison,

when the information is represented by a quantization of absolute values, the leakage is

more likely to introduce errors.

However, no rigorous study has been carried to explore the challenges and practi-

cal advantages in their physical implementation. The main objective of this work is to

close on this theoretical and practical gap and pioneeringly implement rank modulation

codes in flash memory chips. Our point of departure starts with a test board and different

flash memory chips. In this chapter, we discuss the ongoing work on experimenting rank

modulation in flash memories. We introduce our experimental platforms, methodologies,

ongoing experiments, early results, and milestones that we plan to reach in the future.

10.1 Experimental Platform

10.1.1 Flash Test Board

Our main experimental tool is the flash test board shown in Figure 10.1. The board

is designed by the group of Professor Edwin Kan at Cornell University [74, 75]. We

obtained the board under the help of Dr. Yanjun Ma from Intellectual Ventures. The board

contains four major components: (1) a socket for holding NAND flash chips (in TSOP-48

packaging), (2) an ARM7 (LPC2148) microcontroller for operating the flash chip (e.g.

reading and writing), (3) an USB interface for power supply and data communication with

host (e.g. PC), and (4) a serial programmer for receiving compiled executable from host

and programming the microcontroller. The board serves as our initial setup for emulating

137

and characterizing rank modulation in NAND flash memories as discussed later.

Figure 10.1: The flash test board.

10.1.2 NAND Flash Chips

The flash chips being used in our experiments are listed in Table 10.1. These chips are

existing products that are publicly available on the market, supporting the Open NAND

Flash Interface (ONFI) [32]. Chips with both single-level cells (SLCs) and multi-level

cells (MLCs) were used. An SLC has two levels 1 and 0, it stores 1 bit per cell, and is read

by comparing the threshold voltage with one reference threshold voltage. An MLC stores

2 bits per cell, and has four levels. Each bit stored in MLC is independently read using

different reference threshold voltages.

Table 10.1: The NAND flash chips used in our experiments.

Chip Name Type ONFI version Size
Micron MT29F4G08ABADAWP 34nm SLC 1.0 8GB

Micron MT29F64G08CFACA 25nm MLC 2.2 64GB
Hynix H27UAG8T2BTR-BC 32nm MLC 2.2 16GB

138

10.1.3 Support from Flash Chip Manufacturers

In addition to the flash test board, we have also initiated our efforts to collaborate with

chip manufacturers. One of the leading flash chip manufacturers Toshiba has agreed to

provide their latest generation of multi-level flash memory chips as well as the informa-

tion regarding the advanced testing commands for the chips. With such, the experimental

performance of rank modulation scheme can be better characterized, and the implementa-

tion complexity will be greatly reduced. Besides Toshiba, rank modulation scheme will be

experimented with the chips from other major chip manufacturers which include Micron,

Hynix, SanDisk, as well as Samsung. In the future, we plan to obtain the support from

these manufacturers as well so that the benefits of rank modulation will be demonstrated

for general flash chips.

10.2 Emulating Rank Modulation

As a first step, we would like to emulate rank modulation in existing NAND flash

without modifying the chips. The emulation will allow us to conduct various kinds of

characterizations on the practical performance of rank modulation scheme.

The emulation requires designing algorithms for writing and reading rank modulation

codewords (i.e. permutations). To write a permutation, we need to program each cell in

the same group to different intermediate state. To read a permutation, the programmed

intermediate states of the cells need to be compared to assign ranks. In our experiments,

such operations are based on an important programming technique referred as partial pro-

gramming (PP). The capability of PP was discovered in [74]. In general, PP is a timed

programming operation implemented by using the programming command followed by

an abort command. To partially program a cell, a time threshold is given, the program-

ming command is applied for a certain amount of time specified by user, after which the

operation is aborted, and the cell will stay in an intermediate state. To compare the inter-

139

Figure 10.2: The first 4096 cells of a page in a Micron 34nm SLC flash chip with PP
duration = 27 microseconds

mediate states, we use the number of PPs needed for each cell to reach level 0.

One of the challenges for using PP for rank modulation is due to the process variation.

Let us refer to the number of PP needed to program an erased cell to level 0 as the cell

resolution. Due to the variation in manufacturing, different cells may have significantly

different resolutions. Figure 10.2 shows the number of PPs taken to program a cell from

level 1 to level 0 for the first 4096 cells in an SLC flash memory page. The results suggest

that most of the cells need a small number of PPs to reach level 0, while some cells need

a significantly larger number of PPs to do the same. Figure 10.3 shows the number of PPs

needed to program an erased cell to 0 using PPs with different time thresholds. Naturally,

the number of PPs needed to program a cell decreases when the PP duration increases.

When PP duration is very small, a much larger number of PPs is needed to program a

cell; when time threshold is very large, PP has a similar behavior as a full programming

command does. The results suggest that we shall select the PP duration to some time

threshold in between.

140

Figure 10.3: The first 4096 cells of a page in a Micron 34nm SLC flash chip with PP
duration = 27 microseconds

We propose two schemes for emulating rank modulation that are robust under process

variation. Namely, fine tuning based programming (FTP) and hybrid programming (HP).

In FTP, we first measure the average resolution of each cell to be programmed. Given

the rank of a cell, the number of PPs needed is determined according to the resolution.

For instance, let there be three cells c1, c2, c3 that needs to store the length-3 permutation

(1, 2, 3). Assume the average resolution of each cell is 3, 6 and 5, respectively. To store

the permutation, we can apply 3 PPs to c1, 2 PPs to c2, and leave c3 untouched. To read the

stored permutation, we continue applying PP to each cell and record the number of PPs

still needed for each cell to reach level 0. Together with the measured average resolutions,

we can estimate the previous intermediate state of each cell, and assign their ranks accord-

ingly. FTP is easy to implement. However, it is not scalable due to the overhead required

for measuring and storing the resolutions.

One scalable approach is to use HP. In this approach, we use both target threshold

141

voltage as well as reference threshold voltage to represent different ranks. The method

can be used to program at least 3 ranks in an SLC, and 7 ranks in an MLC. For simplicity,

we illustrate HP for SLCs. To program a length-3 permutation, the cell with rank 1 is

programmed using the programming command, making the threshold voltage of the cell

reach the target threshold voltage of level 0. The cell with rank 2 is programmed using

multiple PPs until the cell starts being read 0. The threshold voltage of the cell will be

right above the reference threshold voltage between levels 1 and 0. The cell with rank 3

is untouched. To read the permutation stored, we first read each cell with the reference

threshold voltage, the cell which reads 1 is given rank 3. For the other two cells which

read 0, we issue a programming command on each of them, measuring the time cost. The

cell which takes less time to be programmed is given rank 1, and the other is given rank 2.

Note that, both emulation schemes use destructive reading—when permutation is read,

the cell states will be changed, and the stored permutation can not be read again. With the

help of the advanced testing commands provided by Toshiba, such problem can be resolved

by reading using multiple reference thresholds instead of using programming.

10.3 Preliminary Results

We implemented both emulation schemes methods within Micron 34nm SLC flash

chips. As a first step, we considered an interference-free case where only the even (or odd)

page in a wordline is used to store permutations. Two pages are separated by a wordline.

In each page, we use the first 1024 bytes to store 1024 length-3 random permutations, and

only the first 3 of the 8 cells belonging to a byte are utilized for each permutation.

For FTP, around 15 permutations on average were misread in each page with the mis-

read probability being 1%. HP performs significantly better. On average, around 5 per-

mutations were misread with misread probability being 0.5%. The major error patterns

include both erasures and errors. An erasure happens when two cells have the same rank,

142

e.g. (1, 2, 3)→ (1, 1, 2). An error happens when the output ranks of two cells switch, e.g.

(1, 2, 3) → (2, 1, 3). Table 10.2 lists all the error patterns encountered in each emulation

method. HP also yields simpler error patterns.

Table 10.2: Error patterns of the two emulation schemes.

Erasure Error
FTP ranks 1 and 2, ranks 2 and 3 ranks 1 and 2, ranks 2 and 3
HP ranks 1 and 2 ranks 2 and 3

To see how misread probability changes with program/erase cycle, we further cycle

the flash chips by repeatively programming pseudo-random length-3 permutations into

multiple pages of a block using HP, and then erasing the block. Before an erasure, the

permutations are read and compared with the input permutations to compute the average

misread probability at each PEC. The cases with and without cell-to-cell interference were

examined. In the case without interference, only the even page in each wordline is used,

and every two wordlines that store permutations are separated by another unused word-

line. The misread probabilities are shown in Figure 10.4. The results suggest that erasure

be the dominant error pattern, and the erasure rates increase with PEC. This is due to the

program/erase cycling noise which makes the rank 2 cells be overprogrammed more easily

during the iterative partial programming process of HP. In the case with interference, each

page in the block is used for storing permutations. Therefore, when a page is being pro-

grammed, the cells in the adjacent pages will be interfered, and when a page is being read,

the adjacent pages will again be interfered due to the programming operation used during

the destructive reading process. Our experiments compared the performance of parallel

and sequential HP. Parallel HP programs the cells in the same page that are given the same

143

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

1	
 10210	
 20603	
 30905	
 40910	
 50910	
 60910	
 70910	
 80910	
 90910	

Av
er

ag
e

R
ea

d
Er

ro
r R

at
e	

Program/Erase Cycle	

Erasure+Error	
 Erasure	
 Error	

Figure 10.4: The average read error probabilities at different PECs without cell-to-cell
interference.

rank in parallel. Therefore, length-3 permutations can be programmed into a page in two

steps by first programming the cells of rank 1, and then the cells of rank 2. The sequential

HP programs each cell in a page sequentially. The average read error rates in this case

are shown in Figure 10.5. The misread probabilities of the case with interference are sig-

nificantly higher than those of the previous case without interference. By using parallel

programming, the two-step HP yields much better performance than the sequential HP

does as much less interference is introduced thanks to parallel programming.

144

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

101	
 17101	
 29103	
 41103	
 53103	
 65103	

Av
er

ag
e

R
ea

d
Er

ro
r R

at
e	

Program/Erase Cycle	

Two-Step Programming	
 In-order Programming	
 No Interference	

Figure 10.5: The average read error probabilities at different PECs with cell-to-cell inter-
ference.

145

11. SUMMARY AND DIRECTIONS OF FUTURE WORK

There are several research problems that we would like to explore in the future.

We would like to further extend the study of the bit-fixing coding scheme discussed

in Chapter 3. Since bit-fixing codes can work with any numeral systems, one direction

is to apply bit-fixing codes to the rank modulation scheme [39] whose codewords rely on

the factoradic numeral system. Since bit-fixing codes are good at correcting asymmetric

errors, another direction would be to see how it performs to correct errors in PCMs against

resistance drift. It would also be interesting to compare the performance of bit-fixing cod-

ing schemes with a symmetric ECC using dynamic thresholds for quantizing cell levels.

This requires us to derive the code rates for each of the scheme given the channel statistics

of PCMs, as well as running simulations to see the experimental performance.

One major tasks left for the ECC-WOM codes presented in Chapter 5 and Chapter

7 is to simulate the real error correction performance of the WOM codes. Currently the

simulator has been implemented, therefore, the task is relatively easy. After obtaining

results, we could further prepare a journal version of the paper. Another main direction

is to extend the current code construction to support q-ary codes. To do so, we can start

from the noise free q-ary Polar WOM codes studied by Burshtein [10] and try to adapt our

construction from binary case to q-ary case. Again, after the code construction is clear,

experiments need to be done to test its performance.

In flash memories, various kinds of errors will be introduced during the data reten-

tion period. For aged cells, the errors accumulate even more quickly. One simple way

for preventing error accumulation is to use memory scrubbing. That is, codewords stored

in memory cells are read and decoded periodically. The corrected codewords are written

back to the cells. The problem with the basic scrubbing scheme is that frequent cell repro-

146

gramming may introduce many block erasures, and degrade writing speed as well as cell

quality. With the ECC-WOM codes [38] studied by us, memory scrubbing can be done

more efficiently in the sense that the bits to be rewritten to cells are WOM codewords.

WOM codes will significantly reduce the number of block erasures, and thus have great

potential to increasing the error scrubbing performance. We plan to study different kinds

of constructions for memory scrubbing codes, based on which lower bounds of the achiev-

able rates need be derived. The derivation should be based on the previous results on the

code rates derived for the ECC-WOM codes. Simulations will need to be carried out to

evaluate the experimental performance of the scheme.

One interesting question to answer for content-assisted decoding is that will this ap-

proach work for any kind of data? For instance, will this approach work for image files

stored in some format such as JPEG? To find the solution, one direction we could possibly

study is how to estimate the probability distribution of the output symbols of a source en-

coder. Once such information is known, we could utilize such information to improve the

performance of channel decoding feeding the probability distribution to a soft decoder.

The final objective of emulating and characterizing rank modulation is to show the

superiority of rank modulation over the traditional storage scheme.

Currently, we are trying to emulate rank modulation codes in MLC chips. After which,

there are many directions that we plan to explore: (1) study methods for further improve

the misread probability of the emulation schemes, (2) explore the emulation scheme which

combines both FTP and HP to program more than 3 ranks in a SLC and 7 ranks in MLC,

(3) characterize the errors on rank modulation under different kinds of noise in flash, which

includes program/erase cycling noise, charge leakage (retention), and cell-to-cell interfer-

ence, (4) compare the capacity and the endurance of rank modulation with traditional SLC

and MLC flash memories, (5) propose extensions to multipermutation such that more than

one cell can have the same rank, and (6) test on the SLC and MLC flash chips from differ-

147

ent major chip manufacturers.

To further make rank modulation codes practical, error correction codes need to be

constructed for the scheme. One direction to approach the problem is to adapt the code

construction by Barg and Mazumdar [6] studied for rank modulation based on permuta-

tions to multi-rank modulation scheme based on multiset permutation. If the adaptation

can be done successfully, we could further apply similar asymptotic code rate analysis

done in [6] to analyze the performance of the new codes.

The size of data being generated in every day’s computation activities is becoming

larger and larger. The big data size introduces extraordinary time complexity for retriev-

ing the data that are needed by user. One way towards a better data retrieval methods

would be to take full advantage of the most attractive features of NVMs—fast random

access capability. One idea is to implement the concept called content-addressable mem-

ories. In such scheme, data in memories are organized by the meanings of their contents.

When some specific kind of data is needed by user, he/she provides some hint as query,

and we will return all the data that are related to the query. To achieve so, We need to

design algorithms for comparing the semantics and contents between data, and study the

algorithms which search for related data given a set of queries. The complexities of the

algorithms can be further studied. Since this application does not require to modify the

internal structure of memory chips, it is possible for us to build a real data retrieval ap-

plication using software based, and its usefulness can be evaluated using real world data

sets.

148

REFERENCES

[1] R. Ahlswede, H. Aydinian, and L. Khachatrian. Unidirectional error control codes

and related combinatorial problems. Proceedings of Eight International Workshop

on Algebraic and Combinatorial Coding Theory, pages 6–9, 2002.

[2] E. Arıkan. Channel polarization: A method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theor.,

55(7):3051–3073, July 2009.

[3] E. Arikan. Source polarization. In Proceedings of IEEE International Symposium on

Information Theory, pages 899–903, 2010.

[4] E. Arikan. Systematic polar coding. IEEE Communications Letters, 15(8):860–862,

2011.

[5] A. Bandyopadhyay, G. J. Serrano, and P. Hasler. Programming analog computational

memory elements to 0.2% accuracy over 3.5 decades using a predictive method. In

Proceedings of IEEE International Symposium on Circuits and Systems, volume 3,

pages 2148–2151, May 2005.

[6] A. Barg and A. Mazumdar. Codes in permutations and error correction for rank mod-

ulation. IEEE Transactions on Information Theory, 56(7):3158–3165, July 2010.

[7] V. Bohossian, A. Jiang, and J. Bruck. Buffer coding for asymmetric multi-level

memory. In Proc. IEEE International Symposium on Information Theory, pages

1186 –1190, June 2007.

[8] G. W. Burr, M. J. Breitwisch, M. Franceschini, et al. Phase change memory technol-

ogy. J. Vac. Sci. Technol. B, 28(2):223–262, 2010.

149

[9] D. Burshtein and A. Strugatski. Polar write once memory codes. In Proc. IEEE

International Symposium on Information Theory, pages 1972–1976, July 2012.

[10] D. Burshtein and A. Strugatski. Polar write once memory codes. IEEE Transactions

on Information Theory, 59(8):5088–5101, August 2013.

[11] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error patterns in mlc nand flash

memory: Measurement, characterization, and analysis. In Proceedings of Design,

Automation Test in Europe Conference Exhibition, pages 521–526, March 2012.

[12] Y. Cai, E. F. Haratsch, O. Mutulu, and K. Mai. Threshold voltage distribution in mlc

nand flash memory: characterization, analysis, and modeling. In Proceedings of the

Conference on Design, Automation and Test in Europe, pages 1285–1290, 2013.

[13] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck. Codes for asymmetric limited-

magnitude errors with application to multilevel flash memories. IEEE Trans. on

Information Theory, 56(4):1582–1595, April 2007.

[14] G. Cohen, P. Godlewski, and F. Merkx. Linear binary code for write-once memories.

IEEE Trans. Inf. Theor., 32(5):697–700, September 1986.

[15] T. M. Cover and J. A. Thomas. Elements of information theory (2. ed.). Wiley, New

York, NY, USA, 2006.

[16] N. Elarief and B. Bose. Optimal, systematic, q-ary codes correcting all asymmetric

and symmetric errors of limited magnitude. IEEE Trans. Inf. Theor., 56(3):979–983,

March 2010.

[17] E. En Gad, A. Jiang, and J. Bruck. Trade-offs between instantaneous and total ca-

pacity in multi-cell flash memories. In Proc. IEEE International Symposium on In-

formation Theory Proceedings, pages 990–994, July 2012.

150

[18] E. En Gad, Y. Li, J. Kliewer, M. Langberg, A. Jiang, and J. Bruck. Polar coding for

noisy write-once memories. submitted to IEEE International Symposium on Infor-

mation Theory 2014.

[19] E. En Gad, E. Yaakobi, A. Jiang, and J. Bruck. Rank-modulation rewriting codes for

flash memories. In Proceedings of IEEE International Symposium on Information

Theory, pages 704–708, July 2013.

[20] A. Eslami and H. Pishro-Nik. A practical approach to polar codes. In Proc. ISIT,

pages 16–20, 2011.

[21] F. Farnoud, V. Skachek, and O. Milenkovic. Error-correction in flash memories via

codes in the ulam metric. IEEE Transactions on Information Theory, 59(5):3003–

3020, May 2013.

[22] M. Franceschini, L.A. Lastras-Montano, A. Jagmohan, M. Sharma, R. Cheek, and

Ming-Hsiu Lee. A communication-theoretic approach to phase change storage. In

Proc. IEEE International Conference on Communications (ICC), pages 1–6, May

2010.

[23] F. Fu and A. J. Han Vinck. On the capacity of generalized write-once memory with

state transitions described by an arbitrary directed acyclic graph. IEEE Trans. Inf.

Theor., 45(1):308–313, September 2006.

[24] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of nand flash memory.

In Proceedings of the 10th USENIX conference on File and Storage Technologies,

Berkeley, CA, USA, 2012.

[25] Project Gutenberg. Project Gutenberg, May 2012. http://www.gutenberg.org/.

[26] S. H. Hassani and R. L. Urbanke. Universal polar codes. CoRR, abs/1307.7223,

2013.

151

[27] C. Heegard. On the capacity of permanent memory. IEEE Trans. Inf. Theor.,

31(1):34–42, January 1985.

[28] J. Honda and H. Yamamoto. Polar coding without alphabet extension for asymmetric

models. IEEE Transactions on Information Theory, 59(12):7829–7838, 2013.

[29] N. Hussami, S. B. Korada, and R. Urbanke. Performance of polar codes for channel

and source coding. In Proc. ISIT, pages 1488–1492, 2009.

[30] D. Ielmini, D. Sharma, S. Lavizzari, and A.L. Lacaita. Physical mechanism and

temperature acceleration of relaxation effects in phase-change memory cells. In Proc.

IEEE International Reliability Physics Symposium (IRPS), pages 597–603, Phoenix,

USA, May 2008.

[31] H. Imai and S. Hirakawa. A new multilevel coding method using error-correcting

codes. IEEE Transactions on Information Theory, 23(3):371–377, May 1977.

[32] Open NAND Flash Interface. 2012. http://www.onfi.org/.

[33] A.R. Iyengar, P.H. Siegel, and J.K. Wolf. Ldpc codes for the cascaded bsc-bawgn

channel. In 47th Annual Allerton Conference on Communication, Control, and Com-

puting, pages 620–627, 2009.

[34] A. Jiang, V. Bohossian, and J. Bruck. Floating codes for joint information storage in

write asymmetric memories. In Proc. IEEE International Symposium on Information

Theory, pages 1166 –1170, June 2007.

[35] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck. Trajectory codes for flash mem-

ory. IEEE Transactions on Information Theory, 59(7):4530–4541, July 2013.

[36] A. Jiang, Y. Li, and J. Bruck. Bit-fixing codes for multi-level cells. In Proc. IEEE

Information Theory Workshop (ITW), September 2012.

152

[37] A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck. Error correction codes for

flash memories. In Proc. Information Theory and Applications Workshop (ITA), Feb.

2013.

[38] A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck. Joint rewriting and error

correction in write-once memories. In Information Theory Proceedings (ISIT), 2013

IEEE International Symposium on, pages 1067–1071, July 2013.

[39] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modulation for flash mem-

ories. IEEE Transactions on Information Theory, 55(6):2659–2673, June 2009.

[40] A. Jiang, M. Schwartz, and J. Bruck. Error-correcting codes for rank modulation. In

Proc. IEEE International Symposium on Information Theory, pages 1736–1740, July

2008.

[41] A. Jiang, M. Schwartz, and J. Bruck. Correcting charge-constrained errors in the

rank-modulation scheme. IEEE Transactions on Information Theory, 56(5):2112–

2120, May 2010.

[42] A. Jiang and Y. Wang. Rank modulation with multiplicity. In Proc. IEEE GLOBE-

COM Workshops, pages 1866–1870, Dec. 2010.

[43] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2005.

[44] T. Klove, B. Bose, and N. Elarief. Systematic, single limited magnitude error cor-

recting codes for flash memories. IEEE Trans. Inf. Theor., 57(7):4477–4487, July

2011.

[45] S. B. Korada and R. L. Urbanke. Polar codes are optimal for lossy source coding.

IEEE Trans. Inf. Theor., 56(4):1751–1768, April 2010.

153

[46] C. Leroux, I. Tal, A. Vardy, and W. J. Gross. Hardware architectures for successive

cancellation decoding of polar codes. In IEEE International Conference on Acous-

tics, Speech and Signal Processing,, pages 1665–1668, 2011.

[47] Y. Li, A. Hakim, E. F. Haratsch, and A. Jiang. A study of polar codes for flash

memories. submitted to IEEE International Symposium on Information Theory 2014.

[48] Y. Li, A. Jiang, and J. Bruck. Error correction and partial information rewriting for

flash memories. submitted to IEEE International Symposium on Information Theory

2014.

[49] Y. Li, Y. Wang, A. Jiang, and J. Bruck. Content-assisted file decoding for nonvolatile

memories. In Proc. 46th Asilomar Conference on Signals, Systems and Computers,

Pacific Grove, CA, 2012.

[50] S. Lin and D. J. Costello. Error Control Coding, Second Edition. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 2004.

[51] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. Infor-

mation Theory, IEEE Transactions on, 45(2):399 –431, mar 1999.

[52] H. Mahdavifar and A. Vardy. Achieving the secrecy capacity of wiretap channels

using polar codes. IEEE Transactions on Information Theory, 57(10):6428 –6443,

Oct. 2011.

[53] Matt Mahoney. Large Text Compression Benchmark, May 2012.

http://mattmahoney.net/dc/text.html.

[54] F. Merkx. Womcodes constructed with projective geometries,. Traitement du Signal,

1(2-2):227–231, 1984.

[55] R. Mori and T. Tanaka. Performance of polar codes with the construction using

density evolution. IEEE Communications Letters, 13(7):519–521, 2009.

154

[56] A. Pamuk and E. Arikan. A two phase successive cancellation decoder architecture

for polar codes. In Proc. ISIT, pages 957–961, 2013.

[57] N. Papandreou, H. Pozidis, G. F. Close, et al. Drift-tolerant multilevel phase-change

memory. In Proc. 3rd IEEE International Memory Workshop (IMW), pages 1–4,

Monterey, USA, may 2011.

[58] W. W. Peterson and E. J. Weldon. Error-Correcting Codes. MIT Press, Cambridge,

MA, 2nd edition, 1972.

[59] Matt Powell. The Canterbury Corpus, May 2012. http://corpus.canterbury.ac.nz/.

[60] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press,

New York, NY, USA, 2008.

[61] R. L. Rivest and A. Shamir. How to reuse a write-once memory. Information and

Control, 55(1-3):1–19, 1982.

[62] W. Ryan and S. Lin. Channel Codes, Classical and Modern. Cambridge University

Press, Cambridge, UK, 2009.

[63] F. Sala, R. Gabrys, and L. Dolecek. Dynamic threshold schemes for multi-level non-

volatile memories. IEEE Transactions on Communications, 61(7):2624–2634, July

2013.

[64] S. Schechter, G. H. Loh, K. Straus, and D. Burger. Use ecp, not ecc, for hard failures

in resistive memories. In Proceedings of the 37th annual international symposium

on Computer architecture, ISCA ’10, pages 141–152, New York, NY, USA, 2010.

ACM.

[65] D. Shin, S. Lim, and K. Yang. Design of length-compatible polar codes based

on the reduction of polarizing matrices. IEEE Transactions on Communications,

61(7):2593–2599, 2013.

155

[66] A. Shpilka. Capacity achieving multiwrite wom codes. CoRR, abs/1209.1128, 2012.

[67] A. Shpilka. Capacity achieving two-write wom codes. In LATIN 2012: Theoretical

Informatics, volume 7256 of Lecture Notes in Computer Science, pages 631–642.

Springer Berlin Heidelberg, 2012.

[68] I. Tal and A. Vardy. List decoding of polar codes. In Proc. ISIT, pages 1–5, 2011.

[69] I. Tal and A. Vardy. How to construct polar codes. IEEE Transactions on Information

Theory, 59(10):6562–6582, Oct 2013.

[70] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, april

1967.

[71] U. Wachsmann, R. F H Fischer, and J.B. Huber. Multilevel codes: theoretical

concepts and practical design rules. IEEE Transactions on Information Theory,

45(5):1361–1391, Jul 1999.

[72] J. Wang, T. Courtade, H. Shankar, and R. D. Wesel. Soft information for ldpc de-

coding in flash: Mutual-information optimized quantization. In Proc. IEEE Global

Telecommunications Conference (GLOBECOM), pages 1–6, Houston, TX, 2011.

[73] J. Wang, G. Dong, T. A. Courtade, H. Shankar, T. Zhang, and R. D. Wesel.

Ldpc decoding with limited-precision soft information in flash memories. CoRR,

abs/1210.0149, 2012.

[74] Y. Wang, W. Yu, S. Wu, G. Malysa, G. E. Suh, and E. Kan. Flash memory for

ubiquitous hardware security functions: True random number generation and device

fingerprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,

SP ’12, pages 33–47, Washington, DC, USA, 2012. IEEE Computer Society.

156

[75] Y. Wang, W. Yu, S. Q. Xu, E. Kan, and G. E. Suh. Hiding information in flash

memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP

’13, pages 271–285, Washington, DC, USA, 2013. IEEE Computer Society.

[76] Y. Wu. Low complexity codes for writing a write-once memory twice. In Proc. IEEE

International Symposium on Information Theory, pages 1928–1932, June 2010.

[77] Y. Wu and A. Jiang. Position modulation code for rewriting write-once memories.

IEEE Trans. Inf. Theor., 57(6):3692–3697, June 2011.

[78] W. Xu and T. Zhang. Using time-aware memory sensing to address resistance drift

issue in multi-level phase change memory. In Proc. 11th International Symposium

on Quality Electronic Design (ISQED), pages 356 –361, San Jose, CA, march 2010.

[79] E. Yaakobi, A. Jiang, and J. Bruck. In-memory computing of akers logic array. In

Proc. IEEE International Symposium on Information Theory, pages 2369–2373, July

2013.

[80] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf. Efficient two-write

wom-codes. In Proc. IEEE Information Theory Workshop, pages 1–5, September

2010.

[81] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf. Codes for write-once

memories. IEEE Trans. Inf. Theor., 58(9):5985–5999, September 2012.

[82] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf. Error char-

acterization and coding schemes for flash memories. In Proc. IEEE GLOBECOM

Workshops, pages 1856–1860, December 2010.

[83] E. Yaakobi and A. Shpilka. High sum-rate three-write and non-binary wom codes.

In Proc. IEEE International Symposium on Information Theory, pages 1386–1390,

July 2012.

157

[84] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf. On codes that correct asymmetric

errors with graded magnitude distribution. In Proc. IEEE International Symposium

on Information Theory Proceedings, pages 1056–1060, August 2011.

[85] E. Yaakobi, P.H. Siegel, A. Vardy, and J.K. Wolf. Multiple error-correcting wom-

codes. IEEE Trans. Inf. Theor., 58(4):2220–2230, April 2012.

[86] G. Zemor and G. D. Cohen. Error-correcting wom-codes. IEEE Trans. Inf. Theor.,

37(3):730–734, May 1991.

[87] F. Zhang, H.D. Pfister, and A. Jiang. Ldpc codes for rank modulation in flash memo-

ries. In Proceedings of IEEE International Symposium on Information Theory, pages

859–863, June 2010.

[88] H. Zhou, A. Jiang, and J. Bruck. Error-correcting schemes with dynamic thresholds

in nonvolatile memories. In Proc. IEEE International Symposium on Information

Theory, pages 2143 –2147, Saint Petersburg, Russia, 31 2011-aug. 5 2011.

[89] H. Zhou, A. Jiang, and J. Bruck. Systematic error-correcting codes for rank modu-

lation. In IEEE International Symposium on Information Theory, pages 2978–2982,

July 2012.

158

